include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[safe/jmp/linux-2.6] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30
31 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
32
33 /*
34  * We don't actually have pdflush, but this one is exported though /proc...
35  */
36 int nr_pdflush_threads;
37
38 /*
39  * Passed into wb_writeback(), essentially a subset of writeback_control
40  */
41 struct wb_writeback_args {
42         long nr_pages;
43         struct super_block *sb;
44         enum writeback_sync_modes sync_mode;
45         int for_kupdate:1;
46         int range_cyclic:1;
47         int for_background:1;
48 };
49
50 /*
51  * Work items for the bdi_writeback threads
52  */
53 struct bdi_work {
54         struct list_head list;          /* pending work list */
55         struct rcu_head rcu_head;       /* for RCU free/clear of work */
56
57         unsigned long seen;             /* threads that have seen this work */
58         atomic_t pending;               /* number of threads still to do work */
59
60         struct wb_writeback_args args;  /* writeback arguments */
61
62         unsigned long state;            /* flag bits, see WS_* */
63 };
64
65 enum {
66         WS_USED_B = 0,
67         WS_ONSTACK_B,
68 };
69
70 #define WS_USED (1 << WS_USED_B)
71 #define WS_ONSTACK (1 << WS_ONSTACK_B)
72
73 static inline bool bdi_work_on_stack(struct bdi_work *work)
74 {
75         return test_bit(WS_ONSTACK_B, &work->state);
76 }
77
78 static inline void bdi_work_init(struct bdi_work *work,
79                                  struct wb_writeback_args *args)
80 {
81         INIT_RCU_HEAD(&work->rcu_head);
82         work->args = *args;
83         work->state = WS_USED;
84 }
85
86 /**
87  * writeback_in_progress - determine whether there is writeback in progress
88  * @bdi: the device's backing_dev_info structure.
89  *
90  * Determine whether there is writeback waiting to be handled against a
91  * backing device.
92  */
93 int writeback_in_progress(struct backing_dev_info *bdi)
94 {
95         return !list_empty(&bdi->work_list);
96 }
97
98 static void bdi_work_clear(struct bdi_work *work)
99 {
100         clear_bit(WS_USED_B, &work->state);
101         smp_mb__after_clear_bit();
102         /*
103          * work can have disappeared at this point. bit waitq functions
104          * should be able to tolerate this, provided bdi_sched_wait does
105          * not dereference it's pointer argument.
106         */
107         wake_up_bit(&work->state, WS_USED_B);
108 }
109
110 static void bdi_work_free(struct rcu_head *head)
111 {
112         struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
113
114         if (!bdi_work_on_stack(work))
115                 kfree(work);
116         else
117                 bdi_work_clear(work);
118 }
119
120 static void wb_work_complete(struct bdi_work *work)
121 {
122         const enum writeback_sync_modes sync_mode = work->args.sync_mode;
123         int onstack = bdi_work_on_stack(work);
124
125         /*
126          * For allocated work, we can clear the done/seen bit right here.
127          * For on-stack work, we need to postpone both the clear and free
128          * to after the RCU grace period, since the stack could be invalidated
129          * as soon as bdi_work_clear() has done the wakeup.
130          */
131         if (!onstack)
132                 bdi_work_clear(work);
133         if (sync_mode == WB_SYNC_NONE || onstack)
134                 call_rcu(&work->rcu_head, bdi_work_free);
135 }
136
137 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
138 {
139         /*
140          * The caller has retrieved the work arguments from this work,
141          * drop our reference. If this is the last ref, delete and free it
142          */
143         if (atomic_dec_and_test(&work->pending)) {
144                 struct backing_dev_info *bdi = wb->bdi;
145
146                 spin_lock(&bdi->wb_lock);
147                 list_del_rcu(&work->list);
148                 spin_unlock(&bdi->wb_lock);
149
150                 wb_work_complete(work);
151         }
152 }
153
154 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
155 {
156         work->seen = bdi->wb_mask;
157         BUG_ON(!work->seen);
158         atomic_set(&work->pending, bdi->wb_cnt);
159         BUG_ON(!bdi->wb_cnt);
160
161         /*
162          * list_add_tail_rcu() contains the necessary barriers to
163          * make sure the above stores are seen before the item is
164          * noticed on the list
165          */
166         spin_lock(&bdi->wb_lock);
167         list_add_tail_rcu(&work->list, &bdi->work_list);
168         spin_unlock(&bdi->wb_lock);
169
170         /*
171          * If the default thread isn't there, make sure we add it. When
172          * it gets created and wakes up, we'll run this work.
173          */
174         if (unlikely(list_empty_careful(&bdi->wb_list)))
175                 wake_up_process(default_backing_dev_info.wb.task);
176         else {
177                 struct bdi_writeback *wb = &bdi->wb;
178
179                 if (wb->task)
180                         wake_up_process(wb->task);
181         }
182 }
183
184 /*
185  * Used for on-stack allocated work items. The caller needs to wait until
186  * the wb threads have acked the work before it's safe to continue.
