ext4: move ext4_mb_init_group() function earlier in the mballoc.c
[safe/jmp/linux-2.6] / fs / ext4 / mballoc.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18
19
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <trace/events/ext4.h>
27
28 /*
29  * MUSTDO:
30  *   - test ext4_ext_search_left() and ext4_ext_search_right()
31  *   - search for metadata in few groups
32  *
33  * TODO v4:
34  *   - normalization should take into account whether file is still open
35  *   - discard preallocations if no free space left (policy?)
36  *   - don't normalize tails
37  *   - quota
38  *   - reservation for superuser
39  *
40  * TODO v3:
41  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
42  *   - track min/max extents in each group for better group selection
43  *   - mb_mark_used() may allocate chunk right after splitting buddy
44  *   - tree of groups sorted by number of free blocks
45  *   - error handling
46  */
47
48 /*
49  * The allocation request involve request for multiple number of blocks
50  * near to the goal(block) value specified.
51  *
52  * During initialization phase of the allocator we decide to use the
53  * group preallocation or inode preallocation depending on the size of
54  * the file. The size of the file could be the resulting file size we
55  * would have after allocation, or the current file size, which ever
56  * is larger. If the size is less than sbi->s_mb_stream_request we
57  * select to use the group preallocation. The default value of
58  * s_mb_stream_request is 16 blocks. This can also be tuned via
59  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60  * terms of number of blocks.
61  *
62  * The main motivation for having small file use group preallocation is to
63  * ensure that we have small files closer together on the disk.
64  *
65  * First stage the allocator looks at the inode prealloc list,
66  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67  * spaces for this particular inode. The inode prealloc space is
68  * represented as:
69  *
70  * pa_lstart -> the logical start block for this prealloc space
71  * pa_pstart -> the physical start block for this prealloc space
72  * pa_len    -> lenght for this prealloc space
73  * pa_free   ->  free space available in this prealloc space
74  *
75  * The inode preallocation space is used looking at the _logical_ start
76  * block. If only the logical file block falls within the range of prealloc
77  * space we will consume the particular prealloc space. This make sure that
78  * that the we have contiguous physical blocks representing the file blocks
79  *
80  * The important thing to be noted in case of inode prealloc space is that
81  * we don't modify the values associated to inode prealloc space except
82  * pa_free.
83  *
84  * If we are not able to find blocks in the inode prealloc space and if we
85  * have the group allocation flag set then we look at the locality group
86  * prealloc space. These are per CPU prealloc list repreasented as
87  *
88  * ext4_sb_info.s_locality_groups[smp_processor_id()]
89  *
90  * The reason for having a per cpu locality group is to reduce the contention
91  * between CPUs. It is possible to get scheduled at this point.
92  *
93  * The locality group prealloc space is used looking at whether we have
94  * enough free space (pa_free) withing the prealloc space.
95  *
96  * If we can't allocate blocks via inode prealloc or/and locality group
97  * prealloc then we look at the buddy cache. The buddy cache is represented
98  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99  * mapped to the buddy and bitmap information regarding different
100  * groups. The buddy information is attached to buddy cache inode so that
101  * we can access them through the page cache. The information regarding
102  * each group is loaded via ext4_mb_load_buddy.  The information involve
103  * block bitmap and buddy information. The information are stored in the
104  * inode as:
105  *
106  *  {                        page                        }
107  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
108  *
109  *
110  * one block each for bitmap and buddy information.  So for each group we
111  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
112  * blocksize) blocks.  So it can have information regarding groups_per_page
113  * which is blocks_per_page/2
114  *
115  * The buddy cache inode is not stored on disk. The inode is thrown
116  * away when the filesystem is unmounted.
117  *
118  * We look for count number of blocks in the buddy cache. If we were able
119  * to locate that many free blocks we return with additional information
120  * regarding rest of the contiguous physical block available
121  *
122  * Before allocating blocks via buddy cache we normalize the request
123  * blocks. This ensure we ask for more blocks that we needed. The extra
124  * blocks that we get after allocation is added to the respective prealloc
125  * list. In case of inode preallocation we follow a list of heuristics
126  * based on file size. This can be found in ext4_mb_normalize_request. If
127  * we are doing a group prealloc we try to normalize the request to
128  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
129  * 512 blocks. This can be tuned via
130  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
131  * terms of number of blocks. If we have mounted the file system with -O
132  * stripe=<value> option the group prealloc request is normalized to the
133  * stripe value (sbi->s_stripe)
134  *
135  * The regular allocator(using the buddy cache) supports few tunables.
136  *
137  * /sys/fs/ext4/<partition>/mb_min_to_scan
138  * /sys/fs/ext4/<partition>/mb_max_to_scan
139  * /sys/fs/ext4/<partition>/mb_order2_req
140  *
141  * The regular allocator uses buddy scan only if the request len is power of
142  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
143  * value of s_mb_order2_reqs can be tuned via
144  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
145  * stripe size (sbi->s_stripe), we try to search for contigous block in
146  * stripe size. This should result in better allocation on RAID setups. If
147  * not, we search in the specific group using bitmap for best extents. The
148  * tunable min_to_scan and max_to_scan control the behaviour here.
149  * min_to_scan indicate how long the mballoc __must__ look for a best
150  * extent and max_to_scan indicates how long the mballoc __can__ look for a
151  * best extent in the found extents. Searching for the blocks starts with
152  * the group specified as the goal value in allocation context via
153  * ac_g_ex. Each group is first checked based on the criteria whether it
154  * can used for allocation. ext4_mb_good_group explains how the groups are
155  * checked.
156  *
157  * Both the prealloc space are getting populated as above. So for the first
158  * request we will hit the buddy cache which will result in this prealloc
159  * space getting filled. The prealloc space is then later used for the
160  * subsequent request.
161  */
162
163 /*
164  * mballoc operates on the following data:
165  *  - on-disk bitmap
166  *  - in-core buddy (actually includes buddy and bitmap)
167  *  - preallocation descriptors (PAs)
168  *
169  * there are two types of preallocations:
170  *  - inode
171  *    assiged to specific inode and can be used for this inode only.
172  *    it describes part of inode's space preallocated to specific
173  *    physical blocks. any block from that preallocated can be used
174  *    independent. the descriptor just tracks number of blocks left
175  *    unused. so, before taking some block from descriptor, one must
176  *    make sure corresponded logical block isn't allocated yet. this
177  *    also means that freeing any block within descriptor's range
178  *    must discard all preallocated blocks.
179  *  - locality group
180  *    assigned to specific locality group which does not translate to
181  *    permanent set of inodes: inode can join and leave group. space
182  *    from this type of preallocation can be used for any inode. thus
183  *    it's consumed from the beginning to the end.
184  *
185  * relation between them can be expressed as:
186  *    in-core buddy = on-disk bitmap + preallocation descriptors
187  *
188  * this mean blocks mballoc considers used are:
189  *  - allocated blocks (persistent)
190  *  - preallocated blocks (non-persistent)
191  *
192  * consistency in mballoc world means that at any time a block is either
193  * free or used in ALL structures. notice: "any time" should not be read
194  * literally -- time is discrete and delimited by locks.
195  *
196  *  to keep it simple, we don't use block numbers, instead we count number of
197  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
198  *
199  * all operations can be expressed as:
200  *  - init buddy:                       buddy = on-disk + PAs
201  *  - new PA:                           buddy += N; PA = N
202  *  - use inode PA:                     on-disk += N; PA -= N
203  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
204  *  - use locality group PA             on-disk += N; PA -= N
205  *  - discard locality group PA         buddy -= PA; PA = 0
206  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
207  *        is used in real operation because we can't know actual used
208  *        bits from PA, only from on-disk bitmap
209  *
210  * if we follow this strict logic, then all operations above should be atomic.
211  * given some of them can block, we'd have to use something like semaphores
212  * killing performance on high-end SMP hardware. let's try to relax it using
213  * the following knowledge:
214  *  1) if buddy is referenced, it's already initialized
215  *  2) while block is used in buddy and the buddy is referenced,
216  *     nobody can re-allocate that block
217  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
218  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
219  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
220  *     block
221  *
222  * so, now we're building a concurrency table:
223  *  - init buddy vs.
224  *    - new PA
225  *      blocks for PA are allocated in the buddy, buddy must be referenced
226  *      until PA is linked to allocation group to avoid concurrent buddy init
227  *    - use inode PA
228  *      we need to make sure that either on-disk bitmap or PA has uptodate data
229  *      given (3) we care that PA-=N operation doesn't interfere with init
230  *    - discard inode PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *    - use locality group PA
233  *      again PA-=N must be serialized with init
234  *    - discard locality group PA
235  *      the simplest way would be to have buddy initialized by the discard
236  *  - new PA vs.
237  *    - use inode PA
238  *      i_data_sem serializes them
239  *    - discard inode PA
240  *      discard process must wait until PA isn't used by another process
241  *    - use locality group PA
242  *      some mutex should serialize them
243  *    - discard locality group PA
244  *      discard process must wait until PA isn't used by another process
245  *  - use inode PA
246  *    - use inode PA
247  *      i_data_sem or another mutex should serializes them
248  *    - discard inode PA
249  *      discard process must wait until PA isn't used by another process
250  *    - use locality group PA
251  *      nothing wrong here -- they're different PAs covering different blocks
252  *    - discard locality group PA
253  *      discard process must wait until PA isn't used by another process
254  *
255  * now we're ready to make few consequences:
256  *  - PA is referenced and while it is no discard is possible
257  *  - PA is referenced until block isn't marked in on-disk bitmap
258  *  - PA changes only after on-disk bitmap
259  *  - discard must not compete with init. either init is done before
260  *    any discard or they're serialized somehow
261  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
262  *
263  * a special case when we've used PA to emptiness. no need to modify buddy
264  * in this case, but we should care about concurrent init
265  *
266  */
267
268  /*
269  * Logic in few words:
270  *
271  *  - allocation:
272  *    load group
273  *    find blocks
274  *    mark bits in on-disk bitmap
275  *    release group
276  *
277  *  - use preallocation:
278  *    find proper PA (per-inode or group)
279  *    load group
280  *    mark bits in on-disk bitmap
281  *    release group
282  *    release PA
283  *
284  *  - free:
285  *    load group
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - discard preallocations in group:
290  *    mark PAs deleted
291  *    move them onto local list
292  *    load on-disk bitmap
293  *    load group
294  *    remove PA from object (inode or locality group)
295  *    mark free blocks in-core
296  *
297  *  - discard inode's preallocations:
298  */
299
300 /*
301  * Locking rules
302  *
303  * Locks:
304  *  - bitlock on a group        (group)
305  *  - object (inode/locality)   (object)
306  *  - per-pa lock               (pa)
307  *
308  * Paths:
309  *  - new pa
310  *    object
311  *    group
312  *
313  *  - find and use pa:
314  *    pa
315  *
316  *  - release consumed pa:
317  *    pa
318  *    group
319  *    object
320  *
321  *  - generate in-core bitmap:
322  *    group
323  *        pa
324  *
325  *  - discard all for given object (inode, locality group):
326  *    object
327  *        pa
328  *    group
329  *
330  *  - discard all for given group:
331  *    group
332  *        pa
333  *    group
334  *        object
335  *
336  */
337 static struct kmem_cache *ext4_pspace_cachep;
338 static struct kmem_cache *ext4_ac_cachep;
339 static struct kmem_cache *ext4_free_ext_cachep;
340 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
341                                         ext4_group_t group);
342 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
343                                                 ext4_group_t group);
344 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
345
346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 {
348 #if BITS_PER_LONG == 64
349         *bit += ((unsigned long) addr & 7UL) << 3;
350         addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352         *bit += ((unsigned long) addr & 3UL) << 3;
353         addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357         return addr;
358 }
359
360 static inline int mb_test_bit(int bit, void *addr)
361 {
362         /*
363          * ext4_test_bit on architecture like powerpc
364          * needs unsigned long aligned address
365          */
366         addr = mb_correct_addr_and_bit(&bit, addr);
367         return ext4_test_bit(bit, addr);
368 }
369
370 static inline void mb_set_bit(int bit, void *addr)
371 {
372         addr = mb_correct_addr_and_bit(&bit, addr);
373         ext4_set_bit(bit, addr);
374 }
375
376 static inline void mb_clear_bit(int bit, void *addr)
377 {
378         addr = mb_correct_addr_and_bit(&bit, addr);
379         ext4_clear_bit(bit, addr);
380 }
381
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384         int fix = 0, ret, tmpmax;
385         addr = mb_correct_addr_and_bit(&fix, addr);
386         tmpmax = max + fix;
387         start += fix;
388
389         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390         if (ret > max)
391                 return max;
392         return ret;
393 }
394
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397         int fix = 0, ret, tmpmax;
398         addr = mb_correct_addr_and_bit(&fix, addr);
399         tmpmax = max + fix;
400         start += fix;
401
402         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403         if (ret > max)
404                 return max;
405         return ret;
406 }
407
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410         char *bb;
411
412         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413         BUG_ON(max == NULL);
414
415         if (order > e4b->bd_blkbits + 1) {
416                 *max = 0;
417                 return NULL;
418         }
419
420         /* at order 0 we see each particular block */
421         *max = 1 << (e4b->bd_blkbits + 3);
422         if (order == 0)
423                 return EXT4_MB_BITMAP(e4b);
424
425         bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427
428         return bb;
429 }
430
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433                            int first, int count)
434 {
435         int i;
436         struct super_block *sb = e4b->bd_sb;
437
438         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439                 return;
440         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
441         for (i = 0; i < count; i++) {
442                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443                         ext4_fsblk_t blocknr;
444                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445                         blocknr += first + i;
446                         blocknr +=
447                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448                         ext4_grp_locked_error(sb, e4b->bd_group,
449                                    __func__, "double-free of inode"
450                                    " %lu's block %llu(bit %u in group %u)",
451                                    inode ? inode->i_ino : 0, blocknr,
452                                    first + i, e4b->bd_group);
453                 }
454                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455         }
456 }
457
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460         int i;
461
462         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463                 return;
464         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
465         for (i = 0; i < count; i++) {
466                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468         }
469 }
470
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474                 unsigned char *b1, *b2;
475                 int i;
476                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477                 b2 = (unsigned char *) bitmap;
478                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479                         if (b1[i] != b2[i]) {
480                                 printk(KERN_ERR "corruption in group %u "
481                                        "at byte %u(%u): %x in copy != %x "
482                                        "on disk/prealloc\n",
483                                        e4b->bd_group, i, i * 8, b1[i], b2[i]);
484                                 BUG();
485                         }
486                 }
487         }
488 }
489
490 #else
491 static inline void mb_free_blocks_double(struct inode *inode,
492                                 struct ext4_buddy *e4b, int first, int count)
493 {
494         return;
495 }
496 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
497                                                 int first, int count)
498 {
499         return;
500 }
501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 {
503         return;
504 }
505 #endif
506
507 #ifdef AGGRESSIVE_CHECK
508
509 #define MB_CHECK_ASSERT(assert)                                         \
510 do {                                                                    \
511         if (!(assert)) {                                                \
512                 printk(KERN_EMERG                                       \
513                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514                         function, file, line, # assert);                \
515                 BUG();                                                  \
516         }                                                               \
517 } while (0)
518
519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
520                                 const char *function, int line)
521 {
522         struct super_block *sb = e4b->bd_sb;
523         int order = e4b->bd_blkbits + 1;
524         int max;
525         int max2;
526         int i;
527         int j;
528         int k;
529         int count;
530         struct ext4_group_info *grp;
531         int fragments = 0;
532         int fstart;
533         struct list_head *cur;
534         void *buddy;
535         void *buddy2;
536
537         {
538                 static int mb_check_counter;
539                 if (mb_check_counter++ % 100 != 0)
540                         return 0;
541         }
542
543         while (order > 1) {
544                 buddy = mb_find_buddy(e4b, order, &max);
545                 MB_CHECK_ASSERT(buddy);
546                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
547                 MB_CHECK_ASSERT(buddy2);
548                 MB_CHECK_ASSERT(buddy != buddy2);
549                 MB_CHECK_ASSERT(max * 2 == max2);
550
551                 count = 0;
552                 for (i = 0; i < max; i++) {
553
554                         if (mb_test_bit(i, buddy)) {
555                                 /* only single bit in buddy2 may be 1 */
556                                 if (!mb_test_bit(i << 1, buddy2)) {
557                                         MB_CHECK_ASSERT(
558                                                 mb_test_bit((i<<1)+1, buddy2));
559                                 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
560                                         MB_CHECK_ASSERT(
561                                                 mb_test_bit(i << 1, buddy2));
562                                 }
563                                 continue;
564                         }
565
566                         /* both bits in buddy2 must be 0 */
567                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
568                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
569
570                         for (j = 0; j < (1 << order); j++) {
571                                 k = (i * (1 << order)) + j;
572                                 MB_CHECK_ASSERT(
573                                         !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
574                         }
575                         count++;
576                 }
577                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
578                 order--;
579         }
580
581         fstart = -1;
582         buddy = mb_find_buddy(e4b, 0, &max);
583         for (i = 0; i < max; i++) {
584                 if (!mb_test_bit(i, buddy)) {
585                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
586                         if (fstart == -1) {
587                                 fragments++;
588                                 fstart = i;
589                         }
590                         continue;
591                 }
592                 fstart = -1;
593                 /* check used bits only */
594                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
595                         buddy2 = mb_find_buddy(e4b, j, &max2);
596                         k = i >> j;
597                         MB_CHECK_ASSERT(k < max2);
598                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
599                 }
600         }
601         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
602         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
603
604         grp = ext4_get_group_info(sb, e4b->bd_group);
605         buddy = mb_find_buddy(e4b, 0, &max);
606         list_for_each(cur, &grp->bb_prealloc_list) {
607                 ext4_group_t groupnr;
608                 struct ext4_prealloc_space *pa;
609                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
610                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
611                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
612                 for (i = 0; i < pa->pa_len; i++)
613                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
614         }
615         return 0;
616 }
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
619                                         __FILE__, __func__, __LINE__)
620 #else
621 #define mb_check_buddy(e4b)
622 #endif
623
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block *sb,
626                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
627                                         struct ext4_group_info *grp)
628 {
629         struct ext4_sb_info *sbi = EXT4_SB(sb);
630         ext4_grpblk_t min;
631         ext4_grpblk_t max;
632         ext4_grpblk_t chunk;
633         unsigned short border;
634
635         BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
636
637         border = 2 << sb->s_blocksize_bits;
638
639         while (len > 0) {
640                 /* find how many blocks can be covered since this position */
641                 max = ffs(first | border) - 1;
642
643                 /* find how many blocks of power 2 we need to mark */
644                 min = fls(len) - 1;
645
646                 if (max < min)
647                         min = max;
648                 chunk = 1 << min;
649
650                 /* mark multiblock chunks only */
651                 grp->bb_counters[min]++;
652                 if (min > 0)
653                         mb_clear_bit(first >> min,
654                                      buddy + sbi->s_mb_offsets[min]);
655
656                 len -= chunk;
657                 first += chunk;
658         }
659 }
660
661 static noinline_for_stack
662 void ext4_mb_generate_buddy(struct super_block *sb,
663                                 void *buddy, void *bitmap, ext4_group_t group)
664 {
665         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
666         ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
667         ext4_grpblk_t i = 0;
668         ext4_grpblk_t first;
669         ext4_grpblk_t len;
670         unsigned free = 0;
671         unsigned fragments = 0;
672         unsigned long long period = get_cycles();
673
674         /* initialize buddy from bitmap which is aggregation
675          * of on-disk bitmap and preallocations */
676         i = mb_find_next_zero_bit(bitmap, max, 0);
677         grp->bb_first_free = i;
678         while (i < max) {
679                 fragments++;
680                 first = i;
681                 i = mb_find_next_bit(bitmap, max, i);
682                 len = i - first;
683                 free += len;
684                 if (len > 1)
685                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
686                 else
687                         grp->bb_counters[0]++;
688                 if (i < max)
689                         i = mb_find_next_zero_bit(bitmap, max, i);
690         }
691         grp->bb_fragments = fragments;
692
693         if (free != grp->bb_free) {
694                 ext4_grp_locked_error(sb, group,  __func__,
695                         "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
696                         group, free, grp->bb_free);
697                 /*
698                  * If we intent to continue, we consider group descritor
699                  * corrupt and update bb_free using bitmap value
700                  */
701                 grp->bb_free = free;
702         }
703
704         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
705
706         period = get_cycles() - period;
707         spin_lock(&EXT4_SB(sb)->s_bal_lock);
708         EXT4_SB(sb)->s_mb_buddies_generated++;
709         EXT4_SB(sb)->s_mb_generation_time += period;
710         spin_unlock(&EXT4_SB(sb)->s_bal_lock);
711 }
712
713 /* The buddy information is attached the buddy cache inode
714  * for convenience. The information regarding each group
715  * is loaded via ext4_mb_load_buddy. The information involve
716  * block bitmap and buddy information. The information are
717  * stored in the inode as
718  *
719  * {                        page                        }
720  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
721  *
722  *
723  * one block each for bitmap and buddy information.
