ext4: Simplify function signature for ext4_da_get_block_write()
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * Allocation strategy is simple: if we have to allocate something, we will
896  * have to go the whole way to leaf. So let's do it before attaching anything
897  * to tree, set linkage between the newborn blocks, write them if sync is
898  * required, recheck the path, free and repeat if check fails, otherwise
899  * set the last missing link (that will protect us from any truncate-generated
900  * removals - all blocks on the path are immune now) and possibly force the
901  * write on the parent block.
902  * That has a nice additional property: no special recovery from the failed
903  * allocations is needed - we simply release blocks and do not touch anything
904  * reachable from inode.
905  *
906  * `handle' can be NULL if create == 0.
907  *
908  * return > 0, # of blocks mapped or allocated.
909  * return = 0, if plain lookup failed.
910  * return < 0, error case.
911  *
912  *
913  * Need to be called with
914  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916  */
917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918                                   ext4_lblk_t iblock, unsigned int maxblocks,
919                                   struct buffer_head *bh_result,
920                                   int create, int extend_disksize)
921 {
922         int err = -EIO;
923         ext4_lblk_t offsets[4];
924         Indirect chain[4];
925         Indirect *partial;
926         ext4_fsblk_t goal;
927         int indirect_blks;
928         int blocks_to_boundary = 0;
929         int depth;
930         struct ext4_inode_info *ei = EXT4_I(inode);
931         int count = 0;
932         ext4_fsblk_t first_block = 0;
933         loff_t disksize;
934
935
936         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937         J_ASSERT(handle != NULL || create == 0);
938         depth = ext4_block_to_path(inode, iblock, offsets,
939                                         &blocks_to_boundary);
940
941         if (depth == 0)
942                 goto out;
943
944         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946         /* Simplest case - block found, no allocation needed */
947         if (!partial) {
948                 first_block = le32_to_cpu(chain[depth - 1].key);
949                 clear_buffer_new(bh_result);
950                 count++;
951                 /*map more blocks*/
952                 while (count < maxblocks && count <= blocks_to_boundary) {
953                         ext4_fsblk_t blk;
954
955                         blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957                         if (blk == first_block + count)
958                                 count++;
959                         else
960                                 break;
961                 }
962                 goto got_it;
963         }
964
965         /* Next simple case - plain lookup or failed read of indirect block */
966         if (!create || err == -EIO)
967                 goto cleanup;
968
969         /*
970          * Okay, we need to do block allocation.
971         */
972         goal = ext4_find_goal(inode, iblock, partial);
973
974         /* the number of blocks need to allocate for [d,t]indirect blocks */
975         indirect_blks = (chain + depth) - partial - 1;
976
977         /*
978          * Next look up the indirect map to count the totoal number of
979          * direct blocks to allocate for this branch.
980          */
981         count = ext4_blks_to_allocate(partial, indirect_blks,
982                                         maxblocks, blocks_to_boundary);
983         /*
984          * Block out ext4_truncate while we alter the tree
985          */
986         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987                                         &count, goal,
988                                         offsets + (partial - chain), partial);
989
990         /*
991          * The ext4_splice_branch call will free and forget any buffers
992          * on the new chain if there is a failure, but that risks using
993          * up transaction credits, especially for bitmaps where the
994          * credits cannot be returned.  Can we handle this somehow?  We
995          * may need to return -EAGAIN upwards in the worst case.  --sct
996          */
997         if (!err)
998                 err = ext4_splice_branch(handle, inode, iblock,
999                                         partial, indirect_blks, count);
1000         /*
1001          * i_disksize growing is protected by i_data_sem.  Don't forget to
1002          * protect it if you're about to implement concurrent
1003          * ext4_get_block() -bzzz
1004         */
1005         if (!err && extend_disksize) {
1006                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007                 if (disksize > i_size_read(inode))
1008                         disksize = i_size_read(inode);
1009                 if (disksize > ei->i_disksize)
1010                         ei->i_disksize = disksize;
1011         }
1012         if (err)
1013                 goto cleanup;
1014
1015         set_buffer_new(bh_result);
1016 got_it:
1017         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018         if (count > blocks_to_boundary)
1019                 set_buffer_boundary(bh_result);
1020         err = count;
1021         /* Clean up and exit */
1022         partial = chain + depth - 1;    /* the whole chain */
1023 cleanup:
1024         while (partial > chain) {
1025                 BUFFER_TRACE(partial->bh, "call brelse");
1026                 brelse(partial->bh);
1027                 partial--;
1028         }
1029         BUFFER_TRACE(bh_result, "returned");
1030 out:
1031         return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036         unsigned long long total;
1037
1038         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039         total = EXT4_I(inode)->i_reserved_data_blocks +
1040                 EXT4_I(inode)->i_reserved_meta_blocks;
1041         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043         return total;
1044 }
1045 /*
1046  * Calculate the number of metadata blocks need to reserve
1047  * to allocate @blocks for non extent file based file
1048  */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052         int ind_blks, dind_blks, tind_blks;
1053
1054         /* number of new indirect blocks needed */
1055         ind_blks = (blocks + icap - 1) / icap;
1056
1057         dind_blks = (ind_blks + icap - 1) / icap;
1058
1059         tind_blks = 1;
1060
1061         return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065  * Calculate the number of metadata blocks need to reserve
1066  * to allocate given number of blocks
1067  */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070         if (!blocks)
1071                 return 0;
1072
1073         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074                 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076         return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         int total, mdb, mdb_free;
1083
1084         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085         /* recalculate the number of metablocks still need to be reserved */
1086         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087         mdb = ext4_calc_metadata_amount(inode, total);
1088
1089         /* figure out how many metablocks to release */
1090         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093         if (mdb_free) {
1094                 /* Account for allocated meta_blocks */
1095                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097                 /* update fs dirty blocks counter */
1098                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101         }
1102
1103         /* update per-inode reservations */
1104         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1105         EXT4_I(inode)->i_reserved_data_blocks -= used;
1106         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108         /*
1109          * free those over-booking quota for metadata blocks
1110          */
1111         if (mdb_free)
1112                 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114         /*
1115          * If we have done all the pending block allocations and if
1116          * there aren't any writers on the inode, we can discard the
1117          * inode's preallocations.
1118          */
1119         if (!total && (atomic_read(&inode->i_writecount) == 0))
1120                 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125  * and returns if the blocks are already mapped.
1126  *
1127  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128  * and store the allocated blocks in the result buffer head and mark it
1129  * mapped.
1130  *
1131  * If file type is extents based, it will call ext4_ext_get_blocks(),
1132  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133  * based files
1134  *
1135  * On success, it returns the number of blocks being mapped or allocate.
1136  * if create==0 and the blocks are pre-allocated and uninitialized block,
1137  * the result buffer head is unmapped. If the create ==1, it will make sure
1138  * the buffer head is mapped.
1139  *
1140  * It returns 0 if plain look up failed (blocks have not been allocated), in
1141  * that casem, buffer head is unmapped
1142  *
1143  * It returns the error in case of allocation failure.
1144  */
1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146                         unsigned int max_blocks, struct buffer_head *bh,
1147                         int create, int extend_disksize, int flag)
1148 {
1149         int retval;
1150
1151         clear_buffer_mapped(bh);
1152         clear_buffer_unwritten(bh);
1153
1154         /*
1155          * Try to see if we can get  the block without requesting
1156          * for new file system block.
1157          */
1158         down_read((&EXT4_I(inode)->i_data_sem));
1159         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1160                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161                                 bh, 0, 0);
1162         } else {
1163                 retval = ext4_get_blocks_handle(handle,
1164                                 inode, block, max_blocks, bh, 0, 0);
1165         }
1166         up_read((&EXT4_I(inode)->i_data_sem));
1167
1168         /* If it is only a block(s) look up */
1169         if (!create)
1170                 return retval;
1171
1172         /*
1173          * Returns if the blocks have already allocated
1174          *
1175          * Note that if blocks have been preallocated
1176          * ext4_ext_get_block() returns th create = 0
1177          * with buffer head unmapped.
1178          */
1179         if (retval > 0 && buffer_mapped(bh))
1180                 return retval;
1181
1182         /*
1183          * When we call get_blocks without the create flag, the
1184          * BH_Unwritten flag could have gotten set if the blocks
1185          * requested were part of a uninitialized extent.  We need to
1186          * clear this flag now that we are committed to convert all or
1187          * part of the uninitialized extent to be an initialized
1188          * extent.  This is because we need to avoid the combination
1189          * of BH_Unwritten and BH_Mapped flags being simultaneously
1190          * set on the buffer_head.
1191          */
1192         clear_buffer_unwritten(bh);
1193
1194         /*
1195          * New blocks allocate and/or writing to uninitialized extent
1196          * will possibly result in updating i_data, so we take
1197          * the write lock of i_data_sem, and call get_blocks()
1198          * with create == 1 flag.
1199          */
1200         down_write((&EXT4_I(inode)->i_data_sem));
1201
1202         /*
1203          * if the caller is from delayed allocation writeout path
1204          * we have already reserved fs blocks for allocation
1205          * let the underlying get_block() function know to
1206          * avoid double accounting
1207          */
1208         if (flag)
1209                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1210         /*
1211          * We need to check for EXT4 here because migrate
1212          * could have changed the inode type in between
1213          */
1214         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1215                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216                                 bh, create, extend_disksize);
1217         } else {
1218                 retval = ext4_get_blocks_handle(handle, inode, block,
1219                                 max_blocks, bh, create, extend_disksize);
1220
1221                 if (retval > 0 && buffer_new(bh)) {
1222                         /*
1223                          * We allocated new blocks which will result in
1224                          * i_data's format changing.  Force the migrate
1225                          * to fail by clearing migrate flags
1226                          */
1227                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1228                                                         ~EXT4_EXT_MIGRATE;
1229                 }
1230         }
1231
1232         if (flag) {
1233                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1234                 /*
1235                  * Update reserved blocks/metadata blocks
1236                  * after successful block allocation
1237                  * which were deferred till now
1238                  */
1239                 if ((retval > 0) && buffer_delay(bh))
1240                         ext4_da_update_reserve_space(inode, retval);
1241         }
1242
1243         up_write((&EXT4_I(inode)->i_data_sem));
1244         return retval;
1245 }
1246
1247 /* Maximum number of blocks we map for direct IO at once. */
1248 #define DIO_MAX_BLOCKS 4096
1249
1250 int ext4_get_block(struct inode *inode, sector_t iblock,
1251                    struct buffer_head *bh_result, int create)
1252 {
1253         handle_t *handle = ext4_journal_current_handle();
1254         int ret = 0, started = 0;
1255         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1256         int dio_credits;
1257
1258         if (create && !handle) {
1259                 /* Direct IO write... */
1260                 if (max_blocks > DIO_MAX_BLOCKS)
1261                         max_blocks = DIO_MAX_BLOCKS;
1262                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1263                 handle = ext4_journal_start(inode, dio_credits);
1264                 if (IS_ERR(handle)) {
1265                         ret = PTR_ERR(handle);
1266                         goto out;
1267                 }
1268                 started = 1;
1269         }
1270
1271         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1272                                         max_blocks, bh_result, create, 0, 0);
1273         if (ret > 0) {
1274                 bh_result->b_size = (ret << inode->i_blkbits);
1275                 ret = 0;
1276         }
1277         if (started)
1278                 ext4_journal_stop(handle);
1279 out:
1280         return ret;
1281 }
1282
1283 /*
1284  * `handle' can be NULL if create is zero
1285  */
1286 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1287                                 ext4_lblk_t block, int create, int *errp)
1288 {
1289         struct buffer_head dummy;
1290         int fatal = 0, err;
1291
1292         J_ASSERT(handle != NULL || create == 0);
1293
1294         dummy.b_state = 0;
1295         dummy.b_blocknr = -1000;
1296         buffer_trace_init(&dummy.b_history);
1297         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1298                                         &dummy, create, 1, 0);
1299         /*
1300          * ext4_get_blocks_handle() returns number of blocks
1301          * mapped. 0 in case of a HOLE.
1302          */
1303         if (err > 0) {
1304                 if (err > 1)
1305                         WARN_ON(1);
1306                 err = 0;
1307         }
1308         *errp = err;
1309         if (!err && buffer_mapped(&dummy)) {
1310                 struct buffer_head *bh;
1311                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1312                 if (!bh) {
1313                         *errp = -EIO;
1314                         goto err;
1315                 }
1316                 if (buffer_new(&dummy)) {
1317                         J_ASSERT(create != 0);
1318                         J_ASSERT(handle != NULL);
1319
1320                         /*
1321                          * Now that we do not always journal data, we should
1322                          * keep in mind whether this should always journal the
1323                          * new buffer as metadata.  For now, regular file
1324                          * writes use ext4_get_block instead, so it's not a
1325                          * problem.
1326                          */
1327                         lock_buffer(bh);
1328                         BUFFER_TRACE(bh, "call get_create_access");
1329                         fatal = ext4_journal_get_create_access(handle, bh);
1330                         if (!fatal && !buffer_uptodate(bh)) {
1331                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1332                                 set_buffer_uptodate(bh);
1333                         }
1334                         unlock_buffer(bh);
1335                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1336                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1337                         if (!fatal)
1338                                 fatal = err;
1339                 } else {
1340                         BUFFER_TRACE(bh, "not a new buffer");
1341                 }
1342                 if (fatal) {
1343                         *errp = fatal;
1344                         brelse(bh);
1345                         bh = NULL;
1346                 }
1347                 return bh;
1348         }
1349 err:
1350         return NULL;
1351 }
1352
1353 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1354                                ext4_lblk_t block, int create, int *err)
1355 {
1356         struct buffer_head *bh;
1357
1358         bh = ext4_getblk(handle, inode, block, create, err);
1359         if (!bh)
1360                 return bh;
1361         if (buffer_uptodate(bh))
1362                 return bh;
1363         ll_rw_block(READ_META, 1, &bh);
1364         wait_on_buffer(bh);
1365         if (buffer_uptodate(bh))
1366                 return bh;
1367         put_bh(bh);
1368         *err = -EIO;
1369         return NULL;
1370 }
1371
1372 static int walk_page_buffers(handle_t *handle,
1373                              struct buffer_head *head,
1374                              unsigned from,
1375                              unsigned to,
1376                              int *partial,
1377                              int (*fn)(handle_t *handle,
1378                                        struct buffer_head *bh))
1379 {
1380         struct buffer_head *bh;
1381         unsigned block_start, block_end;
1382         unsigned blocksize = head->b_size;
1383         int err, ret = 0;
1384         struct buffer_head *next;
1385
1386         for (bh = head, block_start = 0;
1387              ret == 0 && (bh != head || !block_start);
1388              block_start = block_end, bh = next)
1389         {
1390                 next = bh->b_this_page;
1391                 block_end = block_start + blocksize;
1392                 if (block_end <= from || block_start >= to) {
1393                         if (partial && !buffer_uptodate(bh))
1394                                 *partial = 1;
1395                         continue;
1396                 }
1397                 err = (*fn)(handle, bh);
1398                 if (!ret)
1399                         ret = err;
1400         }
1401         return ret;
1402 }
1403
1404 /*
1405  * To preserve ordering, it is essential that the hole instantiation and
1406  * the data write be encapsulated in a single transaction.  We cannot
1407  * close off a transaction and start a new one between the ext4_get_block()
1408  * and the commit_write().  So doing the jbd2_journal_start at the start of
1409  * prepare_write() is the right place.
1410  *
1411  * Also, this function can nest inside ext4_writepage() ->
1412  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1413  * has generated enough buffer credits to do the whole page.  So we won't
1414  * block on the journal in that case, which is good, because the caller may
1415  * be PF_MEMALLOC.
1416  *
1417  * By accident, ext4 can be reentered when a transaction is open via
1418  * quota file writes.  If we were to commit the transaction while thus
1419  * reentered, there can be a deadlock - we would be holding a quota
1420  * lock, and the commit would never complete if another thread had a
1421  * transaction open and was blocking on the quota lock - a ranking
1422  * violation.
1423  *
1424  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1425  * will _not_ run commit under these circumstances because handle->h_ref
1426  * is elevated.  We'll still have enough credits for the tiny quotafile
1427  * write.
1428  */
1429 static int do_journal_get_write_access(handle_t *handle,
1430                                         struct buffer_head *bh)
1431 {
1432         if (!buffer_mapped(bh) || buffer_freed(bh))
1433                 return 0;
1434         return ext4_journal_get_write_access(handle, bh);
1435 }
1436
1437 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1438                                 loff_t pos, unsigned len, unsigned flags,
1439                                 struct page **pagep, void **fsdata)
1440 {
1441         struct inode *inode = mapping->host;
1442         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1443         handle_t *handle;
1444         int retries = 0;
1445         struct page *page;
1446         pgoff_t index;
1447         unsigned from, to;
1448
1449         trace_mark(ext4_write_begin,
1450                    "dev %s ino %lu pos %llu len %u flags %u",
1451                    inode->i_sb->s_id, inode->i_ino,
1452                    (unsigned long long) pos, len, flags);
1453         index = pos >> PAGE_CACHE_SHIFT;
1454         from = pos & (PAGE_CACHE_SIZE - 1);
1455         to = from + len;
1456
1457 retry:
1458         handle = ext4_journal_start(inode, needed_blocks);
1459         if (IS_ERR(handle)) {
1460                 ret = PTR_ERR(handle);
1461                 goto out;
1462         }
1463
1464         /* We cannot recurse into the filesystem as the transaction is already
1465          * started */
1466         flags |= AOP_FLAG_NOFS;
1467
1468         page = grab_cache_page_write_begin(mapping, index, flags);
1469         if (!page) {
1470                 ext4_journal_stop(handle);
1471                 ret = -ENOMEM;
1472                 goto out;
1473         }
1474         *pagep = page;
1475
1476         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1477                                 ext4_get_block);
1478
1479         if (!ret && ext4_should_journal_data(inode)) {
1480                 ret = walk_page_buffers(handle, page_buffers(page),
1481                                 from, to, NULL, do_journal_get_write_access);
1482         }
1483
1484         if (ret) {
1485                 unlock_page(page);
1486                 ext4_journal_stop(handle);
1487                 page_cache_release(page);
1488                 /*
1489                  * block_write_begin may have instantiated a few blocks
1490                  * outside i_size.  Trim these off again. Don't need
1491                  * i_size_read because we hold i_mutex.
