hugetlb: modular state for hugetlb page size
[safe/jmp/linux-2.6] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * William Irwin, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  */
8
9 #include <linux/module.h>
10 #include <linux/thread_info.h>
11 #include <asm/current.h>
12 #include <linux/sched.h>                /* remove ASAP */
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/file.h>
16 #include <linux/kernel.h>
17 #include <linux/writeback.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/init.h>
21 #include <linux/string.h>
22 #include <linux/capability.h>
23 #include <linux/ctype.h>
24 #include <linux/backing-dev.h>
25 #include <linux/hugetlb.h>
26 #include <linux/pagevec.h>
27 #include <linux/parser.h>
28 #include <linux/mman.h>
29 #include <linux/quotaops.h>
30 #include <linux/slab.h>
31 #include <linux/dnotify.h>
32 #include <linux/statfs.h>
33 #include <linux/security.h>
34
35 #include <asm/uaccess.h>
36
37 /* some random number */
38 #define HUGETLBFS_MAGIC 0x958458f6
39
40 static const struct super_operations hugetlbfs_ops;
41 static const struct address_space_operations hugetlbfs_aops;
42 const struct file_operations hugetlbfs_file_operations;
43 static const struct inode_operations hugetlbfs_dir_inode_operations;
44 static const struct inode_operations hugetlbfs_inode_operations;
45
46 static struct backing_dev_info hugetlbfs_backing_dev_info = {
47         .ra_pages       = 0,    /* No readahead */
48         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK,
49 };
50
51 int sysctl_hugetlb_shm_group;
52
53 enum {
54         Opt_size, Opt_nr_inodes,
55         Opt_mode, Opt_uid, Opt_gid,
56         Opt_err,
57 };
58
59 static match_table_t tokens = {
60         {Opt_size,      "size=%s"},
61         {Opt_nr_inodes, "nr_inodes=%s"},
62         {Opt_mode,      "mode=%o"},
63         {Opt_uid,       "uid=%u"},
64         {Opt_gid,       "gid=%u"},
65         {Opt_err,       NULL},
66 };
67
68 static void huge_pagevec_release(struct pagevec *pvec)
69 {
70         int i;
71
72         for (i = 0; i < pagevec_count(pvec); ++i)
73                 put_page(pvec->pages[i]);
74
75         pagevec_reinit(pvec);
76 }
77
78 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
79 {
80         struct inode *inode = file->f_path.dentry->d_inode;
81         loff_t len, vma_len;
82         int ret;
83         struct hstate *h = hstate_file(file);
84
85         /*
86          * vma address alignment (but not the pgoff alignment) has
87          * already been checked by prepare_hugepage_range.  If you add
88          * any error returns here, do so after setting VM_HUGETLB, so
89          * is_vm_hugetlb_page tests below unmap_region go the right
90          * way when do_mmap_pgoff unwinds (may be important on powerpc
91          * and ia64).
92          */
93         vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
94         vma->vm_ops = &hugetlb_vm_ops;
95
96         if (vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT))
97                 return -EINVAL;
98
99         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
100
101         mutex_lock(&inode->i_mutex);
102         file_accessed(file);
103
104         ret = -ENOMEM;
105         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
106
107         if (hugetlb_reserve_pages(inode,
108                                 vma->vm_pgoff >> huge_page_order(h),
109                                 len >> huge_page_shift(h), vma))
110                 goto out;
111
112         ret = 0;
113         hugetlb_prefault_arch_hook(vma->vm_mm);
114         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
115                 inode->i_size = len;
116 out:
117         mutex_unlock(&inode->i_mutex);
118
119         return ret;
120 }
121
122 /*
123  * Called under down_write(mmap_sem).