724  * So for each group we take up 2 blocks. A page can
725  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
726  * So it can have information regarding groups_per_page which
727  * is blocks_per_page/2
728  */
729
730 static int ext4_mb_init_cache(struct page *page, char *incore)
731 {
732         ext4_group_t ngroups;
733         int blocksize;
734         int blocks_per_page;
735         int groups_per_page;
736         int err = 0;
737         int i;
738         ext4_group_t first_group;
739         int first_block;
740         struct super_block *sb;
741         struct buffer_head *bhs;
742         struct buffer_head **bh;
743         struct inode *inode;
744         char *data;
745         char *bitmap;
746
747         mb_debug(1, "init page %lu\n", page->index);
748
749         inode = page->mapping->host;
750         sb = inode->i_sb;
751         ngroups = ext4_get_groups_count(sb);
752         blocksize = 1 << inode->i_blkbits;
753         blocks_per_page = PAGE_CACHE_SIZE / blocksize;
754
755         groups_per_page = blocks_per_page >> 1;
756         if (groups_per_page == 0)
757                 groups_per_page = 1;
758
759         /* allocate buffer_heads to read bitmaps */
760         if (groups_per_page > 1) {
761                 err = -ENOMEM;
762                 i = sizeof(struct buffer_head *) * groups_per_page;
763                 bh = kzalloc(i, GFP_NOFS);
764                 if (bh == NULL)
765                         goto out;
766         } else
767                 bh = &bhs;
768
769         first_group = page->index * blocks_per_page / 2;
770
771         /* read all groups the page covers into the cache */
772         for (i = 0; i < groups_per_page; i++) {
773                 struct ext4_group_desc *desc;
774
775                 if (first_group + i >= ngroups)
776                         break;
777
778                 err = -EIO;
779                 desc = ext4_get_group_desc(sb, first_group + i, NULL);
780                 if (desc == NULL)
781                         goto out;
782
783                 err = -ENOMEM;
784                 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
785                 if (bh[i] == NULL)
786                         goto out;
787
788                 if (bitmap_uptodate(bh[i]))
789                         continue;
790
791                 lock_buffer(bh[i]);
792                 if (bitmap_uptodate(bh[i])) {
793                         unlock_buffer(bh[i]);
794                         continue;
795                 }
796                 ext4_lock_group(sb, first_group + i);
797                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
798                         ext4_init_block_bitmap(sb, bh[i],
799                                                 first_group + i, desc);
800                         set_bitmap_uptodate(bh[i]);
801                         set_buffer_uptodate(bh[i]);
802                         ext4_unlock_group(sb, first_group + i);
803                         unlock_buffer(bh[i]);
804                         continue;
805                 }
806                 ext4_unlock_group(sb, first_group + i);
807                 if (buffer_uptodate(bh[i])) {
808                         /*
809                          * if not uninit if bh is uptodate,
810                          * bitmap is also uptodate
811                          */
812                         set_bitmap_uptodate(bh[i]);
813                         unlock_buffer(bh[i]);
814                         continue;
815                 }
816                 get_bh(bh[i]);
817                 /*
818                  * submit the buffer_head for read. We can
819                  * safely mark the bitmap as uptodate now.
820                  * We do it here so the bitmap uptodate bit
821                  * get set with buffer lock held.
822                  */
823                 set_bitmap_uptodate(bh[i]);
824                 bh[i]->b_end_io = end_buffer_read_sync;
825                 submit_bh(READ, bh[i]);
826                 mb_debug(1, "read bitmap for group %u\n", first_group + i);
827         }
828
829         /* wait for I/O completion */
830         for (i = 0; i < groups_per_page && bh[i]; i++)
831                 wait_on_buffer(bh[i]);
832
833         err = -EIO;
834         for (i = 0; i < groups_per_page && bh[i]; i++)
835                 if (!buffer_uptodate(bh[i]))
836                         goto out;
837
838         err = 0;
839         first_block = page->index * blocks_per_page;
840         /* init the page  */
841         memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
842         for (i = 0; i < blocks_per_page; i++) {
843                 int group;
844                 struct ext4_group_info *grinfo;
845
846                 group = (first_block + i) >> 1;
847                 if (group >= ngroups)
848                         break;
849
850                 /*
851                  * data carry information regarding this
852                  * particular group in the format specified
853                  * above
854                  *
855                  */
856                 data = page_address(page) + (i * blocksize);
857                 bitmap = bh[group - first_group]->b_data;
858
859                 /*
860                  * We place the buddy block and bitmap block
861                  * close together
862                  */
863                 if ((first_block + i) & 1) {
864                         /* this is block of buddy */
865                         BUG_ON(incore == NULL);
866                         mb_debug(1, "put buddy for group %u in page %lu/%x\n",
867                                 group, page->index, i * blocksize);
868                         grinfo = ext4_get_group_info(sb, group);
869                         grinfo->bb_fragments = 0;
870                         memset(grinfo->bb_counters, 0,
871                                sizeof(*grinfo->bb_counters) *
872                                 (sb->s_blocksize_bits+2));
873                         /*
874                          * incore got set to the group block bitmap below
875                          */
876                         ext4_lock_group(sb, group);
877                         ext4_mb_generate_buddy(sb, data, incore, group);
878                         ext4_unlock_group(sb, group);
879                         incore = NULL;
880                 } else {
881                         /* this is block of bitmap */
882                         BUG_ON(incore != NULL);
883                         mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
884                                 group, page->index, i * blocksize);
885
886                         /* see comments in ext4_mb_put_pa() */
887                         ext4_lock_group(sb, group);
888                         memcpy(data, bitmap, blocksize);
889
890                         /* mark all preallocated blks used in in-core bitmap */
891                         ext4_mb_generate_from_pa(sb, data, group);
892                         ext4_mb_generate_from_freelist(sb, data, group);
893                         ext4_unlock_group(sb, group);
894
895                         /* set incore so that the buddy information can be
896                          * generated using this
897                          */
898                         incore = data;
899                 }
900         }
901         SetPageUptodate(page);
902
903 out:
904         if (bh) {
905                 for (i = 0; i < groups_per_page && bh[i]; i++)
906                         brelse(bh[i]);
907                 if (bh != &bhs)
908                         kfree(bh);
909         }
910         return err;
911 }
912
913 static noinline_for_stack
914 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
915 {
916
917         int ret = 0;
918         void *bitmap;
919         int blocks_per_page;
920         int block, pnum, poff;
921         int num_grp_locked = 0;
922         struct ext4_group_info *this_grp;
923         struct ext4_sb_info *sbi = EXT4_SB(sb);
924         struct inode *inode = sbi->s_buddy_cache;
925         struct page *page = NULL, *bitmap_page = NULL;
926
927         mb_debug(1, "init group %u\n", group);
928         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
929         this_grp = ext4_get_group_info(sb, group);
930         /*
931          * This ensures we don't add group
932          * to this buddy cache via resize
933          */
934         num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
935         if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
936                 /*
937                  * somebody initialized the group
938                  * return without doing anything
939                  */
940                 ret = 0;
941                 goto err;
942         }
943         /*
944          * the buddy cache inode stores the block bitmap
945          * and buddy information in consecutive blocks.
946          * So for each group we need two blocks.
947          */
948         block = group * 2;
949         pnum = block / blocks_per_page;
950         poff = block % blocks_per_page;
951         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
952         if (page) {
953                 BUG_ON(page->mapping != inode->i_mapping);
954                 ret = ext4_mb_init_cache(page, NULL);
955                 if (ret) {
956                         unlock_page(page);
957                         goto err;
958                 }
959                 unlock_page(page);
960         }
961         if (page == NULL || !PageUptodate(page)) {
962                 ret = -EIO;
963                 goto err;
964         }
965         mark_page_accessed(page);
966         bitmap_page = page;
967         bitmap = page_address(page) + (poff * sb->s_blocksize);
968
969         /* init buddy cache */
970         block++;
971         pnum = block / blocks_per_page;
972         poff = block % blocks_per_page;
973         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
974         if (page == bitmap_page) {
975                 /*
976                  * If both the bitmap and buddy are in
977                  * the same page we don't need to force
978                  * init the buddy
979                  */
980                 unlock_page(page);
981         } else if (page) {
982                 BUG_ON(page->mapping != inode->i_mapping);
983                 ret = ext4_mb_init_cache(page, bitmap);
984                 if (ret) {
985                         unlock_page(page);
986                         goto err;
987                 }
988                 unlock_page(page);
989         }
990         if (page == NULL || !PageUptodate(page)) {
991                 ret = -EIO;
992                 goto err;
993         }
994         mark_page_accessed(page);
995 err:
996         ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
997         if (bitmap_page)
998                 page_cache_release(bitmap_page);
999         if (page)
1000                 page_cache_release(page);
1001         return ret;
1002 }
1003
1004 static noinline_for_stack int
1005 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1006                                         struct ext4_buddy *e4b)
1007 {
1008         int blocks_per_page;
1009         int block;
1010         int pnum;
1011         int poff;
1012         struct page *page;
1013         int ret;
1014         struct ext4_group_info *grp;
1015         struct ext4_sb_info *sbi = EXT4_SB(sb);
1016         struct inode *inode = sbi->s_buddy_cache;
1017
1018         mb_debug(1, "load group %u\n", group);
1019
1020         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1021         grp = ext4_get_group_info(sb, group);
1022
1023         e4b->bd_blkbits = sb->s_blocksize_bits;
1024         e4b->bd_info = ext4_get_group_info(sb, group);
1025         e4b->bd_sb = sb;
1026         e4b->bd_group = group;
1027         e4b->bd_buddy_page = NULL;
1028         e4b->bd_bitmap_page = NULL;
1029         e4b->alloc_semp = &grp->alloc_sem;
1030
1031         /* Take the read lock on the group alloc
1032          * sem. This would make sure a parallel
1033          * ext4_mb_init_group happening on other
1034          * groups mapped by the page is blocked
1035          * till we are done with allocation
1036          */
1037         down_read(e4b->alloc_semp);
1038
1039         /*
1040          * the buddy cache inode stores the block bitmap
1041          * and buddy information in consecutive blocks.
1042          * So for each group we need two blocks.
1043          */
1044         block = group * 2;
1045         pnum = block / blocks_per_page;
1046         poff = block % blocks_per_page;
1047
1048         /* we could use find_or_create_page(), but it locks page
1049          * what we'd like to avoid in fast path ... */
1050         page = find_get_page(inode->i_mapping, pnum);
1051         if (page == NULL || !PageUptodate(page)) {
1052                 if (page)
1053                         /*
1054                          * drop the page reference and try
1055                          * to get the page with lock. If we
1056                          * are not uptodate that implies
1057                          * somebody just created the page but
1058                          * is yet to initialize the same. So
1059                          * wait for it to initialize.
1060                          */
1061                         page_cache_release(page);
1062                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1063                 if (page) {
1064                         BUG_ON(page->mapping != inode->i_mapping);
1065                         if (!PageUptodate(page)) {
1066                                 ret = ext4_mb_init_cache(page, NULL);
1067                                 if (ret) {
1068                                         unlock_page(page);
1069                                         goto err;
1070                                 }
1071                                 mb_cmp_bitmaps(e4b, page_address(page) +
1072                                                (poff * sb->s_blocksize));
1073                         }
1074                         unlock_page(page);
1075                 }
1076         }
1077         if (page == NULL || !PageUptodate(page)) {
1078                 ret = -EIO;
1079                 goto err;
1080         }
1081         e4b->bd_bitmap_page = page;
1082         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1083         mark_page_accessed(page);
1084
1085         block++;
1086         pnum = block / blocks_per_page;
1087         poff = block % blocks_per_page;
1088
1089         page = find_get_page(inode->i_mapping, pnum);
1090         if (page == NULL || !PageUptodate(page)) {
1091                 if (page)
1092                         page_cache_release(page);
1093                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1094                 if (page) {
1095                         BUG_ON(page->mapping != inode->i_mapping);
1096                         if (!PageUptodate(page)) {
1097                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1098                                 if (ret) {
1099                                         unlock_page(page);
1100                                         goto err;
1101                                 }
1102                         }
1103                         unlock_page(page);
1104                 }
1105         }
1106         if (page == NULL || !PageUptodate(page)) {
1107                 ret = -EIO;
1108                 goto err;
1109         }
1110         e4b->bd_buddy_page = page;
1111         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1112         mark_page_accessed(page);
1113
1114         BUG_ON(e4b->bd_bitmap_page == NULL);
1115         BUG_ON(e4b->bd_buddy_page == NULL);
1116
1117         return 0;
1118
1119 err:
1120         if (e4b->bd_bitmap_page)
1121                 page_cache_release(e4b->bd_bitmap_page);
1122         if (e4b->bd_buddy_page)
1123                 page_cache_release(e4b->bd_buddy_page);
1124         e4b->bd_buddy = NULL;
1125         e4b->bd_bitmap = NULL;
1126
1127         /* Done with the buddy cache */
1128         up_read(e4b->alloc_semp);
1129         return ret;
1130 }
1131
1132 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1133 {
1134         if (e4b->bd_bitmap_page)
1135                 page_cache_release(e4b->bd_bitmap_page);
1136         if (e4b->bd_buddy_page)
1137                 page_cache_release(e4b->bd_buddy_page);
1138         /* Done with the buddy cache */
1139         if (e4b->alloc_semp)
1140                 up_read(e4b->alloc_semp);
1141 }
1142
1143
1144 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1145 {
1146         int order = 1;
1147         void *bb;
1148
1149         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1150         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1151
1152         bb = EXT4_MB_BUDDY(e4b);
1153         while (order <= e4b->bd_blkbits + 1) {
1154                 block = block >> 1;
1155                 if (!mb_test_bit(block, bb)) {
1156                         /* this block is part of buddy of order 'order' */
1157                         return order;
1158                 }
1159                 bb += 1 << (e4b->bd_blkbits - order);
1160                 order++;
1161         }
1162         return 0;
1163 }
1164
1165 static void mb_clear_bits(void *bm, int cur, int len)
1166 {
1167         __u32 *addr;
1168
1169         len = cur + len;
1170         while (cur < len) {
1171                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1172                         /* fast path: clear whole word at once */
1173                         addr = bm + (cur >> 3);
1174                         *addr = 0;
1175                         cur += 32;
1176                         continue;
1177                 }
1178                 mb_clear_bit(cur, bm);
1179                 cur++;
1180         }
1181 }
1182
1183 static void mb_set_bits(void *bm, int cur, int len)
1184 {
1185         __u32 *addr;
1186
1187         len = cur + len;
1188         while (cur < len) {
1189                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1190                         /* fast path: set whole word at once */
1191                         addr = bm + (cur >> 3);
1192                         *addr = 0xffffffff;
1193                         cur += 32;
1194                         continue;
1195                 }
1196                 mb_set_bit(cur, bm);
1197                 cur++;
1198         }
1199 }
1200
1201 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1202                           int first, int count)
1203 {
1204         int block = 0;
1205         int max = 0;
1206         int order;
1207         void *buddy;
1208         void *buddy2;
1209         struct super_block *sb = e4b->bd_sb;
1210
1211         BUG_ON(first + count > (sb->s_blocksize << 3));
1212         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1213         mb_check_buddy(e4b);
1214         mb_free_blocks_double(inode, e4b, first, count);
1215
1216         e4b->bd_info->bb_free += count;
1217         if (first < e4b->bd_info->bb_first_free)
1218                 e4b->bd_info->bb_first_free = first;
1219
1220         /* let's maintain fragments counter */
1221         if (first != 0)
1222                 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1223         if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1224                 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1225         if (block && max)
1226                 e4b->bd_info->bb_fragments--;
1227         else if (!block && !max)
1228                 e4b->bd_info->bb_fragments++;
1229
1230         /* let's maintain buddy itself */
1231         while (count-- > 0) {
1232                 block = first++;
1233                 order = 0;
1234
1235                 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1236                         ext4_fsblk_t blocknr;
1237                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1238                         blocknr += block;
1239                         blocknr +=
1240                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1241                         ext4_grp_locked_error(sb, e4b->bd_group,
1242                                    __func__, "double-free of inode"
1243                                    " %lu's block %llu(bit %u in group %u)",
1244                                    inode ? inode->i_ino : 0, blocknr, block,
1245                                    e4b->bd_group);
1246                 }
1247                 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1248                 e4b->bd_info->bb_counters[order]++;
1249
1250                 /* start of the buddy */
1251                 buddy = mb_find_buddy(e4b, order, &max);
1252
1253                 do {
1254                         block &= ~1UL;
1255                         if (mb_test_bit(block, buddy) ||
1256                                         mb_test_bit(block + 1, buddy))
1257                                 break;
1258
1259                         /* both the buddies are free, try to coalesce them */
1260                         buddy2 = mb_find_buddy(e4b, order + 1, &max);
1261
1262                         if (!buddy2)
1263                                 break;
1264
1265                         if (order > 0) {
1266                                 /* for special purposes, we don't set
1267                                  * free bits in bitmap */
1268                                 mb_set_bit(block, buddy);
1269                                 mb_set_bit(block + 1, buddy);
1270                         }
1271                         e4b->bd_info->bb_counters[order]--;
1272                         e4b->bd_info->bb_counters[order]--;
1273
1274                         block = block >> 1;
1275                         order++;
1276                         e4b->bd_info->bb_counters[order]++;
1277
1278                         mb_clear_bit(block, buddy2);
1279                         buddy = buddy2;
1280                 } while (1);
1281         }
1282         mb_check_buddy(e4b);
1283 }
1284
1285 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1286                                 int needed, struct ext4_free_extent *ex)
1287 {
1288         int next = block;
1289         int max;
1290         int ord;
1291         void *buddy;
1292
1293         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1294         BUG_ON(ex == NULL);
1295
1296         buddy = mb_find_buddy(e4b, order, &max);
1297         BUG_ON(buddy == NULL);
1298         BUG_ON(block >= max);
1299         if (mb_test_bit(block, buddy)) {
1300                 ex->fe_len = 0;
1301                 ex->fe_start = 0;
1302                 ex->fe_group = 0;
1303                 return 0;
1304         }
1305
1306         /* FIXME dorp order completely ? */
1307         if (likely(order == 0)) {
1308                 /* find actual order */
1309                 order = mb_find_order_for_block(e4b, block);
1310                 block = block >> order;
1311         }
1312
1313         ex->fe_len = 1 << order;
1314         ex->fe_start = block << order;
1315         ex->fe_group = e4b->bd_group;
1316
1317         /* calc difference from given start */
1318         next = next - ex->fe_start;
1319         ex->fe_len -= next;
1320         ex->fe_start += next;
1321
1322         while (needed > ex->fe_len &&
1323                (buddy = mb_find_buddy(e4b, order, &max))) {
1324
1325                 if (block + 1 >= max)
1326                         break;
1327
1328                 next = (block + 1) * (1 << order);
1329                 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1330                         break;
1331
1332                 ord = mb_find_order_for_block(e4b, next);
1333
1334                 order = ord;
1335                 block = next >> order;
1336                 ex->fe_len += 1 << order;
1337         }
1338
1339         BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1340         return ex->fe_len;
1341 }
1342
1343 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1344 {
1345         int ord;
1346         int mlen = 0;
1347         int max = 0;
1348         int cur;
1349         int start = ex->fe_start;
1350         int len = ex->fe_len;
1351         unsigned ret = 0;
1352         int len0 = len;
1353         void *buddy;
1354
1355         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1356         BUG_ON(e4b->bd_group != ex->fe_group);
1357         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1358         mb_check_buddy(e4b);
1359         mb_mark_used_double(e4b, start, len);
1360
1361         e4b->bd_info->bb_free -= len;
1362         if (e4b->bd_info->bb_first_free == start)
1363                 e4b->bd_info->bb_first_free += len;
1364
1365         /* let's maintain fragments counter */
1366         if (start != 0)
1367                 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1368         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1369                 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1370         if (mlen && max)
1371                 e4b->bd_info->bb_fragments++;
1372         else if (!mlen && !max)
1373                 e4b->bd_info->bb_fragments--;
1374
1375         /* let's maintain buddy itself */
1376         while (len) {
1377                 ord = mb_find_order_for_block(e4b, start);
1378
1379                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1380                         /* the whole chunk may be allocated at once! */
1381                         mlen = 1 << ord;
1382                         buddy = mb_find_buddy(e4b, ord, &max);
1383                         BUG_ON((start >> ord) >= max);
1384                         mb_set_bit(start >> ord, buddy);
1385                         e4b->bd_info->bb_counters[ord]--;
1386                         start += mlen;
1387                         len -= mlen;
1388                         BUG_ON(len < 0);
1389                         continue;
1390                 }
1391
1392                 /* store for history */
1393                 if (ret == 0)
1394                         ret = len | (ord << 16);
1395
1396                 /* we have to split large buddy */
1397                 BUG_ON(ord <= 0);
1398                 buddy = mb_find_buddy(e4b, ord, &max);
1399                 mb_set_bit(start >> ord, buddy);
1400                 e4b->bd_info->bb_counters[ord]--;
1401
1402                 ord--;
1403                 cur = (start >> ord) & ~1U;
1404                 buddy = mb_find_buddy(e4b, ord, &max);
1405                 mb_clear_bit(cur, buddy);
1406                 mb_clear_bit(cur + 1, buddy);
1407                 e4b->bd_info->bb_counters[ord]++;
1408                 e4b->bd_info->bb_counters[ord]++;
1409         }
1410
1411         mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1412         mb_check_buddy(e4b);
1413
1414         return ret;
1415 }
1416
1417 /*
1418  * Must be called under group lock!