1492                  */
1493                 if (pos + len > inode->i_size)
1494                         vmtruncate(inode, inode->i_size);
1495         }
1496
1497         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1498                 goto retry;
1499 out:
1500         return ret;
1501 }
1502
1503 /* For write_end() in data=journal mode */
1504 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1505 {
1506         if (!buffer_mapped(bh) || buffer_freed(bh))
1507                 return 0;
1508         set_buffer_uptodate(bh);
1509         return ext4_handle_dirty_metadata(handle, NULL, bh);
1510 }
1511
1512 /*
1513  * We need to pick up the new inode size which generic_commit_write gave us
1514  * `file' can be NULL - eg, when called from page_symlink().
1515  *
1516  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1517  * buffers are managed internally.
1518  */
1519 static int ext4_ordered_write_end(struct file *file,
1520                                 struct address_space *mapping,
1521                                 loff_t pos, unsigned len, unsigned copied,
1522                                 struct page *page, void *fsdata)
1523 {
1524         handle_t *handle = ext4_journal_current_handle();
1525         struct inode *inode = mapping->host;
1526         int ret = 0, ret2;
1527
1528         trace_mark(ext4_ordered_write_end,
1529                    "dev %s ino %lu pos %llu len %u copied %u",
1530                    inode->i_sb->s_id, inode->i_ino,
1531                    (unsigned long long) pos, len, copied);
1532         ret = ext4_jbd2_file_inode(handle, inode);
1533
1534         if (ret == 0) {
1535                 loff_t new_i_size;
1536
1537                 new_i_size = pos + copied;
1538                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1539                         ext4_update_i_disksize(inode, new_i_size);
1540                         /* We need to mark inode dirty even if
1541                          * new_i_size is less that inode->i_size
1542                          * bu greater than i_disksize.(hint delalloc)
1543                          */
1544                         ext4_mark_inode_dirty(handle, inode);
1545                 }
1546
1547                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1548                                                         page, fsdata);
1549                 copied = ret2;
1550                 if (ret2 < 0)
1551                         ret = ret2;
1552         }
1553         ret2 = ext4_journal_stop(handle);
1554         if (!ret)
1555                 ret = ret2;
1556
1557         return ret ? ret : copied;
1558 }
1559
1560 static int ext4_writeback_write_end(struct file *file,
1561                                 struct address_space *mapping,
1562                                 loff_t pos, unsigned len, unsigned copied,
1563                                 struct page *page, void *fsdata)
1564 {
1565         handle_t *handle = ext4_journal_current_handle();
1566         struct inode *inode = mapping->host;
1567         int ret = 0, ret2;
1568         loff_t new_i_size;
1569
1570         trace_mark(ext4_writeback_write_end,
1571                    "dev %s ino %lu pos %llu len %u copied %u",
1572                    inode->i_sb->s_id, inode->i_ino,
1573                    (unsigned long long) pos, len, copied);
1574         new_i_size = pos + copied;
1575         if (new_i_size > EXT4_I(inode)->i_disksize) {
1576                 ext4_update_i_disksize(inode, new_i_size);
1577                 /* We need to mark inode dirty even if
1578                  * new_i_size is less that inode->i_size
1579                  * bu greater than i_disksize.(hint delalloc)
1580                  */
1581                 ext4_mark_inode_dirty(handle, inode);
1582         }
1583
1584         ret2 = generic_write_end(file, mapping, pos, len, copied,
1585                                                         page, fsdata);
1586         copied = ret2;
1587         if (ret2 < 0)
1588                 ret = ret2;
1589
1590         ret2 = ext4_journal_stop(handle);
1591         if (!ret)
1592                 ret = ret2;
1593
1594         return ret ? ret : copied;
1595 }
1596
1597 static int ext4_journalled_write_end(struct file *file,
1598                                 struct address_space *mapping,
1599                                 loff_t pos, unsigned len, unsigned copied,
1600                                 struct page *page, void *fsdata)
1601 {
1602         handle_t *handle = ext4_journal_current_handle();
1603         struct inode *inode = mapping->host;
1604         int ret = 0, ret2;
1605         int partial = 0;
1606         unsigned from, to;
1607         loff_t new_i_size;
1608
1609         trace_mark(ext4_journalled_write_end,
1610                    "dev %s ino %lu pos %llu len %u copied %u",
1611                    inode->i_sb->s_id, inode->i_ino,
1612                    (unsigned long long) pos, len, copied);
1613         from = pos & (PAGE_CACHE_SIZE - 1);
1614         to = from + len;
1615
1616         if (copied < len) {
1617                 if (!PageUptodate(page))
1618                         copied = 0;
1619                 page_zero_new_buffers(page, from+copied, to);
1620         }
1621
1622         ret = walk_page_buffers(handle, page_buffers(page), from,
1623                                 to, &partial, write_end_fn);
1624         if (!partial)
1625                 SetPageUptodate(page);
1626         new_i_size = pos + copied;
1627         if (new_i_size > inode->i_size)
1628                 i_size_write(inode, pos+copied);
1629         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1630         if (new_i_size > EXT4_I(inode)->i_disksize) {
1631                 ext4_update_i_disksize(inode, new_i_size);
1632                 ret2 = ext4_mark_inode_dirty(handle, inode);
1633                 if (!ret)
1634                         ret = ret2;
1635         }
1636
1637         unlock_page(page);
1638         ret2 = ext4_journal_stop(handle);
1639         if (!ret)
1640                 ret = ret2;
1641         page_cache_release(page);
1642
1643         return ret ? ret : copied;
1644 }
1645
1646 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1647 {
1648         int retries = 0;
1649         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650         unsigned long md_needed, mdblocks, total = 0;
1651
1652         /*
1653          * recalculate the amount of metadata blocks to reserve
1654          * in order to allocate nrblocks
1655          * worse case is one extent per block
1656          */
1657 repeat:
1658         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1659         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1660         mdblocks = ext4_calc_metadata_amount(inode, total);
1661         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1662
1663         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1664         total = md_needed + nrblocks;
1665
1666         /*
1667          * Make quota reservation here to prevent quota overflow
1668          * later. Real quota accounting is done at pages writeout
1669          * time.
1670          */
1671         if (vfs_dq_reserve_block(inode, total)) {
1672                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1673                 return -EDQUOT;
1674         }
1675
1676         if (ext4_claim_free_blocks(sbi, total)) {
1677                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1678                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1679                         yield();
1680                         goto repeat;
1681                 }
1682                 vfs_dq_release_reservation_block(inode, total);
1683                 return -ENOSPC;
1684         }
1685         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1686         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1687
1688         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1689         return 0;       /* success */
1690 }
1691
1692 static void ext4_da_release_space(struct inode *inode, int to_free)
1693 {
1694         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1695         int total, mdb, mdb_free, release;
1696
1697         if (!to_free)
1698                 return;         /* Nothing to release, exit */
1699
1700         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1701
1702         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1703                 /*
1704                  * if there is no reserved blocks, but we try to free some
1705                  * then the counter is messed up somewhere.
1706                  * but since this function is called from invalidate
1707                  * page, it's harmless to return without any action
1708                  */
1709                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1710                             "blocks for inode %lu, but there is no reserved "
1711                             "data blocks\n", to_free, inode->i_ino);
1712                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1713                 return;
1714         }
1715
1716         /* recalculate the number of metablocks still need to be reserved */
1717         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1718         mdb = ext4_calc_metadata_amount(inode, total);
1719
1720         /* figure out how many metablocks to release */
1721         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1722         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1723
1724         release = to_free + mdb_free;
1725
1726         /* update fs dirty blocks counter for truncate case */
1727         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1728
1729         /* update per-inode reservations */
1730         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1731         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1732
1733         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1734         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1735         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1736
1737         vfs_dq_release_reservation_block(inode, release);
1738 }
1739
1740 static void ext4_da_page_release_reservation(struct page *page,
1741                                                 unsigned long offset)
1742 {
1743         int to_release = 0;
1744         struct buffer_head *head, *bh;
1745         unsigned int curr_off = 0;
1746
1747         head = page_buffers(page);
1748         bh = head;
1749         do {
1750                 unsigned int next_off = curr_off + bh->b_size;
1751
1752                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1753                         to_release++;
1754                         clear_buffer_delay(bh);
1755                 }
1756                 curr_off = next_off;
1757         } while ((bh = bh->b_this_page) != head);
1758         ext4_da_release_space(page->mapping->host, to_release);
1759 }
1760
1761 /*
1762  * Delayed allocation stuff
1763  */
1764
1765 struct mpage_da_data {
1766         struct inode *inode;
1767         sector_t b_blocknr;             /* start block number of extent */
1768         size_t b_size;                  /* size of extent */
1769         unsigned long b_state;          /* state of the extent */
1770         unsigned long first_page, next_page;    /* extent of pages */
1771         struct writeback_control *wbc;
1772         int io_done;
1773         int pages_written;
1774         int retval;
1775 };
1776
1777 /*
1778  * mpage_da_submit_io - walks through extent of pages and try to write
1779  * them with writepage() call back
1780  *
1781  * @mpd->inode: inode
1782  * @mpd->first_page: first page of the extent
1783  * @mpd->next_page: page after the last page of the extent
1784  *
1785  * By the time mpage_da_submit_io() is called we expect all blocks
1786  * to be allocated. this may be wrong if allocation failed.
1787  *
1788  * As pages are already locked by write_cache_pages(), we can't use it
1789  */
1790 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1791 {
1792         long pages_skipped;
1793         struct pagevec pvec;
1794         unsigned long index, end;
1795         int ret = 0, err, nr_pages, i;
1796         struct inode *inode = mpd->inode;
1797         struct address_space *mapping = inode->i_mapping;
1798
1799         BUG_ON(mpd->next_page <= mpd->first_page);
1800         /*
1801          * We need to start from the first_page to the next_page - 1
1802          * to make sure we also write the mapped dirty buffer_heads.
1803          * If we look at mpd->b_blocknr we would only be looking
1804          * at the currently mapped buffer_heads.
1805          */
1806         index = mpd->first_page;
1807         end = mpd->next_page - 1;
1808
1809         pagevec_init(&pvec, 0);
1810         while (index <= end) {
1811                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1812                 if (nr_pages == 0)
1813                         break;
1814                 for (i = 0; i < nr_pages; i++) {
1815                         struct page *page = pvec.pages[i];
1816
1817                         index = page->index;
1818                         if (index > end)
1819                                 break;
1820                         index++;
1821
1822                         BUG_ON(!PageLocked(page));
1823                         BUG_ON(PageWriteback(page));
1824
1825                         pages_skipped = mpd->wbc->pages_skipped;
1826                         err = mapping->a_ops->writepage(page, mpd->wbc);
1827                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1828                                 /*
1829                                  * have successfully written the page
1830                                  * without skipping the same
1831                                  */
1832                                 mpd->pages_written++;
1833                         /*
1834                          * In error case, we have to continue because
1835                          * remaining pages are still locked
1836                          * XXX: unlock and re-dirty them?
1837                          */
1838                         if (ret == 0)
1839                                 ret = err;
1840                 }
1841                 pagevec_release(&pvec);
1842         }
1843         return ret;
1844 }
1845
1846 /*
1847  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1848  *
1849  * @mpd->inode - inode to walk through
1850  * @exbh->b_blocknr - first block on a disk
1851  * @exbh->b_size - amount of space in bytes
1852  * @logical - first logical block to start assignment with
1853  *
1854  * the function goes through all passed space and put actual disk
1855  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1856  */
1857 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1858                                  struct buffer_head *exbh)
1859 {
1860         struct inode *inode = mpd->inode;
1861         struct address_space *mapping = inode->i_mapping;
1862         int blocks = exbh->b_size >> inode->i_blkbits;
1863         sector_t pblock = exbh->b_blocknr, cur_logical;
1864         struct buffer_head *head, *bh;
1865         pgoff_t index, end;
1866         struct pagevec pvec;
1867         int nr_pages, i;
1868
1869         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1871         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1872
1873         pagevec_init(&pvec, 0);
1874
1875         while (index <= end) {
1876                 /* XXX: optimize tail */
1877                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1878                 if (nr_pages == 0)
1879                         break;
1880                 for (i = 0; i < nr_pages; i++) {
1881                         struct page *page = pvec.pages[i];
1882
1883                         index = page->index;
1884                         if (index > end)
1885                                 break;
1886                         index++;
1887
1888                         BUG_ON(!PageLocked(page));
1889                         BUG_ON(PageWriteback(page));
1890                         BUG_ON(!page_has_buffers(page));
1891
1892                         bh = page_buffers(page);
1893                         head = bh;
1894
1895                         /* skip blocks out of the range */
1896                         do {
1897                                 if (cur_logical >= logical)
1898                                         break;
1899                                 cur_logical++;
1900                         } while ((bh = bh->b_this_page) != head);
1901
1902                         do {
1903                                 if (cur_logical >= logical + blocks)
1904                                         break;
1905
1906                                 if (buffer_delay(bh) ||
1907                                                 buffer_unwritten(bh)) {
1908
1909                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1910
1911                                         if (buffer_delay(bh)) {
1912                                                 clear_buffer_delay(bh);
1913                                                 bh->b_blocknr = pblock;
1914                                         } else {
1915                                                 /*
1916                                                  * unwritten already should have
1917                                                  * blocknr assigned. Verify that
1918                                                  */
1919                                                 clear_buffer_unwritten(bh);
1920                                                 BUG_ON(bh->b_blocknr != pblock);
1921                                         }
1922
1923                                 } else if (buffer_mapped(bh))
1924                                         BUG_ON(bh->b_blocknr != pblock);
1925
1926                                 cur_logical++;
1927                                 pblock++;
1928                         } while ((bh = bh->b_this_page) != head);
1929                 }
1930                 pagevec_release(&pvec);
1931         }
1932 }
1933
1934
1935 /*
1936  * __unmap_underlying_blocks - just a helper function to unmap
1937  * set of blocks described by @bh
1938  */
1939 static inline void __unmap_underlying_blocks(struct inode *inode,
1940                                              struct buffer_head *bh)
1941 {
1942         struct block_device *bdev = inode->i_sb->s_bdev;
1943         int blocks, i;
1944
1945         blocks = bh->b_size >> inode->i_blkbits;
1946         for (i = 0; i < blocks; i++)
1947                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1948 }
1949
1950 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1951                                         sector_t logical, long blk_cnt)
1952 {
1953         int nr_pages, i;
1954         pgoff_t index, end;
1955         struct pagevec pvec;
1956         struct inode *inode = mpd->inode;
1957         struct address_space *mapping = inode->i_mapping;
1958
1959         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1960         end   = (logical + blk_cnt - 1) >>
1961                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1962         while (index <= end) {
1963                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1964                 if (nr_pages == 0)
1965                         break;
1966                 for (i = 0; i < nr_pages; i++) {
1967                         struct page *page = pvec.pages[i];
1968                         index = page->index;
1969                         if (index > end)
1970                                 break;
1971                         index++;
1972
1973                         BUG_ON(!PageLocked(page));
1974                         BUG_ON(PageWriteback(page));
1975                         block_invalidatepage(page, 0);
1976                         ClearPageUptodate(page);
1977                         unlock_page(page);
1978                 }
1979         }
1980         return;
1981 }
1982
1983 static void ext4_print_free_blocks(struct inode *inode)
1984 {
1985         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1986         printk(KERN_EMERG "Total free blocks count %lld\n",
1987                         ext4_count_free_blocks(inode->i_sb));
1988         printk(KERN_EMERG "Free/Dirty block details\n");
1989         printk(KERN_EMERG "free_blocks=%lld\n",
1990                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1991         printk(KERN_EMERG "dirty_blocks=%lld\n",
1992                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1993         printk(KERN_EMERG "Block reservation details\n");
1994         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1995                         EXT4_I(inode)->i_reserved_data_blocks);
1996         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1997                         EXT4_I(inode)->i_reserved_meta_blocks);
1998         return;
1999 }
2000
2001 #define         EXT4_DELALLOC_RSVED     1
2002 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2003                                    struct buffer_head *bh_result)
2004 {
2005         int ret;
2006         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2007         loff_t disksize = EXT4_I(inode)->i_disksize;
2008         handle_t *handle = NULL;
2009
2010         handle = ext4_journal_current_handle();
2011         BUG_ON(!handle);
2012         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2013                                    bh_result, 1, 0, EXT4_DELALLOC_RSVED);
2014         if (ret <= 0)
2015                 return ret;
2016
2017         bh_result->b_size = (ret << inode->i_blkbits);
2018
2019         if (ext4_should_order_data(inode)) {
2020                 int retval;
2021                 retval = ext4_jbd2_file_inode(handle, inode);
2022                 if (retval)
2023                         /*
2024                          * Failed to add inode for ordered mode. Don't
2025                          * update file size
2026                          */
2027                         return retval;
2028         }
2029
2030         /*
2031          * Update on-disk size along with block allocation we don't
2032          * use 'extend_disksize' as size may change within already
2033          * allocated block -bzzz
2034          */
2035         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2036         if (disksize > i_size_read(inode))
2037                 disksize = i_size_read(inode);
2038         if (disksize > EXT4_I(inode)->i_disksize) {
2039                 ext4_update_i_disksize(inode, disksize);
2040                 ret = ext4_mark_inode_dirty(handle, inode);
2041                 return ret;
2042         }
2043         return 0;
2044 }
2045
2046 /*
2047  * mpage_da_map_blocks - go through given space
2048  *
2049  * @mpd - bh describing space
2050  *
2051  * The function skips space we know is already mapped to disk blocks.
2052  *
2053  */
2054 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2055 {
2056         int err = 0;
2057         struct buffer_head new;
2058         sector_t next;
2059
2060         /*
2061          * We consider only non-mapped and non-allocated blocks
2062          */
2063         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2064                 !(mpd->b_state & (1 << BH_Delay)) &&
2065                 !(mpd->b_state & (1 << BH_Unwritten)))
2066                 return 0;
2067         /*
2068          * We need to make sure the BH_Delay flag is passed down to
2069          * ext4_da_get_block_write(), since it calls
2070          * ext4_get_blocks_wrap() with the EXT4_DELALLOC_RSVED flag.
