Linux-2.6.12-rc2
[safe/jmp/linux-2.6] / fs / jffs2 / nodemgmt.c
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  * $Id: nodemgmt.c,v 1.115 2004/11/22 11:07:21 dwmw2 Exp $
11  *
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/compiler.h>
18 #include <linux/sched.h> /* For cond_resched() */
19 #include "nodelist.h"
20
21 /**
22  *      jffs2_reserve_space - request physical space to write nodes to flash
23  *      @c: superblock info
24  *      @minsize: Minimum acceptable size of allocation
25  *      @ofs: Returned value of node offset
26  *      @len: Returned value of allocation length
27  *      @prio: Allocation type - ALLOC_{NORMAL,DELETION}
28  *
29  *      Requests a block of physical space on the flash. Returns zero for success
30  *      and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC
31  *      or other error if appropriate.
32  *
33  *      If it returns zero, jffs2_reserve_space() also downs the per-filesystem
34  *      allocation semaphore, to prevent more than one allocation from being
35  *      active at any time. The semaphore is later released by jffs2_commit_allocation()
36  *
37  *      jffs2_reserve_space() may trigger garbage collection in order to make room
38  *      for the requested allocation.
39  */
40
41 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, uint32_t *ofs, uint32_t *len);
42
43 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio)
44 {
45         int ret = -EAGAIN;
46         int blocksneeded = c->resv_blocks_write;
47         /* align it */
48         minsize = PAD(minsize);
49
50         D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
51         down(&c->alloc_sem);
52
53         D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
54
55         spin_lock(&c->erase_completion_lock);
56
57         /* this needs a little more thought (true <tglx> :)) */
58         while(ret == -EAGAIN) {
59                 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
60                         int ret;
61                         uint32_t dirty, avail;
62
63                         /* calculate real dirty size
64                          * dirty_size contains blocks on erase_pending_list
65                          * those blocks are counted in c->nr_erasing_blocks.
66                          * If one block is actually erased, it is not longer counted as dirty_space
67                          * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
68                          * with c->nr_erasing_blocks * c->sector_size again.
69                          * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
70                          * This helps us to force gc and pick eventually a clean block to spread the load.
71                          * We add unchecked_size here, as we hopefully will find some space to use.
72                          * This will affect the sum only once, as gc first finishes checking
73                          * of nodes.
74                          */
75                         dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
76                         if (dirty < c->nospc_dirty_size) {
77                                 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
78                                         printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n");
79                                         break;
80                                 }
81                                 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
82                                           dirty, c->unchecked_size, c->sector_size));
83
84                                 spin_unlock(&c->erase_completion_lock);
85                                 up(&c->alloc_sem);
86                                 return -ENOSPC;
87                         }
88                         
89                         /* Calc possibly available space. Possibly available means that we
90                          * don't know, if unchecked size contains obsoleted nodes, which could give us some
91                          * more usable space. This will affect the sum only once, as gc first finishes checking
92                          * of nodes.
93                          + Return -ENOSPC, if the maximum possibly available space is less or equal than 
94                          * blocksneeded * sector_size.
95                          * This blocks endless gc looping on a filesystem, which is nearly full, even if
96                          * the check above passes.
