bba83762c4841de60f5ef0812eeadc6e6517445d
[safe/jmp/linux-2.6] / fs / fuse / dev.c
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2006  Miklos Szeredi <miklos@szeredi.hu>
4
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21
22 static struct kmem_cache *fuse_req_cachep;
23
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26         /*
27          * Lockless access is OK, because file->private data is set
28          * once during mount and is valid until the file is released.
29          */
30         return file->private_data;
31 }
32
33 static void fuse_request_init(struct fuse_req *req)
34 {
35         memset(req, 0, sizeof(*req));
36         INIT_LIST_HEAD(&req->list);
37         INIT_LIST_HEAD(&req->intr_entry);
38         init_waitqueue_head(&req->waitq);
39         atomic_set(&req->count, 1);
40 }
41
42 struct fuse_req *fuse_request_alloc(void)
43 {
44         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45         if (req)
46                 fuse_request_init(req);
47         return req;
48 }
49
50 struct fuse_req *fuse_request_alloc_nofs(void)
51 {
52         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
53         if (req)
54                 fuse_request_init(req);
55         return req;
56 }
57
58 void fuse_request_free(struct fuse_req *req)
59 {
60         kmem_cache_free(fuse_req_cachep, req);
61 }
62
63 static void block_sigs(sigset_t *oldset)
64 {
65         sigset_t mask;
66
67         siginitsetinv(&mask, sigmask(SIGKILL));
68         sigprocmask(SIG_BLOCK, &mask, oldset);
69 }
70
71 static void restore_sigs(sigset_t *oldset)
72 {
73         sigprocmask(SIG_SETMASK, oldset, NULL);
74 }
75
76 static void __fuse_get_request(struct fuse_req *req)
77 {
78         atomic_inc(&req->count);
79 }
80
81 /* Must be called with > 1 refcount */
82 static void __fuse_put_request(struct fuse_req *req)
83 {
84         BUG_ON(atomic_read(&req->count) < 2);
85         atomic_dec(&req->count);
86 }
87
88 static void fuse_req_init_context(struct fuse_req *req)
89 {
90         req->in.h.uid = current->fsuid;
91         req->in.h.gid = current->fsgid;
92         req->in.h.pid = current->pid;
93 }
94
95 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
96 {
97         struct fuse_req *req;
98         sigset_t oldset;
99         int intr;
100         int err;
101
102         atomic_inc(&fc->num_waiting);
103         block_sigs(&oldset);
104         intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
105         restore_sigs(&oldset);
106         err = -EINTR;
107         if (intr)
108                 goto out;
109
110         err = -ENOTCONN;
111         if (!fc->connected)
112                 goto out;
113
114         req = fuse_request_alloc();
115         err = -ENOMEM;
116         if (!req)
117                 goto out;
118
119         fuse_req_init_context(req);
120         req->waiting = 1;
121         return req;
122
123  out:
124         atomic_dec(&fc->num_waiting);
125         return ERR_PTR(err);
126 }
127
128 /*
129  * Return request in fuse_file->reserved_req.  However that may
130  * currently be in use.  If that is the case, wait for it to become
131  * available.
132  */
133 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
134                                          struct file *file)
135 {
136         struct fuse_req *req = NULL;
137         struct fuse_file *ff = file->private_data;
138
139         do {
140                 wait_event(fc->reserved_req_waitq, ff->reserved_req);
141                 spin_lock(&fc->lock);
142                 if (ff->reserved_req) {
143                         req = ff->reserved_req;
144                         ff->reserved_req = NULL;
145                         get_file(file);
146                         req->stolen_file = file;
147                 }
148                 spin_unlock(&fc->lock);
149         } while (!req);
150
151         return req;
152 }
153
154 /*
155  * Put stolen request back into fuse_file->reserved_req
156  */
157 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
158 {
159         struct file *file = req->stolen_file;
160         struct fuse_file *ff = file->private_data;
161
162         spin_lock(&fc->lock);
163         fuse_request_init(req);
164         BUG_ON(ff->reserved_req);
165         ff->reserved_req = req;
166         wake_up_all(&fc->reserved_req_waitq);
167         spin_unlock(&fc->lock);
168         fput(file);
169 }
170
171 /*
172  * Gets a requests for a file operation, always succeeds
173  *
174  * This is used for sending the FLUSH request, which must get to
175  * userspace, due to POSIX locks which may need to be unlocked.
