writeback: make wb_writeback() take an argument structure
[safe/jmp/linux-2.6] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
28 #include "internal.h"
29
30 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
31
32 /*
33  * We don't actually have pdflush, but this one is exported though /proc...
34  */
35 int nr_pdflush_threads;
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_args {
41         long nr_pages;
42         struct super_block *sb;
43         enum writeback_sync_modes sync_mode;
44         int for_kupdate;
45         int range_cyclic;
46 };
47
48 /*
49  * Work items for the bdi_writeback threads
50  */
51 struct bdi_work {
52         struct list_head list;
53         struct list_head wait_list;
54         struct rcu_head rcu_head;
55
56         unsigned long seen;
57         atomic_t pending;
58
59         struct wb_writeback_args args;
60
61         unsigned long state;
62 };
63
64 enum {
65         WS_USED_B = 0,
66         WS_ONSTACK_B,
67 };
68
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
71
72 static inline bool bdi_work_on_stack(struct bdi_work *work)
73 {
74         return test_bit(WS_ONSTACK_B, &work->state);
75 }
76
77 static inline void bdi_work_init(struct bdi_work *work,
78                                  struct writeback_control *wbc)
79 {
80         INIT_RCU_HEAD(&work->rcu_head);
81         work->args.sb = wbc->sb;
82         work->args.nr_pages = wbc->nr_to_write;
83         work->args.sync_mode = wbc->sync_mode;
84         work->args.range_cyclic = wbc->range_cyclic;
85         work->args.for_kupdate = 0;
86         work->state = WS_USED;
87 }
88
89 /**
90  * writeback_in_progress - determine whether there is writeback in progress
91  * @bdi: the device's backing_dev_info structure.
92  *
93  * Determine whether there is writeback waiting to be handled against a
94  * backing device.
95  */
96 int writeback_in_progress(struct backing_dev_info *bdi)
97 {
98         return !list_empty(&bdi->work_list);
99 }
100
101 static void bdi_work_clear(struct bdi_work *work)
102 {
103         clear_bit(WS_USED_B, &work->state);
104         smp_mb__after_clear_bit();
105         wake_up_bit(&work->state, WS_USED_B);
106 }
107
108 static void bdi_work_free(struct rcu_head *head)
109 {
110         struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
111
112         if (!bdi_work_on_stack(work))
113                 kfree(work);
114         else
115                 bdi_work_clear(work);
116 }
117
118 static void wb_work_complete(struct bdi_work *work)
119 {
120         const enum writeback_sync_modes sync_mode = work->args.sync_mode;
121
122         /*
123          * For allocated work, we can clear the done/seen bit right here.
124          * For on-stack work, we need to postpone both the clear and free
125          * to after the RCU grace period, since the stack could be invalidated
126          * as soon as bdi_work_clear() has done the wakeup.
127          */
128         if (!bdi_work_on_stack(work))
129                 bdi_work_clear(work);
130         if (sync_mode == WB_SYNC_NONE || bdi_work_on_stack(work))
131                 call_rcu(&work->rcu_head, bdi_work_free);
132 }
133
134 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
135 {
136         /*
137          * The caller has retrieved the work arguments from this work,
138          * drop our reference. If this is the last ref, delete and free it
139          */
140         if (atomic_dec_and_test(&work->pending)) {
141                 struct backing_dev_info *bdi = wb->bdi;
142
143                 spin_lock(&bdi->wb_lock);
144                 list_del_rcu(&work->list);
145                 spin_unlock(&bdi->wb_lock);
146
147                 wb_work_complete(work);
148         }
149 }
150
151 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
152 {
153         if (work) {
154                 work->seen = bdi->wb_mask;
155                 BUG_ON(!work->seen);
156                 atomic_set(&work->pending, bdi->wb_cnt);
157                 BUG_ON(!bdi->wb_cnt);
158
159                 /*
160                  * Make sure stores are seen before it appears on the list
161                  */
162                 smp_mb();
163
164                 spin_lock(&bdi->wb_lock);
165                 list_add_tail_rcu(&work->list, &bdi->work_list);
166                 spin_unlock(&bdi->wb_lock);
167         }
168
169         /*
170          * If the default thread isn't there, make sure we add it. When
171          * it gets created and wakes up, we'll run this work.
172          */
173         if (unlikely(list_empty_careful(&bdi->wb_list)))
174                 wake_up_process(default_backing_dev_info.wb.task);
175         else {
176                 struct bdi_writeback *wb = &bdi->wb;
177
178                 /*
179                  * If we failed allocating the bdi work item, wake up the wb
180                  * thread always. As a safety precaution, it'll flush out
181                  * everything
182                  */
183                 if (!wb_has_dirty_io(wb)) {
184                         if (work)
185                                 wb_clear_pending(wb, work);
186                 } else if (wb->task)
187                         wake_up_process(wb->task);
188         }
189 }
190
191 /*
192  * Used for on-stack allocated work items. The caller needs to wait until
193  * the wb threads have acked the work before it's safe to continue.
