Move magic numbers into magic.h
[safe/jmp/linux-2.6] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * William Irwin, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  */
8
9 #include <linux/module.h>
10 #include <linux/thread_info.h>
11 #include <asm/current.h>
12 #include <linux/sched.h>                /* remove ASAP */
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/file.h>
16 #include <linux/kernel.h>
17 #include <linux/writeback.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/init.h>
21 #include <linux/string.h>
22 #include <linux/capability.h>
23 #include <linux/ctype.h>
24 #include <linux/backing-dev.h>
25 #include <linux/hugetlb.h>
26 #include <linux/pagevec.h>
27 #include <linux/parser.h>
28 #include <linux/mman.h>
29 #include <linux/slab.h>
30 #include <linux/dnotify.h>
31 #include <linux/statfs.h>
32 #include <linux/security.h>
33 #include <linux/ima.h>
34 #include <linux/magic.h>
35
36 #include <asm/uaccess.h>
37
38 static const struct super_operations hugetlbfs_ops;
39 static const struct address_space_operations hugetlbfs_aops;
40 const struct file_operations hugetlbfs_file_operations;
41 static const struct inode_operations hugetlbfs_dir_inode_operations;
42 static const struct inode_operations hugetlbfs_inode_operations;
43
44 static struct backing_dev_info hugetlbfs_backing_dev_info = {
45         .name           = "hugetlbfs",
46         .ra_pages       = 0,    /* No readahead */
47         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK,
48 };
49
50 int sysctl_hugetlb_shm_group;
51
52 enum {
53         Opt_size, Opt_nr_inodes,
54         Opt_mode, Opt_uid, Opt_gid,
55         Opt_pagesize,
56         Opt_err,
57 };
58
59 static const match_table_t tokens = {
60         {Opt_size,      "size=%s"},
61         {Opt_nr_inodes, "nr_inodes=%s"},
62         {Opt_mode,      "mode=%o"},
63         {Opt_uid,       "uid=%u"},
64         {Opt_gid,       "gid=%u"},
65         {Opt_pagesize,  "pagesize=%s"},
66         {Opt_err,       NULL},
67 };
68
69 static void huge_pagevec_release(struct pagevec *pvec)
70 {
71         int i;
72
73         for (i = 0; i < pagevec_count(pvec); ++i)
74                 put_page(pvec->pages[i]);
75
76         pagevec_reinit(pvec);
77 }
78
79 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
80 {
81         struct inode *inode = file->f_path.dentry->d_inode;
82         loff_t len, vma_len;
83         int ret;
84         struct hstate *h = hstate_file(file);
85
86         /*
87          * vma address alignment (but not the pgoff alignment) has
88          * already been checked by prepare_hugepage_range.  If you add
89          * any error returns here, do so after setting VM_HUGETLB, so
90          * is_vm_hugetlb_page tests below unmap_region go the right
91          * way when do_mmap_pgoff unwinds (may be important on powerpc
92          * and ia64).
93          */
94         vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
95         vma->vm_ops = &hugetlb_vm_ops;
96
97         if (vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT))
98                 return -EINVAL;
99
100         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
101
102         mutex_lock(&inode->i_mutex);
103         file_accessed(file);
104
105         ret = -ENOMEM;
106         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
107
108         if (hugetlb_reserve_pages(inode,
109                                 vma->vm_pgoff >> huge_page_order(h),
110                                 len >> huge_page_shift(h), vma,
111                                 vma->vm_flags))
112                 goto out;
113
114         ret = 0;
115         hugetlb_prefault_arch_hook(vma->vm_mm);
116         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
117                 inode->i_size = len;
118 out:
119         mutex_unlock(&inode->i_mutex);
120
121         return ret;
122 }
123
124 /*
125  * Called under down_write(mmap_sem).