97                          */
98                         avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
99                         if ( (avail / c->sector_size) <= blocksneeded) {
100                                 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
101                                         printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n");
102                                         break;
103                                 }
104
105                                 D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
106                                           avail, blocksneeded * c->sector_size));
107                                 spin_unlock(&c->erase_completion_lock);
108                                 up(&c->alloc_sem);
109                                 return -ENOSPC;
110                         }
111
112                         up(&c->alloc_sem);
113
114                         D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
115                                   c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
116                                   c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
117                         spin_unlock(&c->erase_completion_lock);
118                         
119                         ret = jffs2_garbage_collect_pass(c);
120                         if (ret)
121                                 return ret;
122
123                         cond_resched();
124
125                         if (signal_pending(current))
126                                 return -EINTR;
127
128                         down(&c->alloc_sem);
129                         spin_lock(&c->erase_completion_lock);
130                 }
131
132                 ret = jffs2_do_reserve_space(c, minsize, ofs, len);
133                 if (ret) {
134                         D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
135                 }
136         }
137         spin_unlock(&c->erase_completion_lock);
138         if (ret)
139                 up(&c->alloc_sem);
140         return ret;
141 }
142
143 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len)
144 {
145         int ret = -EAGAIN;
146         minsize = PAD(minsize);
147
148         D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
149
150         spin_lock(&c->erase_completion_lock);
151         while(ret == -EAGAIN) {
152                 ret = jffs2_do_reserve_space(c, minsize, ofs, len);
153                 if (ret) {
154                         D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
155                 }
156         }
157         spin_unlock(&c->erase_completion_lock);
158         return ret;
159 }
160
161 /* Called with alloc sem _and_ erase_completion_lock */
162 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, uint32_t *ofs, uint32_t *len)
163 {
164         struct jffs2_eraseblock *jeb = c->nextblock;
165         
166  restart:
167         if (jeb && minsize > jeb->free_size) {
168                 /* Skip the end of this block and file it as having some dirty space */
169                 /* If there's a pending write to it, flush now */
170                 if (jffs2_wbuf_dirty(c)) {
171                         spin_unlock(&c->erase_completion_lock);
172                         D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));                           
173                         jffs2_flush_wbuf_pad(c);
174                         spin_lock(&c->erase_completion_lock);
175                         jeb = c->nextblock;
176                         goto restart;
177                 }
178                 c->wasted_size += jeb->free_size;
179                 c->free_size -= jeb->free_size;
180                 jeb->wasted_size += jeb->free_size;
181                 jeb->free_size = 0;
182                 
183                 /* Check, if we have a dirty block now, or if it was dirty already */
184                 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
185                         c->dirty_size += jeb->wasted_size;
186                         c->wasted_size -= jeb->wasted_size;
187                         jeb->dirty_size += jeb->wasted_size;
188                         jeb->wasted_size = 0;
189                         if (VERYDIRTY(c, jeb->dirty_size)) {
190                                 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
191                                   jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
192                                 list_add_tail(&jeb->list, &c->very_dirty_list);
193                         } else {
194                                 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
195                                   jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
196                                 list_add_tail(&jeb->list, &c->dirty_list);
197                         }
198                 } else { 
199                         D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
200                           jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
201                         list_add_tail(&jeb->list, &c->clean_list);
202                 }
203                 c->nextblock = jeb = NULL;
204         }
205         
206         if (!jeb) {
207                 struct list_head *next;
208                 /* Take the next block off the 'free' list */
209
210                 if (list_empty(&c->free_list)) {
211
212                         if (!c->nr_erasing_blocks && 
213                             !list_empty(&c->erasable_list)) {
214                                 struct jffs2_eraseblock *ejeb;
215
216                                 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
217                                 list_del(&ejeb->list);
218                                 list_add_tail(&ejeb->list, &c->erase_pending_list);
219                                 c->nr_erasing_blocks++;
220                                 jffs2_erase_pending_trigger(c);
221                                 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n",
222                                           ejeb->offset));
223                         }
224
225                         if (!c->nr_erasing_blocks && 
226                             !list_empty(&c->erasable_pending_wbuf_list)) {
227                                 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
228                                 /* c->nextblock is NULL, no update to c->nextblock allowed */                       
229                                 spin_unlock(&c->erase_completion_lock);
230                                 jffs2_flush_wbuf_pad(c);
231                                 spin_lock(&c->erase_completion_lock);
232                                 /* Have another go. It'll be on the erasable_list now */
233                                 return -EAGAIN;
234                         }
235
236                         if (!c->nr_erasing_blocks) {
237                                 /* Ouch. We're in GC, or we wouldn't have got here.
238                                    And there's no space left. At all. */
239                                 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", 
240                                        c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", 
241                                        list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
242                                 return -ENOSPC;
243                         }
244
245                         spin_unlock(&c->erase_completion_lock);
246                         /* Don't wait for it; just erase one right now */
247                         jffs2_erase_pending_blocks(c, 1);
248                         spin_lock(&c->erase_completion_lock);
249
250                         /* An erase may have failed, decreasing the
251                            amount of free space available. So we must
252                            restart from the beginning */
253                         return -EAGAIN;
254                 }
255
256                 next = c->free_list.next;
257                 list_del(next);
258                 c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list);
259                 c->nr_free_blocks--;
260
261                 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
262                         printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
263                         goto restart;
264                 }
265         }
266         /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
267            enough space */
268         *ofs = jeb->offset + (c->sector_size - jeb->free_size);
269         *len = jeb->free_size;
270
271         if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
272             !jeb->first_node->next_in_ino) {
273                 /* Only node in it beforehand was a CLEANMARKER node (we think). 