194  */
195 static void bdi_wait_on_work_clear(struct bdi_work *work)
196 {
197         wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
198                     TASK_UNINTERRUPTIBLE);
199 }
200
201 static struct bdi_work *bdi_alloc_work(struct writeback_control *wbc)
202 {
203         struct bdi_work *work;
204
205         work = kmalloc(sizeof(*work), GFP_ATOMIC);
206         if (work)
207                 bdi_work_init(work, wbc);
208
209         return work;
210 }
211
212 void bdi_start_writeback(struct writeback_control *wbc)
213 {
214         /*
215          * WB_SYNC_NONE is opportunistic writeback. If this allocation fails,
216          * bdi_queue_work() will wake up the thread and flush old data. This
217          * should ensure some amount of progress in freeing memory.
218          */
219         if (wbc->sync_mode != WB_SYNC_ALL) {
220                 struct bdi_work *w = bdi_alloc_work(wbc);
221
222                 bdi_queue_work(wbc->bdi, w);
223         } else {
224                 struct bdi_work work;
225
226                 bdi_work_init(&work, wbc);
227                 work.state |= WS_ONSTACK;
228
229                 bdi_queue_work(wbc->bdi, &work);
230                 bdi_wait_on_work_clear(&work);
231         }
232 }
233
234 /*
235  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
236  * furthest end of its superblock's dirty-inode list.
237  *
238  * Before stamping the inode's ->dirtied_when, we check to see whether it is
239  * already the most-recently-dirtied inode on the b_dirty list.  If that is
240  * the case then the inode must have been redirtied while it was being written
241  * out and we don't reset its dirtied_when.
242  */
243 static void redirty_tail(struct inode *inode)
244 {
245         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
246
247         if (!list_empty(&wb->b_dirty)) {
248                 struct inode *tail;
249
250                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
251                 if (time_before(inode->dirtied_when, tail->dirtied_when))
252                         inode->dirtied_when = jiffies;
253         }
254         list_move(&inode->i_list, &wb->b_dirty);
255 }
256
257 /*
258  * requeue inode for re-scanning after bdi->b_io list is exhausted.
259  */
260 static void requeue_io(struct inode *inode)
261 {
262         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
263
264         list_move(&inode->i_list, &wb->b_more_io);
265 }
266
267 static void inode_sync_complete(struct inode *inode)
268 {
269         /*
270          * Prevent speculative execution through spin_unlock(&inode_lock);
271          */
272         smp_mb();
273         wake_up_bit(&inode->i_state, __I_SYNC);
274 }
275
276 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
277 {
278         bool ret = time_after(inode->dirtied_when, t);
279 #ifndef CONFIG_64BIT
280         /*
281          * For inodes being constantly redirtied, dirtied_when can get stuck.
282          * It _appears_ to be in the future, but is actually in distant past.
283          * This test is necessary to prevent such wrapped-around relative times
284          * from permanently stopping the whole pdflush writeback.
285          */
286         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
287 #endif
288         return ret;
289 }
290
291 /*
292  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
293  */
294 static void move_expired_inodes(struct list_head *delaying_queue,
295                                struct list_head *dispatch_queue,
296                                 unsigned long *older_than_this)
297 {
298         while (!list_empty(delaying_queue)) {
299                 struct inode *inode = list_entry(delaying_queue->prev,
300                                                 struct inode, i_list);
301                 if (older_than_this &&
302                     inode_dirtied_after(inode, *older_than_this))
303                         break;
304                 list_move(&inode->i_list, dispatch_queue);
305         }
306 }
307
308 /*
309  * Queue all expired dirty inodes for io, eldest first.
310  */
311 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
312 {
313         list_splice_init(&wb->b_more_io, wb->b_io.prev);
314         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
315 }
316
317 static int write_inode(struct inode *inode, int sync)
318 {
319         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
320                 return inode->i_sb->s_op->write_inode(inode, sync);
321         return 0;
322 }
323
324 /*
325  * Wait for writeback on an inode to complete.
326  */
327 static void inode_wait_for_writeback(struct inode *inode)
328 {
329         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
330         wait_queue_head_t *wqh;
331
332         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
333         do {
334                 spin_unlock(&inode_lock);
335                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
336                 spin_lock(&inode_lock);
337         } while (inode->i_state & I_SYNC);
338 }
339
340 /*
341  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
342  * caller has ref on the inode (either via __iget or via syscall against an fd)
343  * or the inode has I_WILL_FREE set (via generic_forget_inode)
344  *
345  * If `wait' is set, wait on the writeout.