124  */
125
126 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
127 static unsigned long
128 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
129                 unsigned long len, unsigned long pgoff, unsigned long flags)
130 {
131         struct mm_struct *mm = current->mm;
132         struct vm_area_struct *vma;
133         unsigned long start_addr;
134         struct hstate *h = hstate_file(file);
135
136         if (len & ~huge_page_mask(h))
137                 return -EINVAL;
138         if (len > TASK_SIZE)
139                 return -ENOMEM;
140
141         if (flags & MAP_FIXED) {
142                 if (prepare_hugepage_range(file, addr, len))
143                         return -EINVAL;
144                 return addr;
145         }
146
147         if (addr) {
148                 addr = ALIGN(addr, huge_page_size(h));
149                 vma = find_vma(mm, addr);
150                 if (TASK_SIZE - len >= addr &&
151                     (!vma || addr + len <= vma->vm_start))
152                         return addr;
153         }
154
155         start_addr = mm->free_area_cache;
156
157         if (len <= mm->cached_hole_size)
158                 start_addr = TASK_UNMAPPED_BASE;
159
160 full_search:
161         addr = ALIGN(start_addr, huge_page_size(h));
162
163         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
164                 /* At this point:  (!vma || addr < vma->vm_end). */
165                 if (TASK_SIZE - len < addr) {
166                         /*
167                          * Start a new search - just in case we missed
168                          * some holes.
169                          */
170                         if (start_addr != TASK_UNMAPPED_BASE) {
171                                 start_addr = TASK_UNMAPPED_BASE;
172                                 goto full_search;
173                         }
174                         return -ENOMEM;
175                 }
176
177                 if (!vma || addr + len <= vma->vm_start)
178                         return addr;
179                 addr = ALIGN(vma->vm_end, huge_page_size(h));
180         }
181 }
182 #endif
183
184 static int
185 hugetlbfs_read_actor(struct page *page, unsigned long offset,
186                         char __user *buf, unsigned long count,
187                         unsigned long size)
188 {
189         char *kaddr;
190         unsigned long left, copied = 0;
191         int i, chunksize;
192
193         if (size > count)
194                 size = count;
195
196         /* Find which 4k chunk and offset with in that chunk */
197         i = offset >> PAGE_CACHE_SHIFT;
198         offset = offset & ~PAGE_CACHE_MASK;
199
200         while (size) {
201                 chunksize = PAGE_CACHE_SIZE;
202                 if (offset)
203                         chunksize -= offset;
204                 if (chunksize > size)
205                         chunksize = size;
206                 kaddr = kmap(&page[i]);
207                 left = __copy_to_user(buf, kaddr + offset, chunksize);
208                 kunmap(&page[i]);
209                 if (left) {
210                         copied += (chunksize - left);
211                         break;
212                 }
213                 offset = 0;
214                 size -= chunksize;
215                 buf += chunksize;
216                 copied += chunksize;
217                 i++;
218         }
219         return copied ? copied : -EFAULT;
220 }
221
222 /*
223  * Support for read() - Find the page attached to f_mapping and copy out the
224  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
225  * since it has PAGE_CACHE_SIZE assumptions.
226  */
227 static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
228                               size_t len, loff_t *ppos)
229 {
230         struct hstate *h = hstate_file(filp);
231         struct address_space *mapping = filp->f_mapping;
232         struct inode *inode = mapping->host;
233         unsigned long index = *ppos >> huge_page_shift(h);
234         unsigned long offset = *ppos & ~huge_page_mask(h);
235         unsigned long end_index;
236         loff_t isize;
237         ssize_t retval = 0;
238
239         mutex_lock(&inode->i_mutex);
240
241         /* validate length */
242         if (len == 0)
243                 goto out;
244
245         isize = i_size_read(inode);
246         if (!isize)
247                 goto out;
248
249         end_index = (isize - 1) >> huge_page_shift(h);
250         for (;;) {
251                 struct page *page;
252                 unsigned long nr, ret;
253
254                 /* nr is the maximum number of bytes to copy from this page */
255                 nr = huge_page_size(h);
256                 if (index >= end_index) {
257                         if (index > end_index)
258                                 goto out;
259                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
260                         if (nr <= offset) {
261                                 goto out;
262                         }
263                 }
264                 nr = nr - offset;
265
266                 /* Find the page */
267                 page = find_get_page(mapping, index);
268                 if (unlikely(page == NULL)) {
269                         /*
270                          * We have a HOLE, zero out the user-buffer for the
271                          * length of the hole or request.
