JBD/JBD2: free j_wbuf if journal init fails.
[safe/jmp/linux-2.6] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
42
43 EXPORT_SYMBOL(journal_start);
44 EXPORT_SYMBOL(journal_restart);
45 EXPORT_SYMBOL(journal_extend);
46 EXPORT_SYMBOL(journal_stop);
47 EXPORT_SYMBOL(journal_lock_updates);
48 EXPORT_SYMBOL(journal_unlock_updates);
49 EXPORT_SYMBOL(journal_get_write_access);
50 EXPORT_SYMBOL(journal_get_create_access);
51 EXPORT_SYMBOL(journal_get_undo_access);
52 EXPORT_SYMBOL(journal_dirty_data);
53 EXPORT_SYMBOL(journal_dirty_metadata);
54 EXPORT_SYMBOL(journal_release_buffer);
55 EXPORT_SYMBOL(journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(journal_flush);
60 EXPORT_SYMBOL(journal_revoke);
61
62 EXPORT_SYMBOL(journal_init_dev);
63 EXPORT_SYMBOL(journal_init_inode);
64 EXPORT_SYMBOL(journal_update_format);
65 EXPORT_SYMBOL(journal_check_used_features);
66 EXPORT_SYMBOL(journal_check_available_features);
67 EXPORT_SYMBOL(journal_set_features);
68 EXPORT_SYMBOL(journal_create);
69 EXPORT_SYMBOL(journal_load);
70 EXPORT_SYMBOL(journal_destroy);
71 EXPORT_SYMBOL(journal_abort);
72 EXPORT_SYMBOL(journal_errno);
73 EXPORT_SYMBOL(journal_ack_err);
74 EXPORT_SYMBOL(journal_clear_err);
75 EXPORT_SYMBOL(log_wait_commit);
76 EXPORT_SYMBOL(journal_start_commit);
77 EXPORT_SYMBOL(journal_force_commit_nested);
78 EXPORT_SYMBOL(journal_wipe);
79 EXPORT_SYMBOL(journal_blocks_per_page);
80 EXPORT_SYMBOL(journal_invalidatepage);
81 EXPORT_SYMBOL(journal_try_to_free_buffers);
82 EXPORT_SYMBOL(journal_force_commit);
83
84 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
85 static void __journal_abort_soft (journal_t *journal, int errno);
86
87 /*
88  * Helper function used to manage commit timeouts
89  */
90
91 static void commit_timeout(unsigned long __data)
92 {
93         struct task_struct * p = (struct task_struct *) __data;
94
95         wake_up_process(p);
96 }
97
98 /*
99  * kjournald: The main thread function used to manage a logging device
100  * journal.
101  *
102  * This kernel thread is responsible for two things:
103  *
104  * 1) COMMIT:  Every so often we need to commit the current state of the
105  *    filesystem to disk.  The journal thread is responsible for writing
106  *    all of the metadata buffers to disk.
107  *
108  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
109  *    of the data in that part of the log has been rewritten elsewhere on
110  *    the disk.  Flushing these old buffers to reclaim space in the log is
111  *    known as checkpointing, and this thread is responsible for that job.
112  */
113
114 static int kjournald(void *arg)
115 {
116         journal_t *journal = arg;
117         transaction_t *transaction;
118
119         /*
120          * Set up an interval timer which can be used to trigger a commit wakeup
121          * after the commit interval expires
122          */
123         setup_timer(&journal->j_commit_timer, commit_timeout,
124                         (unsigned long)current);
125
126         /* Record that the journal thread is running */
127         journal->j_task = current;
128         wake_up(&journal->j_wait_done_commit);
129
130         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
131                         journal->j_commit_interval / HZ);
132
133         /*
134          * And now, wait forever for commit wakeup events.
135          */
136         spin_lock(&journal->j_state_lock);
137
138 loop:
139         if (journal->j_flags & JFS_UNMOUNT)
140                 goto end_loop;
141
142         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
143                 journal->j_commit_sequence, journal->j_commit_request);
144
145         if (journal->j_commit_sequence != journal->j_commit_request) {
146                 jbd_debug(1, "OK, requests differ\n");
147                 spin_unlock(&journal->j_state_lock);
148                 del_timer_sync(&journal->j_commit_timer);
149                 journal_commit_transaction(journal);
150                 spin_lock(&journal->j_state_lock);
151                 goto loop;
152         }
153
154         wake_up(&journal->j_wait_done_commit);
155         if (freezing(current)) {
156                 /*
157                  * The simpler the better. Flushing journal isn't a
158                  * good idea, because that depends on threads that may
159                  * be already stopped.
160                  */
161                 jbd_debug(1, "Now suspending kjournald\n");
162                 spin_unlock(&journal->j_state_lock);
163                 refrigerator();
164                 spin_lock(&journal->j_state_lock);
165         } else {
166                 /*
167                  * We assume on resume that commits are already there,
168                  * so we don't sleep
169                  */
170                 DEFINE_WAIT(wait);
171                 int should_sleep = 1;
172
173                 prepare_to_wait(&journal->j_wait_commit, &wait,
174                                 TASK_INTERRUPTIBLE);
175                 if (journal->j_commit_sequence != journal->j_commit_request)
176                         should_sleep = 0;
177                 transaction = journal->j_running_transaction;
178                 if (transaction && time_after_eq(jiffies,
179                                                 transaction->t_expires))
180                         should_sleep = 0;
181                 if (journal->j_flags & JFS_UNMOUNT)
182                         should_sleep = 0;
183                 if (should_sleep) {
184                         spin_unlock(&journal->j_state_lock);
185                         schedule();
186                         spin_lock(&journal->j_state_lock);
187                 }
188                 finish_wait(&journal->j_wait_commit, &wait);
189         }
190
191         jbd_debug(1, "kjournald wakes\n");
192
193         /*
194          * Were we woken up by a commit wakeup event?
195          */
196         transaction = journal->j_running_transaction;
197         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
198                 journal->j_commit_request = transaction->t_tid;
199                 jbd_debug(1, "woke because of timeout\n");
200         }
201         goto loop;
202
203 end_loop:
204         spin_unlock(&journal->j_state_lock);
205         del_timer_sync(&journal->j_commit_timer);
206         journal->j_task = NULL;
207         wake_up(&journal->j_wait_done_commit);
208         jbd_debug(1, "Journal thread exiting.\n");
209         return 0;
210 }
211
212 static int journal_start_thread(journal_t *journal)
213 {
214         struct task_struct *t;
215
216         t = kthread_run(kjournald, journal, "kjournald");
217         if (IS_ERR(t))
218                 return PTR_ERR(t);
219
220         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
221         return 0;
222 }
223
224 static void journal_kill_thread(journal_t *journal)
225 {
226         spin_lock(&journal->j_state_lock);
227         journal->j_flags |= JFS_UNMOUNT;
228
229         while (journal->j_task) {
230                 wake_up(&journal->j_wait_commit);
231                 spin_unlock(&journal->j_state_lock);
232                 wait_event(journal->j_wait_done_commit,
233                                 journal->j_task == NULL);
234                 spin_lock(&journal->j_state_lock);
235         }
236         spin_unlock(&journal->j_state_lock);
237 }
238
239 /*
240  * journal_write_metadata_buffer: write a metadata buffer to the journal.
241  *
242  * Writes a metadata buffer to a given disk block.  The actual IO is not
243  * performed but a new buffer_head is constructed which labels the data
244  * to be written with the correct destination disk block.
245  *
246  * Any magic-number escaping which needs to be done will cause a
247  * copy-out here.  If the buffer happens to start with the
248  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
249  * magic number is only written to the log for descripter blocks.  In
250  * this case, we copy the data and replace the first word with 0, and we
251  * return a result code which indicates that this buffer needs to be
252  * marked as an escaped buffer in the corresponding log descriptor
253  * block.  The missing word can then be restored when the block is read
254  * during recovery.