346  *
347  * The whole writeout design is quite complex and fragile.  We want to avoid
348  * starvation of particular inodes when others are being redirtied, prevent
349  * livelocks, etc.
350  *
351  * Called under inode_lock.
352  */
353 static int
354 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
355 {
356         struct address_space *mapping = inode->i_mapping;
357         int wait = wbc->sync_mode == WB_SYNC_ALL;
358         unsigned dirty;
359         int ret;
360
361         if (!atomic_read(&inode->i_count))
362                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
363         else
364                 WARN_ON(inode->i_state & I_WILL_FREE);
365
366         if (inode->i_state & I_SYNC) {
367                 /*
368                  * If this inode is locked for writeback and we are not doing
369                  * writeback-for-data-integrity, move it to b_more_io so that
370                  * writeback can proceed with the other inodes on s_io.
371                  *
372                  * We'll have another go at writing back this inode when we
373                  * completed a full scan of b_io.
374                  */
375                 if (!wait) {
376                         requeue_io(inode);
377                         return 0;
378                 }
379
380                 /*
381                  * It's a data-integrity sync.  We must wait.
382                  */
383                 inode_wait_for_writeback(inode);
384         }
385
386         BUG_ON(inode->i_state & I_SYNC);
387
388         /* Set I_SYNC, reset I_DIRTY */
389         dirty = inode->i_state & I_DIRTY;
390         inode->i_state |= I_SYNC;
391         inode->i_state &= ~I_DIRTY;
392
393         spin_unlock(&inode_lock);
394
395         ret = do_writepages(mapping, wbc);
396
397         /* Don't write the inode if only I_DIRTY_PAGES was set */
398         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
399                 int err = write_inode(inode, wait);
400                 if (ret == 0)
401                         ret = err;
402         }
403
404         if (wait) {
405                 int err = filemap_fdatawait(mapping);
406                 if (ret == 0)
407                         ret = err;
408         }
409
410         spin_lock(&inode_lock);
411         inode->i_state &= ~I_SYNC;
412         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
413                 if (!(inode->i_state & I_DIRTY) &&
414                     mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
415                         /*
416                          * We didn't write back all the pages.  nfs_writepages()
417                          * sometimes bales out without doing anything. Redirty
418                          * the inode; Move it from b_io onto b_more_io/b_dirty.
419                          */
420                         /*
421                          * akpm: if the caller was the kupdate function we put
422                          * this inode at the head of b_dirty so it gets first
423                          * consideration.  Otherwise, move it to the tail, for
424                          * the reasons described there.  I'm not really sure
425                          * how much sense this makes.  Presumably I had a good
426                          * reasons for doing it this way, and I'd rather not
427                          * muck with it at present.
428                          */
429                         if (wbc->for_kupdate) {
430                                 /*
431                                  * For the kupdate function we move the inode
432                                  * to b_more_io so it will get more writeout as
433                                  * soon as the queue becomes uncongested.
434                                  */
435                                 inode->i_state |= I_DIRTY_PAGES;
436                                 if (wbc->nr_to_write <= 0) {
437                                         /*
438                                          * slice used up: queue for next turn
439                                          */
440                                         requeue_io(inode);
441                                 } else {
442                                         /*
443                                          * somehow blocked: retry later
444                                          */
445                                         redirty_tail(inode);
446                                 }
447                         } else {
448                                 /*
449                                  * Otherwise fully redirty the inode so that
450                                  * other inodes on this superblock will get some
451                                  * writeout.  Otherwise heavy writing to one
452                                  * file would indefinitely suspend writeout of
453                                  * all the other files.
454                                  */
455                                 inode->i_state |= I_DIRTY_PAGES;
456                                 redirty_tail(inode);
457                         }
458                 } else if (inode->i_state & I_DIRTY) {
459                         /*
460                          * Someone redirtied the inode while were writing back
461                          * the pages.
462                          */
463                         redirty_tail(inode);
464                 } else if (atomic_read(&inode->i_count)) {
465                         /*
466                          * The inode is clean, inuse
467                          */
468                         list_move(&inode->i_list, &inode_in_use);
469                 } else {
470                         /*
471                          * The inode is clean, unused
472                          */
473                         list_move(&inode->i_list, &inode_unused);
474                 }
475         }
476         inode_sync_complete(inode);
477         return ret;
478 }
479
480 /*
481  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
482  * before calling writeback. So make sure that we do pin it, so it doesn't
483  * go away while we are writing inodes from it.
484  *
485  * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
486  * 1 if we failed.
