vfs: improve writeback_inodes_wb()
[safe/jmp/linux-2.6] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
28 #include "internal.h"
29
30 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
31
32 /*
33  * We don't actually have pdflush, but this one is exported though /proc...
34  */
35 int nr_pdflush_threads;
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_args {
41         long nr_pages;
42         struct super_block *sb;
43         enum writeback_sync_modes sync_mode;
44         int for_kupdate:1;
45         int range_cyclic:1;
46         int for_background:1;
47 };
48
49 /*
50  * Work items for the bdi_writeback threads
51  */
52 struct bdi_work {
53         struct list_head list;          /* pending work list */
54         struct rcu_head rcu_head;       /* for RCU free/clear of work */
55
56         unsigned long seen;             /* threads that have seen this work */
57         atomic_t pending;               /* number of threads still to do work */
58
59         struct wb_writeback_args args;  /* writeback arguments */
60
61         unsigned long state;            /* flag bits, see WS_* */
62 };
63
64 enum {
65         WS_USED_B = 0,
66         WS_ONSTACK_B,
67 };
68
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
71
72 static inline bool bdi_work_on_stack(struct bdi_work *work)
73 {
74         return test_bit(WS_ONSTACK_B, &work->state);
75 }
76
77 static inline void bdi_work_init(struct bdi_work *work,
78                                  struct wb_writeback_args *args)
79 {
80         INIT_RCU_HEAD(&work->rcu_head);
81         work->args = *args;
82         work->state = WS_USED;
83 }
84
85 /**
86  * writeback_in_progress - determine whether there is writeback in progress
87  * @bdi: the device's backing_dev_info structure.
88  *
89  * Determine whether there is writeback waiting to be handled against a
90  * backing device.
91  */
92 int writeback_in_progress(struct backing_dev_info *bdi)
93 {
94         return !list_empty(&bdi->work_list);
95 }
96
97 static void bdi_work_clear(struct bdi_work *work)
98 {
99         clear_bit(WS_USED_B, &work->state);
100         smp_mb__after_clear_bit();
101         /*
102          * work can have disappeared at this point. bit waitq functions
103          * should be able to tolerate this, provided bdi_sched_wait does
104          * not dereference it's pointer argument.
105         */
106         wake_up_bit(&work->state, WS_USED_B);
107 }
108
109 static void bdi_work_free(struct rcu_head *head)
110 {
111         struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
112
113         if (!bdi_work_on_stack(work))
114                 kfree(work);
115         else
116                 bdi_work_clear(work);
117 }
118
119 static void wb_work_complete(struct bdi_work *work)
120 {
121         const enum writeback_sync_modes sync_mode = work->args.sync_mode;
122         int onstack = bdi_work_on_stack(work);
123
124         /*
125          * For allocated work, we can clear the done/seen bit right here.
126          * For on-stack work, we need to postpone both the clear and free
127          * to after the RCU grace period, since the stack could be invalidated
128          * as soon as bdi_work_clear() has done the wakeup.
129          */
130         if (!onstack)
131                 bdi_work_clear(work);
132         if (sync_mode == WB_SYNC_NONE || onstack)
133                 call_rcu(&work->rcu_head, bdi_work_free);
134 }
135
136 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137 {
138         /*
139          * The caller has retrieved the work arguments from this work,
140          * drop our reference. If this is the last ref, delete and free it
141          */
142         if (atomic_dec_and_test(&work->pending)) {
143                 struct backing_dev_info *bdi = wb->bdi;
144
145                 spin_lock(&bdi->wb_lock);
146                 list_del_rcu(&work->list);
147                 spin_unlock(&bdi->wb_lock);
148
149                 wb_work_complete(work);
150         }
151 }
152
153 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154 {
155         work->seen = bdi->wb_mask;
156         BUG_ON(!work->seen);
157         atomic_set(&work->pending, bdi->wb_cnt);
158         BUG_ON(!bdi->wb_cnt);
159
160         /*
161          * list_add_tail_rcu() contains the necessary barriers to
162          * make sure the above stores are seen before the item is
163          * noticed on the list
164          */
165         spin_lock(&bdi->wb_lock);
166         list_add_tail_rcu(&work->list, &bdi->work_list);
167         spin_unlock(&bdi->wb_lock);
168
169         /*
170          * If the default thread isn't there, make sure we add it. When
171          * it gets created and wakes up, we'll run this work.
172          */
173         if (unlikely(list_empty_careful(&bdi->wb_list)))
174                 wake_up_process(default_backing_dev_info.wb.task);
175         else {
176                 struct bdi_writeback *wb = &bdi->wb;
177
178                 if (wb->task)
179                         wake_up_process(wb->task);
180         }
181 }
182
183 /*
184  * Used for on-stack allocated work items. The caller needs to wait until
185  * the wb threads have acked the work before it's safe to continue.