126  */
127
128 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
129 static unsigned long
130 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
131                 unsigned long len, unsigned long pgoff, unsigned long flags)
132 {
133         struct mm_struct *mm = current->mm;
134         struct vm_area_struct *vma;
135         unsigned long start_addr;
136         struct hstate *h = hstate_file(file);
137
138         if (len & ~huge_page_mask(h))
139                 return -EINVAL;
140         if (len > TASK_SIZE)
141                 return -ENOMEM;
142
143         if (flags & MAP_FIXED) {
144                 if (prepare_hugepage_range(file, addr, len))
145                         return -EINVAL;
146                 return addr;
147         }
148
149         if (addr) {
150                 addr = ALIGN(addr, huge_page_size(h));
151                 vma = find_vma(mm, addr);
152                 if (TASK_SIZE - len >= addr &&
153                     (!vma || addr + len <= vma->vm_start))
154                         return addr;
155         }
156
157         start_addr = mm->free_area_cache;
158
159         if (len <= mm->cached_hole_size)
160                 start_addr = TASK_UNMAPPED_BASE;
161
162 full_search:
163         addr = ALIGN(start_addr, huge_page_size(h));
164
165         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
166                 /* At this point:  (!vma || addr < vma->vm_end). */
167                 if (TASK_SIZE - len < addr) {
168                         /*
169                          * Start a new search - just in case we missed
170                          * some holes.
171                          */
172                         if (start_addr != TASK_UNMAPPED_BASE) {
173                                 start_addr = TASK_UNMAPPED_BASE;
174                                 goto full_search;
175                         }
176                         return -ENOMEM;
177                 }
178
179                 if (!vma || addr + len <= vma->vm_start)
180                         return addr;
181                 addr = ALIGN(vma->vm_end, huge_page_size(h));
182         }
183 }
184 #endif
185
186 static int
187 hugetlbfs_read_actor(struct page *page, unsigned long offset,
188                         char __user *buf, unsigned long count,
189                         unsigned long size)
190 {
191         char *kaddr;
192         unsigned long left, copied = 0;
193         int i, chunksize;
194
195         if (size > count)
196                 size = count;
197
198         /* Find which 4k chunk and offset with in that chunk */
199         i = offset >> PAGE_CACHE_SHIFT;
200         offset = offset & ~PAGE_CACHE_MASK;
201
202         while (size) {
203                 chunksize = PAGE_CACHE_SIZE;
204                 if (offset)
205                         chunksize -= offset;
206                 if (chunksize > size)
207                         chunksize = size;
208                 kaddr = kmap(&page[i]);
209                 left = __copy_to_user(buf, kaddr + offset, chunksize);
210                 kunmap(&page[i]);
211                 if (left) {
212                         copied += (chunksize - left);
213                         break;
214                 }
215                 offset = 0;
216                 size -= chunksize;
217                 buf += chunksize;
218                 copied += chunksize;
219                 i++;
220         }
221         return copied ? copied : -EFAULT;
222 }
223
224 /*
225  * Support for read() - Find the page attached to f_mapping and copy out the
226  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
227  * since it has PAGE_CACHE_SIZE assumptions.
228  */
229 static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
230                               size_t len, loff_t *ppos)
231 {
232         struct hstate *h = hstate_file(filp);
233         struct address_space *mapping = filp->f_mapping;
234         struct inode *inode = mapping->host;
235         unsigned long index = *ppos >> huge_page_shift(h);
236         unsigned long offset = *ppos & ~huge_page_mask(h);
237         unsigned long end_index;
238         loff_t isize;
239         ssize_t retval = 0;
240
241         mutex_lock(&inode->i_mutex);
242
243         /* validate length */
244         if (len == 0)
245                 goto out;
246
247         isize = i_size_read(inode);
248         if (!isize)
249                 goto out;
250
251         end_index = (isize - 1) >> huge_page_shift(h);
252         for (;;) {
253                 struct page *page;
254                 unsigned long nr, ret;
255                 int ra;
256
257                 /* nr is the maximum number of bytes to copy from this page */
258                 nr = huge_page_size(h);
259                 if (index >= end_index) {
260                         if (index > end_index)
261                                 goto out;
262                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
263                         if (nr <= offset) {
264                                 goto out;
265                         }
266                 }
267                 nr = nr - offset;
268
269                 /* Find the page */
270                 page = find_get_page(mapping, index);
271                 if (unlikely(page == NULL)) {
272                         /*
273                          * We have a HOLE, zero out the user-buffer for the
274                          * length of the hole or request.