255  *
256  * If the source buffer has already been modified by a new transaction
257  * since we took the last commit snapshot, we use the frozen copy of
258  * that data for IO.  If we end up using the existing buffer_head's data
259  * for the write, then we *have* to lock the buffer to prevent anyone
260  * else from using and possibly modifying it while the IO is in
261  * progress.
262  *
263  * The function returns a pointer to the buffer_heads to be used for IO.
264  *
265  * We assume that the journal has already been locked in this function.
266  *
267  * Return value:
268  *  <0: Error
269  * >=0: Finished OK
270  *
271  * On success:
272  * Bit 0 set == escape performed on the data
273  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
274  */
275
276 int journal_write_metadata_buffer(transaction_t *transaction,
277                                   struct journal_head  *jh_in,
278                                   struct journal_head **jh_out,
279                                   unsigned int blocknr)
280 {
281         int need_copy_out = 0;
282         int done_copy_out = 0;
283         int do_escape = 0;
284         char *mapped_data;
285         struct buffer_head *new_bh;
286         struct journal_head *new_jh;
287         struct page *new_page;
288         unsigned int new_offset;
289         struct buffer_head *bh_in = jh2bh(jh_in);
290         journal_t *journal = transaction->t_journal;
291
292         /*
293          * The buffer really shouldn't be locked: only the current committing
294          * transaction is allowed to write it, so nobody else is allowed
295          * to do any IO.
296          *
297          * akpm: except if we're journalling data, and write() output is
298          * also part of a shared mapping, and another thread has
299          * decided to launch a writepage() against this buffer.
300          */
301         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
302
303         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
304         /* keep subsequent assertions sane */
305         new_bh->b_state = 0;
306         init_buffer(new_bh, NULL, NULL);
307         atomic_set(&new_bh->b_count, 1);
308         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
309
310         /*
311          * If a new transaction has already done a buffer copy-out, then
312          * we use that version of the data for the commit.
313          */
314         jbd_lock_bh_state(bh_in);
315 repeat:
316         if (jh_in->b_frozen_data) {
317                 done_copy_out = 1;
318                 new_page = virt_to_page(jh_in->b_frozen_data);
319                 new_offset = offset_in_page(jh_in->b_frozen_data);
320         } else {
321                 new_page = jh2bh(jh_in)->b_page;
322                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
323         }
324
325         mapped_data = kmap_atomic(new_page, KM_USER0);
326         /*
327          * Check for escaping
328          */
329         if (*((__be32 *)(mapped_data + new_offset)) ==
330                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
331                 need_copy_out = 1;
332                 do_escape = 1;
333         }
334         kunmap_atomic(mapped_data, KM_USER0);
335
336         /*
337          * Do we need to do a data copy?
338          */
339         if (need_copy_out && !done_copy_out) {
340                 char *tmp;
341
342                 jbd_unlock_bh_state(bh_in);
343                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
344                 jbd_lock_bh_state(bh_in);
345                 if (jh_in->b_frozen_data) {
346                         jbd_free(tmp, bh_in->b_size);
347                         goto repeat;
348                 }
349
350                 jh_in->b_frozen_data = tmp;
351                 mapped_data = kmap_atomic(new_page, KM_USER0);
352                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
353                 kunmap_atomic(mapped_data, KM_USER0);
354
355                 new_page = virt_to_page(tmp);
356                 new_offset = offset_in_page(tmp);
357                 done_copy_out = 1;
358         }
359
360         /*
361          * Did we need to do an escaping?  Now we've done all the
362          * copying, we can finally do so.
363          */
364         if (do_escape) {
365                 mapped_data = kmap_atomic(new_page, KM_USER0);
366                 *((unsigned int *)(mapped_data + new_offset)) = 0;
367                 kunmap_atomic(mapped_data, KM_USER0);
368         }
369
370         set_bh_page(new_bh, new_page, new_offset);
371         new_jh->b_transaction = NULL;
372         new_bh->b_size = jh2bh(jh_in)->b_size;
373         new_bh->b_bdev = transaction->t_journal->j_dev;
374         new_bh->b_blocknr = blocknr;
375         set_buffer_mapped(new_bh);
376         set_buffer_dirty(new_bh);
377
378         *jh_out = new_jh;
379
380         /*
381          * The to-be-written buffer needs to get moved to the io queue,
382          * and the original buffer whose contents we are shadowing or
383          * copying is moved to the transaction's shadow queue.
384          */
385         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
386         spin_lock(&journal->j_list_lock);
387         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
388         spin_unlock(&journal->j_list_lock);
389         jbd_unlock_bh_state(bh_in);
390
391         JBUFFER_TRACE(new_jh, "file as BJ_IO");
392         journal_file_buffer(new_jh, transaction, BJ_IO);
393
394         return do_escape | (done_copy_out << 1);
395 }
396
397 /*
398  * Allocation code for the journal file.  Manage the space left in the
399  * journal, so that we can begin checkpointing when appropriate.
400  */
401
402 /*
403  * __log_space_left: Return the number of free blocks left in the journal.
404  *
405  * Called with the journal already locked.
406  *
407  * Called under j_state_lock
408  */
409
410 int __log_space_left(journal_t *journal)
411 {
412         int left = journal->j_free;
413
414         assert_spin_locked(&journal->j_state_lock);
415
416         /*
417          * Be pessimistic here about the number of those free blocks which
418          * might be required for log descriptor control blocks.
419          */
420
421 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
422
423         left -= MIN_LOG_RESERVED_BLOCKS;
424
425         if (left <= 0)
426                 return 0;
427         left -= (left >> 3);
428         return left;
429 }
430
431 /*
432  * Called under j_state_lock.  Returns true if a transaction commit was started.
433  */
434 int __log_start_commit(journal_t *journal, tid_t target)
435 {
436         /*
437          * Are we already doing a recent enough commit?
438          */
439         if (!tid_geq(journal->j_commit_request, target)) {
440                 /*
441                  * We want a new commit: OK, mark the request and wakup the
442                  * commit thread.  We do _not_ do the commit ourselves.
443                  */
444
445                 journal->j_commit_request = target;
446                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
447                           journal->j_commit_request,
448                           journal->j_commit_sequence);
449                 wake_up(&journal->j_wait_commit);
450                 return 1;
451         }
452         return 0;
453 }
454
455 int log_start_commit(journal_t *journal, tid_t tid)
456 {
457         int ret;
458
459         spin_lock(&journal->j_state_lock);
460         ret = __log_start_commit(journal, tid);
461         spin_unlock(&journal->j_state_lock);
462         return ret;
463 }
464
465 /*
466  * Force and wait upon a commit if the calling process is not within
467  * transaction.  This is used for forcing out undo-protected data which contains
468  * bitmaps, when the fs is running out of space.
469  *
470  * We can only force the running transaction if we don't have an active handle;
471  * otherwise, we will deadlock.
472  *
473  * Returns true if a transaction was started.
474  */
475 int journal_force_commit_nested(journal_t *journal)
476 {
477         transaction_t *transaction = NULL;
478         tid_t tid;
479
480         spin_lock(&journal->j_state_lock);
481         if (journal->j_running_transaction && !current->journal_info) {
482                 transaction = journal->j_running_transaction;
483                 __log_start_commit(journal, transaction->t_tid);
484         } else if (journal->j_committing_transaction)
485                 transaction = journal->j_committing_transaction;
486
487         if (!transaction) {
488                 spin_unlock(&journal->j_state_lock);
489                 return 0;       /* Nothing to retry */
490         }
491
492         tid = transaction->t_tid;
493         spin_unlock(&journal->j_state_lock);
494         log_wait_commit(journal, tid);
495         return 1;
496 }
497
498 /*
499  * Start a commit of the current running transaction (if any).  Returns true
500  * if a transaction is going to be committed (or is currently already
501  * committing), and fills its tid in at *ptid
502  */
503 int journal_start_commit(journal_t *journal, tid_t *ptid)
504 {
505         int ret = 0;
506
507         spin_lock(&journal->j_state_lock);
508         if (journal->j_running_transaction) {
509                 tid_t tid = journal->j_running_transaction->t_tid;
510
511                 __log_start_commit(journal, tid);
512                 /* There's a running transaction and we've just made sure
513                  * it's commit has been scheduled. */
514                 if (ptid)
515                         *ptid = tid;
516                 ret = 1;
517         } else if (journal->j_committing_transaction) {
518                 /*
519                  * If ext3_write_super() recently started a commit, then we
520                  * have to wait for completion of that transaction
521                  */
522                 if (ptid)
523                         *ptid = journal->j_committing_transaction->t_tid;
524                 ret = 1;
525         }
526         spin_unlock(&journal->j_state_lock);
527         return ret;
528 }
529
530 /*
531  * Wait for a specified commit to complete.