186  */
187 static void bdi_wait_on_work_clear(struct bdi_work *work)
188 {
189         wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190                     TASK_UNINTERRUPTIBLE);
191 }
192
193 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
194                                  struct wb_writeback_args *args)
195 {
196         struct bdi_work *work;
197
198         /*
199          * This is WB_SYNC_NONE writeback, so if allocation fails just
200          * wakeup the thread for old dirty data writeback
201          */
202         work = kmalloc(sizeof(*work), GFP_ATOMIC);
203         if (work) {
204                 bdi_work_init(work, args);
205                 bdi_queue_work(bdi, work);
206         } else {
207                 struct bdi_writeback *wb = &bdi->wb;
208
209                 if (wb->task)
210                         wake_up_process(wb->task);
211         }
212 }
213
214 /**
215  * bdi_sync_writeback - start and wait for writeback
216  * @bdi: the backing device to write from
217  * @sb: write inodes from this super_block
218  *
219  * Description:
220  *   This does WB_SYNC_ALL data integrity writeback and waits for the
221  *   IO to complete. Callers must hold the sb s_umount semaphore for
222  *   reading, to avoid having the super disappear before we are done.
223  */
224 static void bdi_sync_writeback(struct backing_dev_info *bdi,
225                                struct super_block *sb)
226 {
227         struct wb_writeback_args args = {
228                 .sb             = sb,
229                 .sync_mode      = WB_SYNC_ALL,
230                 .nr_pages       = LONG_MAX,
231                 .range_cyclic   = 0,
232         };
233         struct bdi_work work;
234
235         bdi_work_init(&work, &args);
236         work.state |= WS_ONSTACK;
237
238         bdi_queue_work(bdi, &work);
239         bdi_wait_on_work_clear(&work);
240 }
241
242 /**
243  * bdi_start_writeback - start writeback
244  * @bdi: the backing device to write from
245  * @sb: write inodes from this super_block
246  * @nr_pages: the number of pages to write
247  *
248  * Description:
249  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
250  *   started when this function returns, we make no guarentees on
251  *   completion. Caller need not hold sb s_umount semaphore.
252  *
253  */
254 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
255                          long nr_pages)
256 {
257         struct wb_writeback_args args = {
258                 .sb             = sb,
259                 .sync_mode      = WB_SYNC_NONE,
260                 .nr_pages       = nr_pages,
261                 .range_cyclic   = 1,
262         };
263
264         /*
265          * We treat @nr_pages=0 as the special case to do background writeback,
266          * ie. to sync pages until the background dirty threshold is reached.
267          */
268         if (!nr_pages) {
269                 args.nr_pages = LONG_MAX;
270                 args.for_background = 1;
271         }
272
273         bdi_alloc_queue_work(bdi, &args);
274 }
275
276 /*
277  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
278  * furthest end of its superblock's dirty-inode list.
279  *
280  * Before stamping the inode's ->dirtied_when, we check to see whether it is
281  * already the most-recently-dirtied inode on the b_dirty list.  If that is
282  * the case then the inode must have been redirtied while it was being written
283  * out and we don't reset its dirtied_when.
284  */
285 static void redirty_tail(struct inode *inode)
286 {
287         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
288
289         if (!list_empty(&wb->b_dirty)) {
290                 struct inode *tail;
291
292                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
293                 if (time_before(inode->dirtied_when, tail->dirtied_when))
294                         inode->dirtied_when = jiffies;
295         }
296         list_move(&inode->i_list, &wb->b_dirty);
297 }
298
299 /*
300  * requeue inode for re-scanning after bdi->b_io list is exhausted.
301  */
302 static void requeue_io(struct inode *inode)
303 {
304         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
305
306         list_move(&inode->i_list, &wb->b_more_io);
307 }
308
309 static void inode_sync_complete(struct inode *inode)
310 {
311         /*
312          * Prevent speculative execution through spin_unlock(&inode_lock);
313          */
314         smp_mb();
315         wake_up_bit(&inode->i_state, __I_SYNC);
316 }
317
318 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
319 {
320         bool ret = time_after(inode->dirtied_when, t);
321 #ifndef CONFIG_64BIT
322         /*
323          * For inodes being constantly redirtied, dirtied_when can get stuck.
324          * It _appears_ to be in the future, but is actually in distant past.
325          * This test is necessary to prevent such wrapped-around relative times
326          * from permanently stopping the whole bdi writeback.