2071          * This flag causes ext4_get_blocks_wrap() to call
2072          * ext4_da_update_reserve_space() if the passed buffer head
2073          * has the BH_Delay flag set.  In the future, once we clean up
2074          * the interfaces to ext4_get_blocks_wrap(), we should pass in
2075          * a separate flag which requests that the delayed allocation
2076          * statistics should be updated, instead of depending on the
2077          * state information getting passed down via the map_bh's
2078          * state bitmasks plus the magic EXT4_DELALLOC_RSVED flag.
2079          */
2080         new.b_state = mpd->b_state & (1 << BH_Delay);
2081         new.b_blocknr = 0;
2082         new.b_size = mpd->b_size;
2083         next = mpd->b_blocknr;
2084         /*
2085          * If we didn't accumulate anything
2086          * to write simply return
2087          */
2088         if (!new.b_size)
2089                 return 0;
2090
2091         err = ext4_da_get_block_write(mpd->inode, next, &new);
2092         if (err) {
2093                 /*
2094                  * If get block returns with error we simply
2095                  * return. Later writepage will redirty the page and
2096                  * writepages will find the dirty page again
2097                  */
2098                 if (err == -EAGAIN)
2099                         return 0;
2100
2101                 if (err == -ENOSPC &&
2102                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2103                         mpd->retval = err;
2104                         return 0;
2105                 }
2106
2107                 /*
2108                  * get block failure will cause us to loop in
2109                  * writepages, because a_ops->writepage won't be able
2110                  * to make progress. The page will be redirtied by
2111                  * writepage and writepages will again try to write
2112                  * the same.
2113                  */
2114                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2115                                   "at logical offset %llu with max blocks "
2116                                   "%zd with error %d\n",
2117                                   __func__, mpd->inode->i_ino,
2118                                   (unsigned long long)next,
2119                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2120                 printk(KERN_EMERG "This should not happen.!! "
2121                                         "Data will be lost\n");
2122                 if (err == -ENOSPC) {
2123                         ext4_print_free_blocks(mpd->inode);
2124                 }
2125                 /* invlaidate all the pages */
2126                 ext4_da_block_invalidatepages(mpd, next,
2127                                 mpd->b_size >> mpd->inode->i_blkbits);
2128                 return err;
2129         }
2130         BUG_ON(new.b_size == 0);
2131
2132         if (buffer_new(&new))
2133                 __unmap_underlying_blocks(mpd->inode, &new);
2134
2135         /*
2136          * If blocks are delayed marked, we need to
2137          * put actual blocknr and drop delayed bit
2138          */
2139         if ((mpd->b_state & (1 << BH_Delay)) ||
2140             (mpd->b_state & (1 << BH_Unwritten)))
2141                 mpage_put_bnr_to_bhs(mpd, next, &new);
2142
2143         return 0;
2144 }
2145
2146 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2147                 (1 << BH_Delay) | (1 << BH_Unwritten))
2148
2149 /*
2150  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2151  *
2152  * @mpd->lbh - extent of blocks
2153  * @logical - logical number of the block in the file
2154  * @bh - bh of the block (used to access block's state)
2155  *
2156  * the function is used to collect contig. blocks in same state
2157  */
2158 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2159                                    sector_t logical, size_t b_size,
2160                                    unsigned long b_state)
2161 {
2162         sector_t next;
2163         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2164
2165         /* check if thereserved journal credits might overflow */
2166         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2167                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2168                         /*
2169                          * With non-extent format we are limited by the journal
2170                          * credit available.  Total credit needed to insert
2171                          * nrblocks contiguous blocks is dependent on the
2172                          * nrblocks.  So limit nrblocks.
2173                          */
2174                         goto flush_it;
2175                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2176                                 EXT4_MAX_TRANS_DATA) {
2177                         /*
2178                          * Adding the new buffer_head would make it cross the
2179                          * allowed limit for which we have journal credit
2180                          * reserved. So limit the new bh->b_size
2181                          */
2182                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2183                                                 mpd->inode->i_blkbits;
2184                         /* we will do mpage_da_submit_io in the next loop */
2185                 }
2186         }
2187         /*
2188          * First block in the extent
2189          */
2190         if (mpd->b_size == 0) {
2191                 mpd->b_blocknr = logical;
2192                 mpd->b_size = b_size;
2193                 mpd->b_state = b_state & BH_FLAGS;
2194                 return;
2195         }
2196
2197         next = mpd->b_blocknr + nrblocks;
2198         /*
2199          * Can we merge the block to our big extent?
2200          */
2201         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2202                 mpd->b_size += b_size;
2203                 return;
2204         }
2205
2206 flush_it:
2207         /*
2208          * We couldn't merge the block to our extent, so we
2209          * need to flush current  extent and start new one
2210          */
2211         if (mpage_da_map_blocks(mpd) == 0)
2212                 mpage_da_submit_io(mpd);
2213         mpd->io_done = 1;
2214         return;
2215 }
2216
2217 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2218 {
2219         /*
2220          * unmapped buffer is possible for holes.
2221          * delay buffer is possible with delayed allocation.
2222          * We also need to consider unwritten buffer as unmapped.
2223          */
2224         return (!buffer_mapped(bh) || buffer_delay(bh) ||
2225                                 buffer_unwritten(bh)) && buffer_dirty(bh);
2226 }
2227
2228 /*
2229  * __mpage_da_writepage - finds extent of pages and blocks
2230  *
2231  * @page: page to consider
2232  * @wbc: not used, we just follow rules
2233  * @data: context
2234  *
2235  * The function finds extents of pages and scan them for all blocks.
2236  */
2237 static int __mpage_da_writepage(struct page *page,
2238                                 struct writeback_control *wbc, void *data)
2239 {
2240         struct mpage_da_data *mpd = data;
2241         struct inode *inode = mpd->inode;
2242         struct buffer_head *bh, *head;
2243         sector_t logical;
2244
2245         if (mpd->io_done) {
2246                 /*
2247                  * Rest of the page in the page_vec
2248                  * redirty then and skip then. We will
2249                  * try to to write them again after
2250                  * starting a new transaction
2251                  */
2252                 redirty_page_for_writepage(wbc, page);
2253                 unlock_page(page);
2254                 return MPAGE_DA_EXTENT_TAIL;
2255         }
2256         /*
2257          * Can we merge this page to current extent?
2258          */
2259         if (mpd->next_page != page->index) {
2260                 /*
2261                  * Nope, we can't. So, we map non-allocated blocks
2262                  * and start IO on them using writepage()
2263                  */
2264                 if (mpd->next_page != mpd->first_page) {
2265                         if (mpage_da_map_blocks(mpd) == 0)
2266                                 mpage_da_submit_io(mpd);
2267                         /*
2268                          * skip rest of the page in the page_vec
2269                          */
2270                         mpd->io_done = 1;
2271                         redirty_page_for_writepage(wbc, page);
2272                         unlock_page(page);
2273                         return MPAGE_DA_EXTENT_TAIL;
2274                 }
2275
2276                 /*
2277                  * Start next extent of pages ...
2278                  */
2279                 mpd->first_page = page->index;
2280
2281                 /*
2282                  * ... and blocks
2283                  */
2284                 mpd->b_size = 0;
2285                 mpd->b_state = 0;
2286                 mpd->b_blocknr = 0;
2287         }
2288
2289         mpd->next_page = page->index + 1;
2290         logical = (sector_t) page->index <<
2291                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2292
2293         if (!page_has_buffers(page)) {
2294                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2295                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2296                 if (mpd->io_done)
2297                         return MPAGE_DA_EXTENT_TAIL;
2298         } else {
2299                 /*
2300                  * Page with regular buffer heads, just add all dirty ones
2301                  */
2302                 head = page_buffers(page);
2303                 bh = head;
2304                 do {
2305                         BUG_ON(buffer_locked(bh));
2306                         /*
2307                          * We need to try to allocate
2308                          * unmapped blocks in the same page.
2309                          * Otherwise we won't make progress
2310                          * with the page in ext4_da_writepage
2311                          */
2312                         if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2313                                 mpage_add_bh_to_extent(mpd, logical,
2314                                                        bh->b_size,
2315                                                        bh->b_state);
2316                                 if (mpd->io_done)
2317                                         return MPAGE_DA_EXTENT_TAIL;
2318                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2319                                 /*
2320                                  * mapped dirty buffer. We need to update
2321                                  * the b_state because we look at
2322                                  * b_state in mpage_da_map_blocks. We don't
2323                                  * update b_size because if we find an
2324                                  * unmapped buffer_head later we need to
2325                                  * use the b_state flag of that buffer_head.
2326                                  */
2327                                 if (mpd->b_size == 0)
2328                                         mpd->b_state = bh->b_state & BH_FLAGS;
2329                         }
2330                         logical++;
2331                 } while ((bh = bh->b_this_page) != head);
2332         }
2333
2334         return 0;
2335 }
2336
2337 /*
2338  * this is a special callback for ->write_begin() only
2339  * it's intention is to return mapped block or reserve space
2340  *
2341  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2342  * We also have b_blocknr = -1 and b_bdev initialized properly
2343  *
2344  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2345  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2346  * initialized properly.
2347  *
2348  */
2349 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2350                                   struct buffer_head *bh_result, int create)
2351 {
2352         int ret = 0;
2353         sector_t invalid_block = ~((sector_t) 0xffff);
2354
2355         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2356                 invalid_block = ~0;
2357
2358         BUG_ON(create == 0);
2359         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2360
2361         /*
2362          * first, we need to know whether the block is allocated already
2363          * preallocated blocks are unmapped but should treated
2364          * the same as allocated blocks.
2365          */
2366         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2367         if ((ret == 0) && !buffer_delay(bh_result)) {
2368                 /* the block isn't (pre)allocated yet, let's reserve space */
2369                 /*
2370                  * XXX: __block_prepare_write() unmaps passed block,
2371                  * is it OK?
2372                  */
2373                 ret = ext4_da_reserve_space(inode, 1);
2374                 if (ret)
2375                         /* not enough space to reserve */
2376                         return ret;
2377
2378                 map_bh(bh_result, inode->i_sb, invalid_block);
2379                 set_buffer_new(bh_result);
2380                 set_buffer_delay(bh_result);
2381         } else if (ret > 0) {
2382                 bh_result->b_size = (ret << inode->i_blkbits);
2383                 if (buffer_unwritten(bh_result)) {
2384                         /* A delayed write to unwritten bh should
2385                          * be marked new and mapped.  Mapped ensures
2386                          * that we don't do get_block multiple times
2387                          * when we write to the same offset and new
2388                          * ensures that we do proper zero out for
2389                          * partial write.
2390                          */
2391                         set_buffer_new(bh_result);
2392                         set_buffer_mapped(bh_result);
2393                 }
2394                 ret = 0;
2395         }
2396
2397         return ret;
2398 }
2399
2400 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2401                                    struct buffer_head *bh_result, int create)
2402 {
2403         int ret = 0;
2404         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2405
2406         /*
2407          * we don't want to do block allocation in writepage
2408          * so call get_block_wrap with create = 0
2409          */
2410         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2411                                    bh_result, 0, 0, 0);
2412         if (ret > 0) {
2413                 bh_result->b_size = (ret << inode->i_blkbits);
2414                 ret = 0;
2415         }
2416         return ret;
2417 }
2418
2419 /*
2420  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2421  * get called via journal_submit_inode_data_buffers (no journal handle)
2422  * get called via shrink_page_list via pdflush (no journal handle)
2423  * or grab_page_cache when doing write_begin (have journal handle)
2424  */
2425 static int ext4_da_writepage(struct page *page,
2426                                 struct writeback_control *wbc)
2427 {
2428         int ret = 0;
2429         loff_t size;
2430         unsigned int len;
2431         struct buffer_head *page_bufs;
2432         struct inode *inode = page->mapping->host;
2433
2434         trace_mark(ext4_da_writepage,
2435                    "dev %s ino %lu page_index %lu",
2436                    inode->i_sb->s_id, inode->i_ino, page->index);
2437         size = i_size_read(inode);
2438         if (page->index == size >> PAGE_CACHE_SHIFT)
2439                 len = size & ~PAGE_CACHE_MASK;
2440         else
2441                 len = PAGE_CACHE_SIZE;
2442
2443         if (page_has_buffers(page)) {
2444                 page_bufs = page_buffers(page);
2445                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2446                                         ext4_bh_unmapped_or_delay)) {
2447                         /*
2448                          * We don't want to do  block allocation
2449                          * So redirty the page and return
2450                          * We may reach here when we do a journal commit
2451                          * via journal_submit_inode_data_buffers.
2452                          * If we don't have mapping block we just ignore
2453                          * them. We can also reach here via shrink_page_list
2454                          */
2455                         redirty_page_for_writepage(wbc, page);
2456                         unlock_page(page);
2457                         return 0;
2458                 }
2459         } else {
2460                 /*
2461                  * The test for page_has_buffers() is subtle:
2462                  * We know the page is dirty but it lost buffers. That means
2463                  * that at some moment in time after write_begin()/write_end()
2464                  * has been called all buffers have been clean and thus they
2465                  * must have been written at least once. So they are all
2466                  * mapped and we can happily proceed with mapping them
2467                  * and writing the page.
2468                  *
2469                  * Try to initialize the buffer_heads and check whether
2470                  * all are mapped and non delay. We don't want to
2471                  * do block allocation here.
2472                  */
2473                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2474                                                 ext4_normal_get_block_write);
2475                 if (!ret) {
2476                         page_bufs = page_buffers(page);
2477                         /* check whether all are mapped and non delay */
2478                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2479                                                 ext4_bh_unmapped_or_delay)) {
2480                                 redirty_page_for_writepage(wbc, page);
2481                                 unlock_page(page);
2482                                 return 0;
2483                         }
2484                 } else {
2485                         /*
2486                          * We can't do block allocation here
2487                          * so just redity the page and unlock
2488                          * and return
2489                          */
2490                         redirty_page_for_writepage(wbc, page);
2491                         unlock_page(page);
2492                         return 0;
2493                 }
2494                 /* now mark the buffer_heads as dirty and uptodate */
2495                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2496         }
2497
2498         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2499                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2500         else
2501                 ret = block_write_full_page(page,
2502                                                 ext4_normal_get_block_write,
2503                                                 wbc);
2504
2505         return ret;
2506 }
2507
2508 /*
2509  * This is called via ext4_da_writepages() to
2510  * calulate the total number of credits to reserve to fit
2511  * a single extent allocation into a single transaction,
2512  * ext4_da_writpeages() will loop calling this before
2513  * the block allocation.
2514  */
2515
2516 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2517 {
2518         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2519
2520         /*
2521          * With non-extent format the journal credit needed to
2522          * insert nrblocks contiguous block is dependent on
2523          * number of contiguous block. So we will limit
2524          * number of contiguous block to a sane value
2525          */
2526         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2527             (max_blocks > EXT4_MAX_TRANS_DATA))
2528                 max_blocks = EXT4_MAX_TRANS_DATA;
2529
2530         return ext4_chunk_trans_blocks(inode, max_blocks);
2531 }
2532
2533 static int ext4_da_writepages(struct address_space *mapping,
2534                               struct writeback_control *wbc)
2535 {
2536         pgoff_t index;
2537         int range_whole = 0;
2538         handle_t *handle = NULL;
2539         struct mpage_da_data mpd;
2540         struct inode *inode = mapping->host;
2541         int no_nrwrite_index_update;
2542         int pages_written = 0;
2543         long pages_skipped;
2544         int range_cyclic, cycled = 1, io_done = 0;
2545         int needed_blocks, ret = 0, nr_to_writebump = 0;
2546         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2547
2548         trace_mark(ext4_da_writepages,
2549                    "dev %s ino %lu nr_t_write %ld "
2550                    "pages_skipped %ld range_start %llu "
2551                    "range_end %llu nonblocking %d "
2552                    "for_kupdate %d for_reclaim %d "
2553                    "for_writepages %d range_cyclic %d",
2554                    inode->i_sb->s_id, inode->i_ino,
2555                    wbc->nr_to_write, wbc->pages_skipped,
2556                    (unsigned long long) wbc->range_start,
2557                    (unsigned long long) wbc->range_end,
2558                    wbc->nonblocking, wbc->for_kupdate,
2559                    wbc->for_reclaim, wbc->for_writepages,
2560                    wbc->range_cyclic);
2561
2562         /*
2563          * No pages to write? This is mainly a kludge to avoid starting
2564          * a transaction for special inodes like journal inode on last iput()
2565          * because that could violate lock ordering on umount
2566          */
2567         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2568                 return 0;
2569
2570         /*
2571          * If the filesystem has aborted, it is read-only, so return
2572          * right away instead of dumping stack traces later on that
2573          * will obscure the real source of the problem.  We test
2574          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2575          * the latter could be true if the filesystem is mounted
2576          * read-only, and in that case, ext4_da_writepages should
2577          * *never* be called, so if that ever happens, we would want
2578          * the stack trace.
2579          */
2580         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2581                 return -EROFS;
2582
2583         /*
2584          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2585          * This make sure small files blocks are allocated in
2586          * single attempt. This ensure that small files
2587          * get less fragmented.
2588          */
2589         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2590                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2591                 wbc->nr_to_write = sbi->s_mb_stream_request;
2592         }
2593         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2594                 range_whole = 1;
2595
2596         range_cyclic = wbc->range_cyclic;
2597         if (wbc->range_cyclic) {
2598                 index = mapping->writeback_index;
2599                 if (index)
2600                         cycled = 0;
2601                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2602                 wbc->range_end  = LLONG_MAX;
2603                 wbc->range_cyclic = 0;
2604         } else
2605                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2606
2607         mpd.wbc = wbc;
2608         mpd.inode = mapping->host;
2609
2610         /*
2611          * we don't want write_cache_pages to update
2612          * nr_to_write and writeback_index
2613          */
2614         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2615         wbc->no_nrwrite_index_update = 1;
2616         pages_skipped = wbc->pages_skipped;
2617
2618 retry:
2619         while (!ret && wbc->nr_to_write > 0) {
2620
2621                 /*
2622                  * we  insert one extent at a time. So we need
2623                  * credit needed for single extent allocation.