532  * The caller may not hold the journal lock.
533  */
534 int log_wait_commit(journal_t *journal, tid_t tid)
535 {
536         int err = 0;
537
538 #ifdef CONFIG_JBD_DEBUG
539         spin_lock(&journal->j_state_lock);
540         if (!tid_geq(journal->j_commit_request, tid)) {
541                 printk(KERN_EMERG
542                        "%s: error: j_commit_request=%d, tid=%d\n",
543                        __func__, journal->j_commit_request, tid);
544         }
545         spin_unlock(&journal->j_state_lock);
546 #endif
547         spin_lock(&journal->j_state_lock);
548         while (tid_gt(tid, journal->j_commit_sequence)) {
549                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
550                                   tid, journal->j_commit_sequence);
551                 wake_up(&journal->j_wait_commit);
552                 spin_unlock(&journal->j_state_lock);
553                 wait_event(journal->j_wait_done_commit,
554                                 !tid_gt(tid, journal->j_commit_sequence));
555                 spin_lock(&journal->j_state_lock);
556         }
557         spin_unlock(&journal->j_state_lock);
558
559         if (unlikely(is_journal_aborted(journal))) {
560                 printk(KERN_EMERG "journal commit I/O error\n");
561                 err = -EIO;
562         }
563         return err;
564 }
565
566 /*
567  * Log buffer allocation routines:
568  */
569
570 int journal_next_log_block(journal_t *journal, unsigned int *retp)
571 {
572         unsigned int blocknr;
573
574         spin_lock(&journal->j_state_lock);
575         J_ASSERT(journal->j_free > 1);
576
577         blocknr = journal->j_head;
578         journal->j_head++;
579         journal->j_free--;
580         if (journal->j_head == journal->j_last)
581                 journal->j_head = journal->j_first;
582         spin_unlock(&journal->j_state_lock);
583         return journal_bmap(journal, blocknr, retp);
584 }
585
586 /*
587  * Conversion of logical to physical block numbers for the journal
588  *
589  * On external journals the journal blocks are identity-mapped, so
590  * this is a no-op.  If needed, we can use j_blk_offset - everything is
591  * ready.
592  */
593 int journal_bmap(journal_t *journal, unsigned int blocknr,
594                  unsigned int *retp)
595 {
596         int err = 0;
597         unsigned int ret;
598
599         if (journal->j_inode) {
600                 ret = bmap(journal->j_inode, blocknr);
601                 if (ret)
602                         *retp = ret;
603                 else {
604                         char b[BDEVNAME_SIZE];
605
606                         printk(KERN_ALERT "%s: journal block not found "
607                                         "at offset %u on %s\n",
608                                 __func__,
609                                 blocknr,
610                                 bdevname(journal->j_dev, b));
611                         err = -EIO;
612                         __journal_abort_soft(journal, err);
613                 }
614         } else {
615                 *retp = blocknr; /* +journal->j_blk_offset */
616         }
617         return err;
618 }
619
620 /*
621  * We play buffer_head aliasing tricks to write data/metadata blocks to
622  * the journal without copying their contents, but for journal
623  * descriptor blocks we do need to generate bona fide buffers.
624  *
625  * After the caller of journal_get_descriptor_buffer() has finished modifying
626  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
627  * But we don't bother doing that, so there will be coherency problems with
628  * mmaps of blockdevs which hold live JBD-controlled filesystems.
629  */
630 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
631 {
632         struct buffer_head *bh;
633         unsigned int blocknr;
634         int err;
635
636         err = journal_next_log_block(journal, &blocknr);
637
638         if (err)
639                 return NULL;
640
641         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
642         if (!bh)
643                 return NULL;
644         lock_buffer(bh);
645         memset(bh->b_data, 0, journal->j_blocksize);
646         set_buffer_uptodate(bh);
647         unlock_buffer(bh);
648         BUFFER_TRACE(bh, "return this buffer");
649         return journal_add_journal_head(bh);
650 }
651
652 /*
653  * Management for journal control blocks: functions to create and
654  * destroy journal_t structures, and to initialise and read existing
655  * journal blocks from disk.  */
656
657 /* First: create and setup a journal_t object in memory.  We initialise
658  * very few fields yet: that has to wait until we have created the
659  * journal structures from from scratch, or loaded them from disk. */
660
661 static journal_t * journal_init_common (void)
662 {
663         journal_t *journal;
664         int err;
665
666         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
667         if (!journal)
668                 goto fail;
669
670         init_waitqueue_head(&journal->j_wait_transaction_locked);
671         init_waitqueue_head(&journal->j_wait_logspace);
672         init_waitqueue_head(&journal->j_wait_done_commit);
673         init_waitqueue_head(&journal->j_wait_checkpoint);
674         init_waitqueue_head(&journal->j_wait_commit);
675         init_waitqueue_head(&journal->j_wait_updates);
676         mutex_init(&journal->j_barrier);
677         mutex_init(&journal->j_checkpoint_mutex);
678         spin_lock_init(&journal->j_revoke_lock);
679         spin_lock_init(&journal->j_list_lock);
680         spin_lock_init(&journal->j_state_lock);
681
682         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
683
684         /* The journal is marked for error until we succeed with recovery! */
685         journal->j_flags = JFS_ABORT;
686
687         /* Set up a default-sized revoke table for the new mount. */
688         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
689         if (err) {
690                 kfree(journal);
691                 goto fail;
692         }
693         return journal;
694 fail:
695         return NULL;
696 }
697
698 /* journal_init_dev and journal_init_inode:
699  *
700  * Create a journal structure assigned some fixed set of disk blocks to
701  * the journal.  We don't actually touch those disk blocks yet, but we
702  * need to set up all of the mapping information to tell the journaling
703  * system where the journal blocks are.
704  *
705  */
706
707 /**
708  *  journal_t * journal_init_dev() - creates and initialises a journal structure
709  *  @bdev: Block device on which to create the journal
710  *  @fs_dev: Device which hold journalled filesystem for this journal.
711  *  @start: Block nr Start of journal.
712  *  @len:  Length of the journal in blocks.
713  *  @blocksize: blocksize of journalling device
714  *
715  *  Returns: a newly created journal_t *
716  *
717  *  journal_init_dev creates a journal which maps a fixed contiguous
718  *  range of blocks on an arbitrary block device.
719  *
720  */
721 journal_t * journal_init_dev(struct block_device *bdev,
722                         struct block_device *fs_dev,
723                         int start, int len, int blocksize)
724 {
725         journal_t *journal = journal_init_common();
726         struct buffer_head *bh;
727         int n;
728
729         if (!journal)
730                 return NULL;
731
732         /* journal descriptor can store up to n blocks -bzzz */
733         journal->j_blocksize = blocksize;
734         n = journal->j_blocksize / sizeof(journal_block_tag_t);
735         journal->j_wbufsize = n;
736         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
737         if (!journal->j_wbuf) {
738                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
739                         __func__);
740                 goto out_err;
741         }
742         journal->j_dev = bdev;
743         journal->j_fs_dev = fs_dev;
744         journal->j_blk_offset = start;
745         journal->j_maxlen = len;
746
747         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
748         if (!bh) {
749                 printk(KERN_ERR
750                        "%s: Cannot get buffer for journal superblock\n",
751                        __func__);
752                 goto out_err;
753         }
754         journal->j_sb_buffer = bh;
755         journal->j_superblock = (journal_superblock_t *)bh->b_data;
756
757         return journal;
758 out_err:
759         kfree(journal->j_wbuf);
760         kfree(journal);
761         return NULL;
762 }
763
764 /**
765  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
766  *  @inode: An inode to create the journal in
767  *
768  * journal_init_inode creates a journal which maps an on-disk inode as
769  * the journal.  The inode must exist already, must support bmap() and
770  * must have all data blocks preallocated.