272                          */
273                         ret = len < nr ? len : nr;
274                         if (clear_user(buf, ret))
275                                 ret = -EFAULT;
276                 } else {
277                         /*
278                          * We have the page, copy it to user space buffer.
279                          */
280                         ret = hugetlbfs_read_actor(page, offset, buf, len, nr);
281                 }
282                 if (ret < 0) {
283                         if (retval == 0)
284                                 retval = ret;
285                         if (page)
286                                 page_cache_release(page);
287                         goto out;
288                 }
289
290                 offset += ret;
291                 retval += ret;
292                 len -= ret;
293                 index += offset >> huge_page_shift(h);
294                 offset &= ~huge_page_mask(h);
295
296                 if (page)
297                         page_cache_release(page);
298
299                 /* short read or no more work */
300                 if ((ret != nr) || (len == 0))
301                         break;
302         }
303 out:
304         *ppos = ((loff_t)index << huge_page_shift(h)) + offset;
305         mutex_unlock(&inode->i_mutex);
306         return retval;
307 }
308
309 /*
310  * Read a page. Again trivial. If it didn't already exist
311  * in the page cache, it is zero-filled.
312  */
313 static int hugetlbfs_readpage(struct file *file, struct page * page)
314 {
315         unlock_page(page);
316         return -EINVAL;
317 }
318
319 static int hugetlbfs_write_begin(struct file *file,
320                         struct address_space *mapping,
321                         loff_t pos, unsigned len, unsigned flags,
322                         struct page **pagep, void **fsdata)
323 {
324         return -EINVAL;
325 }
326
327 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
328                         loff_t pos, unsigned len, unsigned copied,
329                         struct page *page, void *fsdata)
330 {
331         BUG();
332         return -EINVAL;
333 }
334
335 static void truncate_huge_page(struct page *page)
336 {
337         cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
338         ClearPageUptodate(page);
339         remove_from_page_cache(page);
340         put_page(page);
341 }
342
343 static void truncate_hugepages(struct inode *inode, loff_t lstart)
344 {
345         struct hstate *h = hstate_inode(inode);
346         struct address_space *mapping = &inode->i_data;
347         const pgoff_t start = lstart >> huge_page_shift(h);
348         struct pagevec pvec;
349         pgoff_t next;
350         int i, freed = 0;
351
352         pagevec_init(&pvec, 0);
353         next = start;
354         while (1) {
355                 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
356                         if (next == start)
357                                 break;
358                         next = start;
359                         continue;
360                 }
361
362                 for (i = 0; i < pagevec_count(&pvec); ++i) {
363                         struct page *page = pvec.pages[i];
364
365                         lock_page(page);
366                         if (page->index > next)
367                                 next = page->index;
368                         ++next;
369                         truncate_huge_page(page);
370                         unlock_page(page);
371                         freed++;
372                 }
373                 huge_pagevec_release(&pvec);
374         }
375         BUG_ON(!lstart && mapping->nrpages);
376         hugetlb_unreserve_pages(inode, start, freed);
377 }
378
379 static void hugetlbfs_delete_inode(struct inode *inode)
380 {
381         truncate_hugepages(inode, 0);
382         clear_inode(inode);
383 }
384
385 static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
386 {
387         struct super_block *sb = inode->i_sb;
388
389         if (!hlist_unhashed(&inode->i_hash)) {
390                 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
391                         list_move(&inode->i_list, &inode_unused);
392                 inodes_stat.nr_unused++;
393                 if (!sb || (sb->s_flags & MS_ACTIVE)) {
394                         spin_unlock(&inode_lock);
395                         return;
396                 }
397                 inode->i_state |= I_WILL_FREE;
398                 spin_unlock(&inode_lock);
399                 /*
400                  * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
401                  * in our backing_dev_info.