327          */
328         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
329 #endif
330         return ret;
331 }
332
333 /*
334  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
335  */
336 static void move_expired_inodes(struct list_head *delaying_queue,
337                                struct list_head *dispatch_queue,
338                                 unsigned long *older_than_this)
339 {
340         LIST_HEAD(tmp);
341         struct list_head *pos, *node;
342         struct super_block *sb = NULL;
343         struct inode *inode;
344         int do_sb_sort = 0;
345
346         while (!list_empty(delaying_queue)) {
347                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
348                 if (older_than_this &&
349                     inode_dirtied_after(inode, *older_than_this))
350                         break;
351                 if (sb && sb != inode->i_sb)
352                         do_sb_sort = 1;
353                 sb = inode->i_sb;
354                 list_move(&inode->i_list, &tmp);
355         }
356
357         /* just one sb in list, splice to dispatch_queue and we're done */
358         if (!do_sb_sort) {
359                 list_splice(&tmp, dispatch_queue);
360                 return;
361         }
362
363         /* Move inodes from one superblock together */
364         while (!list_empty(&tmp)) {
365                 inode = list_entry(tmp.prev, struct inode, i_list);
366                 sb = inode->i_sb;
367                 list_for_each_prev_safe(pos, node, &tmp) {
368                         inode = list_entry(pos, struct inode, i_list);
369                         if (inode->i_sb == sb)
370                                 list_move(&inode->i_list, dispatch_queue);
371                 }
372         }
373 }
374
375 /*
376  * Queue all expired dirty inodes for io, eldest first.
377  */
378 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
379 {
380         list_splice_init(&wb->b_more_io, wb->b_io.prev);
381         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
382 }
383
384 static int write_inode(struct inode *inode, struct writeback_control *wbc)
385 {
386         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
387                 return inode->i_sb->s_op->write_inode(inode, wbc);
388         return 0;
389 }
390
391 /*
392  * Wait for writeback on an inode to complete.
393  */
394 static void inode_wait_for_writeback(struct inode *inode)
395 {
396         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
397         wait_queue_head_t *wqh;
398
399         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
400         do {
401                 spin_unlock(&inode_lock);
402                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
403                 spin_lock(&inode_lock);
404         } while (inode->i_state & I_SYNC);
405 }
406
407 /*
408  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
409  * caller has ref on the inode (either via __iget or via syscall against an fd)
410  * or the inode has I_WILL_FREE set (via generic_forget_inode)
411  *
412  * If `wait' is set, wait on the writeout.
413  *
414  * The whole writeout design is quite complex and fragile.  We want to avoid
415  * starvation of particular inodes when others are being redirtied, prevent
416  * livelocks, etc.
417  *
418  * Called under inode_lock.
419  */
420 static int
421 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
422 {
423         struct address_space *mapping = inode->i_mapping;
424         unsigned dirty;
425         int ret;
426
427         if (!atomic_read(&inode->i_count))
428                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
429         else
430                 WARN_ON(inode->i_state & I_WILL_FREE);
431
432         if (inode->i_state & I_SYNC) {
433                 /*
434                  * If this inode is locked for writeback and we are not doing
435                  * writeback-for-data-integrity, move it to b_more_io so that
436                  * writeback can proceed with the other inodes on s_io.
437                  *
438                  * We'll have another go at writing back this inode when we
439                  * completed a full scan of b_io.
440                  */
441                 if (wbc->sync_mode != WB_SYNC_ALL) {
442                         requeue_io(inode);
443                         return 0;
444                 }
445
446                 /*
447                  * It's a data-integrity sync.  We must wait.
448                  */
449                 inode_wait_for_writeback(inode);
450         }
451
452         BUG_ON(inode->i_state & I_SYNC);
453
454         /* Set I_SYNC, reset I_DIRTY */
455         dirty = inode->i_state & I_DIRTY;
456         inode->i_state |= I_SYNC;
457         inode->i_state &= ~I_DIRTY;
458
459         spin_unlock(&inode_lock);
460
461         ret = do_writepages(mapping, wbc);
462
463         /*
464          * Make sure to wait on the data before writing out the metadata.
465          * This is important for filesystems that modify metadata on data
466          * I/O completion.
467          */
468         if (wbc->sync_mode == WB_SYNC_ALL) {
469                 int err = filemap_fdatawait(mapping);
470                 if (ret == 0)
471                         ret = err;
472         }
473
474         /* Don't write the inode if only I_DIRTY_PAGES was set */
475         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
476                 int err = write_inode(inode, wbc);
477                 if (ret == 0)
478                         ret = err;
479         }
480
481         spin_lock(&inode_lock);
482         inode->i_state &= ~I_SYNC;
483         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
484                 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
485                         /*
486                          * More pages get dirtied by a fast dirtier.
487                          */
488                         goto select_queue;
489                 } else if (inode->i_state & I_DIRTY) {
490                         /*
491                          * At least XFS will redirty the inode during the
492                          * writeback (delalloc) and on io completion (isize).
493                          */
494                         redirty_tail(inode);
495                 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
496                         /*
497                          * We didn't write back all the pages.  nfs_writepages()
498                          * sometimes bales out without doing anything. Redirty
499                          * the inode; Move it from b_io onto b_more_io/b_dirty.
500                          */
501                         /*
502                          * akpm: if the caller was the kupdate function we put
503                          * this inode at the head of b_dirty so it gets first
504                          * consideration.  Otherwise, move it to the tail, for
505                          * the reasons described there.  I'm not really sure
506                          * how much sense this makes.  Presumably I had a good
507                          * reasons for doing it this way, and I'd rather not
508                          * muck with it at present.