176  *
177  * If allocation fails due to OOM, use the reserved request in
178  * fuse_file.
179  *
180  * This is very unlikely to deadlock accidentally, since the
181  * filesystem should not have it's own file open.  If deadlock is
182  * intentional, it can still be broken by "aborting" the filesystem.
183  */
184 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
185 {
186         struct fuse_req *req;
187
188         atomic_inc(&fc->num_waiting);
189         wait_event(fc->blocked_waitq, !fc->blocked);
190         req = fuse_request_alloc();
191         if (!req)
192                 req = get_reserved_req(fc, file);
193
194         fuse_req_init_context(req);
195         req->waiting = 1;
196         return req;
197 }
198
199 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
200 {
201         if (atomic_dec_and_test(&req->count)) {
202                 if (req->waiting)
203                         atomic_dec(&fc->num_waiting);
204
205                 if (req->stolen_file)
206                         put_reserved_req(fc, req);
207                 else
208                         fuse_request_free(req);
209         }
210 }
211
212 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
213 {
214         unsigned nbytes = 0;
215         unsigned i;
216
217         for (i = 0; i < numargs; i++)
218                 nbytes += args[i].size;
219
220         return nbytes;
221 }
222
223 static u64 fuse_get_unique(struct fuse_conn *fc)
224 {
225         fc->reqctr++;
226         /* zero is special */
227         if (fc->reqctr == 0)
228                 fc->reqctr = 1;
229
230         return fc->reqctr;
231 }
232
233 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
234 {
235         req->in.h.unique = fuse_get_unique(fc);
236         req->in.h.len = sizeof(struct fuse_in_header) +
237                 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
238         list_add_tail(&req->list, &fc->pending);
239         req->state = FUSE_REQ_PENDING;
240         if (!req->waiting) {
241                 req->waiting = 1;
242                 atomic_inc(&fc->num_waiting);
243         }
244         wake_up(&fc->waitq);
245         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
246 }
247
248 static void flush_bg_queue(struct fuse_conn *fc)
249 {
250         while (fc->active_background < FUSE_MAX_BACKGROUND &&
251                !list_empty(&fc->bg_queue)) {
252                 struct fuse_req *req;
253
254                 req = list_entry(fc->bg_queue.next, struct fuse_req, list);
255                 list_del(&req->list);
256                 fc->active_background++;
257                 queue_request(fc, req);
258         }
259 }
260
261 /*
262  * This function is called when a request is finished.  Either a reply
263  * has arrived or it was aborted (and not yet sent) or some error
264  * occurred during communication with userspace, or the device file
265  * was closed.  The requester thread is woken up (if still waiting),
266  * the 'end' callback is called if given, else the reference to the
267  * request is released
268  *
269  * Called with fc->lock, unlocks it
270  */
271 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
272         __releases(fc->lock)
273 {
274         void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
275         req->end = NULL;
276         list_del(&req->list);
277         list_del(&req->intr_entry);
278         req->state = FUSE_REQ_FINISHED;
279         if (req->background) {
280                 if (fc->num_background == FUSE_MAX_BACKGROUND) {
281                         fc->blocked = 0;
282                         wake_up_all(&fc->blocked_waitq);
283                 }
284                 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
285                         clear_bdi_congested(&fc->bdi, READ);
286                         clear_bdi_congested(&fc->bdi, WRITE);
287                 }
288                 fc->num_background--;
289                 fc->active_background--;
290                 flush_bg_queue(fc);
291         }
292         spin_unlock(&fc->lock);
293         wake_up(&req->waitq);
294         if (end)
295                 end(fc, req);
296         else
297                 fuse_put_request(fc, req);
298 }
299
300 static void wait_answer_interruptible(struct fuse_conn *fc,
301                                       struct fuse_req *req)
302 {
303         if (signal_pending(current))
304                 return;
305
306         spin_unlock(&fc->lock);
307         wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
308         spin_lock(&fc->lock);
309 }
310
311 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
312 {
313         list_add_tail(&req->intr_entry, &fc->interrupts);
314         wake_up(&fc->waitq);
315         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
316 }
317
318 /* Called with fc->lock held.  Releases, and then reacquires it. */
319 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
320 {
321         if (!fc->no_interrupt) {
322                 /* Any signal may interrupt this */
323                 wait_answer_interruptible(fc, req);
324
325                 if (req->aborted)
326                         goto aborted;
327                 if (req->state == FUSE_REQ_FINISHED)
328                         return;
329
330                 req->interrupted = 1;
331                 if (req->state == FUSE_REQ_SENT)
332                         queue_interrupt(fc, req);
333         }
334
335         if (!req->force) {
336                 sigset_t oldset;
337
338                 /* Only fatal signals may interrupt this */
339                 block_sigs(&oldset);
340                 wait_answer_interruptible(fc, req);
341                 restore_sigs(&oldset);
342
343                 if (req->aborted)
344                         goto aborted;
345                 if (req->state == FUSE_REQ_FINISHED)
346                         return;
347
348                 /* Request is not yet in userspace, bail out */
349                 if (req->state == FUSE_REQ_PENDING) {
350                         list_del(&req->list);
351                         __fuse_put_request(req);
352                         req->out.h.error = -EINTR;
353                         return;
354                 }
355         }
356
357         /*
358          * Either request is already in userspace, or it was forced.