487  */
488 static int pin_sb_for_writeback(struct writeback_control *wbc,
489                                    struct inode *inode)
490 {
491         struct super_block *sb = inode->i_sb;
492
493         /*
494          * Caller must already hold the ref for this
495          */
496         if (wbc->sync_mode == WB_SYNC_ALL) {
497                 WARN_ON(!rwsem_is_locked(&sb->s_umount));
498                 return 0;
499         }
500
501         spin_lock(&sb_lock);
502         sb->s_count++;
503         if (down_read_trylock(&sb->s_umount)) {
504                 if (sb->s_root) {
505                         spin_unlock(&sb_lock);
506                         return 0;
507                 }
508                 /*
509                  * umounted, drop rwsem again and fall through to failure
510                  */
511                 up_read(&sb->s_umount);
512         }
513
514         sb->s_count--;
515         spin_unlock(&sb_lock);
516         return 1;
517 }
518
519 static void unpin_sb_for_writeback(struct writeback_control *wbc,
520                                    struct inode *inode)
521 {
522         struct super_block *sb = inode->i_sb;
523
524         if (wbc->sync_mode == WB_SYNC_ALL)
525                 return;
526
527         up_read(&sb->s_umount);
528         put_super(sb);
529 }
530
531 static void writeback_inodes_wb(struct bdi_writeback *wb,
532                                 struct writeback_control *wbc)
533 {
534         struct super_block *sb = wbc->sb;
535         const int is_blkdev_sb = sb_is_blkdev_sb(sb);
536         const unsigned long start = jiffies;    /* livelock avoidance */
537
538         spin_lock(&inode_lock);
539
540         if (!wbc->for_kupdate || list_empty(&wb->b_io))
541                 queue_io(wb, wbc->older_than_this);
542
543         while (!list_empty(&wb->b_io)) {
544                 struct inode *inode = list_entry(wb->b_io.prev,
545                                                 struct inode, i_list);
546                 long pages_skipped;
547
548                 /*
549                  * super block given and doesn't match, skip this inode
550                  */
551                 if (sb && sb != inode->i_sb) {
552                         redirty_tail(inode);
553                         continue;
554                 }
555
556                 if (!bdi_cap_writeback_dirty(wb->bdi)) {
557                         redirty_tail(inode);
558                         if (is_blkdev_sb) {
559                                 /*
560                                  * Dirty memory-backed blockdev: the ramdisk
561                                  * driver does this.  Skip just this inode
562                                  */
563                                 continue;
564                         }
565                         /*
566                          * Dirty memory-backed inode against a filesystem other
567                          * than the kernel-internal bdev filesystem.  Skip the
568                          * entire superblock.
569                          */
570                         break;
571                 }
572
573                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
574                         requeue_io(inode);
575                         continue;
576                 }
577
578                 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
579                         wbc->encountered_congestion = 1;
580                         if (!is_blkdev_sb)
581                                 break;          /* Skip a congested fs */
582                         requeue_io(inode);
583                         continue;               /* Skip a congested blockdev */
584                 }
585
586                 /*
587                  * Was this inode dirtied after sync_sb_inodes was called?
588                  * This keeps sync from extra jobs and livelock.
589                  */
590                 if (inode_dirtied_after(inode, start))
591                         break;
592
593                 if (pin_sb_for_writeback(wbc, inode)) {
594                         requeue_io(inode);
595                         continue;
596                 }
597
598                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
599                 __iget(inode);
600                 pages_skipped = wbc->pages_skipped;
601                 writeback_single_inode(inode, wbc);
602                 unpin_sb_for_writeback(wbc, inode);
603                 if (wbc->pages_skipped != pages_skipped) {
604                         /*
605                          * writeback is not making progress due to locked
606                          * buffers.  Skip this inode for now.
607                          */
608                         redirty_tail(inode);
609                 }
610                 spin_unlock(&inode_lock);
611                 iput(inode);
612                 cond_resched();
613                 spin_lock(&inode_lock);
614                 if (wbc->nr_to_write <= 0) {
615                         wbc->more_io = 1;
616                         break;
617                 }
618                 if (!list_empty(&wb->b_more_io))
619                         wbc->more_io = 1;
620         }
621
622         spin_unlock(&inode_lock);
623         /* Leave any unwritten inodes on b_io */
624 }
625
626 void writeback_inodes_wbc(struct writeback_control *wbc)
627 {
628         struct backing_dev_info *bdi = wbc->bdi;
629
630         writeback_inodes_wb(&bdi->wb, wbc);
631 }
632
633 /*
634  * The maximum number of pages to writeout in a single bdi flush/kupdate
635  * operation.  We do this so we don't hold I_SYNC against an inode for
636  * enormous amounts of time, which would block a userspace task which has
637  * been forced to throttle against that inode.  Also, the code reevaluates
638  * the dirty each time it has written this many pages.
639  */
640 #define MAX_WRITEBACK_PAGES     1024
641
642 static inline bool over_bground_thresh(void)
643 {
644         unsigned long background_thresh, dirty_thresh;
645
646         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
647
648         return (global_page_state(NR_FILE_DIRTY) +
649                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
650 }
651
652 /*
653  * Explicit flushing or periodic writeback of "old" data.