509                          */
510                         if (wbc->for_kupdate) {
511                                 /*
512                                  * For the kupdate function we move the inode
513                                  * to b_more_io so it will get more writeout as
514                                  * soon as the queue becomes uncongested.
515                                  */
516                                 inode->i_state |= I_DIRTY_PAGES;
517 select_queue:
518                                 if (wbc->nr_to_write <= 0) {
519                                         /*
520                                          * slice used up: queue for next turn
521                                          */
522                                         requeue_io(inode);
523                                 } else {
524                                         /*
525                                          * somehow blocked: retry later
526                                          */
527                                         redirty_tail(inode);
528                                 }
529                         } else {
530                                 /*
531                                  * Otherwise fully redirty the inode so that
532                                  * other inodes on this superblock will get some
533                                  * writeout.  Otherwise heavy writing to one
534                                  * file would indefinitely suspend writeout of
535                                  * all the other files.
536                                  */
537                                 inode->i_state |= I_DIRTY_PAGES;
538                                 redirty_tail(inode);
539                         }
540                 } else if (atomic_read(&inode->i_count)) {
541                         /*
542                          * The inode is clean, inuse
543                          */
544                         list_move(&inode->i_list, &inode_in_use);
545                 } else {
546                         /*
547                          * The inode is clean, unused
548                          */
549                         list_move(&inode->i_list, &inode_unused);
550                 }
551         }
552         inode_sync_complete(inode);
553         return ret;
554 }
555
556 static void unpin_sb_for_writeback(struct super_block *sb)
557 {
558         up_read(&sb->s_umount);
559         put_super(sb);
560 }
561
562 enum sb_pin_state {
563         SB_PINNED,
564         SB_NOT_PINNED,
565         SB_PIN_FAILED
566 };
567
568 /*
569  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
570  * before calling writeback. So make sure that we do pin it, so it doesn't
571  * go away while we are writing inodes from it.
572  */
573 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
574                                               struct super_block *sb)
575 {
576         /*
577          * Caller must already hold the ref for this
578          */
579         if (wbc->sync_mode == WB_SYNC_ALL) {
580                 WARN_ON(!rwsem_is_locked(&sb->s_umount));
581                 return SB_NOT_PINNED;
582         }
583         spin_lock(&sb_lock);
584         sb->s_count++;
585         if (down_read_trylock(&sb->s_umount)) {
586                 if (sb->s_root) {
587                         spin_unlock(&sb_lock);
588                         return SB_PINNED;
589                 }
590                 /*
591                  * umounted, drop rwsem again and fall through to failure
592                  */
593                 up_read(&sb->s_umount);
594         }
595         sb->s_count--;
596         spin_unlock(&sb_lock);
597         return SB_PIN_FAILED;
598 }
599
600 /*
601  * Write a portion of b_io inodes which belong to @sb.
602  * If @wbc->sb != NULL, then find and write all such
603  * inodes. Otherwise write only ones which go sequentially
604  * in reverse order.
605  * Return 1, if the caller writeback routine should be
606  * interrupted. Otherwise return 0.
607  */
608 static int writeback_sb_inodes(struct super_block *sb,
609                                struct bdi_writeback *wb,
610                                struct writeback_control *wbc)
611 {
612         while (!list_empty(&wb->b_io)) {
613                 long pages_skipped;
614                 struct inode *inode = list_entry(wb->b_io.prev,
615                                                  struct inode, i_list);
616                 if (wbc->sb && sb != inode->i_sb) {
617                         /* super block given and doesn't
618                            match, skip this inode */
619                         redirty_tail(inode);
620                         continue;
621                 }
622                 if (sb != inode->i_sb)
623                         /* finish with this superblock */
624                         return 0;
625                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
626                         requeue_io(inode);
627                         continue;
628                 }
629                 /*
630                  * Was this inode dirtied after sync_sb_inodes was called?
631                  * This keeps sync from extra jobs and livelock.
632                  */
633                 if (inode_dirtied_after(inode, wbc->wb_start))
634                         return 1;
635
636                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
637                 __iget(inode);
638                 pages_skipped = wbc->pages_skipped;
639                 writeback_single_inode(inode, wbc);
640                 if (wbc->pages_skipped != pages_skipped) {
641                         /*
642                          * writeback is not making progress due to locked
643                          * buffers.  Skip this inode for now.
