ext4: limit block allocations for indirect-block files to < 2^32
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51                                               loff_t new_size)
52 {
53         return jbd2_journal_begin_ordered_truncate(
54                                         EXT4_SB(inode->i_sb)->s_journal,
55                                         &EXT4_I(inode)->jinode,
56                                         new_size);
57 }
58
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
61 /*
62  * Test whether an inode is a fast symlink.
63  */
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
65 {
66         int ea_blocks = EXT4_I(inode)->i_file_acl ?
67                 (inode->i_sb->s_blocksize >> 9) : 0;
68
69         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 }
71
72 /*
73  * The ext4 forget function must perform a revoke if we are freeing data
74  * which has been journaled.  Metadata (eg. indirect blocks) must be
75  * revoked in all cases.
76  *
77  * "bh" may be NULL: a metadata block may have been freed from memory
78  * but there may still be a record of it in the journal, and that record
79  * still needs to be revoked.
80  *
81  * If the handle isn't valid we're not journaling, but we still need to
82  * call into ext4_journal_revoke() to put the buffer head.
83  */
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85                 struct buffer_head *bh, ext4_fsblk_t blocknr)
86 {
87         int err;
88
89         might_sleep();
90
91         BUFFER_TRACE(bh, "enter");
92
93         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94                   "data mode %x\n",
95                   bh, is_metadata, inode->i_mode,
96                   test_opt(inode->i_sb, DATA_FLAGS));
97
98         /* Never use the revoke function if we are doing full data
99          * journaling: there is no need to, and a V1 superblock won't
100          * support it.  Otherwise, only skip the revoke on un-journaled
101          * data blocks. */
102
103         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104             (!is_metadata && !ext4_should_journal_data(inode))) {
105                 if (bh) {
106                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
107                         return ext4_journal_forget(handle, bh);
108                 }
109                 return 0;
110         }
111
112         /*
113          * data!=journal && (is_metadata || should_journal_data(inode))
114          */
115         BUFFER_TRACE(bh, "call ext4_journal_revoke");
116         err = ext4_journal_revoke(handle, blocknr, bh);
117         if (err)
118                 ext4_abort(inode->i_sb, __func__,
119                            "error %d when attempting revoke", err);
120         BUFFER_TRACE(bh, "exit");
121         return err;
122 }
123
124 /*
125  * Work out how many blocks we need to proceed with the next chunk of a
126  * truncate transaction.
127  */
128 static unsigned long blocks_for_truncate(struct inode *inode)
129 {
130         ext4_lblk_t needed;
131
132         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133
134         /* Give ourselves just enough room to cope with inodes in which
135          * i_blocks is corrupt: we've seen disk corruptions in the past
136          * which resulted in random data in an inode which looked enough
137          * like a regular file for ext4 to try to delete it.  Things
138          * will go a bit crazy if that happens, but at least we should
139          * try not to panic the whole kernel. */
140         if (needed < 2)
141                 needed = 2;
142
143         /* But we need to bound the transaction so we don't overflow the
144          * journal. */
145         if (needed > EXT4_MAX_TRANS_DATA)
146                 needed = EXT4_MAX_TRANS_DATA;
147
148         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 }
150
151 /*
152  * Truncate transactions can be complex and absolutely huge.  So we need to
153  * be able to restart the transaction at a conventient checkpoint to make
154  * sure we don't overflow the journal.
155  *
156  * start_transaction gets us a new handle for a truncate transaction,
157  * and extend_transaction tries to extend the existing one a bit.  If
158  * extend fails, we need to propagate the failure up and restart the
159  * transaction in the top-level truncate loop. --sct
160  */
161 static handle_t *start_transaction(struct inode *inode)
162 {
163         handle_t *result;
164
165         result = ext4_journal_start(inode, blocks_for_truncate(inode));
166         if (!IS_ERR(result))
167                 return result;
168
169         ext4_std_error(inode->i_sb, PTR_ERR(result));
170         return result;
171 }
172
173 /*
174  * Try to extend this transaction for the purposes of truncation.
175  *
176  * Returns 0 if we managed to create more room.  If we can't create more
177  * room, and the transaction must be restarted we return 1.
178  */
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180 {
181         if (!ext4_handle_valid(handle))
182                 return 0;
183         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184                 return 0;
185         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186                 return 0;
187         return 1;
188 }
189
190 /*
191  * Restart the transaction associated with *handle.  This does a commit,
192  * so before we call here everything must be consistently dirtied against
193  * this transaction.
194  */
195  int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
196                                  int nblocks)
197 {
198         int ret;
199
200         /*
201          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
202          * moment, get_block can be called only for blocks inside i_size since
203          * page cache has been already dropped and writes are blocked by
204          * i_mutex. So we can safely drop the i_data_sem here.
205          */
206         BUG_ON(EXT4_JOURNAL(inode) == NULL);
207         jbd_debug(2, "restarting handle %p\n", handle);
208         up_write(&EXT4_I(inode)->i_data_sem);
209         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
210         down_write(&EXT4_I(inode)->i_data_sem);
211
212         return ret;
213 }
214
215 /*
216  * Called at the last iput() if i_nlink is zero.
217  */
218 void ext4_delete_inode(struct inode *inode)
219 {
220         handle_t *handle;
221         int err;
222
223         if (ext4_should_order_data(inode))
224                 ext4_begin_ordered_truncate(inode, 0);
225         truncate_inode_pages(&inode->i_data, 0);
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229
230         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
231         if (IS_ERR(handle)) {
232                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
233                 /*
234                  * If we're going to skip the normal cleanup, we still need to
235                  * make sure that the in-core orphan linked list is properly
236                  * cleaned up.
237                  */
238                 ext4_orphan_del(NULL, inode);
239                 goto no_delete;
240         }
241
242         if (IS_SYNC(inode))
243                 ext4_handle_sync(handle);
244         inode->i_size = 0;
245         err = ext4_mark_inode_dirty(handle, inode);
246         if (err) {
247                 ext4_warning(inode->i_sb, __func__,
248                              "couldn't mark inode dirty (err %d)", err);
249                 goto stop_handle;
250         }
251         if (inode->i_blocks)
252                 ext4_truncate(inode);
253
254         /*
255          * ext4_ext_truncate() doesn't reserve any slop when it
256          * restarts journal transactions; therefore there may not be
257          * enough credits left in the handle to remove the inode from
258          * the orphan list and set the dtime field.
259          */
260         if (!ext4_handle_has_enough_credits(handle, 3)) {
261                 err = ext4_journal_extend(handle, 3);
262                 if (err > 0)
263                         err = ext4_journal_restart(handle, 3);
264                 if (err != 0) {
265                         ext4_warning(inode->i_sb, __func__,
266                                      "couldn't extend journal (err %d)", err);
267                 stop_handle:
268                         ext4_journal_stop(handle);
269                         goto no_delete;
270                 }
271         }
272
273         /*
274          * Kill off the orphan record which ext4_truncate created.
275          * AKPM: I think this can be inside the above `if'.
276          * Note that ext4_orphan_del() has to be able to cope with the
277          * deletion of a non-existent orphan - this is because we don't
278          * know if ext4_truncate() actually created an orphan record.
279          * (Well, we could do this if we need to, but heck - it works)
280          */
281         ext4_orphan_del(handle, inode);
282         EXT4_I(inode)->i_dtime  = get_seconds();
283
284         /*
285          * One subtle ordering requirement: if anything has gone wrong
286          * (transaction abort, IO errors, whatever), then we can still
287          * do these next steps (the fs will already have been marked as
288          * having errors), but we can't free the inode if the mark_dirty
289          * fails.
290          */
291         if (ext4_mark_inode_dirty(handle, inode))
292                 /* If that failed, just do the required in-core inode clear. */
293                 clear_inode(inode);
294         else
295                 ext4_free_inode(handle, inode);
296         ext4_journal_stop(handle);
297         return;
298 no_delete:
299         clear_inode(inode);     /* We must guarantee clearing of inode... */
300 }
301
302 typedef struct {
303         __le32  *p;
304         __le32  key;
305         struct buffer_head *bh;
306 } Indirect;
307
308 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
309 {
310         p->key = *(p->p = v);
311         p->bh = bh;
312 }
313
314 /**
315  *      ext4_block_to_path - parse the block number into array of offsets
316  *      @inode: inode in question (we are only interested in its superblock)
317  *      @i_block: block number to be parsed
318  *      @offsets: array to store the offsets in
319  *      @boundary: set this non-zero if the referred-to block is likely to be
320  *             followed (on disk) by an indirect block.
321  *
322  *      To store the locations of file's data ext4 uses a data structure common
323  *      for UNIX filesystems - tree of pointers anchored in the inode, with
324  *      data blocks at leaves and indirect blocks in intermediate nodes.
325  *      This function translates the block number into path in that tree -
326  *      return value is the path length and @offsets[n] is the offset of
327  *      pointer to (n+1)th node in the nth one. If @block is out of range
328  *      (negative or too large) warning is printed and zero returned.
329  *
330  *      Note: function doesn't find node addresses, so no IO is needed. All
331  *      we need to know is the capacity of indirect blocks (taken from the
332  *      inode->i_sb).
333  */
334
335 /*
336  * Portability note: the last comparison (check that we fit into triple
337  * indirect block) is spelled differently, because otherwise on an
338  * architecture with 32-bit longs and 8Kb pages we might get into trouble
339  * if our filesystem had 8Kb blocks. We might use long long, but that would
340  * kill us on x86. Oh, well, at least the sign propagation does not matter -
341  * i_block would have to be negative in the very beginning, so we would not
342  * get there at all.
343  */
344
345 static int ext4_block_to_path(struct inode *inode,
346                               ext4_lblk_t i_block,
347                               ext4_lblk_t offsets[4], int *boundary)
348 {
349         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
350         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
351         const long direct_blocks = EXT4_NDIR_BLOCKS,
352                 indirect_blocks = ptrs,
353                 double_blocks = (1 << (ptrs_bits * 2));
354         int n = 0;
355         int final = 0;
356
357         if (i_block < direct_blocks) {
358                 offsets[n++] = i_block;
359                 final = direct_blocks;
360         } else if ((i_block -= direct_blocks) < indirect_blocks) {
361                 offsets[n++] = EXT4_IND_BLOCK;
362                 offsets[n++] = i_block;
363                 final = ptrs;
364         } else if ((i_block -= indirect_blocks) < double_blocks) {
365                 offsets[n++] = EXT4_DIND_BLOCK;
366                 offsets[n++] = i_block >> ptrs_bits;
367                 offsets[n++] = i_block & (ptrs - 1);
368                 final = ptrs;
369         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
370                 offsets[n++] = EXT4_TIND_BLOCK;
371                 offsets[n++] = i_block >> (ptrs_bits * 2);
372                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
373                 offsets[n++] = i_block & (ptrs - 1);
374                 final = ptrs;
375         } else {
376                 ext4_warning(inode->i_sb, "ext4_block_to_path",
377                              "block %lu > max in inode %lu",
378                              i_block + direct_blocks +
379                              indirect_blocks + double_blocks, inode->i_ino);
380         }
381         if (boundary)
382                 *boundary = final - 1 - (i_block & (ptrs - 1));
383         return n;
384 }
385
386 static int __ext4_check_blockref(const char *function, struct inode *inode,
387                                  __le32 *p, unsigned int max)
388 {
389         __le32 *bref = p;
390         unsigned int blk;
391
392         while (bref < p+max) {
393                 blk = le32_to_cpu(*bref++);
394                 if (blk &&
395                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
396                                                     blk, 1))) {
397                         ext4_error(inode->i_sb, function,
398                                    "invalid block reference %u "
399                                    "in inode #%lu", blk, inode->i_ino);
400                         return -EIO;
401                 }
402         }
403         return 0;
404 }
405
406
407 #define ext4_check_indirect_blockref(inode, bh)                         \
408         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
409                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
410
411 #define ext4_check_inode_blockref(inode)                                \
412         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
413                               EXT4_NDIR_BLOCKS)
414
415 /**
416  *      ext4_get_branch - read the chain of indirect blocks leading to data
417  *      @inode: inode in question
418  *      @depth: depth of the chain (1 - direct pointer, etc.)
419  *      @offsets: offsets of pointers in inode/indirect blocks
420  *      @chain: place to store the result
421  *      @err: here we store the error value
422  *
423  *      Function fills the array of triples <key, p, bh> and returns %NULL
424  *      if everything went OK or the pointer to the last filled triple
425  *      (incomplete one) otherwise. Upon the return chain[i].key contains
426  *      the number of (i+1)-th block in the chain (as it is stored in memory,
427  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
428  *      number (it points into struct inode for i==0 and into the bh->b_data
429  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
430  *      block for i>0 and NULL for i==0. In other words, it holds the block
431  *      numbers of the chain, addresses they were taken from (and where we can
432  *      verify that chain did not change) and buffer_heads hosting these
433  *      numbers.
434  *
435  *      Function stops when it stumbles upon zero pointer (absent block)
436  *              (pointer to last triple returned, *@err == 0)
437  *      or when it gets an IO error reading an indirect block
438  *              (ditto, *@err == -EIO)
439  *      or when it reads all @depth-1 indirect blocks successfully and finds
440  *      the whole chain, all way to the data (returns %NULL, *err == 0).
441  *
442  *      Need to be called with
443  *      down_read(&EXT4_I(inode)->i_data_sem)
444  */
445 static Indirect *ext4_get_branch(struct inode *inode, int depth,
446                                  ext4_lblk_t  *offsets,
447                                  Indirect chain[4], int *err)
448 {
449         struct super_block *sb = inode->i_sb;
450         Indirect *p = chain;
451         struct buffer_head *bh;
452
453         *err = 0;
454         /* i_data is not going away, no lock needed */
455         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
456         if (!p->key)
457                 goto no_block;
458         while (--depth) {
459                 bh = sb_getblk(sb, le32_to_cpu(p->key));
460                 if (unlikely(!bh))
461                         goto failure;
462
463                 if (!bh_uptodate_or_lock(bh)) {
464                         if (bh_submit_read(bh) < 0) {
465                                 put_bh(bh);
466                                 goto failure;
467                         }
468                         /* validate block references */
469                         if (ext4_check_indirect_blockref(inode, bh)) {
470                                 put_bh(bh);
471                                 goto failure;
472                         }
473                 }
474
475                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
476                 /* Reader: end */
477                 if (!p->key)
478                         goto no_block;
479         }
480         return NULL;
481
482 failure:
483         *err = -EIO;
484 no_block:
485         return p;
486 }
487
488 /**
489  *      ext4_find_near - find a place for allocation with sufficient locality
490  *      @inode: owner
491  *      @ind: descriptor of indirect block.
492  *
493  *      This function returns the preferred place for block allocation.
494  *      It is used when heuristic for sequential allocation fails.
495  *      Rules are:
496  *        + if there is a block to the left of our position - allocate near it.
497  *        + if pointer will live in indirect block - allocate near that block.
498  *        + if pointer will live in inode - allocate in the same
499  *          cylinder group.
500  *
501  * In the latter case we colour the starting block by the callers PID to
502  * prevent it from clashing with concurrent allocations for a different inode
503  * in the same block group.   The PID is used here so that functionally related
504  * files will be close-by on-disk.
505  *
506  *      Caller must make sure that @ind is valid and will stay that way.
507  */
508 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
509 {
510         struct ext4_inode_info *ei = EXT4_I(inode);
511         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
512         __le32 *p;
513         ext4_fsblk_t bg_start;
514         ext4_fsblk_t last_block;
515         ext4_grpblk_t colour;
516         ext4_group_t block_group;
517         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
518
519         /* Try to find previous block */
520         for (p = ind->p - 1; p >= start; p--) {
521                 if (*p)
522                         return le32_to_cpu(*p);
523         }
524
525         /* No such thing, so let's try location of indirect block */
526         if (ind->bh)
527                 return ind->bh->b_blocknr;
528
529         /*
530          * It is going to be referred to from the inode itself? OK, just put it
531          * into the same cylinder group then.
532          */
533         block_group = ei->i_block_group;
534         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
535                 block_group &= ~(flex_size-1);
536                 if (S_ISREG(inode->i_mode))
537                         block_group++;
538         }
539         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
540         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
541
542         /*
543          * If we are doing delayed allocation, we don't need take
544          * colour into account.
545          */
546         if (test_opt(inode->i_sb, DELALLOC))
547                 return bg_start;
548
549         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
550                 colour = (current->pid % 16) *
551                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
552         else
553                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
554         return bg_start + colour;
555 }
556
557 /**
558  *      ext4_find_goal - find a preferred place for allocation.
559  *      @inode: owner
560  *      @block:  block we want
561  *      @partial: pointer to the last triple within a chain
562  *
563  *      Normally this function find the preferred place for block allocation,
564  *      returns it.
565  *      Because this is only used for non-extent files, we limit the block nr
566  *      to 32 bits.
567  */
568 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
569                                    Indirect *partial)
570 {
571         ext4_fsblk_t goal;
572
573         /*
574          * XXX need to get goal block from mballoc's data structures
575          */
576
577         goal = ext4_find_near(inode, partial);
578         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
579         return goal;
580 }
581
582 /**
583  *      ext4_blks_to_allocate: Look up the block map and count the number
584  *      of direct blocks need to be allocated for the given branch.
585  *
586  *      @branch: chain of indirect blocks
587  *      @k: number of blocks need for indirect blocks
588  *      @blks: number of data blocks to be mapped.
589  *      @blocks_to_boundary:  the offset in the indirect block
590  *
591  *      return the total number of blocks to be allocate, including the
592  *      direct and indirect blocks.
593  */
594 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
595                                  int blocks_to_boundary)
596 {
597         unsigned int count = 0;
598
599         /*
600          * Simple case, [t,d]Indirect block(s) has not allocated yet
601          * then it's clear blocks on that path have not allocated
602          */
603         if (k > 0) {
604                 /* right now we don't handle cross boundary allocation */
605                 if (blks < blocks_to_boundary + 1)
606                         count += blks;
607                 else
608                         count += blocks_to_boundary + 1;
609                 return count;
610         }
611
612         count++;
613         while (count < blks && count <= blocks_to_boundary &&
614                 le32_to_cpu(*(branch[0].p + count)) == 0) {
615                 count++;
616         }
617         return count;
618 }
619
620 /**
621  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
622  *      @indirect_blks: the number of blocks need to allocate for indirect
623  *                      blocks
624  *
625  *      @new_blocks: on return it will store the new block numbers for
626  *      the indirect blocks(if needed) and the first direct block,
627  *      @blks:  on return it will store the total number of allocated
628  *              direct blocks
629  */
630 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
631                              ext4_lblk_t iblock, ext4_fsblk_t goal,
632                              int indirect_blks, int blks,
633                              ext4_fsblk_t new_blocks[4], int *err)
634 {
635         struct ext4_allocation_request ar;
636         int target, i;
637         unsigned long count = 0, blk_allocated = 0;
638         int index = 0;
639         ext4_fsblk_t current_block = 0;
640         int ret = 0;
641
642         /*
643          * Here we try to allocate the requested multiple blocks at once,
644          * on a best-effort basis.
645          * To build a branch, we should allocate blocks for
646          * the indirect blocks(if not allocated yet), and at least
647          * the first direct block of this branch.  That's the
648          * minimum number of blocks need to allocate(required)
649          */
650         /* first we try to allocate the indirect blocks */
651         target = indirect_blks;
652         while (target > 0) {
653                 count = target;
654                 /* allocating blocks for indirect blocks and direct blocks */
655                 current_block = ext4_new_meta_blocks(handle, inode,
656                                                         goal, &count, err);
657                 if (*err)
658                         goto failed_out;
659
660                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
661
662                 target -= count;
663                 /* allocate blocks for indirect blocks */
664                 while (index < indirect_blks && count) {
665                         new_blocks[index++] = current_block++;
666                         count--;
667                 }
668                 if (count > 0) {
669                         /*
670                          * save the new block number
671                          * for the first direct block
672                          */
673                         new_blocks[index] = current_block;
674                         printk(KERN_INFO "%s returned more blocks than "
675                                                 "requested\n", __func__);
676                         WARN_ON(1);
677                         break;
678                 }
679         }
680
681         target = blks - count ;
682         blk_allocated = count;
683         if (!target)
684                 goto allocated;
685         /* Now allocate data blocks */
686         memset(&ar, 0, sizeof(ar));
687         ar.inode = inode;
688         ar.goal = goal;
689         ar.len = target;
690         ar.logical = iblock;
691         if (S_ISREG(inode->i_mode))
692                 /* enable in-core preallocation only for regular files */
693                 ar.flags = EXT4_MB_HINT_DATA;
694
695         current_block = ext4_mb_new_blocks(handle, &ar, err);
696         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
697
698         if (*err && (target == blks)) {
699                 /*
700                  * if the allocation failed and we didn't allocate
701                  * any blocks before
702                  */
703                 goto failed_out;
704         }
705         if (!*err) {
706                 if (target == blks) {
707                         /*
708                          * save the new block number
709                          * for the first direct block
710                          */
711                         new_blocks[index] = current_block;
712                 }
713                 blk_allocated += ar.len;
714         }
715 allocated:
716         /* total number of blocks allocated for direct blocks */
717         ret = blk_allocated;
718         *err = 0;
719         return ret;
720 failed_out:
721         for (i = 0; i < index; i++)
722                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
723         return ret;
724 }
725
726 /**
727  *      ext4_alloc_branch - allocate and set up a chain of blocks.