359          * Wait it out.
360          */
361         spin_unlock(&fc->lock);
362         wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
363         spin_lock(&fc->lock);
364
365         if (!req->aborted)
366                 return;
367
368  aborted:
369         BUG_ON(req->state != FUSE_REQ_FINISHED);
370         if (req->locked) {
371                 /* This is uninterruptible sleep, because data is
372                    being copied to/from the buffers of req.  During
373                    locked state, there mustn't be any filesystem
374                    operation (e.g. page fault), since that could lead
375                    to deadlock */
376                 spin_unlock(&fc->lock);
377                 wait_event(req->waitq, !req->locked);
378                 spin_lock(&fc->lock);
379         }
380 }
381
382 void request_send(struct fuse_conn *fc, struct fuse_req *req)
383 {
384         req->isreply = 1;
385         spin_lock(&fc->lock);
386         if (!fc->connected)
387                 req->out.h.error = -ENOTCONN;
388         else if (fc->conn_error)
389                 req->out.h.error = -ECONNREFUSED;
390         else {
391                 queue_request(fc, req);
392                 /* acquire extra reference, since request is still needed
393                    after request_end() */
394                 __fuse_get_request(req);
395
396                 request_wait_answer(fc, req);
397         }
398         spin_unlock(&fc->lock);
399 }
400
401 static void request_send_nowait_locked(struct fuse_conn *fc,
402                                        struct fuse_req *req)
403 {
404         req->background = 1;
405         fc->num_background++;
406         if (fc->num_background == FUSE_MAX_BACKGROUND)
407                 fc->blocked = 1;
408         if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
409                 set_bdi_congested(&fc->bdi, READ);
410                 set_bdi_congested(&fc->bdi, WRITE);
411         }
412         list_add_tail(&req->list, &fc->bg_queue);
413         flush_bg_queue(fc);
414 }
415
416 static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
417 {
418         spin_lock(&fc->lock);
419         if (fc->connected) {
420                 request_send_nowait_locked(fc, req);
421                 spin_unlock(&fc->lock);
422         } else {
423                 req->out.h.error = -ENOTCONN;
424                 request_end(fc, req);
425         }
426 }
427
428 void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
429 {
430         req->isreply = 0;
431         request_send_nowait(fc, req);
432 }
433
434 void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
435 {
436         req->isreply = 1;
437         request_send_nowait(fc, req);
438 }
439
440 /*
441  * Called under fc->lock
442  *
443  * fc->connected must have been checked previously
444  */
445 void request_send_background_locked(struct fuse_conn *fc, struct fuse_req *req)
446 {
447         req->isreply = 1;
448         request_send_nowait_locked(fc, req);
449 }
450
451 /*
452  * Lock the request.  Up to the next unlock_request() there mustn't be
453  * anything that could cause a page-fault.  If the request was already
454  * aborted bail out.