187  */
188 static void bdi_wait_on_work_clear(struct bdi_work *work)
189 {
190         wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
191                     TASK_UNINTERRUPTIBLE);
192 }
193
194 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
195                                  struct wb_writeback_args *args)
196 {
197         struct bdi_work *work;
198
199         /*
200          * This is WB_SYNC_NONE writeback, so if allocation fails just
201          * wakeup the thread for old dirty data writeback
202          */
203         work = kmalloc(sizeof(*work), GFP_ATOMIC);
204         if (work) {
205                 bdi_work_init(work, args);
206                 bdi_queue_work(bdi, work);
207         } else {
208                 struct bdi_writeback *wb = &bdi->wb;
209
210                 if (wb->task)
211                         wake_up_process(wb->task);
212         }
213 }
214
215 /**
216  * bdi_sync_writeback - start and wait for writeback
217  * @bdi: the backing device to write from
218  * @sb: write inodes from this super_block
219  *
220  * Description:
221  *   This does WB_SYNC_ALL data integrity writeback and waits for the
222  *   IO to complete. Callers must hold the sb s_umount semaphore for
223  *   reading, to avoid having the super disappear before we are done.
224  */
225 static void bdi_sync_writeback(struct backing_dev_info *bdi,
226                                struct super_block *sb)
227 {
228         struct wb_writeback_args args = {
229                 .sb             = sb,
230                 .sync_mode      = WB_SYNC_ALL,
231                 .nr_pages       = LONG_MAX,
232                 .range_cyclic   = 0,
233         };
234         struct bdi_work work;
235
236         bdi_work_init(&work, &args);
237         work.state |= WS_ONSTACK;
238
239         bdi_queue_work(bdi, &work);
240         bdi_wait_on_work_clear(&work);
241 }
242
243 /**
244  * bdi_start_writeback - start writeback
245  * @bdi: the backing device to write from
246  * @sb: write inodes from this super_block
247  * @nr_pages: the number of pages to write
248  *
249  * Description:
250  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
251  *   started when this function returns, we make no guarentees on
252  *   completion. Caller need not hold sb s_umount semaphore.
253  *
254  */
255 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
256                          long nr_pages)
257 {
258         struct wb_writeback_args args = {
259                 .sb             = sb,
260                 .sync_mode      = WB_SYNC_NONE,
261                 .nr_pages       = nr_pages,
262                 .range_cyclic   = 1,
263         };
264
265         /*
266          * We treat @nr_pages=0 as the special case to do background writeback,
267          * ie. to sync pages until the background dirty threshold is reached.
268          */
269         if (!nr_pages) {
270                 args.nr_pages = LONG_MAX;
271                 args.for_background = 1;
272         }
273
274         bdi_alloc_queue_work(bdi, &args);
275 }
276
277 /*
278  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
279  * furthest end of its superblock's dirty-inode list.
280  *
281  * Before stamping the inode's ->dirtied_when, we check to see whether it is
282  * already the most-recently-dirtied inode on the b_dirty list.  If that is
283  * the case then the inode must have been redirtied while it was being written
284  * out and we don't reset its dirtied_when.
285  */
286 static void redirty_tail(struct inode *inode)
287 {
288         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
289
290         if (!list_empty(&wb->b_dirty)) {
291                 struct inode *tail;
292
293                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
294                 if (time_before(inode->dirtied_when, tail->dirtied_when))
295                         inode->dirtied_when = jiffies;
296         }
297         list_move(&inode->i_list, &wb->b_dirty);
298 }
299
300 /*
301  * requeue inode for re-scanning after bdi->b_io list is exhausted.
302  */
303 static void requeue_io(struct inode *inode)
304 {
305         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
306
307         list_move(&inode->i_list, &wb->b_more_io);
308 }
309
310 static void inode_sync_complete(struct inode *inode)
311 {
312         /*
313          * Prevent speculative execution through spin_unlock(&inode_lock);
314          */
315         smp_mb();
316         wake_up_bit(&inode->i_state, __I_SYNC);
317 }
318
319 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
320 {
321         bool ret = time_after(inode->dirtied_when, t);
322 #ifndef CONFIG_64BIT
323         /*
324          * For inodes being constantly redirtied, dirtied_when can get stuck.
325          * It _appears_ to be in the future, but is actually in distant past.
326          * This test is necessary to prevent such wrapped-around relative times
327          * from permanently stopping the whole bdi writeback.