728  *      @inode: owner
729  *      @indirect_blks: number of allocated indirect blocks
730  *      @blks: number of allocated direct blocks
731  *      @offsets: offsets (in the blocks) to store the pointers to next.
732  *      @branch: place to store the chain in.
733  *
734  *      This function allocates blocks, zeroes out all but the last one,
735  *      links them into chain and (if we are synchronous) writes them to disk.
736  *      In other words, it prepares a branch that can be spliced onto the
737  *      inode. It stores the information about that chain in the branch[], in
738  *      the same format as ext4_get_branch() would do. We are calling it after
739  *      we had read the existing part of chain and partial points to the last
740  *      triple of that (one with zero ->key). Upon the exit we have the same
741  *      picture as after the successful ext4_get_block(), except that in one
742  *      place chain is disconnected - *branch->p is still zero (we did not
743  *      set the last link), but branch->key contains the number that should
744  *      be placed into *branch->p to fill that gap.
745  *
746  *      If allocation fails we free all blocks we've allocated (and forget
747  *      their buffer_heads) and return the error value the from failed
748  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
749  *      as described above and return 0.
750  */
751 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
752                              ext4_lblk_t iblock, int indirect_blks,
753                              int *blks, ext4_fsblk_t goal,
754                              ext4_lblk_t *offsets, Indirect *branch)
755 {
756         int blocksize = inode->i_sb->s_blocksize;
757         int i, n = 0;
758         int err = 0;
759         struct buffer_head *bh;
760         int num;
761         ext4_fsblk_t new_blocks[4];
762         ext4_fsblk_t current_block;
763
764         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
765                                 *blks, new_blocks, &err);
766         if (err)
767                 return err;
768
769         branch[0].key = cpu_to_le32(new_blocks[0]);
770         /*
771          * metadata blocks and data blocks are allocated.
772          */
773         for (n = 1; n <= indirect_blks;  n++) {
774                 /*
775                  * Get buffer_head for parent block, zero it out
776                  * and set the pointer to new one, then send
777                  * parent to disk.
778                  */
779                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
780                 branch[n].bh = bh;
781                 lock_buffer(bh);
782                 BUFFER_TRACE(bh, "call get_create_access");
783                 err = ext4_journal_get_create_access(handle, bh);
784                 if (err) {
785                         /* Don't brelse(bh) here; it's done in
786                          * ext4_journal_forget() below */
787                         unlock_buffer(bh);
788                         goto failed;
789                 }
790
791                 memset(bh->b_data, 0, blocksize);
792                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
793                 branch[n].key = cpu_to_le32(new_blocks[n]);
794                 *branch[n].p = branch[n].key;
795                 if (n == indirect_blks) {
796                         current_block = new_blocks[n];
797                         /*
798                          * End of chain, update the last new metablock of
799                          * the chain to point to the new allocated
800                          * data blocks numbers
801                          */
802                         for (i = 1; i < num; i++)
803                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
804                 }
805                 BUFFER_TRACE(bh, "marking uptodate");
806                 set_buffer_uptodate(bh);
807                 unlock_buffer(bh);
808
809                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
810                 err = ext4_handle_dirty_metadata(handle, inode, bh);
811                 if (err)
812                         goto failed;
813         }
814         *blks = num;
815         return err;
816 failed:
817         /* Allocation failed, free what we already allocated */
818         for (i = 1; i <= n ; i++) {
819                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
820                 ext4_journal_forget(handle, branch[i].bh);
821         }
822         for (i = 0; i < indirect_blks; i++)
823                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
824
825         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
826
827         return err;
828 }
829
830 /**
831  * ext4_splice_branch - splice the allocated branch onto inode.
832  * @inode: owner
833  * @block: (logical) number of block we are adding
834  * @chain: chain of indirect blocks (with a missing link - see
835  *      ext4_alloc_branch)
836  * @where: location of missing link
837  * @num:   number of indirect blocks we are adding
838  * @blks:  number of direct blocks we are adding
839  *
840  * This function fills the missing link and does all housekeeping needed in
841  * inode (->i_blocks, etc.). In case of success we end up with the full
842  * chain to new block and return 0.
843  */
844 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
845                               ext4_lblk_t block, Indirect *where, int num,
846                               int blks)
847 {
848         int i;
849         int err = 0;
850         ext4_fsblk_t current_block;
851
852         /*
853          * If we're splicing into a [td]indirect block (as opposed to the
854          * inode) then we need to get write access to the [td]indirect block
855          * before the splice.
856          */
857         if (where->bh) {
858                 BUFFER_TRACE(where->bh, "get_write_access");
859                 err = ext4_journal_get_write_access(handle, where->bh);
860                 if (err)
861                         goto err_out;
862         }
863         /* That's it */
864
865         *where->p = where->key;
866
867         /*
868          * Update the host buffer_head or inode to point to more just allocated
869          * direct blocks blocks
870          */
871         if (num == 0 && blks > 1) {
872                 current_block = le32_to_cpu(where->key) + 1;
873                 for (i = 1; i < blks; i++)
874                         *(where->p + i) = cpu_to_le32(current_block++);
875         }
876
877         /* We are done with atomic stuff, now do the rest of housekeeping */
878         /* had we spliced it onto indirect block? */
879         if (where->bh) {
880                 /*
881                  * If we spliced it onto an indirect block, we haven't
882                  * altered the inode.  Note however that if it is being spliced
883                  * onto an indirect block at the very end of the file (the
884                  * file is growing) then we *will* alter the inode to reflect
885                  * the new i_size.  But that is not done here - it is done in
886                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
887                  */
888                 jbd_debug(5, "splicing indirect only\n");
889                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
890                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
891                 if (err)
892                         goto err_out;
893         } else {
894                 /*
895                  * OK, we spliced it into the inode itself on a direct block.
896                  */
897                 ext4_mark_inode_dirty(handle, inode);
898                 jbd_debug(5, "splicing direct\n");
899         }
900         return err;
901
902 err_out:
903         for (i = 1; i <= num; i++) {
904                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
905                 ext4_journal_forget(handle, where[i].bh);
906                 ext4_free_blocks(handle, inode,
907                                         le32_to_cpu(where[i-1].key), 1, 0);
908         }
909         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
910
911         return err;
912 }
913
914 /*
915  * The ext4_ind_get_blocks() function handles non-extents inodes
916  * (i.e., using the traditional indirect/double-indirect i_blocks
917  * scheme) for ext4_get_blocks().
918  *
919  * Allocation strategy is simple: if we have to allocate something, we will
920  * have to go the whole way to leaf. So let's do it before attaching anything
921  * to tree, set linkage between the newborn blocks, write them if sync is
922  * required, recheck the path, free and repeat if check fails, otherwise
923  * set the last missing link (that will protect us from any truncate-generated
924  * removals - all blocks on the path are immune now) and possibly force the
925  * write on the parent block.
926  * That has a nice additional property: no special recovery from the failed
927  * allocations is needed - we simply release blocks and do not touch anything
928  * reachable from inode.
929  *
930  * `handle' can be NULL if create == 0.
931  *
932  * return > 0, # of blocks mapped or allocated.
933  * return = 0, if plain lookup failed.
934  * return < 0, error case.
935  *
936  * The ext4_ind_get_blocks() function should be called with
937  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
938  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
939  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
940  * blocks.
941  */
942 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
943                                ext4_lblk_t iblock, unsigned int maxblocks,
944                                struct buffer_head *bh_result,
945                                int flags)
946 {
947         int err = -EIO;
948         ext4_lblk_t offsets[4];
949         Indirect chain[4];
950         Indirect *partial;
951         ext4_fsblk_t goal;
952         int indirect_blks;
953         int blocks_to_boundary = 0;
954         int depth;
955         int count = 0;
956         ext4_fsblk_t first_block = 0;
957
958         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
959         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
960         depth = ext4_block_to_path(inode, iblock, offsets,
961                                    &blocks_to_boundary);
962
963         if (depth == 0)
964                 goto out;
965
966         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
967
968         /* Simplest case - block found, no allocation needed */
969         if (!partial) {
970                 first_block = le32_to_cpu(chain[depth - 1].key);
971                 clear_buffer_new(bh_result);
972                 count++;
973                 /*map more blocks*/
974                 while (count < maxblocks && count <= blocks_to_boundary) {
975                         ext4_fsblk_t blk;
976
977                         blk = le32_to_cpu(*(chain[depth-1].p + count));
978
979                         if (blk == first_block + count)
980                                 count++;
981                         else
982                                 break;
983                 }
984                 goto got_it;
985         }
986
987         /* Next simple case - plain lookup or failed read of indirect block */
988         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
989                 goto cleanup;
990
991         /*
992          * Okay, we need to do block allocation.
993         */
994         goal = ext4_find_goal(inode, iblock, partial);
995
996         /* the number of blocks need to allocate for [d,t]indirect blocks */
997         indirect_blks = (chain + depth) - partial - 1;
998
999         /*
1000          * Next look up the indirect map to count the totoal number of
1001          * direct blocks to allocate for this branch.
1002          */
1003         count = ext4_blks_to_allocate(partial, indirect_blks,
1004                                         maxblocks, blocks_to_boundary);
1005         /*
1006          * Block out ext4_truncate while we alter the tree
1007          */
1008         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1009                                 &count, goal,
1010                                 offsets + (partial - chain), partial);
1011
1012         /*
1013          * The ext4_splice_branch call will free and forget any buffers
1014          * on the new chain if there is a failure, but that risks using
1015          * up transaction credits, especially for bitmaps where the
1016          * credits cannot be returned.  Can we handle this somehow?  We
1017          * may need to return -EAGAIN upwards in the worst case.  --sct
1018          */
1019         if (!err)
1020                 err = ext4_splice_branch(handle, inode, iblock,
1021                                          partial, indirect_blks, count);
1022         else
1023                 goto cleanup;
1024
1025         set_buffer_new(bh_result);
1026 got_it:
1027         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1028         if (count > blocks_to_boundary)
1029                 set_buffer_boundary(bh_result);
1030         err = count;
1031         /* Clean up and exit */
1032         partial = chain + depth - 1;    /* the whole chain */
1033 cleanup:
1034         while (partial > chain) {
1035                 BUFFER_TRACE(partial->bh, "call brelse");
1036                 brelse(partial->bh);
1037                 partial--;
1038         }
1039         BUFFER_TRACE(bh_result, "returned");
1040 out:
1041         return err;
1042 }
1043
1044 qsize_t ext4_get_reserved_space(struct inode *inode)
1045 {
1046         unsigned long long total;
1047
1048         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1049         total = EXT4_I(inode)->i_reserved_data_blocks +
1050                 EXT4_I(inode)->i_reserved_meta_blocks;
1051         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1052
1053         return total;
1054 }
1055 /*
1056  * Calculate the number of metadata blocks need to reserve
1057  * to allocate @blocks for non extent file based file
1058  */
1059 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1060 {
1061         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1062         int ind_blks, dind_blks, tind_blks;
1063
1064         /* number of new indirect blocks needed */
1065         ind_blks = (blocks + icap - 1) / icap;
1066
1067         dind_blks = (ind_blks + icap - 1) / icap;
1068
1069         tind_blks = 1;
1070
1071         return ind_blks + dind_blks + tind_blks;
1072 }
1073
1074 /*
1075  * Calculate the number of metadata blocks need to reserve
1076  * to allocate given number of blocks
1077  */
1078 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1079 {
1080         if (!blocks)
1081                 return 0;
1082
1083         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1084                 return ext4_ext_calc_metadata_amount(inode, blocks);
1085
1086         return ext4_indirect_calc_metadata_amount(inode, blocks);
1087 }
1088
1089 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1090 {
1091         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092         int total, mdb, mdb_free;
1093
1094         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1095         /* recalculate the number of metablocks still need to be reserved */
1096         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1097         mdb = ext4_calc_metadata_amount(inode, total);
1098
1099         /* figure out how many metablocks to release */
1100         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1101         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1102
1103         if (mdb_free) {
1104                 /* Account for allocated meta_blocks */
1105                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1106
1107                 /* update fs dirty blocks counter */
1108                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1109                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1110                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1111         }
1112
1113         /* update per-inode reservations */
1114         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1115         EXT4_I(inode)->i_reserved_data_blocks -= used;
1116         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1117
1118         /*
1119          * free those over-booking quota for metadata blocks
1120          */
1121         if (mdb_free)
1122                 vfs_dq_release_reservation_block(inode, mdb_free);
1123
1124         /*
1125          * If we have done all the pending block allocations and if
1126          * there aren't any writers on the inode, we can discard the
1127          * inode's preallocations.
1128          */
1129         if (!total && (atomic_read(&inode->i_writecount) == 0))
1130                 ext4_discard_preallocations(inode);
1131 }
1132
1133 static int check_block_validity(struct inode *inode, const char *msg,
1134                                 sector_t logical, sector_t phys, int len)
1135 {
1136         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1137                 ext4_error(inode->i_sb, msg,
1138                            "inode #%lu logical block %llu mapped to %llu "
1139                            "(size %d)", inode->i_ino,
1140                            (unsigned long long) logical,
1141                            (unsigned long long) phys, len);
1142                 return -EIO;
1143         }
1144         return 0;
1145 }
1146
1147 /*
1148  * The ext4_get_blocks() function tries to look up the requested blocks,
1149  * and returns if the blocks are already mapped.
1150  *
1151  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1152  * and store the allocated blocks in the result buffer head and mark it
1153  * mapped.
1154  *
1155  * If file type is extents based, it will call ext4_ext_get_blocks(),
1156  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1157  * based files
1158  *
1159  * On success, it returns the number of blocks being mapped or allocate.
1160  * if create==0 and the blocks are pre-allocated and uninitialized block,
1161  * the result buffer head is unmapped. If the create ==1, it will make sure
1162  * the buffer head is mapped.
1163  *
1164  * It returns 0 if plain look up failed (blocks have not been allocated), in
1165  * that casem, buffer head is unmapped
1166  *
1167  * It returns the error in case of allocation failure.
1168  */
1169 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1170                     unsigned int max_blocks, struct buffer_head *bh,
1171                     int flags)
1172 {
1173         int retval;
1174
1175         clear_buffer_mapped(bh);
1176         clear_buffer_unwritten(bh);
1177
1178         /*
1179          * Try to see if we can get the block without requesting a new
1180          * file system block.
1181          */
1182         down_read((&EXT4_I(inode)->i_data_sem));
1183         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1184                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1185                                 bh, 0);
1186         } else {
1187                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1188                                              bh, 0);
1189         }
1190         up_read((&EXT4_I(inode)->i_data_sem));
1191
1192         if (retval > 0 && buffer_mapped(bh)) {
1193                 int ret = check_block_validity(inode, "file system corruption",
1194                                                block, bh->b_blocknr, retval);
1195                 if (ret != 0)
1196                         return ret;
1197         }
1198
1199         /* If it is only a block(s) look up */
1200         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1201                 return retval;
1202
1203         /*
1204          * Returns if the blocks have already allocated
1205          *
1206          * Note that if blocks have been preallocated
1207          * ext4_ext_get_block() returns th create = 0
1208          * with buffer head unmapped.
1209          */
1210         if (retval > 0 && buffer_mapped(bh))
1211                 return retval;
1212
1213         /*
1214          * When we call get_blocks without the create flag, the
1215          * BH_Unwritten flag could have gotten set if the blocks
1216          * requested were part of a uninitialized extent.  We need to
1217          * clear this flag now that we are committed to convert all or
1218          * part of the uninitialized extent to be an initialized
1219          * extent.  This is because we need to avoid the combination
1220          * of BH_Unwritten and BH_Mapped flags being simultaneously
1221          * set on the buffer_head.
1222          */
1223         clear_buffer_unwritten(bh);
1224
1225         /*
1226          * New blocks allocate and/or writing to uninitialized extent
1227          * will possibly result in updating i_data, so we take
1228          * the write lock of i_data_sem, and call get_blocks()
1229          * with create == 1 flag.
1230          */
1231         down_write((&EXT4_I(inode)->i_data_sem));
1232
1233         /*
1234          * if the caller is from delayed allocation writeout path
1235          * we have already reserved fs blocks for allocation
1236          * let the underlying get_block() function know to
1237          * avoid double accounting
1238          */
1239         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1240                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1241         /*
1242          * We need to check for EXT4 here because migrate
1243          * could have changed the inode type in between
1244          */
1245         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1246                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1247                                               bh, flags);
1248         } else {
1249                 retval = ext4_ind_get_blocks(handle, inode, block,
1250                                              max_blocks, bh, flags);
1251
1252                 if (retval > 0 && buffer_new(bh)) {
1253                         /*
1254                          * We allocated new blocks which will result in
1255                          * i_data's format changing.  Force the migrate
1256                          * to fail by clearing migrate flags
1257                          */
1258                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1259                                                         ~EXT4_EXT_MIGRATE;
1260                 }
1261         }
1262
1263         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1264                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1265
1266         /*
1267          * Update reserved blocks/metadata blocks after successful
1268          * block allocation which had been deferred till now.
1269          */
1270         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1271                 ext4_da_update_reserve_space(inode, retval);
1272
1273         up_write((&EXT4_I(inode)->i_data_sem));
1274         if (retval > 0 && buffer_mapped(bh)) {
1275                 int ret = check_block_validity(inode, "file system "
1276                                                "corruption after allocation",
1277                                                block, bh->b_blocknr, retval);
1278                 if (ret != 0)
1279                         return ret;
1280         }
1281         return retval;
1282 }
1283
1284 /* Maximum number of blocks we map for direct IO at once. */
1285 #define DIO_MAX_BLOCKS 4096
1286
1287 int ext4_get_block(struct inode *inode, sector_t iblock,
1288                    struct buffer_head *bh_result, int create)
1289 {
1290         handle_t *handle = ext4_journal_current_handle();
1291         int ret = 0, started = 0;
1292         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1293         int dio_credits;
1294
1295         if (create && !handle) {
1296                 /* Direct IO write... */
1297                 if (max_blocks > DIO_MAX_BLOCKS)
1298                         max_blocks = DIO_MAX_BLOCKS;
1299                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1300                 handle = ext4_journal_start(inode, dio_credits);
1301                 if (IS_ERR(handle)) {
1302                         ret = PTR_ERR(handle);
1303                         goto out;
1304                 }
1305                 started = 1;
1306         }
1307
1308         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1309                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1310         if (ret > 0) {
1311                 bh_result->b_size = (ret << inode->i_blkbits);
1312                 ret = 0;
1313         }
1314         if (started)
1315                 ext4_journal_stop(handle);
1316 out:
1317         return ret;
1318 }
1319
1320 /*
1321  * `handle' can be NULL if create is zero
1322  */
1323 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1324                                 ext4_lblk_t block, int create, int *errp)
1325 {
1326         struct buffer_head dummy;
1327         int fatal = 0, err;
1328         int flags = 0;
1329
1330         J_ASSERT(handle != NULL || create == 0);
1331
1332         dummy.b_state = 0;
1333         dummy.b_blocknr = -1000;
1334         buffer_trace_init(&dummy.b_history);
1335         if (create)
1336                 flags |= EXT4_GET_BLOCKS_CREATE;
1337         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1338         /*
1339          * ext4_get_blocks() returns number of blocks mapped. 0 in
1340          * case of a HOLE.
1341          */
1342         if (err > 0) {
1343                 if (err > 1)
1344                         WARN_ON(1);
1345                 err = 0;
1346         }
1347         *errp = err;
1348         if (!err && buffer_mapped(&dummy)) {
1349                 struct buffer_head *bh;
1350                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1351                 if (!bh) {
1352                         *errp = -EIO;
1353                         goto err;
1354                 }
1355                 if (buffer_new(&dummy)) {
1356                         J_ASSERT(create != 0);
1357                         J_ASSERT(handle != NULL);
1358
1359                         /*
1360                          * Now that we do not always journal data, we should
1361                          * keep in mind whether this should always journal the
1362                          * new buffer as metadata.  For now, regular file
1363                          * writes use ext4_get_block instead, so it's not a
1364                          * problem.
1365                          */
1366                         lock_buffer(bh);
1367                         BUFFER_TRACE(bh, "call get_create_access");
1368                         fatal = ext4_journal_get_create_access(handle, bh);
1369                         if (!fatal && !buffer_uptodate(bh)) {
1370                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1371                                 set_buffer_uptodate(bh);
1372                         }
1373                         unlock_buffer(bh);
1374                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1375                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1376                         if (!fatal)
1377                                 fatal = err;
1378                 } else {
1379                         BUFFER_TRACE(bh, "not a new buffer");
1380                 }
1381                 if (fatal) {
1382                         *errp = fatal;
1383                         brelse(bh);
1384                         bh = NULL;
1385                 }
1386                 return bh;
1387         }
1388 err:
1389         return NULL;
1390 }
1391
1392 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1393                                ext4_lblk_t block, int create, int *err)
1394 {
1395         struct buffer_head *bh;
1396
1397         bh = ext4_getblk(handle, inode, block, create, err);
1398         if (!bh)
1399                 return bh;
1400         if (buffer_uptodate(bh))
1401                 return bh;
1402         ll_rw_block(READ_META, 1, &bh);
1403         wait_on_buffer(bh);
1404         if (buffer_uptodate(bh))
1405                 return bh;
1406         put_bh(bh);
1407         *err = -EIO;
1408         return NULL;
1409 }
1410
1411 static int walk_page_buffers(handle_t *handle,
1412                              struct buffer_head *head,
1413                              unsigned from,
1414                              unsigned to,
1415                              int *partial,
1416                              int (*fn)(handle_t *handle,
1417                                        struct buffer_head *bh))
1418 {
1419         struct buffer_head *bh;
1420         unsigned block_start, block_end;
1421         unsigned blocksize = head->b_size;
1422         int err, ret = 0;
1423         struct buffer_head *next;
1424
1425         for (bh = head, block_start = 0;
1426              ret == 0 && (bh != head || !block_start);
1427              block_start = block_end, bh = next) {
1428                 next = bh->b_this_page;
1429                 block_end = block_start + blocksize;
1430                 if (block_end <= from || block_start >= to) {
1431                         if (partial && !buffer_uptodate(bh))
1432                                 *partial = 1;
1433                         continue;
1434                 }
1435                 err = (*fn)(handle, bh);
1436                 if (!ret)
1437                         ret = err;
1438         }
1439         return ret;
1440 }
1441
1442 /*
1443  * To preserve ordering, it is essential that the hole instantiation and
1444  * the data write be encapsulated in a single transaction.  We cannot
1445  * close off a transaction and start a new one between the ext4_get_block()
1446  * and the commit_write().  So doing the jbd2_journal_start at the start of
1447  * prepare_write() is the right place.