2624                  * journalled mode is currently not supported
2625                  * by delalloc
2626                  */
2627                 BUG_ON(ext4_should_journal_data(inode));
2628                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2629
2630                 /* start a new transaction*/
2631                 handle = ext4_journal_start(inode, needed_blocks);
2632                 if (IS_ERR(handle)) {
2633                         ret = PTR_ERR(handle);
2634                         printk(KERN_CRIT "%s: jbd2_start: "
2635                                "%ld pages, ino %lu; err %d\n", __func__,
2636                                 wbc->nr_to_write, inode->i_ino, ret);
2637                         dump_stack();
2638                         goto out_writepages;
2639                 }
2640
2641                 /*
2642                  * Now call __mpage_da_writepage to find the next
2643                  * contiguous region of logical blocks that need
2644                  * blocks to be allocated by ext4.  We don't actually
2645                  * submit the blocks for I/O here, even though
2646                  * write_cache_pages thinks it will, and will set the
2647                  * pages as clean for write before calling
2648                  * __mpage_da_writepage().
2649                  */
2650                 mpd.b_size = 0;
2651                 mpd.b_state = 0;
2652                 mpd.b_blocknr = 0;
2653                 mpd.first_page = 0;
2654                 mpd.next_page = 0;
2655                 mpd.io_done = 0;
2656                 mpd.pages_written = 0;
2657                 mpd.retval = 0;
2658                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2659                                         &mpd);
2660                 /*
2661                  * If we have a contigous extent of pages and we
2662                  * haven't done the I/O yet, map the blocks and submit
2663                  * them for I/O.
2664                  */
2665                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2666                         if (mpage_da_map_blocks(&mpd) == 0)
2667                                 mpage_da_submit_io(&mpd);
2668                         mpd.io_done = 1;
2669                         ret = MPAGE_DA_EXTENT_TAIL;
2670                 }
2671                 wbc->nr_to_write -= mpd.pages_written;
2672
2673                 ext4_journal_stop(handle);
2674
2675                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2676                         /* commit the transaction which would
2677                          * free blocks released in the transaction
2678                          * and try again
2679                          */
2680                         jbd2_journal_force_commit_nested(sbi->s_journal);
2681                         wbc->pages_skipped = pages_skipped;
2682                         ret = 0;
2683                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2684                         /*
2685                          * got one extent now try with
2686                          * rest of the pages
2687                          */
2688                         pages_written += mpd.pages_written;
2689                         wbc->pages_skipped = pages_skipped;
2690                         ret = 0;
2691                         io_done = 1;
2692                 } else if (wbc->nr_to_write)
2693                         /*
2694                          * There is no more writeout needed
2695                          * or we requested for a noblocking writeout
2696                          * and we found the device congested
2697                          */
2698                         break;
2699         }
2700         if (!io_done && !cycled) {
2701                 cycled = 1;
2702                 index = 0;
2703                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2704                 wbc->range_end  = mapping->writeback_index - 1;
2705                 goto retry;
2706         }
2707         if (pages_skipped != wbc->pages_skipped)
2708                 printk(KERN_EMERG "This should not happen leaving %s "
2709                                 "with nr_to_write = %ld ret = %d\n",
2710                                 __func__, wbc->nr_to_write, ret);
2711
2712         /* Update index */
2713         index += pages_written;
2714         wbc->range_cyclic = range_cyclic;
2715         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2716                 /*
2717                  * set the writeback_index so that range_cyclic
2718                  * mode will write it back later
2719                  */
2720                 mapping->writeback_index = index;
2721
2722 out_writepages:
2723         if (!no_nrwrite_index_update)
2724                 wbc->no_nrwrite_index_update = 0;
2725         wbc->nr_to_write -= nr_to_writebump;
2726         trace_mark(ext4_da_writepage_result,
2727                    "dev %s ino %lu ret %d pages_written %d "
2728                    "pages_skipped %ld congestion %d "
2729                    "more_io %d no_nrwrite_index_update %d",
2730                    inode->i_sb->s_id, inode->i_ino, ret,
2731                    pages_written, wbc->pages_skipped,
2732                    wbc->encountered_congestion, wbc->more_io,
2733                    wbc->no_nrwrite_index_update);
2734         return ret;
2735 }
2736
2737 #define FALL_BACK_TO_NONDELALLOC 1
2738 static int ext4_nonda_switch(struct super_block *sb)
2739 {
2740         s64 free_blocks, dirty_blocks;
2741         struct ext4_sb_info *sbi = EXT4_SB(sb);
2742
2743         /*
2744          * switch to non delalloc mode if we are running low
2745          * on free block. The free block accounting via percpu
2746          * counters can get slightly wrong with percpu_counter_batch getting
2747          * accumulated on each CPU without updating global counters
2748          * Delalloc need an accurate free block accounting. So switch
2749          * to non delalloc when we are near to error range.
2750          */
2751         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2752         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2753         if (2 * free_blocks < 3 * dirty_blocks ||
2754                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2755                 /*
2756                  * free block count is less that 150% of dirty blocks
2757                  * or free blocks is less that watermark
2758                  */
2759                 return 1;
2760         }
2761         return 0;
2762 }
2763
2764 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2765                                 loff_t pos, unsigned len, unsigned flags,
2766                                 struct page **pagep, void **fsdata)
2767 {
2768         int ret, retries = 0;
2769         struct page *page;
2770         pgoff_t index;
2771         unsigned from, to;
2772         struct inode *inode = mapping->host;
2773         handle_t *handle;
2774
2775         index = pos >> PAGE_CACHE_SHIFT;
2776         from = pos & (PAGE_CACHE_SIZE - 1);
2777         to = from + len;
2778
2779         if (ext4_nonda_switch(inode->i_sb)) {
2780                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2781                 return ext4_write_begin(file, mapping, pos,
2782                                         len, flags, pagep, fsdata);
2783         }
2784         *fsdata = (void *)0;
2785
2786         trace_mark(ext4_da_write_begin,
2787                    "dev %s ino %lu pos %llu len %u flags %u",
2788                    inode->i_sb->s_id, inode->i_ino,
2789                    (unsigned long long) pos, len, flags);
2790 retry:
2791         /*
2792          * With delayed allocation, we don't log the i_disksize update
2793          * if there is delayed block allocation. But we still need
2794          * to journalling the i_disksize update if writes to the end
2795          * of file which has an already mapped buffer.
2796          */
2797         handle = ext4_journal_start(inode, 1);
2798         if (IS_ERR(handle)) {
2799                 ret = PTR_ERR(handle);
2800                 goto out;
2801         }
2802         /* We cannot recurse into the filesystem as the transaction is already
2803          * started */
2804         flags |= AOP_FLAG_NOFS;
2805
2806         page = grab_cache_page_write_begin(mapping, index, flags);
2807         if (!page) {
2808                 ext4_journal_stop(handle);
2809                 ret = -ENOMEM;
2810                 goto out;
2811         }
2812         *pagep = page;
2813
2814         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2815                                                         ext4_da_get_block_prep);
2816         if (ret < 0) {
2817                 unlock_page(page);
2818                 ext4_journal_stop(handle);
2819                 page_cache_release(page);
2820                 /*
2821                  * block_write_begin may have instantiated a few blocks
2822                  * outside i_size.  Trim these off again. Don't need
2823                  * i_size_read because we hold i_mutex.
2824                  */
2825                 if (pos + len > inode->i_size)
2826                         vmtruncate(inode, inode->i_size);
2827         }
2828
2829         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2830                 goto retry;
2831 out:
2832         return ret;
2833 }
2834
2835 /*
2836  * Check if we should update i_disksize
2837  * when write to the end of file but not require block allocation
2838  */
2839 static int ext4_da_should_update_i_disksize(struct page *page,
2840                                          unsigned long offset)
2841 {
2842         struct buffer_head *bh;
2843         struct inode *inode = page->mapping->host;
2844         unsigned int idx;
2845         int i;
2846
2847         bh = page_buffers(page);
2848         idx = offset >> inode->i_blkbits;
2849
2850         for (i = 0; i < idx; i++)
2851                 bh = bh->b_this_page;
2852
2853         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2854                 return 0;
2855         return 1;
2856 }
2857
2858 static int ext4_da_write_end(struct file *file,
2859                                 struct address_space *mapping,
2860                                 loff_t pos, unsigned len, unsigned copied,
2861                                 struct page *page, void *fsdata)
2862 {
2863         struct inode *inode = mapping->host;
2864         int ret = 0, ret2;
2865         handle_t *handle = ext4_journal_current_handle();
2866         loff_t new_i_size;
2867         unsigned long start, end;
2868         int write_mode = (int)(unsigned long)fsdata;
2869
2870         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2871                 if (ext4_should_order_data(inode)) {
2872                         return ext4_ordered_write_end(file, mapping, pos,
2873                                         len, copied, page, fsdata);
2874                 } else if (ext4_should_writeback_data(inode)) {
2875                         return ext4_writeback_write_end(file, mapping, pos,
2876                                         len, copied, page, fsdata);
2877                 } else {
2878                         BUG();
2879                 }
2880         }
2881
2882         trace_mark(ext4_da_write_end,
2883                    "dev %s ino %lu pos %llu len %u copied %u",
2884                    inode->i_sb->s_id, inode->i_ino,
2885                    (unsigned long long) pos, len, copied);
2886         start = pos & (PAGE_CACHE_SIZE - 1);
2887         end = start + copied - 1;
2888
2889         /*
2890          * generic_write_end() will run mark_inode_dirty() if i_size
2891          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2892          * into that.
2893          */
2894
2895         new_i_size = pos + copied;
2896         if (new_i_size > EXT4_I(inode)->i_disksize) {
2897                 if (ext4_da_should_update_i_disksize(page, end)) {
2898                         down_write(&EXT4_I(inode)->i_data_sem);
2899                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2900                                 /*
2901                                  * Updating i_disksize when extending file
2902                                  * without needing block allocation
2903                                  */
2904                                 if (ext4_should_order_data(inode))
2905                                         ret = ext4_jbd2_file_inode(handle,
2906                                                                    inode);
2907
2908                                 EXT4_I(inode)->i_disksize = new_i_size;
2909                         }
2910                         up_write(&EXT4_I(inode)->i_data_sem);
2911                         /* We need to mark inode dirty even if
2912                          * new_i_size is less that inode->i_size
2913                          * bu greater than i_disksize.(hint delalloc)
2914                          */
2915                         ext4_mark_inode_dirty(handle, inode);
2916                 }
2917         }
2918         ret2 = generic_write_end(file, mapping, pos, len, copied,
2919                                                         page, fsdata);
2920         copied = ret2;
2921         if (ret2 < 0)
2922                 ret = ret2;
2923         ret2 = ext4_journal_stop(handle);
2924         if (!ret)
2925                 ret = ret2;
2926
2927         return ret ? ret : copied;
2928 }
2929
2930 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2931 {
2932         /*
2933          * Drop reserved blocks
2934          */
2935         BUG_ON(!PageLocked(page));
2936         if (!page_has_buffers(page))
2937                 goto out;
2938
2939         ext4_da_page_release_reservation(page, offset);
2940
2941 out:
2942         ext4_invalidatepage(page, offset);
2943
2944         return;
2945 }
2946
2947 /*
2948  * Force all delayed allocation blocks to be allocated for a given inode.
2949  */
2950 int ext4_alloc_da_blocks(struct inode *inode)
2951 {
2952         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2953             !EXT4_I(inode)->i_reserved_meta_blocks)
2954                 return 0;
2955
2956         /*
2957          * We do something simple for now.  The filemap_flush() will
2958          * also start triggering a write of the data blocks, which is
2959          * not strictly speaking necessary (and for users of
2960          * laptop_mode, not even desirable).  However, to do otherwise
2961          * would require replicating code paths in:
2962          * 
2963          * ext4_da_writepages() ->
2964          *    write_cache_pages() ---> (via passed in callback function)
2965          *        __mpage_da_writepage() -->
2966          *           mpage_add_bh_to_extent()
2967          *           mpage_da_map_blocks()
2968          *
2969          * The problem is that write_cache_pages(), located in
2970          * mm/page-writeback.c, marks pages clean in preparation for
2971          * doing I/O, which is not desirable if we're not planning on
2972          * doing I/O at all.
2973          *
2974          * We could call write_cache_pages(), and then redirty all of
2975          * the pages by calling redirty_page_for_writeback() but that
2976          * would be ugly in the extreme.  So instead we would need to
2977          * replicate parts of the code in the above functions,
2978          * simplifying them becuase we wouldn't actually intend to
2979          * write out the pages, but rather only collect contiguous
2980          * logical block extents, call the multi-block allocator, and
2981          * then update the buffer heads with the block allocations.
2982          * 
2983          * For now, though, we'll cheat by calling filemap_flush(),
2984          * which will map the blocks, and start the I/O, but not
2985          * actually wait for the I/O to complete.
2986          */
2987         return filemap_flush(inode->i_mapping);
2988 }
2989
2990 /*
2991  * bmap() is special.  It gets used by applications such as lilo and by
2992  * the swapper to find the on-disk block of a specific piece of data.
2993  *
2994  * Naturally, this is dangerous if the block concerned is still in the
2995  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2996  * filesystem and enables swap, then they may get a nasty shock when the
2997  * data getting swapped to that swapfile suddenly gets overwritten by
2998  * the original zero's written out previously to the journal and
2999  * awaiting writeback in the kernel's buffer cache.
3000  *
3001  * So, if we see any bmap calls here on a modified, data-journaled file,
3002  * take extra steps to flush any blocks which might be in the cache.
3003  */
3004 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3005 {
3006         struct inode *inode = mapping->host;
3007         journal_t *journal;
3008         int err;
3009
3010         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3011                         test_opt(inode->i_sb, DELALLOC)) {
3012                 /*
3013                  * With delalloc we want to sync the file
3014                  * so that we can make sure we allocate
3015                  * blocks for file
3016                  */
3017                 filemap_write_and_wait(mapping);
3018         }
3019
3020         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3021                 /*
3022                  * This is a REALLY heavyweight approach, but the use of
3023                  * bmap on dirty files is expected to be extremely rare:
3024                  * only if we run lilo or swapon on a freshly made file
3025                  * do we expect this to happen.
3026                  *
3027                  * (bmap requires CAP_SYS_RAWIO so this does not
3028                  * represent an unprivileged user DOS attack --- we'd be
3029                  * in trouble if mortal users could trigger this path at
3030                  * will.)
3031                  *
3032                  * NB. EXT4_STATE_JDATA is not set on files other than
3033                  * regular files.  If somebody wants to bmap a directory
3034                  * or symlink and gets confused because the buffer
3035                  * hasn't yet been flushed to disk, they deserve
3036                  * everything they get.
3037                  */
3038
3039                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3040                 journal = EXT4_JOURNAL(inode);
3041                 jbd2_journal_lock_updates(journal);
3042                 err = jbd2_journal_flush(journal);
3043                 jbd2_journal_unlock_updates(journal);
3044
3045                 if (err)
3046                         return 0;
3047         }
3048
3049         return generic_block_bmap(mapping, block, ext4_get_block);
3050 }
3051
3052 static int bget_one(handle_t *handle, struct buffer_head *bh)
3053 {
3054         get_bh(bh);
3055         return 0;
3056 }
3057
3058 static int bput_one(handle_t *handle, struct buffer_head *bh)
3059 {
3060         put_bh(bh);
3061         return 0;
3062 }
3063
3064 /*
3065  * Note that we don't need to start a transaction unless we're journaling data
3066  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3067  * need to file the inode to the transaction's list in ordered mode because if
3068  * we are writing back data added by write(), the inode is already there and if
3069  * we are writing back data modified via mmap(), noone guarantees in which
3070  * transaction the data will hit the disk. In case we are journaling data, we
3071  * cannot start transaction directly because transaction start ranks above page
3072  * lock so we have to do some magic.
3073  *
3074  * In all journaling modes block_write_full_page() will start the I/O.
3075  *
3076  * Problem:
3077  *
3078  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3079  *              ext4_writepage()
3080  *
3081  * Similar for:
3082  *
3083  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3084  *
3085  * Same applies to ext4_get_block().  We will deadlock on various things like
3086  * lock_journal and i_data_sem
3087  *
3088  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3089  * allocations fail.
3090  *
3091  * 16May01: If we're reentered then journal_current_handle() will be
3092  *          non-zero. We simply *return*.
3093  *
3094  * 1 July 2001: @@@ FIXME:
3095  *   In journalled data mode, a data buffer may be metadata against the
3096  *   current transaction.  But the same file is part of a shared mapping
3097  *   and someone does a writepage() on it.
3098  *
3099  *   We will move the buffer onto the async_data list, but *after* it has
3100  *   been dirtied. So there's a small window where we have dirty data on
3101  *   BJ_Metadata.
3102  *
3103  *   Note that this only applies to the last partial page in the file.  The
3104  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3105  *   broken code anyway: it's wrong for msync()).
3106  *
3107  *   It's a rare case: affects the final partial page, for journalled data
3108  *   where the file is subject to bith write() and writepage() in the same
3109  *   transction.  To fix it we'll need a custom block_write_full_page().
3110  *   We'll probably need that anyway for journalling writepage() output.
3111  *
3112  * We don't honour synchronous mounts for writepage().  That would be
3113  * disastrous.  Any write() or metadata operation will sync the fs for
3114  * us.
3115  *
3116  */
3117 static int __ext4_normal_writepage(struct page *page,
3118                                 struct writeback_control *wbc)
3119 {
3120         struct inode *inode = page->mapping->host;
3121
3122         if (test_opt(inode->i_sb, NOBH))
3123                 return nobh_writepage(page,
3124                                         ext4_normal_get_block_write, wbc);
3125         else
3126                 return block_write_full_page(page,
3127                                                 ext4_normal_get_block_write,
3128                                                 wbc);
3129 }
3130
3131 static int ext4_normal_writepage(struct page *page,
3132                                 struct writeback_control *wbc)
3133 {
3134         struct inode *inode = page->mapping->host;
3135         loff_t size = i_size_read(inode);
3136         loff_t len;
3137
3138         trace_mark(ext4_normal_writepage,
3139                    "dev %s ino %lu page_index %lu",
3140                    inode->i_sb->s_id, inode->i_ino, page->index);
3141         J_ASSERT(PageLocked(page));
3142         if (page->index == size >> PAGE_CACHE_SHIFT)
3143                 len = size & ~PAGE_CACHE_MASK;
3144         else
3145                 len = PAGE_CACHE_SIZE;
3146
3147         if (page_has_buffers(page)) {
3148                 /* if page has buffers it should all be mapped
3149                  * and allocated. If there are not buffers attached
3150                  * to the page we know the page is dirty but it lost
3151                  * buffers. That means that at some moment in time
3152                  * after write_begin() / write_end() has been called
3153                  * all buffers have been clean and thus they must have been
3154                  * written at least once. So they are all mapped and we can
3155                  * happily proceed with mapping them and writing the page.