771  */
772 journal_t * journal_init_inode (struct inode *inode)
773 {
774         struct buffer_head *bh;
775         journal_t *journal = journal_init_common();
776         int err;
777         int n;
778         unsigned int blocknr;
779
780         if (!journal)
781                 return NULL;
782
783         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
784         journal->j_inode = inode;
785         jbd_debug(1,
786                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
787                   journal, inode->i_sb->s_id, inode->i_ino,
788                   (long long) inode->i_size,
789                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
790
791         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
792         journal->j_blocksize = inode->i_sb->s_blocksize;
793
794         /* journal descriptor can store up to n blocks -bzzz */
795         n = journal->j_blocksize / sizeof(journal_block_tag_t);
796         journal->j_wbufsize = n;
797         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
798         if (!journal->j_wbuf) {
799                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
800                         __func__);
801                 goto out_err;
802         }
803
804         err = journal_bmap(journal, 0, &blocknr);
805         /* If that failed, give up */
806         if (err) {
807                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
808                        __func__);
809                 goto out_err;
810         }
811
812         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
813         if (!bh) {
814                 printk(KERN_ERR
815                        "%s: Cannot get buffer for journal superblock\n",
816                        __func__);
817                 goto out_err;
818         }
819         journal->j_sb_buffer = bh;
820         journal->j_superblock = (journal_superblock_t *)bh->b_data;
821
822         return journal;
823 out_err:
824         kfree(journal->j_wbuf);
825         kfree(journal);
826         return NULL;
827 }
828
829 /*
830  * If the journal init or create aborts, we need to mark the journal
831  * superblock as being NULL to prevent the journal destroy from writing
832  * back a bogus superblock.
833  */
834 static void journal_fail_superblock (journal_t *journal)
835 {
836         struct buffer_head *bh = journal->j_sb_buffer;
837         brelse(bh);
838         journal->j_sb_buffer = NULL;
839 }
840
841 /*
842  * Given a journal_t structure, initialise the various fields for
843  * startup of a new journaling session.  We use this both when creating
844  * a journal, and after recovering an old journal to reset it for
845  * subsequent use.
846  */
847
848 static int journal_reset(journal_t *journal)
849 {
850         journal_superblock_t *sb = journal->j_superblock;
851         unsigned int first, last;
852
853         first = be32_to_cpu(sb->s_first);
854         last = be32_to_cpu(sb->s_maxlen);
855         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
856                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
857                        first, last);
858                 journal_fail_superblock(journal);
859                 return -EINVAL;
860         }
861
862         journal->j_first = first;
863         journal->j_last = last;
864
865         journal->j_head = first;
866         journal->j_tail = first;
867         journal->j_free = last - first;
868
869         journal->j_tail_sequence = journal->j_transaction_sequence;
870         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
871         journal->j_commit_request = journal->j_commit_sequence;
872
873         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
874
875         /* Add the dynamic fields and write it to disk. */
876         journal_update_superblock(journal, 1);
877         return journal_start_thread(journal);
878 }
879
880 /**
881  * int journal_create() - Initialise the new journal file
882  * @journal: Journal to create. This structure must have been initialised
883  *
884  * Given a journal_t structure which tells us which disk blocks we can
885  * use, create a new journal superblock and initialise all of the
886  * journal fields from scratch.
887  **/
888 int journal_create(journal_t *journal)
889 {
890         unsigned int blocknr;
891         struct buffer_head *bh;
892         journal_superblock_t *sb;
893         int i, err;
894
895         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
896                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
897                         journal->j_maxlen);
898                 journal_fail_superblock(journal);
899                 return -EINVAL;
900         }
901
902         if (journal->j_inode == NULL) {
903                 /*
904                  * We don't know what block to start at!
905                  */
906                 printk(KERN_EMERG
907                        "%s: creation of journal on external device!\n",
908                        __func__);
909                 BUG();
910         }
911
912         /* Zero out the entire journal on disk.  We cannot afford to
913            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
914         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
915         for (i = 0; i < journal->j_maxlen; i++) {
916                 err = journal_bmap(journal, i, &blocknr);
917                 if (err)
918                         return err;
919                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
920                 lock_buffer(bh);
921                 memset (bh->b_data, 0, journal->j_blocksize);
922                 BUFFER_TRACE(bh, "marking dirty");
923                 mark_buffer_dirty(bh);
924                 BUFFER_TRACE(bh, "marking uptodate");
925                 set_buffer_uptodate(bh);
926                 unlock_buffer(bh);
927                 __brelse(bh);
928         }
929
930         sync_blockdev(journal->j_dev);
931         jbd_debug(1, "JBD: journal cleared.\n");
932
933         /* OK, fill in the initial static fields in the new superblock */
934         sb = journal->j_superblock;
935
936         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
937         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
938
939         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
940         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
941         sb->s_first     = cpu_to_be32(1);
942
943         journal->j_transaction_sequence = 1;
944
945         journal->j_flags &= ~JFS_ABORT;
946         journal->j_format_version = 2;
947
948         return journal_reset(journal);
949 }
950
951 /**
952  * void journal_update_superblock() - Update journal sb on disk.
953  * @journal: The journal to update.
954  * @wait: Set to '0' if you don't want to wait for IO completion.
955  *
956  * Update a journal's dynamic superblock fields and write it to disk,
957  * optionally waiting for the IO to complete.
958  */
959 void journal_update_superblock(journal_t *journal, int wait)
960 {
961         journal_superblock_t *sb = journal->j_superblock;
962         struct buffer_head *bh = journal->j_sb_buffer;
963
964         /*
965          * As a special case, if the on-disk copy is already marked as needing
966          * no recovery (s_start == 0) and there are no outstanding transactions
967          * in the filesystem, then we can safely defer the superblock update
968          * until the next commit by setting JFS_FLUSHED.  This avoids
969          * attempting a write to a potential-readonly device.
970          */
971         if (sb->s_start == 0 && journal->j_tail_sequence ==
972                                 journal->j_transaction_sequence) {
973                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
974                         "(start %u, seq %d, errno %d)\n",
975                         journal->j_tail, journal->j_tail_sequence,
976                         journal->j_errno);
977                 goto out;
978         }
979
980         spin_lock(&journal->j_state_lock);
981         jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
982                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
983
984         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
985         sb->s_start    = cpu_to_be32(journal->j_tail);
986         sb->s_errno    = cpu_to_be32(journal->j_errno);
987         spin_unlock(&journal->j_state_lock);
988
989         BUFFER_TRACE(bh, "marking dirty");
990         mark_buffer_dirty(bh);
991         if (wait)
992                 sync_dirty_buffer(bh);
993         else
994                 ll_rw_block(SWRITE, 1, &bh);
995
996 out:
997         /* If we have just flushed the log (by marking s_start==0), then
998          * any future commit will have to be careful to update the
999          * superblock again to re-record the true start of the log. */
1000
1001         spin_lock(&journal->j_state_lock);
1002         if (sb->s_start)
1003                 journal->j_flags &= ~JFS_FLUSHED;
1004         else
1005                 journal->j_flags |= JFS_FLUSHED;
1006         spin_unlock(&journal->j_state_lock);
1007 }
1008
1009 /*
1010  * Read the superblock for a given journal, performing initial
1011  * validation of the format.