1448  *
1449  * Also, this function can nest inside ext4_writepage() ->
1450  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1451  * has generated enough buffer credits to do the whole page.  So we won't
1452  * block on the journal in that case, which is good, because the caller may
1453  * be PF_MEMALLOC.
1454  *
1455  * By accident, ext4 can be reentered when a transaction is open via
1456  * quota file writes.  If we were to commit the transaction while thus
1457  * reentered, there can be a deadlock - we would be holding a quota
1458  * lock, and the commit would never complete if another thread had a
1459  * transaction open and was blocking on the quota lock - a ranking
1460  * violation.
1461  *
1462  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1463  * will _not_ run commit under these circumstances because handle->h_ref
1464  * is elevated.  We'll still have enough credits for the tiny quotafile
1465  * write.
1466  */
1467 static int do_journal_get_write_access(handle_t *handle,
1468                                        struct buffer_head *bh)
1469 {
1470         if (!buffer_mapped(bh) || buffer_freed(bh))
1471                 return 0;
1472         return ext4_journal_get_write_access(handle, bh);
1473 }
1474
1475 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1476                             loff_t pos, unsigned len, unsigned flags,
1477                             struct page **pagep, void **fsdata)
1478 {
1479         struct inode *inode = mapping->host;
1480         int ret, needed_blocks;
1481         handle_t *handle;
1482         int retries = 0;
1483         struct page *page;
1484         pgoff_t index;
1485         unsigned from, to;
1486
1487         trace_ext4_write_begin(inode, pos, len, flags);
1488         /*
1489          * Reserve one block more for addition to orphan list in case
1490          * we allocate blocks but write fails for some reason
1491          */
1492         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1493         index = pos >> PAGE_CACHE_SHIFT;
1494         from = pos & (PAGE_CACHE_SIZE - 1);
1495         to = from + len;
1496
1497 retry:
1498         handle = ext4_journal_start(inode, needed_blocks);
1499         if (IS_ERR(handle)) {
1500                 ret = PTR_ERR(handle);
1501                 goto out;
1502         }
1503
1504         /* We cannot recurse into the filesystem as the transaction is already
1505          * started */
1506         flags |= AOP_FLAG_NOFS;
1507
1508         page = grab_cache_page_write_begin(mapping, index, flags);
1509         if (!page) {
1510                 ext4_journal_stop(handle);
1511                 ret = -ENOMEM;
1512                 goto out;
1513         }
1514         *pagep = page;
1515
1516         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1517                                 ext4_get_block);
1518
1519         if (!ret && ext4_should_journal_data(inode)) {
1520                 ret = walk_page_buffers(handle, page_buffers(page),
1521                                 from, to, NULL, do_journal_get_write_access);
1522         }
1523
1524         if (ret) {
1525                 unlock_page(page);
1526                 page_cache_release(page);
1527                 /*
1528                  * block_write_begin may have instantiated a few blocks
1529                  * outside i_size.  Trim these off again. Don't need
1530                  * i_size_read because we hold i_mutex.
1531                  *
1532                  * Add inode to orphan list in case we crash before
1533                  * truncate finishes
1534                  */
1535                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1536                         ext4_orphan_add(handle, inode);
1537
1538                 ext4_journal_stop(handle);
1539                 if (pos + len > inode->i_size) {
1540                         ext4_truncate(inode);
1541                         /*
1542                          * If truncate failed early the inode might
1543                          * still be on the orphan list; we need to
1544                          * make sure the inode is removed from the
1545                          * orphan list in that case.
1546                          */
1547                         if (inode->i_nlink)
1548                                 ext4_orphan_del(NULL, inode);
1549                 }
1550         }
1551
1552         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1553                 goto retry;
1554 out:
1555         return ret;
1556 }
1557
1558 /* For write_end() in data=journal mode */
1559 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1560 {
1561         if (!buffer_mapped(bh) || buffer_freed(bh))
1562                 return 0;
1563         set_buffer_uptodate(bh);
1564         return ext4_handle_dirty_metadata(handle, NULL, bh);
1565 }
1566
1567 static int ext4_generic_write_end(struct file *file,
1568                                   struct address_space *mapping,
1569                                   loff_t pos, unsigned len, unsigned copied,
1570                                   struct page *page, void *fsdata)
1571 {
1572         int i_size_changed = 0;
1573         struct inode *inode = mapping->host;
1574         handle_t *handle = ext4_journal_current_handle();
1575
1576         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1577
1578         /*
1579          * No need to use i_size_read() here, the i_size
1580          * cannot change under us because we hold i_mutex.
1581          *
1582          * But it's important to update i_size while still holding page lock:
1583          * page writeout could otherwise come in and zero beyond i_size.
1584          */
1585         if (pos + copied > inode->i_size) {
1586                 i_size_write(inode, pos + copied);
1587                 i_size_changed = 1;
1588         }
1589
1590         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1591                 /* We need to mark inode dirty even if
1592                  * new_i_size is less that inode->i_size
1593                  * bu greater than i_disksize.(hint delalloc)
1594                  */
1595                 ext4_update_i_disksize(inode, (pos + copied));
1596                 i_size_changed = 1;
1597         }
1598         unlock_page(page);
1599         page_cache_release(page);
1600
1601         /*
1602          * Don't mark the inode dirty under page lock. First, it unnecessarily
1603          * makes the holding time of page lock longer. Second, it forces lock
1604          * ordering of page lock and transaction start for journaling
1605          * filesystems.
1606          */
1607         if (i_size_changed)
1608                 ext4_mark_inode_dirty(handle, inode);
1609
1610         return copied;
1611 }
1612
1613 /*
1614  * We need to pick up the new inode size which generic_commit_write gave us
1615  * `file' can be NULL - eg, when called from page_symlink().
1616  *
1617  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1618  * buffers are managed internally.
1619  */
1620 static int ext4_ordered_write_end(struct file *file,
1621                                   struct address_space *mapping,
1622                                   loff_t pos, unsigned len, unsigned copied,
1623                                   struct page *page, void *fsdata)
1624 {
1625         handle_t *handle = ext4_journal_current_handle();
1626         struct inode *inode = mapping->host;
1627         int ret = 0, ret2;
1628
1629         trace_ext4_ordered_write_end(inode, pos, len, copied);
1630         ret = ext4_jbd2_file_inode(handle, inode);
1631
1632         if (ret == 0) {
1633                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1634                                                         page, fsdata);
1635                 copied = ret2;
1636                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1637                         /* if we have allocated more blocks and copied
1638                          * less. We will have blocks allocated outside
1639                          * inode->i_size. So truncate them
1640                          */
1641                         ext4_orphan_add(handle, inode);
1642                 if (ret2 < 0)
1643                         ret = ret2;
1644         }
1645         ret2 = ext4_journal_stop(handle);
1646         if (!ret)
1647                 ret = ret2;
1648
1649         if (pos + len > inode->i_size) {
1650                 ext4_truncate(inode);
1651                 /*
1652                  * If truncate failed early the inode might still be
1653                  * on the orphan list; we need to make sure the inode
1654                  * is removed from the orphan list in that case.
1655                  */
1656                 if (inode->i_nlink)
1657                         ext4_orphan_del(NULL, inode);
1658         }
1659
1660
1661         return ret ? ret : copied;
1662 }
1663
1664 static int ext4_writeback_write_end(struct file *file,
1665                                     struct address_space *mapping,
1666                                     loff_t pos, unsigned len, unsigned copied,
1667                                     struct page *page, void *fsdata)
1668 {
1669         handle_t *handle = ext4_journal_current_handle();
1670         struct inode *inode = mapping->host;
1671         int ret = 0, ret2;
1672
1673         trace_ext4_writeback_write_end(inode, pos, len, copied);
1674         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1675                                                         page, fsdata);
1676         copied = ret2;
1677         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1678                 /* if we have allocated more blocks and copied
1679                  * less. We will have blocks allocated outside
1680                  * inode->i_size. So truncate them
1681                  */
1682                 ext4_orphan_add(handle, inode);
1683
1684         if (ret2 < 0)
1685                 ret = ret2;
1686
1687         ret2 = ext4_journal_stop(handle);
1688         if (!ret)
1689                 ret = ret2;
1690
1691         if (pos + len > inode->i_size) {
1692                 ext4_truncate(inode);
1693                 /*
1694                  * If truncate failed early the inode might still be
1695                  * on the orphan list; we need to make sure the inode
1696                  * is removed from the orphan list in that case.
1697                  */
1698                 if (inode->i_nlink)
1699                         ext4_orphan_del(NULL, inode);
1700         }
1701
1702         return ret ? ret : copied;
1703 }
1704
1705 static int ext4_journalled_write_end(struct file *file,
1706                                      struct address_space *mapping,
1707                                      loff_t pos, unsigned len, unsigned copied,
1708                                      struct page *page, void *fsdata)
1709 {
1710         handle_t *handle = ext4_journal_current_handle();
1711         struct inode *inode = mapping->host;
1712         int ret = 0, ret2;
1713         int partial = 0;
1714         unsigned from, to;
1715         loff_t new_i_size;
1716
1717         trace_ext4_journalled_write_end(inode, pos, len, copied);
1718         from = pos & (PAGE_CACHE_SIZE - 1);
1719         to = from + len;
1720
1721         if (copied < len) {
1722                 if (!PageUptodate(page))
1723                         copied = 0;
1724                 page_zero_new_buffers(page, from+copied, to);
1725         }
1726
1727         ret = walk_page_buffers(handle, page_buffers(page), from,
1728                                 to, &partial, write_end_fn);
1729         if (!partial)
1730                 SetPageUptodate(page);
1731         new_i_size = pos + copied;
1732         if (new_i_size > inode->i_size)
1733                 i_size_write(inode, pos+copied);
1734         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1735         if (new_i_size > EXT4_I(inode)->i_disksize) {
1736                 ext4_update_i_disksize(inode, new_i_size);
1737                 ret2 = ext4_mark_inode_dirty(handle, inode);
1738                 if (!ret)
1739                         ret = ret2;
1740         }
1741
1742         unlock_page(page);
1743         page_cache_release(page);
1744         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1745                 /* if we have allocated more blocks and copied
1746                  * less. We will have blocks allocated outside
1747                  * inode->i_size. So truncate them
1748                  */
1749                 ext4_orphan_add(handle, inode);
1750
1751         ret2 = ext4_journal_stop(handle);
1752         if (!ret)
1753                 ret = ret2;
1754         if (pos + len > inode->i_size) {
1755                 ext4_truncate(inode);
1756                 /*
1757                  * If truncate failed early the inode might still be
1758                  * on the orphan list; we need to make sure the inode
1759                  * is removed from the orphan list in that case.
1760                  */
1761                 if (inode->i_nlink)
1762                         ext4_orphan_del(NULL, inode);
1763         }
1764
1765         return ret ? ret : copied;
1766 }
1767
1768 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1769 {
1770         int retries = 0;
1771         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1772         unsigned long md_needed, mdblocks, total = 0;
1773
1774         /*
1775          * recalculate the amount of metadata blocks to reserve
1776          * in order to allocate nrblocks
1777          * worse case is one extent per block
1778          */
1779 repeat:
1780         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1781         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1782         mdblocks = ext4_calc_metadata_amount(inode, total);
1783         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1784
1785         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1786         total = md_needed + nrblocks;
1787
1788         /*
1789          * Make quota reservation here to prevent quota overflow
1790          * later. Real quota accounting is done at pages writeout
1791          * time.
1792          */
1793         if (vfs_dq_reserve_block(inode, total)) {
1794                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1795                 return -EDQUOT;
1796         }
1797
1798         if (ext4_claim_free_blocks(sbi, total)) {
1799                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1800                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1801                         yield();
1802                         goto repeat;
1803                 }
1804                 vfs_dq_release_reservation_block(inode, total);
1805                 return -ENOSPC;
1806         }
1807         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1808         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1809
1810         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1811         return 0;       /* success */
1812 }
1813
1814 static void ext4_da_release_space(struct inode *inode, int to_free)
1815 {
1816         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1817         int total, mdb, mdb_free, release;
1818
1819         if (!to_free)
1820                 return;         /* Nothing to release, exit */
1821
1822         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1823
1824         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1825                 /*
1826                  * if there is no reserved blocks, but we try to free some
1827                  * then the counter is messed up somewhere.
1828                  * but since this function is called from invalidate
1829                  * page, it's harmless to return without any action
1830                  */
1831                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1832                             "blocks for inode %lu, but there is no reserved "
1833                             "data blocks\n", to_free, inode->i_ino);
1834                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1835                 return;
1836         }
1837
1838         /* recalculate the number of metablocks still need to be reserved */
1839         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1840         mdb = ext4_calc_metadata_amount(inode, total);
1841
1842         /* figure out how many metablocks to release */
1843         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1844         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1845
1846         release = to_free + mdb_free;
1847
1848         /* update fs dirty blocks counter for truncate case */
1849         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1850
1851         /* update per-inode reservations */
1852         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1853         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1854
1855         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1856         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1857         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1858
1859         vfs_dq_release_reservation_block(inode, release);
1860 }
1861
1862 static void ext4_da_page_release_reservation(struct page *page,
1863                                              unsigned long offset)
1864 {
1865         int to_release = 0;
1866         struct buffer_head *head, *bh;
1867         unsigned int curr_off = 0;
1868
1869         head = page_buffers(page);
1870         bh = head;
1871         do {
1872                 unsigned int next_off = curr_off + bh->b_size;
1873
1874                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1875                         to_release++;
1876                         clear_buffer_delay(bh);
1877                 }
1878                 curr_off = next_off;
1879         } while ((bh = bh->b_this_page) != head);
1880         ext4_da_release_space(page->mapping->host, to_release);
1881 }
1882
1883 /*
1884  * Delayed allocation stuff
1885  */
1886
1887 /*
1888  * mpage_da_submit_io - walks through extent of pages and try to write
1889  * them with writepage() call back
1890  *
1891  * @mpd->inode: inode
1892  * @mpd->first_page: first page of the extent
1893  * @mpd->next_page: page after the last page of the extent
1894  *
1895  * By the time mpage_da_submit_io() is called we expect all blocks
1896  * to be allocated. this may be wrong if allocation failed.
1897  *
1898  * As pages are already locked by write_cache_pages(), we can't use it
1899  */
1900 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1901 {
1902         long pages_skipped;
1903         struct pagevec pvec;
1904         unsigned long index, end;
1905         int ret = 0, err, nr_pages, i;
1906         struct inode *inode = mpd->inode;
1907         struct address_space *mapping = inode->i_mapping;
1908
1909         BUG_ON(mpd->next_page <= mpd->first_page);
1910         /*
1911          * We need to start from the first_page to the next_page - 1
1912          * to make sure we also write the mapped dirty buffer_heads.
1913          * If we look at mpd->b_blocknr we would only be looking
1914          * at the currently mapped buffer_heads.
1915          */
1916         index = mpd->first_page;
1917         end = mpd->next_page - 1;
1918
1919         pagevec_init(&pvec, 0);
1920         while (index <= end) {
1921                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1922                 if (nr_pages == 0)
1923                         break;
1924                 for (i = 0; i < nr_pages; i++) {
1925                         struct page *page = pvec.pages[i];
1926
1927                         index = page->index;
1928                         if (index > end)
1929                                 break;
1930                         index++;
1931
1932                         BUG_ON(!PageLocked(page));
1933                         BUG_ON(PageWriteback(page));
1934
1935                         pages_skipped = mpd->wbc->pages_skipped;
1936                         err = mapping->a_ops->writepage(page, mpd->wbc);
1937                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1938                                 /*
1939                                  * have successfully written the page
1940                                  * without skipping the same
1941                                  */
1942                                 mpd->pages_written++;
1943                         /*
1944                          * In error case, we have to continue because
1945                          * remaining pages are still locked
1946                          * XXX: unlock and re-dirty them?
1947                          */
1948                         if (ret == 0)
1949                                 ret = err;
1950                 }
1951                 pagevec_release(&pvec);
1952         }
1953         return ret;
1954 }
1955
1956 /*
1957  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1958  *
1959  * @mpd->inode - inode to walk through
1960  * @exbh->b_blocknr - first block on a disk
1961  * @exbh->b_size - amount of space in bytes
1962  * @logical - first logical block to start assignment with
1963  *
1964  * the function goes through all passed space and put actual disk
1965  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1966  */
1967 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1968                                  struct buffer_head *exbh)
1969 {
1970         struct inode *inode = mpd->inode;
1971         struct address_space *mapping = inode->i_mapping;
1972         int blocks = exbh->b_size >> inode->i_blkbits;
1973         sector_t pblock = exbh->b_blocknr, cur_logical;
1974         struct buffer_head *head, *bh;
1975         pgoff_t index, end;
1976         struct pagevec pvec;
1977         int nr_pages, i;
1978
1979         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1980         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1981         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1982
1983         pagevec_init(&pvec, 0);
1984
1985         while (index <= end) {
1986                 /* XXX: optimize tail */
1987                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1988                 if (nr_pages == 0)
1989                         break;
1990                 for (i = 0; i < nr_pages; i++) {
1991                         struct page *page = pvec.pages[i];
1992
1993                         index = page->index;
1994                         if (index > end)
1995                                 break;
1996                         index++;
1997
1998                         BUG_ON(!PageLocked(page));
1999                         BUG_ON(PageWriteback(page));
2000                         BUG_ON(!page_has_buffers(page));
2001
2002                         bh = page_buffers(page);
2003                         head = bh;
2004
2005                         /* skip blocks out of the range */
2006                         do {
2007                                 if (cur_logical >= logical)
2008                                         break;
2009                                 cur_logical++;
2010                         } while ((bh = bh->b_this_page) != head);
2011
2012                         do {
2013                                 if (cur_logical >= logical + blocks)
2014                                         break;
2015
2016                                 if (buffer_delay(bh) ||
2017                                                 buffer_unwritten(bh)) {
2018
2019                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2020
2021                                         if (buffer_delay(bh)) {
2022                                                 clear_buffer_delay(bh);
2023                                                 bh->b_blocknr = pblock;
2024                                         } else {
2025                                                 /*
2026                                                  * unwritten already should have
2027                                                  * blocknr assigned. Verify that
2028                                                  */
2029                                                 clear_buffer_unwritten(bh);
2030                                                 BUG_ON(bh->b_blocknr != pblock);
2031                                         }
2032
2033                                 } else if (buffer_mapped(bh))
2034                                         BUG_ON(bh->b_blocknr != pblock);
2035
2036                                 cur_logical++;
2037                                 pblock++;
2038                         } while ((bh = bh->b_this_page) != head);
2039                 }
2040                 pagevec_release(&pvec);
2041         }
2042 }
2043
2044
2045 /*
2046  * __unmap_underlying_blocks - just a helper function to unmap
2047  * set of blocks described by @bh
2048  */
2049 static inline void __unmap_underlying_blocks(struct inode *inode,
2050                                              struct buffer_head *bh)
2051 {
2052         struct block_device *bdev = inode->i_sb->s_bdev;
2053         int blocks, i;
2054
2055         blocks = bh->b_size >> inode->i_blkbits;
2056         for (i = 0; i < blocks; i++)
2057                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2058 }
2059
2060 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2061                                         sector_t logical, long blk_cnt)
2062 {
2063         int nr_pages, i;
2064         pgoff_t index, end;
2065         struct pagevec pvec;
2066         struct inode *inode = mpd->inode;
2067         struct address_space *mapping = inode->i_mapping;
2068
2069         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2070         end   = (logical + blk_cnt - 1) >>
2071                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2072         while (index <= end) {
2073                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2074                 if (nr_pages == 0)
2075                         break;
2076                 for (i = 0; i < nr_pages; i++) {
2077                         struct page *page = pvec.pages[i];
2078                         index = page->index;
2079                         if (index > end)
2080                                 break;
2081                         index++;
2082
2083                         BUG_ON(!PageLocked(page));
2084                         BUG_ON(PageWriteback(page));
2085                         block_invalidatepage(page, 0);
2086                         ClearPageUptodate(page);
2087                         unlock_page(page);
2088                 }
2089         }
2090         return;
2091 }
2092
2093 static void ext4_print_free_blocks(struct inode *inode)
2094 {
2095         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2096         printk(KERN_EMERG "Total free blocks count %lld\n",
2097                         ext4_count_free_blocks(inode->i_sb));
2098         printk(KERN_EMERG "Free/Dirty block details\n");
2099         printk(KERN_EMERG "free_blocks=%lld\n",
2100                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2101         printk(KERN_EMERG "dirty_blocks=%lld\n",
2102                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2103         printk(KERN_EMERG "Block reservation details\n");
2104         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2105                         EXT4_I(inode)->i_reserved_data_blocks);
2106         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2107                         EXT4_I(inode)->i_reserved_meta_blocks);
2108         return;
2109 }
2110
2111 /*
2112  * mpage_da_map_blocks - go through given space
2113  *
2114  * @mpd - bh describing space
2115  *
2116  * The function skips space we know is already mapped to disk blocks.