644                          */
645                         redirty_tail(inode);
646                 }
647                 spin_unlock(&inode_lock);
648                 iput(inode);
649                 cond_resched();
650                 spin_lock(&inode_lock);
651                 if (wbc->nr_to_write <= 0) {
652                         wbc->more_io = 1;
653                         return 1;
654                 }
655                 if (!list_empty(&wb->b_more_io))
656                         wbc->more_io = 1;
657         }
658         /* b_io is empty */
659         return 1;
660 }
661
662 static void writeback_inodes_wb(struct bdi_writeback *wb,
663                                 struct writeback_control *wbc)
664 {
665         int ret = 0;
666
667         wbc->wb_start = jiffies; /* livelock avoidance */
668         spin_lock(&inode_lock);
669         if (!wbc->for_kupdate || list_empty(&wb->b_io))
670                 queue_io(wb, wbc->older_than_this);
671
672         while (!list_empty(&wb->b_io)) {
673                 struct inode *inode = list_entry(wb->b_io.prev,
674                                                  struct inode, i_list);
675                 struct super_block *sb = inode->i_sb;
676                 enum sb_pin_state state;
677
678                 if (wbc->sb && sb != wbc->sb) {
679                         /* super block given and doesn't
680                            match, skip this inode */
681                         redirty_tail(inode);
682                         continue;
683                 }
684                 state = pin_sb_for_writeback(wbc, sb);
685
686                 if (state == SB_PIN_FAILED) {
687                         requeue_io(inode);
688                         continue;
689                 }
690                 ret = writeback_sb_inodes(sb, wb, wbc);
691
692                 if (state == SB_PINNED)
693                         unpin_sb_for_writeback(sb);
694                 if (ret)
695                         break;
696         }
697         spin_unlock(&inode_lock);
698         /* Leave any unwritten inodes on b_io */
699 }
700
701 void writeback_inodes_wbc(struct writeback_control *wbc)
702 {
703         struct backing_dev_info *bdi = wbc->bdi;
704
705         writeback_inodes_wb(&bdi->wb, wbc);
706 }
707
708 /*
709  * The maximum number of pages to writeout in a single bdi flush/kupdate
710  * operation.  We do this so we don't hold I_SYNC against an inode for
711  * enormous amounts of time, which would block a userspace task which has
712  * been forced to throttle against that inode.  Also, the code reevaluates
713  * the dirty each time it has written this many pages.
714  */
715 #define MAX_WRITEBACK_PAGES     1024
716
717 static inline bool over_bground_thresh(void)
718 {
719         unsigned long background_thresh, dirty_thresh;
720
721         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
722
723         return (global_page_state(NR_FILE_DIRTY) +
724                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
725 }
726
727 /*
728  * Explicit flushing or periodic writeback of "old" data.
729  *
730  * Define "old": the first time one of an inode's pages is dirtied, we mark the
731  * dirtying-time in the inode's address_space.  So this periodic writeback code
732  * just walks the superblock inode list, writing back any inodes which are
733  * older than a specific point in time.
734  *
735  * Try to run once per dirty_writeback_interval.  But if a writeback event
736  * takes longer than a dirty_writeback_interval interval, then leave a
737  * one-second gap.
738  *
739  * older_than_this takes precedence over nr_to_write.  So we'll only write back
740  * all dirty pages if they are all attached to "old" mappings.
741  */
742 static long wb_writeback(struct bdi_writeback *wb,
743                          struct wb_writeback_args *args)
744 {
745         struct writeback_control wbc = {
746                 .bdi                    = wb->bdi,
747                 .sb                     = args->sb,
748                 .sync_mode              = args->sync_mode,
749                 .older_than_this        = NULL,
750                 .for_kupdate            = args->for_kupdate,
751                 .for_background         = args->for_background,
752                 .range_cyclic           = args->range_cyclic,
753         };
754         unsigned long oldest_jif;
755         long wrote = 0;
756         struct inode *inode;
757
758         if (wbc.for_kupdate) {
759                 wbc.older_than_this = &oldest_jif;
760                 oldest_jif = jiffies -
761                                 msecs_to_jiffies(dirty_expire_interval * 10);
762         }
763         if (!wbc.range_cyclic) {
764                 wbc.range_start = 0;
765                 wbc.range_end = LLONG_MAX;
766         }
767
768         for (;;) {
769                 /*
770                  * Stop writeback when nr_pages has been consumed
771                  */
772                 if (args->nr_pages <= 0)
773                         break;
774
775                 /*
776                  * For background writeout, stop when we are below the
777                  * background dirty threshold
778                  */
779                 if (args->for_background && !over_bground_thresh())
780                         break;
781
782                 wbc.more_io = 0;
783                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
784                 wbc.pages_skipped = 0;
785                 writeback_inodes_wb(wb, &wbc);
786                 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
787                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
788
789                 /*
790                  * If we consumed everything, see if we have more
791                  */
792                 if (wbc.nr_to_write <= 0)
793                         continue;
794                 /*
795                  * Didn't write everything and we don't have more IO, bail
796                  */
797                 if (!wbc.more_io)
798                         break;
799                 /*
800                  * Did we write something? Try for more
801                  */
802                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
803                         continue;
804                 /*
805                  * Nothing written. Wait for some inode to
806                  * become available for writeback. Otherwise
807                  * we'll just busyloop.