275                          */
276                         ret = len < nr ? len : nr;
277                         if (clear_user(buf, ret))
278                                 ra = -EFAULT;
279                         else
280                                 ra = 0;
281                 } else {
282                         /*
283                          * We have the page, copy it to user space buffer.
284                          */
285                         ra = hugetlbfs_read_actor(page, offset, buf, len, nr);
286                         ret = ra;
287                 }
288                 if (ra < 0) {
289                         if (retval == 0)
290                                 retval = ra;
291                         if (page)
292                                 page_cache_release(page);
293                         goto out;
294                 }
295
296                 offset += ret;
297                 retval += ret;
298                 len -= ret;
299                 index += offset >> huge_page_shift(h);
300                 offset &= ~huge_page_mask(h);
301
302                 if (page)
303                         page_cache_release(page);
304
305                 /* short read or no more work */
306                 if ((ret != nr) || (len == 0))
307                         break;
308         }
309 out:
310         *ppos = ((loff_t)index << huge_page_shift(h)) + offset;
311         mutex_unlock(&inode->i_mutex);
312         return retval;
313 }
314
315 static int hugetlbfs_write_begin(struct file *file,
316                         struct address_space *mapping,
317                         loff_t pos, unsigned len, unsigned flags,
318                         struct page **pagep, void **fsdata)
319 {
320         return -EINVAL;
321 }
322
323 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
324                         loff_t pos, unsigned len, unsigned copied,
325                         struct page *page, void *fsdata)
326 {
327         BUG();
328         return -EINVAL;
329 }
330
331 static void truncate_huge_page(struct page *page)
332 {
333         cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
334         ClearPageUptodate(page);
335         remove_from_page_cache(page);
336         put_page(page);
337 }
338
339 static void truncate_hugepages(struct inode *inode, loff_t lstart)
340 {
341         struct hstate *h = hstate_inode(inode);
342         struct address_space *mapping = &inode->i_data;
343         const pgoff_t start = lstart >> huge_page_shift(h);
344         struct pagevec pvec;
345         pgoff_t next;
346         int i, freed = 0;
347
348         pagevec_init(&pvec, 0);
349         next = start;
350         while (1) {
351                 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
352                         if (next == start)
353                                 break;
354                         next = start;
355                         continue;
356                 }
357
358                 for (i = 0; i < pagevec_count(&pvec); ++i) {
359                         struct page *page = pvec.pages[i];
360
361                         lock_page(page);
362                         if (page->index > next)
363                                 next = page->index;
364                         ++next;
365                         truncate_huge_page(page);
366                         unlock_page(page);
367                         freed++;
368                 }
369                 huge_pagevec_release(&pvec);
370         }
371         BUG_ON(!lstart && mapping->nrpages);
372         hugetlb_unreserve_pages(inode, start, freed);
373 }
374
375 static void hugetlbfs_delete_inode(struct inode *inode)
376 {
377         truncate_hugepages(inode, 0);
378         clear_inode(inode);
379 }
380
381 static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
382 {
383         struct super_block *sb = inode->i_sb;
384
385         if (!hlist_unhashed(&inode->i_hash)) {
386                 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
387                         list_move(&inode->i_list, &inode_unused);
388                 inodes_stat.nr_unused++;
389                 if (!sb || (sb->s_flags & MS_ACTIVE)) {
390                         spin_unlock(&inode_lock);
391                         return;
392                 }
393                 inode->i_state |= I_WILL_FREE;
394                 spin_unlock(&inode_lock);
395                 /*
396                  * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
397                  * in our backing_dev_info.