402                  */
403                 write_inode_now(inode, 1);
404                 spin_lock(&inode_lock);
405                 inode->i_state &= ~I_WILL_FREE;
406                 inodes_stat.nr_unused--;
407                 hlist_del_init(&inode->i_hash);
408         }
409         list_del_init(&inode->i_list);
410         list_del_init(&inode->i_sb_list);
411         inode->i_state |= I_FREEING;
412         inodes_stat.nr_inodes--;
413         spin_unlock(&inode_lock);
414         truncate_hugepages(inode, 0);
415         clear_inode(inode);
416         destroy_inode(inode);
417 }
418
419 static void hugetlbfs_drop_inode(struct inode *inode)
420 {
421         if (!inode->i_nlink)
422                 generic_delete_inode(inode);
423         else
424                 hugetlbfs_forget_inode(inode);
425 }
426
427 static inline void
428 hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
429 {
430         struct vm_area_struct *vma;
431         struct prio_tree_iter iter;
432
433         vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
434                 unsigned long v_offset;
435
436                 /*
437                  * Can the expression below overflow on 32-bit arches?
438                  * No, because the prio_tree returns us only those vmas
439                  * which overlap the truncated area starting at pgoff,
440                  * and no vma on a 32-bit arch can span beyond the 4GB.
441                  */
442                 if (vma->vm_pgoff < pgoff)
443                         v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
444                 else
445                         v_offset = 0;
446
447                 __unmap_hugepage_range(vma,
448                                 vma->vm_start + v_offset, vma->vm_end, NULL);
449         }
450 }
451
452 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
453 {
454         pgoff_t pgoff;
455         struct address_space *mapping = inode->i_mapping;
456         struct hstate *h = hstate_inode(inode);
457
458         BUG_ON(offset & ~huge_page_mask(h));
459         pgoff = offset >> PAGE_SHIFT;
460
461         i_size_write(inode, offset);
462         spin_lock(&mapping->i_mmap_lock);
463         if (!prio_tree_empty(&mapping->i_mmap))
464                 hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
465         spin_unlock(&mapping->i_mmap_lock);
466         truncate_hugepages(inode, offset);
467         return 0;
468 }
469
470 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
471 {
472         struct inode *inode = dentry->d_inode;
473         struct hstate *h = hstate_inode(inode);
474         int error;
475         unsigned int ia_valid = attr->ia_valid;
476
477         BUG_ON(!inode);
478
479         error = inode_change_ok(inode, attr);
480         if (error)
481                 goto out;
482
483         if (ia_valid & ATTR_SIZE) {
484                 error = -EINVAL;
485                 if (!(attr->ia_size & ~huge_page_mask(h)))
486                         error = hugetlb_vmtruncate(inode, attr->ia_size);
487                 if (error)
488                         goto out;
489                 attr->ia_valid &= ~ATTR_SIZE;
490         }
491         error = inode_setattr(inode, attr);
492 out:
493         return error;
494 }
495
496 static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid, 
497                                         gid_t gid, int mode, dev_t dev)
498 {
499         struct inode *inode;
500
501         inode = new_inode(sb);
502         if (inode) {
503                 struct hugetlbfs_inode_info *info;
504                 inode->i_mode = mode;
505                 inode->i_uid = uid;
506                 inode->i_gid = gid;
507                 inode->i_blocks = 0;
508                 inode->i_mapping->a_ops = &hugetlbfs_aops;
509                 inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
510                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
511                 INIT_LIST_HEAD(&inode->i_mapping->private_list);
512                 info = HUGETLBFS_I(inode);
513                 mpol_shared_policy_init(&info->policy, NULL);
514                 switch (mode & S_IFMT) {
515                 default:
516                         init_special_inode(inode, mode, dev);
517                         break;
518                 case S_IFREG:
519                         inode->i_op = &hugetlbfs_inode_operations;
520                         inode->i_fop = &hugetlbfs_file_operations;
521                         break;
522                 case S_IFDIR:
523                         inode->i_op = &hugetlbfs_dir_inode_operations;
524                         inode->i_fop = &simple_dir_operations;
525
526                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
527                         inc_nlink(inode);
528                         break;
529                 case S_IFLNK:
530                         inode->i_op = &page_symlink_inode_operations;
531                         break;
532                 }
533         }
534         return inode;
535 }
536
537 /*
538  * File creation. Allocate an inode, and we're done..