2117  *
2118  */
2119 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2120 {
2121         int err, blks, get_blocks_flags;
2122         struct buffer_head new;
2123         sector_t next = mpd->b_blocknr;
2124         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2125         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2126         handle_t *handle = NULL;
2127
2128         /*
2129          * We consider only non-mapped and non-allocated blocks
2130          */
2131         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2132                 !(mpd->b_state & (1 << BH_Delay)) &&
2133                 !(mpd->b_state & (1 << BH_Unwritten)))
2134                 return 0;
2135
2136         /*
2137          * If we didn't accumulate anything to write simply return
2138          */
2139         if (!mpd->b_size)
2140                 return 0;
2141
2142         handle = ext4_journal_current_handle();
2143         BUG_ON(!handle);
2144
2145         /*
2146          * Call ext4_get_blocks() to allocate any delayed allocation
2147          * blocks, or to convert an uninitialized extent to be
2148          * initialized (in the case where we have written into
2149          * one or more preallocated blocks).
2150          *
2151          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2152          * indicate that we are on the delayed allocation path.  This
2153          * affects functions in many different parts of the allocation
2154          * call path.  This flag exists primarily because we don't
2155          * want to change *many* call functions, so ext4_get_blocks()
2156          * will set the magic i_delalloc_reserved_flag once the
2157          * inode's allocation semaphore is taken.
2158          *
2159          * If the blocks in questions were delalloc blocks, set
2160          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2161          * variables are updated after the blocks have been allocated.
2162          */
2163         new.b_state = 0;
2164         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2165                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2166         if (mpd->b_state & (1 << BH_Delay))
2167                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2168         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2169                                &new, get_blocks_flags);
2170         if (blks < 0) {
2171                 err = blks;
2172                 /*
2173                  * If get block returns with error we simply
2174                  * return. Later writepage will redirty the page and
2175                  * writepages will find the dirty page again
2176                  */
2177                 if (err == -EAGAIN)
2178                         return 0;
2179
2180                 if (err == -ENOSPC &&
2181                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2182                         mpd->retval = err;
2183                         return 0;
2184                 }
2185
2186                 /*
2187                  * get block failure will cause us to loop in
2188                  * writepages, because a_ops->writepage won't be able
2189                  * to make progress. The page will be redirtied by
2190                  * writepage and writepages will again try to write
2191                  * the same.
2192                  */
2193                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2194                                   "at logical offset %llu with max blocks "
2195                                   "%zd with error %d\n",
2196                                   __func__, mpd->inode->i_ino,
2197                                   (unsigned long long)next,
2198                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2199                 printk(KERN_EMERG "This should not happen.!! "
2200                                         "Data will be lost\n");
2201                 if (err == -ENOSPC) {
2202                         ext4_print_free_blocks(mpd->inode);
2203                 }
2204                 /* invalidate all the pages */
2205                 ext4_da_block_invalidatepages(mpd, next,
2206                                 mpd->b_size >> mpd->inode->i_blkbits);
2207                 return err;
2208         }
2209         BUG_ON(blks == 0);
2210
2211         new.b_size = (blks << mpd->inode->i_blkbits);
2212
2213         if (buffer_new(&new))
2214                 __unmap_underlying_blocks(mpd->inode, &new);
2215
2216         /*
2217          * If blocks are delayed marked, we need to
2218          * put actual blocknr and drop delayed bit
2219          */
2220         if ((mpd->b_state & (1 << BH_Delay)) ||
2221             (mpd->b_state & (1 << BH_Unwritten)))
2222                 mpage_put_bnr_to_bhs(mpd, next, &new);
2223
2224         if (ext4_should_order_data(mpd->inode)) {
2225                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2226                 if (err)
2227                         return err;
2228         }
2229
2230         /*
2231          * Update on-disk size along with block allocation.
2232          */
2233         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2234         if (disksize > i_size_read(mpd->inode))
2235                 disksize = i_size_read(mpd->inode);
2236         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2237                 ext4_update_i_disksize(mpd->inode, disksize);
2238                 return ext4_mark_inode_dirty(handle, mpd->inode);
2239         }
2240
2241         return 0;
2242 }
2243
2244 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2245                 (1 << BH_Delay) | (1 << BH_Unwritten))
2246
2247 /*
2248  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2249  *
2250  * @mpd->lbh - extent of blocks
2251  * @logical - logical number of the block in the file
2252  * @bh - bh of the block (used to access block's state)
2253  *
2254  * the function is used to collect contig. blocks in same state
2255  */
2256 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2257                                    sector_t logical, size_t b_size,
2258                                    unsigned long b_state)
2259 {
2260         sector_t next;
2261         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2262
2263         /* check if thereserved journal credits might overflow */
2264         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2265                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2266                         /*
2267                          * With non-extent format we are limited by the journal
2268                          * credit available.  Total credit needed to insert
2269                          * nrblocks contiguous blocks is dependent on the
2270                          * nrblocks.  So limit nrblocks.
2271                          */
2272                         goto flush_it;
2273                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2274                                 EXT4_MAX_TRANS_DATA) {
2275                         /*
2276                          * Adding the new buffer_head would make it cross the
2277                          * allowed limit for which we have journal credit
2278                          * reserved. So limit the new bh->b_size
2279                          */
2280                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2281                                                 mpd->inode->i_blkbits;
2282                         /* we will do mpage_da_submit_io in the next loop */
2283                 }
2284         }
2285         /*
2286          * First block in the extent
2287          */
2288         if (mpd->b_size == 0) {
2289                 mpd->b_blocknr = logical;
2290                 mpd->b_size = b_size;
2291                 mpd->b_state = b_state & BH_FLAGS;
2292                 return;
2293         }
2294
2295         next = mpd->b_blocknr + nrblocks;
2296         /*
2297          * Can we merge the block to our big extent?
2298          */
2299         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2300                 mpd->b_size += b_size;
2301                 return;
2302         }
2303
2304 flush_it:
2305         /*
2306          * We couldn't merge the block to our extent, so we
2307          * need to flush current  extent and start new one
2308          */
2309         if (mpage_da_map_blocks(mpd) == 0)
2310                 mpage_da_submit_io(mpd);
2311         mpd->io_done = 1;
2312         return;
2313 }
2314
2315 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2316 {
2317         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2318 }
2319
2320 /*
2321  * __mpage_da_writepage - finds extent of pages and blocks
2322  *
2323  * @page: page to consider
2324  * @wbc: not used, we just follow rules
2325  * @data: context
2326  *
2327  * The function finds extents of pages and scan them for all blocks.
2328  */
2329 static int __mpage_da_writepage(struct page *page,
2330                                 struct writeback_control *wbc, void *data)
2331 {
2332         struct mpage_da_data *mpd = data;
2333         struct inode *inode = mpd->inode;
2334         struct buffer_head *bh, *head;
2335         sector_t logical;
2336
2337         if (mpd->io_done) {
2338                 /*
2339                  * Rest of the page in the page_vec
2340                  * redirty then and skip then. We will
2341                  * try to to write them again after
2342                  * starting a new transaction
2343                  */
2344                 redirty_page_for_writepage(wbc, page);
2345                 unlock_page(page);
2346                 return MPAGE_DA_EXTENT_TAIL;
2347         }
2348         /*
2349          * Can we merge this page to current extent?
2350          */
2351         if (mpd->next_page != page->index) {
2352                 /*
2353                  * Nope, we can't. So, we map non-allocated blocks
2354                  * and start IO on them using writepage()
2355                  */
2356                 if (mpd->next_page != mpd->first_page) {
2357                         if (mpage_da_map_blocks(mpd) == 0)
2358                                 mpage_da_submit_io(mpd);
2359                         /*
2360                          * skip rest of the page in the page_vec
2361                          */
2362                         mpd->io_done = 1;
2363                         redirty_page_for_writepage(wbc, page);
2364                         unlock_page(page);
2365                         return MPAGE_DA_EXTENT_TAIL;
2366                 }
2367
2368                 /*
2369                  * Start next extent of pages ...
2370                  */
2371                 mpd->first_page = page->index;
2372
2373                 /*
2374                  * ... and blocks
2375                  */
2376                 mpd->b_size = 0;
2377                 mpd->b_state = 0;
2378                 mpd->b_blocknr = 0;
2379         }
2380
2381         mpd->next_page = page->index + 1;
2382         logical = (sector_t) page->index <<
2383                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2384
2385         if (!page_has_buffers(page)) {
2386                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2387                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2388                 if (mpd->io_done)
2389                         return MPAGE_DA_EXTENT_TAIL;
2390         } else {
2391                 /*
2392                  * Page with regular buffer heads, just add all dirty ones
2393                  */
2394                 head = page_buffers(page);
2395                 bh = head;
2396                 do {
2397                         BUG_ON(buffer_locked(bh));
2398                         /*
2399                          * We need to try to allocate
2400                          * unmapped blocks in the same page.
2401                          * Otherwise we won't make progress
2402                          * with the page in ext4_writepage
2403                          */
2404                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2405                                 mpage_add_bh_to_extent(mpd, logical,
2406                                                        bh->b_size,
2407                                                        bh->b_state);
2408                                 if (mpd->io_done)
2409                                         return MPAGE_DA_EXTENT_TAIL;
2410                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2411                                 /*
2412                                  * mapped dirty buffer. We need to update
2413                                  * the b_state because we look at
2414                                  * b_state in mpage_da_map_blocks. We don't
2415                                  * update b_size because if we find an
2416                                  * unmapped buffer_head later we need to
2417                                  * use the b_state flag of that buffer_head.
2418                                  */
2419                                 if (mpd->b_size == 0)
2420                                         mpd->b_state = bh->b_state & BH_FLAGS;
2421                         }
2422                         logical++;
2423                 } while ((bh = bh->b_this_page) != head);
2424         }
2425
2426         return 0;
2427 }
2428
2429 /*
2430  * This is a special get_blocks_t callback which is used by
2431  * ext4_da_write_begin().  It will either return mapped block or
2432  * reserve space for a single block.
2433  *
2434  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2435  * We also have b_blocknr = -1 and b_bdev initialized properly
2436  *
2437  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2438  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2439  * initialized properly.
2440  */
2441 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2442                                   struct buffer_head *bh_result, int create)
2443 {
2444         int ret = 0;
2445         sector_t invalid_block = ~((sector_t) 0xffff);
2446
2447         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2448                 invalid_block = ~0;
2449
2450         BUG_ON(create == 0);
2451         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2452
2453         /*
2454          * first, we need to know whether the block is allocated already
2455          * preallocated blocks are unmapped but should treated
2456          * the same as allocated blocks.
2457          */
2458         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2459         if ((ret == 0) && !buffer_delay(bh_result)) {
2460                 /* the block isn't (pre)allocated yet, let's reserve space */
2461                 /*
2462                  * XXX: __block_prepare_write() unmaps passed block,
2463                  * is it OK?
2464                  */
2465                 ret = ext4_da_reserve_space(inode, 1);
2466                 if (ret)
2467                         /* not enough space to reserve */
2468                         return ret;
2469
2470                 map_bh(bh_result, inode->i_sb, invalid_block);
2471                 set_buffer_new(bh_result);
2472                 set_buffer_delay(bh_result);
2473         } else if (ret > 0) {
2474                 bh_result->b_size = (ret << inode->i_blkbits);
2475                 if (buffer_unwritten(bh_result)) {
2476                         /* A delayed write to unwritten bh should
2477                          * be marked new and mapped.  Mapped ensures
2478                          * that we don't do get_block multiple times
2479                          * when we write to the same offset and new
2480                          * ensures that we do proper zero out for
2481                          * partial write.
2482                          */
2483                         set_buffer_new(bh_result);
2484                         set_buffer_mapped(bh_result);
2485                 }
2486                 ret = 0;
2487         }
2488
2489         return ret;
2490 }
2491
2492 /*
2493  * This function is used as a standard get_block_t calback function
2494  * when there is no desire to allocate any blocks.  It is used as a
2495  * callback function for block_prepare_write(), nobh_writepage(), and
2496  * block_write_full_page().  These functions should only try to map a
2497  * single block at a time.
2498  *
2499  * Since this function doesn't do block allocations even if the caller
2500  * requests it by passing in create=1, it is critically important that
2501  * any caller checks to make sure that any buffer heads are returned
2502  * by this function are either all already mapped or marked for
2503  * delayed allocation before calling nobh_writepage() or
2504  * block_write_full_page().  Otherwise, b_blocknr could be left
2505  * unitialized, and the page write functions will be taken by
2506  * surprise.
2507  */
2508 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2509                                    struct buffer_head *bh_result, int create)
2510 {
2511         int ret = 0;
2512         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2513
2514         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2515
2516         /*
2517          * we don't want to do block allocation in writepage
2518          * so call get_block_wrap with create = 0
2519          */
2520         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2521         if (ret > 0) {
2522                 bh_result->b_size = (ret << inode->i_blkbits);
2523                 ret = 0;
2524         }
2525         return ret;
2526 }
2527
2528 static int bget_one(handle_t *handle, struct buffer_head *bh)
2529 {
2530         get_bh(bh);
2531         return 0;
2532 }
2533
2534 static int bput_one(handle_t *handle, struct buffer_head *bh)
2535 {
2536         put_bh(bh);
2537         return 0;
2538 }
2539
2540 static int __ext4_journalled_writepage(struct page *page,
2541                                        struct writeback_control *wbc,
2542                                        unsigned int len)
2543 {
2544         struct address_space *mapping = page->mapping;
2545         struct inode *inode = mapping->host;
2546         struct buffer_head *page_bufs;
2547         handle_t *handle = NULL;
2548         int ret = 0;
2549         int err;
2550
2551         page_bufs = page_buffers(page);
2552         BUG_ON(!page_bufs);
2553         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2554         /* As soon as we unlock the page, it can go away, but we have
2555          * references to buffers so we are safe */
2556         unlock_page(page);
2557
2558         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2559         if (IS_ERR(handle)) {
2560                 ret = PTR_ERR(handle);
2561                 goto out;
2562         }
2563
2564         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2565                                 do_journal_get_write_access);
2566
2567         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2568                                 write_end_fn);
2569         if (ret == 0)
2570                 ret = err;
2571         err = ext4_journal_stop(handle);
2572         if (!ret)
2573                 ret = err;
2574
2575         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2576         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2577 out:
2578         return ret;
2579 }
2580
2581 /*
2582  * Note that we don't need to start a transaction unless we're journaling data
2583  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2584  * need to file the inode to the transaction's list in ordered mode because if
2585  * we are writing back data added by write(), the inode is already there and if
2586  * we are writing back data modified via mmap(), noone guarantees in which
2587  * transaction the data will hit the disk. In case we are journaling data, we
2588  * cannot start transaction directly because transaction start ranks above page
2589  * lock so we have to do some magic.
2590  *
2591  * This function can get called via...
2592  *   - ext4_da_writepages after taking page lock (have journal handle)
2593  *   - journal_submit_inode_data_buffers (no journal handle)
2594  *   - shrink_page_list via pdflush (no journal handle)
2595  *   - grab_page_cache when doing write_begin (have journal handle)
2596  *
2597  * We don't do any block allocation in this function. If we have page with
2598  * multiple blocks we need to write those buffer_heads that are mapped. This
2599  * is important for mmaped based write. So if we do with blocksize 1K
2600  * truncate(f, 1024);
2601  * a = mmap(f, 0, 4096);
2602  * a[0] = 'a';
2603  * truncate(f, 4096);
2604  * we have in the page first buffer_head mapped via page_mkwrite call back
2605  * but other bufer_heads would be unmapped but dirty(dirty done via the
2606  * do_wp_page). So writepage should write the first block. If we modify
2607  * the mmap area beyond 1024 we will again get a page_fault and the
2608  * page_mkwrite callback will do the block allocation and mark the
2609  * buffer_heads mapped.
2610  *
2611  * We redirty the page if we have any buffer_heads that is either delay or
2612  * unwritten in the page.
2613  *
2614  * We can get recursively called as show below.
2615  *
2616  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2617  *              ext4_writepage()
2618  *
2619  * But since we don't do any block allocation we should not deadlock.
2620  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2621  */
2622 static int ext4_writepage(struct page *page,
2623                           struct writeback_control *wbc)
2624 {
2625         int ret = 0;
2626         loff_t size;
2627         unsigned int len;
2628         struct buffer_head *page_bufs;
2629         struct inode *inode = page->mapping->host;
2630
2631         trace_ext4_writepage(inode, page);
2632         size = i_size_read(inode);
2633         if (page->index == size >> PAGE_CACHE_SHIFT)
2634                 len = size & ~PAGE_CACHE_MASK;
2635         else
2636                 len = PAGE_CACHE_SIZE;
2637
2638         if (page_has_buffers(page)) {
2639                 page_bufs = page_buffers(page);
2640                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2641                                         ext4_bh_delay_or_unwritten)) {
2642                         /*
2643                          * We don't want to do  block allocation
2644                          * So redirty the page and return
2645                          * We may reach here when we do a journal commit
2646                          * via journal_submit_inode_data_buffers.
2647                          * If we don't have mapping block we just ignore
2648                          * them. We can also reach here via shrink_page_list
2649                          */
2650                         redirty_page_for_writepage(wbc, page);
2651                         unlock_page(page);
2652                         return 0;
2653                 }
2654         } else {
2655                 /*
2656                  * The test for page_has_buffers() is subtle:
2657                  * We know the page is dirty but it lost buffers. That means
2658                  * that at some moment in time after write_begin()/write_end()
2659                  * has been called all buffers have been clean and thus they
2660                  * must have been written at least once. So they are all
2661                  * mapped and we can happily proceed with mapping them
2662                  * and writing the page.
2663                  *
2664                  * Try to initialize the buffer_heads and check whether
2665                  * all are mapped and non delay. We don't want to
2666                  * do block allocation here.
2667                  */
2668                 ret = block_prepare_write(page, 0, len,
2669                                           noalloc_get_block_write);
2670                 if (!ret) {
2671                         page_bufs = page_buffers(page);
2672                         /* check whether all are mapped and non delay */
2673                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2674                                                 ext4_bh_delay_or_unwritten)) {
2675                                 redirty_page_for_writepage(wbc, page);
2676                                 unlock_page(page);
2677                                 return 0;
2678                         }
2679                 } else {
2680                         /*
2681                          * We can't do block allocation here
2682                          * so just redity the page and unlock
2683                          * and return
2684                          */
2685                         redirty_page_for_writepage(wbc, page);
2686                         unlock_page(page);
2687                         return 0;
2688                 }
2689                 /* now mark the buffer_heads as dirty and uptodate */
2690                 block_commit_write(page, 0, len);
2691         }
2692
2693         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2694                 /*
2695                  * It's mmapped pagecache.  Add buffers and journal it.  There
2696                  * doesn't seem much point in redirtying the page here.
2697                  */
2698                 ClearPageChecked(page);
2699                 return __ext4_journalled_writepage(page, wbc, len);
2700         }
2701
2702         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2703                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2704         else
2705                 ret = block_write_full_page(page, noalloc_get_block_write,
2706                                             wbc);
2707
2708         return ret;
2709 }
2710
2711 /*
2712  * This is called via ext4_da_writepages() to
2713  * calulate the total number of credits to reserve to fit
2714  * a single extent allocation into a single transaction,
2715  * ext4_da_writpeages() will loop calling this before
2716  * the block allocation.
2717  */
2718
2719 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2720 {
2721         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2722
2723         /*
2724          * With non-extent format the journal credit needed to
2725          * insert nrblocks contiguous block is dependent on
2726          * number of contiguous block. So we will limit
2727          * number of contiguous block to a sane value
2728          */
2729         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2730             (max_blocks > EXT4_MAX_TRANS_DATA))
2731                 max_blocks = EXT4_MAX_TRANS_DATA;
2732
2733         return ext4_chunk_trans_blocks(inode, max_blocks);
2734 }
2735
2736 static int ext4_da_writepages(struct address_space *mapping,
2737                               struct writeback_control *wbc)
2738 {
2739         pgoff_t index;
2740         int range_whole = 0;
2741         handle_t *handle = NULL;
2742         struct mpage_da_data mpd;
2743         struct inode *inode = mapping->host;
2744         int no_nrwrite_index_update;
2745         int pages_written = 0;
2746         long pages_skipped;
2747         int range_cyclic, cycled = 1, io_done = 0;
2748         int needed_blocks, ret = 0, nr_to_writebump = 0;
2749         loff_t range_start = wbc->range_start;
2750         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2751
2752         trace_ext4_da_writepages(inode, wbc);
2753
2754         /*
2755          * No pages to write? This is mainly a kludge to avoid starting
2756          * a transaction for special inodes like journal inode on last iput()
2757          * because that could violate lock ordering on umount
2758          */
2759         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2760                 return 0;
2761
2762         /*
2763          * If the filesystem has aborted, it is read-only, so return
2764          * right away instead of dumping stack traces later on that
2765          * will obscure the real source of the problem.  We test
2766          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2767          * the latter could be true if the filesystem is mounted
2768          * read-only, and in that case, ext4_da_writepages should
2769          * *never* be called, so if that ever happens, we would want
2770          * the stack trace.