274                    So mark it obsolete now that there's going to be another node
275                    in the block. This will reduce used_size to zero but We've 
276                    already set c->nextblock so that jffs2_mark_node_obsolete()
277                    won't try to refile it to the dirty_list.
278                 */
279                 spin_unlock(&c->erase_completion_lock);
280                 jffs2_mark_node_obsolete(c, jeb->first_node);
281                 spin_lock(&c->erase_completion_lock);
282         }
283
284         D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs));
285         return 0;
286 }
287
288 /**
289  *      jffs2_add_physical_node_ref - add a physical node reference to the list
290  *      @c: superblock info
291  *      @new: new node reference to add
292  *      @len: length of this physical node
293  *      @dirty: dirty flag for new node
294  *
295  *      Should only be used to report nodes for which space has been allocated 
296  *      by jffs2_reserve_space.
297  *
298  *      Must be called with the alloc_sem held.
299  */
300  
301 int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new)
302 {
303         struct jffs2_eraseblock *jeb;
304         uint32_t len;
305
306         jeb = &c->blocks[new->flash_offset / c->sector_size];
307         len = ref_totlen(c, jeb, new);
308
309         D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len));
310 #if 1
311         if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) {
312                 printk(KERN_WARNING "argh. node added in wrong place\n");
313                 jffs2_free_raw_node_ref(new);
314                 return -EINVAL;
315         }
316 #endif
317         spin_lock(&c->erase_completion_lock);
318
319         if (!jeb->first_node)
320                 jeb->first_node = new;
321         if (jeb->last_node)
322                 jeb->last_node->next_phys = new;
323         jeb->last_node = new;
324
325         jeb->free_size -= len;
326         c->free_size -= len;
327         if (ref_obsolete(new)) {
328                 jeb->dirty_size += len;
329                 c->dirty_size += len;
330         } else {
331                 jeb->used_size += len;
332                 c->used_size += len;
333         }
334
335         if (!jeb->free_size && !jeb->dirty_size) {
336                 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
337                 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
338                           jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
339                 if (jffs2_wbuf_dirty(c)) {
340                         /* Flush the last write in the block if it's outstanding */
341                         spin_unlock(&c->erase_completion_lock);
342                         jffs2_flush_wbuf_pad(c);
343                         spin_lock(&c->erase_completion_lock);
344                 }
345
346                 list_add_tail(&jeb->list, &c->clean_list);
347                 c->nextblock = NULL;
348         }
349         ACCT_SANITY_CHECK(c,jeb);
350         D1(ACCT_PARANOIA_CHECK(jeb));
351
352         spin_unlock(&c->erase_completion_lock);
353
354         return 0;
355 }
356
357
358 void jffs2_complete_reservation(struct jffs2_sb_info *c)
359 {
360         D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
361         jffs2_garbage_collect_trigger(c);
362         up(&c->alloc_sem);
363 }
364
365 static inline int on_list(struct list_head *obj, struct list_head *head)
366 {
367         struct list_head *this;
368
369         list_for_each(this, head) {
370                 if (this == obj) {
371                         D1(printk("%p is on list at %p\n", obj, head));
372                         return 1;
373
374                 }
375         }
376         return 0;
377 }
378
379 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
380 {
381         struct jffs2_eraseblock *jeb;
382         int blocknr;
383         struct jffs2_unknown_node n;
384         int ret, addedsize;
385         size_t retlen;
386
387         if(!ref) {
388                 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
389                 return;
390         }
391         if (ref_obsolete(ref)) {
392                 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
393                 return;
394         }
395         blocknr = ref->flash_offset / c->sector_size;
396         if (blocknr >= c->nr_blocks) {
397                 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
398                 BUG();
399         }
400         jeb = &c->blocks[blocknr];
401
402         if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
403             !(c->flags & JFFS2_SB_FLAG_MOUNTING)) {
404                 /* Hm. This may confuse static lock analysis. If any of the above 
405                    three conditions is false, we're going to return from this 
406                    function without actually obliterating any nodes or freeing
407                    any jffs2_raw_node_refs. So we don't need to stop erases from
408                    happening, or protect against people holding an obsolete
409                    jffs2_raw_node_ref without the erase_completion_lock. */
410                 down(&c->erase_free_sem);
411         }
412
413         spin_lock(&c->erase_completion_lock);
414
415         if (ref_flags(ref) == REF_UNCHECKED) {
416                 D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) {
417                         printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
418                                ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
419                         BUG();
420                 })
421                 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
422                 jeb->unchecked_size -= ref_totlen(c, jeb, ref);
423                 c->unchecked_size -= ref_totlen(c, jeb, ref);
424         } else {
425                 D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) {
426                         printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
427                                ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size);
428                         BUG();
429                 })
430                 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref)));
431                 jeb->used_size -= ref_totlen(c, jeb, ref);
432                 c->used_size -= ref_totlen(c, jeb, ref);
433         }
434
435         // Take care, that wasted size is taken into concern
436         if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) {
437                 D1(printk("Dirtying\n"));
438                 addedsize = ref_totlen(c, jeb, ref);
439                 jeb->dirty_size += ref_totlen(c, jeb, ref);
440                 c->dirty_size += ref_totlen(c, jeb, ref);
441
442                 /* Convert wasted space to dirty, if not a bad block */