539  */
540 static int hugetlbfs_mknod(struct inode *dir,
541                         struct dentry *dentry, int mode, dev_t dev)
542 {
543         struct inode *inode;
544         int error = -ENOSPC;
545         gid_t gid;
546
547         if (dir->i_mode & S_ISGID) {
548                 gid = dir->i_gid;
549                 if (S_ISDIR(mode))
550                         mode |= S_ISGID;
551         } else {
552                 gid = current->fsgid;
553         }
554         inode = hugetlbfs_get_inode(dir->i_sb, current->fsuid, gid, mode, dev);
555         if (inode) {
556                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
557                 d_instantiate(dentry, inode);
558                 dget(dentry);   /* Extra count - pin the dentry in core */
559                 error = 0;
560         }
561         return error;
562 }
563
564 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
565 {
566         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
567         if (!retval)
568                 inc_nlink(dir);
569         return retval;
570 }
571
572 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
573 {
574         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
575 }
576
577 static int hugetlbfs_symlink(struct inode *dir,
578                         struct dentry *dentry, const char *symname)
579 {
580         struct inode *inode;
581         int error = -ENOSPC;
582         gid_t gid;
583
584         if (dir->i_mode & S_ISGID)
585                 gid = dir->i_gid;
586         else
587                 gid = current->fsgid;
588
589         inode = hugetlbfs_get_inode(dir->i_sb, current->fsuid,
590                                         gid, S_IFLNK|S_IRWXUGO, 0);
591         if (inode) {
592                 int l = strlen(symname)+1;
593                 error = page_symlink(inode, symname, l);
594                 if (!error) {
595                         d_instantiate(dentry, inode);
596                         dget(dentry);
597                 } else
598                         iput(inode);
599         }
600         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
601
602         return error;
603 }
604
605 /*
606  * mark the head page dirty
607  */
608 static int hugetlbfs_set_page_dirty(struct page *page)
609 {
610         struct page *head = compound_head(page);
611
612         SetPageDirty(head);
613         return 0;
614 }
615
616 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
617 {
618         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
619         struct hstate *h = hstate_inode(dentry->d_inode);
620
621         buf->f_type = HUGETLBFS_MAGIC;
622         buf->f_bsize = huge_page_size(h);
623         if (sbinfo) {
624                 spin_lock(&sbinfo->stat_lock);
625                 /* If no limits set, just report 0 for max/free/used
626                  * blocks, like simple_statfs() */
627                 if (sbinfo->max_blocks >= 0) {
628                         buf->f_blocks = sbinfo->max_blocks;
629                         buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
630                         buf->f_files = sbinfo->max_inodes;
631                         buf->f_ffree = sbinfo->free_inodes;
632                 }
633                 spin_unlock(&sbinfo->stat_lock);
634         }
635         buf->f_namelen = NAME_MAX;
636         return 0;
637 }
638
639 static void hugetlbfs_put_super(struct super_block *sb)
640 {
641         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
642
643         if (sbi) {
644                 sb->s_fs_info = NULL;
645                 kfree(sbi);
646         }
647 }
648
649 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
650 {
651         if (sbinfo->free_inodes >= 0) {
652                 spin_lock(&sbinfo->stat_lock);
653                 if (unlikely(!sbinfo->free_inodes)) {
654                         spin_unlock(&sbinfo->stat_lock);
655                         return 0;
656                 }
657                 sbinfo->free_inodes--;
658                 spin_unlock(&sbinfo->stat_lock);
659         }
660
661         return 1;
662 }
663
664 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