1419  */
1420 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1421                                         struct ext4_buddy *e4b)
1422 {
1423         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1424         int ret;
1425
1426         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1427         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1428
1429         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1430         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1431         ret = mb_mark_used(e4b, &ac->ac_b_ex);
1432
1433         /* preallocation can change ac_b_ex, thus we store actually
1434          * allocated blocks for history */
1435         ac->ac_f_ex = ac->ac_b_ex;
1436
1437         ac->ac_status = AC_STATUS_FOUND;
1438         ac->ac_tail = ret & 0xffff;
1439         ac->ac_buddy = ret >> 16;
1440
1441         /*
1442          * take the page reference. We want the page to be pinned
1443          * so that we don't get a ext4_mb_init_cache_call for this
1444          * group until we update the bitmap. That would mean we
1445          * double allocate blocks. The reference is dropped
1446          * in ext4_mb_release_context
1447          */
1448         ac->ac_bitmap_page = e4b->bd_bitmap_page;
1449         get_page(ac->ac_bitmap_page);
1450         ac->ac_buddy_page = e4b->bd_buddy_page;
1451         get_page(ac->ac_buddy_page);
1452         /* on allocation we use ac to track the held semaphore */
1453         ac->alloc_semp =  e4b->alloc_semp;
1454         e4b->alloc_semp = NULL;
1455         /* store last allocated for subsequent stream allocation */
1456         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1457                 spin_lock(&sbi->s_md_lock);
1458                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1459                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1460                 spin_unlock(&sbi->s_md_lock);
1461         }
1462 }
1463
1464 /*
1465  * regular allocator, for general purposes allocation
1466  */
1467
1468 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1469                                         struct ext4_buddy *e4b,
1470                                         int finish_group)
1471 {
1472         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1473         struct ext4_free_extent *bex = &ac->ac_b_ex;
1474         struct ext4_free_extent *gex = &ac->ac_g_ex;
1475         struct ext4_free_extent ex;
1476         int max;
1477
1478         if (ac->ac_status == AC_STATUS_FOUND)
1479                 return;
1480         /*
1481          * We don't want to scan for a whole year
1482          */
1483         if (ac->ac_found > sbi->s_mb_max_to_scan &&
1484                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1485                 ac->ac_status = AC_STATUS_BREAK;
1486                 return;
1487         }
1488
1489         /*
1490          * Haven't found good chunk so far, let's continue
1491          */
1492         if (bex->fe_len < gex->fe_len)
1493                 return;
1494
1495         if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1496                         && bex->fe_group == e4b->bd_group) {
1497                 /* recheck chunk's availability - we don't know
1498                  * when it was found (within this lock-unlock
1499                  * period or not) */
1500                 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1501                 if (max >= gex->fe_len) {
1502                         ext4_mb_use_best_found(ac, e4b);
1503                         return;
1504                 }
1505         }
1506 }
1507
1508 /*
1509  * The routine checks whether found extent is good enough. If it is,
1510  * then the extent gets marked used and flag is set to the context
1511  * to stop scanning. Otherwise, the extent is compared with the
1512  * previous found extent and if new one is better, then it's stored
1513  * in the context. Later, the best found extent will be used, if
1514  * mballoc can't find good enough extent.
1515  *
1516  * FIXME: real allocation policy is to be designed yet!
1517  */
1518 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1519                                         struct ext4_free_extent *ex,
1520                                         struct ext4_buddy *e4b)
1521 {
1522         struct ext4_free_extent *bex = &ac->ac_b_ex;
1523         struct ext4_free_extent *gex = &ac->ac_g_ex;
1524
1525         BUG_ON(ex->fe_len <= 0);
1526         BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1527         BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1528         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1529
1530         ac->ac_found++;
1531
1532         /*
1533          * The special case - take what you catch first
1534          */
1535         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1536                 *bex = *ex;
1537                 ext4_mb_use_best_found(ac, e4b);
1538                 return;
1539         }
1540
1541         /*
1542          * Let's check whether the chuck is good enough
1543          */
1544         if (ex->fe_len == gex->fe_len) {
1545                 *bex = *ex;
1546                 ext4_mb_use_best_found(ac, e4b);
1547                 return;
1548         }
1549
1550         /*
1551          * If this is first found extent, just store it in the context
1552          */
1553         if (bex->fe_len == 0) {
1554                 *bex = *ex;
1555                 return;
1556         }
1557
1558         /*
1559          * If new found extent is better, store it in the context
1560          */
1561         if (bex->fe_len < gex->fe_len) {
1562                 /* if the request isn't satisfied, any found extent
1563                  * larger than previous best one is better */
1564                 if (ex->fe_len > bex->fe_len)
1565                         *bex = *ex;
1566         } else if (ex->fe_len > gex->fe_len) {
1567                 /* if the request is satisfied, then we try to find
1568                  * an extent that still satisfy the request, but is
1569                  * smaller than previous one */
1570                 if (ex->fe_len < bex->fe_len)
1571                         *bex = *ex;
1572         }
1573
1574         ext4_mb_check_limits(ac, e4b, 0);
1575 }
1576
1577 static noinline_for_stack
1578 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1579                                         struct ext4_buddy *e4b)
1580 {
1581         struct ext4_free_extent ex = ac->ac_b_ex;
1582         ext4_group_t group = ex.fe_group;
1583         int max;
1584         int err;
1585
1586         BUG_ON(ex.fe_len <= 0);
1587         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1588         if (err)
1589                 return err;
1590
1591         ext4_lock_group(ac->ac_sb, group);
1592         max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1593
1594         if (max > 0) {
1595                 ac->ac_b_ex = ex;
1596                 ext4_mb_use_best_found(ac, e4b);
1597         }
1598
1599         ext4_unlock_group(ac->ac_sb, group);
1600         ext4_mb_release_desc(e4b);
1601
1602         return 0;
1603 }
1604
1605 static noinline_for_stack
1606 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1607                                 struct ext4_buddy *e4b)
1608 {
1609         ext4_group_t group = ac->ac_g_ex.fe_group;
1610         int max;
1611         int err;
1612         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1613         struct ext4_super_block *es = sbi->s_es;
1614         struct ext4_free_extent ex;
1615
1616         if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1617                 return 0;
1618
1619         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1620         if (err)
1621                 return err;
1622
1623         ext4_lock_group(ac->ac_sb, group);
1624         max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1625                              ac->ac_g_ex.fe_len, &ex);
1626
1627         if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1628                 ext4_fsblk_t start;
1629
1630                 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1631                         ex.fe_start + le32_to_cpu(es->s_first_data_block);
1632                 /* use do_div to get remainder (would be 64-bit modulo) */
1633                 if (do_div(start, sbi->s_stripe) == 0) {
1634                         ac->ac_found++;
1635                         ac->ac_b_ex = ex;
1636                         ext4_mb_use_best_found(ac, e4b);
1637                 }
1638         } else if (max >= ac->ac_g_ex.fe_len) {
1639                 BUG_ON(ex.fe_len <= 0);
1640                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1641                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1642                 ac->ac_found++;
1643                 ac->ac_b_ex = ex;
1644                 ext4_mb_use_best_found(ac, e4b);
1645         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1646                 /* Sometimes, caller may want to merge even small
1647                  * number of blocks to an existing extent */
1648                 BUG_ON(ex.fe_len <= 0);
1649                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1650                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1651                 ac->ac_found++;
1652                 ac->ac_b_ex = ex;
1653                 ext4_mb_use_best_found(ac, e4b);
1654         }
1655         ext4_unlock_group(ac->ac_sb, group);
1656         ext4_mb_release_desc(e4b);
1657
1658         return 0;
1659 }
1660
1661 /*
1662  * The routine scans buddy structures (not bitmap!) from given order
1663  * to max order and tries to find big enough chunk to satisfy the req
1664  */
1665 static noinline_for_stack
1666 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1667                                         struct ext4_buddy *e4b)
1668 {
1669         struct super_block *sb = ac->ac_sb;
1670         struct ext4_group_info *grp = e4b->bd_info;
1671         void *buddy;
1672         int i;
1673         int k;
1674         int max;
1675
1676         BUG_ON(ac->ac_2order <= 0);
1677         for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1678                 if (grp->bb_counters[i] == 0)
1679                         continue;
1680
1681                 buddy = mb_find_buddy(e4b, i, &max);
1682                 BUG_ON(buddy == NULL);
1683
1684                 k = mb_find_next_zero_bit(buddy, max, 0);
1685                 BUG_ON(k >= max);
1686
1687                 ac->ac_found++;
1688
1689                 ac->ac_b_ex.fe_len = 1 << i;
1690                 ac->ac_b_ex.fe_start = k << i;
1691                 ac->ac_b_ex.fe_group = e4b->bd_group;
1692
1693                 ext4_mb_use_best_found(ac, e4b);
1694
1695                 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1696
1697                 if (EXT4_SB(sb)->s_mb_stats)
1698                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1699
1700                 break;
1701         }
1702 }
1703
1704 /*
1705  * The routine scans the group and measures all found extents.
1706  * In order to optimize scanning, caller must pass number of
1707  * free blocks in the group, so the routine can know upper limit.
1708  */
1709 static noinline_for_stack
1710 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1711                                         struct ext4_buddy *e4b)
1712 {
1713         struct super_block *sb = ac->ac_sb;
1714         void *bitmap = EXT4_MB_BITMAP(e4b);
1715         struct ext4_free_extent ex;
1716         int i;
1717         int free;
1718
1719         free = e4b->bd_info->bb_free;
1720         BUG_ON(free <= 0);
1721
1722         i = e4b->bd_info->bb_first_free;
1723
1724         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1725                 i = mb_find_next_zero_bit(bitmap,
1726                                                 EXT4_BLOCKS_PER_GROUP(sb), i);
1727                 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1728                         /*
1729                          * IF we have corrupt bitmap, we won't find any
1730                          * free blocks even though group info says we
1731                          * we have free blocks
1732                          */
1733                         ext4_grp_locked_error(sb, e4b->bd_group,
1734                                         __func__, "%d free blocks as per "
1735                                         "group info. But bitmap says 0",
1736                                         free);
1737                         break;
1738                 }
1739
1740                 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1741                 BUG_ON(ex.fe_len <= 0);
1742                 if (free < ex.fe_len) {
1743                         ext4_grp_locked_error(sb, e4b->bd_group,
1744                                         __func__, "%d free blocks as per "
1745                                         "group info. But got %d blocks",
1746                                         free, ex.fe_len);
1747                         /*
1748                          * The number of free blocks differs. This mostly
1749                          * indicate that the bitmap is corrupt. So exit
1750                          * without claiming the space.
1751                          */
1752                         break;
1753                 }
1754
1755                 ext4_mb_measure_extent(ac, &ex, e4b);
1756
1757                 i += ex.fe_len;
1758                 free -= ex.fe_len;
1759         }
1760
1761         ext4_mb_check_limits(ac, e4b, 1);
1762 }
1763
1764 /*
1765  * This is a special case for storages like raid5
1766  * we try to find stripe-aligned chunks for stripe-size requests
1767  * XXX should do so at least for multiples of stripe size as well
1768  */
1769 static noinline_for_stack
1770 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1771                                  struct ext4_buddy *e4b)
1772 {
1773         struct super_block *sb = ac->ac_sb;
1774         struct ext4_sb_info *sbi = EXT4_SB(sb);
1775         void *bitmap = EXT4_MB_BITMAP(e4b);
1776         struct ext4_free_extent ex;
1777         ext4_fsblk_t first_group_block;
1778         ext4_fsblk_t a;
1779         ext4_grpblk_t i;
1780         int max;
1781
1782         BUG_ON(sbi->s_stripe == 0);
1783
1784         /* find first stripe-aligned block in group */
1785         first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1786                 + le32_to_cpu(sbi->s_es->s_first_data_block);
1787         a = first_group_block + sbi->s_stripe - 1;
1788         do_div(a, sbi->s_stripe);
1789         i = (a * sbi->s_stripe) - first_group_block;
1790
1791         while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1792                 if (!mb_test_bit(i, bitmap)) {
1793                         max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1794                         if (max >= sbi->s_stripe) {
1795                                 ac->ac_found++;
1796                                 ac->ac_b_ex = ex;
1797                                 ext4_mb_use_best_found(ac, e4b);
1798                                 break;
1799                         }
1800                 }
1801                 i += sbi->s_stripe;
1802         }
1803 }
1804
1805 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1806                                 ext4_group_t group, int cr)
1807 {
1808         unsigned free, fragments;
1809         unsigned i, bits;
1810         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1811         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1812
1813         BUG_ON(cr < 0 || cr >= 4);
1814         BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1815
1816         free = grp->bb_free;
1817         fragments = grp->bb_fragments;
1818         if (free == 0)
1819                 return 0;
1820         if (fragments == 0)
1821                 return 0;
1822
1823         switch (cr) {
1824         case 0:
1825                 BUG_ON(ac->ac_2order == 0);
1826
1827                 /* Avoid using the first bg of a flexgroup for data files */
1828                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1829                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1830                     ((group % flex_size) == 0))
1831                         return 0;
1832
1833                 bits = ac->ac_sb->s_blocksize_bits + 1;
1834                 for (i = ac->ac_2order; i <= bits; i++)
1835                         if (grp->bb_counters[i] > 0)
1836                                 return 1;
1837                 break;
1838         case 1:
1839                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1840                         return 1;
1841                 break;
1842         case 2:
1843                 if (free >= ac->ac_g_ex.fe_len)
1844                         return 1;
1845                 break;
1846         case 3:
1847                 return 1;
1848         default:
1849                 BUG();
1850         }
1851
1852         return 0;
1853 }
1854
1855 /*
1856  * lock the group_info alloc_sem of all the groups
1857  * belonging to the same buddy cache page. This
1858  * make sure other parallel operation on the buddy
1859  * cache doesn't happen  whild holding the buddy cache
1860  * lock
1861  */
1862 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1863 {
1864         int i;
1865         int block, pnum;
1866         int blocks_per_page;
1867         int groups_per_page;
1868         ext4_group_t ngroups = ext4_get_groups_count(sb);
1869         ext4_group_t first_group;
1870         struct ext4_group_info *grp;
1871
1872         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1873         /*
1874          * the buddy cache inode stores the block bitmap
1875          * and buddy information in consecutive blocks.
1876          * So for each group we need two blocks.
1877          */
1878         block = group * 2;
1879         pnum = block / blocks_per_page;
1880         first_group = pnum * blocks_per_page / 2;
1881
1882         groups_per_page = blocks_per_page >> 1;
1883         if (groups_per_page == 0)
1884                 groups_per_page = 1;
1885         /* read all groups the page covers into the cache */
1886         for (i = 0; i < groups_per_page; i++) {
1887
1888                 if ((first_group + i) >= ngroups)
1889                         break;
1890                 grp = ext4_get_group_info(sb, first_group + i);
1891                 /* take all groups write allocation
1892                  * semaphore. This make sure there is
1893                  * no block allocation going on in any
1894                  * of that groups
1895                  */
1896                 down_write_nested(&grp->alloc_sem, i);
1897         }
1898         return i;
1899 }
1900
1901 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1902                                         ext4_group_t group, int locked_group)
1903 {
1904         int i;
1905         int block, pnum;
1906         int blocks_per_page;
1907         ext4_group_t first_group;
1908         struct ext4_group_info *grp;
1909
1910         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1911         /*
1912          * the buddy cache inode stores the block bitmap
1913          * and buddy information in consecutive blocks.