328          */
329         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
330 #endif
331         return ret;
332 }
333
334 /*
335  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
336  */
337 static void move_expired_inodes(struct list_head *delaying_queue,
338                                struct list_head *dispatch_queue,
339                                 unsigned long *older_than_this)
340 {
341         LIST_HEAD(tmp);
342         struct list_head *pos, *node;
343         struct super_block *sb = NULL;
344         struct inode *inode;
345         int do_sb_sort = 0;
346
347         while (!list_empty(delaying_queue)) {
348                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
349                 if (older_than_this &&
350                     inode_dirtied_after(inode, *older_than_this))
351                         break;
352                 if (sb && sb != inode->i_sb)
353                         do_sb_sort = 1;
354                 sb = inode->i_sb;
355                 list_move(&inode->i_list, &tmp);
356         }
357
358         /* just one sb in list, splice to dispatch_queue and we're done */
359         if (!do_sb_sort) {
360                 list_splice(&tmp, dispatch_queue);
361                 return;
362         }
363
364         /* Move inodes from one superblock together */
365         while (!list_empty(&tmp)) {
366                 inode = list_entry(tmp.prev, struct inode, i_list);
367                 sb = inode->i_sb;
368                 list_for_each_prev_safe(pos, node, &tmp) {
369                         inode = list_entry(pos, struct inode, i_list);
370                         if (inode->i_sb == sb)
371                                 list_move(&inode->i_list, dispatch_queue);
372                 }
373         }
374 }
375
376 /*
377  * Queue all expired dirty inodes for io, eldest first.
378  */
379 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
380 {
381         list_splice_init(&wb->b_more_io, wb->b_io.prev);
382         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
383 }
384
385 static int write_inode(struct inode *inode, struct writeback_control *wbc)
386 {
387         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
388                 return inode->i_sb->s_op->write_inode(inode, wbc);
389         return 0;
390 }
391
392 /*
393  * Wait for writeback on an inode to complete.
394  */
395 static void inode_wait_for_writeback(struct inode *inode)
396 {
397         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
398         wait_queue_head_t *wqh;
399
400         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
401         do {
402                 spin_unlock(&inode_lock);
403                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
404                 spin_lock(&inode_lock);
405         } while (inode->i_state & I_SYNC);
406 }
407
408 /*
409  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
410  * caller has ref on the inode (either via __iget or via syscall against an fd)
411  * or the inode has I_WILL_FREE set (via generic_forget_inode)
412  *
413  * If `wait' is set, wait on the writeout.
414  *
415  * The whole writeout design is quite complex and fragile.  We want to avoid
416  * starvation of particular inodes when others are being redirtied, prevent
417  * livelocks, etc.
418  *
419  * Called under inode_lock.
420  */
421 static int
422 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
423 {
424         struct address_space *mapping = inode->i_mapping;
425         unsigned dirty;
426         int ret;
427
428         if (!atomic_read(&inode->i_count))
429                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
430         else
431                 WARN_ON(inode->i_state & I_WILL_FREE);
432
433         if (inode->i_state & I_SYNC) {
434                 /*
435                  * If this inode is locked for writeback and we are not doing
436                  * writeback-for-data-integrity, move it to b_more_io so that
437                  * writeback can proceed with the other inodes on s_io.
438                  *
439                  * We'll have another go at writing back this inode when we
440                  * completed a full scan of b_io.
441                  */
442                 if (wbc->sync_mode != WB_SYNC_ALL) {
443                         requeue_io(inode);
444                         return 0;
445                 }
446
447                 /*
448                  * It's a data-integrity sync.  We must wait.
449                  */
450                 inode_wait_for_writeback(inode);
451         }
452
453         BUG_ON(inode->i_state & I_SYNC);
454
455         /* Set I_SYNC, reset I_DIRTY */
456         dirty = inode->i_state & I_DIRTY;
457         inode->i_state |= I_SYNC;
458         inode->i_state &= ~I_DIRTY;
459
460         spin_unlock(&inode_lock);
461
462         ret = do_writepages(mapping, wbc);
463
464         /*
465          * Make sure to wait on the data before writing out the metadata.
466          * This is important for filesystems that modify metadata on data
467          * I/O completion.
468          */
469         if (wbc->sync_mode == WB_SYNC_ALL) {
470                 int err = filemap_fdatawait(mapping);
471                 if (ret == 0)
472                         ret = err;
473         }
474
475         /* Don't write the inode if only I_DIRTY_PAGES was set */
476         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
477                 int err = write_inode(inode, wbc);
478                 if (ret == 0)
479                         ret = err;
480         }
481
482         spin_lock(&inode_lock);
483         inode->i_state &= ~I_SYNC;
484         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
485                 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
486                         /*
487                          * More pages get dirtied by a fast dirtier.
488                          */
489                         goto select_queue;
490                 } else if (inode->i_state & I_DIRTY) {
491                         /*
492                          * At least XFS will redirty the inode during the
493                          * writeback (delalloc) and on io completion (isize).
494                          */
495                         redirty_tail(inode);
496                 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
497                         /*
498                          * We didn't write back all the pages.  nfs_writepages()
499                          * sometimes bales out without doing anything. Redirty
500                          * the inode; Move it from b_io onto b_more_io/b_dirty.