455  */
456 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
457 {
458         int err = 0;
459         if (req) {
460                 spin_lock(&fc->lock);
461                 if (req->aborted)
462                         err = -ENOENT;
463                 else
464                         req->locked = 1;
465                 spin_unlock(&fc->lock);
466         }
467         return err;
468 }
469
470 /*
471  * Unlock request.  If it was aborted during being locked, the
472  * requester thread is currently waiting for it to be unlocked, so
473  * wake it up.
474  */
475 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
476 {
477         if (req) {
478                 spin_lock(&fc->lock);
479                 req->locked = 0;
480                 if (req->aborted)
481                         wake_up(&req->waitq);
482                 spin_unlock(&fc->lock);
483         }
484 }
485
486 struct fuse_copy_state {
487         struct fuse_conn *fc;
488         int write;
489         struct fuse_req *req;
490         const struct iovec *iov;
491         unsigned long nr_segs;
492         unsigned long seglen;
493         unsigned long addr;
494         struct page *pg;
495         void *mapaddr;
496         void *buf;
497         unsigned len;
498 };
499
500 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
501                            int write, struct fuse_req *req,
502                            const struct iovec *iov, unsigned long nr_segs)
503 {
504         memset(cs, 0, sizeof(*cs));
505         cs->fc = fc;
506         cs->write = write;
507         cs->req = req;
508         cs->iov = iov;
509         cs->nr_segs = nr_segs;
510 }
511
512 /* Unmap and put previous page of userspace buffer */
513 static void fuse_copy_finish(struct fuse_copy_state *cs)
514 {
515         if (cs->mapaddr) {
516                 kunmap_atomic(cs->mapaddr, KM_USER0);
517                 if (cs->write) {
518                         flush_dcache_page(cs->pg);
519                         set_page_dirty_lock(cs->pg);
520                 }
521                 put_page(cs->pg);
522                 cs->mapaddr = NULL;
523         }
524 }
525
526 /*
527  * Get another pagefull of userspace buffer, and map it to kernel
528  * address space, and lock request
529  */
530 static int fuse_copy_fill(struct fuse_copy_state *cs)
531 {
532         unsigned long offset;
533         int err;
534
535         unlock_request(cs->fc, cs->req);
536         fuse_copy_finish(cs);
537         if (!cs->seglen) {
538                 BUG_ON(!cs->nr_segs);
539                 cs->seglen = cs->iov[0].iov_len;
540                 cs->addr = (unsigned long) cs->iov[0].iov_base;
541                 cs->iov ++;
542                 cs->nr_segs --;
543         }
544         down_read(&current->mm->mmap_sem);
545         err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
546                              &cs->pg, NULL);
547         up_read(&current->mm->mmap_sem);
548         if (err < 0)
549                 return err;
550         BUG_ON(err != 1);
551         offset = cs->addr % PAGE_SIZE;
552         cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
553         cs->buf = cs->mapaddr + offset;
554         cs->len = min(PAGE_SIZE - offset, cs->seglen);
555         cs->seglen -= cs->len;
556         cs->addr += cs->len;
557
558         return lock_request(cs->fc, cs->req);
559 }
560
561 /* Do as much copy to/from userspace buffer as we can */
562 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
563 {
564         unsigned ncpy = min(*size, cs->len);
565         if (val) {
566                 if (cs->write)
567                         memcpy(cs->buf, *val, ncpy);
568                 else
569                         memcpy(*val, cs->buf, ncpy);
570                 *val += ncpy;
571         }
572         *size -= ncpy;
573         cs->len -= ncpy;
574         cs->buf += ncpy;
575         return ncpy;
576 }
577
578 /*
579  * Copy a page in the request to/from the userspace buffer.  Must be
580  * done atomically
581  */
582 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
583                           unsigned offset, unsigned count, int zeroing)
584 {
585         if (page && zeroing && count < PAGE_SIZE) {
586                 void *mapaddr = kmap_atomic(page, KM_USER1);
587                 memset(mapaddr, 0, PAGE_SIZE);
588                 kunmap_atomic(mapaddr, KM_USER1);
589         }
590         while (count) {
591                 int err;
592                 if (!cs->len && (err = fuse_copy_fill(cs)))
593                         return err;
594                 if (page) {
595                         void *mapaddr = kmap_atomic(page, KM_USER1);
596                         void *buf = mapaddr + offset;
597                         offset += fuse_copy_do(cs, &buf, &count);