1914          * So for each group we need two blocks.
1915          */
1916         block = group * 2;
1917         pnum = block / blocks_per_page;
1918         first_group = pnum * blocks_per_page / 2;
1919         /* release locks on all the groups */
1920         for (i = 0; i < locked_group; i++) {
1921
1922                 grp = ext4_get_group_info(sb, first_group + i);
1923                 /* take all groups write allocation
1924                  * semaphore. This make sure there is
1925                  * no block allocation going on in any
1926                  * of that groups
1927                  */
1928                 up_write(&grp->alloc_sem);
1929         }
1930
1931 }
1932
1933 static noinline_for_stack int
1934 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1935 {
1936         ext4_group_t ngroups, group, i;
1937         int cr;
1938         int err = 0;
1939         int bsbits;
1940         struct ext4_sb_info *sbi;
1941         struct super_block *sb;
1942         struct ext4_buddy e4b;
1943
1944         sb = ac->ac_sb;
1945         sbi = EXT4_SB(sb);
1946         ngroups = ext4_get_groups_count(sb);
1947         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1948
1949         /* first, try the goal */
1950         err = ext4_mb_find_by_goal(ac, &e4b);
1951         if (err || ac->ac_status == AC_STATUS_FOUND)
1952                 goto out;
1953
1954         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1955                 goto out;
1956
1957         /*
1958          * ac->ac2_order is set only if the fe_len is a power of 2
1959          * if ac2_order is set we also set criteria to 0 so that we
1960          * try exact allocation using buddy.
1961          */
1962         i = fls(ac->ac_g_ex.fe_len);
1963         ac->ac_2order = 0;
1964         /*
1965          * We search using buddy data only if the order of the request
1966          * is greater than equal to the sbi_s_mb_order2_reqs
1967          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1968          */
1969         if (i >= sbi->s_mb_order2_reqs) {
1970                 /*
1971                  * This should tell if fe_len is exactly power of 2
1972                  */
1973                 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1974                         ac->ac_2order = i - 1;
1975         }
1976
1977         bsbits = ac->ac_sb->s_blocksize_bits;
1978
1979         /* if stream allocation is enabled, use global goal */
1980         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1981                 /* TBD: may be hot point */
1982                 spin_lock(&sbi->s_md_lock);
1983                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1984                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1985                 spin_unlock(&sbi->s_md_lock);
1986         }
1987
1988         /* Let's just scan groups to find more-less suitable blocks */
1989         cr = ac->ac_2order ? 0 : 1;
1990         /*
1991          * cr == 0 try to get exact allocation,
1992          * cr == 3  try to get anything
1993          */
1994 repeat:
1995         for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1996                 ac->ac_criteria = cr;
1997                 /*
1998                  * searching for the right group start
1999                  * from the goal value specified
2000                  */
2001                 group = ac->ac_g_ex.fe_group;
2002
2003                 for (i = 0; i < ngroups; group++, i++) {
2004                         struct ext4_group_info *grp;
2005                         struct ext4_group_desc *desc;
2006
2007                         if (group == ngroups)
2008                                 group = 0;
2009
2010                         /* quick check to skip empty groups */
2011                         grp = ext4_get_group_info(sb, group);
2012                         if (grp->bb_free == 0)
2013                                 continue;
2014
2015                         /*
2016                          * if the group is already init we check whether it is
2017                          * a good group and if not we don't load the buddy
2018                          */
2019                         if (EXT4_MB_GRP_NEED_INIT(grp)) {
2020                                 /*
2021                                  * we need full data about the group
2022                                  * to make a good selection
2023                                  */
2024                                 err = ext4_mb_init_group(sb, group);
2025                                 if (err)
2026                                         goto out;
2027                         }
2028
2029                         /*
2030                          * If the particular group doesn't satisfy our
2031                          * criteria we continue with the next group
2032                          */
2033                         if (!ext4_mb_good_group(ac, group, cr))
2034                                 continue;
2035
2036                         err = ext4_mb_load_buddy(sb, group, &e4b);
2037                         if (err)
2038                                 goto out;
2039
2040                         ext4_lock_group(sb, group);
2041                         if (!ext4_mb_good_group(ac, group, cr)) {
2042                                 /* someone did allocation from this group */
2043                                 ext4_unlock_group(sb, group);
2044                                 ext4_mb_release_desc(&e4b);
2045                                 continue;
2046                         }
2047
2048                         ac->ac_groups_scanned++;
2049                         desc = ext4_get_group_desc(sb, group, NULL);
2050                         if (cr == 0)
2051                                 ext4_mb_simple_scan_group(ac, &e4b);
2052                         else if (cr == 1 &&
2053                                         ac->ac_g_ex.fe_len == sbi->s_stripe)
2054                                 ext4_mb_scan_aligned(ac, &e4b);
2055                         else
2056                                 ext4_mb_complex_scan_group(ac, &e4b);
2057
2058                         ext4_unlock_group(sb, group);
2059                         ext4_mb_release_desc(&e4b);
2060
2061                         if (ac->ac_status != AC_STATUS_CONTINUE)
2062                                 break;
2063                 }
2064         }
2065
2066         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2067             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2068                 /*
2069                  * We've been searching too long. Let's try to allocate
2070                  * the best chunk we've found so far
2071                  */
2072
2073                 ext4_mb_try_best_found(ac, &e4b);
2074                 if (ac->ac_status != AC_STATUS_FOUND) {
2075                         /*
2076                          * Someone more lucky has already allocated it.
2077                          * The only thing we can do is just take first
2078                          * found block(s)
2079                         printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2080                          */
2081                         ac->ac_b_ex.fe_group = 0;
2082                         ac->ac_b_ex.fe_start = 0;
2083                         ac->ac_b_ex.fe_len = 0;
2084                         ac->ac_status = AC_STATUS_CONTINUE;
2085                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2086                         cr = 3;
2087                         atomic_inc(&sbi->s_mb_lost_chunks);
2088                         goto repeat;
2089                 }
2090         }
2091 out:
2092         return err;
2093 }
2094
2095 #ifdef EXT4_MB_HISTORY
2096 struct ext4_mb_proc_session {
2097         struct ext4_mb_history *history;
2098         struct super_block *sb;
2099         int start;
2100         int max;
2101 };
2102
2103 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2104                                         struct ext4_mb_history *hs,
2105                                         int first)
2106 {
2107         if (hs == s->history + s->max)
2108                 hs = s->history;
2109         if (!first && hs == s->history + s->start)
2110                 return NULL;
2111         while (hs->orig.fe_len == 0) {
2112                 hs++;
2113                 if (hs == s->history + s->max)
2114                         hs = s->history;
2115                 if (hs == s->history + s->start)
2116                         return NULL;
2117         }
2118         return hs;
2119 }
2120
2121 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2122 {
2123         struct ext4_mb_proc_session *s = seq->private;
2124         struct ext4_mb_history *hs;
2125         int l = *pos;
2126
2127         if (l == 0)
2128                 return SEQ_START_TOKEN;
2129         hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2130         if (!hs)
2131                 return NULL;
2132         while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2133         return hs;
2134 }
2135
2136 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2137                                       loff_t *pos)
2138 {
2139         struct ext4_mb_proc_session *s = seq->private;
2140         struct ext4_mb_history *hs = v;
2141
2142         ++*pos;
2143         if (v == SEQ_START_TOKEN)
2144                 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2145         else
2146                 return ext4_mb_history_skip_empty(s, ++hs, 0);
2147 }
2148
2149 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2150 {
2151         char buf[25], buf2[25], buf3[25], *fmt;
2152         struct ext4_mb_history *hs = v;
2153
2154         if (v == SEQ_START_TOKEN) {
2155                 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2156                                 "%-5s %-2s %-6s %-5s %-5s %-6s\n",
2157                           "pid", "inode", "original", "goal", "result", "found",
2158                            "grps", "cr", "flags", "merge", "tail", "broken");
2159                 return 0;
2160         }
2161
2162         if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2163                 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2164                         "0x%04x %-5s %-5u %-6u\n";
2165                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2166                         hs->result.fe_start, hs->result.fe_len,
2167                         hs->result.fe_logical);
2168                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2169                         hs->orig.fe_start, hs->orig.fe_len,
2170                         hs->orig.fe_logical);
2171                 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2172                         hs->goal.fe_start, hs->goal.fe_len,
2173                         hs->goal.fe_logical);
2174                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2175                                 hs->found, hs->groups, hs->cr, hs->flags,
2176                                 hs->merged ? "M" : "", hs->tail,
2177                                 hs->buddy ? 1 << hs->buddy : 0);
2178         } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2179                 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2180                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2181                         hs->result.fe_start, hs->result.fe_len,
2182                         hs->result.fe_logical);
2183                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2184                         hs->orig.fe_start, hs->orig.fe_len,
2185                         hs->orig.fe_logical);
2186                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2187         } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2188                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2189                         hs->result.fe_start, hs->result.fe_len);
2190                 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2191                                 hs->pid, hs->ino, buf2);
2192         } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2193                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2194                         hs->result.fe_start, hs->result.fe_len);
2195                 seq_printf(seq, "%-5u %-8u %-23s free\n",
2196                                 hs->pid, hs->ino, buf2);
2197         }
2198         return 0;
2199 }
2200
2201 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2202 {
2203 }
2204
2205 static const struct seq_operations ext4_mb_seq_history_ops = {
2206         .start  = ext4_mb_seq_history_start,
2207         .next   = ext4_mb_seq_history_next,
2208         .stop   = ext4_mb_seq_history_stop,
2209         .show   = ext4_mb_seq_history_show,
2210 };
2211
2212 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2213 {
2214         struct super_block *sb = PDE(inode)->data;
2215         struct ext4_sb_info *sbi = EXT4_SB(sb);
2216         struct ext4_mb_proc_session *s;
2217         int rc;
2218         int size;
2219
2220         if (unlikely(sbi->s_mb_history == NULL))
2221                 return -ENOMEM;
2222         s = kmalloc(sizeof(*s), GFP_KERNEL);
2223         if (s == NULL)
2224                 return -ENOMEM;
2225         s->sb = sb;
2226         size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2227         s->history = kmalloc(size, GFP_KERNEL);
2228         if (s->history == NULL) {
2229                 kfree(s);
2230                 return -ENOMEM;
2231         }
2232
2233         spin_lock(&sbi->s_mb_history_lock);
2234         memcpy(s->history, sbi->s_mb_history, size);
2235         s->max = sbi->s_mb_history_max;
2236         s->start = sbi->s_mb_history_cur % s->max;
2237         spin_unlock(&sbi->s_mb_history_lock);
2238
2239         rc = seq_open(file, &ext4_mb_seq_history_ops);
2240         if (rc == 0) {
2241                 struct seq_file *m = (struct seq_file *)file->private_data;
2242                 m->private = s;
2243         } else {
2244                 kfree(s->history);
2245                 kfree(s);
2246         }
2247         return rc;
2248
2249 }
2250
2251 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2252 {
2253         struct seq_file *seq = (struct seq_file *)file->private_data;
2254         struct ext4_mb_proc_session *s = seq->private;
2255         kfree(s->history);
2256         kfree(s);
2257         return seq_release(inode, file);
2258 }
2259
2260 static ssize_t ext4_mb_seq_history_write(struct file *file,
2261                                 const char __user *buffer,
2262                                 size_t count, loff_t *ppos)
2263 {
2264         struct seq_file *seq = (struct seq_file *)file->private_data;
2265         struct ext4_mb_proc_session *s = seq->private;
2266         struct super_block *sb = s->sb;
2267         char str[32];
2268         int value;
2269
2270         if (count >= sizeof(str)) {
2271                 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2272                                 "mb_history", (int)sizeof(str));
2273                 return -EOVERFLOW;
2274         }
2275
2276         if (copy_from_user(str, buffer, count))
2277                 return -EFAULT;
2278
2279         value = simple_strtol(str, NULL, 0);
2280         if (value < 0)
2281                 return -ERANGE;
2282         EXT4_SB(sb)->s_mb_history_filter = value;
2283
2284         return count;
2285 }
2286
2287 static const struct file_operations ext4_mb_seq_history_fops = {
2288         .owner          = THIS_MODULE,
2289         .open           = ext4_mb_seq_history_open,
2290         .read           = seq_read,
2291         .write          = ext4_mb_seq_history_write,
2292         .llseek         = seq_lseek,
2293         .release        = ext4_mb_seq_history_release,
2294 };
2295
2296 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2297 {
2298         struct super_block *sb = seq->private;
2299         ext4_group_t group;
2300
2301         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2302                 return NULL;
2303         group = *pos + 1;
2304         return (void *) ((unsigned long) group);
2305 }
2306
2307 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2308 {
2309         struct super_block *sb = seq->private;
2310         ext4_group_t group;
2311
2312         ++*pos;
2313         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2314                 return NULL;
2315         group = *pos + 1;
2316         return (void *) ((unsigned long) group);
2317 }
2318
2319 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2320 {
2321         struct super_block *sb = seq->private;
2322         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2323         int i;
2324         int err;
2325         struct ext4_buddy e4b;
2326         struct sg {
2327                 struct ext4_group_info info;
2328                 ext4_grpblk_t counters[16];
2329         } sg;
2330
2331         group--;
2332         if (group == 0)
2333                 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2334                                 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2335                                   "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2336                            "group", "free", "frags", "first",
2337                            "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2338                            "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2339
2340         i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2341                 sizeof(struct ext4_group_info);
2342         err = ext4_mb_load_buddy(sb, group, &e4b);
2343         if (err) {
2344                 seq_printf(seq, "#%-5u: I/O error\n", group);
2345                 return 0;
2346         }
2347         ext4_lock_group(sb, group);
2348         memcpy(&sg, ext4_get_group_info(sb, group), i);
2349         ext4_unlock_group(sb, group);
2350         ext4_mb_release_desc(&e4b);
2351
2352         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2353                         sg.info.bb_fragments, sg.info.bb_first_free);
2354         for (i = 0; i <= 13; i++)
2355                 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2356                                 sg.info.bb_counters[i] : 0);
2357         seq_printf(seq, " ]\n");
2358
2359         return 0;
2360 }
2361
2362 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2363 {
2364 }
2365
2366 static const struct seq_operations ext4_mb_seq_groups_ops = {
2367         .start  = ext4_mb_seq_groups_start,
2368         .next   = ext4_mb_seq_groups_next,
2369         .stop   = ext4_mb_seq_groups_stop,
2370         .show   = ext4_mb_seq_groups_show,
2371 };
2372
2373 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2374 {
2375         struct super_block *sb = PDE(inode)->data;
2376         int rc;
2377
2378         rc = seq_open(file, &ext4_mb_seq_groups_ops);
2379         if (rc == 0) {
2380                 struct seq_file *m = (struct seq_file *)file->private_data;
2381                 m->private = sb;
2382         }
2383         return rc;
2384
2385 }
2386
2387 static const struct file_operations ext4_mb_seq_groups_fops = {
2388         .owner          = THIS_MODULE,
2389         .open           = ext4_mb_seq_groups_open,
2390         .read           = seq_read,
2391         .llseek         = seq_lseek,
2392         .release        = seq_release,
2393 };
2394
2395 static void ext4_mb_history_release(struct super_block *sb)
2396 {
2397         struct ext4_sb_info *sbi = EXT4_SB(sb);
2398
2399         if (sbi->s_proc != NULL) {
2400                 remove_proc_entry("mb_groups", sbi->s_proc);
2401                 if (sbi->s_mb_history_max)
2402                         remove_proc_entry("mb_history", sbi->s_proc);
2403         }
2404         kfree(sbi->s_mb_history);
2405 }
2406
2407 static void ext4_mb_history_init(struct super_block *sb)
2408 {
2409         struct ext4_sb_info *sbi = EXT4_SB(sb);
2410         int i;
2411
2412         if (sbi->s_proc != NULL) {
2413                 if (sbi->s_mb_history_max)
2414                         proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2415                                          &ext4_mb_seq_history_fops, sb);
2416                 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2417                                  &ext4_mb_seq_groups_fops, sb);
2418         }
2419
2420         sbi->s_mb_history_cur = 0;
2421         spin_lock_init(&sbi->s_mb_history_lock);
2422         i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2423         sbi->s_mb_history = i ? kzalloc(i, GFP_KERNEL) : NULL;
2424         /* if we can't allocate history, then we simple won't use it */
2425 }
2426
2427 static noinline_for_stack void
2428 ext4_mb_store_history(struct ext4_allocation_context *ac)
2429 {
2430         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2431         struct ext4_mb_history h;
2432
2433         if (sbi->s_mb_history == NULL)
2434                 return;
2435
2436         if (!(ac->ac_op & sbi->s_mb_history_filter))
2437                 return;
2438
2439         h.op = ac->ac_op;
2440         h.pid = current->pid;
2441         h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2442         h.orig = ac->ac_o_ex;
2443         h.result = ac->ac_b_ex;
2444         h.flags = ac->ac_flags;
2445         h.found = ac->ac_found;
2446         h.groups = ac->ac_groups_scanned;
2447         h.cr = ac->ac_criteria;
2448         h.tail = ac->ac_tail;
2449         h.buddy = ac->ac_buddy;
2450         h.merged = 0;
2451         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2452                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2453                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2454                         h.merged = 1;
2455                 h.goal = ac->ac_g_ex;
2456                 h.result = ac->ac_f_ex;
2457         }
2458
2459         spin_lock(&sbi->s_mb_history_lock);
2460         memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2461         if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2462                 sbi->s_mb_history_cur = 0;
2463         spin_unlock(&sbi->s_mb_history_lock);
2464 }
2465
2466 #else
2467 #define ext4_mb_history_release(sb)
2468 #define ext4_mb_history_init(sb)
2469 #endif
2470
2471
2472 /* Create and initialize ext4_group_info data for the given group. */
2473 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2474                           struct ext4_group_desc *desc)
2475 {
2476         int i, len;
2477         int metalen = 0;
2478         struct ext4_sb_info *sbi = EXT4_SB(sb);
2479         struct ext4_group_info **meta_group_info;
2480
2481         /*
2482          * First check if this group is the first of a reserved block.