665 {
666         if (sbinfo->free_inodes >= 0) {
667                 spin_lock(&sbinfo->stat_lock);
668                 sbinfo->free_inodes++;
669                 spin_unlock(&sbinfo->stat_lock);
670         }
671 }
672
673
674 static struct kmem_cache *hugetlbfs_inode_cachep;
675
676 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
677 {
678         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
679         struct hugetlbfs_inode_info *p;
680
681         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
682                 return NULL;
683         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
684         if (unlikely(!p)) {
685                 hugetlbfs_inc_free_inodes(sbinfo);
686                 return NULL;
687         }
688         return &p->vfs_inode;
689 }
690
691 static void hugetlbfs_destroy_inode(struct inode *inode)
692 {
693         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
694         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
695         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
696 }
697
698 static const struct address_space_operations hugetlbfs_aops = {
699         .readpage       = hugetlbfs_readpage,
700         .write_begin    = hugetlbfs_write_begin,
701         .write_end      = hugetlbfs_write_end,
702         .set_page_dirty = hugetlbfs_set_page_dirty,
703 };
704
705
706 static void init_once(struct kmem_cache *cachep, void *foo)
707 {
708         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
709
710         inode_init_once(&ei->vfs_inode);
711 }
712
713 const struct file_operations hugetlbfs_file_operations = {
714         .read                   = hugetlbfs_read,
715         .mmap                   = hugetlbfs_file_mmap,
716         .fsync                  = simple_sync_file,
717         .get_unmapped_area      = hugetlb_get_unmapped_area,
718 };
719
720 static const struct inode_operations hugetlbfs_dir_inode_operations = {
721         .create         = hugetlbfs_create,
722         .lookup         = simple_lookup,
723         .link           = simple_link,
724         .unlink         = simple_unlink,
725         .symlink        = hugetlbfs_symlink,
726         .mkdir          = hugetlbfs_mkdir,
727         .rmdir          = simple_rmdir,
728         .mknod          = hugetlbfs_mknod,
729         .rename         = simple_rename,
730         .setattr        = hugetlbfs_setattr,
731 };
732
733 static const struct inode_operations hugetlbfs_inode_operations = {
734         .setattr        = hugetlbfs_setattr,
735 };
736
737 static const struct super_operations hugetlbfs_ops = {
738         .alloc_inode    = hugetlbfs_alloc_inode,
739         .destroy_inode  = hugetlbfs_destroy_inode,
740         .statfs         = hugetlbfs_statfs,
741         .delete_inode   = hugetlbfs_delete_inode,
742         .drop_inode     = hugetlbfs_drop_inode,
743         .put_super      = hugetlbfs_put_super,
744         .show_options   = generic_show_options,
745 };
746
747 static int
748 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
749 {
750         char *p, *rest;
751         substring_t args[MAX_OPT_ARGS];
752         int option;
753
754         if (!options)
755                 return 0;
756
757         while ((p = strsep(&options, ",")) != NULL) {
758                 int token;
759                 if (!*p)
760                         continue;
761
762                 token = match_token(p, tokens, args);
763                 switch (token) {
764                 case Opt_uid:
765                         if (match_int(&args[0], &option))
766                                 goto bad_val;
767                         pconfig->uid = option;
768                         break;
769
770                 case Opt_gid:
771                         if (match_int(&args[0], &option))
772                                 goto bad_val;
773                         pconfig->gid = option;
774                         break;
775
776                 case Opt_mode:
777                         if (match_octal(&args[0], &option))
778                                 goto bad_val;
779                         pconfig->mode = option & 01777U;