501                          */
502                         /*
503                          * akpm: if the caller was the kupdate function we put
504                          * this inode at the head of b_dirty so it gets first
505                          * consideration.  Otherwise, move it to the tail, for
506                          * the reasons described there.  I'm not really sure
507                          * how much sense this makes.  Presumably I had a good
508                          * reasons for doing it this way, and I'd rather not
509                          * muck with it at present.
510                          */
511                         if (wbc->for_kupdate) {
512                                 /*
513                                  * For the kupdate function we move the inode
514                                  * to b_more_io so it will get more writeout as
515                                  * soon as the queue becomes uncongested.
516                                  */
517                                 inode->i_state |= I_DIRTY_PAGES;
518 select_queue:
519                                 if (wbc->nr_to_write <= 0) {
520                                         /*
521                                          * slice used up: queue for next turn
522                                          */
523                                         requeue_io(inode);
524                                 } else {
525                                         /*
526                                          * somehow blocked: retry later
527                                          */
528                                         redirty_tail(inode);
529                                 }
530                         } else {
531                                 /*
532                                  * Otherwise fully redirty the inode so that
533                                  * other inodes on this superblock will get some
534                                  * writeout.  Otherwise heavy writing to one
535                                  * file would indefinitely suspend writeout of
536                                  * all the other files.
537                                  */
538                                 inode->i_state |= I_DIRTY_PAGES;
539                                 redirty_tail(inode);
540                         }
541                 } else if (atomic_read(&inode->i_count)) {
542                         /*
543                          * The inode is clean, inuse
544                          */
545                         list_move(&inode->i_list, &inode_in_use);
546                 } else {
547                         /*
548                          * The inode is clean, unused
549                          */
550                         list_move(&inode->i_list, &inode_unused);
551                 }
552         }
553         inode_sync_complete(inode);
554         return ret;
555 }
556
557 static void unpin_sb_for_writeback(struct super_block **psb)
558 {
559         struct super_block *sb = *psb;
560
561         if (sb) {
562                 up_read(&sb->s_umount);
563                 put_super(sb);
564                 *psb = NULL;
565         }
566 }
567
568 /*
569  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
570  * before calling writeback. So make sure that we do pin it, so it doesn't
571  * go away while we are writing inodes from it.
572  *
573  * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
574  * 1 if we failed.
575  */
576 static int pin_sb_for_writeback(struct writeback_control *wbc,
577                                 struct inode *inode, struct super_block **psb)
578 {
579         struct super_block *sb = inode->i_sb;
580
581         /*
582          * If this sb is already pinned, nothing more to do. If not and
583          * *psb is non-NULL, unpin the old one first
584          */
585         if (sb == *psb)
586                 return 0;
587         else if (*psb)
588                 unpin_sb_for_writeback(psb);
589
590         /*
591          * Caller must already hold the ref for this
592          */
593         if (wbc->sync_mode == WB_SYNC_ALL) {
594                 WARN_ON(!rwsem_is_locked(&sb->s_umount));
595                 return 0;
596         }
597
598         spin_lock(&sb_lock);
599         sb->s_count++;
600         if (down_read_trylock(&sb->s_umount)) {
601                 if (sb->s_root) {
602                         spin_unlock(&sb_lock);
603                         goto pinned;
604                 }
605                 /*
606                  * umounted, drop rwsem again and fall through to failure
607                  */
608                 up_read(&sb->s_umount);
609         }
610
611         sb->s_count--;
612         spin_unlock(&sb_lock);
613         return 1;
614 pinned:
615         *psb = sb;
616         return 0;
617 }
618
619 static void writeback_inodes_wb(struct bdi_writeback *wb,
620                                 struct writeback_control *wbc)
621 {
622         struct super_block *sb = wbc->sb, *pin_sb = NULL;
623         const unsigned long start = jiffies;    /* livelock avoidance */
624
625         spin_lock(&inode_lock);
626
627         if (!wbc->for_kupdate || list_empty(&wb->b_io))
628                 queue_io(wb, wbc->older_than_this);
629
630         while (!list_empty(&wb->b_io)) {
631                 struct inode *inode = list_entry(wb->b_io.prev,
632                                                 struct inode, i_list);
633                 long pages_skipped;
634
635                 /*
636                  * super block given and doesn't match, skip this inode
637                  */
638                 if (sb && sb != inode->i_sb) {
639                         redirty_tail(inode);
640                         continue;
641                 }
642
643                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
644                         requeue_io(inode);
645                         continue;
646                 }
647
648                 /*
649                  * Was this inode dirtied after sync_sb_inodes was called?
650                  * This keeps sync from extra jobs and livelock.