654  *
655  * Define "old": the first time one of an inode's pages is dirtied, we mark the
656  * dirtying-time in the inode's address_space.  So this periodic writeback code
657  * just walks the superblock inode list, writing back any inodes which are
658  * older than a specific point in time.
659  *
660  * Try to run once per dirty_writeback_interval.  But if a writeback event
661  * takes longer than a dirty_writeback_interval interval, then leave a
662  * one-second gap.
663  *
664  * older_than_this takes precedence over nr_to_write.  So we'll only write back
665  * all dirty pages if they are all attached to "old" mappings.
666  */
667 static long wb_writeback(struct bdi_writeback *wb,
668                          struct wb_writeback_args *args)
669 {
670         struct writeback_control wbc = {
671                 .bdi                    = wb->bdi,
672                 .sb                     = args->sb,
673                 .sync_mode              = args->sync_mode,
674                 .older_than_this        = NULL,
675                 .for_kupdate            = args->for_kupdate,
676                 .range_cyclic           = args->range_cyclic,
677         };
678         unsigned long oldest_jif;
679         long wrote = 0;
680
681         if (wbc.for_kupdate) {
682                 wbc.older_than_this = &oldest_jif;
683                 oldest_jif = jiffies -
684                                 msecs_to_jiffies(dirty_expire_interval * 10);
685         }
686         if (!wbc.range_cyclic) {
687                 wbc.range_start = 0;
688                 wbc.range_end = LLONG_MAX;
689         }
690
691         for (;;) {
692                 /*
693                  * Don't flush anything for non-integrity writeback where
694                  * no nr_pages was given
695                  */
696                 if (!args->for_kupdate && args->nr_pages <= 0 &&
697                      args->sync_mode == WB_SYNC_NONE)
698                         break;
699
700                 /*
701                  * If no specific pages were given and this is just a
702                  * periodic background writeout and we are below the
703                  * background dirty threshold, don't do anything
704                  */
705                 if (args->for_kupdate && args->nr_pages <= 0 &&
706                     !over_bground_thresh())
707                         break;
708
709                 wbc.more_io = 0;
710                 wbc.encountered_congestion = 0;
711                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
712                 wbc.pages_skipped = 0;
713                 writeback_inodes_wb(wb, &wbc);
714                 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
715                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
716
717                 /*
718                  * If we ran out of stuff to write, bail unless more_io got set
719                  */
720                 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
721                         if (wbc.more_io && !wbc.for_kupdate)
722                                 continue;
723                         break;
724                 }
725         }
726
727         return wrote;
728 }
729
730 /*
731  * Return the next bdi_work struct that hasn't been processed by this
732  * wb thread yet
733  */
734 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
735                                            struct bdi_writeback *wb)
736 {
737         struct bdi_work *work, *ret = NULL;
738
739         rcu_read_lock();
740
741         list_for_each_entry_rcu(work, &bdi->work_list, list) {
742                 if (!test_and_clear_bit(wb->nr, &work->seen))
743                         continue;
744
745                 ret = work;
746                 break;
747         }
748
749         rcu_read_unlock();
750         return ret;
751 }
752
753 static long wb_check_old_data_flush(struct bdi_writeback *wb)
754 {
755         unsigned long expired;
756         long nr_pages;
757
758         expired = wb->last_old_flush +
759                         msecs_to_jiffies(dirty_writeback_interval * 10);
760         if (time_before(jiffies, expired))
761                 return 0;
762
763         wb->last_old_flush = jiffies;
764         nr_pages = global_page_state(NR_FILE_DIRTY) +
765                         global_page_state(NR_UNSTABLE_NFS) +
766                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
767
768         if (nr_pages) {
769                 struct wb_writeback_args args = {
770                         .nr_pages       = nr_pages,
771                         .sync_mode      = WB_SYNC_NONE,
772                         .for_kupdate    = 1,
773                         .range_cyclic   = 1,
774                 };
775
776                 return wb_writeback(wb, &args);
777         }
778
779         return 0;
780 }
781
782 /*
783  * Retrieve work items and do the writeback they describe
784  */
785 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
786 {
787         struct backing_dev_info *bdi = wb->bdi;
788         struct bdi_work *work;
789         long wrote = 0;
790
791         while ((work = get_next_work_item(bdi, wb)) != NULL) {
792                 struct wb_writeback_args args = work->args;
793
794                 /*
795                  * Override sync mode, in case we must wait for completion
796                  */
797                 if (force_wait)
798                         work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
799
800                 /*
801                  * If this isn't a data integrity operation, just notify
802                  * that we have seen this work and we are now starting it.
803                  */
804                 if (args.sync_mode == WB_SYNC_NONE)
805                         wb_clear_pending(wb, work);
806
807                 wrote += wb_writeback(wb, &args);
808
809                 /*
810                  * This is a data integrity writeback, so only do the
811                  * notification when we have completed the work.