2771          */
2772         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2773                 return -EROFS;
2774
2775         /*
2776          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2777          * This make sure small files blocks are allocated in
2778          * single attempt. This ensure that small files
2779          * get less fragmented.
2780          */
2781         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2782                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2783                 wbc->nr_to_write = sbi->s_mb_stream_request;
2784         }
2785         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2786                 range_whole = 1;
2787
2788         range_cyclic = wbc->range_cyclic;
2789         if (wbc->range_cyclic) {
2790                 index = mapping->writeback_index;
2791                 if (index)
2792                         cycled = 0;
2793                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2794                 wbc->range_end  = LLONG_MAX;
2795                 wbc->range_cyclic = 0;
2796         } else
2797                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2798
2799         mpd.wbc = wbc;
2800         mpd.inode = mapping->host;
2801
2802         /*
2803          * we don't want write_cache_pages to update
2804          * nr_to_write and writeback_index
2805          */
2806         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2807         wbc->no_nrwrite_index_update = 1;
2808         pages_skipped = wbc->pages_skipped;
2809
2810 retry:
2811         while (!ret && wbc->nr_to_write > 0) {
2812
2813                 /*
2814                  * we  insert one extent at a time. So we need
2815                  * credit needed for single extent allocation.
2816                  * journalled mode is currently not supported
2817                  * by delalloc
2818                  */
2819                 BUG_ON(ext4_should_journal_data(inode));
2820                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2821
2822                 /* start a new transaction*/
2823                 handle = ext4_journal_start(inode, needed_blocks);
2824                 if (IS_ERR(handle)) {
2825                         ret = PTR_ERR(handle);
2826                         printk(KERN_CRIT "%s: jbd2_start: "
2827                                "%ld pages, ino %lu; err %d\n", __func__,
2828                                 wbc->nr_to_write, inode->i_ino, ret);
2829                         dump_stack();
2830                         goto out_writepages;
2831                 }
2832
2833                 /*
2834                  * Now call __mpage_da_writepage to find the next
2835                  * contiguous region of logical blocks that need
2836                  * blocks to be allocated by ext4.  We don't actually
2837                  * submit the blocks for I/O here, even though
2838                  * write_cache_pages thinks it will, and will set the
2839                  * pages as clean for write before calling
2840                  * __mpage_da_writepage().
2841                  */
2842                 mpd.b_size = 0;
2843                 mpd.b_state = 0;
2844                 mpd.b_blocknr = 0;
2845                 mpd.first_page = 0;
2846                 mpd.next_page = 0;
2847                 mpd.io_done = 0;
2848                 mpd.pages_written = 0;
2849                 mpd.retval = 0;
2850                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2851                                         &mpd);
2852                 /*
2853                  * If we have a contigous extent of pages and we
2854                  * haven't done the I/O yet, map the blocks and submit
2855                  * them for I/O.
2856                  */
2857                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2858                         if (mpage_da_map_blocks(&mpd) == 0)
2859                                 mpage_da_submit_io(&mpd);
2860                         mpd.io_done = 1;
2861                         ret = MPAGE_DA_EXTENT_TAIL;
2862                 }
2863                 trace_ext4_da_write_pages(inode, &mpd);
2864                 wbc->nr_to_write -= mpd.pages_written;
2865
2866                 ext4_journal_stop(handle);
2867
2868                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2869                         /* commit the transaction which would
2870                          * free blocks released in the transaction
2871                          * and try again
2872                          */
2873                         jbd2_journal_force_commit_nested(sbi->s_journal);
2874                         wbc->pages_skipped = pages_skipped;
2875                         ret = 0;
2876                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2877                         /*
2878                          * got one extent now try with
2879                          * rest of the pages
2880                          */
2881                         pages_written += mpd.pages_written;
2882                         wbc->pages_skipped = pages_skipped;
2883                         ret = 0;
2884                         io_done = 1;
2885                 } else if (wbc->nr_to_write)
2886                         /*
2887                          * There is no more writeout needed
2888                          * or we requested for a noblocking writeout
2889                          * and we found the device congested
2890                          */
2891                         break;
2892         }
2893         if (!io_done && !cycled) {
2894                 cycled = 1;
2895                 index = 0;
2896                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2897                 wbc->range_end  = mapping->writeback_index - 1;
2898                 goto retry;
2899         }
2900         if (pages_skipped != wbc->pages_skipped)
2901                 printk(KERN_EMERG "This should not happen leaving %s "
2902                                 "with nr_to_write = %ld ret = %d\n",
2903                                 __func__, wbc->nr_to_write, ret);
2904
2905         /* Update index */
2906         index += pages_written;
2907         wbc->range_cyclic = range_cyclic;
2908         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2909                 /*
2910                  * set the writeback_index so that range_cyclic
2911                  * mode will write it back later
2912                  */
2913                 mapping->writeback_index = index;
2914
2915 out_writepages:
2916         if (!no_nrwrite_index_update)
2917                 wbc->no_nrwrite_index_update = 0;
2918         wbc->nr_to_write -= nr_to_writebump;
2919         wbc->range_start = range_start;
2920         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2921         return ret;
2922 }
2923
2924 #define FALL_BACK_TO_NONDELALLOC 1
2925 static int ext4_nonda_switch(struct super_block *sb)
2926 {
2927         s64 free_blocks, dirty_blocks;
2928         struct ext4_sb_info *sbi = EXT4_SB(sb);
2929
2930         /*
2931          * switch to non delalloc mode if we are running low
2932          * on free block. The free block accounting via percpu
2933          * counters can get slightly wrong with percpu_counter_batch getting
2934          * accumulated on each CPU without updating global counters
2935          * Delalloc need an accurate free block accounting. So switch
2936          * to non delalloc when we are near to error range.
2937          */
2938         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2939         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2940         if (2 * free_blocks < 3 * dirty_blocks ||
2941                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2942                 /*
2943                  * free block count is less that 150% of dirty blocks
2944                  * or free blocks is less that watermark
2945                  */
2946                 return 1;
2947         }
2948         return 0;
2949 }
2950
2951 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2952                                loff_t pos, unsigned len, unsigned flags,
2953                                struct page **pagep, void **fsdata)
2954 {
2955         int ret, retries = 0;
2956         struct page *page;
2957         pgoff_t index;
2958         unsigned from, to;
2959         struct inode *inode = mapping->host;
2960         handle_t *handle;
2961
2962         index = pos >> PAGE_CACHE_SHIFT;
2963         from = pos & (PAGE_CACHE_SIZE - 1);
2964         to = from + len;
2965
2966         if (ext4_nonda_switch(inode->i_sb)) {
2967                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2968                 return ext4_write_begin(file, mapping, pos,
2969                                         len, flags, pagep, fsdata);
2970         }
2971         *fsdata = (void *)0;
2972         trace_ext4_da_write_begin(inode, pos, len, flags);
2973 retry:
2974         /*
2975          * With delayed allocation, we don't log the i_disksize update
2976          * if there is delayed block allocation. But we still need
2977          * to journalling the i_disksize update if writes to the end
2978          * of file which has an already mapped buffer.
2979          */
2980         handle = ext4_journal_start(inode, 1);
2981         if (IS_ERR(handle)) {
2982                 ret = PTR_ERR(handle);
2983                 goto out;
2984         }
2985         /* We cannot recurse into the filesystem as the transaction is already
2986          * started */
2987         flags |= AOP_FLAG_NOFS;
2988
2989         page = grab_cache_page_write_begin(mapping, index, flags);
2990         if (!page) {
2991                 ext4_journal_stop(handle);
2992                 ret = -ENOMEM;
2993                 goto out;
2994         }
2995         *pagep = page;
2996
2997         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2998                                 ext4_da_get_block_prep);
2999         if (ret < 0) {
3000                 unlock_page(page);
3001                 ext4_journal_stop(handle);
3002                 page_cache_release(page);
3003                 /*
3004                  * block_write_begin may have instantiated a few blocks
3005                  * outside i_size.  Trim these off again. Don't need
3006                  * i_size_read because we hold i_mutex.
3007                  */
3008                 if (pos + len > inode->i_size)
3009                         ext4_truncate(inode);
3010         }
3011
3012         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3013                 goto retry;
3014 out:
3015         return ret;
3016 }
3017
3018 /*
3019  * Check if we should update i_disksize
3020  * when write to the end of file but not require block allocation
3021  */
3022 static int ext4_da_should_update_i_disksize(struct page *page,
3023                                             unsigned long offset)
3024 {
3025         struct buffer_head *bh;
3026         struct inode *inode = page->mapping->host;
3027         unsigned int idx;
3028         int i;
3029
3030         bh = page_buffers(page);
3031         idx = offset >> inode->i_blkbits;
3032
3033         for (i = 0; i < idx; i++)
3034                 bh = bh->b_this_page;
3035
3036         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3037                 return 0;
3038         return 1;
3039 }
3040
3041 static int ext4_da_write_end(struct file *file,
3042                              struct address_space *mapping,
3043                              loff_t pos, unsigned len, unsigned copied,
3044                              struct page *page, void *fsdata)
3045 {
3046         struct inode *inode = mapping->host;
3047         int ret = 0, ret2;
3048         handle_t *handle = ext4_journal_current_handle();
3049         loff_t new_i_size;
3050         unsigned long start, end;
3051         int write_mode = (int)(unsigned long)fsdata;
3052
3053         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3054                 if (ext4_should_order_data(inode)) {
3055                         return ext4_ordered_write_end(file, mapping, pos,
3056                                         len, copied, page, fsdata);
3057                 } else if (ext4_should_writeback_data(inode)) {
3058                         return ext4_writeback_write_end(file, mapping, pos,
3059                                         len, copied, page, fsdata);
3060                 } else {
3061                         BUG();
3062                 }
3063         }
3064
3065         trace_ext4_da_write_end(inode, pos, len, copied);
3066         start = pos & (PAGE_CACHE_SIZE - 1);
3067         end = start + copied - 1;
3068
3069         /*
3070          * generic_write_end() will run mark_inode_dirty() if i_size
3071          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3072          * into that.
3073          */
3074
3075         new_i_size = pos + copied;
3076         if (new_i_size > EXT4_I(inode)->i_disksize) {
3077                 if (ext4_da_should_update_i_disksize(page, end)) {
3078                         down_write(&EXT4_I(inode)->i_data_sem);
3079                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3080                                 /*
3081                                  * Updating i_disksize when extending file
3082                                  * without needing block allocation
3083                                  */
3084                                 if (ext4_should_order_data(inode))
3085                                         ret = ext4_jbd2_file_inode(handle,
3086                                                                    inode);
3087
3088                                 EXT4_I(inode)->i_disksize = new_i_size;
3089                         }
3090                         up_write(&EXT4_I(inode)->i_data_sem);
3091                         /* We need to mark inode dirty even if
3092                          * new_i_size is less that inode->i_size
3093                          * bu greater than i_disksize.(hint delalloc)
3094                          */
3095                         ext4_mark_inode_dirty(handle, inode);
3096                 }
3097         }
3098         ret2 = generic_write_end(file, mapping, pos, len, copied,
3099                                                         page, fsdata);
3100         copied = ret2;
3101         if (ret2 < 0)
3102                 ret = ret2;
3103         ret2 = ext4_journal_stop(handle);
3104         if (!ret)
3105                 ret = ret2;
3106
3107         return ret ? ret : copied;
3108 }
3109
3110 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3111 {
3112         /*
3113          * Drop reserved blocks
3114          */
3115         BUG_ON(!PageLocked(page));
3116         if (!page_has_buffers(page))
3117                 goto out;
3118
3119         ext4_da_page_release_reservation(page, offset);
3120
3121 out:
3122         ext4_invalidatepage(page, offset);
3123
3124         return;
3125 }
3126
3127 /*
3128  * Force all delayed allocation blocks to be allocated for a given inode.
3129  */
3130 int ext4_alloc_da_blocks(struct inode *inode)
3131 {
3132         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3133             !EXT4_I(inode)->i_reserved_meta_blocks)
3134                 return 0;
3135
3136         /*
3137          * We do something simple for now.  The filemap_flush() will
3138          * also start triggering a write of the data blocks, which is
3139          * not strictly speaking necessary (and for users of
3140          * laptop_mode, not even desirable).  However, to do otherwise
3141          * would require replicating code paths in:
3142          *
3143          * ext4_da_writepages() ->
3144          *    write_cache_pages() ---> (via passed in callback function)
3145          *        __mpage_da_writepage() -->
3146          *           mpage_add_bh_to_extent()
3147          *           mpage_da_map_blocks()
3148          *
3149          * The problem is that write_cache_pages(), located in
3150          * mm/page-writeback.c, marks pages clean in preparation for
3151          * doing I/O, which is not desirable if we're not planning on
3152          * doing I/O at all.
3153          *
3154          * We could call write_cache_pages(), and then redirty all of
3155          * the pages by calling redirty_page_for_writeback() but that
3156          * would be ugly in the extreme.  So instead we would need to
3157          * replicate parts of the code in the above functions,
3158          * simplifying them becuase we wouldn't actually intend to
3159          * write out the pages, but rather only collect contiguous
3160          * logical block extents, call the multi-block allocator, and
3161          * then update the buffer heads with the block allocations.
3162          *
3163          * For now, though, we'll cheat by calling filemap_flush(),
3164          * which will map the blocks, and start the I/O, but not
3165          * actually wait for the I/O to complete.
3166          */
3167         return filemap_flush(inode->i_mapping);
3168 }
3169
3170 /*
3171  * bmap() is special.  It gets used by applications such as lilo and by
3172  * the swapper to find the on-disk block of a specific piece of data.
3173  *
3174  * Naturally, this is dangerous if the block concerned is still in the
3175  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3176  * filesystem and enables swap, then they may get a nasty shock when the
3177  * data getting swapped to that swapfile suddenly gets overwritten by
3178  * the original zero's written out previously to the journal and
3179  * awaiting writeback in the kernel's buffer cache.
3180  *
3181  * So, if we see any bmap calls here on a modified, data-journaled file,
3182  * take extra steps to flush any blocks which might be in the cache.
3183  */
3184 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3185 {
3186         struct inode *inode = mapping->host;
3187         journal_t *journal;
3188         int err;
3189
3190         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3191                         test_opt(inode->i_sb, DELALLOC)) {
3192                 /*
3193                  * With delalloc we want to sync the file
3194                  * so that we can make sure we allocate
3195                  * blocks for file
3196                  */
3197                 filemap_write_and_wait(mapping);
3198         }
3199
3200         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3201                 /*
3202                  * This is a REALLY heavyweight approach, but the use of
3203                  * bmap on dirty files is expected to be extremely rare:
3204                  * only if we run lilo or swapon on a freshly made file
3205                  * do we expect this to happen.
3206                  *
3207                  * (bmap requires CAP_SYS_RAWIO so this does not
3208                  * represent an unprivileged user DOS attack --- we'd be
3209                  * in trouble if mortal users could trigger this path at
3210                  * will.)
3211                  *
3212                  * NB. EXT4_STATE_JDATA is not set on files other than
3213                  * regular files.  If somebody wants to bmap a directory
3214                  * or symlink and gets confused because the buffer
3215                  * hasn't yet been flushed to disk, they deserve
3216                  * everything they get.
3217                  */
3218
3219                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3220                 journal = EXT4_JOURNAL(inode);
3221                 jbd2_journal_lock_updates(journal);
3222                 err = jbd2_journal_flush(journal);
3223                 jbd2_journal_unlock_updates(journal);
3224
3225                 if (err)
3226                         return 0;
3227         }
3228
3229         return generic_block_bmap(mapping, block, ext4_get_block);
3230 }
3231
3232 static int ext4_readpage(struct file *file, struct page *page)
3233 {
3234         return mpage_readpage(page, ext4_get_block);
3235 }
3236
3237 static int
3238 ext4_readpages(struct file *file, struct address_space *mapping,
3239                 struct list_head *pages, unsigned nr_pages)
3240 {
3241         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3242 }
3243
3244 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3245 {
3246         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3247
3248         /*
3249          * If it's a full truncate we just forget about the pending dirtying
3250          */
3251         if (offset == 0)
3252                 ClearPageChecked(page);
3253
3254         if (journal)
3255                 jbd2_journal_invalidatepage(journal, page, offset);
3256         else
3257                 block_invalidatepage(page, offset);
3258 }
3259
3260 static int ext4_releasepage(struct page *page, gfp_t wait)
3261 {
3262         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3263
3264         WARN_ON(PageChecked(page));
3265         if (!page_has_buffers(page))
3266                 return 0;
3267         if (journal)
3268                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3269         else
3270                 return try_to_free_buffers(page);
3271 }
3272
3273 /*
3274  * If the O_DIRECT write will extend the file then add this inode to the
3275  * orphan list.  So recovery will truncate it back to the original size
3276  * if the machine crashes during the write.
3277  *
3278  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3279  * crashes then stale disk data _may_ be exposed inside the file. But current
3280  * VFS code falls back into buffered path in that case so we are safe.
3281  */
3282 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3283                               const struct iovec *iov, loff_t offset,
3284                               unsigned long nr_segs)
3285 {
3286         struct file *file = iocb->ki_filp;
3287         struct inode *inode = file->f_mapping->host;
3288         struct ext4_inode_info *ei = EXT4_I(inode);
3289         handle_t *handle;
3290         ssize_t ret;
3291         int orphan = 0;
3292         size_t count = iov_length(iov, nr_segs);
3293
3294         if (rw == WRITE) {
3295                 loff_t final_size = offset + count;
3296
3297                 if (final_size > inode->i_size) {
3298                         /* Credits for sb + inode write */
3299                         handle = ext4_journal_start(inode, 2);
3300                         if (IS_ERR(handle)) {
3301                                 ret = PTR_ERR(handle);
3302                                 goto out;
3303                         }
3304                         ret = ext4_orphan_add(handle, inode);
3305                         if (ret) {
3306                                 ext4_journal_stop(handle);
3307                                 goto out;
3308                         }
3309                         orphan = 1;
3310                         ei->i_disksize = inode->i_size;
3311                         ext4_journal_stop(handle);
3312                 }
3313         }
3314
3315         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3316                                  offset, nr_segs,
3317                                  ext4_get_block, NULL);
3318
3319         if (orphan) {
3320                 int err;
3321
3322                 /* Credits for sb + inode write */
3323                 handle = ext4_journal_start(inode, 2);
3324                 if (IS_ERR(handle)) {
3325                         /* This is really bad luck. We've written the data
3326                          * but cannot extend i_size. Bail out and pretend
3327                          * the write failed... */
3328                         ret = PTR_ERR(handle);
3329                         goto out;
3330                 }
3331                 if (inode->i_nlink)
3332                         ext4_orphan_del(handle, inode);
3333                 if (ret > 0) {
3334                         loff_t end = offset + ret;
3335                         if (end > inode->i_size) {
3336                                 ei->i_disksize = end;
3337                                 i_size_write(inode, end);
3338                                 /*
3339                                  * We're going to return a positive `ret'
3340                                  * here due to non-zero-length I/O, so there's
3341                                  * no way of reporting error returns from
3342                                  * ext4_mark_inode_dirty() to userspace.  So
3343                                  * ignore it.
3344                                  */
3345                                 ext4_mark_inode_dirty(handle, inode);
3346                         }
3347                 }
3348                 err = ext4_journal_stop(handle);
3349                 if (ret == 0)
3350                         ret = err;
3351         }
3352 out:
3353         return ret;
3354 }
3355
3356 /*
3357  * Pages can be marked dirty completely asynchronously from ext4's journalling
3358  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3359  * much here because ->set_page_dirty is called under VFS locks.  The page is
3360  * not necessarily locked.
3361  *
3362  * We cannot just dirty the page and leave attached buffers clean, because the
3363  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3364  * or jbddirty because all the journalling code will explode.
3365  *
3366  * So what we do is to mark the page "pending dirty" and next time writepage
3367  * is called, propagate that into the buffers appropriately.