651                  */
652                 if (inode_dirtied_after(inode, start))
653                         break;
654
655                 if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
656                         requeue_io(inode);
657                         continue;
658                 }
659
660                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
661                 __iget(inode);
662                 pages_skipped = wbc->pages_skipped;
663                 writeback_single_inode(inode, wbc);
664                 if (wbc->pages_skipped != pages_skipped) {
665                         /*
666                          * writeback is not making progress due to locked
667                          * buffers.  Skip this inode for now.
668                          */
669                         redirty_tail(inode);
670                 }
671                 spin_unlock(&inode_lock);
672                 iput(inode);
673                 cond_resched();
674                 spin_lock(&inode_lock);
675                 if (wbc->nr_to_write <= 0) {
676                         wbc->more_io = 1;
677                         break;
678                 }
679                 if (!list_empty(&wb->b_more_io))
680                         wbc->more_io = 1;
681         }
682
683         unpin_sb_for_writeback(&pin_sb);
684
685         spin_unlock(&inode_lock);
686         /* Leave any unwritten inodes on b_io */
687 }
688
689 void writeback_inodes_wbc(struct writeback_control *wbc)
690 {
691         struct backing_dev_info *bdi = wbc->bdi;
692
693         writeback_inodes_wb(&bdi->wb, wbc);
694 }
695
696 /*
697  * The maximum number of pages to writeout in a single bdi flush/kupdate
698  * operation.  We do this so we don't hold I_SYNC against an inode for
699  * enormous amounts of time, which would block a userspace task which has
700  * been forced to throttle against that inode.  Also, the code reevaluates
701  * the dirty each time it has written this many pages.
702  */
703 #define MAX_WRITEBACK_PAGES     1024
704
705 static inline bool over_bground_thresh(void)
706 {
707         unsigned long background_thresh, dirty_thresh;
708
709         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
710
711         return (global_page_state(NR_FILE_DIRTY) +
712                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
713 }
714
715 /*
716  * Explicit flushing or periodic writeback of "old" data.
717  *
718  * Define "old": the first time one of an inode's pages is dirtied, we mark the
719  * dirtying-time in the inode's address_space.  So this periodic writeback code
720  * just walks the superblock inode list, writing back any inodes which are
721  * older than a specific point in time.
722  *
723  * Try to run once per dirty_writeback_interval.  But if a writeback event
724  * takes longer than a dirty_writeback_interval interval, then leave a
725  * one-second gap.
726  *
727  * older_than_this takes precedence over nr_to_write.  So we'll only write back
728  * all dirty pages if they are all attached to "old" mappings.
729  */
730 static long wb_writeback(struct bdi_writeback *wb,
731                          struct wb_writeback_args *args)
732 {
733         struct writeback_control wbc = {
734                 .bdi                    = wb->bdi,
735                 .sb                     = args->sb,
736                 .sync_mode              = args->sync_mode,
737                 .older_than_this        = NULL,
738                 .for_kupdate            = args->for_kupdate,
739                 .for_background         = args->for_background,
740                 .range_cyclic           = args->range_cyclic,
741         };
742         unsigned long oldest_jif;
743         long wrote = 0;
744         struct inode *inode;
745
746         if (wbc.for_kupdate) {
747                 wbc.older_than_this = &oldest_jif;
748                 oldest_jif = jiffies -
749                                 msecs_to_jiffies(dirty_expire_interval * 10);
750         }
751         if (!wbc.range_cyclic) {
752                 wbc.range_start = 0;
753                 wbc.range_end = LLONG_MAX;
754         }
755
756         for (;;) {
757                 /*
758                  * Stop writeback when nr_pages has been consumed
759                  */
760                 if (args->nr_pages <= 0)
761                         break;
762
763                 /*
764                  * For background writeout, stop when we are below the
765                  * background dirty threshold
766                  */
767                 if (args->for_background && !over_bground_thresh())
768                         break;
769
770                 wbc.more_io = 0;
771                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
772                 wbc.pages_skipped = 0;
773                 writeback_inodes_wb(wb, &wbc);
774                 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
775                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
776
777                 /*
778                  * If we consumed everything, see if we have more
779                  */
780                 if (wbc.nr_to_write <= 0)
781                         continue;
782                 /*
783                  * Didn't write everything and we don't have more IO, bail
784                  */
785                 if (!wbc.more_io)
786                         break;
787                 /*
788                  * Did we write something? Try for more
789                  */
790                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
791                         continue;
792                 /*
793                  * Nothing written. Wait for some inode to
794                  * become available for writeback. Otherwise
795                  * we'll just busyloop.
796                  */
797                 spin_lock(&inode_lock);
798                 if (!list_empty(&wb->b_more_io))  {
799                         inode = list_entry(wb->b_more_io.prev,
800                                                 struct inode, i_list);
801                         inode_wait_for_writeback(inode);
802                 }
803                 spin_unlock(&inode_lock);
804         }
805
806         return wrote;
807 }
808
809 /*
810  * Return the next bdi_work struct that hasn't been processed by this
811  * wb thread yet. ->seen is initially set for each thread that exists
812  * for this device, when a thread first notices a piece of work it
813  * clears its bit. Depending on writeback type, the thread will notify
814  * completion on either receiving the work (WB_SYNC_NONE) or after
815  * it is done (WB_SYNC_ALL).