1012  */
1013
1014 static int journal_get_superblock(journal_t *journal)
1015 {
1016         struct buffer_head *bh;
1017         journal_superblock_t *sb;
1018         int err = -EIO;
1019
1020         bh = journal->j_sb_buffer;
1021
1022         J_ASSERT(bh != NULL);
1023         if (!buffer_uptodate(bh)) {
1024                 ll_rw_block(READ, 1, &bh);
1025                 wait_on_buffer(bh);
1026                 if (!buffer_uptodate(bh)) {
1027                         printk (KERN_ERR
1028                                 "JBD: IO error reading journal superblock\n");
1029                         goto out;
1030                 }
1031         }
1032
1033         sb = journal->j_superblock;
1034
1035         err = -EINVAL;
1036
1037         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1038             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1039                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1040                 goto out;
1041         }
1042
1043         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1044         case JFS_SUPERBLOCK_V1:
1045                 journal->j_format_version = 1;
1046                 break;
1047         case JFS_SUPERBLOCK_V2:
1048                 journal->j_format_version = 2;
1049                 break;
1050         default:
1051                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1052                 goto out;
1053         }
1054
1055         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1056                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1057         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1058                 printk (KERN_WARNING "JBD: journal file too short\n");
1059                 goto out;
1060         }
1061
1062         return 0;
1063
1064 out:
1065         journal_fail_superblock(journal);
1066         return err;
1067 }
1068
1069 /*
1070  * Load the on-disk journal superblock and read the key fields into the
1071  * journal_t.
1072  */
1073
1074 static int load_superblock(journal_t *journal)
1075 {
1076         int err;
1077         journal_superblock_t *sb;
1078
1079         err = journal_get_superblock(journal);
1080         if (err)
1081                 return err;
1082
1083         sb = journal->j_superblock;
1084
1085         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1086         journal->j_tail = be32_to_cpu(sb->s_start);
1087         journal->j_first = be32_to_cpu(sb->s_first);
1088         journal->j_last = be32_to_cpu(sb->s_maxlen);
1089         journal->j_errno = be32_to_cpu(sb->s_errno);
1090
1091         return 0;
1092 }
1093
1094
1095 /**
1096  * int journal_load() - Read journal from disk.
1097  * @journal: Journal to act on.
1098  *
1099  * Given a journal_t structure which tells us which disk blocks contain
1100  * a journal, read the journal from disk to initialise the in-memory
1101  * structures.
1102  */
1103 int journal_load(journal_t *journal)
1104 {
1105         int err;
1106         journal_superblock_t *sb;
1107
1108         err = load_superblock(journal);
1109         if (err)
1110                 return err;
1111
1112         sb = journal->j_superblock;
1113         /* If this is a V2 superblock, then we have to check the
1114          * features flags on it. */
1115
1116         if (journal->j_format_version >= 2) {
1117                 if ((sb->s_feature_ro_compat &
1118                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1119                     (sb->s_feature_incompat &
1120                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1121                         printk (KERN_WARNING
1122                                 "JBD: Unrecognised features on journal\n");
1123                         return -EINVAL;
1124                 }
1125         }
1126
1127         /* Let the recovery code check whether it needs to recover any
1128          * data from the journal. */
1129         if (journal_recover(journal))
1130                 goto recovery_error;
1131
1132         /* OK, we've finished with the dynamic journal bits:
1133          * reinitialise the dynamic contents of the superblock in memory
1134          * and reset them on disk. */
1135         if (journal_reset(journal))
1136                 goto recovery_error;
1137
1138         journal->j_flags &= ~JFS_ABORT;
1139         journal->j_flags |= JFS_LOADED;
1140         return 0;
1141
1142 recovery_error:
1143         printk (KERN_WARNING "JBD: recovery failed\n");
1144         return -EIO;
1145 }
1146
1147 /**
1148  * void journal_destroy() - Release a journal_t structure.
1149  * @journal: Journal to act on.
1150  *
1151  * Release a journal_t structure once it is no longer in use by the
1152  * journaled object.
1153  * Return <0 if we couldn't clean up the journal.
1154  */
1155 int journal_destroy(journal_t *journal)
1156 {
1157         int err = 0;
1158
1159         /* Wait for the commit thread to wake up and die. */
1160         journal_kill_thread(journal);
1161
1162         /* Force a final log commit */
1163         if (journal->j_running_transaction)
1164                 journal_commit_transaction(journal);
1165
1166         /* Force any old transactions to disk */
1167
1168         /* Totally anal locking here... */
1169         spin_lock(&journal->j_list_lock);
1170         while (journal->j_checkpoint_transactions != NULL) {
1171                 spin_unlock(&journal->j_list_lock);
1172                 log_do_checkpoint(journal);
1173                 spin_lock(&journal->j_list_lock);
1174         }
1175
1176         J_ASSERT(journal->j_running_transaction == NULL);
1177         J_ASSERT(journal->j_committing_transaction == NULL);
1178         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1179         spin_unlock(&journal->j_list_lock);
1180
1181         if (journal->j_sb_buffer) {
1182                 if (!is_journal_aborted(journal)) {
1183                         /* We can now mark the journal as empty. */
1184                         journal->j_tail = 0;
1185                         journal->j_tail_sequence =
1186                                 ++journal->j_transaction_sequence;
1187                         journal_update_superblock(journal, 1);
1188                 } else {
1189                         err = -EIO;
1190                 }
1191                 brelse(journal->j_sb_buffer);
1192         }
1193
1194         if (journal->j_inode)
1195                 iput(journal->j_inode);
1196         if (journal->j_revoke)
1197                 journal_destroy_revoke(journal);
1198         kfree(journal->j_wbuf);
1199         kfree(journal);
1200
1201         return err;
1202 }
1203
1204
1205 /**
1206  *int journal_check_used_features () - Check if features specified are used.
1207  * @journal: Journal to check.
1208  * @compat: bitmask of compatible features
1209  * @ro: bitmask of features that force read-only mount
1210  * @incompat: bitmask of incompatible features
1211  *
1212  * Check whether the journal uses all of a given set of
1213  * features.  Return true (non-zero) if it does.
1214  **/
1215
1216 int journal_check_used_features (journal_t *journal, unsigned long compat,
1217                                  unsigned long ro, unsigned long incompat)
1218 {
1219         journal_superblock_t *sb;
1220
1221         if (!compat && !ro && !incompat)
1222                 return 1;
1223         if (journal->j_format_version == 1)
1224                 return 0;
1225
1226         sb = journal->j_superblock;
1227
1228         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1229             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1230             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1231                 return 1;
1232
1233         return 0;
1234 }
1235
1236 /**
1237  * int journal_check_available_features() - Check feature set in journalling layer
1238  * @journal: Journal to check.
1239  * @compat: bitmask of compatible features
1240  * @ro: bitmask of features that force read-only mount
1241  * @incompat: bitmask of incompatible features
1242  *
1243  * Check whether the journaling code supports the use of
1244  * all of a given set of features on this journal.  Return true
1245  * (non-zero) if it can. */
1246
1247 int journal_check_available_features (journal_t *journal, unsigned long compat,
1248                                       unsigned long ro, unsigned long incompat)
1249 {
1250         journal_superblock_t *sb;
1251
1252         if (!compat && !ro && !incompat)
1253                 return 1;
1254
1255         sb = journal->j_superblock;
1256
1257         /* We can support any known requested features iff the
1258          * superblock is in version 2.  Otherwise we fail to support any
1259          * extended sb features. */
1260
1261         if (journal->j_format_version != 2)
1262                 return 0;
1263
1264         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1265             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1266             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1267                 return 1;
1268
1269         return 0;
1270 }
1271
1272 /**
1273  * int journal_set_features () - Mark a given journal feature in the superblock
1274  * @journal: Journal to act on.