3368  */
3369 static int ext4_journalled_set_page_dirty(struct page *page)
3370 {
3371         SetPageChecked(page);
3372         return __set_page_dirty_nobuffers(page);
3373 }
3374
3375 static const struct address_space_operations ext4_ordered_aops = {
3376         .readpage               = ext4_readpage,
3377         .readpages              = ext4_readpages,
3378         .writepage              = ext4_writepage,
3379         .sync_page              = block_sync_page,
3380         .write_begin            = ext4_write_begin,
3381         .write_end              = ext4_ordered_write_end,
3382         .bmap                   = ext4_bmap,
3383         .invalidatepage         = ext4_invalidatepage,
3384         .releasepage            = ext4_releasepage,
3385         .direct_IO              = ext4_direct_IO,
3386         .migratepage            = buffer_migrate_page,
3387         .is_partially_uptodate  = block_is_partially_uptodate,
3388 };
3389
3390 static const struct address_space_operations ext4_writeback_aops = {
3391         .readpage               = ext4_readpage,
3392         .readpages              = ext4_readpages,
3393         .writepage              = ext4_writepage,
3394         .sync_page              = block_sync_page,
3395         .write_begin            = ext4_write_begin,
3396         .write_end              = ext4_writeback_write_end,
3397         .bmap                   = ext4_bmap,
3398         .invalidatepage         = ext4_invalidatepage,
3399         .releasepage            = ext4_releasepage,
3400         .direct_IO              = ext4_direct_IO,
3401         .migratepage            = buffer_migrate_page,
3402         .is_partially_uptodate  = block_is_partially_uptodate,
3403 };
3404
3405 static const struct address_space_operations ext4_journalled_aops = {
3406         .readpage               = ext4_readpage,
3407         .readpages              = ext4_readpages,
3408         .writepage              = ext4_writepage,
3409         .sync_page              = block_sync_page,
3410         .write_begin            = ext4_write_begin,
3411         .write_end              = ext4_journalled_write_end,
3412         .set_page_dirty         = ext4_journalled_set_page_dirty,
3413         .bmap                   = ext4_bmap,
3414         .invalidatepage         = ext4_invalidatepage,
3415         .releasepage            = ext4_releasepage,
3416         .is_partially_uptodate  = block_is_partially_uptodate,
3417 };
3418
3419 static const struct address_space_operations ext4_da_aops = {
3420         .readpage               = ext4_readpage,
3421         .readpages              = ext4_readpages,
3422         .writepage              = ext4_writepage,
3423         .writepages             = ext4_da_writepages,
3424         .sync_page              = block_sync_page,
3425         .write_begin            = ext4_da_write_begin,
3426         .write_end              = ext4_da_write_end,
3427         .bmap                   = ext4_bmap,
3428         .invalidatepage         = ext4_da_invalidatepage,
3429         .releasepage            = ext4_releasepage,
3430         .direct_IO              = ext4_direct_IO,
3431         .migratepage            = buffer_migrate_page,
3432         .is_partially_uptodate  = block_is_partially_uptodate,
3433 };
3434
3435 void ext4_set_aops(struct inode *inode)
3436 {
3437         if (ext4_should_order_data(inode) &&
3438                 test_opt(inode->i_sb, DELALLOC))
3439                 inode->i_mapping->a_ops = &ext4_da_aops;
3440         else if (ext4_should_order_data(inode))
3441                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3442         else if (ext4_should_writeback_data(inode) &&
3443                  test_opt(inode->i_sb, DELALLOC))
3444                 inode->i_mapping->a_ops = &ext4_da_aops;
3445         else if (ext4_should_writeback_data(inode))
3446                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3447         else
3448                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3449 }
3450
3451 /*
3452  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3453  * up to the end of the block which corresponds to `from'.
3454  * This required during truncate. We need to physically zero the tail end
3455  * of that block so it doesn't yield old data if the file is later grown.
3456  */
3457 int ext4_block_truncate_page(handle_t *handle,
3458                 struct address_space *mapping, loff_t from)
3459 {
3460         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3461         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3462         unsigned blocksize, length, pos;
3463         ext4_lblk_t iblock;
3464         struct inode *inode = mapping->host;
3465         struct buffer_head *bh;
3466         struct page *page;
3467         int err = 0;
3468
3469         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3470                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3471         if (!page)
3472                 return -EINVAL;
3473
3474         blocksize = inode->i_sb->s_blocksize;
3475         length = blocksize - (offset & (blocksize - 1));
3476         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3477
3478         /*
3479          * For "nobh" option,  we can only work if we don't need to
3480          * read-in the page - otherwise we create buffers to do the IO.
3481          */
3482         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3483              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3484                 zero_user(page, offset, length);
3485                 set_page_dirty(page);
3486                 goto unlock;
3487         }
3488
3489         if (!page_has_buffers(page))
3490                 create_empty_buffers(page, blocksize, 0);
3491
3492         /* Find the buffer that contains "offset" */
3493         bh = page_buffers(page);
3494         pos = blocksize;
3495         while (offset >= pos) {
3496                 bh = bh->b_this_page;
3497                 iblock++;
3498                 pos += blocksize;
3499         }
3500
3501         err = 0;
3502         if (buffer_freed(bh)) {
3503                 BUFFER_TRACE(bh, "freed: skip");
3504                 goto unlock;
3505         }
3506
3507         if (!buffer_mapped(bh)) {
3508                 BUFFER_TRACE(bh, "unmapped");
3509                 ext4_get_block(inode, iblock, bh, 0);
3510                 /* unmapped? It's a hole - nothing to do */
3511                 if (!buffer_mapped(bh)) {
3512                         BUFFER_TRACE(bh, "still unmapped");
3513                         goto unlock;
3514                 }
3515         }
3516
3517         /* Ok, it's mapped. Make sure it's up-to-date */
3518         if (PageUptodate(page))
3519                 set_buffer_uptodate(bh);
3520
3521         if (!buffer_uptodate(bh)) {
3522                 err = -EIO;
3523                 ll_rw_block(READ, 1, &bh);
3524                 wait_on_buffer(bh);
3525                 /* Uhhuh. Read error. Complain and punt. */
3526                 if (!buffer_uptodate(bh))
3527                         goto unlock;
3528         }
3529
3530         if (ext4_should_journal_data(inode)) {
3531                 BUFFER_TRACE(bh, "get write access");
3532                 err = ext4_journal_get_write_access(handle, bh);
3533                 if (err)
3534                         goto unlock;
3535         }
3536
3537         zero_user(page, offset, length);
3538
3539         BUFFER_TRACE(bh, "zeroed end of block");
3540
3541         err = 0;
3542         if (ext4_should_journal_data(inode)) {
3543                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3544         } else {
3545                 if (ext4_should_order_data(inode))
3546                         err = ext4_jbd2_file_inode(handle, inode);
3547                 mark_buffer_dirty(bh);
3548         }
3549
3550 unlock:
3551         unlock_page(page);
3552         page_cache_release(page);
3553         return err;
3554 }
3555
3556 /*
3557  * Probably it should be a library function... search for first non-zero word
3558  * or memcmp with zero_page, whatever is better for particular architecture.
3559  * Linus?
3560  */
3561 static inline int all_zeroes(__le32 *p, __le32 *q)
3562 {
3563         while (p < q)
3564                 if (*p++)
3565                         return 0;
3566         return 1;
3567 }
3568
3569 /**
3570  *      ext4_find_shared - find the indirect blocks for partial truncation.
3571  *      @inode:   inode in question
3572  *      @depth:   depth of the affected branch
3573  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3574  *      @chain:   place to store the pointers to partial indirect blocks
3575  *      @top:     place to the (detached) top of branch
3576  *
3577  *      This is a helper function used by ext4_truncate().
3578  *
3579  *      When we do truncate() we may have to clean the ends of several
3580  *      indirect blocks but leave the blocks themselves alive. Block is
3581  *      partially truncated if some data below the new i_size is refered
3582  *      from it (and it is on the path to the first completely truncated
3583  *      data block, indeed).  We have to free the top of that path along
3584  *      with everything to the right of the path. Since no allocation
3585  *      past the truncation point is possible until ext4_truncate()
3586  *      finishes, we may safely do the latter, but top of branch may
3587  *      require special attention - pageout below the truncation point
3588  *      might try to populate it.
3589  *
3590  *      We atomically detach the top of branch from the tree, store the
3591  *      block number of its root in *@top, pointers to buffer_heads of
3592  *      partially truncated blocks - in @chain[].bh and pointers to
3593  *      their last elements that should not be removed - in
3594  *      @chain[].p. Return value is the pointer to last filled element
3595  *      of @chain.
3596  *
3597  *      The work left to caller to do the actual freeing of subtrees:
3598  *              a) free the subtree starting from *@top
3599  *              b) free the subtrees whose roots are stored in
3600  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3601  *              c) free the subtrees growing from the inode past the @chain[0].
3602  *                      (no partially truncated stuff there).  */
3603
3604 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3605                                   ext4_lblk_t offsets[4], Indirect chain[4],
3606                                   __le32 *top)
3607 {
3608         Indirect *partial, *p;
3609         int k, err;
3610
3611         *top = 0;
3612         /* Make k index the deepest non-null offest + 1 */
3613         for (k = depth; k > 1 && !offsets[k-1]; k--)
3614                 ;
3615         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3616         /* Writer: pointers */
3617         if (!partial)
3618                 partial = chain + k-1;
3619         /*
3620          * If the branch acquired continuation since we've looked at it -
3621          * fine, it should all survive and (new) top doesn't belong to us.
3622          */
3623         if (!partial->key && *partial->p)
3624                 /* Writer: end */
3625                 goto no_top;
3626         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3627                 ;
3628         /*
3629          * OK, we've found the last block that must survive. The rest of our
3630          * branch should be detached before unlocking. However, if that rest
3631          * of branch is all ours and does not grow immediately from the inode
3632          * it's easier to cheat and just decrement partial->p.
3633          */
3634         if (p == chain + k - 1 && p > chain) {
3635                 p->p--;
3636         } else {
3637                 *top = *p->p;
3638                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3639 #if 0
3640                 *p->p = 0;
3641 #endif
3642         }
3643         /* Writer: end */
3644
3645         while (partial > p) {
3646                 brelse(partial->bh);
3647                 partial--;
3648         }
3649 no_top:
3650         return partial;
3651 }
3652
3653 /*
3654  * Zero a number of block pointers in either an inode or an indirect block.
3655  * If we restart the transaction we must again get write access to the
3656  * indirect block for further modification.
3657  *
3658  * We release `count' blocks on disk, but (last - first) may be greater
3659  * than `count' because there can be holes in there.
3660  */
3661 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3662                               struct buffer_head *bh,
3663                               ext4_fsblk_t block_to_free,
3664                               unsigned long count, __le32 *first,
3665                               __le32 *last)
3666 {
3667         __le32 *p;
3668         if (try_to_extend_transaction(handle, inode)) {
3669                 if (bh) {
3670                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3671                         ext4_handle_dirty_metadata(handle, inode, bh);
3672                 }
3673                 ext4_mark_inode_dirty(handle, inode);
3674                 ext4_truncate_restart_trans(handle, inode,
3675                                             blocks_for_truncate(inode));
3676                 if (bh) {
3677                         BUFFER_TRACE(bh, "retaking write access");
3678                         ext4_journal_get_write_access(handle, bh);
3679                 }
3680         }
3681
3682         /*
3683          * Any buffers which are on the journal will be in memory. We
3684          * find them on the hash table so jbd2_journal_revoke() will
3685          * run jbd2_journal_forget() on them.  We've already detached
3686          * each block from the file, so bforget() in
3687          * jbd2_journal_forget() should be safe.
3688          *
3689          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3690          */
3691         for (p = first; p < last; p++) {
3692                 u32 nr = le32_to_cpu(*p);
3693                 if (nr) {
3694                         struct buffer_head *tbh;
3695
3696                         *p = 0;
3697                         tbh = sb_find_get_block(inode->i_sb, nr);
3698                         ext4_forget(handle, 0, inode, tbh, nr);
3699                 }
3700         }
3701
3702         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3703 }
3704
3705 /**
3706  * ext4_free_data - free a list of data blocks
3707  * @handle:     handle for this transaction
3708  * @inode:      inode we are dealing with
3709  * @this_bh:    indirect buffer_head which contains *@first and *@last
3710  * @first:      array of block numbers
3711  * @last:       points immediately past the end of array
3712  *
3713  * We are freeing all blocks refered from that array (numbers are stored as
3714  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3715  *
3716  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3717  * blocks are contiguous then releasing them at one time will only affect one
3718  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3719  * actually use a lot of journal space.
3720  *
3721  * @this_bh will be %NULL if @first and @last point into the inode's direct
3722  * block pointers.
3723  */
3724 static void ext4_free_data(handle_t *handle, struct inode *inode,
3725                            struct buffer_head *this_bh,
3726                            __le32 *first, __le32 *last)
3727 {
3728         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3729         unsigned long count = 0;            /* Number of blocks in the run */
3730         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3731                                                corresponding to
3732                                                block_to_free */
3733         ext4_fsblk_t nr;                    /* Current block # */
3734         __le32 *p;                          /* Pointer into inode/ind
3735                                                for current block */
3736         int err;
3737
3738         if (this_bh) {                          /* For indirect block */
3739                 BUFFER_TRACE(this_bh, "get_write_access");
3740                 err = ext4_journal_get_write_access(handle, this_bh);
3741                 /* Important: if we can't update the indirect pointers
3742                  * to the blocks, we can't free them. */
3743                 if (err)
3744                         return;
3745         }
3746
3747         for (p = first; p < last; p++) {
3748                 nr = le32_to_cpu(*p);
3749                 if (nr) {
3750                         /* accumulate blocks to free if they're contiguous */
3751                         if (count == 0) {
3752                                 block_to_free = nr;
3753                                 block_to_free_p = p;
3754                                 count = 1;
3755                         } else if (nr == block_to_free + count) {
3756                                 count++;
3757                         } else {
3758                                 ext4_clear_blocks(handle, inode, this_bh,
3759                                                   block_to_free,
3760                                                   count, block_to_free_p, p);
3761                                 block_to_free = nr;
3762                                 block_to_free_p = p;
3763                                 count = 1;
3764                         }
3765                 }
3766         }
3767
3768         if (count > 0)
3769                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3770                                   count, block_to_free_p, p);
3771
3772         if (this_bh) {
3773                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3774
3775                 /*
3776                  * The buffer head should have an attached journal head at this
3777                  * point. However, if the data is corrupted and an indirect
3778                  * block pointed to itself, it would have been detached when
3779                  * the block was cleared. Check for this instead of OOPSing.
3780                  */
3781                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3782                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3783                 else
3784                         ext4_error(inode->i_sb, __func__,
3785                                    "circular indirect block detected, "
3786                                    "inode=%lu, block=%llu",
3787                                    inode->i_ino,
3788                                    (unsigned long long) this_bh->b_blocknr);
3789         }
3790 }
3791
3792 /**
3793  *      ext4_free_branches - free an array of branches
3794  *      @handle: JBD handle for this transaction
3795  *      @inode: inode we are dealing with
3796  *      @parent_bh: the buffer_head which contains *@first and *@last
3797  *      @first: array of block numbers
3798  *      @last:  pointer immediately past the end of array
3799  *      @depth: depth of the branches to free
3800  *
3801  *      We are freeing all blocks refered from these branches (numbers are
3802  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3803  *      appropriately.
3804  */
3805 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3806                                struct buffer_head *parent_bh,
3807                                __le32 *first, __le32 *last, int depth)
3808 {
3809         ext4_fsblk_t nr;
3810         __le32 *p;
3811
3812         if (ext4_handle_is_aborted(handle))
3813                 return;
3814
3815         if (depth--) {
3816                 struct buffer_head *bh;
3817                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3818                 p = last;
3819                 while (--p >= first) {
3820                         nr = le32_to_cpu(*p);
3821                         if (!nr)
3822                                 continue;               /* A hole */
3823
3824                         /* Go read the buffer for the next level down */
3825                         bh = sb_bread(inode->i_sb, nr);
3826
3827                         /*
3828                          * A read failure? Report error and clear slot
3829                          * (should be rare).
3830                          */
3831                         if (!bh) {
3832                                 ext4_error(inode->i_sb, "ext4_free_branches",
3833                                            "Read failure, inode=%lu, block=%llu",
3834                                            inode->i_ino, nr);
3835                                 continue;
3836                         }
3837
3838                         /* This zaps the entire block.  Bottom up. */
3839                         BUFFER_TRACE(bh, "free child branches");
3840                         ext4_free_branches(handle, inode, bh,
3841                                         (__le32 *) bh->b_data,
3842                                         (__le32 *) bh->b_data + addr_per_block,
3843                                         depth);
3844
3845                         /*
3846                          * We've probably journalled the indirect block several
3847                          * times during the truncate.  But it's no longer
3848                          * needed and we now drop it from the transaction via
3849                          * jbd2_journal_revoke().
3850                          *
3851                          * That's easy if it's exclusively part of this
3852                          * transaction.  But if it's part of the committing
3853                          * transaction then jbd2_journal_forget() will simply
3854                          * brelse() it.  That means that if the underlying
3855                          * block is reallocated in ext4_get_block(),
3856                          * unmap_underlying_metadata() will find this block
3857                          * and will try to get rid of it.  damn, damn.
3858                          *
3859                          * If this block has already been committed to the
3860                          * journal, a revoke record will be written.  And
3861                          * revoke records must be emitted *before* clearing
3862                          * this block's bit in the bitmaps.
3863                          */
3864                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3865
3866                         /*
3867                          * Everything below this this pointer has been
3868                          * released.  Now let this top-of-subtree go.
3869                          *
3870                          * We want the freeing of this indirect block to be
3871                          * atomic in the journal with the updating of the
3872                          * bitmap block which owns it.  So make some room in
3873                          * the journal.
3874                          *
3875                          * We zero the parent pointer *after* freeing its
3876                          * pointee in the bitmaps, so if extend_transaction()
3877                          * for some reason fails to put the bitmap changes and
3878                          * the release into the same transaction, recovery
3879                          * will merely complain about releasing a free block,
3880                          * rather than leaking blocks.
3881                          */
3882                         if (ext4_handle_is_aborted(handle))
3883                                 return;
3884                         if (try_to_extend_transaction(handle, inode)) {
3885                                 ext4_mark_inode_dirty(handle, inode);
3886                                 ext4_truncate_restart_trans(handle, inode,
3887                                             blocks_for_truncate(inode));
3888                         }
3889
3890                         ext4_free_blocks(handle, inode, nr, 1, 1);
3891
3892                         if (parent_bh) {
3893                                 /*
3894                                  * The block which we have just freed is
3895                                  * pointed to by an indirect block: journal it
3896                                  */
3897                                 BUFFER_TRACE(parent_bh, "get_write_access");
3898                                 if (!ext4_journal_get_write_access(handle,
3899                                                                    parent_bh)){
3900                                         *p = 0;
3901                                         BUFFER_TRACE(parent_bh,
3902                                         "call ext4_handle_dirty_metadata");
3903                                         ext4_handle_dirty_metadata(handle,
3904                                                                    inode,
3905                                                                    parent_bh);
3906                                 }
3907                         }
3908                 }
3909         } else {
3910                 /* We have reached the bottom of the tree. */
3911                 BUFFER_TRACE(parent_bh, "free data blocks");
3912                 ext4_free_data(handle, inode, parent_bh, first, last);
3913         }
3914 }
3915
3916 int ext4_can_truncate(struct inode *inode)
3917 {
3918         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3919                 return 0;
3920         if (S_ISREG(inode->i_mode))
3921                 return 1;
3922         if (S_ISDIR(inode->i_mode))
3923                 return 1;
3924         if (S_ISLNK(inode->i_mode))
3925                 return !ext4_inode_is_fast_symlink(inode);
3926         return 0;
3927 }
3928
3929 /*
3930  * ext4_truncate()
3931  *
3932  * We block out ext4_get_block() block instantiations across the entire
3933  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3934  * simultaneously on behalf of the same inode.
3935  *
3936  * As we work through the truncate and commmit bits of it to the journal there
3937  * is one core, guiding principle: the file's tree must always be consistent on
3938  * disk.  We must be able to restart the truncate after a crash.
3939  *
3940  * The file's tree may be transiently inconsistent in memory (although it
3941  * probably isn't), but whenever we close off and commit a journal transaction,
3942  * the contents of (the filesystem + the journal) must be consistent and
3943  * restartable.  It's pretty simple, really: bottom up, right to left (although
3944  * left-to-right works OK too).
3945  *
3946  * Note that at recovery time, journal replay occurs *before* the restart of
3947  * truncate against the orphan inode list.
3948  *
3949  * The committed inode has the new, desired i_size (which is the same as
3950  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3951  * that this inode's truncate did not complete and it will again call
3952  * ext4_truncate() to have another go.  So there will be instantiated blocks
3953  * to the right of the truncation point in a crashed ext4 filesystem.  But
3954  * that's fine - as long as they are linked from the inode, the post-crash
3955  * ext4_truncate() run will find them and release them.
3956  */
3957 void ext4_truncate(struct inode *inode)
3958 {
3959         handle_t *handle;
3960         struct ext4_inode_info *ei = EXT4_I(inode);
3961         __le32 *i_data = ei->i_data;
3962         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3963         struct address_space *mapping = inode->i_mapping;
3964         ext4_lblk_t offsets[4];
3965         Indirect chain[4];
3966         Indirect *partial;
3967         __le32 nr = 0;
3968         int n;
3969         ext4_lblk_t last_block;
3970         unsigned blocksize = inode->i_sb->s_blocksize;
3971
3972         if (!ext4_can_truncate(inode))
3973                 return;
3974
3975         if (ei->i_disksize && inode->i_size == 0 &&
3976             !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3977                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3978
3979         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3980                 ext4_ext_truncate(inode);
3981                 return;
3982         }
3983
3984         handle = start_transaction(inode);
3985         if (IS_ERR(handle))
3986                 return;         /* AKPM: return what? */
3987
3988         last_block = (inode->i_size + blocksize-1)
3989                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3990
3991         if (inode->i_size & (blocksize - 1))
3992                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3993                         goto out_stop;
3994
3995         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3996         if (n == 0)
3997                 goto out_stop;  /* error */
3998
3999         /*
4000          * OK.  This truncate is going to happen.  We add the inode to the
4001          * orphan list, so that if this truncate spans multiple transactions,
4002          * and we crash, we will resume the truncate when the filesystem
4003          * recovers.  It also marks the inode dirty, to catch the new size.
4004          *
4005          * Implication: the file must always be in a sane, consistent
4006          * truncatable state while each transaction commits.
4007          */
4008         if (ext4_orphan_add(handle, inode))
4009                 goto out_stop;
4010
4011         /*
4012          * From here we block out all ext4_get_block() callers who want to
4013          * modify the block allocation tree.