398                  */
399                 write_inode_now(inode, 1);
400                 spin_lock(&inode_lock);
401                 inode->i_state &= ~I_WILL_FREE;
402                 inodes_stat.nr_unused--;
403                 hlist_del_init(&inode->i_hash);
404         }
405         list_del_init(&inode->i_list);
406         list_del_init(&inode->i_sb_list);
407         inode->i_state |= I_FREEING;
408         inodes_stat.nr_inodes--;
409         spin_unlock(&inode_lock);
410         truncate_hugepages(inode, 0);
411         clear_inode(inode);
412         destroy_inode(inode);
413 }
414
415 static void hugetlbfs_drop_inode(struct inode *inode)
416 {
417         if (!inode->i_nlink)
418                 generic_delete_inode(inode);
419         else
420                 hugetlbfs_forget_inode(inode);
421 }
422
423 static inline void
424 hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
425 {
426         struct vm_area_struct *vma;
427         struct prio_tree_iter iter;
428
429         vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
430                 unsigned long v_offset;
431
432                 /*
433                  * Can the expression below overflow on 32-bit arches?
434                  * No, because the prio_tree returns us only those vmas
435                  * which overlap the truncated area starting at pgoff,
436                  * and no vma on a 32-bit arch can span beyond the 4GB.
437                  */
438                 if (vma->vm_pgoff < pgoff)
439                         v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
440                 else
441                         v_offset = 0;
442
443                 __unmap_hugepage_range(vma,
444                                 vma->vm_start + v_offset, vma->vm_end, NULL);
445         }
446 }
447
448 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
449 {
450         pgoff_t pgoff;
451         struct address_space *mapping = inode->i_mapping;
452         struct hstate *h = hstate_inode(inode);
453
454         BUG_ON(offset & ~huge_page_mask(h));
455         pgoff = offset >> PAGE_SHIFT;
456
457         i_size_write(inode, offset);
458         spin_lock(&mapping->i_mmap_lock);
459         if (!prio_tree_empty(&mapping->i_mmap))
460                 hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
461         spin_unlock(&mapping->i_mmap_lock);
462         truncate_hugepages(inode, offset);
463         return 0;
464 }
465
466 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
467 {
468         struct inode *inode = dentry->d_inode;
469         struct hstate *h = hstate_inode(inode);
470         int error;
471         unsigned int ia_valid = attr->ia_valid;
472
473         BUG_ON(!inode);
474
475         error = inode_change_ok(inode, attr);
476         if (error)
477                 goto out;
478
479         if (ia_valid & ATTR_SIZE) {
480                 error = -EINVAL;
481                 if (!(attr->ia_size & ~huge_page_mask(h)))
482                         error = hugetlb_vmtruncate(inode, attr->ia_size);
483                 if (error)
484                         goto out;
485                 attr->ia_valid &= ~ATTR_SIZE;
486         }
487         error = inode_setattr(inode, attr);
488 out:
489         return error;
490 }
491
492 static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid, 
493                                         gid_t gid, int mode, dev_t dev)
494 {
495         struct inode *inode;
496
497         inode = new_inode(sb);
498         if (inode) {
499                 struct hugetlbfs_inode_info *info;
500                 inode->i_mode = mode;
501                 inode->i_uid = uid;
502                 inode->i_gid = gid;
503                 inode->i_mapping->a_ops = &hugetlbfs_aops;
504                 inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
505                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
506                 INIT_LIST_HEAD(&inode->i_mapping->private_list);
507                 info = HUGETLBFS_I(inode);
508                 /*
509                  * The policy is initialized here even if we are creating a
510                  * private inode because initialization simply creates an
511                  * an empty rb tree and calls spin_lock_init(), later when we
512                  * call mpol_free_shared_policy() it will just return because
513                  * the rb tree will still be empty.
514                  */
515                 mpol_shared_policy_init(&info->policy, NULL);
516                 switch (mode & S_IFMT) {
517                 default:
518                         init_special_inode(inode, mode, dev);
519                         break;
520                 case S_IFREG:
521                         inode->i_op = &hugetlbfs_inode_operations;
522                         inode->i_fop = &hugetlbfs_file_operations;
523                         break;
524                 case S_IFDIR:
525                         inode->i_op = &hugetlbfs_dir_inode_operations;
526                         inode->i_fop = &simple_dir_operations;
527
528                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
529                         inc_nlink(inode);
530                         break;
531                 case S_IFLNK:
532                         inode->i_op = &page_symlink_inode_operations;
533                         break;
534                 }
535         }
536         return inode;
537 }
538
539 /*
540  * File creation. Allocate an inode, and we're done..