598                         kunmap_atomic(mapaddr, KM_USER1);
599                 } else
600                         offset += fuse_copy_do(cs, NULL, &count);
601         }
602         if (page && !cs->write)
603                 flush_dcache_page(page);
604         return 0;
605 }
606
607 /* Copy pages in the request to/from userspace buffer */
608 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
609                            int zeroing)
610 {
611         unsigned i;
612         struct fuse_req *req = cs->req;
613         unsigned offset = req->page_offset;
614         unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
615
616         for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
617                 struct page *page = req->pages[i];
618                 int err = fuse_copy_page(cs, page, offset, count, zeroing);
619                 if (err)
620                         return err;
621
622                 nbytes -= count;
623                 count = min(nbytes, (unsigned) PAGE_SIZE);
624                 offset = 0;
625         }
626         return 0;
627 }
628
629 /* Copy a single argument in the request to/from userspace buffer */
630 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
631 {
632         while (size) {
633                 int err;
634                 if (!cs->len && (err = fuse_copy_fill(cs)))
635                         return err;
636                 fuse_copy_do(cs, &val, &size);
637         }
638         return 0;
639 }
640
641 /* Copy request arguments to/from userspace buffer */
642 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
643                           unsigned argpages, struct fuse_arg *args,
644                           int zeroing)
645 {
646         int err = 0;
647         unsigned i;
648
649         for (i = 0; !err && i < numargs; i++)  {
650                 struct fuse_arg *arg = &args[i];
651                 if (i == numargs - 1 && argpages)
652                         err = fuse_copy_pages(cs, arg->size, zeroing);
653                 else
654                         err = fuse_copy_one(cs, arg->value, arg->size);
655         }
656         return err;
657 }
658
659 static int request_pending(struct fuse_conn *fc)
660 {
661         return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
662 }
663
664 /* Wait until a request is available on the pending list */
665 static void request_wait(struct fuse_conn *fc)
666 {
667         DECLARE_WAITQUEUE(wait, current);
668
669         add_wait_queue_exclusive(&fc->waitq, &wait);
670         while (fc->connected && !request_pending(fc)) {
671                 set_current_state(TASK_INTERRUPTIBLE);
672                 if (signal_pending(current))
673                         break;
674
675                 spin_unlock(&fc->lock);
676                 schedule();
677                 spin_lock(&fc->lock);
678         }
679         set_current_state(TASK_RUNNING);
680         remove_wait_queue(&fc->waitq, &wait);
681 }
682
683 /*
684  * Transfer an interrupt request to userspace
685  *
686  * Unlike other requests this is assembled on demand, without a need
687  * to allocate a separate fuse_req structure.
688  *
689  * Called with fc->lock held, releases it
690  */
691 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
692                                const struct iovec *iov, unsigned long nr_segs)
693         __releases(fc->lock)
694 {
695         struct fuse_copy_state cs;
696         struct fuse_in_header ih;
697         struct fuse_interrupt_in arg;
698         unsigned reqsize = sizeof(ih) + sizeof(arg);
699         int err;
700
701         list_del_init(&req->intr_entry);
702         req->intr_unique = fuse_get_unique(fc);
703         memset(&ih, 0, sizeof(ih));
704         memset(&arg, 0, sizeof(arg));
705         ih.len = reqsize;
706         ih.opcode = FUSE_INTERRUPT;
707         ih.unique = req->intr_unique;
708         arg.unique = req->in.h.unique;
709
710         spin_unlock(&fc->lock);
711         if (iov_length(iov, nr_segs) < reqsize)
712                 return -EINVAL;
713
714         fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
715         err = fuse_copy_one(&cs, &ih, sizeof(ih));
716         if (!err)
717                 err = fuse_copy_one(&cs, &arg, sizeof(arg));
718         fuse_copy_finish(&cs);
719
720         return err ? err : reqsize;
721 }
722
723 /*
724  * Read a single request into the userspace filesystem's buffer.  This
725  * function waits until a request is available, then removes it from
726  * the pending list and copies request data to userspace buffer.  If
727  * no reply is needed (FORGET) or request has been aborted or there
728  * was an error during the copying then it's finished by calling
729  * request_end().  Otherwise add it to the processing list, and set
730  * the 'sent' flag.