816  */
817 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
818                                            struct bdi_writeback *wb)
819 {
820         struct bdi_work *work, *ret = NULL;
821
822         rcu_read_lock();
823
824         list_for_each_entry_rcu(work, &bdi->work_list, list) {
825                 if (!test_bit(wb->nr, &work->seen))
826                         continue;
827                 clear_bit(wb->nr, &work->seen);
828
829                 ret = work;
830                 break;
831         }
832
833         rcu_read_unlock();
834         return ret;
835 }
836
837 static long wb_check_old_data_flush(struct bdi_writeback *wb)
838 {
839         unsigned long expired;
840         long nr_pages;
841
842         expired = wb->last_old_flush +
843                         msecs_to_jiffies(dirty_writeback_interval * 10);
844         if (time_before(jiffies, expired))
845                 return 0;
846
847         wb->last_old_flush = jiffies;
848         nr_pages = global_page_state(NR_FILE_DIRTY) +
849                         global_page_state(NR_UNSTABLE_NFS) +
850                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
851
852         if (nr_pages) {
853                 struct wb_writeback_args args = {
854                         .nr_pages       = nr_pages,
855                         .sync_mode      = WB_SYNC_NONE,
856                         .for_kupdate    = 1,
857                         .range_cyclic   = 1,
858                 };
859
860                 return wb_writeback(wb, &args);
861         }
862
863         return 0;
864 }
865
866 /*
867  * Retrieve work items and do the writeback they describe
868  */
869 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
870 {
871         struct backing_dev_info *bdi = wb->bdi;
872         struct bdi_work *work;
873         long wrote = 0;
874
875         while ((work = get_next_work_item(bdi, wb)) != NULL) {
876                 struct wb_writeback_args args = work->args;
877
878                 /*
879                  * Override sync mode, in case we must wait for completion
880                  */
881                 if (force_wait)
882                         work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
883
884                 /*
885                  * If this isn't a data integrity operation, just notify
886                  * that we have seen this work and we are now starting it.
887                  */
888                 if (args.sync_mode == WB_SYNC_NONE)
889                         wb_clear_pending(wb, work);
890
891                 wrote += wb_writeback(wb, &args);
892
893                 /*
894                  * This is a data integrity writeback, so only do the
895                  * notification when we have completed the work.
896                  */
897                 if (args.sync_mode == WB_SYNC_ALL)
898                         wb_clear_pending(wb, work);
899         }
900
901         /*
902          * Check for periodic writeback, kupdated() style
903          */
904         wrote += wb_check_old_data_flush(wb);
905
906         return wrote;
907 }
908
909 /*
910  * Handle writeback of dirty data for the device backed by this bdi. Also
911  * wakes up periodically and does kupdated style flushing.
912  */
913 int bdi_writeback_task(struct bdi_writeback *wb)
914 {
915         unsigned long last_active = jiffies;
916         unsigned long wait_jiffies = -1UL;
917         long pages_written;
918
919         while (!kthread_should_stop()) {
920                 pages_written = wb_do_writeback(wb, 0);
921
922                 if (pages_written)
923                         last_active = jiffies;
924                 else if (wait_jiffies != -1UL) {
925                         unsigned long max_idle;
926
927                         /*
928                          * Longest period of inactivity that we tolerate. If we
929                          * see dirty data again later, the task will get
930                          * recreated automatically.
931                          */
932                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
933                         if (time_after(jiffies, max_idle + last_active))
934                                 break;
935                 }
936
937                 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
938                 schedule_timeout_interruptible(wait_jiffies);
939                 try_to_freeze();
940         }
941
942         return 0;
943 }
944
945 /*
946  * Schedule writeback for all backing devices. This does WB_SYNC_NONE
947  * writeback, for integrity writeback see bdi_sync_writeback().
948  */
949 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
950 {
951         struct wb_writeback_args args = {
952                 .sb             = sb,
953                 .nr_pages       = nr_pages,
954                 .sync_mode      = WB_SYNC_NONE,
955         };
956         struct backing_dev_info *bdi;
957
958         rcu_read_lock();
959
960         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
961                 if (!bdi_has_dirty_io(bdi))
962                         continue;
963
964                 bdi_alloc_queue_work(bdi, &args);
965         }
966
967         rcu_read_unlock();
968 }
969
970 /*
971  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
972  * the whole world.