541  */
542 static int hugetlbfs_mknod(struct inode *dir,
543                         struct dentry *dentry, int mode, dev_t dev)
544 {
545         struct inode *inode;
546         int error = -ENOSPC;
547         gid_t gid;
548
549         if (dir->i_mode & S_ISGID) {
550                 gid = dir->i_gid;
551                 if (S_ISDIR(mode))
552                         mode |= S_ISGID;
553         } else {
554                 gid = current_fsgid();
555         }
556         inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(), gid, mode, dev);
557         if (inode) {
558                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
559                 d_instantiate(dentry, inode);
560                 dget(dentry);   /* Extra count - pin the dentry in core */
561                 error = 0;
562         }
563         return error;
564 }
565
566 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
567 {
568         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
569         if (!retval)
570                 inc_nlink(dir);
571         return retval;
572 }
573
574 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
575 {
576         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
577 }
578
579 static int hugetlbfs_symlink(struct inode *dir,
580                         struct dentry *dentry, const char *symname)
581 {
582         struct inode *inode;
583         int error = -ENOSPC;
584         gid_t gid;
585
586         if (dir->i_mode & S_ISGID)
587                 gid = dir->i_gid;
588         else
589                 gid = current_fsgid();
590
591         inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(),
592                                         gid, S_IFLNK|S_IRWXUGO, 0);
593         if (inode) {
594                 int l = strlen(symname)+1;
595                 error = page_symlink(inode, symname, l);
596                 if (!error) {
597                         d_instantiate(dentry, inode);
598                         dget(dentry);
599                 } else
600                         iput(inode);
601         }
602         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
603
604         return error;
605 }
606
607 /*
608  * mark the head page dirty
609  */
610 static int hugetlbfs_set_page_dirty(struct page *page)
611 {
612         struct page *head = compound_head(page);
613
614         SetPageDirty(head);
615         return 0;
616 }
617
618 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
619 {
620         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
621         struct hstate *h = hstate_inode(dentry->d_inode);
622
623         buf->f_type = HUGETLBFS_MAGIC;
624         buf->f_bsize = huge_page_size(h);
625         if (sbinfo) {
626                 spin_lock(&sbinfo->stat_lock);
627                 /* If no limits set, just report 0 for max/free/used
628                  * blocks, like simple_statfs() */
629                 if (sbinfo->max_blocks >= 0) {
630                         buf->f_blocks = sbinfo->max_blocks;
631                         buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
632                         buf->f_files = sbinfo->max_inodes;
633                         buf->f_ffree = sbinfo->free_inodes;
634                 }
635                 spin_unlock(&sbinfo->stat_lock);
636         }
637         buf->f_namelen = NAME_MAX;
638         return 0;
639 }
640
641 static void hugetlbfs_put_super(struct super_block *sb)
642 {
643         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
644
645         if (sbi) {
646                 sb->s_fs_info = NULL;
647                 kfree(sbi);
648         }
649 }
650
651 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
652 {
653         if (sbinfo->free_inodes >= 0) {
654                 spin_lock(&sbinfo->stat_lock);
655                 if (unlikely(!sbinfo->free_inodes)) {
656                         spin_unlock(&sbinfo->stat_lock);
657                         return 0;
658                 }
659                 sbinfo->free_inodes--;
660                 spin_unlock(&sbinfo->stat_lock);
661         }
662
663         return 1;
664 }
665
666 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
667 {
668         if (sbinfo->free_inodes >= 0) {
669                 spin_lock(&sbinfo->stat_lock);
670                 sbinfo->free_inodes++;
671                 spin_unlock(&sbinfo->stat_lock);
672         }
673 }
674
675
676 static struct kmem_cache *hugetlbfs_inode_cachep;
677
678 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
679 {
680         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