731  */
732 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
733                               unsigned long nr_segs, loff_t pos)
734 {
735         int err;
736         struct fuse_req *req;
737         struct fuse_in *in;
738         struct fuse_copy_state cs;
739         unsigned reqsize;
740         struct file *file = iocb->ki_filp;
741         struct fuse_conn *fc = fuse_get_conn(file);
742         if (!fc)
743                 return -EPERM;
744
745  restart:
746         spin_lock(&fc->lock);
747         err = -EAGAIN;
748         if ((file->f_flags & O_NONBLOCK) && fc->connected &&
749             !request_pending(fc))
750                 goto err_unlock;
751
752         request_wait(fc);
753         err = -ENODEV;
754         if (!fc->connected)
755                 goto err_unlock;
756         err = -ERESTARTSYS;
757         if (!request_pending(fc))
758                 goto err_unlock;
759
760         if (!list_empty(&fc->interrupts)) {
761                 req = list_entry(fc->interrupts.next, struct fuse_req,
762                                  intr_entry);
763                 return fuse_read_interrupt(fc, req, iov, nr_segs);
764         }
765
766         req = list_entry(fc->pending.next, struct fuse_req, list);
767         req->state = FUSE_REQ_READING;
768         list_move(&req->list, &fc->io);
769
770         in = &req->in;
771         reqsize = in->h.len;
772         /* If request is too large, reply with an error and restart the read */
773         if (iov_length(iov, nr_segs) < reqsize) {
774                 req->out.h.error = -EIO;
775                 /* SETXATTR is special, since it may contain too large data */
776                 if (in->h.opcode == FUSE_SETXATTR)
777                         req->out.h.error = -E2BIG;
778                 request_end(fc, req);
779                 goto restart;
780         }
781         spin_unlock(&fc->lock);
782         fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
783         err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
784         if (!err)
785                 err = fuse_copy_args(&cs, in->numargs, in->argpages,
786                                      (struct fuse_arg *) in->args, 0);
787         fuse_copy_finish(&cs);
788         spin_lock(&fc->lock);
789         req->locked = 0;
790         if (req->aborted) {
791                 request_end(fc, req);
792                 return -ENODEV;
793         }
794         if (err) {
795                 req->out.h.error = -EIO;
796                 request_end(fc, req);
797                 return err;
798         }
799         if (!req->isreply)
800                 request_end(fc, req);
801         else {
802                 req->state = FUSE_REQ_SENT;
803                 list_move_tail(&req->list, &fc->processing);
804                 if (req->interrupted)
805                         queue_interrupt(fc, req);
806                 spin_unlock(&fc->lock);
807         }
808         return reqsize;
809
810  err_unlock:
811         spin_unlock(&fc->lock);
812         return err;
813 }
814
815 /* Look up request on processing list by unique ID */
816 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
817 {
818         struct list_head *entry;
819
820         list_for_each(entry, &fc->processing) {
821                 struct fuse_req *req;
822                 req = list_entry(entry, struct fuse_req, list);
823                 if (req->in.h.unique == unique || req->intr_unique == unique)
824                         return req;
825         }
826         return NULL;
827 }
828
829 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
830                          unsigned nbytes)
831 {
832         unsigned reqsize = sizeof(struct fuse_out_header);
833
834         if (out->h.error)
835                 return nbytes != reqsize ? -EINVAL : 0;
836
837         reqsize += len_args(out->numargs, out->args);
838
839         if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
840                 return -EINVAL;
841         else if (reqsize > nbytes) {
842                 struct fuse_arg *lastarg = &out->args[out->numargs-1];
843                 unsigned diffsize = reqsize - nbytes;
844                 if (diffsize > lastarg->size)
845                         return -EINVAL;
846                 lastarg->size -= diffsize;
847         }
848         return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
849                               out->page_zeroing);
850 }
851
852 /*
853  * Write a single reply to a request.  First the header is copied from
854  * the write buffer.  The request is then searched on the processing
855  * list by the unique ID found in the header.  If found, then remove
856  * it from the list and copy the rest of the buffer to the request.