443                 if (jeb->wasted_size) {
444                         if (on_list(&jeb->list, &c->bad_used_list)) {
445                                 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
446                                           jeb->offset));
447                                 addedsize = 0; /* To fool the refiling code later */
448                         } else {
449                                 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
450                                           jeb->wasted_size, jeb->offset));
451                                 addedsize += jeb->wasted_size;
452                                 jeb->dirty_size += jeb->wasted_size;
453                                 c->dirty_size += jeb->wasted_size;
454                                 c->wasted_size -= jeb->wasted_size;
455                                 jeb->wasted_size = 0;
456                         }
457                 }
458         } else {
459                 D1(printk("Wasting\n"));
460                 addedsize = 0;
461                 jeb->wasted_size += ref_totlen(c, jeb, ref);
462                 c->wasted_size += ref_totlen(c, jeb, ref);      
463         }
464         ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
465         
466         ACCT_SANITY_CHECK(c, jeb);
467
468         D1(ACCT_PARANOIA_CHECK(jeb));
469
470         if (c->flags & JFFS2_SB_FLAG_MOUNTING) {
471                 /* Mount in progress. Don't muck about with the block
472                    lists because they're not ready yet, and don't actually
473                    obliterate nodes that look obsolete. If they weren't 
474                    marked obsolete on the flash at the time they _became_
475                    obsolete, there was probably a reason for that. */
476                 spin_unlock(&c->erase_completion_lock);
477                 /* We didn't lock the erase_free_sem */
478                 return;
479         }
480
481         if (jeb == c->nextblock) {
482                 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
483         } else if (!jeb->used_size && !jeb->unchecked_size) {
484                 if (jeb == c->gcblock) {
485                         D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
486                         c->gcblock = NULL;
487                 } else {
488                         D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
489                         list_del(&jeb->list);
490                 }
491                 if (jffs2_wbuf_dirty(c)) {
492                         D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
493                         list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
494                 } else {
495                         if (jiffies & 127) {
496                                 /* Most of the time, we just erase it immediately. Otherwise we
497                                    spend ages scanning it on mount, etc. */
498                                 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
499                                 list_add_tail(&jeb->list, &c->erase_pending_list);
500                                 c->nr_erasing_blocks++;
501                                 jffs2_erase_pending_trigger(c);
502                         } else {
503                                 /* Sometimes, however, we leave it elsewhere so it doesn't get
504                                    immediately reused, and we spread the load a bit. */
505                                 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
506                                 list_add_tail(&jeb->list, &c->erasable_list);
507                         }                               
508                 }
509                 D1(printk(KERN_DEBUG "Done OK\n"));
510         } else if (jeb == c->gcblock) {
511                 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
512         } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
513                 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
514                 list_del(&jeb->list);
515                 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
516                 list_add_tail(&jeb->list, &c->dirty_list);
517         } else if (VERYDIRTY(c, jeb->dirty_size) &&
518                    !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
519                 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
520                 list_del(&jeb->list);
521                 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
522                 list_add_tail(&jeb->list, &c->very_dirty_list);
523         } else {
524                 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
525                           jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); 
526         }                               
527
528         spin_unlock(&c->erase_completion_lock);
529
530         if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c)) {
531                 /* We didn't lock the erase_free_sem */
532                 return;
533         }
534
535         /* The erase_free_sem is locked, and has been since before we marked the node obsolete
536            and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
537            the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
538            by jffs2_free_all_node_refs() in erase.c. Which is nice. */
539
540         D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
541         ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
542         if (ret) {
543                 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
544                 goto out_erase_sem;
545         }
546         if (retlen != sizeof(n)) {
547                 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
548                 goto out_erase_sem;
549         }
550         if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) {
551                 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref));
552                 goto out_erase_sem;
553         }
554         if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
555                 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
556                 goto out_erase_sem;
557         }
558         /* XXX FIXME: This is ugly now */
559         n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
560         ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
561         if (ret) {
562                 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
563                 goto out_erase_sem;
564         }
565         if (retlen != sizeof(n)) {
566                 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
567                 goto out_erase_sem;
568         }
569
570         /* Nodes which have been marked obsolete no longer need to be
571            associated with any inode. Remove them from the per-inode list.