812                  */
813                 if (args.sync_mode == WB_SYNC_ALL)
814                         wb_clear_pending(wb, work);
815         }
816
817         /*
818          * Check for periodic writeback, kupdated() style
819          */
820         wrote += wb_check_old_data_flush(wb);
821
822         return wrote;
823 }
824
825 /*
826  * Handle writeback of dirty data for the device backed by this bdi. Also
827  * wakes up periodically and does kupdated style flushing.
828  */
829 int bdi_writeback_task(struct bdi_writeback *wb)
830 {
831         unsigned long last_active = jiffies;
832         unsigned long wait_jiffies = -1UL;
833         long pages_written;
834
835         while (!kthread_should_stop()) {
836                 pages_written = wb_do_writeback(wb, 0);
837
838                 if (pages_written)
839                         last_active = jiffies;
840                 else if (wait_jiffies != -1UL) {
841                         unsigned long max_idle;
842
843                         /*
844                          * Longest period of inactivity that we tolerate. If we
845                          * see dirty data again later, the task will get
846                          * recreated automatically.
847                          */
848                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
849                         if (time_after(jiffies, max_idle + last_active))
850                                 break;
851                 }
852
853                 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
854                 set_current_state(TASK_INTERRUPTIBLE);
855                 schedule_timeout(wait_jiffies);
856                 try_to_freeze();
857         }
858
859         return 0;
860 }
861
862 /*
863  * Schedule writeback for all backing devices. Expensive! If this is a data
864  * integrity operation, writeback will be complete when this returns. If
865  * we are simply called for WB_SYNC_NONE, then writeback will merely be
866  * scheduled to run.
867  */
868 static void bdi_writeback_all(struct writeback_control *wbc)
869 {
870         const bool must_wait = wbc->sync_mode == WB_SYNC_ALL;
871         struct backing_dev_info *bdi;
872         struct bdi_work *work;
873         LIST_HEAD(list);
874
875 restart:
876         spin_lock(&bdi_lock);
877
878         list_for_each_entry(bdi, &bdi_list, bdi_list) {
879                 struct bdi_work *work;
880
881                 if (!bdi_has_dirty_io(bdi))
882                         continue;
883
884                 /*
885                  * If work allocation fails, do the writes inline. We drop
886                  * the lock and restart the list writeout. This should be OK,
887                  * since this happens rarely and because the writeout should
888                  * eventually make more free memory available.
889                  */
890                 work = bdi_alloc_work(wbc);
891                 if (!work) {
892                         struct writeback_control __wbc;
893
894                         /*
895                          * Not a data integrity writeout, just continue
896                          */
897                         if (!must_wait)
898                                 continue;
899
900                         spin_unlock(&bdi_lock);
901                         __wbc = *wbc;
902                         __wbc.bdi = bdi;
903                         writeback_inodes_wbc(&__wbc);
904                         goto restart;
905                 }
906                 if (must_wait)
907                         list_add_tail(&work->wait_list, &list);
908
909                 bdi_queue_work(bdi, work);
910         }
911
912         spin_unlock(&bdi_lock);
913
914         /*
915          * If this is for WB_SYNC_ALL, wait for pending work to complete
916          * before returning.
917          */
918         while (!list_empty(&list)) {
919                 work = list_entry(list.next, struct bdi_work, wait_list);
920                 list_del(&work->wait_list);
921                 bdi_wait_on_work_clear(work);
922                 call_rcu(&work->rcu_head, bdi_work_free);
923         }
924 }
925
926 /*
927  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
928  * the whole world.
929  */
930 void wakeup_flusher_threads(long nr_pages)
931 {
932         struct writeback_control wbc = {
933                 .sync_mode      = WB_SYNC_NONE,
934                 .older_than_this = NULL,
935                 .range_cyclic   = 1,
936         };
937
938         if (nr_pages == 0)
939                 nr_pages = global_page_state(NR_FILE_DIRTY) +
940                                 global_page_state(NR_UNSTABLE_NFS);
941         wbc.nr_to_write = nr_pages;
942         bdi_writeback_all(&wbc);
943 }
944
945 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
946 {
947         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
948                 struct dentry *dentry;
949                 const char *name = "?";
950
951                 dentry = d_find_alias(inode);
952                 if (dentry) {
953                         spin_lock(&dentry->d_lock);
954                         name = (const char *) dentry->d_name.name;
955                 }
956                 printk(KERN_DEBUG
957                        "%s(%d): dirtied inode %lu (%s) on %s\n",
958                        current->comm, task_pid_nr(current), inode->i_ino,
959                        name, inode->i_sb->s_id);
960                 if (dentry) {
961                         spin_unlock(&dentry->d_lock);
962                         dput(dentry);
963                 }
964         }
965 }
966
967 /**
968  *      __mark_inode_dirty -    internal function
969  *      @inode: inode to mark
970  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
971  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
972  *      mark_inode_dirty_sync.