808                  */
809                 spin_lock(&inode_lock);
810                 if (!list_empty(&wb->b_more_io))  {
811                         inode = list_entry(wb->b_more_io.prev,
812                                                 struct inode, i_list);
813                         inode_wait_for_writeback(inode);
814                 }
815                 spin_unlock(&inode_lock);
816         }
817
818         return wrote;
819 }
820
821 /*
822  * Return the next bdi_work struct that hasn't been processed by this
823  * wb thread yet. ->seen is initially set for each thread that exists
824  * for this device, when a thread first notices a piece of work it
825  * clears its bit. Depending on writeback type, the thread will notify
826  * completion on either receiving the work (WB_SYNC_NONE) or after
827  * it is done (WB_SYNC_ALL).
828  */
829 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
830                                            struct bdi_writeback *wb)
831 {
832         struct bdi_work *work, *ret = NULL;
833
834         rcu_read_lock();
835
836         list_for_each_entry_rcu(work, &bdi->work_list, list) {
837                 if (!test_bit(wb->nr, &work->seen))
838                         continue;
839                 clear_bit(wb->nr, &work->seen);
840
841                 ret = work;
842                 break;
843         }
844
845         rcu_read_unlock();
846         return ret;
847 }
848
849 static long wb_check_old_data_flush(struct bdi_writeback *wb)
850 {
851         unsigned long expired;
852         long nr_pages;
853
854         expired = wb->last_old_flush +
855                         msecs_to_jiffies(dirty_writeback_interval * 10);
856         if (time_before(jiffies, expired))
857                 return 0;
858
859         wb->last_old_flush = jiffies;
860         nr_pages = global_page_state(NR_FILE_DIRTY) +
861                         global_page_state(NR_UNSTABLE_NFS) +
862                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
863
864         if (nr_pages) {
865                 struct wb_writeback_args args = {
866                         .nr_pages       = nr_pages,
867                         .sync_mode      = WB_SYNC_NONE,
868                         .for_kupdate    = 1,
869                         .range_cyclic   = 1,
870                 };
871
872                 return wb_writeback(wb, &args);
873         }
874
875         return 0;
876 }
877
878 /*
879  * Retrieve work items and do the writeback they describe
880  */
881 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
882 {
883         struct backing_dev_info *bdi = wb->bdi;
884         struct bdi_work *work;
885         long wrote = 0;
886
887         while ((work = get_next_work_item(bdi, wb)) != NULL) {
888                 struct wb_writeback_args args = work->args;
889
890                 /*
891                  * Override sync mode, in case we must wait for completion
892                  */
893                 if (force_wait)
894                         work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
895
896                 /*
897                  * If this isn't a data integrity operation, just notify
898                  * that we have seen this work and we are now starting it.
899                  */
900                 if (args.sync_mode == WB_SYNC_NONE)
901                         wb_clear_pending(wb, work);
902
903                 wrote += wb_writeback(wb, &args);
904
905                 /*
906                  * This is a data integrity writeback, so only do the
907                  * notification when we have completed the work.
908                  */
909                 if (args.sync_mode == WB_SYNC_ALL)
910                         wb_clear_pending(wb, work);
911         }
912
913         /*
914          * Check for periodic writeback, kupdated() style
915          */
916         wrote += wb_check_old_data_flush(wb);
917
918         return wrote;
919 }
920
921 /*
922  * Handle writeback of dirty data for the device backed by this bdi. Also
923  * wakes up periodically and does kupdated style flushing.
924  */
925 int bdi_writeback_task(struct bdi_writeback *wb)
926 {
927         unsigned long last_active = jiffies;
928         unsigned long wait_jiffies = -1UL;
929         long pages_written;
930
931         while (!kthread_should_stop()) {
932                 pages_written = wb_do_writeback(wb, 0);
933
934                 if (pages_written)
935                         last_active = jiffies;
936                 else if (wait_jiffies != -1UL) {
937                         unsigned long max_idle;
938
939                         /*
940                          * Longest period of inactivity that we tolerate. If we
941                          * see dirty data again later, the task will get
942                          * recreated automatically.
943                          */
944                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
945                         if (time_after(jiffies, max_idle + last_active))
946                                 break;
947                 }
948
949                 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
950                 schedule_timeout_interruptible(wait_jiffies);
951                 try_to_freeze();
952         }
953
954         return 0;
955 }
956
957 /*
958  * Schedule writeback for all backing devices. This does WB_SYNC_NONE
959  * writeback, for integrity writeback see bdi_sync_writeback().
960  */
961 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
962 {
963         struct wb_writeback_args args = {
964                 .sb             = sb,
965                 .nr_pages       = nr_pages,
966                 .sync_mode      = WB_SYNC_NONE,
967         };
968         struct backing_dev_info *bdi;
969
970         rcu_read_lock();
971
972         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
973                 if (!bdi_has_dirty_io(bdi))
974                         continue;
975
976                 bdi_alloc_queue_work(bdi, &args);
977         }
978
979         rcu_read_unlock();
980 }
981
982 /*
983  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
984  * the whole world.