1275  * @compat: bitmask of compatible features
1276  * @ro: bitmask of features that force read-only mount
1277  * @incompat: bitmask of incompatible features
1278  *
1279  * Mark a given journal feature as present on the
1280  * superblock.  Returns true if the requested features could be set.
1281  *
1282  */
1283
1284 int journal_set_features (journal_t *journal, unsigned long compat,
1285                           unsigned long ro, unsigned long incompat)
1286 {
1287         journal_superblock_t *sb;
1288
1289         if (journal_check_used_features(journal, compat, ro, incompat))
1290                 return 1;
1291
1292         if (!journal_check_available_features(journal, compat, ro, incompat))
1293                 return 0;
1294
1295         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1296                   compat, ro, incompat);
1297
1298         sb = journal->j_superblock;
1299
1300         sb->s_feature_compat    |= cpu_to_be32(compat);
1301         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1302         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1303
1304         return 1;
1305 }
1306
1307
1308 /**
1309  * int journal_update_format () - Update on-disk journal structure.
1310  * @journal: Journal to act on.
1311  *
1312  * Given an initialised but unloaded journal struct, poke about in the
1313  * on-disk structure to update it to the most recent supported version.
1314  */
1315 int journal_update_format (journal_t *journal)
1316 {
1317         journal_superblock_t *sb;
1318         int err;
1319
1320         err = journal_get_superblock(journal);
1321         if (err)
1322                 return err;
1323
1324         sb = journal->j_superblock;
1325
1326         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1327         case JFS_SUPERBLOCK_V2:
1328                 return 0;
1329         case JFS_SUPERBLOCK_V1:
1330                 return journal_convert_superblock_v1(journal, sb);
1331         default:
1332                 break;
1333         }
1334         return -EINVAL;
1335 }
1336
1337 static int journal_convert_superblock_v1(journal_t *journal,
1338                                          journal_superblock_t *sb)
1339 {
1340         int offset, blocksize;
1341         struct buffer_head *bh;
1342
1343         printk(KERN_WARNING
1344                 "JBD: Converting superblock from version 1 to 2.\n");
1345
1346         /* Pre-initialise new fields to zero */
1347         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1348         blocksize = be32_to_cpu(sb->s_blocksize);
1349         memset(&sb->s_feature_compat, 0, blocksize-offset);
1350
1351         sb->s_nr_users = cpu_to_be32(1);
1352         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1353         journal->j_format_version = 2;
1354
1355         bh = journal->j_sb_buffer;
1356         BUFFER_TRACE(bh, "marking dirty");
1357         mark_buffer_dirty(bh);
1358         sync_dirty_buffer(bh);
1359         return 0;
1360 }
1361
1362
1363 /**
1364  * int journal_flush () - Flush journal
1365  * @journal: Journal to act on.
1366  *
1367  * Flush all data for a given journal to disk and empty the journal.
1368  * Filesystems can use this when remounting readonly to ensure that
1369  * recovery does not need to happen on remount.
1370  */
1371
1372 int journal_flush(journal_t *journal)
1373 {
1374         int err = 0;
1375         transaction_t *transaction = NULL;
1376         unsigned int old_tail;
1377
1378         spin_lock(&journal->j_state_lock);
1379
1380         /* Force everything buffered to the log... */
1381         if (journal->j_running_transaction) {
1382                 transaction = journal->j_running_transaction;
1383                 __log_start_commit(journal, transaction->t_tid);
1384         } else if (journal->j_committing_transaction)
1385                 transaction = journal->j_committing_transaction;
1386
1387         /* Wait for the log commit to complete... */
1388         if (transaction) {
1389                 tid_t tid = transaction->t_tid;
1390
1391                 spin_unlock(&journal->j_state_lock);
1392                 log_wait_commit(journal, tid);
1393         } else {
1394                 spin_unlock(&journal->j_state_lock);
1395         }
1396
1397         /* ...and flush everything in the log out to disk. */
1398         spin_lock(&journal->j_list_lock);
1399         while (!err && journal->j_checkpoint_transactions != NULL) {
1400                 spin_unlock(&journal->j_list_lock);
1401                 mutex_lock(&journal->j_checkpoint_mutex);
1402                 err = log_do_checkpoint(journal);
1403                 mutex_unlock(&journal->j_checkpoint_mutex);
1404                 spin_lock(&journal->j_list_lock);
1405         }
1406         spin_unlock(&journal->j_list_lock);
1407
1408         if (is_journal_aborted(journal))
1409                 return -EIO;
1410
1411         cleanup_journal_tail(journal);
1412
1413         /* Finally, mark the journal as really needing no recovery.
1414          * This sets s_start==0 in the underlying superblock, which is
1415          * the magic code for a fully-recovered superblock.  Any future
1416          * commits of data to the journal will restore the current
1417          * s_start value. */
1418         spin_lock(&journal->j_state_lock);
1419         old_tail = journal->j_tail;
1420         journal->j_tail = 0;
1421         spin_unlock(&journal->j_state_lock);
1422         journal_update_superblock(journal, 1);
1423         spin_lock(&journal->j_state_lock);
1424         journal->j_tail = old_tail;
1425
1426         J_ASSERT(!journal->j_running_transaction);
1427         J_ASSERT(!journal->j_committing_transaction);
1428         J_ASSERT(!journal->j_checkpoint_transactions);
1429         J_ASSERT(journal->j_head == journal->j_tail);
1430         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1431         spin_unlock(&journal->j_state_lock);
1432         return 0;
1433 }
1434
1435 /**
1436  * int journal_wipe() - Wipe journal contents
1437  * @journal: Journal to act on.
1438  * @write: flag (see below)
1439  *
1440  * Wipe out all of the contents of a journal, safely.  This will produce
1441  * a warning if the journal contains any valid recovery information.
1442  * Must be called between journal_init_*() and journal_load().
1443  *
1444  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1445  * we merely suppress recovery.
1446  */
1447
1448 int journal_wipe(journal_t *journal, int write)
1449 {
1450         journal_superblock_t *sb;
1451         int err = 0;
1452
1453         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1454
1455         err = load_superblock(journal);
1456         if (err)
1457                 return err;
1458
1459         sb = journal->j_superblock;
1460
1461         if (!journal->j_tail)
1462                 goto no_recovery;
1463
1464         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1465                 write ? "Clearing" : "Ignoring");
1466
1467         err = journal_skip_recovery(journal);
1468         if (write)
1469                 journal_update_superblock(journal, 1);
1470
1471  no_recovery:
1472         return err;
1473 }
1474
1475 /*
1476  * journal_dev_name: format a character string to describe on what
1477  * device this journal is present.
1478  */
1479
1480 static const char *journal_dev_name(journal_t *journal, char *buffer)
1481 {
1482         struct block_device *bdev;
1483
1484         if (journal->j_inode)
1485                 bdev = journal->j_inode->i_sb->s_bdev;
1486         else
1487                 bdev = journal->j_dev;
1488
1489         return bdevname(bdev, buffer);
1490 }
1491
1492 /*
1493  * Journal abort has very specific semantics, which we describe
1494  * for journal abort.
1495  *
1496  * Two internal function, which provide abort to te jbd layer
1497  * itself are here.
1498  */
1499
1500 /*
1501  * Quick version for internal journal use (doesn't lock the journal).
1502  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1503  * and don't attempt to make any other journal updates.
1504  */
1505 static void __journal_abort_hard(journal_t *journal)
1506 {
1507         transaction_t *transaction;
1508         char b[BDEVNAME_SIZE];
1509
1510         if (journal->j_flags & JFS_ABORT)
1511                 return;
1512
1513         printk(KERN_ERR "Aborting journal on device %s.\n",
1514                 journal_dev_name(journal, b));
1515
1516         spin_lock(&journal->j_state_lock);
1517         journal->j_flags |= JFS_ABORT;
1518         transaction = journal->j_running_transaction;
1519         if (transaction)
1520                 __log_start_commit(journal, transaction->t_tid);
1521         spin_unlock(&journal->j_state_lock);
1522 }
1523
1524 /* Soft abort: record the abort error status in the journal superblock,
1525  * but don't do any other IO. */
1526 static void __journal_abort_soft (journal_t *journal, int errno)
1527 {
1528         if (journal->j_flags & JFS_ABORT)
1529                 return;
1530
1531         if (!journal->j_errno)
1532                 journal->j_errno = errno;
1533
1534         __journal_abort_hard(journal);
1535
1536         if (errno)
1537                 journal_update_superblock(journal, 1);
1538 }
1539
1540 /**
1541  * void journal_abort () - Shutdown the journal immediately.