857  * The request is finished by calling request_end()
858  */
859 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
860                                unsigned long nr_segs, loff_t pos)
861 {
862         int err;
863         unsigned nbytes = iov_length(iov, nr_segs);
864         struct fuse_req *req;
865         struct fuse_out_header oh;
866         struct fuse_copy_state cs;
867         struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
868         if (!fc)
869                 return -EPERM;
870
871         fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
872         if (nbytes < sizeof(struct fuse_out_header))
873                 return -EINVAL;
874
875         err = fuse_copy_one(&cs, &oh, sizeof(oh));
876         if (err)
877                 goto err_finish;
878         err = -EINVAL;
879         if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
880             oh.len != nbytes)
881                 goto err_finish;
882
883         spin_lock(&fc->lock);
884         err = -ENOENT;
885         if (!fc->connected)
886                 goto err_unlock;
887
888         req = request_find(fc, oh.unique);
889         if (!req)
890                 goto err_unlock;
891
892         if (req->aborted) {
893                 spin_unlock(&fc->lock);
894                 fuse_copy_finish(&cs);
895                 spin_lock(&fc->lock);
896                 request_end(fc, req);
897                 return -ENOENT;
898         }
899         /* Is it an interrupt reply? */
900         if (req->intr_unique == oh.unique) {
901                 err = -EINVAL;
902                 if (nbytes != sizeof(struct fuse_out_header))
903                         goto err_unlock;
904
905                 if (oh.error == -ENOSYS)
906                         fc->no_interrupt = 1;
907                 else if (oh.error == -EAGAIN)
908                         queue_interrupt(fc, req);
909
910                 spin_unlock(&fc->lock);
911                 fuse_copy_finish(&cs);
912                 return nbytes;
913         }
914
915         req->state = FUSE_REQ_WRITING;
916         list_move(&req->list, &fc->io);
917         req->out.h = oh;
918         req->locked = 1;
919         cs.req = req;
920         spin_unlock(&fc->lock);
921
922         err = copy_out_args(&cs, &req->out, nbytes);
923         fuse_copy_finish(&cs);
924
925         spin_lock(&fc->lock);
926         req->locked = 0;
927         if (!err) {
928                 if (req->aborted)
929                         err = -ENOENT;
930         } else if (!req->aborted)
931                 req->out.h.error = -EIO;
932         request_end(fc, req);
933
934         return err ? err : nbytes;
935
936  err_unlock:
937         spin_unlock(&fc->lock);
938  err_finish:
939         fuse_copy_finish(&cs);
940         return err;
941 }
942
943 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
944 {
945         unsigned mask = POLLOUT | POLLWRNORM;
946         struct fuse_conn *fc = fuse_get_conn(file);
947         if (!fc)
948                 return POLLERR;
949
950         poll_wait(file, &fc->waitq, wait);
951
952         spin_lock(&fc->lock);
953         if (!fc->connected)
954                 mask = POLLERR;
955         else if (request_pending(fc))
956                 mask |= POLLIN | POLLRDNORM;
957         spin_unlock(&fc->lock);
958
959         return mask;
960 }
961
962 /*
963  * Abort all requests on the given list (pending or processing)
964  *
965  * This function releases and reacquires fc->lock
966  */
967 static void end_requests(struct fuse_conn *fc, struct list_head *head)
968 {
969         while (!list_empty(head)) {
970                 struct fuse_req *req;
971                 req = list_entry(head->next, struct fuse_req, list);
972                 req->out.h.error = -ECONNABORTED;
973                 request_end(fc, req);
974                 spin_lock(&fc->lock);
975         }
976 }
977
978 /*
979  * Abort requests under I/O
980  *
981  * The requests are set to aborted and finished, and the request
982  * waiter is woken up.  This will make request_wait_answer() wait
983  * until the request is unlocked and then return.
984  *
985  * If the request is asynchronous, then the end function needs to be
986  * called after waiting for the request to be unlocked (if it was
987  * locked).