3156                  */
3157                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3158                                         ext4_bh_unmapped_or_delay));
3159         }
3160
3161         if (!ext4_journal_current_handle())
3162                 return __ext4_normal_writepage(page, wbc);
3163
3164         redirty_page_for_writepage(wbc, page);
3165         unlock_page(page);
3166         return 0;
3167 }
3168
3169 static int __ext4_journalled_writepage(struct page *page,
3170                                 struct writeback_control *wbc)
3171 {
3172         struct address_space *mapping = page->mapping;
3173         struct inode *inode = mapping->host;
3174         struct buffer_head *page_bufs;
3175         handle_t *handle = NULL;
3176         int ret = 0;
3177         int err;
3178
3179         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3180                                         ext4_normal_get_block_write);
3181         if (ret != 0)
3182                 goto out_unlock;
3183
3184         page_bufs = page_buffers(page);
3185         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3186                                                                 bget_one);
3187         /* As soon as we unlock the page, it can go away, but we have
3188          * references to buffers so we are safe */
3189         unlock_page(page);
3190
3191         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3192         if (IS_ERR(handle)) {
3193                 ret = PTR_ERR(handle);
3194                 goto out;
3195         }
3196
3197         ret = walk_page_buffers(handle, page_bufs, 0,
3198                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3199
3200         err = walk_page_buffers(handle, page_bufs, 0,
3201                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3202         if (ret == 0)
3203                 ret = err;
3204         err = ext4_journal_stop(handle);
3205         if (!ret)
3206                 ret = err;
3207
3208         walk_page_buffers(handle, page_bufs, 0,
3209                                 PAGE_CACHE_SIZE, NULL, bput_one);
3210         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3211         goto out;
3212
3213 out_unlock:
3214         unlock_page(page);
3215 out:
3216         return ret;
3217 }
3218
3219 static int ext4_journalled_writepage(struct page *page,
3220                                 struct writeback_control *wbc)
3221 {
3222         struct inode *inode = page->mapping->host;
3223         loff_t size = i_size_read(inode);
3224         loff_t len;
3225
3226         trace_mark(ext4_journalled_writepage,
3227                    "dev %s ino %lu page_index %lu",
3228                    inode->i_sb->s_id, inode->i_ino, page->index);
3229         J_ASSERT(PageLocked(page));
3230         if (page->index == size >> PAGE_CACHE_SHIFT)
3231                 len = size & ~PAGE_CACHE_MASK;
3232         else
3233                 len = PAGE_CACHE_SIZE;
3234
3235         if (page_has_buffers(page)) {
3236                 /* if page has buffers it should all be mapped
3237                  * and allocated. If there are not buffers attached
3238                  * to the page we know the page is dirty but it lost
3239                  * buffers. That means that at some moment in time
3240                  * after write_begin() / write_end() has been called
3241                  * all buffers have been clean and thus they must have been
3242                  * written at least once. So they are all mapped and we can
3243                  * happily proceed with mapping them and writing the page.
3244                  */
3245                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3246                                         ext4_bh_unmapped_or_delay));
3247         }
3248
3249         if (ext4_journal_current_handle())
3250                 goto no_write;
3251
3252         if (PageChecked(page)) {
3253                 /*
3254                  * It's mmapped pagecache.  Add buffers and journal it.  There
3255                  * doesn't seem much point in redirtying the page here.
3256                  */
3257                 ClearPageChecked(page);
3258                 return __ext4_journalled_writepage(page, wbc);
3259         } else {
3260                 /*
3261                  * It may be a page full of checkpoint-mode buffers.  We don't
3262                  * really know unless we go poke around in the buffer_heads.
3263                  * But block_write_full_page will do the right thing.
3264                  */
3265                 return block_write_full_page(page,
3266                                                 ext4_normal_get_block_write,
3267                                                 wbc);
3268         }
3269 no_write:
3270         redirty_page_for_writepage(wbc, page);
3271         unlock_page(page);
3272         return 0;
3273 }
3274
3275 static int ext4_readpage(struct file *file, struct page *page)
3276 {
3277         return mpage_readpage(page, ext4_get_block);
3278 }
3279
3280 static int
3281 ext4_readpages(struct file *file, struct address_space *mapping,
3282                 struct list_head *pages, unsigned nr_pages)
3283 {
3284         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3285 }
3286
3287 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3288 {
3289         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3290
3291         /*
3292          * If it's a full truncate we just forget about the pending dirtying
3293          */
3294         if (offset == 0)
3295                 ClearPageChecked(page);
3296
3297         if (journal)
3298                 jbd2_journal_invalidatepage(journal, page, offset);
3299         else
3300                 block_invalidatepage(page, offset);
3301 }
3302
3303 static int ext4_releasepage(struct page *page, gfp_t wait)
3304 {
3305         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3306
3307         WARN_ON(PageChecked(page));
3308         if (!page_has_buffers(page))
3309                 return 0;
3310         if (journal)
3311                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3312         else
3313                 return try_to_free_buffers(page);
3314 }
3315
3316 /*
3317  * If the O_DIRECT write will extend the file then add this inode to the
3318  * orphan list.  So recovery will truncate it back to the original size
3319  * if the machine crashes during the write.
3320  *
3321  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3322  * crashes then stale disk data _may_ be exposed inside the file. But current
3323  * VFS code falls back into buffered path in that case so we are safe.
3324  */
3325 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3326                         const struct iovec *iov, loff_t offset,
3327                         unsigned long nr_segs)
3328 {
3329         struct file *file = iocb->ki_filp;
3330         struct inode *inode = file->f_mapping->host;
3331         struct ext4_inode_info *ei = EXT4_I(inode);
3332         handle_t *handle;
3333         ssize_t ret;
3334         int orphan = 0;
3335         size_t count = iov_length(iov, nr_segs);
3336
3337         if (rw == WRITE) {
3338                 loff_t final_size = offset + count;
3339
3340                 if (final_size > inode->i_size) {
3341                         /* Credits for sb + inode write */
3342                         handle = ext4_journal_start(inode, 2);
3343                         if (IS_ERR(handle)) {
3344                                 ret = PTR_ERR(handle);
3345                                 goto out;
3346                         }
3347                         ret = ext4_orphan_add(handle, inode);
3348                         if (ret) {
3349                                 ext4_journal_stop(handle);
3350                                 goto out;
3351                         }
3352                         orphan = 1;
3353                         ei->i_disksize = inode->i_size;
3354                         ext4_journal_stop(handle);
3355                 }
3356         }
3357
3358         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3359                                  offset, nr_segs,
3360                                  ext4_get_block, NULL);
3361
3362         if (orphan) {
3363                 int err;
3364
3365                 /* Credits for sb + inode write */
3366                 handle = ext4_journal_start(inode, 2);
3367                 if (IS_ERR(handle)) {
3368                         /* This is really bad luck. We've written the data
3369                          * but cannot extend i_size. Bail out and pretend
3370                          * the write failed... */
3371                         ret = PTR_ERR(handle);
3372                         goto out;
3373                 }
3374                 if (inode->i_nlink)
3375                         ext4_orphan_del(handle, inode);
3376                 if (ret > 0) {
3377                         loff_t end = offset + ret;
3378                         if (end > inode->i_size) {
3379                                 ei->i_disksize = end;
3380                                 i_size_write(inode, end);
3381                                 /*
3382                                  * We're going to return a positive `ret'
3383                                  * here due to non-zero-length I/O, so there's
3384                                  * no way of reporting error returns from
3385                                  * ext4_mark_inode_dirty() to userspace.  So
3386                                  * ignore it.
3387                                  */
3388                                 ext4_mark_inode_dirty(handle, inode);
3389                         }
3390                 }
3391                 err = ext4_journal_stop(handle);
3392                 if (ret == 0)
3393                         ret = err;
3394         }
3395 out:
3396         return ret;
3397 }
3398
3399 /*
3400  * Pages can be marked dirty completely asynchronously from ext4's journalling
3401  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3402  * much here because ->set_page_dirty is called under VFS locks.  The page is
3403  * not necessarily locked.
3404  *
3405  * We cannot just dirty the page and leave attached buffers clean, because the
3406  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3407  * or jbddirty because all the journalling code will explode.
3408  *
3409  * So what we do is to mark the page "pending dirty" and next time writepage
3410  * is called, propagate that into the buffers appropriately.
3411  */
3412 static int ext4_journalled_set_page_dirty(struct page *page)
3413 {
3414         SetPageChecked(page);
3415         return __set_page_dirty_nobuffers(page);
3416 }
3417
3418 static const struct address_space_operations ext4_ordered_aops = {
3419         .readpage               = ext4_readpage,
3420         .readpages              = ext4_readpages,
3421         .writepage              = ext4_normal_writepage,
3422         .sync_page              = block_sync_page,
3423         .write_begin            = ext4_write_begin,
3424         .write_end              = ext4_ordered_write_end,
3425         .bmap                   = ext4_bmap,
3426         .invalidatepage         = ext4_invalidatepage,
3427         .releasepage            = ext4_releasepage,
3428         .direct_IO              = ext4_direct_IO,
3429         .migratepage            = buffer_migrate_page,
3430         .is_partially_uptodate  = block_is_partially_uptodate,
3431 };
3432
3433 static const struct address_space_operations ext4_writeback_aops = {
3434         .readpage               = ext4_readpage,
3435         .readpages              = ext4_readpages,
3436         .writepage              = ext4_normal_writepage,
3437         .sync_page              = block_sync_page,
3438         .write_begin            = ext4_write_begin,
3439         .write_end              = ext4_writeback_write_end,
3440         .bmap                   = ext4_bmap,
3441         .invalidatepage         = ext4_invalidatepage,
3442         .releasepage            = ext4_releasepage,
3443         .direct_IO              = ext4_direct_IO,
3444         .migratepage            = buffer_migrate_page,
3445         .is_partially_uptodate  = block_is_partially_uptodate,
3446 };
3447
3448 static const struct address_space_operations ext4_journalled_aops = {
3449         .readpage               = ext4_readpage,
3450         .readpages              = ext4_readpages,
3451         .writepage              = ext4_journalled_writepage,
3452         .sync_page              = block_sync_page,
3453         .write_begin            = ext4_write_begin,
3454         .write_end              = ext4_journalled_write_end,
3455         .set_page_dirty         = ext4_journalled_set_page_dirty,
3456         .bmap                   = ext4_bmap,
3457         .invalidatepage         = ext4_invalidatepage,
3458         .releasepage            = ext4_releasepage,
3459         .is_partially_uptodate  = block_is_partially_uptodate,
3460 };
3461
3462 static const struct address_space_operations ext4_da_aops = {
3463         .readpage               = ext4_readpage,
3464         .readpages              = ext4_readpages,
3465         .writepage              = ext4_da_writepage,
3466         .writepages             = ext4_da_writepages,
3467         .sync_page              = block_sync_page,
3468         .write_begin            = ext4_da_write_begin,
3469         .write_end              = ext4_da_write_end,
3470         .bmap                   = ext4_bmap,
3471         .invalidatepage         = ext4_da_invalidatepage,
3472         .releasepage            = ext4_releasepage,
3473         .direct_IO              = ext4_direct_IO,
3474         .migratepage            = buffer_migrate_page,
3475         .is_partially_uptodate  = block_is_partially_uptodate,
3476 };
3477
3478 void ext4_set_aops(struct inode *inode)
3479 {
3480         if (ext4_should_order_data(inode) &&
3481                 test_opt(inode->i_sb, DELALLOC))
3482                 inode->i_mapping->a_ops = &ext4_da_aops;
3483         else if (ext4_should_order_data(inode))
3484                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3485         else if (ext4_should_writeback_data(inode) &&
3486                  test_opt(inode->i_sb, DELALLOC))
3487                 inode->i_mapping->a_ops = &ext4_da_aops;
3488         else if (ext4_should_writeback_data(inode))
3489                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3490         else
3491                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3492 }
3493
3494 /*
3495  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3496  * up to the end of the block which corresponds to `from'.
3497  * This required during truncate. We need to physically zero the tail end
3498  * of that block so it doesn't yield old data if the file is later grown.
3499  */
3500 int ext4_block_truncate_page(handle_t *handle,
3501                 struct address_space *mapping, loff_t from)
3502 {
3503         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3504         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3505         unsigned blocksize, length, pos;
3506         ext4_lblk_t iblock;
3507         struct inode *inode = mapping->host;
3508         struct buffer_head *bh;
3509         struct page *page;
3510         int err = 0;
3511
3512         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3513         if (!page)
3514                 return -EINVAL;
3515
3516         blocksize = inode->i_sb->s_blocksize;
3517         length = blocksize - (offset & (blocksize - 1));
3518         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3519
3520         /*
3521          * For "nobh" option,  we can only work if we don't need to
3522          * read-in the page - otherwise we create buffers to do the IO.
3523          */
3524         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3525              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3526                 zero_user(page, offset, length);
3527                 set_page_dirty(page);
3528                 goto unlock;
3529         }
3530
3531         if (!page_has_buffers(page))
3532                 create_empty_buffers(page, blocksize, 0);
3533
3534         /* Find the buffer that contains "offset" */
3535         bh = page_buffers(page);
3536         pos = blocksize;
3537         while (offset >= pos) {
3538                 bh = bh->b_this_page;
3539                 iblock++;
3540                 pos += blocksize;
3541         }
3542
3543         err = 0;
3544         if (buffer_freed(bh)) {
3545                 BUFFER_TRACE(bh, "freed: skip");
3546                 goto unlock;
3547         }
3548
3549         if (!buffer_mapped(bh)) {
3550                 BUFFER_TRACE(bh, "unmapped");
3551                 ext4_get_block(inode, iblock, bh, 0);
3552                 /* unmapped? It's a hole - nothing to do */
3553                 if (!buffer_mapped(bh)) {
3554                         BUFFER_TRACE(bh, "still unmapped");
3555                         goto unlock;
3556                 }
3557         }
3558
3559         /* Ok, it's mapped. Make sure it's up-to-date */
3560         if (PageUptodate(page))
3561                 set_buffer_uptodate(bh);
3562
3563         if (!buffer_uptodate(bh)) {
3564                 err = -EIO;
3565                 ll_rw_block(READ, 1, &bh);
3566                 wait_on_buffer(bh);
3567                 /* Uhhuh. Read error. Complain and punt. */
3568                 if (!buffer_uptodate(bh))
3569                         goto unlock;
3570         }
3571
3572         if (ext4_should_journal_data(inode)) {
3573                 BUFFER_TRACE(bh, "get write access");
3574                 err = ext4_journal_get_write_access(handle, bh);
3575                 if (err)
3576                         goto unlock;
3577         }
3578
3579         zero_user(page, offset, length);
3580
3581         BUFFER_TRACE(bh, "zeroed end of block");
3582
3583         err = 0;
3584         if (ext4_should_journal_data(inode)) {
3585                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3586         } else {
3587                 if (ext4_should_order_data(inode))
3588                         err = ext4_jbd2_file_inode(handle, inode);
3589                 mark_buffer_dirty(bh);
3590         }
3591
3592 unlock:
3593         unlock_page(page);
3594         page_cache_release(page);
3595         return err;
3596 }
3597
3598 /*
3599  * Probably it should be a library function... search for first non-zero word
3600  * or memcmp with zero_page, whatever is better for particular architecture.
3601  * Linus?
3602  */
3603 static inline int all_zeroes(__le32 *p, __le32 *q)
3604 {
3605         while (p < q)
3606                 if (*p++)
3607                         return 0;
3608         return 1;
3609 }
3610
3611 /**
3612  *      ext4_find_shared - find the indirect blocks for partial truncation.
3613  *      @inode:   inode in question
3614  *      @depth:   depth of the affected branch
3615  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3616  *      @chain:   place to store the pointers to partial indirect blocks
3617  *      @top:     place to the (detached) top of branch
3618  *
3619  *      This is a helper function used by ext4_truncate().
3620  *
3621  *      When we do truncate() we may have to clean the ends of several
3622  *      indirect blocks but leave the blocks themselves alive. Block is
3623  *      partially truncated if some data below the new i_size is refered
3624  *      from it (and it is on the path to the first completely truncated
3625  *      data block, indeed).  We have to free the top of that path along
3626  *      with everything to the right of the path. Since no allocation
3627  *      past the truncation point is possible until ext4_truncate()
3628  *      finishes, we may safely do the latter, but top of branch may
3629  *      require special attention - pageout below the truncation point
3630  *      might try to populate it.
3631  *
3632  *      We atomically detach the top of branch from the tree, store the
3633  *      block number of its root in *@top, pointers to buffer_heads of
3634  *      partially truncated blocks - in @chain[].bh and pointers to
3635  *      their last elements that should not be removed - in
3636  *      @chain[].p. Return value is the pointer to last filled element
3637  *      of @chain.
3638  *
3639  *      The work left to caller to do the actual freeing of subtrees:
3640  *              a) free the subtree starting from *@top
3641  *              b) free the subtrees whose roots are stored in
3642  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3643  *              c) free the subtrees growing from the inode past the @chain[0].
3644  *                      (no partially truncated stuff there).  */
3645
3646 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3647                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3648 {
3649         Indirect *partial, *p;
3650         int k, err;
3651
3652         *top = 0;
3653         /* Make k index the deepest non-null offest + 1 */
3654         for (k = depth; k > 1 && !offsets[k-1]; k--)
3655                 ;
3656         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3657         /* Writer: pointers */
3658         if (!partial)
3659                 partial = chain + k-1;
3660         /*
3661          * If the branch acquired continuation since we've looked at it -
3662          * fine, it should all survive and (new) top doesn't belong to us.