681         struct hugetlbfs_inode_info *p;
682
683         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
684                 return NULL;
685         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
686         if (unlikely(!p)) {
687                 hugetlbfs_inc_free_inodes(sbinfo);
688                 return NULL;
689         }
690         return &p->vfs_inode;
691 }
692
693 static void hugetlbfs_destroy_inode(struct inode *inode)
694 {
695         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
696         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
697         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
698 }
699
700 static const struct address_space_operations hugetlbfs_aops = {
701         .write_begin    = hugetlbfs_write_begin,
702         .write_end      = hugetlbfs_write_end,
703         .set_page_dirty = hugetlbfs_set_page_dirty,
704 };
705
706
707 static void init_once(void *foo)
708 {
709         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
710
711         inode_init_once(&ei->vfs_inode);
712 }
713
714 const struct file_operations hugetlbfs_file_operations = {
715         .read                   = hugetlbfs_read,
716         .mmap                   = hugetlbfs_file_mmap,
717         .fsync                  = simple_sync_file,
718         .get_unmapped_area      = hugetlb_get_unmapped_area,
719 };
720
721 static const struct inode_operations hugetlbfs_dir_inode_operations = {
722         .create         = hugetlbfs_create,
723         .lookup         = simple_lookup,
724         .link           = simple_link,
725         .unlink         = simple_unlink,
726         .symlink        = hugetlbfs_symlink,
727         .mkdir          = hugetlbfs_mkdir,
728         .rmdir          = simple_rmdir,
729         .mknod          = hugetlbfs_mknod,
730         .rename         = simple_rename,
731         .setattr        = hugetlbfs_setattr,
732 };
733
734 static const struct inode_operations hugetlbfs_inode_operations = {
735         .setattr        = hugetlbfs_setattr,
736 };
737
738 static const struct super_operations hugetlbfs_ops = {
739         .alloc_inode    = hugetlbfs_alloc_inode,
740         .destroy_inode  = hugetlbfs_destroy_inode,
741         .statfs         = hugetlbfs_statfs,
742         .delete_inode   = hugetlbfs_delete_inode,
743         .drop_inode     = hugetlbfs_drop_inode,
744         .put_super      = hugetlbfs_put_super,
745         .show_options   = generic_show_options,
746 };
747
748 static int
749 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
750 {
751         char *p, *rest;
752         substring_t args[MAX_OPT_ARGS];
753         int option;
754         unsigned long long size = 0;
755         enum { NO_SIZE, SIZE_STD, SIZE_PERCENT } setsize = NO_SIZE;
756
757         if (!options)
758                 return 0;
759
760         while ((p = strsep(&options, ",")) != NULL) {
761                 int token;
762                 if (!*p)
763                         continue;
764
765                 token = match_token(p, tokens, args);
766                 switch (token) {
767                 case Opt_uid:
768                         if (match_int(&args[0], &option))
769                                 goto bad_val;
770                         pconfig->uid = option;
771                         break;
772
773                 case Opt_gid:
774                         if (match_int(&args[0], &option))
775                                 goto bad_val;
776                         pconfig->gid = option;
777                         break;
778
779                 case Opt_mode:
780                         if (match_octal(&args[0], &option))
781                                 goto bad_val;
782                         pconfig->mode = option & 01777U;
783                         break;
784
785                 case Opt_size: {
786                         /* memparse() will accept a K/M/G without a digit */
787                         if (!isdigit(*args[0].from))
788                                 goto bad_val;
789                         size = memparse(args[0].from, &rest);
790                         setsize = SIZE_STD;
791                         if (*rest == '%')
792                                 setsize = SIZE_PERCENT;
793                         break;
794                 }
795
796                 case Opt_nr_inodes:
797                         /* memparse() will accept a K/M/G without a digit */
798                         if (!isdigit(*args[0].from))
799                                 goto bad_val;