4014          */
4015         down_write(&ei->i_data_sem);
4016
4017         ext4_discard_preallocations(inode);
4018
4019         /*
4020          * The orphan list entry will now protect us from any crash which
4021          * occurs before the truncate completes, so it is now safe to propagate
4022          * the new, shorter inode size (held for now in i_size) into the
4023          * on-disk inode. We do this via i_disksize, which is the value which
4024          * ext4 *really* writes onto the disk inode.
4025          */
4026         ei->i_disksize = inode->i_size;
4027
4028         if (n == 1) {           /* direct blocks */
4029                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4030                                i_data + EXT4_NDIR_BLOCKS);
4031                 goto do_indirects;
4032         }
4033
4034         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4035         /* Kill the top of shared branch (not detached) */
4036         if (nr) {
4037                 if (partial == chain) {
4038                         /* Shared branch grows from the inode */
4039                         ext4_free_branches(handle, inode, NULL,
4040                                            &nr, &nr+1, (chain+n-1) - partial);
4041                         *partial->p = 0;
4042                         /*
4043                          * We mark the inode dirty prior to restart,
4044                          * and prior to stop.  No need for it here.
4045                          */
4046                 } else {
4047                         /* Shared branch grows from an indirect block */
4048                         BUFFER_TRACE(partial->bh, "get_write_access");
4049                         ext4_free_branches(handle, inode, partial->bh,
4050                                         partial->p,
4051                                         partial->p+1, (chain+n-1) - partial);
4052                 }
4053         }
4054         /* Clear the ends of indirect blocks on the shared branch */
4055         while (partial > chain) {
4056                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4057                                    (__le32*)partial->bh->b_data+addr_per_block,
4058                                    (chain+n-1) - partial);
4059                 BUFFER_TRACE(partial->bh, "call brelse");
4060                 brelse(partial->bh);
4061                 partial--;
4062         }
4063 do_indirects:
4064         /* Kill the remaining (whole) subtrees */
4065         switch (offsets[0]) {
4066         default:
4067                 nr = i_data[EXT4_IND_BLOCK];
4068                 if (nr) {
4069                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4070                         i_data[EXT4_IND_BLOCK] = 0;
4071                 }
4072         case EXT4_IND_BLOCK:
4073                 nr = i_data[EXT4_DIND_BLOCK];
4074                 if (nr) {
4075                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4076                         i_data[EXT4_DIND_BLOCK] = 0;
4077                 }
4078         case EXT4_DIND_BLOCK:
4079                 nr = i_data[EXT4_TIND_BLOCK];
4080                 if (nr) {
4081                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4082                         i_data[EXT4_TIND_BLOCK] = 0;
4083                 }
4084         case EXT4_TIND_BLOCK:
4085                 ;
4086         }
4087
4088         up_write(&ei->i_data_sem);
4089         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4090         ext4_mark_inode_dirty(handle, inode);
4091
4092         /*
4093          * In a multi-transaction truncate, we only make the final transaction
4094          * synchronous
4095          */
4096         if (IS_SYNC(inode))
4097                 ext4_handle_sync(handle);
4098 out_stop:
4099         /*
4100          * If this was a simple ftruncate(), and the file will remain alive
4101          * then we need to clear up the orphan record which we created above.
4102          * However, if this was a real unlink then we were called by
4103          * ext4_delete_inode(), and we allow that function to clean up the
4104          * orphan info for us.
4105          */
4106         if (inode->i_nlink)
4107                 ext4_orphan_del(handle, inode);
4108
4109         ext4_journal_stop(handle);
4110 }
4111
4112 /*
4113  * ext4_get_inode_loc returns with an extra refcount against the inode's
4114  * underlying buffer_head on success. If 'in_mem' is true, we have all
4115  * data in memory that is needed to recreate the on-disk version of this
4116  * inode.
4117  */
4118 static int __ext4_get_inode_loc(struct inode *inode,
4119                                 struct ext4_iloc *iloc, int in_mem)
4120 {
4121         struct ext4_group_desc  *gdp;
4122         struct buffer_head      *bh;
4123         struct super_block      *sb = inode->i_sb;
4124         ext4_fsblk_t            block;
4125         int                     inodes_per_block, inode_offset;
4126
4127         iloc->bh = NULL;
4128         if (!ext4_valid_inum(sb, inode->i_ino))
4129                 return -EIO;
4130
4131         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4132         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4133         if (!gdp)
4134                 return -EIO;
4135
4136         /*
4137          * Figure out the offset within the block group inode table
4138          */
4139         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4140         inode_offset = ((inode->i_ino - 1) %
4141                         EXT4_INODES_PER_GROUP(sb));
4142         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4143         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4144
4145         bh = sb_getblk(sb, block);
4146         if (!bh) {
4147                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4148                            "inode block - inode=%lu, block=%llu",
4149                            inode->i_ino, block);
4150                 return -EIO;
4151         }
4152         if (!buffer_uptodate(bh)) {
4153                 lock_buffer(bh);
4154
4155                 /*
4156                  * If the buffer has the write error flag, we have failed
4157                  * to write out another inode in the same block.  In this
4158                  * case, we don't have to read the block because we may
4159                  * read the old inode data successfully.
4160                  */
4161                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4162                         set_buffer_uptodate(bh);
4163
4164                 if (buffer_uptodate(bh)) {
4165                         /* someone brought it uptodate while we waited */
4166                         unlock_buffer(bh);
4167                         goto has_buffer;
4168                 }
4169
4170                 /*
4171                  * If we have all information of the inode in memory and this
4172                  * is the only valid inode in the block, we need not read the
4173                  * block.
4174                  */
4175                 if (in_mem) {
4176                         struct buffer_head *bitmap_bh;
4177                         int i, start;
4178
4179                         start = inode_offset & ~(inodes_per_block - 1);
4180
4181                         /* Is the inode bitmap in cache? */
4182                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4183                         if (!bitmap_bh)
4184                                 goto make_io;
4185
4186                         /*
4187                          * If the inode bitmap isn't in cache then the
4188                          * optimisation may end up performing two reads instead
4189                          * of one, so skip it.
4190                          */
4191                         if (!buffer_uptodate(bitmap_bh)) {
4192                                 brelse(bitmap_bh);
4193                                 goto make_io;
4194                         }
4195                         for (i = start; i < start + inodes_per_block; i++) {
4196                                 if (i == inode_offset)
4197                                         continue;
4198                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4199                                         break;
4200                         }
4201                         brelse(bitmap_bh);
4202                         if (i == start + inodes_per_block) {
4203                                 /* all other inodes are free, so skip I/O */
4204                                 memset(bh->b_data, 0, bh->b_size);
4205                                 set_buffer_uptodate(bh);
4206                                 unlock_buffer(bh);
4207                                 goto has_buffer;
4208                         }
4209                 }
4210
4211 make_io:
4212                 /*
4213                  * If we need to do any I/O, try to pre-readahead extra
4214                  * blocks from the inode table.
4215                  */
4216                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4217                         ext4_fsblk_t b, end, table;
4218                         unsigned num;
4219
4220                         table = ext4_inode_table(sb, gdp);
4221                         /* s_inode_readahead_blks is always a power of 2 */
4222                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4223                         if (table > b)
4224                                 b = table;
4225                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4226                         num = EXT4_INODES_PER_GROUP(sb);
4227                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4228                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4229                                 num -= ext4_itable_unused_count(sb, gdp);
4230                         table += num / inodes_per_block;
4231                         if (end > table)
4232                                 end = table;
4233                         while (b <= end)
4234                                 sb_breadahead(sb, b++);
4235                 }
4236
4237                 /*
4238                  * There are other valid inodes in the buffer, this inode
4239                  * has in-inode xattrs, or we don't have this inode in memory.
4240                  * Read the block from disk.
4241                  */
4242                 get_bh(bh);
4243                 bh->b_end_io = end_buffer_read_sync;
4244                 submit_bh(READ_META, bh);
4245                 wait_on_buffer(bh);
4246                 if (!buffer_uptodate(bh)) {
4247                         ext4_error(sb, __func__,
4248                                    "unable to read inode block - inode=%lu, "
4249                                    "block=%llu", inode->i_ino, block);
4250                         brelse(bh);
4251                         return -EIO;
4252                 }
4253         }
4254 has_buffer:
4255         iloc->bh = bh;
4256         return 0;
4257 }
4258
4259 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4260 {
4261         /* We have all inode data except xattrs in memory here. */
4262         return __ext4_get_inode_loc(inode, iloc,
4263                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4264 }
4265
4266 void ext4_set_inode_flags(struct inode *inode)
4267 {
4268         unsigned int flags = EXT4_I(inode)->i_flags;
4269
4270         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4271         if (flags & EXT4_SYNC_FL)
4272                 inode->i_flags |= S_SYNC;
4273         if (flags & EXT4_APPEND_FL)
4274                 inode->i_flags |= S_APPEND;
4275         if (flags & EXT4_IMMUTABLE_FL)
4276                 inode->i_flags |= S_IMMUTABLE;
4277         if (flags & EXT4_NOATIME_FL)
4278                 inode->i_flags |= S_NOATIME;
4279         if (flags & EXT4_DIRSYNC_FL)
4280                 inode->i_flags |= S_DIRSYNC;
4281 }
4282
4283 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4284 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4285 {
4286         unsigned int flags = ei->vfs_inode.i_flags;
4287
4288         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4289                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4290         if (flags & S_SYNC)
4291                 ei->i_flags |= EXT4_SYNC_FL;
4292         if (flags & S_APPEND)
4293                 ei->i_flags |= EXT4_APPEND_FL;
4294         if (flags & S_IMMUTABLE)
4295                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4296         if (flags & S_NOATIME)
4297                 ei->i_flags |= EXT4_NOATIME_FL;
4298         if (flags & S_DIRSYNC)
4299                 ei->i_flags |= EXT4_DIRSYNC_FL;
4300 }
4301
4302 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4303                                   struct ext4_inode_info *ei)
4304 {
4305         blkcnt_t i_blocks ;
4306         struct inode *inode = &(ei->vfs_inode);
4307         struct super_block *sb = inode->i_sb;
4308
4309         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4310                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4311                 /* we are using combined 48 bit field */
4312                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4313                                         le32_to_cpu(raw_inode->i_blocks_lo);
4314                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4315                         /* i_blocks represent file system block size */
4316                         return i_blocks  << (inode->i_blkbits - 9);
4317                 } else {
4318                         return i_blocks;
4319                 }
4320         } else {
4321                 return le32_to_cpu(raw_inode->i_blocks_lo);
4322         }
4323 }
4324
4325 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4326 {
4327         struct ext4_iloc iloc;
4328         struct ext4_inode *raw_inode;
4329         struct ext4_inode_info *ei;
4330         struct buffer_head *bh;
4331         struct inode *inode;
4332         long ret;
4333         int block;
4334
4335         inode = iget_locked(sb, ino);
4336         if (!inode)
4337                 return ERR_PTR(-ENOMEM);
4338         if (!(inode->i_state & I_NEW))
4339                 return inode;
4340
4341         ei = EXT4_I(inode);
4342
4343         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4344         if (ret < 0)
4345                 goto bad_inode;
4346         bh = iloc.bh;
4347         raw_inode = ext4_raw_inode(&iloc);
4348         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4349         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4350         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4351         if (!(test_opt(inode->i_sb, NO_UID32))) {
4352                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4353                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4354         }
4355         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4356
4357         ei->i_state = 0;
4358         ei->i_dir_start_lookup = 0;
4359         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4360         /* We now have enough fields to check if the inode was active or not.
4361          * This is needed because nfsd might try to access dead inodes
4362          * the test is that same one that e2fsck uses
4363          * NeilBrown 1999oct15
4364          */
4365         if (inode->i_nlink == 0) {
4366                 if (inode->i_mode == 0 ||
4367                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4368                         /* this inode is deleted */
4369                         brelse(bh);
4370                         ret = -ESTALE;
4371                         goto bad_inode;
4372                 }
4373                 /* The only unlinked inodes we let through here have
4374                  * valid i_mode and are being read by the orphan
4375                  * recovery code: that's fine, we're about to complete
4376                  * the process of deleting those. */
4377         }
4378         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4379         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4380         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4381         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4382                 ei->i_file_acl |=
4383                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4384         inode->i_size = ext4_isize(raw_inode);
4385         ei->i_disksize = inode->i_size;
4386         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4387         ei->i_block_group = iloc.block_group;
4388         ei->i_last_alloc_group = ~0;
4389         /*
4390          * NOTE! The in-memory inode i_data array is in little-endian order
4391          * even on big-endian machines: we do NOT byteswap the block numbers!
4392          */
4393         for (block = 0; block < EXT4_N_BLOCKS; block++)
4394                 ei->i_data[block] = raw_inode->i_block[block];
4395         INIT_LIST_HEAD(&ei->i_orphan);
4396
4397         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4398                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4399                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4400                     EXT4_INODE_SIZE(inode->i_sb)) {
4401                         brelse(bh);
4402                         ret = -EIO;
4403                         goto bad_inode;
4404                 }
4405                 if (ei->i_extra_isize == 0) {
4406                         /* The extra space is currently unused. Use it. */
4407                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4408                                             EXT4_GOOD_OLD_INODE_SIZE;
4409                 } else {
4410                         __le32 *magic = (void *)raw_inode +
4411                                         EXT4_GOOD_OLD_INODE_SIZE +
4412                                         ei->i_extra_isize;
4413                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4414                                 ei->i_state |= EXT4_STATE_XATTR;
4415                 }
4416         } else
4417                 ei->i_extra_isize = 0;
4418
4419         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4420         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4421         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4422         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4423
4424         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4425         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4426                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4427                         inode->i_version |=
4428                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4429         }
4430
4431         ret = 0;
4432         if (ei->i_file_acl &&
4433             ((ei->i_file_acl <
4434               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4435                EXT4_SB(sb)->s_gdb_count)) ||
4436              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4437                 ext4_error(sb, __func__,
4438                            "bad extended attribute block %llu in inode #%lu",
4439                            ei->i_file_acl, inode->i_ino);
4440                 ret = -EIO;
4441                 goto bad_inode;
4442         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4443                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4444                     (S_ISLNK(inode->i_mode) &&
4445                      !ext4_inode_is_fast_symlink(inode)))
4446                         /* Validate extent which is part of inode */
4447                         ret = ext4_ext_check_inode(inode);
4448         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4449                    (S_ISLNK(inode->i_mode) &&
4450                     !ext4_inode_is_fast_symlink(inode))) {
4451                 /* Validate block references which are part of inode */
4452                 ret = ext4_check_inode_blockref(inode);
4453         }
4454         if (ret) {
4455                 brelse(bh);
4456                 goto bad_inode;
4457         }
4458
4459         if (S_ISREG(inode->i_mode)) {
4460                 inode->i_op = &ext4_file_inode_operations;
4461                 inode->i_fop = &ext4_file_operations;
4462                 ext4_set_aops(inode);
4463         } else if (S_ISDIR(inode->i_mode)) {
4464                 inode->i_op = &ext4_dir_inode_operations;
4465                 inode->i_fop = &ext4_dir_operations;
4466         } else if (S_ISLNK(inode->i_mode)) {
4467                 if (ext4_inode_is_fast_symlink(inode)) {
4468                         inode->i_op = &ext4_fast_symlink_inode_operations;
4469                         nd_terminate_link(ei->i_data, inode->i_size,
4470                                 sizeof(ei->i_data) - 1);
4471                 } else {
4472                         inode->i_op = &ext4_symlink_inode_operations;
4473                         ext4_set_aops(inode);
4474                 }
4475         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4476               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4477                 inode->i_op = &ext4_special_inode_operations;
4478                 if (raw_inode->i_block[0])
4479                         init_special_inode(inode, inode->i_mode,
4480                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4481                 else
4482                         init_special_inode(inode, inode->i_mode,
4483                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4484         } else {
4485                 brelse(bh);
4486                 ret = -EIO;
4487                 ext4_error(inode->i_sb, __func__,
4488                            "bogus i_mode (%o) for inode=%lu",
4489                            inode->i_mode, inode->i_ino);
4490                 goto bad_inode;
4491         }
4492         brelse(iloc.bh);
4493         ext4_set_inode_flags(inode);
4494         unlock_new_inode(inode);
4495         return inode;
4496
4497 bad_inode:
4498         iget_failed(inode);
4499         return ERR_PTR(ret);
4500 }
4501
4502 static int ext4_inode_blocks_set(handle_t *handle,
4503                                 struct ext4_inode *raw_inode,
4504                                 struct ext4_inode_info *ei)
4505 {
4506         struct inode *inode = &(ei->vfs_inode);
4507         u64 i_blocks = inode->i_blocks;
4508         struct super_block *sb = inode->i_sb;
4509
4510         if (i_blocks <= ~0U) {
4511                 /*
4512                  * i_blocks can be represnted in a 32 bit variable
4513                  * as multiple of 512 bytes
4514                  */
4515                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4516                 raw_inode->i_blocks_high = 0;
4517                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4518                 return 0;
4519         }
4520         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4521                 return -EFBIG;
4522
4523         if (i_blocks <= 0xffffffffffffULL) {
4524                 /*
4525                  * i_blocks can be represented in a 48 bit variable
4526                  * as multiple of 512 bytes
4527                  */
4528                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4529                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4530                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4531         } else {
4532                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4533                 /* i_block is stored in file system block size */
4534                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4535                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4536                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4537         }
4538         return 0;
4539 }
4540
4541 /*
4542  * Post the struct inode info into an on-disk inode location in the
4543  * buffer-cache.  This gobbles the caller's reference to the
4544  * buffer_head in the inode location struct.
4545  *
4546  * The caller must have write access to iloc->bh.
4547  */
4548 static int ext4_do_update_inode(handle_t *handle,
4549                                 struct inode *inode,
4550                                 struct ext4_iloc *iloc,
4551                                 int do_sync)
4552 {
4553         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4554         struct ext4_inode_info *ei = EXT4_I(inode);
4555         struct buffer_head *bh = iloc->bh;
4556         int err = 0, rc, block;
4557
4558         /* For fields not not tracking in the in-memory inode,
4559          * initialise them to zero for new inodes. */
4560         if (ei->i_state & EXT4_STATE_NEW)
4561                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4562
4563         ext4_get_inode_flags(ei);
4564         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4565         if (!(test_opt(inode->i_sb, NO_UID32))) {
4566                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4567                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4568 /*
4569  * Fix up interoperability with old kernels. Otherwise, old inodes get
4570  * re-used with the upper 16 bits of the uid/gid intact
4571  */
4572                 if (!ei->i_dtime) {
4573                         raw_inode->i_uid_high =
4574                                 cpu_to_le16(high_16_bits(inode->i_uid));
4575                         raw_inode->i_gid_high =
4576                                 cpu_to_le16(high_16_bits(inode->i_gid));
4577                 } else {
4578                         raw_inode->i_uid_high = 0;
4579                         raw_inode->i_gid_high = 0;
4580                 }
4581         } else {
4582                 raw_inode->i_uid_low =
4583                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4584                 raw_inode->i_gid_low =
4585                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4586                 raw_inode->i_uid_high = 0;
4587                 raw_inode->i_gid_high = 0;
4588         }
4589         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4590
4591         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4592         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4593         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4594         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4595
4596         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4597                 goto out_brelse;
4598         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4599         /* clear the migrate flag in the raw_inode */
4600         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4601         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4602             cpu_to_le32(EXT4_OS_HURD))
4603                 raw_inode->i_file_acl_high =
4604                         cpu_to_le16(ei->i_file_acl >> 32);
4605         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4606         ext4_isize_set(raw_inode, ei->i_disksize);
4607         if (ei->i_disksize > 0x7fffffffULL) {
4608                 struct super_block *sb = inode->i_sb;
4609                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4610                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4611                                 EXT4_SB(sb)->s_es->s_rev_level ==
4612                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4613                         /* If this is the first large file
4614                          * created, add a flag to the superblock.
4615                          */
4616                         err = ext4_journal_get_write_access(handle,
4617                                         EXT4_SB(sb)->s_sbh);
4618                         if (err)
4619                                 goto out_brelse;
4620                         ext4_update_dynamic_rev(sb);
4621                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4622                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4623                         sb->s_dirt = 1;
4624                         ext4_handle_sync(handle);
4625                         err = ext4_handle_dirty_metadata(handle, inode,
4626                                         EXT4_SB(sb)->s_sbh);
4627                 }
4628         }
4629         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4630         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4631                 if (old_valid_dev(inode->i_rdev)) {
4632                         raw_inode->i_block[0] =
4633                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4634                         raw_inode->i_block[1] = 0;
4635                 } else {
4636                         raw_inode->i_block[0] = 0;
4637                         raw_inode->i_block[1] =
4638                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4639                         raw_inode->i_block[2] = 0;
4640                 }
4641         } else
4642                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4643                         raw_inode->i_block[block] = ei->i_data[block];
4644
4645         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4646         if (ei->i_extra_isize) {
4647                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4648                         raw_inode->i_version_hi =
4649                         cpu_to_le32(inode->i_version >> 32);
4650                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4651         }
4652
4653         /*
4654          * If we're not using a journal and we were called from
4655          * ext4_write_inode() to sync the inode (making do_sync true),
4656          * we can just use sync_dirty_buffer() directly to do our dirty
4657          * work.  Testing s_journal here is a bit redundant but it's
4658          * worth it to avoid potential future trouble.