988  */
989 static void end_io_requests(struct fuse_conn *fc)
990 {
991         while (!list_empty(&fc->io)) {
992                 struct fuse_req *req =
993                         list_entry(fc->io.next, struct fuse_req, list);
994                 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
995
996                 req->aborted = 1;
997                 req->out.h.error = -ECONNABORTED;
998                 req->state = FUSE_REQ_FINISHED;
999                 list_del_init(&req->list);
1000                 wake_up(&req->waitq);
1001                 if (end) {
1002                         req->end = NULL;
1003                         /* The end function will consume this reference */
1004                         __fuse_get_request(req);
1005                         spin_unlock(&fc->lock);
1006                         wait_event(req->waitq, !req->locked);
1007                         end(fc, req);
1008                         spin_lock(&fc->lock);
1009                 }
1010         }
1011 }
1012
1013 /*
1014  * Abort all requests.
1015  *
1016  * Emergency exit in case of a malicious or accidental deadlock, or
1017  * just a hung filesystem.
1018  *
1019  * The same effect is usually achievable through killing the
1020  * filesystem daemon and all users of the filesystem.  The exception
1021  * is the combination of an asynchronous request and the tricky
1022  * deadlock (see Documentation/filesystems/fuse.txt).
1023  *
1024  * During the aborting, progression of requests from the pending and
1025  * processing lists onto the io list, and progression of new requests
1026  * onto the pending list is prevented by req->connected being false.
1027  *
1028  * Progression of requests under I/O to the processing list is
1029  * prevented by the req->aborted flag being true for these requests.
1030  * For this reason requests on the io list must be aborted first.
1031  */
1032 void fuse_abort_conn(struct fuse_conn *fc)
1033 {
1034         spin_lock(&fc->lock);
1035         if (fc->connected) {
1036                 fc->connected = 0;
1037                 fc->blocked = 0;
1038                 end_io_requests(fc);
1039                 end_requests(fc, &fc->pending);
1040                 end_requests(fc, &fc->processing);
1041                 wake_up_all(&fc->waitq);
1042                 wake_up_all(&fc->blocked_waitq);
1043                 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1044         }
1045         spin_unlock(&fc->lock);
1046 }
1047
1048 static int fuse_dev_release(struct inode *inode, struct file *file)
1049 {
1050         struct fuse_conn *fc = fuse_get_conn(file);
1051         if (fc) {
1052                 spin_lock(&fc->lock);
1053                 fc->connected = 0;
1054                 end_requests(fc, &fc->pending);
1055                 end_requests(fc, &fc->processing);
1056                 spin_unlock(&fc->lock);
1057                 fasync_helper(-1, file, 0, &fc->fasync);
1058                 fuse_conn_put(fc);
1059         }
1060
1061         return 0;
1062 }
1063
1064 static int fuse_dev_fasync(int fd, struct file *file, int on)
1065 {
1066         struct fuse_conn *fc = fuse_get_conn(file);
1067         if (!fc)
1068                 return -EPERM;
1069
1070         /* No locking - fasync_helper does its own locking */
1071         return fasync_helper(fd, file, on, &fc->fasync);
1072 }
1073
1074 const struct file_operations fuse_dev_operations = {
1075         .owner          = THIS_MODULE,
1076         .llseek         = no_llseek,
1077         .read           = do_sync_read,
1078         .aio_read       = fuse_dev_read,
1079         .write          = do_sync_write,
1080         .aio_write      = fuse_dev_write,
1081         .poll           = fuse_dev_poll,
1082         .release        = fuse_dev_release,
1083         .fasync         = fuse_dev_fasync,
1084 };
1085
1086 static struct miscdevice fuse_miscdevice = {
1087         .minor = FUSE_MINOR,
1088         .name  = "fuse",
1089         .fops = &fuse_dev_operations,
1090 };
1091
1092 int __init fuse_dev_init(void)
1093 {
1094         int err = -ENOMEM;
1095         fuse_req_cachep = kmem_cache_create("fuse_request",
1096                                             sizeof(struct fuse_req),
1097                                             0, 0, NULL);
1098         if (!fuse_req_cachep)
1099                 goto out;
1100
1101         err = misc_register(&fuse_miscdevice);
1102         if (err)
1103                 goto out_cache_clean;
1104
1105         return 0;
1106
1107  out_cache_clean:
1108         kmem_cache_destroy(fuse_req_cachep);
1109  out:
1110         return err;
1111 }
1112
1113 void fuse_dev_cleanup(void)
1114 {
1115         misc_deregister(&fuse_miscdevice);
1116         kmem_cache_destroy(fuse_req_cachep);
1117 }