985  */
986 void wakeup_flusher_threads(long nr_pages)
987 {
988         if (nr_pages == 0)
989                 nr_pages = global_page_state(NR_FILE_DIRTY) +
990                                 global_page_state(NR_UNSTABLE_NFS);
991         bdi_writeback_all(NULL, nr_pages);
992 }
993
994 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
995 {
996         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
997                 struct dentry *dentry;
998                 const char *name = "?";
999
1000                 dentry = d_find_alias(inode);
1001                 if (dentry) {
1002                         spin_lock(&dentry->d_lock);
1003                         name = (const char *) dentry->d_name.name;
1004                 }
1005                 printk(KERN_DEBUG
1006                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1007                        current->comm, task_pid_nr(current), inode->i_ino,
1008                        name, inode->i_sb->s_id);
1009                 if (dentry) {
1010                         spin_unlock(&dentry->d_lock);
1011                         dput(dentry);
1012                 }
1013         }
1014 }
1015
1016 /**
1017  *      __mark_inode_dirty -    internal function
1018  *      @inode: inode to mark
1019  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1020  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1021  *      mark_inode_dirty_sync.
1022  *
1023  * Put the inode on the super block's dirty list.
1024  *
1025  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1026  * dirty list only if it is hashed or if it refers to a blockdev.
1027  * If it was not hashed, it will never be added to the dirty list
1028  * even if it is later hashed, as it will have been marked dirty already.
1029  *
1030  * In short, make sure you hash any inodes _before_ you start marking
1031  * them dirty.
1032  *
1033  * This function *must* be atomic for the I_DIRTY_PAGES case -
1034  * set_page_dirty() is called under spinlock in several places.
1035  *
1036  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1037  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1038  * the kernel-internal blockdev inode represents the dirtying time of the
1039  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1040  * page->mapping->host, so the page-dirtying time is recorded in the internal
1041  * blockdev inode.
1042  */
1043 void __mark_inode_dirty(struct inode *inode, int flags)
1044 {
1045         struct super_block *sb = inode->i_sb;
1046
1047         /*
1048          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1049          * dirty the inode itself
1050          */
1051         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1052                 if (sb->s_op->dirty_inode)
1053                         sb->s_op->dirty_inode(inode);
1054         }
1055
1056         /*
1057          * make sure that changes are seen by all cpus before we test i_state
1058          * -- mikulas
1059          */
1060         smp_mb();
1061
1062         /* avoid the locking if we can */
1063         if ((inode->i_state & flags) == flags)
1064                 return;
1065
1066         if (unlikely(block_dump))
1067                 block_dump___mark_inode_dirty(inode);
1068
1069         spin_lock(&inode_lock);
1070         if ((inode->i_state & flags) != flags) {
1071                 const int was_dirty = inode->i_state & I_DIRTY;
1072
1073                 inode->i_state |= flags;
1074
1075                 /*
1076                  * If the inode is being synced, just update its dirty state.
1077                  * The unlocker will place the inode on the appropriate
1078                  * superblock list, based upon its state.
1079                  */
1080                 if (inode->i_state & I_SYNC)
1081                         goto out;
1082
1083                 /*
1084                  * Only add valid (hashed) inodes to the superblock's
1085                  * dirty list.  Add blockdev inodes as well.
1086                  */
1087                 if (!S_ISBLK(inode->i_mode)) {
1088                         if (hlist_unhashed(&inode->i_hash))
1089                                 goto out;
1090                 }
1091                 if (inode->i_state & (I_FREEING|I_CLEAR))
1092                         goto out;
1093
1094                 /*
1095                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1096                  * reposition it (that would break b_dirty time-ordering).
1097                  */
1098                 if (!was_dirty) {
1099                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1100                         struct backing_dev_info *bdi = wb->bdi;
1101
1102                         if (bdi_cap_writeback_dirty(bdi) &&
1103                             !test_bit(BDI_registered, &bdi->state)) {
1104                                 WARN_ON(1);
1105                                 printk(KERN_ERR "bdi-%s not registered\n",
1106                                                                 bdi->name);
1107                         }
1108
1109                         inode->dirtied_when = jiffies;
1110                         list_move(&inode->i_list, &wb->b_dirty);
1111                 }
1112         }
1113 out:
1114         spin_unlock(&inode_lock);
1115 }
1116 EXPORT_SYMBOL(__mark_inode_dirty);
1117
1118 /*
1119  * Write out a superblock's list of dirty inodes.  A wait will be performed
1120  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1121  *
1122  * If older_than_this is non-NULL, then only write out inodes which
1123  * had their first dirtying at a time earlier than *older_than_this.
1124  *
1125  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1126  * This function assumes that the blockdev superblock's inodes are backed by
1127  * a variety of queues, so all inodes are searched.  For other superblocks,
1128  * assume that all inodes are backed by the same queue.
1129  *
1130  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1131  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1132  * on the writer throttling path, and we get decent balancing between many
1133  * throttled threads: we don't want them all piling up on inode_sync_wait.