4659          */
4660         if (EXT4_SB(inode->i_sb)->s_journal == NULL && do_sync) {
4661                 BUFFER_TRACE(bh, "call sync_dirty_buffer");
4662                 sync_dirty_buffer(bh);
4663         } else {
4664                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4665                 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4666                 if (!err)
4667                         err = rc;
4668         }
4669         ei->i_state &= ~EXT4_STATE_NEW;
4670
4671 out_brelse:
4672         brelse(bh);
4673         ext4_std_error(inode->i_sb, err);
4674         return err;
4675 }
4676
4677 /*
4678  * ext4_write_inode()
4679  *
4680  * We are called from a few places:
4681  *
4682  * - Within generic_file_write() for O_SYNC files.
4683  *   Here, there will be no transaction running. We wait for any running
4684  *   trasnaction to commit.
4685  *
4686  * - Within sys_sync(), kupdate and such.
4687  *   We wait on commit, if tol to.
4688  *
4689  * - Within prune_icache() (PF_MEMALLOC == true)
4690  *   Here we simply return.  We can't afford to block kswapd on the
4691  *   journal commit.
4692  *
4693  * In all cases it is actually safe for us to return without doing anything,
4694  * because the inode has been copied into a raw inode buffer in
4695  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4696  * knfsd.
4697  *
4698  * Note that we are absolutely dependent upon all inode dirtiers doing the
4699  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4700  * which we are interested.
4701  *
4702  * It would be a bug for them to not do this.  The code:
4703  *
4704  *      mark_inode_dirty(inode)
4705  *      stuff();
4706  *      inode->i_size = expr;
4707  *
4708  * is in error because a kswapd-driven write_inode() could occur while
4709  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4710  * will no longer be on the superblock's dirty inode list.
4711  */
4712 int ext4_write_inode(struct inode *inode, int wait)
4713 {
4714         int err;
4715
4716         if (current->flags & PF_MEMALLOC)
4717                 return 0;
4718
4719         if (EXT4_SB(inode->i_sb)->s_journal) {
4720                 if (ext4_journal_current_handle()) {
4721                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4722                         dump_stack();
4723                         return -EIO;
4724                 }
4725
4726                 if (!wait)
4727                         return 0;
4728
4729                 err = ext4_force_commit(inode->i_sb);
4730         } else {
4731                 struct ext4_iloc iloc;
4732
4733                 err = ext4_get_inode_loc(inode, &iloc);
4734                 if (err)
4735                         return err;
4736                 err = ext4_do_update_inode(EXT4_NOJOURNAL_HANDLE,
4737                                            inode, &iloc, wait);
4738         }
4739         return err;
4740 }
4741
4742 /*
4743  * ext4_setattr()
4744  *
4745  * Called from notify_change.
4746  *
4747  * We want to trap VFS attempts to truncate the file as soon as
4748  * possible.  In particular, we want to make sure that when the VFS
4749  * shrinks i_size, we put the inode on the orphan list and modify
4750  * i_disksize immediately, so that during the subsequent flushing of
4751  * dirty pages and freeing of disk blocks, we can guarantee that any
4752  * commit will leave the blocks being flushed in an unused state on
4753  * disk.  (On recovery, the inode will get truncated and the blocks will
4754  * be freed, so we have a strong guarantee that no future commit will
4755  * leave these blocks visible to the user.)
4756  *
4757  * Another thing we have to assure is that if we are in ordered mode
4758  * and inode is still attached to the committing transaction, we must
4759  * we start writeout of all the dirty pages which are being truncated.
4760  * This way we are sure that all the data written in the previous
4761  * transaction are already on disk (truncate waits for pages under
4762  * writeback).
4763  *
4764  * Called with inode->i_mutex down.
4765  */
4766 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4767 {
4768         struct inode *inode = dentry->d_inode;
4769         int error, rc = 0;
4770         const unsigned int ia_valid = attr->ia_valid;
4771
4772         error = inode_change_ok(inode, attr);
4773         if (error)
4774                 return error;
4775
4776         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4777                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4778                 handle_t *handle;
4779
4780                 /* (user+group)*(old+new) structure, inode write (sb,
4781                  * inode block, ? - but truncate inode update has it) */
4782                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4783                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4784                 if (IS_ERR(handle)) {
4785                         error = PTR_ERR(handle);
4786                         goto err_out;
4787                 }
4788                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4789                 if (error) {
4790                         ext4_journal_stop(handle);
4791                         return error;
4792                 }
4793                 /* Update corresponding info in inode so that everything is in
4794                  * one transaction */
4795                 if (attr->ia_valid & ATTR_UID)
4796                         inode->i_uid = attr->ia_uid;
4797                 if (attr->ia_valid & ATTR_GID)
4798                         inode->i_gid = attr->ia_gid;
4799                 error = ext4_mark_inode_dirty(handle, inode);
4800                 ext4_journal_stop(handle);
4801         }
4802
4803         if (attr->ia_valid & ATTR_SIZE) {
4804                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4805                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4806
4807                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4808                                 error = -EFBIG;
4809                                 goto err_out;
4810                         }
4811                 }
4812         }
4813
4814         if (S_ISREG(inode->i_mode) &&
4815             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4816                 handle_t *handle;
4817
4818                 handle = ext4_journal_start(inode, 3);
4819                 if (IS_ERR(handle)) {
4820                         error = PTR_ERR(handle);
4821                         goto err_out;
4822                 }
4823
4824                 error = ext4_orphan_add(handle, inode);
4825                 EXT4_I(inode)->i_disksize = attr->ia_size;
4826                 rc = ext4_mark_inode_dirty(handle, inode);
4827                 if (!error)
4828                         error = rc;
4829                 ext4_journal_stop(handle);
4830
4831                 if (ext4_should_order_data(inode)) {
4832                         error = ext4_begin_ordered_truncate(inode,
4833                                                             attr->ia_size);
4834                         if (error) {
4835                                 /* Do as much error cleanup as possible */
4836                                 handle = ext4_journal_start(inode, 3);
4837                                 if (IS_ERR(handle)) {
4838                                         ext4_orphan_del(NULL, inode);
4839                                         goto err_out;
4840                                 }
4841                                 ext4_orphan_del(handle, inode);
4842                                 ext4_journal_stop(handle);
4843                                 goto err_out;
4844                         }
4845                 }
4846         }
4847
4848         rc = inode_setattr(inode, attr);
4849
4850         /* If inode_setattr's call to ext4_truncate failed to get a
4851          * transaction handle at all, we need to clean up the in-core
4852          * orphan list manually. */
4853         if (inode->i_nlink)
4854                 ext4_orphan_del(NULL, inode);
4855
4856         if (!rc && (ia_valid & ATTR_MODE))
4857                 rc = ext4_acl_chmod(inode);
4858
4859 err_out:
4860         ext4_std_error(inode->i_sb, error);
4861         if (!error)
4862                 error = rc;
4863         return error;
4864 }
4865
4866 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4867                  struct kstat *stat)
4868 {
4869         struct inode *inode;
4870         unsigned long delalloc_blocks;
4871
4872         inode = dentry->d_inode;
4873         generic_fillattr(inode, stat);
4874
4875         /*
4876          * We can't update i_blocks if the block allocation is delayed
4877          * otherwise in the case of system crash before the real block
4878          * allocation is done, we will have i_blocks inconsistent with
4879          * on-disk file blocks.
4880          * We always keep i_blocks updated together with real
4881          * allocation. But to not confuse with user, stat
4882          * will return the blocks that include the delayed allocation
4883          * blocks for this file.
4884          */
4885         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4886         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4887         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4888
4889         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4890         return 0;
4891 }
4892
4893 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4894                                       int chunk)
4895 {
4896         int indirects;
4897
4898         /* if nrblocks are contiguous */
4899         if (chunk) {
4900                 /*
4901                  * With N contiguous data blocks, it need at most
4902                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4903                  * 2 dindirect blocks
4904                  * 1 tindirect block
4905                  */
4906                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4907                 return indirects + 3;
4908         }
4909         /*
4910          * if nrblocks are not contiguous, worse case, each block touch
4911          * a indirect block, and each indirect block touch a double indirect
4912          * block, plus a triple indirect block
4913          */
4914         indirects = nrblocks * 2 + 1;
4915         return indirects;
4916 }
4917
4918 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4919 {
4920         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4921                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4922         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4923 }
4924
4925 /*
4926  * Account for index blocks, block groups bitmaps and block group
4927  * descriptor blocks if modify datablocks and index blocks
4928  * worse case, the indexs blocks spread over different block groups
4929  *
4930  * If datablocks are discontiguous, they are possible to spread over
4931  * different block groups too. If they are contiugous, with flexbg,
4932  * they could still across block group boundary.
4933  *
4934  * Also account for superblock, inode, quota and xattr blocks
4935  */
4936 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4937 {
4938         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4939         int gdpblocks;
4940         int idxblocks;
4941         int ret = 0;
4942
4943         /*
4944          * How many index blocks need to touch to modify nrblocks?
4945          * The "Chunk" flag indicating whether the nrblocks is
4946          * physically contiguous on disk
4947          *
4948          * For Direct IO and fallocate, they calls get_block to allocate
4949          * one single extent at a time, so they could set the "Chunk" flag
4950          */
4951         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4952
4953         ret = idxblocks;
4954
4955         /*
4956          * Now let's see how many group bitmaps and group descriptors need
4957          * to account
4958          */
4959         groups = idxblocks;
4960         if (chunk)
4961                 groups += 1;
4962         else
4963                 groups += nrblocks;
4964
4965         gdpblocks = groups;
4966         if (groups > ngroups)
4967                 groups = ngroups;
4968         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4969                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4970
4971         /* bitmaps and block group descriptor blocks */
4972         ret += groups + gdpblocks;
4973
4974         /* Blocks for super block, inode, quota and xattr blocks */
4975         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4976
4977         return ret;
4978 }
4979
4980 /*
4981  * Calulate the total number of credits to reserve to fit
4982  * the modification of a single pages into a single transaction,
4983  * which may include multiple chunks of block allocations.
4984  *
4985  * This could be called via ext4_write_begin()
4986  *
4987  * We need to consider the worse case, when
4988  * one new block per extent.
4989  */
4990 int ext4_writepage_trans_blocks(struct inode *inode)
4991 {
4992         int bpp = ext4_journal_blocks_per_page(inode);
4993         int ret;
4994
4995         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4996
4997         /* Account for data blocks for journalled mode */
4998         if (ext4_should_journal_data(inode))
4999                 ret += bpp;
5000         return ret;
5001 }
5002
5003 /*
5004  * Calculate the journal credits for a chunk of data modification.
5005  *
5006  * This is called from DIO, fallocate or whoever calling
5007  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5008  *
5009  * journal buffers for data blocks are not included here, as DIO
5010  * and fallocate do no need to journal data buffers.
5011  */
5012 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5013 {
5014         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5015 }
5016
5017 /*
5018  * The caller must have previously called ext4_reserve_inode_write().
5019  * Give this, we know that the caller already has write access to iloc->bh.
5020  */
5021 int ext4_mark_iloc_dirty(handle_t *handle,
5022                          struct inode *inode, struct ext4_iloc *iloc)
5023 {
5024         int err = 0;
5025
5026         if (test_opt(inode->i_sb, I_VERSION))
5027                 inode_inc_iversion(inode);
5028
5029         /* the do_update_inode consumes one bh->b_count */
5030         get_bh(iloc->bh);
5031
5032         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5033         err = ext4_do_update_inode(handle, inode, iloc, 0);
5034         put_bh(iloc->bh);
5035         return err;
5036 }
5037
5038 /*
5039  * On success, We end up with an outstanding reference count against
5040  * iloc->bh.  This _must_ be cleaned up later.
5041  */
5042
5043 int
5044 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5045                          struct ext4_iloc *iloc)
5046 {
5047         int err;
5048
5049         err = ext4_get_inode_loc(inode, iloc);
5050         if (!err) {
5051                 BUFFER_TRACE(iloc->bh, "get_write_access");
5052                 err = ext4_journal_get_write_access(handle, iloc->bh);
5053                 if (err) {
5054                         brelse(iloc->bh);
5055                         iloc->bh = NULL;
5056                 }
5057         }
5058         ext4_std_error(inode->i_sb, err);
5059         return err;
5060 }
5061
5062 /*
5063  * Expand an inode by new_extra_isize bytes.
5064  * Returns 0 on success or negative error number on failure.
5065  */
5066 static int ext4_expand_extra_isize(struct inode *inode,
5067                                    unsigned int new_extra_isize,
5068                                    struct ext4_iloc iloc,
5069                                    handle_t *handle)
5070 {
5071         struct ext4_inode *raw_inode;
5072         struct ext4_xattr_ibody_header *header;
5073         struct ext4_xattr_entry *entry;
5074
5075         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5076                 return 0;
5077
5078         raw_inode = ext4_raw_inode(&iloc);
5079
5080         header = IHDR(inode, raw_inode);
5081         entry = IFIRST(header);
5082
5083         /* No extended attributes present */
5084         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5085                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5086                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5087                         new_extra_isize);
5088                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5089                 return 0;
5090         }
5091
5092         /* try to expand with EAs present */
5093         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5094                                           raw_inode, handle);
5095 }
5096
5097 /*
5098  * What we do here is to mark the in-core inode as clean with respect to inode
5099  * dirtiness (it may still be data-dirty).
5100  * This means that the in-core inode may be reaped by prune_icache
5101  * without having to perform any I/O.  This is a very good thing,
5102  * because *any* task may call prune_icache - even ones which
5103  * have a transaction open against a different journal.
5104  *
5105  * Is this cheating?  Not really.  Sure, we haven't written the
5106  * inode out, but prune_icache isn't a user-visible syncing function.
5107  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5108  * we start and wait on commits.
5109  *
5110  * Is this efficient/effective?  Well, we're being nice to the system
5111  * by cleaning up our inodes proactively so they can be reaped
5112  * without I/O.  But we are potentially leaving up to five seconds'
5113  * worth of inodes floating about which prune_icache wants us to
5114  * write out.  One way to fix that would be to get prune_icache()
5115  * to do a write_super() to free up some memory.  It has the desired
5116  * effect.
5117  */
5118 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5119 {
5120         struct ext4_iloc iloc;
5121         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5122         static unsigned int mnt_count;
5123         int err, ret;
5124
5125         might_sleep();
5126         err = ext4_reserve_inode_write(handle, inode, &iloc);
5127         if (ext4_handle_valid(handle) &&
5128             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5129             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5130                 /*
5131                  * We need extra buffer credits since we may write into EA block
5132                  * with this same handle. If journal_extend fails, then it will
5133                  * only result in a minor loss of functionality for that inode.
5134                  * If this is felt to be critical, then e2fsck should be run to
5135                  * force a large enough s_min_extra_isize.
5136                  */
5137                 if ((jbd2_journal_extend(handle,
5138                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5139                         ret = ext4_expand_extra_isize(inode,
5140                                                       sbi->s_want_extra_isize,
5141                                                       iloc, handle);
5142                         if (ret) {
5143                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5144                                 if (mnt_count !=
5145                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5146                                         ext4_warning(inode->i_sb, __func__,
5147                                         "Unable to expand inode %lu. Delete"
5148                                         " some EAs or run e2fsck.",
5149                                         inode->i_ino);
5150                                         mnt_count =
5151                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5152                                 }
5153                         }
5154                 }
5155         }
5156         if (!err)
5157                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5158         return err;
5159 }
5160
5161 /*
5162  * ext4_dirty_inode() is called from __mark_inode_dirty()
5163  *
5164  * We're really interested in the case where a file is being extended.
5165  * i_size has been changed by generic_commit_write() and we thus need
5166  * to include the updated inode in the current transaction.
5167  *
5168  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5169  * are allocated to the file.
5170  *
5171  * If the inode is marked synchronous, we don't honour that here - doing
5172  * so would cause a commit on atime updates, which we don't bother doing.
5173  * We handle synchronous inodes at the highest possible level.
5174  */
5175 void ext4_dirty_inode(struct inode *inode)
5176 {
5177         handle_t *current_handle = ext4_journal_current_handle();
5178         handle_t *handle;
5179
5180         if (!ext4_handle_valid(current_handle)) {
5181                 ext4_mark_inode_dirty(current_handle, inode);
5182                 return;
5183         }
5184
5185         handle = ext4_journal_start(inode, 2);
5186         if (IS_ERR(handle))
5187                 goto out;
5188         if (current_handle &&
5189                 current_handle->h_transaction != handle->h_transaction) {
5190                 /* This task has a transaction open against a different fs */
5191                 printk(KERN_EMERG "%s: transactions do not match!\n",
5192                        __func__);
5193         } else {
5194                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5195                                 current_handle);
5196                 ext4_mark_inode_dirty(handle, inode);
5197         }
5198         ext4_journal_stop(handle);
5199 out:
5200         return;
5201 }
5202
5203 #if 0
5204 /*
5205  * Bind an inode's backing buffer_head into this transaction, to prevent
5206  * it from being flushed to disk early.  Unlike
5207  * ext4_reserve_inode_write, this leaves behind no bh reference and
5208  * returns no iloc structure, so the caller needs to repeat the iloc
5209  * lookup to mark the inode dirty later.
5210  */
5211 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5212 {
5213         struct ext4_iloc iloc;
5214
5215         int err = 0;
5216         if (handle) {
5217                 err = ext4_get_inode_loc(inode, &iloc);
5218                 if (!err) {
5219                         BUFFER_TRACE(iloc.bh, "get_write_access");
5220                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5221                         if (!err)
5222                                 err = ext4_handle_dirty_metadata(handle,
5223                                                                  inode,
5224                                                                  iloc.bh);
5225                         brelse(iloc.bh);
5226                 }
5227         }
5228         ext4_std_error(inode->i_sb, err);
5229         return err;
5230 }
5231 #endif
5232
5233 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5234 {
5235         journal_t *journal;
5236         handle_t *handle;
5237         int err;
5238
5239         /*
5240          * We have to be very careful here: changing a data block's
5241          * journaling status dynamically is dangerous.  If we write a
5242          * data block to the journal, change the status and then delete
5243          * that block, we risk forgetting to revoke the old log record
5244          * from the journal and so a subsequent replay can corrupt data.
5245          * So, first we make sure that the journal is empty and that
5246          * nobody is changing anything.
5247          */
5248
5249         journal = EXT4_JOURNAL(inode);
5250         if (!journal)
5251                 return 0;
5252         if (is_journal_aborted(journal))
5253                 return -EROFS;
5254
5255         jbd2_journal_lock_updates(journal);
5256         jbd2_journal_flush(journal);
5257
5258         /*
5259          * OK, there are no updates running now, and all cached data is
5260          * synced to disk.  We are now in a completely consistent state
5261          * which doesn't have anything in the journal, and we know that
5262          * no filesystem updates are running, so it is safe to modify
5263          * the inode's in-core data-journaling state flag now.
5264          */
5265
5266         if (val)
5267                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5268         else
5269                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5270         ext4_set_aops(inode);
5271
5272         jbd2_journal_unlock_updates(journal);
5273
5274         /* Finally we can mark the inode as dirty. */
5275
5276         handle = ext4_journal_start(inode, 1);
5277         if (IS_ERR(handle))
5278                 return PTR_ERR(handle);
5279
5280         err = ext4_mark_inode_dirty(handle, inode);
5281         ext4_handle_sync(handle);
5282         ext4_journal_stop(handle);
5283         ext4_std_error(inode->i_sb, err);
5284
5285         return err;
5286 }
5287
5288 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5289 {
5290         return !buffer_mapped(bh);
5291 }
5292
5293 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5294 {
5295         struct page *page = vmf->page;
5296         loff_t size;
5297         unsigned long len;
5298         int ret = -EINVAL;
5299         void *fsdata;
5300         struct file *file = vma->vm_file;
5301         struct inode *inode = file->f_path.dentry->d_inode;
5302         struct address_space *mapping = inode->i_mapping;
5303
5304         /*
5305          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5306          * get i_mutex because we are already holding mmap_sem.
5307          */
5308         down_read(&inode->i_alloc_sem);
5309         size = i_size_read(inode);
5310         if (page->mapping != mapping || size <= page_offset(page)
5311             || !PageUptodate(page)) {
5312                 /* page got truncated from under us? */
5313                 goto out_unlock;
5314         }
5315         ret = 0;
5316         if (PageMappedToDisk(page))
5317                 goto out_unlock;
5318
5319         if (page->index == size >> PAGE_CACHE_SHIFT)
5320                 len = size & ~PAGE_CACHE_MASK;
5321         else
5322                 len = PAGE_CACHE_SIZE;
5323
5324         lock_page(page);
5325         /*
5326          * return if we have all the buffers mapped. This avoid
5327          * the need to call write_begin/write_end which does a
5328          * journal_start/journal_stop which can block and take
5329          * long time
5330          */
5331         if (page_has_buffers(page)) {
5332                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5333                                         ext4_bh_unmapped)) {
5334                         unlock_page(page);
5335                         goto out_unlock;
5336                 }
5337         }
5338         unlock_page(page);
5339         /*
5340          * OK, we need to fill the hole... Do write_begin write_end
5341          * to do block allocation/reservation.We are not holding
5342          * inode.i__mutex here. That allow * parallel write_begin,
5343          * write_end call. lock_page prevent this from happening
5344          * on the same page though
5345          */
5346         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5347                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5348         if (ret < 0)
5349                 goto out_unlock;
5350         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5351                         len, len, page, fsdata);
5352         if (ret < 0)
5353                 goto out_unlock;
5354         ret = 0;
5355 out_unlock:
5356         if (ret)
5357                 ret = VM_FAULT_SIGBUS;
5358         up_read(&inode->i_alloc_sem);
5359         return ret;
5360 }