973  */
974 void wakeup_flusher_threads(long nr_pages)
975 {
976         if (nr_pages == 0)
977                 nr_pages = global_page_state(NR_FILE_DIRTY) +
978                                 global_page_state(NR_UNSTABLE_NFS);
979         bdi_writeback_all(NULL, nr_pages);
980 }
981
982 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
983 {
984         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
985                 struct dentry *dentry;
986                 const char *name = "?";
987
988                 dentry = d_find_alias(inode);
989                 if (dentry) {
990                         spin_lock(&dentry->d_lock);
991                         name = (const char *) dentry->d_name.name;
992                 }
993                 printk(KERN_DEBUG
994                        "%s(%d): dirtied inode %lu (%s) on %s\n",
995                        current->comm, task_pid_nr(current), inode->i_ino,
996                        name, inode->i_sb->s_id);
997                 if (dentry) {
998                         spin_unlock(&dentry->d_lock);
999                         dput(dentry);
1000                 }
1001         }
1002 }
1003
1004 /**
1005  *      __mark_inode_dirty -    internal function
1006  *      @inode: inode to mark
1007  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1008  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1009  *      mark_inode_dirty_sync.
1010  *
1011  * Put the inode on the super block's dirty list.
1012  *
1013  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1014  * dirty list only if it is hashed or if it refers to a blockdev.
1015  * If it was not hashed, it will never be added to the dirty list
1016  * even if it is later hashed, as it will have been marked dirty already.
1017  *
1018  * In short, make sure you hash any inodes _before_ you start marking
1019  * them dirty.
1020  *
1021  * This function *must* be atomic for the I_DIRTY_PAGES case -
1022  * set_page_dirty() is called under spinlock in several places.
1023  *
1024  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1025  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1026  * the kernel-internal blockdev inode represents the dirtying time of the
1027  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1028  * page->mapping->host, so the page-dirtying time is recorded in the internal
1029  * blockdev inode.
1030  */
1031 void __mark_inode_dirty(struct inode *inode, int flags)
1032 {
1033         struct super_block *sb = inode->i_sb;
1034
1035         /*
1036          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1037          * dirty the inode itself
1038          */
1039         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1040                 if (sb->s_op->dirty_inode)
1041                         sb->s_op->dirty_inode(inode);
1042         }
1043
1044         /*
1045          * make sure that changes are seen by all cpus before we test i_state
1046          * -- mikulas
1047          */
1048         smp_mb();
1049
1050         /* avoid the locking if we can */
1051         if ((inode->i_state & flags) == flags)
1052                 return;
1053
1054         if (unlikely(block_dump))
1055                 block_dump___mark_inode_dirty(inode);
1056
1057         spin_lock(&inode_lock);
1058         if ((inode->i_state & flags) != flags) {
1059                 const int was_dirty = inode->i_state & I_DIRTY;
1060
1061                 inode->i_state |= flags;
1062
1063                 /*
1064                  * If the inode is being synced, just update its dirty state.
1065                  * The unlocker will place the inode on the appropriate
1066                  * superblock list, based upon its state.
1067                  */
1068                 if (inode->i_state & I_SYNC)
1069                         goto out;
1070
1071                 /*
1072                  * Only add valid (hashed) inodes to the superblock's
1073                  * dirty list.  Add blockdev inodes as well.
1074                  */
1075                 if (!S_ISBLK(inode->i_mode)) {
1076                         if (hlist_unhashed(&inode->i_hash))
1077                                 goto out;
1078                 }
1079                 if (inode->i_state & (I_FREEING|I_CLEAR))
1080                         goto out;
1081
1082                 /*
1083                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1084                  * reposition it (that would break b_dirty time-ordering).
1085                  */
1086                 if (!was_dirty) {
1087                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1088                         struct backing_dev_info *bdi = wb->bdi;
1089
1090                         if (bdi_cap_writeback_dirty(bdi) &&
1091                             !test_bit(BDI_registered, &bdi->state)) {
1092                                 WARN_ON(1);
1093                                 printk(KERN_ERR "bdi-%s not registered\n",
1094                                                                 bdi->name);
1095                         }
1096
1097                         inode->dirtied_when = jiffies;
1098                         list_move(&inode->i_list, &wb->b_dirty);
1099                 }
1100         }
1101 out:
1102         spin_unlock(&inode_lock);
1103 }
1104 EXPORT_SYMBOL(__mark_inode_dirty);
1105
1106 /*
1107  * Write out a superblock's list of dirty inodes.  A wait will be performed
1108  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1109  *
1110  * If older_than_this is non-NULL, then only write out inodes which
1111  * had their first dirtying at a time earlier than *older_than_this.
1112  *
1113  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1114  * This function assumes that the blockdev superblock's inodes are backed by
1115  * a variety of queues, so all inodes are searched.  For other superblocks,
1116  * assume that all inodes are backed by the same queue.
1117  *
1118  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1119  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1120  * on the writer throttling path, and we get decent balancing between many
1121  * throttled threads: we don't want them all piling up on inode_sync_wait.