1542  * @journal: the journal to shutdown.
1543  * @errno:   an error number to record in the journal indicating
1544  *           the reason for the shutdown.
1545  *
1546  * Perform a complete, immediate shutdown of the ENTIRE
1547  * journal (not of a single transaction).  This operation cannot be
1548  * undone without closing and reopening the journal.
1549  *
1550  * The journal_abort function is intended to support higher level error
1551  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1552  * mode.
1553  *
1554  * Journal abort has very specific semantics.  Any existing dirty,
1555  * unjournaled buffers in the main filesystem will still be written to
1556  * disk by bdflush, but the journaling mechanism will be suspended
1557  * immediately and no further transaction commits will be honoured.
1558  *
1559  * Any dirty, journaled buffers will be written back to disk without
1560  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1561  * filesystem, but we _do_ attempt to leave as much data as possible
1562  * behind for fsck to use for cleanup.
1563  *
1564  * Any attempt to get a new transaction handle on a journal which is in
1565  * ABORT state will just result in an -EROFS error return.  A
1566  * journal_stop on an existing handle will return -EIO if we have
1567  * entered abort state during the update.
1568  *
1569  * Recursive transactions are not disturbed by journal abort until the
1570  * final journal_stop, which will receive the -EIO error.
1571  *
1572  * Finally, the journal_abort call allows the caller to supply an errno
1573  * which will be recorded (if possible) in the journal superblock.  This
1574  * allows a client to record failure conditions in the middle of a
1575  * transaction without having to complete the transaction to record the
1576  * failure to disk.  ext3_error, for example, now uses this
1577  * functionality.
1578  *
1579  * Errors which originate from within the journaling layer will NOT
1580  * supply an errno; a null errno implies that absolutely no further
1581  * writes are done to the journal (unless there are any already in
1582  * progress).
1583  *
1584  */
1585
1586 void journal_abort(journal_t *journal, int errno)
1587 {
1588         __journal_abort_soft(journal, errno);
1589 }
1590
1591 /**
1592  * int journal_errno () - returns the journal's error state.
1593  * @journal: journal to examine.
1594  *
1595  * This is the errno numbet set with journal_abort(), the last
1596  * time the journal was mounted - if the journal was stopped
1597  * without calling abort this will be 0.
1598  *
1599  * If the journal has been aborted on this mount time -EROFS will
1600  * be returned.
1601  */
1602 int journal_errno(journal_t *journal)
1603 {
1604         int err;
1605
1606         spin_lock(&journal->j_state_lock);
1607         if (journal->j_flags & JFS_ABORT)
1608                 err = -EROFS;
1609         else
1610                 err = journal->j_errno;
1611         spin_unlock(&journal->j_state_lock);
1612         return err;
1613 }
1614
1615 /**
1616  * int journal_clear_err () - clears the journal's error state
1617  * @journal: journal to act on.
1618  *
1619  * An error must be cleared or Acked to take a FS out of readonly
1620  * mode.
1621  */
1622 int journal_clear_err(journal_t *journal)
1623 {
1624         int err = 0;
1625
1626         spin_lock(&journal->j_state_lock);
1627         if (journal->j_flags & JFS_ABORT)
1628                 err = -EROFS;
1629         else
1630                 journal->j_errno = 0;
1631         spin_unlock(&journal->j_state_lock);
1632         return err;
1633 }
1634
1635 /**
1636  * void journal_ack_err() - Ack journal err.
1637  * @journal: journal to act on.
1638  *
1639  * An error must be cleared or Acked to take a FS out of readonly
1640  * mode.
1641  */
1642 void journal_ack_err(journal_t *journal)
1643 {
1644         spin_lock(&journal->j_state_lock);
1645         if (journal->j_errno)
1646                 journal->j_flags |= JFS_ACK_ERR;
1647         spin_unlock(&journal->j_state_lock);
1648 }
1649
1650 int journal_blocks_per_page(struct inode *inode)
1651 {
1652         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1653 }
1654
1655 /*
1656  * Journal_head storage management
1657  */
1658 static struct kmem_cache *journal_head_cache;
1659 #ifdef CONFIG_JBD_DEBUG
1660 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1661 #endif
1662
1663 static int journal_init_journal_head_cache(void)
1664 {
1665         int retval;
1666
1667         J_ASSERT(journal_head_cache == NULL);
1668         journal_head_cache = kmem_cache_create("journal_head",
1669                                 sizeof(struct journal_head),
1670                                 0,              /* offset */
1671                                 SLAB_TEMPORARY, /* flags */
1672                                 NULL);          /* ctor */
1673         retval = 0;
1674         if (!journal_head_cache) {
1675                 retval = -ENOMEM;
1676                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1677         }
1678         return retval;
1679 }
1680
1681 static void journal_destroy_journal_head_cache(void)
1682 {
1683         if (journal_head_cache) {
1684                 kmem_cache_destroy(journal_head_cache);
1685                 journal_head_cache = NULL;
1686         }
1687 }
1688
1689 /*
1690  * journal_head splicing and dicing
1691  */
1692 static struct journal_head *journal_alloc_journal_head(void)
1693 {
1694         struct journal_head *ret;
1695         static unsigned long last_warning;
1696
1697 #ifdef CONFIG_JBD_DEBUG
1698         atomic_inc(&nr_journal_heads);
1699 #endif
1700         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1701         if (ret == NULL) {
1702                 jbd_debug(1, "out of memory for journal_head\n");
1703                 if (time_after(jiffies, last_warning + 5*HZ)) {
1704                         printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1705                                __func__);
1706                         last_warning = jiffies;
1707                 }
1708                 while (ret == NULL) {
1709                         yield();
1710                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1711                 }
1712         }
1713         return ret;
1714 }
1715
1716 static void journal_free_journal_head(struct journal_head *jh)
1717 {
1718 #ifdef CONFIG_JBD_DEBUG
1719         atomic_dec(&nr_journal_heads);
1720         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1721 #endif
1722         kmem_cache_free(journal_head_cache, jh);
1723 }
1724
1725 /*
1726  * A journal_head is attached to a buffer_head whenever JBD has an
1727  * interest in the buffer.
1728  *
1729  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1730  * is set.  This bit is tested in core kernel code where we need to take
1731  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1732  * there.
1733  *
1734  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1735  *
1736  * When a buffer has its BH_JBD bit set it is immune from being released by
1737  * core kernel code, mainly via ->b_count.
1738  *
1739  * A journal_head may be detached from its buffer_head when the journal_head's
1740  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1741  * Various places in JBD call journal_remove_journal_head() to indicate that the
1742  * journal_head can be dropped if needed.
1743  *
1744  * Various places in the kernel want to attach a journal_head to a buffer_head
1745  * _before_ attaching the journal_head to a transaction.  To protect the
1746  * journal_head in this situation, journal_add_journal_head elevates the
1747  * journal_head's b_jcount refcount by one.  The caller must call
1748  * journal_put_journal_head() to undo this.
1749  *
1750  * So the typical usage would be:
1751  *
1752  *      (Attach a journal_head if needed.  Increments b_jcount)
1753  *      struct journal_head *jh = journal_add_journal_head(bh);
1754  *      ...
1755  *      jh->b_transaction = xxx;
1756  *      journal_put_journal_head(jh);
1757  *
1758  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1759  * because it has a non-zero b_transaction.