800                         pconfig->nr_inodes = memparse(args[0].from, &rest);
801                         break;
802
803                 case Opt_pagesize: {
804                         unsigned long ps;
805                         ps = memparse(args[0].from, &rest);
806                         pconfig->hstate = size_to_hstate(ps);
807                         if (!pconfig->hstate) {
808                                 printk(KERN_ERR
809                                 "hugetlbfs: Unsupported page size %lu MB\n",
810                                         ps >> 20);
811                                 return -EINVAL;
812                         }
813                         break;
814                 }
815
816                 default:
817                         printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
818                                  p);
819                         return -EINVAL;
820                         break;
821                 }
822         }
823
824         /* Do size after hstate is set up */
825         if (setsize > NO_SIZE) {
826                 struct hstate *h = pconfig->hstate;
827                 if (setsize == SIZE_PERCENT) {
828                         size <<= huge_page_shift(h);
829                         size *= h->max_huge_pages;
830                         do_div(size, 100);
831                 }
832                 pconfig->nr_blocks = (size >> huge_page_shift(h));
833         }
834
835         return 0;
836
837 bad_val:
838         printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
839                args[0].from, p);
840         return -EINVAL;
841 }
842
843 static int
844 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
845 {
846         struct inode * inode;
847         struct dentry * root;
848         int ret;
849         struct hugetlbfs_config config;
850         struct hugetlbfs_sb_info *sbinfo;
851
852         save_mount_options(sb, data);
853
854         config.nr_blocks = -1; /* No limit on size by default */
855         config.nr_inodes = -1; /* No limit on number of inodes by default */
856         config.uid = current_fsuid();
857         config.gid = current_fsgid();
858         config.mode = 0755;
859         config.hstate = &default_hstate;
860         ret = hugetlbfs_parse_options(data, &config);
861         if (ret)
862                 return ret;
863
864         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
865         if (!sbinfo)
866                 return -ENOMEM;
867         sb->s_fs_info = sbinfo;
868         sbinfo->hstate = config.hstate;
869         spin_lock_init(&sbinfo->stat_lock);
870         sbinfo->max_blocks = config.nr_blocks;
871         sbinfo->free_blocks = config.nr_blocks;
872         sbinfo->max_inodes = config.nr_inodes;
873         sbinfo->free_inodes = config.nr_inodes;
874         sb->s_maxbytes = MAX_LFS_FILESIZE;
875         sb->s_blocksize = huge_page_size(config.hstate);
876         sb->s_blocksize_bits = huge_page_shift(config.hstate);
877         sb->s_magic = HUGETLBFS_MAGIC;
878         sb->s_op = &hugetlbfs_ops;
879         sb->s_time_gran = 1;
880         inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
881                                         S_IFDIR | config.mode, 0);
882         if (!inode)
883                 goto out_free;
884
885         root = d_alloc_root(inode);
886         if (!root) {
887                 iput(inode);
888                 goto out_free;
889         }
890         sb->s_root = root;
891         return 0;
892 out_free:
893         kfree(sbinfo);
894         return -ENOMEM;
895 }
896
897 int hugetlb_get_quota(struct address_space *mapping, long delta)
898 {
899         int ret = 0;
900         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
901
902         if (sbinfo->free_blocks > -1) {
903                 spin_lock(&sbinfo->stat_lock);
904                 if (sbinfo->free_blocks - delta >= 0)
905                         sbinfo->free_blocks -= delta;
906                 else
907                         ret = -ENOMEM;
908                 spin_unlock(&sbinfo->stat_lock);
909         }
910
911         return ret;
912 }
913
914 void hugetlb_put_quota(struct address_space *mapping, long delta)
915 {
916         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
917
918         if (sbinfo->free_blocks > -1) {
919                 spin_lock(&sbinfo->stat_lock);
920                 sbinfo->free_blocks += delta;
921                 spin_unlock(&sbinfo->stat_lock);
922         }
923 }
924
925 static int hugetlbfs_get_sb(struct file_system_type *fs_type,