572            
573            Note we can't do this for NAND at the moment because we need 
574            obsolete dirent nodes to stay on the lists, because of the
575            horridness in jffs2_garbage_collect_deletion_dirent(). Also
576            because we delete the inocache, and on NAND we need that to 
577            stay around until all the nodes are actually erased, in order
578            to stop us from giving the same inode number to another newly
579            created inode. */
580         if (ref->next_in_ino) {
581                 struct jffs2_inode_cache *ic;
582                 struct jffs2_raw_node_ref **p;
583
584                 spin_lock(&c->erase_completion_lock);
585
586                 ic = jffs2_raw_ref_to_ic(ref);
587                 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
588                         ;
589
590                 *p = ref->next_in_ino;
591                 ref->next_in_ino = NULL;
592
593                 if (ic->nodes == (void *)ic) {
594                         D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino));
595                         jffs2_del_ino_cache(c, ic);
596                         jffs2_free_inode_cache(ic);
597                 }
598
599                 spin_unlock(&c->erase_completion_lock);
600         }
601
602
603         /* Merge with the next node in the physical list, if there is one
604            and if it's also obsolete and if it doesn't belong to any inode */
605         if (ref->next_phys && ref_obsolete(ref->next_phys) &&
606             !ref->next_phys->next_in_ino) {
607                 struct jffs2_raw_node_ref *n = ref->next_phys;
608                 
609                 spin_lock(&c->erase_completion_lock);
610
611                 ref->__totlen += n->__totlen;
612                 ref->next_phys = n->next_phys;
613                 if (jeb->last_node == n) jeb->last_node = ref;
614                 if (jeb->gc_node == n) {
615                         /* gc will be happy continuing gc on this node */
616                         jeb->gc_node=ref;
617                 }
618                 spin_unlock(&c->erase_completion_lock);
619
620                 jffs2_free_raw_node_ref(n);
621         }
622         
623         /* Also merge with the previous node in the list, if there is one
624            and that one is obsolete */
625         if (ref != jeb->first_node ) {
626                 struct jffs2_raw_node_ref *p = jeb->first_node;
627
628                 spin_lock(&c->erase_completion_lock);
629
630                 while (p->next_phys != ref)
631                         p = p->next_phys;
632                 
633                 if (ref_obsolete(p) && !ref->next_in_ino) {
634                         p->__totlen += ref->__totlen;
635                         if (jeb->last_node == ref) {
636                                 jeb->last_node = p;
637                         }
638                         if (jeb->gc_node == ref) {
639                                 /* gc will be happy continuing gc on this node */
640                                 jeb->gc_node=p;
641                         }
642                         p->next_phys = ref->next_phys;
643                         jffs2_free_raw_node_ref(ref);
644                 }
645                 spin_unlock(&c->erase_completion_lock);
646         }
647  out_erase_sem:
648         up(&c->erase_free_sem);
649 }
650
651 #if CONFIG_JFFS2_FS_DEBUG >= 2
652 void jffs2_dump_block_lists(struct jffs2_sb_info *c)
653 {
654
655
656         printk(KERN_DEBUG "jffs2_dump_block_lists:\n");
657         printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size);
658         printk(KERN_DEBUG "used_size: %08x\n", c->used_size);
659         printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size);
660         printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size);
661         printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size);
662         printk(KERN_DEBUG "free_size: %08x\n", c->free_size);
663         printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size);
664         printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size);
665         printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size);
666         printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * c->resv_blocks_write);
667
668         if (c->nextblock) {
669                 printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
670                        c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size);
671         } else {
672                 printk(KERN_DEBUG "nextblock: NULL\n");
673         }
674         if (c->gcblock) {
675                 printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
676                        c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size);
677         } else {
678                 printk(KERN_DEBUG "gcblock: NULL\n");
679         }
680         if (list_empty(&c->clean_list)) {
681                 printk(KERN_DEBUG "clean_list: empty\n");
682         } else {
683                 struct list_head *this;
684                 int     numblocks = 0;
685                 uint32_t dirty = 0;
686
687                 list_for_each(this, &c->clean_list) {
688                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
689                         numblocks ++;
690                         dirty += jeb->wasted_size;
691                         printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
692                 }
693                 printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks);
694         }
695         if (list_empty(&c->very_dirty_list)) {
696                 printk(KERN_DEBUG "very_dirty_list: empty\n");
697         } else {
698                 struct list_head *this;
699                 int     numblocks = 0;
700                 uint32_t dirty = 0;
701
702                 list_for_each(this, &c->very_dirty_list) {
703                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
704                         numblocks ++;
705                         dirty += jeb->dirty_size;