1760  */
1761
1762 /*
1763  * Give a buffer_head a journal_head.
1764  *
1765  * Doesn't need the journal lock.
1766  * May sleep.
1767  */
1768 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1769 {
1770         struct journal_head *jh;
1771         struct journal_head *new_jh = NULL;
1772
1773 repeat:
1774         if (!buffer_jbd(bh)) {
1775                 new_jh = journal_alloc_journal_head();
1776                 memset(new_jh, 0, sizeof(*new_jh));
1777         }
1778
1779         jbd_lock_bh_journal_head(bh);
1780         if (buffer_jbd(bh)) {
1781                 jh = bh2jh(bh);
1782         } else {
1783                 J_ASSERT_BH(bh,
1784                         (atomic_read(&bh->b_count) > 0) ||
1785                         (bh->b_page && bh->b_page->mapping));
1786
1787                 if (!new_jh) {
1788                         jbd_unlock_bh_journal_head(bh);
1789                         goto repeat;
1790                 }
1791
1792                 jh = new_jh;
1793                 new_jh = NULL;          /* We consumed it */
1794                 set_buffer_jbd(bh);
1795                 bh->b_private = jh;
1796                 jh->b_bh = bh;
1797                 get_bh(bh);
1798                 BUFFER_TRACE(bh, "added journal_head");
1799         }
1800         jh->b_jcount++;
1801         jbd_unlock_bh_journal_head(bh);
1802         if (new_jh)
1803                 journal_free_journal_head(new_jh);
1804         return bh->b_private;
1805 }
1806
1807 /*
1808  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1809  * having a journal_head, return NULL
1810  */
1811 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1812 {
1813         struct journal_head *jh = NULL;
1814
1815         jbd_lock_bh_journal_head(bh);
1816         if (buffer_jbd(bh)) {
1817                 jh = bh2jh(bh);
1818                 jh->b_jcount++;
1819         }
1820         jbd_unlock_bh_journal_head(bh);
1821         return jh;
1822 }
1823
1824 static void __journal_remove_journal_head(struct buffer_head *bh)
1825 {
1826         struct journal_head *jh = bh2jh(bh);
1827
1828         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1829
1830         get_bh(bh);
1831         if (jh->b_jcount == 0) {
1832                 if (jh->b_transaction == NULL &&
1833                                 jh->b_next_transaction == NULL &&
1834                                 jh->b_cp_transaction == NULL) {
1835                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1836                         J_ASSERT_BH(bh, buffer_jbd(bh));
1837                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1838                         BUFFER_TRACE(bh, "remove journal_head");
1839                         if (jh->b_frozen_data) {
1840                                 printk(KERN_WARNING "%s: freeing "
1841                                                 "b_frozen_data\n",
1842                                                 __func__);
1843                                 jbd_free(jh->b_frozen_data, bh->b_size);
1844                         }
1845                         if (jh->b_committed_data) {
1846                                 printk(KERN_WARNING "%s: freeing "
1847                                                 "b_committed_data\n",
1848                                                 __func__);
1849                                 jbd_free(jh->b_committed_data, bh->b_size);
1850                         }
1851                         bh->b_private = NULL;
1852                         jh->b_bh = NULL;        /* debug, really */
1853                         clear_buffer_jbd(bh);
1854                         __brelse(bh);
1855                         journal_free_journal_head(jh);
1856                 } else {
1857                         BUFFER_TRACE(bh, "journal_head was locked");
1858                 }
1859         }
1860 }
1861
1862 /*
1863  * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1864  * and has a zero b_jcount then remove and release its journal_head.   If we did
1865  * see that the buffer is not used by any transaction we also "logically"
1866  * decrement ->b_count.
1867  *
1868  * We in fact take an additional increment on ->b_count as a convenience,
1869  * because the caller usually wants to do additional things with the bh
1870  * after calling here.
1871  * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1872  * time.  Once the caller has run __brelse(), the buffer is eligible for
1873  * reaping by try_to_free_buffers().
1874  */
1875 void journal_remove_journal_head(struct buffer_head *bh)
1876 {
1877         jbd_lock_bh_journal_head(bh);
1878         __journal_remove_journal_head(bh);
1879         jbd_unlock_bh_journal_head(bh);
1880 }
1881
1882 /*
1883  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1884  * release the journal_head from the buffer_head.
1885  */
1886 void journal_put_journal_head(struct journal_head *jh)
1887 {
1888         struct buffer_head *bh = jh2bh(jh);
1889
1890         jbd_lock_bh_journal_head(bh);
1891         J_ASSERT_JH(jh, jh->b_jcount > 0);
1892         --jh->b_jcount;
1893         if (!jh->b_jcount && !jh->b_transaction) {
1894                 __journal_remove_journal_head(bh);
1895                 __brelse(bh);
1896         }
1897         jbd_unlock_bh_journal_head(bh);
1898 }
1899
1900 /*
1901  * debugfs tunables
1902  */
1903 #ifdef CONFIG_JBD_DEBUG
1904
1905 u8 journal_enable_debug __read_mostly;
1906 EXPORT_SYMBOL(journal_enable_debug);
1907
1908 static struct dentry *jbd_debugfs_dir;
1909 static struct dentry *jbd_debug;
1910
1911 static void __init jbd_create_debugfs_entry(void)
1912 {
1913         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1914         if (jbd_debugfs_dir)
1915                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO,
1916                                                jbd_debugfs_dir,
1917                                                &journal_enable_debug);
1918 }
1919
1920 static void __exit jbd_remove_debugfs_entry(void)
1921 {
1922         debugfs_remove(jbd_debug);
1923         debugfs_remove(jbd_debugfs_dir);
1924 }
1925
1926 #else
1927
1928 static inline void jbd_create_debugfs_entry(void)
1929 {
1930 }
1931
1932 static inline void jbd_remove_debugfs_entry(void)
1933 {
1934 }
1935
1936 #endif
1937
1938 struct kmem_cache *jbd_handle_cache;
1939
1940 static int __init journal_init_handle_cache(void)
1941 {
1942         jbd_handle_cache = kmem_cache_create("journal_handle",
1943                                 sizeof(handle_t),
1944                                 0,              /* offset */
1945                                 SLAB_TEMPORARY, /* flags */
1946                                 NULL);          /* ctor */
1947         if (jbd_handle_cache == NULL) {
1948                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1949                 return -ENOMEM;
1950         }
1951         return 0;
1952 }
1953
1954 static void journal_destroy_handle_cache(void)
1955 {
1956         if (jbd_handle_cache)
1957                 kmem_cache_destroy(jbd_handle_cache);
1958 }
1959
1960 /*
1961  * Module startup and shutdown
1962  */
1963
1964 static int __init journal_init_caches(void)
1965 {
1966         int ret;
1967
1968         ret = journal_init_revoke_caches();
1969         if (ret == 0)
1970                 ret = journal_init_journal_head_cache();
1971         if (ret == 0)
1972                 ret = journal_init_handle_cache();
1973         return ret;
1974 }
1975
1976 static void journal_destroy_caches(void)
1977 {
1978         journal_destroy_revoke_caches();
1979         journal_destroy_journal_head_cache();
1980         journal_destroy_handle_cache();
1981 }
1982
1983 static int __init journal_init(void)
1984 {
1985         int ret;
1986
1987         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
1988
1989         ret = journal_init_caches();
1990         if (ret != 0)
1991                 journal_destroy_caches();
1992         jbd_create_debugfs_entry();
1993         return ret;
1994 }
1995
1996 static void __exit journal_exit(void)
1997 {
1998 #ifdef CONFIG_JBD_DEBUG
1999         int n = atomic_read(&nr_journal_heads);
2000         if (n)
2001                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2002 #endif
2003         jbd_remove_debugfs_entry();
2004         journal_destroy_caches();
2005 }
2006
2007 MODULE_LICENSE("GPL");
2008 module_init(journal_init);
2009 module_exit(journal_exit);
2010