780                         break;
781
782                 case Opt_size: {
783                         unsigned long long size;
784                         /* memparse() will accept a K/M/G without a digit */
785                         if (!isdigit(*args[0].from))
786                                 goto bad_val;
787                         size = memparse(args[0].from, &rest);
788                         if (*rest == '%') {
789                                 size <<= HPAGE_SHIFT;
790                                 size *= max_huge_pages;
791                                 do_div(size, 100);
792                         }
793                         pconfig->nr_blocks = (size >> HPAGE_SHIFT);
794                         break;
795                 }
796
797                 case Opt_nr_inodes:
798                         /* memparse() will accept a K/M/G without a digit */
799                         if (!isdigit(*args[0].from))
800                                 goto bad_val;
801                         pconfig->nr_inodes = memparse(args[0].from, &rest);
802                         break;
803
804                 default:
805                         printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
806                                  p);
807                         return -EINVAL;
808                         break;
809                 }
810         }
811         return 0;
812
813 bad_val:
814         printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
815                args[0].from, p);
816         return 1;
817 }
818
819 static int
820 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
821 {
822         struct inode * inode;
823         struct dentry * root;
824         int ret;
825         struct hugetlbfs_config config;
826         struct hugetlbfs_sb_info *sbinfo;
827
828         save_mount_options(sb, data);
829
830         config.nr_blocks = -1; /* No limit on size by default */
831         config.nr_inodes = -1; /* No limit on number of inodes by default */
832         config.uid = current->fsuid;
833         config.gid = current->fsgid;
834         config.mode = 0755;
835         ret = hugetlbfs_parse_options(data, &config);
836         if (ret)
837                 return ret;
838
839         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
840         if (!sbinfo)
841                 return -ENOMEM;
842         sb->s_fs_info = sbinfo;
843         spin_lock_init(&sbinfo->stat_lock);
844         sbinfo->max_blocks = config.nr_blocks;
845         sbinfo->free_blocks = config.nr_blocks;
846         sbinfo->max_inodes = config.nr_inodes;
847         sbinfo->free_inodes = config.nr_inodes;
848         sb->s_maxbytes = MAX_LFS_FILESIZE;
849         sb->s_blocksize = HPAGE_SIZE;
850         sb->s_blocksize_bits = HPAGE_SHIFT;
851         sb->s_magic = HUGETLBFS_MAGIC;
852         sb->s_op = &hugetlbfs_ops;
853         sb->s_time_gran = 1;
854         inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
855                                         S_IFDIR | config.mode, 0);
856         if (!inode)
857                 goto out_free;
858
859         root = d_alloc_root(inode);
860         if (!root) {
861                 iput(inode);
862                 goto out_free;
863         }
864         sb->s_root = root;
865         return 0;
866 out_free:
867         kfree(sbinfo);
868         return -ENOMEM;
869 }
870
871 int hugetlb_get_quota(struct address_space *mapping, long delta)
872 {
873         int ret = 0;
874         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
875
876         if (sbinfo->free_blocks > -1) {
877                 spin_lock(&sbinfo->stat_lock);
878                 if (sbinfo->free_blocks - delta >= 0)
879                         sbinfo->free_blocks -= delta;
880                 else
881                         ret = -ENOMEM;
882                 spin_unlock(&sbinfo->stat_lock);
883         }
884
885         return ret;
886 }
887
888 void hugetlb_put_quota(struct address_space *mapping, long delta)
889 {
890         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
891
892         if (sbinfo->free_blocks > -1) {
893                 spin_lock(&sbinfo->stat_lock);