1134  */
1135 static void wait_sb_inodes(struct super_block *sb)
1136 {
1137         struct inode *inode, *old_inode = NULL;
1138
1139         /*
1140          * We need to be protected against the filesystem going from
1141          * r/o to r/w or vice versa.
1142          */
1143         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1144
1145         spin_lock(&inode_lock);
1146
1147         /*
1148          * Data integrity sync. Must wait for all pages under writeback,
1149          * because there may have been pages dirtied before our sync
1150          * call, but which had writeout started before we write it out.
1151          * In which case, the inode may not be on the dirty list, but
1152          * we still have to wait for that writeout.
1153          */
1154         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1155                 struct address_space *mapping;
1156
1157                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1158                         continue;
1159                 mapping = inode->i_mapping;
1160                 if (mapping->nrpages == 0)
1161                         continue;
1162                 __iget(inode);
1163                 spin_unlock(&inode_lock);
1164                 /*
1165                  * We hold a reference to 'inode' so it couldn't have
1166                  * been removed from s_inodes list while we dropped the
1167                  * inode_lock.  We cannot iput the inode now as we can
1168                  * be holding the last reference and we cannot iput it
1169                  * under inode_lock. So we keep the reference and iput
1170                  * it later.
1171                  */
1172                 iput(old_inode);
1173                 old_inode = inode;
1174
1175                 filemap_fdatawait(mapping);
1176
1177                 cond_resched();
1178
1179                 spin_lock(&inode_lock);
1180         }
1181         spin_unlock(&inode_lock);
1182         iput(old_inode);
1183 }
1184
1185 /**
1186  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1187  * @sb: the superblock
1188  *
1189  * Start writeback on some inodes on this super_block. No guarantees are made
1190  * on how many (if any) will be written, and this function does not wait
1191  * for IO completion of submitted IO. The number of pages submitted is
1192  * returned.
1193  */
1194 void writeback_inodes_sb(struct super_block *sb)
1195 {
1196         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1197         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1198         long nr_to_write;
1199
1200         nr_to_write = nr_dirty + nr_unstable +
1201                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1202
1203         bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1204 }
1205 EXPORT_SYMBOL(writeback_inodes_sb);
1206
1207 /**
1208  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1209  * @sb: the superblock
1210  *
1211  * Invoke writeback_inodes_sb if no writeback is currently underway.
1212  * Returns 1 if writeback was started, 0 if not.
1213  */
1214 int writeback_inodes_sb_if_idle(struct super_block *sb)
1215 {
1216         if (!writeback_in_progress(sb->s_bdi)) {
1217                 writeback_inodes_sb(sb);
1218                 return 1;
1219         } else
1220                 return 0;
1221 }
1222 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1223
1224 /**
1225  * sync_inodes_sb       -       sync sb inode pages
1226  * @sb: the superblock
1227  *
1228  * This function writes and waits on any dirty inode belonging to this
1229  * super_block. The number of pages synced is returned.
1230  */
1231 void sync_inodes_sb(struct super_block *sb)
1232 {
1233         bdi_sync_writeback(sb->s_bdi, sb);
1234         wait_sb_inodes(sb);
1235 }
1236 EXPORT_SYMBOL(sync_inodes_sb);
1237
1238 /**
1239  * write_inode_now      -       write an inode to disk
1240  * @inode: inode to write to disk
1241  * @sync: whether the write should be synchronous or not
1242  *
1243  * This function commits an inode to disk immediately if it is dirty. This is
1244  * primarily needed by knfsd.
1245  *
1246  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1247  */
1248 int write_inode_now(struct inode *inode, int sync)
1249 {
1250         int ret;
1251         struct writeback_control wbc = {
1252                 .nr_to_write = LONG_MAX,
1253                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1254                 .range_start = 0,
1255                 .range_end = LLONG_MAX,
1256         };
1257
1258         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1259                 wbc.nr_to_write = 0;
1260
1261         might_sleep();
1262         spin_lock(&inode_lock);
1263         ret = writeback_single_inode(inode, &wbc);
1264         spin_unlock(&inode_lock);
1265         if (sync)
1266                 inode_sync_wait(inode);
1267         return ret;
1268 }
1269 EXPORT_SYMBOL(write_inode_now);
1270
1271 /**
1272  * sync_inode - write an inode and its pages to disk.
1273  * @inode: the inode to sync
1274  * @wbc: controls the writeback mode
1275  *
1276  * sync_inode() will write an inode and its pages to disk.  It will also
1277  * correctly update the inode on its superblock's dirty inode lists and will
1278  * update inode->i_state.
1279  *
1280  * The caller must have a ref on the inode.
1281  */
1282 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1283 {
1284         int ret;
1285
1286         spin_lock(&inode_lock);
1287         ret = writeback_single_inode(inode, wbc);
1288         spin_unlock(&inode_lock);
1289         return ret;
1290 }
1291 EXPORT_SYMBOL(sync_inode);