2483          * If it's true, we have to allocate a new table of pointers
2484          * to ext4_group_info structures
2485          */
2486         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2487                 metalen = sizeof(*meta_group_info) <<
2488                         EXT4_DESC_PER_BLOCK_BITS(sb);
2489                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2490                 if (meta_group_info == NULL) {
2491                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2492                                "buddy group\n");
2493                         goto exit_meta_group_info;
2494                 }
2495                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2496                         meta_group_info;
2497         }
2498
2499         /*
2500          * calculate needed size. if change bb_counters size,
2501          * don't forget about ext4_mb_generate_buddy()
2502          */
2503         len = offsetof(typeof(**meta_group_info),
2504                        bb_counters[sb->s_blocksize_bits + 2]);
2505
2506         meta_group_info =
2507                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2508         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2509
2510         meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2511         if (meta_group_info[i] == NULL) {
2512                 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2513                 goto exit_group_info;
2514         }
2515         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2516                 &(meta_group_info[i]->bb_state));
2517
2518         /*
2519          * initialize bb_free to be able to skip
2520          * empty groups without initialization
2521          */
2522         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2523                 meta_group_info[i]->bb_free =
2524                         ext4_free_blocks_after_init(sb, group, desc);
2525         } else {
2526                 meta_group_info[i]->bb_free =
2527                         ext4_free_blks_count(sb, desc);
2528         }
2529
2530         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2531         init_rwsem(&meta_group_info[i]->alloc_sem);
2532         meta_group_info[i]->bb_free_root.rb_node = NULL;
2533
2534 #ifdef DOUBLE_CHECK
2535         {
2536                 struct buffer_head *bh;
2537                 meta_group_info[i]->bb_bitmap =
2538                         kmalloc(sb->s_blocksize, GFP_KERNEL);
2539                 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2540                 bh = ext4_read_block_bitmap(sb, group);
2541                 BUG_ON(bh == NULL);
2542                 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2543                         sb->s_blocksize);
2544                 put_bh(bh);
2545         }
2546 #endif
2547
2548         return 0;
2549
2550 exit_group_info:
2551         /* If a meta_group_info table has been allocated, release it now */
2552         if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2553                 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2554 exit_meta_group_info:
2555         return -ENOMEM;
2556 } /* ext4_mb_add_groupinfo */
2557
2558 static int ext4_mb_init_backend(struct super_block *sb)
2559 {
2560         ext4_group_t ngroups = ext4_get_groups_count(sb);
2561         ext4_group_t i;
2562         struct ext4_sb_info *sbi = EXT4_SB(sb);
2563         struct ext4_super_block *es = sbi->s_es;
2564         int num_meta_group_infos;
2565         int num_meta_group_infos_max;
2566         int array_size;
2567         struct ext4_group_desc *desc;
2568
2569         /* This is the number of blocks used by GDT */
2570         num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2571                                 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2572
2573         /*
2574          * This is the total number of blocks used by GDT including
2575          * the number of reserved blocks for GDT.
2576          * The s_group_info array is allocated with this value
2577          * to allow a clean online resize without a complex
2578          * manipulation of pointer.
2579          * The drawback is the unused memory when no resize
2580          * occurs but it's very low in terms of pages
2581          * (see comments below)
2582          * Need to handle this properly when META_BG resizing is allowed
2583          */
2584         num_meta_group_infos_max = num_meta_group_infos +
2585                                 le16_to_cpu(es->s_reserved_gdt_blocks);
2586
2587         /*
2588          * array_size is the size of s_group_info array. We round it
2589          * to the next power of two because this approximation is done
2590          * internally by kmalloc so we can have some more memory
2591          * for free here (e.g. may be used for META_BG resize).
2592          */
2593         array_size = 1;
2594         while (array_size < sizeof(*sbi->s_group_info) *
2595                num_meta_group_infos_max)
2596                 array_size = array_size << 1;
2597         /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2598          * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2599          * So a two level scheme suffices for now. */
2600         sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2601         if (sbi->s_group_info == NULL) {
2602                 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2603                 return -ENOMEM;
2604         }
2605         sbi->s_buddy_cache = new_inode(sb);
2606         if (sbi->s_buddy_cache == NULL) {
2607                 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2608                 goto err_freesgi;
2609         }
2610         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2611         for (i = 0; i < ngroups; i++) {
2612                 desc = ext4_get_group_desc(sb, i, NULL);
2613                 if (desc == NULL) {
2614                         printk(KERN_ERR
2615                                 "EXT4-fs: can't read descriptor %u\n", i);
2616                         goto err_freebuddy;
2617                 }
2618                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2619                         goto err_freebuddy;
2620         }
2621
2622         return 0;
2623
2624 err_freebuddy:
2625         while (i-- > 0)
2626                 kfree(ext4_get_group_info(sb, i));
2627         i = num_meta_group_infos;
2628         while (i-- > 0)
2629                 kfree(sbi->s_group_info[i]);
2630         iput(sbi->s_buddy_cache);
2631 err_freesgi:
2632         kfree(sbi->s_group_info);
2633         return -ENOMEM;
2634 }
2635
2636 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2637 {
2638         struct ext4_sb_info *sbi = EXT4_SB(sb);
2639         unsigned i, j;
2640         unsigned offset;
2641         unsigned max;
2642         int ret;
2643
2644         i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2645
2646         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2647         if (sbi->s_mb_offsets == NULL) {
2648                 return -ENOMEM;
2649         }
2650
2651         i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2652         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2653         if (sbi->s_mb_maxs == NULL) {
2654                 kfree(sbi->s_mb_offsets);
2655                 return -ENOMEM;
2656         }
2657
2658         /* order 0 is regular bitmap */
2659         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2660         sbi->s_mb_offsets[0] = 0;
2661
2662         i = 1;
2663         offset = 0;
2664         max = sb->s_blocksize << 2;
2665         do {
2666                 sbi->s_mb_offsets[i] = offset;
2667                 sbi->s_mb_maxs[i] = max;
2668                 offset += 1 << (sb->s_blocksize_bits - i);
2669                 max = max >> 1;
2670                 i++;
2671         } while (i <= sb->s_blocksize_bits + 1);
2672
2673         /* init file for buddy data */
2674         ret = ext4_mb_init_backend(sb);
2675         if (ret != 0) {
2676                 kfree(sbi->s_mb_offsets);
2677                 kfree(sbi->s_mb_maxs);
2678                 return ret;
2679         }
2680
2681         spin_lock_init(&sbi->s_md_lock);
2682         spin_lock_init(&sbi->s_bal_lock);
2683
2684         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2685         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2686         sbi->s_mb_stats = MB_DEFAULT_STATS;
2687         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2688         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2689         sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2690         sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2691
2692         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2693         if (sbi->s_locality_groups == NULL) {
2694                 kfree(sbi->s_mb_offsets);
2695                 kfree(sbi->s_mb_maxs);
2696                 return -ENOMEM;
2697         }
2698         for_each_possible_cpu(i) {
2699                 struct ext4_locality_group *lg;
2700                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2701                 mutex_init(&lg->lg_mutex);
2702                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2703                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2704                 spin_lock_init(&lg->lg_prealloc_lock);
2705         }
2706
2707         ext4_mb_history_init(sb);
2708
2709         if (sbi->s_journal)
2710                 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2711
2712         printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2713         return 0;
2714 }
2715
2716 /* need to called with the ext4 group lock held */
2717 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2718 {
2719         struct ext4_prealloc_space *pa;
2720         struct list_head *cur, *tmp;
2721         int count = 0;
2722
2723         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2724                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2725                 list_del(&pa->pa_group_list);
2726                 count++;
2727                 kmem_cache_free(ext4_pspace_cachep, pa);
2728         }
2729         if (count)
2730                 mb_debug(1, "mballoc: %u PAs left\n", count);
2731
2732 }
2733
2734 int ext4_mb_release(struct super_block *sb)
2735 {
2736         ext4_group_t ngroups = ext4_get_groups_count(sb);
2737         ext4_group_t i;
2738         int num_meta_group_infos;
2739         struct ext4_group_info *grinfo;
2740         struct ext4_sb_info *sbi = EXT4_SB(sb);
2741
2742         if (sbi->s_group_info) {
2743                 for (i = 0; i < ngroups; i++) {
2744                         grinfo = ext4_get_group_info(sb, i);
2745 #ifdef DOUBLE_CHECK
2746                         kfree(grinfo->bb_bitmap);
2747 #endif
2748                         ext4_lock_group(sb, i);
2749                         ext4_mb_cleanup_pa(grinfo);
2750                         ext4_unlock_group(sb, i);
2751                         kfree(grinfo);
2752                 }
2753                 num_meta_group_infos = (ngroups +
2754                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2755                         EXT4_DESC_PER_BLOCK_BITS(sb);
2756                 for (i = 0; i < num_meta_group_infos; i++)
2757                         kfree(sbi->s_group_info[i]);
2758                 kfree(sbi->s_group_info);
2759         }
2760         kfree(sbi->s_mb_offsets);
2761         kfree(sbi->s_mb_maxs);
2762         if (sbi->s_buddy_cache)
2763                 iput(sbi->s_buddy_cache);
2764         if (sbi->s_mb_stats) {
2765                 printk(KERN_INFO
2766                        "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2767                                 atomic_read(&sbi->s_bal_allocated),
2768                                 atomic_read(&sbi->s_bal_reqs),
2769                                 atomic_read(&sbi->s_bal_success));
2770                 printk(KERN_INFO
2771                       "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2772                                 "%u 2^N hits, %u breaks, %u lost\n",
2773                                 atomic_read(&sbi->s_bal_ex_scanned),
2774                                 atomic_read(&sbi->s_bal_goals),
2775                                 atomic_read(&sbi->s_bal_2orders),
2776                                 atomic_read(&sbi->s_bal_breaks),
2777                                 atomic_read(&sbi->s_mb_lost_chunks));
2778                 printk(KERN_INFO
2779                        "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2780                                 sbi->s_mb_buddies_generated++,
2781                                 sbi->s_mb_generation_time);
2782                 printk(KERN_INFO
2783                        "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2784                                 atomic_read(&sbi->s_mb_preallocated),
2785                                 atomic_read(&sbi->s_mb_discarded));
2786         }
2787
2788         free_percpu(sbi->s_locality_groups);
2789         ext4_mb_history_release(sb);
2790
2791         return 0;
2792 }
2793
2794 /*
2795  * This function is called by the jbd2 layer once the commit has finished,
2796  * so we know we can free the blocks that were released with that commit.
2797  */
2798 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2799 {
2800         struct super_block *sb = journal->j_private;
2801         struct ext4_buddy e4b;
2802         struct ext4_group_info *db;
2803         int err, count = 0, count2 = 0;
2804         struct ext4_free_data *entry;
2805         ext4_fsblk_t discard_block;
2806         struct list_head *l, *ltmp;
2807
2808         list_for_each_safe(l, ltmp, &txn->t_private_list) {
2809                 entry = list_entry(l, struct ext4_free_data, list);
2810
2811                 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2812                          entry->count, entry->group, entry);
2813
2814                 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2815                 /* we expect to find existing buddy because it's pinned */
2816                 BUG_ON(err != 0);
2817
2818                 db = e4b.bd_info;
2819                 /* there are blocks to put in buddy to make them really free */
2820                 count += entry->count;
2821                 count2++;
2822                 ext4_lock_group(sb, entry->group);
2823                 /* Take it out of per group rb tree */
2824                 rb_erase(&entry->node, &(db->bb_free_root));
2825                 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2826
2827                 if (!db->bb_free_root.rb_node) {
2828                         /* No more items in the per group rb tree
2829                          * balance refcounts from ext4_mb_free_metadata()
2830                          */
2831                         page_cache_release(e4b.bd_buddy_page);
2832                         page_cache_release(e4b.bd_bitmap_page);
2833                 }
2834                 ext4_unlock_group(sb, entry->group);
2835                 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2836                         + entry->start_blk
2837                         + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2838                 trace_ext4_discard_blocks(sb, (unsigned long long)discard_block,
2839                                           entry->count);
2840                 sb_issue_discard(sb, discard_block, entry->count);
2841
2842                 kmem_cache_free(ext4_free_ext_cachep, entry);
2843                 ext4_mb_release_desc(&e4b);
2844         }
2845
2846         mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2847 }
2848
2849 #ifdef CONFIG_EXT4_DEBUG
2850 u8 mb_enable_debug __read_mostly;
2851
2852 static struct dentry *debugfs_dir;
2853 static struct dentry *debugfs_debug;
2854
2855 static void __init ext4_create_debugfs_entry(void)
2856 {
2857         debugfs_dir = debugfs_create_dir("ext4", NULL);
2858         if (debugfs_dir)
2859                 debugfs_debug = debugfs_create_u8("mballoc-debug",
2860                                                   S_IRUGO | S_IWUSR,
2861                                                   debugfs_dir,
2862                                                   &mb_enable_debug);
2863 }
2864
2865 static void ext4_remove_debugfs_entry(void)
2866 {
2867         debugfs_remove(debugfs_debug);
2868         debugfs_remove(debugfs_dir);
2869 }
2870
2871 #else
2872
2873 static void __init ext4_create_debugfs_entry(void)
2874 {
2875 }
2876
2877 static void ext4_remove_debugfs_entry(void)
2878 {
2879 }
2880
2881 #endif
2882
2883 int __init init_ext4_mballoc(void)
2884 {
2885         ext4_pspace_cachep =
2886                 kmem_cache_create("ext4_prealloc_space",
2887                                      sizeof(struct ext4_prealloc_space),
2888                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2889         if (ext4_pspace_cachep == NULL)
2890                 return -ENOMEM;
2891
2892         ext4_ac_cachep =
2893                 kmem_cache_create("ext4_alloc_context",
2894                                      sizeof(struct ext4_allocation_context),
2895                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2896         if (ext4_ac_cachep == NULL) {
2897                 kmem_cache_destroy(ext4_pspace_cachep);
2898                 return -ENOMEM;
2899         }
2900
2901         ext4_free_ext_cachep =
2902                 kmem_cache_create("ext4_free_block_extents",
2903                                      sizeof(struct ext4_free_data),
2904                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2905         if (ext4_free_ext_cachep == NULL) {
2906                 kmem_cache_destroy(ext4_pspace_cachep);
2907                 kmem_cache_destroy(ext4_ac_cachep);
2908                 return -ENOMEM;
2909         }
2910         ext4_create_debugfs_entry();
2911         return 0;
2912 }
2913
2914 void exit_ext4_mballoc(void)
2915 {
2916         /* 
2917          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2918          * before destroying the slab cache.
2919          */
2920         rcu_barrier();
2921         kmem_cache_destroy(ext4_pspace_cachep);
2922         kmem_cache_destroy(ext4_ac_cachep);
2923         kmem_cache_destroy(ext4_free_ext_cachep);
2924         ext4_remove_debugfs_entry();
2925 }
2926
2927
2928 /*
2929  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2930  * Returns 0 if success or error code
2931  */
2932 static noinline_for_stack int
2933 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2934                                 handle_t *handle, unsigned int reserv_blks)
2935 {
2936         struct buffer_head *bitmap_bh = NULL;
2937         struct ext4_super_block *es;
2938         struct ext4_group_desc *gdp;
2939         struct buffer_head *gdp_bh;
2940         struct ext4_sb_info *sbi;
2941         struct super_block *sb;
2942         ext4_fsblk_t block;
2943         int err, len;
2944
2945         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2946         BUG_ON(ac->ac_b_ex.fe_len <= 0);
2947
2948         sb = ac->ac_sb;
2949         sbi = EXT4_SB(sb);
2950         es = sbi->s_es;
2951
2952
2953         err = -EIO;
2954         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2955         if (!bitmap_bh)
2956                 goto out_err;
2957
2958         err = ext4_journal_get_write_access(handle, bitmap_bh);
2959         if (err)
2960                 goto out_err;
2961
2962         err = -EIO;
2963         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2964         if (!gdp)
2965                 goto out_err;
2966
2967         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2968                         ext4_free_blks_count(sb, gdp));
2969
2970         err = ext4_journal_get_write_access(handle, gdp_bh);
2971         if (err)
2972                 goto out_err;
2973
2974         block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2975                 + ac->ac_b_ex.fe_start
2976                 + le32_to_cpu(es->s_first_data_block);
2977
2978         len = ac->ac_b_ex.fe_len;
2979         if (!ext4_data_block_valid(sbi, block, len)) {
2980                 ext4_error(sb, __func__,
2981                            "Allocating blocks %llu-%llu which overlap "
2982                            "fs metadata\n", block, block+len);
2983                 /* File system mounted not to panic on error
2984                  * Fix the bitmap and repeat the block allocation
2985                  * We leak some of the blocks here.
2986                  */
2987                 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2988                 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2989                             ac->ac_b_ex.fe_len);
2990                 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2991                 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2992                 if (!err)
2993                         err = -EAGAIN;
2994                 goto out_err;
2995         }
2996
2997         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2998 #ifdef AGGRESSIVE_CHECK
2999         {
3000                 int i;
3001                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3002                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3003                                                 bitmap_bh->b_data));
3004                 }
3005         }
3006 #endif
3007         mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
3008         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3009                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3010                 ext4_free_blks_set(sb, gdp,
3011                                         ext4_free_blocks_after_init(sb,
3012                                         ac->ac_b_ex.fe_group, gdp));
3013         }
3014         len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3015         ext4_free_blks_set(sb, gdp, len);
3016         gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3017
3018         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3019         percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3020         /*
3021          * Now reduce the dirty block count also. Should not go negative
3022          */
3023         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3024                 /* release all the reserved blocks if non delalloc */
3025                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3026         else {
3027                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3028                                                 ac->ac_b_ex.fe_len);
3029                 /* convert reserved quota blocks to real quota blocks */
3030                 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
3031         }
3032
3033         if (sbi->s_log_groups_per_flex) {
3034                 ext4_group_t flex_group = ext4_flex_group(sbi,
3035                                                           ac->ac_b_ex.fe_group);
3036                 atomic_sub(ac->ac_b_ex.fe_len,
3037                            &sbi->s_flex_groups[flex_group].free_blocks);
3038         }
3039
3040         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3041         if (err)
3042                 goto out_err;
3043         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3044
3045 out_err:
3046         sb->s_dirt = 1;
3047         brelse(bitmap_bh);
3048         return err;
3049 }
3050
3051 /*
3052  * here we normalize request for locality group
3053  * Group request are normalized to s_strip size if we set the same via mount
3054  * option. If not we set it to s_mb_group_prealloc which can be configured via
3055  * /sys/fs/ext4/<partition>/mb_group_prealloc
3056  *
3057  * XXX: should we try to preallocate more than the group has now?