894                 sbinfo->free_blocks += delta;
895                 spin_unlock(&sbinfo->stat_lock);
896         }
897 }
898
899 static int hugetlbfs_get_sb(struct file_system_type *fs_type,
900         int flags, const char *dev_name, void *data, struct vfsmount *mnt)
901 {
902         return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
903 }
904
905 static struct file_system_type hugetlbfs_fs_type = {
906         .name           = "hugetlbfs",
907         .get_sb         = hugetlbfs_get_sb,
908         .kill_sb        = kill_litter_super,
909 };
910
911 static struct vfsmount *hugetlbfs_vfsmount;
912
913 static int can_do_hugetlb_shm(void)
914 {
915         return likely(capable(CAP_IPC_LOCK) ||
916                         in_group_p(sysctl_hugetlb_shm_group) ||
917                         can_do_mlock());
918 }
919
920 struct file *hugetlb_file_setup(const char *name, size_t size)
921 {
922         int error = -ENOMEM;
923         struct file *file;
924         struct inode *inode;
925         struct dentry *dentry, *root;
926         struct qstr quick_string;
927
928         if (!hugetlbfs_vfsmount)
929                 return ERR_PTR(-ENOENT);
930
931         if (!can_do_hugetlb_shm())
932                 return ERR_PTR(-EPERM);
933
934         if (!user_shm_lock(size, current->user))
935                 return ERR_PTR(-ENOMEM);
936
937         root = hugetlbfs_vfsmount->mnt_root;
938         quick_string.name = name;
939         quick_string.len = strlen(quick_string.name);
940         quick_string.hash = 0;
941         dentry = d_alloc(root, &quick_string);
942         if (!dentry)
943                 goto out_shm_unlock;
944
945         error = -ENOSPC;
946         inode = hugetlbfs_get_inode(root->d_sb, current->fsuid,
947                                 current->fsgid, S_IFREG | S_IRWXUGO, 0);
948         if (!inode)
949                 goto out_dentry;
950
951         error = -ENOMEM;
952         if (hugetlb_reserve_pages(inode, 0,
953                         size >> huge_page_shift(hstate_inode(inode)), NULL))
954                 goto out_inode;
955
956         d_instantiate(dentry, inode);
957         inode->i_size = size;
958         inode->i_nlink = 0;
959
960         error = -ENFILE;
961         file = alloc_file(hugetlbfs_vfsmount, dentry,
962                         FMODE_WRITE | FMODE_READ,
963                         &hugetlbfs_file_operations);
964         if (!file)
965                 goto out_dentry; /* inode is already attached */
966
967         return file;
968
969 out_inode:
970         iput(inode);
971 out_dentry:
972         dput(dentry);
973 out_shm_unlock:
974         user_shm_unlock(size, current->user);
975         return ERR_PTR(error);
976 }
977
978 static int __init init_hugetlbfs_fs(void)
979 {
980         int error;
981         struct vfsmount *vfsmount;
982
983         error = bdi_init(&hugetlbfs_backing_dev_info);
984         if (error)
985                 return error;
986
987         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
988                                         sizeof(struct hugetlbfs_inode_info),
989                                         0, 0, init_once);
990         if (hugetlbfs_inode_cachep == NULL)
991                 goto out2;
992
993         error = register_filesystem(&hugetlbfs_fs_type);
994         if (error)
995                 goto out;
996
997         vfsmount = kern_mount(&hugetlbfs_fs_type);
998
999         if (!IS_ERR(vfsmount)) {
1000                 hugetlbfs_vfsmount = vfsmount;
1001                 return 0;
1002         }
1003
1004         error = PTR_ERR(vfsmount);
1005
1006  out:
1007         if (error)
1008                 kmem_cache_destroy(hugetlbfs_inode_cachep);
1009  out2:
1010         bdi_destroy(&hugetlbfs_backing_dev_info);
1011         return error;
1012 }
1013
1014 static void __exit exit_hugetlbfs_fs(void)
1015 {
1016         kmem_cache_destroy(hugetlbfs_inode_cachep);
1017         unregister_filesystem(&hugetlbfs_fs_type);
1018         bdi_destroy(&hugetlbfs_backing_dev_info);
1019 }
1020
1021 module_init(init_hugetlbfs_fs)
1022 module_exit(exit_hugetlbfs_fs)
1023
1024 MODULE_LICENSE("GPL");