3663          */
3664         if (!partial->key && *partial->p)
3665                 /* Writer: end */
3666                 goto no_top;
3667         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3668                 ;
3669         /*
3670          * OK, we've found the last block that must survive. The rest of our
3671          * branch should be detached before unlocking. However, if that rest
3672          * of branch is all ours and does not grow immediately from the inode
3673          * it's easier to cheat and just decrement partial->p.
3674          */
3675         if (p == chain + k - 1 && p > chain) {
3676                 p->p--;
3677         } else {
3678                 *top = *p->p;
3679                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3680 #if 0
3681                 *p->p = 0;
3682 #endif
3683         }
3684         /* Writer: end */
3685
3686         while (partial > p) {
3687                 brelse(partial->bh);
3688                 partial--;
3689         }
3690 no_top:
3691         return partial;
3692 }
3693
3694 /*
3695  * Zero a number of block pointers in either an inode or an indirect block.
3696  * If we restart the transaction we must again get write access to the
3697  * indirect block for further modification.
3698  *
3699  * We release `count' blocks on disk, but (last - first) may be greater
3700  * than `count' because there can be holes in there.
3701  */
3702 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3703                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3704                 unsigned long count, __le32 *first, __le32 *last)
3705 {
3706         __le32 *p;
3707         if (try_to_extend_transaction(handle, inode)) {
3708                 if (bh) {
3709                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3710                         ext4_handle_dirty_metadata(handle, inode, bh);
3711                 }
3712                 ext4_mark_inode_dirty(handle, inode);
3713                 ext4_journal_test_restart(handle, inode);
3714                 if (bh) {
3715                         BUFFER_TRACE(bh, "retaking write access");
3716                         ext4_journal_get_write_access(handle, bh);
3717                 }
3718         }
3719
3720         /*
3721          * Any buffers which are on the journal will be in memory. We find
3722          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3723          * on them.  We've already detached each block from the file, so
3724          * bforget() in jbd2_journal_forget() should be safe.
3725          *
3726          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3727          */
3728         for (p = first; p < last; p++) {
3729                 u32 nr = le32_to_cpu(*p);
3730                 if (nr) {
3731                         struct buffer_head *tbh;
3732
3733                         *p = 0;
3734                         tbh = sb_find_get_block(inode->i_sb, nr);
3735                         ext4_forget(handle, 0, inode, tbh, nr);
3736                 }
3737         }
3738
3739         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3740 }
3741
3742 /**
3743  * ext4_free_data - free a list of data blocks
3744  * @handle:     handle for this transaction
3745  * @inode:      inode we are dealing with
3746  * @this_bh:    indirect buffer_head which contains *@first and *@last
3747  * @first:      array of block numbers
3748  * @last:       points immediately past the end of array
3749  *
3750  * We are freeing all blocks refered from that array (numbers are stored as
3751  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3752  *
3753  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3754  * blocks are contiguous then releasing them at one time will only affect one
3755  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3756  * actually use a lot of journal space.
3757  *
3758  * @this_bh will be %NULL if @first and @last point into the inode's direct
3759  * block pointers.
3760  */
3761 static void ext4_free_data(handle_t *handle, struct inode *inode,
3762                            struct buffer_head *this_bh,
3763                            __le32 *first, __le32 *last)
3764 {
3765         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3766         unsigned long count = 0;            /* Number of blocks in the run */
3767         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3768                                                corresponding to
3769                                                block_to_free */
3770         ext4_fsblk_t nr;                    /* Current block # */
3771         __le32 *p;                          /* Pointer into inode/ind
3772                                                for current block */
3773         int err;
3774
3775         if (this_bh) {                          /* For indirect block */
3776                 BUFFER_TRACE(this_bh, "get_write_access");
3777                 err = ext4_journal_get_write_access(handle, this_bh);
3778                 /* Important: if we can't update the indirect pointers
3779                  * to the blocks, we can't free them. */
3780                 if (err)
3781                         return;
3782         }
3783
3784         for (p = first; p < last; p++) {
3785                 nr = le32_to_cpu(*p);
3786                 if (nr) {
3787                         /* accumulate blocks to free if they're contiguous */
3788                         if (count == 0) {
3789                                 block_to_free = nr;
3790                                 block_to_free_p = p;
3791                                 count = 1;
3792                         } else if (nr == block_to_free + count) {
3793                                 count++;
3794                         } else {
3795                                 ext4_clear_blocks(handle, inode, this_bh,
3796                                                   block_to_free,
3797                                                   count, block_to_free_p, p);
3798                                 block_to_free = nr;
3799                                 block_to_free_p = p;
3800                                 count = 1;
3801                         }
3802                 }
3803         }
3804
3805         if (count > 0)
3806                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3807                                   count, block_to_free_p, p);
3808
3809         if (this_bh) {
3810                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3811
3812                 /*
3813                  * The buffer head should have an attached journal head at this
3814                  * point. However, if the data is corrupted and an indirect
3815                  * block pointed to itself, it would have been detached when
3816                  * the block was cleared. Check for this instead of OOPSing.
3817                  */
3818                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3819                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3820                 else
3821                         ext4_error(inode->i_sb, __func__,
3822                                    "circular indirect block detected, "
3823                                    "inode=%lu, block=%llu",
3824                                    inode->i_ino,
3825                                    (unsigned long long) this_bh->b_blocknr);
3826         }
3827 }
3828
3829 /**
3830  *      ext4_free_branches - free an array of branches
3831  *      @handle: JBD handle for this transaction
3832  *      @inode: inode we are dealing with
3833  *      @parent_bh: the buffer_head which contains *@first and *@last
3834  *      @first: array of block numbers
3835  *      @last:  pointer immediately past the end of array
3836  *      @depth: depth of the branches to free
3837  *
3838  *      We are freeing all blocks refered from these branches (numbers are
3839  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3840  *      appropriately.
3841  */
3842 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3843                                struct buffer_head *parent_bh,
3844                                __le32 *first, __le32 *last, int depth)
3845 {
3846         ext4_fsblk_t nr;
3847         __le32 *p;
3848
3849         if (ext4_handle_is_aborted(handle))
3850                 return;
3851
3852         if (depth--) {
3853                 struct buffer_head *bh;
3854                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3855                 p = last;
3856                 while (--p >= first) {
3857                         nr = le32_to_cpu(*p);
3858                         if (!nr)
3859                                 continue;               /* A hole */
3860
3861                         /* Go read the buffer for the next level down */
3862                         bh = sb_bread(inode->i_sb, nr);
3863
3864                         /*
3865                          * A read failure? Report error and clear slot
3866                          * (should be rare).
3867                          */
3868                         if (!bh) {
3869                                 ext4_error(inode->i_sb, "ext4_free_branches",
3870                                            "Read failure, inode=%lu, block=%llu",
3871                                            inode->i_ino, nr);
3872                                 continue;
3873                         }
3874
3875                         /* This zaps the entire block.  Bottom up. */
3876                         BUFFER_TRACE(bh, "free child branches");
3877                         ext4_free_branches(handle, inode, bh,
3878                                         (__le32 *) bh->b_data,
3879                                         (__le32 *) bh->b_data + addr_per_block,
3880                                         depth);
3881
3882                         /*
3883                          * We've probably journalled the indirect block several
3884                          * times during the truncate.  But it's no longer
3885                          * needed and we now drop it from the transaction via
3886                          * jbd2_journal_revoke().
3887                          *
3888                          * That's easy if it's exclusively part of this
3889                          * transaction.  But if it's part of the committing
3890                          * transaction then jbd2_journal_forget() will simply
3891                          * brelse() it.  That means that if the underlying
3892                          * block is reallocated in ext4_get_block(),
3893                          * unmap_underlying_metadata() will find this block
3894                          * and will try to get rid of it.  damn, damn.
3895                          *
3896                          * If this block has already been committed to the
3897                          * journal, a revoke record will be written.  And
3898                          * revoke records must be emitted *before* clearing
3899                          * this block's bit in the bitmaps.
3900                          */
3901                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3902
3903                         /*
3904                          * Everything below this this pointer has been
3905                          * released.  Now let this top-of-subtree go.
3906                          *
3907                          * We want the freeing of this indirect block to be
3908                          * atomic in the journal with the updating of the
3909                          * bitmap block which owns it.  So make some room in
3910                          * the journal.
3911                          *
3912                          * We zero the parent pointer *after* freeing its
3913                          * pointee in the bitmaps, so if extend_transaction()
3914                          * for some reason fails to put the bitmap changes and
3915                          * the release into the same transaction, recovery
3916                          * will merely complain about releasing a free block,
3917                          * rather than leaking blocks.
3918                          */
3919                         if (ext4_handle_is_aborted(handle))
3920                                 return;
3921                         if (try_to_extend_transaction(handle, inode)) {
3922                                 ext4_mark_inode_dirty(handle, inode);
3923                                 ext4_journal_test_restart(handle, inode);
3924                         }
3925
3926                         ext4_free_blocks(handle, inode, nr, 1, 1);
3927
3928                         if (parent_bh) {
3929                                 /*
3930                                  * The block which we have just freed is
3931                                  * pointed to by an indirect block: journal it
3932                                  */
3933                                 BUFFER_TRACE(parent_bh, "get_write_access");
3934                                 if (!ext4_journal_get_write_access(handle,
3935                                                                    parent_bh)){
3936                                         *p = 0;
3937                                         BUFFER_TRACE(parent_bh,
3938                                         "call ext4_handle_dirty_metadata");
3939                                         ext4_handle_dirty_metadata(handle,
3940                                                                    inode,
3941                                                                    parent_bh);
3942                                 }
3943                         }
3944                 }
3945         } else {
3946                 /* We have reached the bottom of the tree. */
3947                 BUFFER_TRACE(parent_bh, "free data blocks");
3948                 ext4_free_data(handle, inode, parent_bh, first, last);
3949         }
3950 }
3951
3952 int ext4_can_truncate(struct inode *inode)
3953 {
3954         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3955                 return 0;
3956         if (S_ISREG(inode->i_mode))
3957                 return 1;
3958         if (S_ISDIR(inode->i_mode))
3959                 return 1;
3960         if (S_ISLNK(inode->i_mode))
3961                 return !ext4_inode_is_fast_symlink(inode);
3962         return 0;
3963 }
3964
3965 /*
3966  * ext4_truncate()
3967  *
3968  * We block out ext4_get_block() block instantiations across the entire
3969  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3970  * simultaneously on behalf of the same inode.
3971  *
3972  * As we work through the truncate and commmit bits of it to the journal there
3973  * is one core, guiding principle: the file's tree must always be consistent on
3974  * disk.  We must be able to restart the truncate after a crash.
3975  *
3976  * The file's tree may be transiently inconsistent in memory (although it
3977  * probably isn't), but whenever we close off and commit a journal transaction,
3978  * the contents of (the filesystem + the journal) must be consistent and
3979  * restartable.  It's pretty simple, really: bottom up, right to left (although
3980  * left-to-right works OK too).
3981  *
3982  * Note that at recovery time, journal replay occurs *before* the restart of
3983  * truncate against the orphan inode list.
3984  *
3985  * The committed inode has the new, desired i_size (which is the same as
3986  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3987  * that this inode's truncate did not complete and it will again call
3988  * ext4_truncate() to have another go.  So there will be instantiated blocks
3989  * to the right of the truncation point in a crashed ext4 filesystem.  But
3990  * that's fine - as long as they are linked from the inode, the post-crash
3991  * ext4_truncate() run will find them and release them.
3992  */
3993 void ext4_truncate(struct inode *inode)
3994 {
3995         handle_t *handle;
3996         struct ext4_inode_info *ei = EXT4_I(inode);
3997         __le32 *i_data = ei->i_data;
3998         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3999         struct address_space *mapping = inode->i_mapping;
4000         ext4_lblk_t offsets[4];
4001         Indirect chain[4];
4002         Indirect *partial;
4003         __le32 nr = 0;
4004         int n;
4005         ext4_lblk_t last_block;
4006         unsigned blocksize = inode->i_sb->s_blocksize;
4007
4008         if (!ext4_can_truncate(inode))
4009                 return;
4010
4011         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4012                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4013
4014         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4015                 ext4_ext_truncate(inode);
4016                 return;
4017         }
4018
4019         handle = start_transaction(inode);
4020         if (IS_ERR(handle))
4021                 return;         /* AKPM: return what? */
4022
4023         last_block = (inode->i_size + blocksize-1)
4024                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4025
4026         if (inode->i_size & (blocksize - 1))
4027                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4028                         goto out_stop;
4029
4030         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4031         if (n == 0)
4032                 goto out_stop;  /* error */
4033
4034         /*
4035          * OK.  This truncate is going to happen.  We add the inode to the
4036          * orphan list, so that if this truncate spans multiple transactions,
4037          * and we crash, we will resume the truncate when the filesystem
4038          * recovers.  It also marks the inode dirty, to catch the new size.
4039          *
4040          * Implication: the file must always be in a sane, consistent
4041          * truncatable state while each transaction commits.
4042          */
4043         if (ext4_orphan_add(handle, inode))
4044                 goto out_stop;
4045
4046         /*
4047          * From here we block out all ext4_get_block() callers who want to
4048          * modify the block allocation tree.
4049          */
4050         down_write(&ei->i_data_sem);
4051
4052         ext4_discard_preallocations(inode);
4053
4054         /*
4055          * The orphan list entry will now protect us from any crash which
4056          * occurs before the truncate completes, so it is now safe to propagate
4057          * the new, shorter inode size (held for now in i_size) into the
4058          * on-disk inode. We do this via i_disksize, which is the value which
4059          * ext4 *really* writes onto the disk inode.
4060          */
4061         ei->i_disksize = inode->i_size;
4062
4063         if (n == 1) {           /* direct blocks */
4064                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4065                                i_data + EXT4_NDIR_BLOCKS);
4066                 goto do_indirects;
4067         }
4068
4069         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4070         /* Kill the top of shared branch (not detached) */
4071         if (nr) {
4072                 if (partial == chain) {
4073                         /* Shared branch grows from the inode */
4074                         ext4_free_branches(handle, inode, NULL,
4075                                            &nr, &nr+1, (chain+n-1) - partial);
4076                         *partial->p = 0;
4077                         /*
4078                          * We mark the inode dirty prior to restart,
4079                          * and prior to stop.  No need for it here.
4080                          */
4081                 } else {
4082                         /* Shared branch grows from an indirect block */
4083                         BUFFER_TRACE(partial->bh, "get_write_access");
4084                         ext4_free_branches(handle, inode, partial->bh,
4085                                         partial->p,
4086                                         partial->p+1, (chain+n-1) - partial);
4087                 }
4088         }
4089         /* Clear the ends of indirect blocks on the shared branch */
4090         while (partial > chain) {
4091                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4092                                    (__le32*)partial->bh->b_data+addr_per_block,
4093                                    (chain+n-1) - partial);
4094                 BUFFER_TRACE(partial->bh, "call brelse");
4095                 brelse (partial->bh);
4096                 partial--;
4097         }
4098 do_indirects:
4099         /* Kill the remaining (whole) subtrees */
4100         switch (offsets[0]) {
4101         default:
4102                 nr = i_data[EXT4_IND_BLOCK];
4103                 if (nr) {
4104                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4105                         i_data[EXT4_IND_BLOCK] = 0;
4106                 }
4107         case EXT4_IND_BLOCK:
4108                 nr = i_data[EXT4_DIND_BLOCK];
4109                 if (nr) {
4110                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4111                         i_data[EXT4_DIND_BLOCK] = 0;
4112                 }
4113         case EXT4_DIND_BLOCK:
4114                 nr = i_data[EXT4_TIND_BLOCK];
4115                 if (nr) {
4116                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4117                         i_data[EXT4_TIND_BLOCK] = 0;
4118                 }
4119         case EXT4_TIND_BLOCK:
4120                 ;
4121         }
4122
4123         up_write(&ei->i_data_sem);
4124         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4125         ext4_mark_inode_dirty(handle, inode);
4126
4127         /*
4128          * In a multi-transaction truncate, we only make the final transaction
4129          * synchronous
4130          */
4131         if (IS_SYNC(inode))
4132                 ext4_handle_sync(handle);
4133 out_stop:
4134         /*
4135          * If this was a simple ftruncate(), and the file will remain alive
4136          * then we need to clear up the orphan record which we created above.
4137          * However, if this was a real unlink then we were called by
4138          * ext4_delete_inode(), and we allow that function to clean up the
4139          * orphan info for us.
4140          */
4141         if (inode->i_nlink)
4142                 ext4_orphan_del(handle, inode);
4143
4144         ext4_journal_stop(handle);
4145 }
4146
4147 /*
4148  * ext4_get_inode_loc returns with an extra refcount against the inode's
4149  * underlying buffer_head on success. If 'in_mem' is true, we have all
4150  * data in memory that is needed to recreate the on-disk version of this
4151  * inode.
4152  */
4153 static int __ext4_get_inode_loc(struct inode *inode,
4154                                 struct ext4_iloc *iloc, int in_mem)
4155 {
4156         struct ext4_group_desc  *gdp;
4157         struct buffer_head      *bh;
4158         struct super_block      *sb = inode->i_sb;
4159         ext4_fsblk_t            block;
4160         int                     inodes_per_block, inode_offset;
4161
4162         iloc->bh = NULL;
4163         if (!ext4_valid_inum(sb, inode->i_ino))
4164                 return -EIO;
4165
4166         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4167         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4168         if (!gdp)
4169                 return -EIO;
4170
4171         /*
4172          * Figure out the offset within the block group inode table
4173          */
4174         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4175         inode_offset = ((inode->i_ino - 1) %
4176                         EXT4_INODES_PER_GROUP(sb));
4177         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4178         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4179
4180         bh = sb_getblk(sb, block);
4181         if (!bh) {
4182                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4183                            "inode block - inode=%lu, block=%llu",
4184                            inode->i_ino, block);
4185                 return -EIO;
4186         }
4187         if (!buffer_uptodate(bh)) {
4188                 lock_buffer(bh);
4189
4190                 /*
4191                  * If the buffer has the write error flag, we have failed
4192                  * to write out another inode in the same block.  In this
4193                  * case, we don't have to read the block because we may
4194                  * read the old inode data successfully.