3058  */
3059 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3060 {
3061         struct super_block *sb = ac->ac_sb;
3062         struct ext4_locality_group *lg = ac->ac_lg;
3063
3064         BUG_ON(lg == NULL);
3065         if (EXT4_SB(sb)->s_stripe)
3066                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3067         else
3068                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3069         mb_debug(1, "#%u: goal %u blocks for locality group\n",
3070                 current->pid, ac->ac_g_ex.fe_len);
3071 }
3072
3073 /*
3074  * Normalization means making request better in terms of
3075  * size and alignment
3076  */
3077 static noinline_for_stack void
3078 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3079                                 struct ext4_allocation_request *ar)
3080 {
3081         int bsbits, max;
3082         ext4_lblk_t end;
3083         loff_t size, orig_size, start_off;
3084         ext4_lblk_t start, orig_start;
3085         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3086         struct ext4_prealloc_space *pa;
3087
3088         /* do normalize only data requests, metadata requests
3089            do not need preallocation */
3090         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3091                 return;
3092
3093         /* sometime caller may want exact blocks */
3094         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3095                 return;
3096
3097         /* caller may indicate that preallocation isn't
3098          * required (it's a tail, for example) */
3099         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3100                 return;
3101
3102         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3103                 ext4_mb_normalize_group_request(ac);
3104                 return ;
3105         }
3106
3107         bsbits = ac->ac_sb->s_blocksize_bits;
3108
3109         /* first, let's learn actual file size
3110          * given current request is allocated */
3111         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3112         size = size << bsbits;
3113         if (size < i_size_read(ac->ac_inode))
3114                 size = i_size_read(ac->ac_inode);
3115
3116         /* max size of free chunks */
3117         max = 2 << bsbits;
3118
3119 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
3120                 (req <= (size) || max <= (chunk_size))
3121
3122         /* first, try to predict filesize */
3123         /* XXX: should this table be tunable? */
3124         start_off = 0;
3125         if (size <= 16 * 1024) {
3126                 size = 16 * 1024;
3127         } else if (size <= 32 * 1024) {
3128                 size = 32 * 1024;
3129         } else if (size <= 64 * 1024) {
3130                 size = 64 * 1024;
3131         } else if (size <= 128 * 1024) {
3132                 size = 128 * 1024;
3133         } else if (size <= 256 * 1024) {
3134                 size = 256 * 1024;
3135         } else if (size <= 512 * 1024) {
3136                 size = 512 * 1024;
3137         } else if (size <= 1024 * 1024) {
3138                 size = 1024 * 1024;
3139         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3140                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3141                                                 (21 - bsbits)) << 21;
3142                 size = 2 * 1024 * 1024;
3143         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3144                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3145                                                         (22 - bsbits)) << 22;
3146                 size = 4 * 1024 * 1024;
3147         } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3148                                         (8<<20)>>bsbits, max, 8 * 1024)) {
3149                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3150                                                         (23 - bsbits)) << 23;
3151                 size = 8 * 1024 * 1024;
3152         } else {
3153                 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3154                 size      = ac->ac_o_ex.fe_len << bsbits;
3155         }
3156         orig_size = size = size >> bsbits;
3157         orig_start = start = start_off >> bsbits;
3158
3159         /* don't cover already allocated blocks in selected range */
3160         if (ar->pleft && start <= ar->lleft) {
3161                 size -= ar->lleft + 1 - start;
3162                 start = ar->lleft + 1;
3163         }
3164         if (ar->pright && start + size - 1 >= ar->lright)
3165                 size -= start + size - ar->lright;
3166
3167         end = start + size;
3168
3169         /* check we don't cross already preallocated blocks */
3170         rcu_read_lock();
3171         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3172                 ext4_lblk_t pa_end;
3173
3174                 if (pa->pa_deleted)
3175                         continue;
3176                 spin_lock(&pa->pa_lock);
3177                 if (pa->pa_deleted) {
3178                         spin_unlock(&pa->pa_lock);
3179                         continue;
3180                 }
3181
3182                 pa_end = pa->pa_lstart + pa->pa_len;
3183
3184                 /* PA must not overlap original request */
3185                 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3186                         ac->ac_o_ex.fe_logical < pa->pa_lstart));
3187
3188                 /* skip PAs this normalized request doesn't overlap with */
3189                 if (pa->pa_lstart >= end || pa_end <= start) {
3190                         spin_unlock(&pa->pa_lock);
3191                         continue;
3192                 }
3193                 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3194
3195                 /* adjust start or end to be adjacent to this pa */
3196                 if (pa_end <= ac->ac_o_ex.fe_logical) {
3197                         BUG_ON(pa_end < start);
3198                         start = pa_end;
3199                 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3200                         BUG_ON(pa->pa_lstart > end);
3201                         end = pa->pa_lstart;
3202                 }
3203                 spin_unlock(&pa->pa_lock);
3204         }
3205         rcu_read_unlock();
3206         size = end - start;
3207
3208         /* XXX: extra loop to check we really don't overlap preallocations */
3209         rcu_read_lock();
3210         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3211                 ext4_lblk_t pa_end;
3212                 spin_lock(&pa->pa_lock);
3213                 if (pa->pa_deleted == 0) {
3214                         pa_end = pa->pa_lstart + pa->pa_len;
3215                         BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3216                 }
3217                 spin_unlock(&pa->pa_lock);
3218         }
3219         rcu_read_unlock();
3220
3221         if (start + size <= ac->ac_o_ex.fe_logical &&
3222                         start > ac->ac_o_ex.fe_logical) {
3223                 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3224                         (unsigned long) start, (unsigned long) size,
3225                         (unsigned long) ac->ac_o_ex.fe_logical);
3226         }
3227         BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3228                         start > ac->ac_o_ex.fe_logical);
3229         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3230
3231         /* now prepare goal request */
3232
3233         /* XXX: is it better to align blocks WRT to logical
3234          * placement or satisfy big request as is */
3235         ac->ac_g_ex.fe_logical = start;
3236         ac->ac_g_ex.fe_len = size;
3237
3238         /* define goal start in order to merge */
3239         if (ar->pright && (ar->lright == (start + size))) {
3240                 /* merge to the right */
3241                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3242                                                 &ac->ac_f_ex.fe_group,
3243                                                 &ac->ac_f_ex.fe_start);
3244                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3245         }
3246         if (ar->pleft && (ar->lleft + 1 == start)) {
3247                 /* merge to the left */
3248                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3249                                                 &ac->ac_f_ex.fe_group,
3250                                                 &ac->ac_f_ex.fe_start);
3251                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3252         }
3253
3254         mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3255                 (unsigned) orig_size, (unsigned) start);
3256 }
3257
3258 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3259 {
3260         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3261
3262         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3263                 atomic_inc(&sbi->s_bal_reqs);
3264                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3265                 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3266                         atomic_inc(&sbi->s_bal_success);
3267                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3268                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3269                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3270                         atomic_inc(&sbi->s_bal_goals);
3271                 if (ac->ac_found > sbi->s_mb_max_to_scan)
3272                         atomic_inc(&sbi->s_bal_breaks);
3273         }
3274
3275         ext4_mb_store_history(ac);
3276 }
3277
3278 /*
3279  * use blocks preallocated to inode
3280  */
3281 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3282                                 struct ext4_prealloc_space *pa)
3283 {
3284         ext4_fsblk_t start;
3285         ext4_fsblk_t end;
3286         int len;
3287
3288         /* found preallocated blocks, use them */
3289         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3290         end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3291         len = end - start;
3292         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3293                                         &ac->ac_b_ex.fe_start);
3294         ac->ac_b_ex.fe_len = len;
3295         ac->ac_status = AC_STATUS_FOUND;
3296         ac->ac_pa = pa;
3297
3298         BUG_ON(start < pa->pa_pstart);
3299         BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3300         BUG_ON(pa->pa_free < len);
3301         pa->pa_free -= len;
3302
3303         mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3304 }
3305
3306 /*
3307  * use blocks preallocated to locality group
3308  */
3309 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3310                                 struct ext4_prealloc_space *pa)
3311 {
3312         unsigned int len = ac->ac_o_ex.fe_len;
3313
3314         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3315                                         &ac->ac_b_ex.fe_group,
3316                                         &ac->ac_b_ex.fe_start);
3317         ac->ac_b_ex.fe_len = len;
3318         ac->ac_status = AC_STATUS_FOUND;
3319         ac->ac_pa = pa;
3320
3321         /* we don't correct pa_pstart or pa_plen here to avoid
3322          * possible race when the group is being loaded concurrently
3323          * instead we correct pa later, after blocks are marked
3324          * in on-disk bitmap -- see ext4_mb_release_context()
3325          * Other CPUs are prevented from allocating from this pa by lg_mutex
3326          */
3327         mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3328 }
3329
3330 /*
3331  * Return the prealloc space that have minimal distance
3332  * from the goal block. @cpa is the prealloc
3333  * space that is having currently known minimal distance
3334  * from the goal block.
3335  */
3336 static struct ext4_prealloc_space *
3337 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3338                         struct ext4_prealloc_space *pa,
3339                         struct ext4_prealloc_space *cpa)
3340 {
3341         ext4_fsblk_t cur_distance, new_distance;
3342
3343         if (cpa == NULL) {
3344                 atomic_inc(&pa->pa_count);
3345                 return pa;
3346         }
3347         cur_distance = abs(goal_block - cpa->pa_pstart);
3348         new_distance = abs(goal_block - pa->pa_pstart);
3349
3350         if (cur_distance < new_distance)
3351                 return cpa;
3352
3353         /* drop the previous reference */
3354         atomic_dec(&cpa->pa_count);
3355         atomic_inc(&pa->pa_count);
3356         return pa;
3357 }
3358
3359 /*
3360  * search goal blocks in preallocated space
3361  */
3362 static noinline_for_stack int
3363 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3364 {
3365         int order, i;
3366         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3367         struct ext4_locality_group *lg;
3368         struct ext4_prealloc_space *pa, *cpa = NULL;
3369         ext4_fsblk_t goal_block;
3370
3371         /* only data can be preallocated */
3372         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3373                 return 0;
3374
3375         /* first, try per-file preallocation */
3376         rcu_read_lock();
3377         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3378
3379                 /* all fields in this condition don't change,
3380                  * so we can skip locking for them */
3381                 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3382                         ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3383                         continue;
3384
3385                 /* found preallocated blocks, use them */
3386                 spin_lock(&pa->pa_lock);
3387                 if (pa->pa_deleted == 0 && pa->pa_free) {
3388                         atomic_inc(&pa->pa_count);
3389                         ext4_mb_use_inode_pa(ac, pa);
3390                         spin_unlock(&pa->pa_lock);
3391                         ac->ac_criteria = 10;
3392                         rcu_read_unlock();
3393                         return 1;
3394                 }
3395                 spin_unlock(&pa->pa_lock);
3396         }
3397         rcu_read_unlock();
3398
3399         /* can we use group allocation? */
3400         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3401                 return 0;
3402
3403         /* inode may have no locality group for some reason */
3404         lg = ac->ac_lg;
3405         if (lg == NULL)
3406                 return 0;
3407         order  = fls(ac->ac_o_ex.fe_len) - 1;
3408         if (order > PREALLOC_TB_SIZE - 1)
3409                 /* The max size of hash table is PREALLOC_TB_SIZE */
3410                 order = PREALLOC_TB_SIZE - 1;
3411
3412         goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3413                      ac->ac_g_ex.fe_start +
3414                      le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3415         /*
3416          * search for the prealloc space that is having
3417          * minimal distance from the goal block.
3418          */
3419         for (i = order; i < PREALLOC_TB_SIZE; i++) {
3420                 rcu_read_lock();
3421                 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3422                                         pa_inode_list) {
3423                         spin_lock(&pa->pa_lock);
3424                         if (pa->pa_deleted == 0 &&
3425                                         pa->pa_free >= ac->ac_o_ex.fe_len) {
3426
3427                                 cpa = ext4_mb_check_group_pa(goal_block,
3428                                                                 pa, cpa);
3429                         }
3430                         spin_unlock(&pa->pa_lock);
3431                 }
3432                 rcu_read_unlock();
3433         }
3434         if (cpa) {
3435                 ext4_mb_use_group_pa(ac, cpa);
3436                 ac->ac_criteria = 20;
3437                 return 1;
3438         }
3439         return 0;
3440 }
3441
3442 /*
3443  * the function goes through all block freed in the group
3444  * but not yet committed and marks them used in in-core bitmap.
3445  * buddy must be generated from this bitmap
3446  * Need to be called with the ext4 group lock held
3447  */
3448 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3449                                                 ext4_group_t group)
3450 {
3451         struct rb_node *n;
3452         struct ext4_group_info *grp;
3453         struct ext4_free_data *entry;
3454
3455         grp = ext4_get_group_info(sb, group);
3456         n = rb_first(&(grp->bb_free_root));
3457
3458         while (n) {
3459                 entry = rb_entry(n, struct ext4_free_data, node);
3460                 mb_set_bits(bitmap, entry->start_blk, entry->count);
3461                 n = rb_next(n);
3462         }
3463         return;
3464 }
3465
3466 /*
3467  * the function goes through all preallocation in this group and marks them
3468  * used in in-core bitmap. buddy must be generated from this bitmap
3469  * Need to be called with ext4 group lock held
3470  */
3471 static noinline_for_stack
3472 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3473                                         ext4_group_t group)
3474 {
3475         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3476         struct ext4_prealloc_space *pa;
3477         struct list_head *cur;
3478         ext4_group_t groupnr;
3479         ext4_grpblk_t start;
3480         int preallocated = 0;
3481         int count = 0;
3482         int len;
3483
3484         /* all form of preallocation discards first load group,
3485          * so the only competing code is preallocation use.
3486          * we don't need any locking here
3487          * notice we do NOT ignore preallocations with pa_deleted
3488          * otherwise we could leave used blocks available for
3489          * allocation in buddy when concurrent ext4_mb_put_pa()
3490          * is dropping preallocation
3491          */
3492         list_for_each(cur, &grp->bb_prealloc_list) {
3493                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3494                 spin_lock(&pa->pa_lock);
3495                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3496                                              &groupnr, &start);
3497                 len = pa->pa_len;
3498                 spin_unlock(&pa->pa_lock);
3499                 if (unlikely(len == 0))
3500                         continue;
3501                 BUG_ON(groupnr != group);
3502                 mb_set_bits(bitmap, start, len);
3503                 preallocated += len;
3504                 count++;
3505         }
3506         mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3507 }
3508
3509 static void ext4_mb_pa_callback(struct rcu_head *head)
3510 {
3511         struct ext4_prealloc_space *pa;
3512         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3513         kmem_cache_free(ext4_pspace_cachep, pa);
3514 }
3515
3516 /*
3517  * drops a reference to preallocated space descriptor
3518  * if this was the last reference and the space is consumed
3519  */
3520 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3521                         struct super_block *sb, struct ext4_prealloc_space *pa)
3522 {
3523         ext4_group_t grp;
3524         ext4_fsblk_t grp_blk;
3525
3526         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3527                 return;
3528
3529         /* in this short window concurrent discard can set pa_deleted */
3530         spin_lock(&pa->pa_lock);
3531         if (pa->pa_deleted == 1) {
3532                 spin_unlock(&pa->pa_lock);
3533                 return;
3534         }
3535
3536         pa->pa_deleted = 1;
3537         spin_unlock(&pa->pa_lock);
3538
3539         grp_blk = pa->pa_pstart;
3540         /* 
3541          * If doing group-based preallocation, pa_pstart may be in the
3542          * next group when pa is used up
3543          */
3544         if (pa->pa_type == MB_GROUP_PA)
3545                 grp_blk--;
3546
3547         ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3548
3549         /*
3550          * possible race:
3551          *
3552          *  P1 (buddy init)                     P2 (regular allocation)
3553          *                                      find block B in PA
3554          *  copy on-disk bitmap to buddy
3555          *                                      mark B in on-disk bitmap
3556          *                                      drop PA from group
3557          *  mark all PAs in buddy
3558          *
3559          * thus, P1 initializes buddy with B available. to prevent this
3560          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3561          * against that pair
3562          */
3563         ext4_lock_group(sb, grp);
3564         list_del(&pa->pa_group_list);
3565         ext4_unlock_group(sb, grp);
3566
3567         spin_lock(pa->pa_obj_lock);
3568         list_del_rcu(&pa->pa_inode_list);
3569         spin_unlock(pa->pa_obj_lock);
3570
3571         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3572 }
3573
3574 /*
3575  * creates new preallocated space for given inode
3576  */
3577 static noinline_for_stack int
3578 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3579 {
3580         struct super_block *sb = ac->ac_sb;
3581         struct ext4_prealloc_space *pa;
3582         struct ext4_group_info *grp;
3583         struct ext4_inode_info *ei;
3584
3585         /* preallocate only when found space is larger then requested */
3586         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3587         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3588         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3589
3590         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3591         if (pa == NULL)
3592                 return -ENOMEM;
3593
3594         if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3595                 int winl;
3596                 int wins;
3597                 int win;
3598                 int offs;
3599
3600                 /* we can't allocate as much as normalizer wants.
3601                  * so, found space must get proper lstart
3602                  * to cover original request */
3603                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3604                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3605
3606                 /* we're limited by original request in that
3607                  * logical block must be covered any way
3608                  * winl is window we can move our chunk within */
3609                 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3610
3611                 /* also, we should cover whole original request */
3612                 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3613
3614                 /* the smallest one defines real window */
3615                 win = min(winl, wins);
3616
3617                 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3618                 if (offs && offs < win)
3619                         win = offs;
3620
3621                 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3622                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3623                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3624         }
3625
3626         /* preallocation can change ac_b_ex, thus we store actually
3627          * allocated blocks for history */
3628         ac->ac_f_ex = ac->ac_b_ex;
3629
3630         pa->pa_lstart = ac->ac_b_ex.fe_logical;
3631         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3632         pa->pa_len = ac->ac_b_ex.fe_len;
3633         pa->pa_free = pa->pa_len;
3634         atomic_set(&pa->pa_count, 1);
3635         spin_lock_init(&pa->pa_lock);
3636         INIT_LIST_HEAD(&pa->pa_inode_list);
3637         INIT_LIST_HEAD(&pa->pa_group_list);
3638         pa->pa_deleted = 0;
3639         pa->pa_type = MB_INODE_PA;
3640
3641         mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3642                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3643         trace_ext4_mb_new_inode_pa(ac, pa);
3644
3645         ext4_mb_use_inode_pa(ac, pa);
3646         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3647
3648         ei = EXT4_I(ac->ac_inode);
3649         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3650
3651         pa->pa_obj_lock = &ei->i_prealloc_lock;
3652         pa->pa_inode = ac->ac_inode;
3653
3654         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3655         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3656         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3657
3658         spin_lock(pa->pa_obj_lock);
3659         list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3660         spin_unlock(pa->pa_obj_lock);
3661
3662         return 0;
3663 }
3664
3665 /*
3666  * creates new preallocated space for locality group inodes belongs to
3667  */
3668 static noinline_for_stack int
3669 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3670 {
3671         struct super_block *sb = ac->ac_sb;
3672         struct ext4_locality_group *lg;
3673         struct ext4_prealloc_space *pa;
3674         struct ext4_group_info *grp;
3675
3676         /* preallocate only when found space is larger then requested */
3677         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3678         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3679         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3680
3681         BUG_ON(ext4_pspace_cachep == NULL);
3682         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3683         if (pa == NULL)
3684                 return -ENOMEM;
3685
3686         /* preallocation can change ac_b_ex, thus we store actually
3687          * allocated blocks for history */
3688         ac->ac_f_ex = ac->ac_b_ex;
3689
3690         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3691         pa->pa_lstart = pa->pa_pstart;
3692         pa->pa_len = ac->ac_b_ex.fe_len;
3693         pa->pa_free = pa->pa_len;
3694         atomic_set(&pa->pa_count, 1);
3695         spin_lock_init(&pa->pa_lock);
3696         INIT_LIST_HEAD(&pa->pa_inode_list);
3697         INIT_LIST_HEAD(&pa->pa_group_list);
3698         pa->pa_deleted = 0;
3699         pa->pa_type = MB_GROUP_PA;
3700
3701         mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3702                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3703         trace_ext4_mb_new_group_pa(ac, pa);
3704
3705         ext4_mb_use_group_pa(ac, pa);
3706         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3707
3708         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3709         lg = ac->ac_lg;
3710         BUG_ON(lg == NULL);
3711
3712         pa->pa_obj_lock = &lg->lg_prealloc_lock;
3713         pa->pa_inode = NULL;
3714
3715         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3716         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3717         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3718
3719         /*
3720          * We will later add the new pa to the right bucket
3721          * after updating the pa_free in ext4_mb_release_context
3722          */
3723         return 0;
3724 }
3725
3726 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3727 {
3728         int err;
3729
3730         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3731                 err = ext4_mb_new_group_pa(ac);
3732         else
3733                 err = ext4_mb_new_inode_pa(ac);
3734         return err;
3735 }
3736
3737 /*
3738  * finds all unused blocks in on-disk bitmap, frees them in
3739  * in-core bitmap and buddy.
3740  * @pa must be unlinked from inode and group lists, so that
3741  * nobody else can find/use it.