1122  */
1123 static void wait_sb_inodes(struct super_block *sb)
1124 {
1125         struct inode *inode, *old_inode = NULL;
1126
1127         /*
1128          * We need to be protected against the filesystem going from
1129          * r/o to r/w or vice versa.
1130          */
1131         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1132
1133         spin_lock(&inode_lock);
1134
1135         /*
1136          * Data integrity sync. Must wait for all pages under writeback,
1137          * because there may have been pages dirtied before our sync
1138          * call, but which had writeout started before we write it out.
1139          * In which case, the inode may not be on the dirty list, but
1140          * we still have to wait for that writeout.
1141          */
1142         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1143                 struct address_space *mapping;
1144
1145                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1146                         continue;
1147                 mapping = inode->i_mapping;
1148                 if (mapping->nrpages == 0)
1149                         continue;
1150                 __iget(inode);
1151                 spin_unlock(&inode_lock);
1152                 /*
1153                  * We hold a reference to 'inode' so it couldn't have
1154                  * been removed from s_inodes list while we dropped the
1155                  * inode_lock.  We cannot iput the inode now as we can
1156                  * be holding the last reference and we cannot iput it
1157                  * under inode_lock. So we keep the reference and iput
1158                  * it later.
1159                  */
1160                 iput(old_inode);
1161                 old_inode = inode;
1162
1163                 filemap_fdatawait(mapping);
1164
1165                 cond_resched();
1166
1167                 spin_lock(&inode_lock);
1168         }
1169         spin_unlock(&inode_lock);
1170         iput(old_inode);
1171 }
1172
1173 /**
1174  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1175  * @sb: the superblock
1176  *
1177  * Start writeback on some inodes on this super_block. No guarantees are made
1178  * on how many (if any) will be written, and this function does not wait
1179  * for IO completion of submitted IO. The number of pages submitted is
1180  * returned.
1181  */
1182 void writeback_inodes_sb(struct super_block *sb)
1183 {
1184         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1185         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1186         long nr_to_write;
1187
1188         nr_to_write = nr_dirty + nr_unstable +
1189                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1190
1191         bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1192 }
1193 EXPORT_SYMBOL(writeback_inodes_sb);
1194
1195 /**
1196  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1197  * @sb: the superblock
1198  *
1199  * Invoke writeback_inodes_sb if no writeback is currently underway.
1200  * Returns 1 if writeback was started, 0 if not.
1201  */
1202 int writeback_inodes_sb_if_idle(struct super_block *sb)
1203 {
1204         if (!writeback_in_progress(sb->s_bdi)) {
1205                 writeback_inodes_sb(sb);
1206                 return 1;
1207         } else
1208                 return 0;
1209 }
1210 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1211
1212 /**
1213  * sync_inodes_sb       -       sync sb inode pages
1214  * @sb: the superblock
1215  *
1216  * This function writes and waits on any dirty inode belonging to this
1217  * super_block. The number of pages synced is returned.
1218  */
1219 void sync_inodes_sb(struct super_block *sb)
1220 {
1221         bdi_sync_writeback(sb->s_bdi, sb);
1222         wait_sb_inodes(sb);
1223 }
1224 EXPORT_SYMBOL(sync_inodes_sb);
1225
1226 /**
1227  * write_inode_now      -       write an inode to disk
1228  * @inode: inode to write to disk
1229  * @sync: whether the write should be synchronous or not
1230  *
1231  * This function commits an inode to disk immediately if it is dirty. This is
1232  * primarily needed by knfsd.
1233  *
1234  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1235  */
1236 int write_inode_now(struct inode *inode, int sync)
1237 {
1238         int ret;
1239         struct writeback_control wbc = {
1240                 .nr_to_write = LONG_MAX,
1241                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1242                 .range_start = 0,
1243                 .range_end = LLONG_MAX,
1244         };
1245
1246         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1247                 wbc.nr_to_write = 0;
1248
1249         might_sleep();
1250         spin_lock(&inode_lock);
1251         ret = writeback_single_inode(inode, &wbc);
1252         spin_unlock(&inode_lock);
1253         if (sync)
1254                 inode_sync_wait(inode);
1255         return ret;
1256 }
1257 EXPORT_SYMBOL(write_inode_now);
1258
1259 /**
1260  * sync_inode - write an inode and its pages to disk.
1261  * @inode: the inode to sync
1262  * @wbc: controls the writeback mode
1263  *
1264  * sync_inode() will write an inode and its pages to disk.  It will also
1265  * correctly update the inode on its superblock's dirty inode lists and will
1266  * update inode->i_state.
1267  *
1268  * The caller must have a ref on the inode.
1269  */
1270 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1271 {
1272         int ret;
1273
1274         spin_lock(&inode_lock);
1275         ret = writeback_single_inode(inode, wbc);
1276         spin_unlock(&inode_lock);
1277         return ret;
1278 }
1279 EXPORT_SYMBOL(sync_inode);