706                         printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
707                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
708                 }
709                 printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
710                         numblocks, dirty, dirty / numblocks);
711         }
712         if (list_empty(&c->dirty_list)) {
713                 printk(KERN_DEBUG "dirty_list: empty\n");
714         } else {
715                 struct list_head *this;
716                 int     numblocks = 0;
717                 uint32_t dirty = 0;
718
719                 list_for_each(this, &c->dirty_list) {
720                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
721                         numblocks ++;
722                         dirty += jeb->dirty_size;
723                         printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
724                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
725                 }
726                 printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
727                         numblocks, dirty, dirty / numblocks);
728         }
729         if (list_empty(&c->erasable_list)) {
730                 printk(KERN_DEBUG "erasable_list: empty\n");
731         } else {
732                 struct list_head *this;
733
734                 list_for_each(this, &c->erasable_list) {
735                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
736                         printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
737                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
738                 }
739         }
740         if (list_empty(&c->erasing_list)) {
741                 printk(KERN_DEBUG "erasing_list: empty\n");
742         } else {
743                 struct list_head *this;
744
745                 list_for_each(this, &c->erasing_list) {
746                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
747                         printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
748                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
749                 }
750         }
751         if (list_empty(&c->erase_pending_list)) {
752                 printk(KERN_DEBUG "erase_pending_list: empty\n");
753         } else {
754                 struct list_head *this;
755
756                 list_for_each(this, &c->erase_pending_list) {
757                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
758                         printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
759                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
760                 }
761         }
762         if (list_empty(&c->erasable_pending_wbuf_list)) {
763                 printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n");
764         } else {
765                 struct list_head *this;
766
767                 list_for_each(this, &c->erasable_pending_wbuf_list) {
768                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
769                         printk(KERN_DEBUG "erasable_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
770                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
771                 }
772         }
773         if (list_empty(&c->free_list)) {
774                 printk(KERN_DEBUG "free_list: empty\n");
775         } else {
776                 struct list_head *this;
777
778                 list_for_each(this, &c->free_list) {
779                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
780                         printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
781                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
782                 }
783         }
784         if (list_empty(&c->bad_list)) {
785                 printk(KERN_DEBUG "bad_list: empty\n");
786         } else {
787                 struct list_head *this;
788
789                 list_for_each(this, &c->bad_list) {
790                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
791                         printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
792                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
793                 }
794         }
795         if (list_empty(&c->bad_used_list)) {
796                 printk(KERN_DEBUG "bad_used_list: empty\n");
797         } else {
798                 struct list_head *this;
799
800                 list_for_each(this, &c->bad_used_list) {
801                         struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
802                         printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n",
803                                jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size);
804                 }
805         }
806 }
807 #endif /* CONFIG_JFFS2_FS_DEBUG */
808
809 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
810 {
811         int ret = 0;
812         uint32_t dirty;
813
814         if (c->unchecked_size) {
815                 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
816                           c->unchecked_size, c->checked_ino));
817                 return 1;
818         }
819
820         /* dirty_size contains blocks on erase_pending_list
821          * those blocks are counted in c->nr_erasing_blocks.
822          * If one block is actually erased, it is not longer counted as dirty_space
823          * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
824          * with c->nr_erasing_blocks * c->sector_size again.
825          * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
826          * This helps us to force gc and pick eventually a clean block to spread the load.
827          */
828         dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
829
830         if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && 
831                         (dirty > c->nospc_dirty_size)) 
832                 ret = 1;
833
834         D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", 
835                   c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));
836
837         return ret;
838 }