3742  * the caller MUST hold group/inode locks.
3743  * TODO: optimize the case when there are no in-core structures yet
3744  */
3745 static noinline_for_stack int
3746 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3747                         struct ext4_prealloc_space *pa,
3748                         struct ext4_allocation_context *ac)
3749 {
3750         struct super_block *sb = e4b->bd_sb;
3751         struct ext4_sb_info *sbi = EXT4_SB(sb);
3752         unsigned int end;
3753         unsigned int next;
3754         ext4_group_t group;
3755         ext4_grpblk_t bit;
3756         unsigned long long grp_blk_start;
3757         sector_t start;
3758         int err = 0;
3759         int free = 0;
3760
3761         BUG_ON(pa->pa_deleted == 0);
3762         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3763         grp_blk_start = pa->pa_pstart - bit;
3764         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3765         end = bit + pa->pa_len;
3766
3767         if (ac) {
3768                 ac->ac_sb = sb;
3769                 ac->ac_inode = pa->pa_inode;
3770                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3771         }
3772
3773         while (bit < end) {
3774                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3775                 if (bit >= end)
3776                         break;
3777                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3778                 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3779                                 le32_to_cpu(sbi->s_es->s_first_data_block);
3780                 mb_debug(1, "    free preallocated %u/%u in group %u\n",
3781                                 (unsigned) start, (unsigned) next - bit,
3782                                 (unsigned) group);
3783                 free += next - bit;
3784
3785                 if (ac) {
3786                         ac->ac_b_ex.fe_group = group;
3787                         ac->ac_b_ex.fe_start = bit;
3788                         ac->ac_b_ex.fe_len = next - bit;
3789                         ac->ac_b_ex.fe_logical = 0;
3790                         ext4_mb_store_history(ac);
3791                 }
3792
3793                 trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3794                                                next - bit);
3795                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3796                 bit = next + 1;
3797         }
3798         if (free != pa->pa_free) {
3799                 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3800                         pa, (unsigned long) pa->pa_lstart,
3801                         (unsigned long) pa->pa_pstart,
3802                         (unsigned long) pa->pa_len);
3803                 ext4_grp_locked_error(sb, group,
3804                                         __func__, "free %u, pa_free %u",
3805                                         free, pa->pa_free);
3806                 /*
3807                  * pa is already deleted so we use the value obtained
3808                  * from the bitmap and continue.
3809                  */
3810         }
3811         atomic_add(free, &sbi->s_mb_discarded);
3812
3813         return err;
3814 }
3815
3816 static noinline_for_stack int
3817 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3818                                 struct ext4_prealloc_space *pa,
3819                                 struct ext4_allocation_context *ac)
3820 {
3821         struct super_block *sb = e4b->bd_sb;
3822         ext4_group_t group;
3823         ext4_grpblk_t bit;
3824
3825         if (ac)
3826                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3827
3828         trace_ext4_mb_release_group_pa(ac, pa);
3829         BUG_ON(pa->pa_deleted == 0);
3830         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3831         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3832         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3833         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3834
3835         if (ac) {
3836                 ac->ac_sb = sb;
3837                 ac->ac_inode = NULL;
3838                 ac->ac_b_ex.fe_group = group;
3839                 ac->ac_b_ex.fe_start = bit;
3840                 ac->ac_b_ex.fe_len = pa->pa_len;
3841                 ac->ac_b_ex.fe_logical = 0;
3842                 ext4_mb_store_history(ac);
3843         }
3844
3845         return 0;
3846 }
3847
3848 /*
3849  * releases all preallocations in given group
3850  *
3851  * first, we need to decide discard policy:
3852  * - when do we discard
3853  *   1) ENOSPC
3854  * - how many do we discard
3855  *   1) how many requested
3856  */
3857 static noinline_for_stack int
3858 ext4_mb_discard_group_preallocations(struct super_block *sb,
3859                                         ext4_group_t group, int needed)
3860 {
3861         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3862         struct buffer_head *bitmap_bh = NULL;
3863         struct ext4_prealloc_space *pa, *tmp;
3864         struct ext4_allocation_context *ac;
3865         struct list_head list;
3866         struct ext4_buddy e4b;
3867         int err;
3868         int busy = 0;
3869         int free = 0;
3870
3871         mb_debug(1, "discard preallocation for group %u\n", group);
3872
3873         if (list_empty(&grp->bb_prealloc_list))
3874                 return 0;
3875
3876         bitmap_bh = ext4_read_block_bitmap(sb, group);
3877         if (bitmap_bh == NULL) {
3878                 ext4_error(sb, __func__, "Error in reading block "
3879                                 "bitmap for %u", group);
3880                 return 0;
3881         }
3882
3883         err = ext4_mb_load_buddy(sb, group, &e4b);
3884         if (err) {
3885                 ext4_error(sb, __func__, "Error in loading buddy "
3886                                 "information for %u", group);
3887                 put_bh(bitmap_bh);
3888                 return 0;
3889         }
3890
3891         if (needed == 0)
3892                 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3893
3894         INIT_LIST_HEAD(&list);
3895         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3896         if (ac)
3897                 ac->ac_sb = sb;
3898 repeat:
3899         ext4_lock_group(sb, group);
3900         list_for_each_entry_safe(pa, tmp,
3901                                 &grp->bb_prealloc_list, pa_group_list) {
3902                 spin_lock(&pa->pa_lock);
3903                 if (atomic_read(&pa->pa_count)) {
3904                         spin_unlock(&pa->pa_lock);
3905                         busy = 1;
3906                         continue;
3907                 }
3908                 if (pa->pa_deleted) {
3909                         spin_unlock(&pa->pa_lock);
3910                         continue;
3911                 }
3912
3913                 /* seems this one can be freed ... */
3914                 pa->pa_deleted = 1;
3915
3916                 /* we can trust pa_free ... */
3917                 free += pa->pa_free;
3918
3919                 spin_unlock(&pa->pa_lock);
3920
3921                 list_del(&pa->pa_group_list);
3922                 list_add(&pa->u.pa_tmp_list, &list);
3923         }
3924
3925         /* if we still need more blocks and some PAs were used, try again */
3926         if (free < needed && busy) {
3927                 busy = 0;
3928                 ext4_unlock_group(sb, group);
3929                 /*
3930                  * Yield the CPU here so that we don't get soft lockup
3931                  * in non preempt case.
3932                  */
3933                 yield();
3934                 goto repeat;
3935         }
3936
3937         /* found anything to free? */
3938         if (list_empty(&list)) {
3939                 BUG_ON(free != 0);
3940                 goto out;
3941         }
3942
3943         /* now free all selected PAs */
3944         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3945
3946                 /* remove from object (inode or locality group) */
3947                 spin_lock(pa->pa_obj_lock);
3948                 list_del_rcu(&pa->pa_inode_list);
3949                 spin_unlock(pa->pa_obj_lock);
3950
3951                 if (pa->pa_type == MB_GROUP_PA)
3952                         ext4_mb_release_group_pa(&e4b, pa, ac);
3953                 else
3954                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3955
3956                 list_del(&pa->u.pa_tmp_list);
3957                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3958         }
3959
3960 out:
3961         ext4_unlock_group(sb, group);
3962         if (ac)
3963                 kmem_cache_free(ext4_ac_cachep, ac);
3964         ext4_mb_release_desc(&e4b);
3965         put_bh(bitmap_bh);
3966         return free;
3967 }
3968
3969 /*
3970  * releases all non-used preallocated blocks for given inode
3971  *
3972  * It's important to discard preallocations under i_data_sem
3973  * We don't want another block to be served from the prealloc
3974  * space when we are discarding the inode prealloc space.
3975  *
3976  * FIXME!! Make sure it is valid at all the call sites
3977  */
3978 void ext4_discard_preallocations(struct inode *inode)
3979 {
3980         struct ext4_inode_info *ei = EXT4_I(inode);
3981         struct super_block *sb = inode->i_sb;
3982         struct buffer_head *bitmap_bh = NULL;
3983         struct ext4_prealloc_space *pa, *tmp;
3984         struct ext4_allocation_context *ac;
3985         ext4_group_t group = 0;
3986         struct list_head list;
3987         struct ext4_buddy e4b;
3988         int err;
3989
3990         if (!S_ISREG(inode->i_mode)) {
3991                 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3992                 return;
3993         }
3994
3995         mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3996         trace_ext4_discard_preallocations(inode);
3997
3998         INIT_LIST_HEAD(&list);
3999
4000         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4001         if (ac) {
4002                 ac->ac_sb = sb;
4003                 ac->ac_inode = inode;
4004         }
4005 repeat:
4006         /* first, collect all pa's in the inode */
4007         spin_lock(&ei->i_prealloc_lock);
4008         while (!list_empty(&ei->i_prealloc_list)) {
4009                 pa = list_entry(ei->i_prealloc_list.next,
4010                                 struct ext4_prealloc_space, pa_inode_list);
4011                 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4012                 spin_lock(&pa->pa_lock);
4013                 if (atomic_read(&pa->pa_count)) {
4014                         /* this shouldn't happen often - nobody should
4015                          * use preallocation while we're discarding it */
4016                         spin_unlock(&pa->pa_lock);
4017                         spin_unlock(&ei->i_prealloc_lock);
4018                         printk(KERN_ERR "uh-oh! used pa while discarding\n");
4019                         WARN_ON(1);
4020                         schedule_timeout_uninterruptible(HZ);
4021                         goto repeat;
4022
4023                 }
4024                 if (pa->pa_deleted == 0) {
4025                         pa->pa_deleted = 1;
4026                         spin_unlock(&pa->pa_lock);
4027                         list_del_rcu(&pa->pa_inode_list);
4028                         list_add(&pa->u.pa_tmp_list, &list);
4029                         continue;
4030                 }
4031
4032                 /* someone is deleting pa right now */
4033                 spin_unlock(&pa->pa_lock);
4034                 spin_unlock(&ei->i_prealloc_lock);
4035
4036                 /* we have to wait here because pa_deleted
4037                  * doesn't mean pa is already unlinked from
4038                  * the list. as we might be called from
4039                  * ->clear_inode() the inode will get freed
4040                  * and concurrent thread which is unlinking
4041                  * pa from inode's list may access already
4042                  * freed memory, bad-bad-bad */
4043
4044                 /* XXX: if this happens too often, we can
4045                  * add a flag to force wait only in case
4046                  * of ->clear_inode(), but not in case of
4047                  * regular truncate */
4048                 schedule_timeout_uninterruptible(HZ);
4049                 goto repeat;
4050         }
4051         spin_unlock(&ei->i_prealloc_lock);
4052
4053         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4054                 BUG_ON(pa->pa_type != MB_INODE_PA);
4055                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4056
4057                 err = ext4_mb_load_buddy(sb, group, &e4b);
4058                 if (err) {
4059                         ext4_error(sb, __func__, "Error in loading buddy "
4060                                         "information for %u", group);
4061                         continue;
4062                 }
4063
4064                 bitmap_bh = ext4_read_block_bitmap(sb, group);
4065                 if (bitmap_bh == NULL) {
4066                         ext4_error(sb, __func__, "Error in reading block "
4067                                         "bitmap for %u", group);
4068                         ext4_mb_release_desc(&e4b);
4069                         continue;
4070                 }
4071
4072                 ext4_lock_group(sb, group);
4073                 list_del(&pa->pa_group_list);
4074                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4075                 ext4_unlock_group(sb, group);
4076
4077                 ext4_mb_release_desc(&e4b);
4078                 put_bh(bitmap_bh);
4079
4080                 list_del(&pa->u.pa_tmp_list);
4081                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4082         }
4083         if (ac)
4084                 kmem_cache_free(ext4_ac_cachep, ac);
4085 }
4086
4087 /*
4088  * finds all preallocated spaces and return blocks being freed to them
4089  * if preallocated space becomes full (no block is used from the space)
4090  * then the function frees space in buddy
4091  * XXX: at the moment, truncate (which is the only way to free blocks)
4092  * discards all preallocations
4093  */
4094 static void ext4_mb_return_to_preallocation(struct inode *inode,
4095                                         struct ext4_buddy *e4b,
4096                                         sector_t block, int count)
4097 {
4098         BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4099 }
4100 #ifdef CONFIG_EXT4_DEBUG
4101 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4102 {
4103         struct super_block *sb = ac->ac_sb;
4104         ext4_group_t ngroups, i;
4105
4106         printk(KERN_ERR "EXT4-fs: Can't allocate:"
4107                         " Allocation context details:\n");
4108         printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4109                         ac->ac_status, ac->ac_flags);
4110         printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4111                         "best %lu/%lu/%lu@%lu cr %d\n",
4112                         (unsigned long)ac->ac_o_ex.fe_group,
4113                         (unsigned long)ac->ac_o_ex.fe_start,
4114                         (unsigned long)ac->ac_o_ex.fe_len,
4115                         (unsigned long)ac->ac_o_ex.fe_logical,
4116                         (unsigned long)ac->ac_g_ex.fe_group,
4117                         (unsigned long)ac->ac_g_ex.fe_start,
4118                         (unsigned long)ac->ac_g_ex.fe_len,
4119                         (unsigned long)ac->ac_g_ex.fe_logical,
4120                         (unsigned long)ac->ac_b_ex.fe_group,
4121                         (unsigned long)ac->ac_b_ex.fe_start,
4122                         (unsigned long)ac->ac_b_ex.fe_len,
4123                         (unsigned long)ac->ac_b_ex.fe_logical,
4124                         (int)ac->ac_criteria);
4125         printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4126                 ac->ac_found);
4127         printk(KERN_ERR "EXT4-fs: groups: \n");
4128         ngroups = ext4_get_groups_count(sb);
4129         for (i = 0; i < ngroups; i++) {
4130                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4131                 struct ext4_prealloc_space *pa;
4132                 ext4_grpblk_t start;
4133                 struct list_head *cur;
4134                 ext4_lock_group(sb, i);
4135                 list_for_each(cur, &grp->bb_prealloc_list) {
4136                         pa = list_entry(cur, struct ext4_prealloc_space,
4137                                         pa_group_list);
4138                         spin_lock(&pa->pa_lock);
4139                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4140                                                      NULL, &start);
4141                         spin_unlock(&pa->pa_lock);
4142                         printk(KERN_ERR "PA:%u:%d:%u \n", i,
4143                                start, pa->pa_len);
4144                 }
4145                 ext4_unlock_group(sb, i);
4146
4147                 if (grp->bb_free == 0)
4148                         continue;
4149                 printk(KERN_ERR "%u: %d/%d \n",
4150                        i, grp->bb_free, grp->bb_fragments);
4151         }
4152         printk(KERN_ERR "\n");
4153 }
4154 #else
4155 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4156 {
4157         return;
4158 }
4159 #endif
4160
4161 /*
4162  * We use locality group preallocation for small size file. The size of the
4163  * file is determined by the current size or the resulting size after
4164  * allocation which ever is larger
4165  *
4166  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4167  */
4168 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4169 {
4170         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4171         int bsbits = ac->ac_sb->s_blocksize_bits;
4172         loff_t size, isize;
4173
4174         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4175                 return;
4176
4177         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4178                 return;
4179
4180         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4181         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4182                 >> bsbits;
4183         size = max(size, isize);
4184
4185         if ((size == isize) &&
4186             !ext4_fs_is_busy(sbi) &&
4187             (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4188                 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4189                 return;
4190         }
4191
4192         /* don't use group allocation for large files */
4193         if (size >= sbi->s_mb_stream_request) {
4194                 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4195                 return;
4196         }
4197
4198         BUG_ON(ac->ac_lg != NULL);
4199         /*
4200          * locality group prealloc space are per cpu. The reason for having
4201          * per cpu locality group is to reduce the contention between block
4202          * request from multiple CPUs.
4203          */
4204         ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4205
4206         /* we're going to use group allocation */
4207         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4208
4209         /* serialize all allocations in the group */
4210         mutex_lock(&ac->ac_lg->lg_mutex);
4211 }
4212
4213 static noinline_for_stack int
4214 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4215                                 struct ext4_allocation_request *ar)
4216 {
4217         struct super_block *sb = ar->inode->i_sb;
4218         struct ext4_sb_info *sbi = EXT4_SB(sb);
4219         struct ext4_super_block *es = sbi->s_es;
4220         ext4_group_t group;
4221         unsigned int len;
4222         ext4_fsblk_t goal;
4223         ext4_grpblk_t block;
4224
4225         /* we can't allocate > group size */
4226         len = ar->len;
4227
4228         /* just a dirty hack to filter too big requests  */
4229         if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4230                 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4231
4232         /* start searching from the goal */
4233         goal = ar->goal;
4234         if (goal < le32_to_cpu(es->s_first_data_block) ||
4235                         goal >= ext4_blocks_count(es))
4236                 goal = le32_to_cpu(es->s_first_data_block);
4237         ext4_get_group_no_and_offset(sb, goal, &group, &block);
4238
4239         /* set up allocation goals */
4240         memset(ac, 0, sizeof(struct ext4_allocation_context));
4241         ac->ac_b_ex.fe_logical = ar->logical;
4242         ac->ac_status = AC_STATUS_CONTINUE;
4243         ac->ac_sb = sb;
4244         ac->ac_inode = ar->inode;
4245         ac->ac_o_ex.fe_logical = ar->logical;
4246         ac->ac_o_ex.fe_group = group;
4247         ac->ac_o_ex.fe_start = block;
4248         ac->ac_o_ex.fe_len = len;
4249         ac->ac_g_ex.fe_logical = ar->logical;
4250         ac->ac_g_ex.fe_group = group;
4251         ac->ac_g_ex.fe_start = block;
4252         ac->ac_g_ex.fe_len = len;
4253         ac->ac_flags = ar->flags;
4254
4255         /* we have to define context: we'll we work with a file or
4256          * locality group. this is a policy, actually */
4257         ext4_mb_group_or_file(ac);
4258
4259         mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4260                         "left: %u/%u, right %u/%u to %swritable\n",
4261                         (unsigned) ar->len, (unsigned) ar->logical,
4262                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4263                         (unsigned) ar->lleft, (unsigned) ar->pleft,
4264                         (unsigned) ar->lright, (unsigned) ar->pright,
4265                         atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4266         return 0;
4267
4268 }
4269
4270 static noinline_for_stack void
4271 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4272                                         struct ext4_locality_group *lg,
4273                                         int order, int total_entries)
4274 {
4275         ext4_group_t group = 0;
4276         struct ext4_buddy e4b;
4277         struct list_head discard_list;
4278         struct ext4_prealloc_space *pa, *tmp;
4279         struct ext4_allocation_context *ac;
4280
4281         mb_debug(1, "discard locality group preallocation\n");
4282
4283         INIT_LIST_HEAD(&discard_list);
4284         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4285         if (ac)
4286                 ac->ac_sb = sb;
4287
4288         spin_lock(&lg->lg_prealloc_lock);
4289         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4290                                                 pa_inode_list) {
4291                 spin_lock(&pa->pa_lock);
4292                 if (atomic_read(&pa->pa_count)) {
4293                         /*
4294                          * This is the pa that we just used
4295                          * for block allocation. So don't
4296                          * free that
4297                          */
4298                         spin_unlock(&pa->pa_lock);
4299                         continue;
4300                 }
4301                 if (pa->pa_deleted) {
4302                         spin_unlock(&pa->pa_lock);
4303                         continue;
4304                 }
4305                 /* only lg prealloc space */
4306                 BUG_ON(pa->pa_type != MB_GROUP_PA);
4307
4308                 /* seems this one can be freed ... */
4309                 pa->pa_deleted = 1;
4310                 spin_unlock(&pa->pa_lock);
4311
4312                 list_del_rcu(&pa->pa_inode_list);
4313                 list_add(&pa->u.pa_tmp_list, &discard_list);
4314
4315                 total_entries--;
4316                 if (total_entries <= 5) {
4317                         /*
4318                          * we want to keep only 5 entries
4319                          * allowing it to grow to 8. This
4320                          * mak sure we don't call discard
4321                          * soon for this list.