926         int flags, const char *dev_name, void *data, struct vfsmount *mnt)
927 {
928         return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
929 }
930
931 static struct file_system_type hugetlbfs_fs_type = {
932         .name           = "hugetlbfs",
933         .get_sb         = hugetlbfs_get_sb,
934         .kill_sb        = kill_litter_super,
935 };
936
937 static struct vfsmount *hugetlbfs_vfsmount;
938
939 static int can_do_hugetlb_shm(int creat_flags)
940 {
941         if (creat_flags != HUGETLB_SHMFS_INODE)
942                 return 0;
943         if (capable(CAP_IPC_LOCK))
944                 return 1;
945         if (in_group_p(sysctl_hugetlb_shm_group))
946                 return 1;
947         return 0;
948 }
949
950 struct file *hugetlb_file_setup(const char *name, size_t size, int acctflag,
951                                 struct user_struct **user, int creat_flags)
952 {
953         int error = -ENOMEM;
954         struct file *file;
955         struct inode *inode;
956         struct dentry *dentry, *root;
957         struct qstr quick_string;
958
959         *user = NULL;
960         if (!hugetlbfs_vfsmount)
961                 return ERR_PTR(-ENOENT);
962
963         if (!can_do_hugetlb_shm(creat_flags)) {
964                 *user = current_user();
965                 if (user_shm_lock(size, *user)) {
966                         WARN_ONCE(1,
967                           "Using mlock ulimits for SHM_HUGETLB deprecated\n");
968                 } else {
969                         *user = NULL;
970                         return ERR_PTR(-EPERM);
971                 }
972         }
973
974         root = hugetlbfs_vfsmount->mnt_root;
975         quick_string.name = name;
976         quick_string.len = strlen(quick_string.name);
977         quick_string.hash = 0;
978         dentry = d_alloc(root, &quick_string);
979         if (!dentry)
980                 goto out_shm_unlock;
981
982         error = -ENOSPC;
983         inode = hugetlbfs_get_inode(root->d_sb, current_fsuid(),
984                                 current_fsgid(), S_IFREG | S_IRWXUGO, 0);
985         if (!inode)
986                 goto out_dentry;
987
988         error = -ENOMEM;
989         if (hugetlb_reserve_pages(inode, 0,
990                         size >> huge_page_shift(hstate_inode(inode)), NULL,
991                         acctflag))
992                 goto out_inode;
993
994         d_instantiate(dentry, inode);
995         inode->i_size = size;
996         inode->i_nlink = 0;
997
998         error = -ENFILE;
999         file = alloc_file(hugetlbfs_vfsmount, dentry,
1000                         FMODE_WRITE | FMODE_READ,
1001                         &hugetlbfs_file_operations);
1002         if (!file)
1003                 goto out_dentry; /* inode is already attached */
1004         ima_counts_get(file);
1005
1006         return file;
1007
1008 out_inode:
1009         iput(inode);
1010 out_dentry:
1011         dput(dentry);
1012 out_shm_unlock:
1013         if (*user) {
1014                 user_shm_unlock(size, *user);
1015                 *user = NULL;
1016         }
1017         return ERR_PTR(error);
1018 }
1019
1020 static int __init init_hugetlbfs_fs(void)
1021 {
1022         int error;
1023         struct vfsmount *vfsmount;
1024
1025         error = bdi_init(&hugetlbfs_backing_dev_info);
1026         if (error)
1027                 return error;
1028
1029         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1030                                         sizeof(struct hugetlbfs_inode_info),
1031                                         0, 0, init_once);
1032         if (hugetlbfs_inode_cachep == NULL)
1033                 goto out2;
1034
1035         error = register_filesystem(&hugetlbfs_fs_type);
1036         if (error)
1037                 goto out;
1038
1039         vfsmount = kern_mount(&hugetlbfs_fs_type);
1040
1041         if (!IS_ERR(vfsmount)) {
1042                 hugetlbfs_vfsmount = vfsmount;
1043                 return 0;
1044         }
1045
1046         error = PTR_ERR(vfsmount);
1047
1048  out:
1049         if (error)
1050                 kmem_cache_destroy(hugetlbfs_inode_cachep);
1051  out2:
1052         bdi_destroy(&hugetlbfs_backing_dev_info);
1053         return error;
1054 }
1055
1056 static void __exit exit_hugetlbfs_fs(void)
1057 {
1058         kmem_cache_destroy(hugetlbfs_inode_cachep);
1059         unregister_filesystem(&hugetlbfs_fs_type);
1060         bdi_destroy(&hugetlbfs_backing_dev_info);
1061 }
1062
1063 module_init(init_hugetlbfs_fs)
1064 module_exit(exit_hugetlbfs_fs)
1065
1066 MODULE_LICENSE("GPL");