4195                  */
4196                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4197                         set_buffer_uptodate(bh);
4198
4199                 if (buffer_uptodate(bh)) {
4200                         /* someone brought it uptodate while we waited */
4201                         unlock_buffer(bh);
4202                         goto has_buffer;
4203                 }
4204
4205                 /*
4206                  * If we have all information of the inode in memory and this
4207                  * is the only valid inode in the block, we need not read the
4208                  * block.
4209                  */
4210                 if (in_mem) {
4211                         struct buffer_head *bitmap_bh;
4212                         int i, start;
4213
4214                         start = inode_offset & ~(inodes_per_block - 1);
4215
4216                         /* Is the inode bitmap in cache? */
4217                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4218                         if (!bitmap_bh)
4219                                 goto make_io;
4220
4221                         /*
4222                          * If the inode bitmap isn't in cache then the
4223                          * optimisation may end up performing two reads instead
4224                          * of one, so skip it.
4225                          */
4226                         if (!buffer_uptodate(bitmap_bh)) {
4227                                 brelse(bitmap_bh);
4228                                 goto make_io;
4229                         }
4230                         for (i = start; i < start + inodes_per_block; i++) {
4231                                 if (i == inode_offset)
4232                                         continue;
4233                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4234                                         break;
4235                         }
4236                         brelse(bitmap_bh);
4237                         if (i == start + inodes_per_block) {
4238                                 /* all other inodes are free, so skip I/O */
4239                                 memset(bh->b_data, 0, bh->b_size);
4240                                 set_buffer_uptodate(bh);
4241                                 unlock_buffer(bh);
4242                                 goto has_buffer;
4243                         }
4244                 }
4245
4246 make_io:
4247                 /*
4248                  * If we need to do any I/O, try to pre-readahead extra
4249                  * blocks from the inode table.
4250                  */
4251                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4252                         ext4_fsblk_t b, end, table;
4253                         unsigned num;
4254
4255                         table = ext4_inode_table(sb, gdp);
4256                         /* s_inode_readahead_blks is always a power of 2 */
4257                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4258                         if (table > b)
4259                                 b = table;
4260                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4261                         num = EXT4_INODES_PER_GROUP(sb);
4262                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4263                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4264                                 num -= ext4_itable_unused_count(sb, gdp);
4265                         table += num / inodes_per_block;
4266                         if (end > table)
4267                                 end = table;
4268                         while (b <= end)
4269                                 sb_breadahead(sb, b++);
4270                 }
4271
4272                 /*
4273                  * There are other valid inodes in the buffer, this inode
4274                  * has in-inode xattrs, or we don't have this inode in memory.
4275                  * Read the block from disk.
4276                  */
4277                 get_bh(bh);
4278                 bh->b_end_io = end_buffer_read_sync;
4279                 submit_bh(READ_META, bh);
4280                 wait_on_buffer(bh);
4281                 if (!buffer_uptodate(bh)) {
4282                         ext4_error(sb, __func__,
4283                                    "unable to read inode block - inode=%lu, "
4284                                    "block=%llu", inode->i_ino, block);
4285                         brelse(bh);
4286                         return -EIO;
4287                 }
4288         }
4289 has_buffer:
4290         iloc->bh = bh;
4291         return 0;
4292 }
4293
4294 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4295 {
4296         /* We have all inode data except xattrs in memory here. */
4297         return __ext4_get_inode_loc(inode, iloc,
4298                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4299 }
4300
4301 void ext4_set_inode_flags(struct inode *inode)
4302 {
4303         unsigned int flags = EXT4_I(inode)->i_flags;
4304
4305         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4306         if (flags & EXT4_SYNC_FL)
4307                 inode->i_flags |= S_SYNC;
4308         if (flags & EXT4_APPEND_FL)
4309                 inode->i_flags |= S_APPEND;
4310         if (flags & EXT4_IMMUTABLE_FL)
4311                 inode->i_flags |= S_IMMUTABLE;
4312         if (flags & EXT4_NOATIME_FL)
4313                 inode->i_flags |= S_NOATIME;
4314         if (flags & EXT4_DIRSYNC_FL)
4315                 inode->i_flags |= S_DIRSYNC;
4316 }
4317
4318 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4319 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4320 {
4321         unsigned int flags = ei->vfs_inode.i_flags;
4322
4323         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4324                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4325         if (flags & S_SYNC)
4326                 ei->i_flags |= EXT4_SYNC_FL;
4327         if (flags & S_APPEND)
4328                 ei->i_flags |= EXT4_APPEND_FL;
4329         if (flags & S_IMMUTABLE)
4330                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4331         if (flags & S_NOATIME)
4332                 ei->i_flags |= EXT4_NOATIME_FL;
4333         if (flags & S_DIRSYNC)
4334                 ei->i_flags |= EXT4_DIRSYNC_FL;
4335 }
4336 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4337                                         struct ext4_inode_info *ei)
4338 {
4339         blkcnt_t i_blocks ;
4340         struct inode *inode = &(ei->vfs_inode);
4341         struct super_block *sb = inode->i_sb;
4342
4343         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4344                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4345                 /* we are using combined 48 bit field */
4346                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4347                                         le32_to_cpu(raw_inode->i_blocks_lo);
4348                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4349                         /* i_blocks represent file system block size */
4350                         return i_blocks  << (inode->i_blkbits - 9);
4351                 } else {
4352                         return i_blocks;
4353                 }
4354         } else {
4355                 return le32_to_cpu(raw_inode->i_blocks_lo);
4356         }
4357 }
4358
4359 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4360 {
4361         struct ext4_iloc iloc;
4362         struct ext4_inode *raw_inode;
4363         struct ext4_inode_info *ei;
4364         struct buffer_head *bh;
4365         struct inode *inode;
4366         long ret;
4367         int block;
4368
4369         inode = iget_locked(sb, ino);
4370         if (!inode)
4371                 return ERR_PTR(-ENOMEM);
4372         if (!(inode->i_state & I_NEW))
4373                 return inode;
4374
4375         ei = EXT4_I(inode);
4376 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4377         ei->i_acl = EXT4_ACL_NOT_CACHED;
4378         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4379 #endif
4380
4381         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4382         if (ret < 0)
4383                 goto bad_inode;
4384         bh = iloc.bh;
4385         raw_inode = ext4_raw_inode(&iloc);
4386         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4387         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4388         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4389         if (!(test_opt(inode->i_sb, NO_UID32))) {
4390                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4391                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4392         }
4393         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4394
4395         ei->i_state = 0;
4396         ei->i_dir_start_lookup = 0;
4397         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4398         /* We now have enough fields to check if the inode was active or not.
4399          * This is needed because nfsd might try to access dead inodes
4400          * the test is that same one that e2fsck uses
4401          * NeilBrown 1999oct15
4402          */
4403         if (inode->i_nlink == 0) {
4404                 if (inode->i_mode == 0 ||
4405                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4406                         /* this inode is deleted */
4407                         brelse(bh);
4408                         ret = -ESTALE;
4409                         goto bad_inode;
4410                 }
4411                 /* The only unlinked inodes we let through here have
4412                  * valid i_mode and are being read by the orphan
4413                  * recovery code: that's fine, we're about to complete
4414                  * the process of deleting those. */
4415         }
4416         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4417         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4418         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4419         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4420                 ei->i_file_acl |=
4421                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4422         inode->i_size = ext4_isize(raw_inode);
4423         ei->i_disksize = inode->i_size;
4424         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4425         ei->i_block_group = iloc.block_group;
4426         ei->i_last_alloc_group = ~0;
4427         /*
4428          * NOTE! The in-memory inode i_data array is in little-endian order
4429          * even on big-endian machines: we do NOT byteswap the block numbers!
4430          */
4431         for (block = 0; block < EXT4_N_BLOCKS; block++)
4432                 ei->i_data[block] = raw_inode->i_block[block];
4433         INIT_LIST_HEAD(&ei->i_orphan);
4434
4435         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4436                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4437                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4438                     EXT4_INODE_SIZE(inode->i_sb)) {
4439                         brelse(bh);
4440                         ret = -EIO;
4441                         goto bad_inode;
4442                 }
4443                 if (ei->i_extra_isize == 0) {
4444                         /* The extra space is currently unused. Use it. */
4445                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4446                                             EXT4_GOOD_OLD_INODE_SIZE;
4447                 } else {
4448                         __le32 *magic = (void *)raw_inode +
4449                                         EXT4_GOOD_OLD_INODE_SIZE +
4450                                         ei->i_extra_isize;
4451                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4452                                  ei->i_state |= EXT4_STATE_XATTR;
4453                 }
4454         } else
4455                 ei->i_extra_isize = 0;
4456
4457         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461
4462         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4463         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4464                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4465                         inode->i_version |=
4466                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4467         }
4468
4469         ret = 0;
4470         if (ei->i_file_acl &&
4471             ((ei->i_file_acl < 
4472               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4473                EXT4_SB(sb)->s_gdb_count)) ||
4474              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4475                 ext4_error(sb, __func__,
4476                            "bad extended attribute block %llu in inode #%lu",
4477                            ei->i_file_acl, inode->i_ino);
4478                 ret = -EIO;
4479                 goto bad_inode;
4480         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4481                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4482                     (S_ISLNK(inode->i_mode) &&
4483                      !ext4_inode_is_fast_symlink(inode)))
4484                         /* Validate extent which is part of inode */
4485                         ret = ext4_ext_check_inode(inode);
4486         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4487                    (S_ISLNK(inode->i_mode) &&
4488                     !ext4_inode_is_fast_symlink(inode))) {
4489                 /* Validate block references which are part of inode */
4490                 ret = ext4_check_inode_blockref(inode);
4491         }
4492         if (ret) {
4493                 brelse(bh);
4494                 goto bad_inode;
4495         }
4496
4497         if (S_ISREG(inode->i_mode)) {
4498                 inode->i_op = &ext4_file_inode_operations;
4499                 inode->i_fop = &ext4_file_operations;
4500                 ext4_set_aops(inode);
4501         } else if (S_ISDIR(inode->i_mode)) {
4502                 inode->i_op = &ext4_dir_inode_operations;
4503                 inode->i_fop = &ext4_dir_operations;
4504         } else if (S_ISLNK(inode->i_mode)) {
4505                 if (ext4_inode_is_fast_symlink(inode)) {
4506                         inode->i_op = &ext4_fast_symlink_inode_operations;
4507                         nd_terminate_link(ei->i_data, inode->i_size,
4508                                 sizeof(ei->i_data) - 1);
4509                 } else {
4510                         inode->i_op = &ext4_symlink_inode_operations;
4511                         ext4_set_aops(inode);
4512                 }
4513         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4514               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4515                 inode->i_op = &ext4_special_inode_operations;
4516                 if (raw_inode->i_block[0])
4517                         init_special_inode(inode, inode->i_mode,
4518                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4519                 else
4520                         init_special_inode(inode, inode->i_mode,
4521                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4522         } else {
4523                 brelse(bh);
4524                 ret = -EIO;
4525                 ext4_error(inode->i_sb, __func__, 
4526                            "bogus i_mode (%o) for inode=%lu",
4527                            inode->i_mode, inode->i_ino);
4528                 goto bad_inode;
4529         }
4530         brelse(iloc.bh);
4531         ext4_set_inode_flags(inode);
4532         unlock_new_inode(inode);
4533         return inode;
4534
4535 bad_inode:
4536         iget_failed(inode);
4537         return ERR_PTR(ret);
4538 }
4539
4540 static int ext4_inode_blocks_set(handle_t *handle,
4541                                 struct ext4_inode *raw_inode,
4542                                 struct ext4_inode_info *ei)
4543 {
4544         struct inode *inode = &(ei->vfs_inode);
4545         u64 i_blocks = inode->i_blocks;
4546         struct super_block *sb = inode->i_sb;
4547
4548         if (i_blocks <= ~0U) {
4549                 /*
4550                  * i_blocks can be represnted in a 32 bit variable
4551                  * as multiple of 512 bytes
4552                  */
4553                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4554                 raw_inode->i_blocks_high = 0;
4555                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4556                 return 0;
4557         }
4558         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4559                 return -EFBIG;
4560
4561         if (i_blocks <= 0xffffffffffffULL) {
4562                 /*
4563                  * i_blocks can be represented in a 48 bit variable
4564                  * as multiple of 512 bytes
4565                  */
4566                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4567                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4568                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4569         } else {
4570                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4571                 /* i_block is stored in file system block size */
4572                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4573                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4574                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4575         }
4576         return 0;
4577 }
4578
4579 /*
4580  * Post the struct inode info into an on-disk inode location in the
4581  * buffer-cache.  This gobbles the caller's reference to the
4582  * buffer_head in the inode location struct.
4583  *
4584  * The caller must have write access to iloc->bh.
4585  */
4586 static int ext4_do_update_inode(handle_t *handle,
4587                                 struct inode *inode,
4588                                 struct ext4_iloc *iloc)
4589 {
4590         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4591         struct ext4_inode_info *ei = EXT4_I(inode);
4592         struct buffer_head *bh = iloc->bh;
4593         int err = 0, rc, block;
4594
4595         /* For fields not not tracking in the in-memory inode,
4596          * initialise them to zero for new inodes. */
4597         if (ei->i_state & EXT4_STATE_NEW)
4598                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4599
4600         ext4_get_inode_flags(ei);
4601         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4602         if (!(test_opt(inode->i_sb, NO_UID32))) {
4603                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4604                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4605 /*
4606  * Fix up interoperability with old kernels. Otherwise, old inodes get
4607  * re-used with the upper 16 bits of the uid/gid intact
4608  */
4609                 if (!ei->i_dtime) {
4610                         raw_inode->i_uid_high =
4611                                 cpu_to_le16(high_16_bits(inode->i_uid));
4612                         raw_inode->i_gid_high =
4613                                 cpu_to_le16(high_16_bits(inode->i_gid));
4614                 } else {
4615                         raw_inode->i_uid_high = 0;
4616                         raw_inode->i_gid_high = 0;
4617                 }
4618         } else {
4619                 raw_inode->i_uid_low =
4620                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4621                 raw_inode->i_gid_low =
4622                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4623                 raw_inode->i_uid_high = 0;
4624                 raw_inode->i_gid_high = 0;
4625         }
4626         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4627
4628         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4629         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4630         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4631         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4632
4633         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4634                 goto out_brelse;
4635         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4636         /* clear the migrate flag in the raw_inode */
4637         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4638         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4639             cpu_to_le32(EXT4_OS_HURD))
4640                 raw_inode->i_file_acl_high =
4641                         cpu_to_le16(ei->i_file_acl >> 32);
4642         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4643         ext4_isize_set(raw_inode, ei->i_disksize);
4644         if (ei->i_disksize > 0x7fffffffULL) {
4645                 struct super_block *sb = inode->i_sb;
4646                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4647                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4648                                 EXT4_SB(sb)->s_es->s_rev_level ==
4649                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4650                         /* If this is the first large file
4651                          * created, add a flag to the superblock.
4652                          */
4653                         err = ext4_journal_get_write_access(handle,
4654                                         EXT4_SB(sb)->s_sbh);
4655                         if (err)
4656                                 goto out_brelse;
4657                         ext4_update_dynamic_rev(sb);
4658                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4659                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4660                         sb->s_dirt = 1;
4661                         ext4_handle_sync(handle);
4662                         err = ext4_handle_dirty_metadata(handle, inode,
4663                                         EXT4_SB(sb)->s_sbh);
4664                 }
4665         }
4666         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4667         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4668                 if (old_valid_dev(inode->i_rdev)) {
4669                         raw_inode->i_block[0] =
4670                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4671                         raw_inode->i_block[1] = 0;
4672                 } else {
4673                         raw_inode->i_block[0] = 0;
4674                         raw_inode->i_block[1] =
4675                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4676                         raw_inode->i_block[2] = 0;
4677                 }
4678         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4679                 raw_inode->i_block[block] = ei->i_data[block];
4680
4681         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4682         if (ei->i_extra_isize) {
4683                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4684                         raw_inode->i_version_hi =
4685                         cpu_to_le32(inode->i_version >> 32);
4686                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4687         }
4688
4689         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4690         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4691         if (!err)
4692                 err = rc;
4693         ei->i_state &= ~EXT4_STATE_NEW;
4694
4695 out_brelse:
4696         brelse(bh);
4697         ext4_std_error(inode->i_sb, err);
4698         return err;
4699 }
4700
4701 /*
4702  * ext4_write_inode()
4703  *
4704  * We are called from a few places:
4705  *
4706  * - Within generic_file_write() for O_SYNC files.
4707  *   Here, there will be no transaction running. We wait for any running
4708  *   trasnaction to commit.
4709  *
4710  * - Within sys_sync(), kupdate and such.
4711  *   We wait on commit, if tol to.
4712  *
4713  * - Within prune_icache() (PF_MEMALLOC == true)
4714  *   Here we simply return.  We can't afford to block kswapd on the
4715  *   journal commit.
4716  *
4717  * In all cases it is actually safe for us to return without doing anything,
4718  * because the inode has been copied into a raw inode buffer in
4719  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4720  * knfsd.
4721  *
4722  * Note that we are absolutely dependent upon all inode dirtiers doing the
4723  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4724  * which we are interested.
4725  *
4726  * It would be a bug for them to not do this.  The code:
4727  *
4728  *      mark_inode_dirty(inode)
4729  *      stuff();
4730  *      inode->i_size = expr;
4731  *
4732  * is in error because a kswapd-driven write_inode() could occur while
4733  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4734  * will no longer be on the superblock's dirty inode list.