973  *
974  * Put the inode on the super block's dirty list.
975  *
976  * CAREFUL! We mark it dirty unconditionally, but move it onto the
977  * dirty list only if it is hashed or if it refers to a blockdev.
978  * If it was not hashed, it will never be added to the dirty list
979  * even if it is later hashed, as it will have been marked dirty already.
980  *
981  * In short, make sure you hash any inodes _before_ you start marking
982  * them dirty.
983  *
984  * This function *must* be atomic for the I_DIRTY_PAGES case -
985  * set_page_dirty() is called under spinlock in several places.
986  *
987  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
988  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
989  * the kernel-internal blockdev inode represents the dirtying time of the
990  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
991  * page->mapping->host, so the page-dirtying time is recorded in the internal
992  * blockdev inode.
993  */
994 void __mark_inode_dirty(struct inode *inode, int flags)
995 {
996         struct super_block *sb = inode->i_sb;
997
998         /*
999          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1000          * dirty the inode itself
1001          */
1002         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1003                 if (sb->s_op->dirty_inode)
1004                         sb->s_op->dirty_inode(inode);
1005         }
1006
1007         /*
1008          * make sure that changes are seen by all cpus before we test i_state
1009          * -- mikulas
1010          */
1011         smp_mb();
1012
1013         /* avoid the locking if we can */
1014         if ((inode->i_state & flags) == flags)
1015                 return;
1016
1017         if (unlikely(block_dump))
1018                 block_dump___mark_inode_dirty(inode);
1019
1020         spin_lock(&inode_lock);
1021         if ((inode->i_state & flags) != flags) {
1022                 const int was_dirty = inode->i_state & I_DIRTY;
1023
1024                 inode->i_state |= flags;
1025
1026                 /*
1027                  * If the inode is being synced, just update its dirty state.
1028                  * The unlocker will place the inode on the appropriate
1029                  * superblock list, based upon its state.
1030                  */
1031                 if (inode->i_state & I_SYNC)
1032                         goto out;
1033
1034                 /*
1035                  * Only add valid (hashed) inodes to the superblock's
1036                  * dirty list.  Add blockdev inodes as well.
1037                  */
1038                 if (!S_ISBLK(inode->i_mode)) {
1039                         if (hlist_unhashed(&inode->i_hash))
1040                                 goto out;
1041                 }
1042                 if (inode->i_state & (I_FREEING|I_CLEAR))
1043                         goto out;
1044
1045                 /*
1046                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1047                  * reposition it (that would break b_dirty time-ordering).
1048                  */
1049                 if (!was_dirty) {
1050                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1051                         struct backing_dev_info *bdi = wb->bdi;
1052
1053                         if (bdi_cap_writeback_dirty(bdi) &&
1054                             !test_bit(BDI_registered, &bdi->state)) {
1055                                 WARN_ON(1);
1056                                 printk(KERN_ERR "bdi-%s not registered\n",
1057                                                                 bdi->name);
1058                         }
1059
1060                         inode->dirtied_when = jiffies;
1061                         list_move(&inode->i_list, &wb->b_dirty);
1062                 }
1063         }
1064 out:
1065         spin_unlock(&inode_lock);
1066 }
1067 EXPORT_SYMBOL(__mark_inode_dirty);
1068
1069 /*
1070  * Write out a superblock's list of dirty inodes.  A wait will be performed
1071  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1072  *
1073  * If older_than_this is non-NULL, then only write out inodes which
1074  * had their first dirtying at a time earlier than *older_than_this.
1075  *
1076  * If we're a pdlfush thread, then implement pdflush collision avoidance
1077  * against the entire list.
1078  *
1079  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1080  * This function assumes that the blockdev superblock's inodes are backed by
1081  * a variety of queues, so all inodes are searched.  For other superblocks,
1082  * assume that all inodes are backed by the same queue.
1083  *
1084  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1085  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1086  * on the writer throttling path, and we get decent balancing between many
1087  * throttled threads: we don't want them all piling up on inode_sync_wait.
1088  */
1089 static void wait_sb_inodes(struct writeback_control *wbc)
1090 {
1091         struct inode *inode, *old_inode = NULL;
1092
1093         /*
1094          * We need to be protected against the filesystem going from
1095          * r/o to r/w or vice versa.
1096          */
1097         WARN_ON(!rwsem_is_locked(&wbc->sb->s_umount));
1098
1099         spin_lock(&inode_lock);
1100
1101         /*
1102          * Data integrity sync. Must wait for all pages under writeback,
1103          * because there may have been pages dirtied before our sync
1104          * call, but which had writeout started before we write it out.