4322                          */
4323                         break;
4324                 }
4325         }
4326         spin_unlock(&lg->lg_prealloc_lock);
4327
4328         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4329
4330                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4331                 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4332                         ext4_error(sb, __func__, "Error in loading buddy "
4333                                         "information for %u", group);
4334                         continue;
4335                 }
4336                 ext4_lock_group(sb, group);
4337                 list_del(&pa->pa_group_list);
4338                 ext4_mb_release_group_pa(&e4b, pa, ac);
4339                 ext4_unlock_group(sb, group);
4340
4341                 ext4_mb_release_desc(&e4b);
4342                 list_del(&pa->u.pa_tmp_list);
4343                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4344         }
4345         if (ac)
4346                 kmem_cache_free(ext4_ac_cachep, ac);
4347 }
4348
4349 /*
4350  * We have incremented pa_count. So it cannot be freed at this
4351  * point. Also we hold lg_mutex. So no parallel allocation is
4352  * possible from this lg. That means pa_free cannot be updated.
4353  *
4354  * A parallel ext4_mb_discard_group_preallocations is possible.
4355  * which can cause the lg_prealloc_list to be updated.
4356  */
4357
4358 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4359 {
4360         int order, added = 0, lg_prealloc_count = 1;
4361         struct super_block *sb = ac->ac_sb;
4362         struct ext4_locality_group *lg = ac->ac_lg;
4363         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4364
4365         order = fls(pa->pa_free) - 1;
4366         if (order > PREALLOC_TB_SIZE - 1)
4367                 /* The max size of hash table is PREALLOC_TB_SIZE */
4368                 order = PREALLOC_TB_SIZE - 1;
4369         /* Add the prealloc space to lg */
4370         rcu_read_lock();
4371         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4372                                                 pa_inode_list) {
4373                 spin_lock(&tmp_pa->pa_lock);
4374                 if (tmp_pa->pa_deleted) {
4375                         spin_unlock(&tmp_pa->pa_lock);
4376                         continue;
4377                 }
4378                 if (!added && pa->pa_free < tmp_pa->pa_free) {
4379                         /* Add to the tail of the previous entry */
4380                         list_add_tail_rcu(&pa->pa_inode_list,
4381                                                 &tmp_pa->pa_inode_list);
4382                         added = 1;
4383                         /*
4384                          * we want to count the total
4385                          * number of entries in the list
4386                          */
4387                 }
4388                 spin_unlock(&tmp_pa->pa_lock);
4389                 lg_prealloc_count++;
4390         }
4391         if (!added)
4392                 list_add_tail_rcu(&pa->pa_inode_list,
4393                                         &lg->lg_prealloc_list[order]);
4394         rcu_read_unlock();
4395
4396         /* Now trim the list to be not more than 8 elements */
4397         if (lg_prealloc_count > 8) {
4398                 ext4_mb_discard_lg_preallocations(sb, lg,
4399                                                 order, lg_prealloc_count);
4400                 return;
4401         }
4402         return ;
4403 }
4404
4405 /*
4406  * release all resource we used in allocation
4407  */
4408 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4409 {
4410         struct ext4_prealloc_space *pa = ac->ac_pa;
4411         if (pa) {
4412                 if (pa->pa_type == MB_GROUP_PA) {
4413                         /* see comment in ext4_mb_use_group_pa() */
4414                         spin_lock(&pa->pa_lock);
4415                         pa->pa_pstart += ac->ac_b_ex.fe_len;
4416                         pa->pa_lstart += ac->ac_b_ex.fe_len;
4417                         pa->pa_free -= ac->ac_b_ex.fe_len;
4418                         pa->pa_len -= ac->ac_b_ex.fe_len;
4419                         spin_unlock(&pa->pa_lock);
4420                 }
4421         }
4422         if (ac->alloc_semp)
4423                 up_read(ac->alloc_semp);
4424         if (pa) {
4425                 /*
4426                  * We want to add the pa to the right bucket.
4427                  * Remove it from the list and while adding
4428                  * make sure the list to which we are adding
4429                  * doesn't grow big.  We need to release
4430                  * alloc_semp before calling ext4_mb_add_n_trim()
4431                  */
4432                 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4433                         spin_lock(pa->pa_obj_lock);
4434                         list_del_rcu(&pa->pa_inode_list);
4435                         spin_unlock(pa->pa_obj_lock);
4436                         ext4_mb_add_n_trim(ac);
4437                 }
4438                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4439         }
4440         if (ac->ac_bitmap_page)
4441                 page_cache_release(ac->ac_bitmap_page);
4442         if (ac->ac_buddy_page)
4443                 page_cache_release(ac->ac_buddy_page);
4444         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4445                 mutex_unlock(&ac->ac_lg->lg_mutex);
4446         ext4_mb_collect_stats(ac);
4447         return 0;
4448 }
4449
4450 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4451 {
4452         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4453         int ret;
4454         int freed = 0;
4455
4456         trace_ext4_mb_discard_preallocations(sb, needed);
4457         for (i = 0; i < ngroups && needed > 0; i++) {
4458                 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4459                 freed += ret;
4460                 needed -= ret;
4461         }
4462
4463         return freed;
4464 }
4465
4466 /*
4467  * Main entry point into mballoc to allocate blocks
4468  * it tries to use preallocation first, then falls back
4469  * to usual allocation
4470  */
4471 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4472                                  struct ext4_allocation_request *ar, int *errp)
4473 {
4474         int freed;
4475         struct ext4_allocation_context *ac = NULL;
4476         struct ext4_sb_info *sbi;
4477         struct super_block *sb;
4478         ext4_fsblk_t block = 0;
4479         unsigned int inquota = 0;
4480         unsigned int reserv_blks = 0;
4481
4482         sb = ar->inode->i_sb;
4483         sbi = EXT4_SB(sb);
4484
4485         trace_ext4_request_blocks(ar);
4486
4487         /*
4488          * For delayed allocation, we could skip the ENOSPC and
4489          * EDQUOT check, as blocks and quotas have been already
4490          * reserved when data being copied into pagecache.
4491          */
4492         if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4493                 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4494         else {
4495                 /* Without delayed allocation we need to verify
4496                  * there is enough free blocks to do block allocation
4497                  * and verify allocation doesn't exceed the quota limits.
4498                  */
4499                 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4500                         /* let others to free the space */
4501                         yield();
4502                         ar->len = ar->len >> 1;
4503                 }
4504                 if (!ar->len) {
4505                         *errp = -ENOSPC;
4506                         return 0;
4507                 }
4508                 reserv_blks = ar->len;
4509                 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4510                         ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4511                         ar->len--;
4512                 }
4513                 inquota = ar->len;
4514                 if (ar->len == 0) {
4515                         *errp = -EDQUOT;
4516                         goto out3;
4517                 }
4518         }
4519
4520         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4521         if (!ac) {
4522                 ar->len = 0;
4523                 *errp = -ENOMEM;
4524                 goto out1;
4525         }
4526
4527         *errp = ext4_mb_initialize_context(ac, ar);
4528         if (*errp) {
4529                 ar->len = 0;
4530                 goto out2;
4531         }
4532
4533         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4534         if (!ext4_mb_use_preallocated(ac)) {
4535                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4536                 ext4_mb_normalize_request(ac, ar);
4537 repeat:
4538                 /* allocate space in core */
4539                 ext4_mb_regular_allocator(ac);
4540
4541                 /* as we've just preallocated more space than
4542                  * user requested orinally, we store allocated
4543                  * space in a special descriptor */
4544                 if (ac->ac_status == AC_STATUS_FOUND &&
4545                                 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4546                         ext4_mb_new_preallocation(ac);
4547         }
4548         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4549                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4550                 if (*errp ==  -EAGAIN) {
4551                         /*
4552                          * drop the reference that we took
4553                          * in ext4_mb_use_best_found
4554                          */
4555                         ext4_mb_release_context(ac);
4556                         ac->ac_b_ex.fe_group = 0;
4557                         ac->ac_b_ex.fe_start = 0;
4558                         ac->ac_b_ex.fe_len = 0;
4559                         ac->ac_status = AC_STATUS_CONTINUE;
4560                         goto repeat;
4561                 } else if (*errp) {
4562                         ac->ac_b_ex.fe_len = 0;
4563                         ar->len = 0;
4564                         ext4_mb_show_ac(ac);
4565                 } else {
4566                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4567                         ar->len = ac->ac_b_ex.fe_len;
4568                 }
4569         } else {
4570                 freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4571                 if (freed)
4572                         goto repeat;
4573                 *errp = -ENOSPC;
4574                 ac->ac_b_ex.fe_len = 0;
4575                 ar->len = 0;
4576                 ext4_mb_show_ac(ac);
4577         }
4578
4579         ext4_mb_release_context(ac);
4580
4581 out2:
4582         kmem_cache_free(ext4_ac_cachep, ac);
4583 out1:
4584         if (inquota && ar->len < inquota)
4585                 vfs_dq_free_block(ar->inode, inquota - ar->len);
4586 out3:
4587         if (!ar->len) {
4588                 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4589                         /* release all the reserved blocks if non delalloc */
4590                         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4591                                                 reserv_blks);
4592         }
4593
4594         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4595
4596         return block;
4597 }
4598
4599 /*
4600  * We can merge two free data extents only if the physical blocks
4601  * are contiguous, AND the extents were freed by the same transaction,
4602  * AND the blocks are associated with the same group.
4603  */
4604 static int can_merge(struct ext4_free_data *entry1,
4605                         struct ext4_free_data *entry2)
4606 {
4607         if ((entry1->t_tid == entry2->t_tid) &&
4608             (entry1->group == entry2->group) &&
4609             ((entry1->start_blk + entry1->count) == entry2->start_blk))
4610                 return 1;
4611         return 0;
4612 }
4613
4614 static noinline_for_stack int
4615 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4616                       struct ext4_free_data *new_entry)
4617 {
4618         ext4_grpblk_t block;
4619         struct ext4_free_data *entry;
4620         struct ext4_group_info *db = e4b->bd_info;
4621         struct super_block *sb = e4b->bd_sb;
4622         struct ext4_sb_info *sbi = EXT4_SB(sb);
4623         struct rb_node **n = &db->bb_free_root.rb_node, *node;
4624         struct rb_node *parent = NULL, *new_node;
4625
4626         BUG_ON(!ext4_handle_valid(handle));
4627         BUG_ON(e4b->bd_bitmap_page == NULL);
4628         BUG_ON(e4b->bd_buddy_page == NULL);
4629
4630         new_node = &new_entry->node;
4631         block = new_entry->start_blk;
4632
4633         if (!*n) {
4634                 /* first free block exent. We need to
4635                    protect buddy cache from being freed,
4636                  * otherwise we'll refresh it from
4637                  * on-disk bitmap and lose not-yet-available
4638                  * blocks */
4639                 page_cache_get(e4b->bd_buddy_page);
4640                 page_cache_get(e4b->bd_bitmap_page);
4641         }
4642         while (*n) {
4643                 parent = *n;
4644                 entry = rb_entry(parent, struct ext4_free_data, node);
4645                 if (block < entry->start_blk)
4646                         n = &(*n)->rb_left;
4647                 else if (block >= (entry->start_blk + entry->count))
4648                         n = &(*n)->rb_right;
4649                 else {
4650                         ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4651                                         "Double free of blocks %d (%d %d)",
4652                                         block, entry->start_blk, entry->count);
4653                         return 0;
4654                 }
4655         }
4656
4657         rb_link_node(new_node, parent, n);
4658         rb_insert_color(new_node, &db->bb_free_root);
4659
4660         /* Now try to see the extent can be merged to left and right */
4661         node = rb_prev(new_node);
4662         if (node) {
4663                 entry = rb_entry(node, struct ext4_free_data, node);
4664                 if (can_merge(entry, new_entry)) {
4665                         new_entry->start_blk = entry->start_blk;
4666                         new_entry->count += entry->count;
4667                         rb_erase(node, &(db->bb_free_root));
4668                         spin_lock(&sbi->s_md_lock);
4669                         list_del(&entry->list);
4670                         spin_unlock(&sbi->s_md_lock);
4671                         kmem_cache_free(ext4_free_ext_cachep, entry);
4672                 }
4673         }
4674
4675         node = rb_next(new_node);
4676         if (node) {
4677                 entry = rb_entry(node, struct ext4_free_data, node);
4678                 if (can_merge(new_entry, entry)) {
4679                         new_entry->count += entry->count;
4680                         rb_erase(node, &(db->bb_free_root));
4681                         spin_lock(&sbi->s_md_lock);
4682                         list_del(&entry->list);
4683                         spin_unlock(&sbi->s_md_lock);
4684                         kmem_cache_free(ext4_free_ext_cachep, entry);
4685                 }
4686         }
4687         /* Add the extent to transaction's private list */
4688         spin_lock(&sbi->s_md_lock);
4689         list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4690         spin_unlock(&sbi->s_md_lock);
4691         return 0;
4692 }
4693
4694 /*
4695  * Main entry point into mballoc to free blocks
4696  */
4697 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4698                         ext4_fsblk_t block, unsigned long count,
4699                         int metadata, unsigned long *freed)
4700 {
4701         struct buffer_head *bitmap_bh = NULL;
4702         struct super_block *sb = inode->i_sb;
4703         struct ext4_allocation_context *ac = NULL;
4704         struct ext4_group_desc *gdp;
4705         struct ext4_super_block *es;
4706         unsigned int overflow;
4707         ext4_grpblk_t bit;
4708         struct buffer_head *gd_bh;
4709         ext4_group_t block_group;
4710         struct ext4_sb_info *sbi;
4711         struct ext4_buddy e4b;
4712         int err = 0;
4713         int ret;
4714
4715         *freed = 0;
4716
4717         sbi = EXT4_SB(sb);
4718         es = EXT4_SB(sb)->s_es;
4719         if (block < le32_to_cpu(es->s_first_data_block) ||
4720             block + count < block ||
4721             block + count > ext4_blocks_count(es)) {
4722                 ext4_error(sb, __func__,
4723                             "Freeing blocks not in datazone - "
4724                             "block = %llu, count = %lu", block, count);
4725                 goto error_return;
4726         }
4727
4728         ext4_debug("freeing block %llu\n", block);
4729         trace_ext4_free_blocks(inode, block, count, metadata);
4730
4731         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4732         if (ac) {
4733                 ac->ac_op = EXT4_MB_HISTORY_FREE;
4734                 ac->ac_inode = inode;
4735                 ac->ac_sb = sb;
4736         }
4737
4738 do_more:
4739         overflow = 0;
4740         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4741
4742         /*
4743          * Check to see if we are freeing blocks across a group
4744          * boundary.
4745          */
4746         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4747                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4748                 count -= overflow;
4749         }
4750         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4751         if (!bitmap_bh) {
4752                 err = -EIO;
4753                 goto error_return;
4754         }
4755         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4756         if (!gdp) {
4757                 err = -EIO;
4758                 goto error_return;
4759         }
4760
4761         if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4762             in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4763             in_range(block, ext4_inode_table(sb, gdp),
4764                       EXT4_SB(sb)->s_itb_per_group) ||
4765             in_range(block + count - 1, ext4_inode_table(sb, gdp),
4766                       EXT4_SB(sb)->s_itb_per_group)) {
4767
4768                 ext4_error(sb, __func__,
4769                            "Freeing blocks in system zone - "
4770                            "Block = %llu, count = %lu", block, count);
4771                 /* err = 0. ext4_std_error should be a no op */
4772                 goto error_return;
4773         }
4774
4775         BUFFER_TRACE(bitmap_bh, "getting write access");
4776         err = ext4_journal_get_write_access(handle, bitmap_bh);
4777         if (err)
4778                 goto error_return;
4779
4780         /*
4781          * We are about to modify some metadata.  Call the journal APIs
4782          * to unshare ->b_data if a currently-committing transaction is
4783          * using it
4784          */
4785         BUFFER_TRACE(gd_bh, "get_write_access");
4786         err = ext4_journal_get_write_access(handle, gd_bh);
4787         if (err)
4788                 goto error_return;
4789 #ifdef AGGRESSIVE_CHECK
4790         {
4791                 int i;
4792                 for (i = 0; i < count; i++)
4793                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4794         }
4795 #endif
4796         if (ac) {
4797                 ac->ac_b_ex.fe_group = block_group;
4798                 ac->ac_b_ex.fe_start = bit;
4799                 ac->ac_b_ex.fe_len = count;
4800                 ext4_mb_store_history(ac);
4801         }
4802
4803         err = ext4_mb_load_buddy(sb, block_group, &e4b);
4804         if (err)
4805                 goto error_return;
4806         if (metadata && ext4_handle_valid(handle)) {
4807                 struct ext4_free_data *new_entry;
4808                 /*
4809                  * blocks being freed are metadata. these blocks shouldn't
4810                  * be used until this transaction is committed
4811                  */
4812                 new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4813                 new_entry->start_blk = bit;
4814                 new_entry->group  = block_group;
4815                 new_entry->count = count;
4816                 new_entry->t_tid = handle->h_transaction->t_tid;
4817
4818                 ext4_lock_group(sb, block_group);
4819                 mb_clear_bits(bitmap_bh->b_data, bit, count);
4820                 ext4_mb_free_metadata(handle, &e4b, new_entry);
4821         } else {
4822                 /* need to update group_info->bb_free and bitmap
4823                  * with group lock held. generate_buddy look at
4824                  * them with group lock_held
4825                  */
4826                 ext4_lock_group(sb, block_group);
4827                 mb_clear_bits(bitmap_bh->b_data, bit, count);
4828                 mb_free_blocks(inode, &e4b, bit, count);
4829                 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4830         }
4831
4832         ret = ext4_free_blks_count(sb, gdp) + count;
4833         ext4_free_blks_set(sb, gdp, ret);
4834         gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4835         ext4_unlock_group(sb, block_group);
4836         percpu_counter_add(&sbi->s_freeblocks_counter, count);
4837
4838         if (sbi->s_log_groups_per_flex) {
4839                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4840                 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4841         }
4842
4843         ext4_mb_release_desc(&e4b);
4844
4845         *freed += count;
4846
4847         /* We dirtied the bitmap block */
4848         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4849         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4850
4851         /* And the group descriptor block */
4852         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4853         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4854         if (!err)
4855                 err = ret;
4856
4857         if (overflow && !err) {
4858                 block += count;
4859                 count = overflow;
4860                 put_bh(bitmap_bh);
4861                 goto do_more;
4862         }
4863         sb->s_dirt = 1;
4864 error_return:
4865         brelse(bitmap_bh);
4866         ext4_std_error(sb, err);
4867         if (ac)
4868                 kmem_cache_free(ext4_ac_cachep, ac);
4869         return;
4870 }