1105          * In which case, the inode may not be on the dirty list, but
1106          * we still have to wait for that writeout.
1107          */
1108         list_for_each_entry(inode, &wbc->sb->s_inodes, i_sb_list) {
1109                 struct address_space *mapping;
1110
1111                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1112                         continue;
1113                 mapping = inode->i_mapping;
1114                 if (mapping->nrpages == 0)
1115                         continue;
1116                 __iget(inode);
1117                 spin_unlock(&inode_lock);
1118                 /*
1119                  * We hold a reference to 'inode' so it couldn't have
1120                  * been removed from s_inodes list while we dropped the
1121                  * inode_lock.  We cannot iput the inode now as we can
1122                  * be holding the last reference and we cannot iput it
1123                  * under inode_lock. So we keep the reference and iput
1124                  * it later.
1125                  */
1126                 iput(old_inode);
1127                 old_inode = inode;
1128
1129                 filemap_fdatawait(mapping);
1130
1131                 cond_resched();
1132
1133                 spin_lock(&inode_lock);
1134         }
1135         spin_unlock(&inode_lock);
1136         iput(old_inode);
1137 }
1138
1139 /**
1140  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1141  * @sb: the superblock
1142  *
1143  * Start writeback on some inodes on this super_block. No guarantees are made
1144  * on how many (if any) will be written, and this function does not wait
1145  * for IO completion of submitted IO. The number of pages submitted is
1146  * returned.
1147  */
1148 long writeback_inodes_sb(struct super_block *sb)
1149 {
1150         struct writeback_control wbc = {
1151                 .sb             = sb,
1152                 .sync_mode      = WB_SYNC_NONE,
1153                 .range_start    = 0,
1154                 .range_end      = LLONG_MAX,
1155         };
1156         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1157         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1158         long nr_to_write;
1159
1160         nr_to_write = nr_dirty + nr_unstable +
1161                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1162
1163         wbc.nr_to_write = nr_to_write;
1164         bdi_writeback_all(&wbc);
1165         return nr_to_write - wbc.nr_to_write;
1166 }
1167 EXPORT_SYMBOL(writeback_inodes_sb);
1168
1169 /**
1170  * sync_inodes_sb       -       sync sb inode pages
1171  * @sb: the superblock
1172  *
1173  * This function writes and waits on any dirty inode belonging to this
1174  * super_block. The number of pages synced is returned.
1175  */
1176 long sync_inodes_sb(struct super_block *sb)
1177 {
1178         struct writeback_control wbc = {
1179                 .sb             = sb,
1180                 .sync_mode      = WB_SYNC_ALL,
1181                 .range_start    = 0,
1182                 .range_end      = LLONG_MAX,
1183         };
1184         long nr_to_write = LONG_MAX; /* doesn't actually matter */
1185
1186         wbc.nr_to_write = nr_to_write;
1187         bdi_writeback_all(&wbc);
1188         wait_sb_inodes(&wbc);
1189         return nr_to_write - wbc.nr_to_write;
1190 }
1191 EXPORT_SYMBOL(sync_inodes_sb);
1192
1193 /**
1194  * write_inode_now      -       write an inode to disk
1195  * @inode: inode to write to disk
1196  * @sync: whether the write should be synchronous or not
1197  *
1198  * This function commits an inode to disk immediately if it is dirty. This is
1199  * primarily needed by knfsd.
1200  *
1201  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1202  */
1203 int write_inode_now(struct inode *inode, int sync)
1204 {
1205         int ret;
1206         struct writeback_control wbc = {
1207                 .nr_to_write = LONG_MAX,
1208                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1209                 .range_start = 0,
1210                 .range_end = LLONG_MAX,
1211         };
1212
1213         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1214                 wbc.nr_to_write = 0;
1215
1216         might_sleep();
1217         spin_lock(&inode_lock);
1218         ret = writeback_single_inode(inode, &wbc);
1219         spin_unlock(&inode_lock);
1220         if (sync)
1221                 inode_sync_wait(inode);
1222         return ret;
1223 }
1224 EXPORT_SYMBOL(write_inode_now);
1225
1226 /**
1227  * sync_inode - write an inode and its pages to disk.
1228  * @inode: the inode to sync
1229  * @wbc: controls the writeback mode
1230  *
1231  * sync_inode() will write an inode and its pages to disk.  It will also
1232  * correctly update the inode on its superblock's dirty inode lists and will
1233  * update inode->i_state.
1234  *
1235  * The caller must have a ref on the inode.
1236  */
1237 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1238 {
1239         int ret;
1240
1241         spin_lock(&inode_lock);
1242         ret = writeback_single_inode(inode, wbc);
1243         spin_unlock(&inode_lock);
1244         return ret;
1245 }
1246 EXPORT_SYMBOL(sync_inode);