4735  */
4736 int ext4_write_inode(struct inode *inode, int wait)
4737 {
4738         if (current->flags & PF_MEMALLOC)
4739                 return 0;
4740
4741         if (ext4_journal_current_handle()) {
4742                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4743                 dump_stack();
4744                 return -EIO;
4745         }
4746
4747         if (!wait)
4748                 return 0;
4749
4750         return ext4_force_commit(inode->i_sb);
4751 }
4752
4753 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4754 {
4755         int err = 0;
4756
4757         mark_buffer_dirty(bh);
4758         if (inode && inode_needs_sync(inode)) {
4759                 sync_dirty_buffer(bh);
4760                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4761                         ext4_error(inode->i_sb, __func__,
4762                                    "IO error syncing inode, "
4763                                    "inode=%lu, block=%llu",
4764                                    inode->i_ino,
4765                                    (unsigned long long)bh->b_blocknr);
4766                         err = -EIO;
4767                 }
4768         }
4769         return err;
4770 }
4771
4772 /*
4773  * ext4_setattr()
4774  *
4775  * Called from notify_change.
4776  *
4777  * We want to trap VFS attempts to truncate the file as soon as
4778  * possible.  In particular, we want to make sure that when the VFS
4779  * shrinks i_size, we put the inode on the orphan list and modify
4780  * i_disksize immediately, so that during the subsequent flushing of
4781  * dirty pages and freeing of disk blocks, we can guarantee that any
4782  * commit will leave the blocks being flushed in an unused state on
4783  * disk.  (On recovery, the inode will get truncated and the blocks will
4784  * be freed, so we have a strong guarantee that no future commit will
4785  * leave these blocks visible to the user.)
4786  *
4787  * Another thing we have to assure is that if we are in ordered mode
4788  * and inode is still attached to the committing transaction, we must
4789  * we start writeout of all the dirty pages which are being truncated.
4790  * This way we are sure that all the data written in the previous
4791  * transaction are already on disk (truncate waits for pages under
4792  * writeback).
4793  *
4794  * Called with inode->i_mutex down.
4795  */
4796 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4797 {
4798         struct inode *inode = dentry->d_inode;
4799         int error, rc = 0;
4800         const unsigned int ia_valid = attr->ia_valid;
4801
4802         error = inode_change_ok(inode, attr);
4803         if (error)
4804                 return error;
4805
4806         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4807                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4808                 handle_t *handle;
4809
4810                 /* (user+group)*(old+new) structure, inode write (sb,
4811                  * inode block, ? - but truncate inode update has it) */
4812                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4813                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4814                 if (IS_ERR(handle)) {
4815                         error = PTR_ERR(handle);
4816                         goto err_out;
4817                 }
4818                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4819                 if (error) {
4820                         ext4_journal_stop(handle);
4821                         return error;
4822                 }
4823                 /* Update corresponding info in inode so that everything is in
4824                  * one transaction */
4825                 if (attr->ia_valid & ATTR_UID)
4826                         inode->i_uid = attr->ia_uid;
4827                 if (attr->ia_valid & ATTR_GID)
4828                         inode->i_gid = attr->ia_gid;
4829                 error = ext4_mark_inode_dirty(handle, inode);
4830                 ext4_journal_stop(handle);
4831         }
4832
4833         if (attr->ia_valid & ATTR_SIZE) {
4834                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4835                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4836
4837                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4838                                 error = -EFBIG;
4839                                 goto err_out;
4840                         }
4841                 }
4842         }
4843
4844         if (S_ISREG(inode->i_mode) &&
4845             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4846                 handle_t *handle;
4847
4848                 handle = ext4_journal_start(inode, 3);
4849                 if (IS_ERR(handle)) {
4850                         error = PTR_ERR(handle);
4851                         goto err_out;
4852                 }
4853
4854                 error = ext4_orphan_add(handle, inode);
4855                 EXT4_I(inode)->i_disksize = attr->ia_size;
4856                 rc = ext4_mark_inode_dirty(handle, inode);
4857                 if (!error)
4858                         error = rc;
4859                 ext4_journal_stop(handle);
4860
4861                 if (ext4_should_order_data(inode)) {
4862                         error = ext4_begin_ordered_truncate(inode,
4863                                                             attr->ia_size);
4864                         if (error) {
4865                                 /* Do as much error cleanup as possible */
4866                                 handle = ext4_journal_start(inode, 3);
4867                                 if (IS_ERR(handle)) {
4868                                         ext4_orphan_del(NULL, inode);
4869                                         goto err_out;
4870                                 }
4871                                 ext4_orphan_del(handle, inode);
4872                                 ext4_journal_stop(handle);
4873                                 goto err_out;
4874                         }
4875                 }
4876         }
4877
4878         rc = inode_setattr(inode, attr);
4879
4880         /* If inode_setattr's call to ext4_truncate failed to get a
4881          * transaction handle at all, we need to clean up the in-core
4882          * orphan list manually. */
4883         if (inode->i_nlink)
4884                 ext4_orphan_del(NULL, inode);
4885
4886         if (!rc && (ia_valid & ATTR_MODE))
4887                 rc = ext4_acl_chmod(inode);
4888
4889 err_out:
4890         ext4_std_error(inode->i_sb, error);
4891         if (!error)
4892                 error = rc;
4893         return error;
4894 }
4895
4896 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4897                  struct kstat *stat)
4898 {
4899         struct inode *inode;
4900         unsigned long delalloc_blocks;
4901
4902         inode = dentry->d_inode;
4903         generic_fillattr(inode, stat);
4904
4905         /*
4906          * We can't update i_blocks if the block allocation is delayed
4907          * otherwise in the case of system crash before the real block
4908          * allocation is done, we will have i_blocks inconsistent with
4909          * on-disk file blocks.
4910          * We always keep i_blocks updated together with real
4911          * allocation. But to not confuse with user, stat
4912          * will return the blocks that include the delayed allocation
4913          * blocks for this file.
4914          */
4915         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4916         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4917         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4918
4919         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4920         return 0;
4921 }
4922
4923 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4924                                       int chunk)
4925 {
4926         int indirects;
4927
4928         /* if nrblocks are contiguous */
4929         if (chunk) {
4930                 /*
4931                  * With N contiguous data blocks, it need at most
4932                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4933                  * 2 dindirect blocks
4934                  * 1 tindirect block
4935                  */
4936                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4937                 return indirects + 3;
4938         }
4939         /*
4940          * if nrblocks are not contiguous, worse case, each block touch
4941          * a indirect block, and each indirect block touch a double indirect
4942          * block, plus a triple indirect block
4943          */
4944         indirects = nrblocks * 2 + 1;
4945         return indirects;
4946 }
4947
4948 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4949 {
4950         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4951                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4952         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4953 }
4954
4955 /*
4956  * Account for index blocks, block groups bitmaps and block group
4957  * descriptor blocks if modify datablocks and index blocks
4958  * worse case, the indexs blocks spread over different block groups
4959  *
4960  * If datablocks are discontiguous, they are possible to spread over
4961  * different block groups too. If they are contiugous, with flexbg,
4962  * they could still across block group boundary.
4963  *
4964  * Also account for superblock, inode, quota and xattr blocks
4965  */
4966 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4967 {
4968         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4969         int gdpblocks;
4970         int idxblocks;
4971         int ret = 0;
4972
4973         /*
4974          * How many index blocks need to touch to modify nrblocks?
4975          * The "Chunk" flag indicating whether the nrblocks is
4976          * physically contiguous on disk
4977          *
4978          * For Direct IO and fallocate, they calls get_block to allocate
4979          * one single extent at a time, so they could set the "Chunk" flag
4980          */
4981         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4982
4983         ret = idxblocks;
4984
4985         /*
4986          * Now let's see how many group bitmaps and group descriptors need
4987          * to account
4988          */
4989         groups = idxblocks;
4990         if (chunk)
4991                 groups += 1;
4992         else
4993                 groups += nrblocks;
4994
4995         gdpblocks = groups;
4996         if (groups > ngroups)
4997                 groups = ngroups;
4998         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4999                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5000
5001         /* bitmaps and block group descriptor blocks */
5002         ret += groups + gdpblocks;
5003
5004         /* Blocks for super block, inode, quota and xattr blocks */
5005         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5006
5007         return ret;
5008 }
5009
5010 /*
5011  * Calulate the total number of credits to reserve to fit
5012  * the modification of a single pages into a single transaction,
5013  * which may include multiple chunks of block allocations.
5014  *
5015  * This could be called via ext4_write_begin()
5016  *
5017  * We need to consider the worse case, when
5018  * one new block per extent.
5019  */
5020 int ext4_writepage_trans_blocks(struct inode *inode)
5021 {
5022         int bpp = ext4_journal_blocks_per_page(inode);
5023         int ret;
5024
5025         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5026
5027         /* Account for data blocks for journalled mode */
5028         if (ext4_should_journal_data(inode))
5029                 ret += bpp;
5030         return ret;
5031 }
5032
5033 /*
5034  * Calculate the journal credits for a chunk of data modification.
5035  *
5036  * This is called from DIO, fallocate or whoever calling
5037  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
5038  *
5039  * journal buffers for data blocks are not included here, as DIO
5040  * and fallocate do no need to journal data buffers.
5041  */
5042 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5043 {
5044         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5045 }
5046
5047 /*
5048  * The caller must have previously called ext4_reserve_inode_write().
5049  * Give this, we know that the caller already has write access to iloc->bh.
5050  */
5051 int ext4_mark_iloc_dirty(handle_t *handle,
5052                 struct inode *inode, struct ext4_iloc *iloc)
5053 {
5054         int err = 0;
5055
5056         if (test_opt(inode->i_sb, I_VERSION))
5057                 inode_inc_iversion(inode);
5058
5059         /* the do_update_inode consumes one bh->b_count */
5060         get_bh(iloc->bh);
5061
5062         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5063         err = ext4_do_update_inode(handle, inode, iloc);
5064         put_bh(iloc->bh);
5065         return err;
5066 }
5067
5068 /*
5069  * On success, We end up with an outstanding reference count against
5070  * iloc->bh.  This _must_ be cleaned up later.
5071  */
5072
5073 int
5074 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5075                          struct ext4_iloc *iloc)
5076 {
5077         int err;
5078
5079         err = ext4_get_inode_loc(inode, iloc);
5080         if (!err) {
5081                 BUFFER_TRACE(iloc->bh, "get_write_access");
5082                 err = ext4_journal_get_write_access(handle, iloc->bh);
5083                 if (err) {
5084                         brelse(iloc->bh);
5085                         iloc->bh = NULL;
5086                 }
5087         }
5088         ext4_std_error(inode->i_sb, err);
5089         return err;
5090 }
5091
5092 /*
5093  * Expand an inode by new_extra_isize bytes.
5094  * Returns 0 on success or negative error number on failure.
5095  */
5096 static int ext4_expand_extra_isize(struct inode *inode,
5097                                    unsigned int new_extra_isize,
5098                                    struct ext4_iloc iloc,
5099                                    handle_t *handle)
5100 {
5101         struct ext4_inode *raw_inode;
5102         struct ext4_xattr_ibody_header *header;
5103         struct ext4_xattr_entry *entry;
5104
5105         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5106                 return 0;
5107
5108         raw_inode = ext4_raw_inode(&iloc);
5109
5110         header = IHDR(inode, raw_inode);
5111         entry = IFIRST(header);
5112
5113         /* No extended attributes present */
5114         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5115                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5116                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5117                         new_extra_isize);
5118                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5119                 return 0;
5120         }
5121
5122         /* try to expand with EAs present */
5123         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5124                                           raw_inode, handle);
5125 }
5126
5127 /*
5128  * What we do here is to mark the in-core inode as clean with respect to inode
5129  * dirtiness (it may still be data-dirty).
5130  * This means that the in-core inode may be reaped by prune_icache
5131  * without having to perform any I/O.  This is a very good thing,
5132  * because *any* task may call prune_icache - even ones which
5133  * have a transaction open against a different journal.
5134  *
5135  * Is this cheating?  Not really.  Sure, we haven't written the
5136  * inode out, but prune_icache isn't a user-visible syncing function.
5137  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5138  * we start and wait on commits.
5139  *
5140  * Is this efficient/effective?  Well, we're being nice to the system
5141  * by cleaning up our inodes proactively so they can be reaped
5142  * without I/O.  But we are potentially leaving up to five seconds'
5143  * worth of inodes floating about which prune_icache wants us to
5144  * write out.  One way to fix that would be to get prune_icache()
5145  * to do a write_super() to free up some memory.  It has the desired
5146  * effect.
5147  */
5148 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5149 {
5150         struct ext4_iloc iloc;
5151         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5152         static unsigned int mnt_count;
5153         int err, ret;
5154
5155         might_sleep();
5156         err = ext4_reserve_inode_write(handle, inode, &iloc);
5157         if (ext4_handle_valid(handle) &&
5158             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5159             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5160                 /*
5161                  * We need extra buffer credits since we may write into EA block
5162                  * with this same handle. If journal_extend fails, then it will
5163                  * only result in a minor loss of functionality for that inode.
5164                  * If this is felt to be critical, then e2fsck should be run to
5165                  * force a large enough s_min_extra_isize.
5166                  */
5167                 if ((jbd2_journal_extend(handle,
5168                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5169                         ret = ext4_expand_extra_isize(inode,
5170                                                       sbi->s_want_extra_isize,
5171                                                       iloc, handle);
5172                         if (ret) {
5173                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5174                                 if (mnt_count !=
5175                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5176                                         ext4_warning(inode->i_sb, __func__,
5177                                         "Unable to expand inode %lu. Delete"
5178                                         " some EAs or run e2fsck.",
5179                                         inode->i_ino);
5180                                         mnt_count =
5181                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5182                                 }
5183                         }
5184                 }
5185         }
5186         if (!err)
5187                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5188         return err;
5189 }
5190
5191 /*
5192  * ext4_dirty_inode() is called from __mark_inode_dirty()
5193  *
5194  * We're really interested in the case where a file is being extended.
5195  * i_size has been changed by generic_commit_write() and we thus need
5196  * to include the updated inode in the current transaction.
5197  *
5198  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5199  * are allocated to the file.
5200  *
5201  * If the inode is marked synchronous, we don't honour that here - doing
5202  * so would cause a commit on atime updates, which we don't bother doing.
5203  * We handle synchronous inodes at the highest possible level.
5204  */
5205 void ext4_dirty_inode(struct inode *inode)
5206 {
5207         handle_t *current_handle = ext4_journal_current_handle();
5208         handle_t *handle;
5209
5210         if (!ext4_handle_valid(current_handle)) {
5211                 ext4_mark_inode_dirty(current_handle, inode);
5212                 return;
5213         }
5214
5215         handle = ext4_journal_start(inode, 2);
5216         if (IS_ERR(handle))
5217                 goto out;
5218         if (current_handle &&
5219                 current_handle->h_transaction != handle->h_transaction) {
5220                 /* This task has a transaction open against a different fs */
5221                 printk(KERN_EMERG "%s: transactions do not match!\n",
5222                        __func__);
5223         } else {
5224                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5225                                 current_handle);
5226                 ext4_mark_inode_dirty(handle, inode);
5227         }
5228         ext4_journal_stop(handle);
5229 out:
5230         return;
5231 }
5232
5233 #if 0
5234 /*
5235  * Bind an inode's backing buffer_head into this transaction, to prevent
5236  * it from being flushed to disk early.  Unlike
5237  * ext4_reserve_inode_write, this leaves behind no bh reference and
5238  * returns no iloc structure, so the caller needs to repeat the iloc
5239  * lookup to mark the inode dirty later.
5240  */
5241 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5242 {
5243         struct ext4_iloc iloc;
5244
5245         int err = 0;
5246         if (handle) {
5247                 err = ext4_get_inode_loc(inode, &iloc);
5248                 if (!err) {
5249                         BUFFER_TRACE(iloc.bh, "get_write_access");
5250                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5251                         if (!err)
5252                                 err = ext4_handle_dirty_metadata(handle,
5253                                                                  inode,
5254                                                                  iloc.bh);
5255                         brelse(iloc.bh);
5256                 }
5257         }
5258         ext4_std_error(inode->i_sb, err);
5259         return err;
5260 }
5261 #endif
5262
5263 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5264 {
5265         journal_t *journal;
5266         handle_t *handle;
5267         int err;
5268
5269         /*
5270          * We have to be very careful here: changing a data block's
5271          * journaling status dynamically is dangerous.  If we write a
5272          * data block to the journal, change the status and then delete
5273          * that block, we risk forgetting to revoke the old log record
5274          * from the journal and so a subsequent replay can corrupt data.
5275          * So, first we make sure that the journal is empty and that
5276          * nobody is changing anything.
5277          */
5278
5279         journal = EXT4_JOURNAL(inode);
5280         if (!journal)
5281                 return 0;
5282         if (is_journal_aborted(journal))
5283                 return -EROFS;
5284
5285         jbd2_journal_lock_updates(journal);
5286         jbd2_journal_flush(journal);
5287
5288         /*
5289          * OK, there are no updates running now, and all cached data is
5290          * synced to disk.  We are now in a completely consistent state
5291          * which doesn't have anything in the journal, and we know that
5292          * no filesystem updates are running, so it is safe to modify
5293          * the inode's in-core data-journaling state flag now.
5294          */
5295
5296         if (val)
5297                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5298         else
5299                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5300         ext4_set_aops(inode);
5301
5302         jbd2_journal_unlock_updates(journal);
5303
5304         /* Finally we can mark the inode as dirty. */
5305
5306         handle = ext4_journal_start(inode, 1);
5307         if (IS_ERR(handle))
5308                 return PTR_ERR(handle);
5309
5310         err = ext4_mark_inode_dirty(handle, inode);
5311         ext4_handle_sync(handle);
5312         ext4_journal_stop(handle);
5313         ext4_std_error(inode->i_sb, err);
5314
5315         return err;
5316 }
5317
5318 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5319 {
5320         return !buffer_mapped(bh);
5321 }
5322
5323 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5324 {
5325         struct page *page = vmf->page;
5326         loff_t size;
5327         unsigned long len;
5328         int ret = -EINVAL;
5329         void *fsdata;
5330         struct file *file = vma->vm_file;
5331         struct inode *inode = file->f_path.dentry->d_inode;
5332         struct address_space *mapping = inode->i_mapping;
5333
5334         /*
5335          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5336          * get i_mutex because we are already holding mmap_sem.
5337          */
5338         down_read(&inode->i_alloc_sem);
5339         size = i_size_read(inode);
5340         if (page->mapping != mapping || size <= page_offset(page)
5341             || !PageUptodate(page)) {
5342                 /* page got truncated from under us? */
5343                 goto out_unlock;
5344         }
5345         ret = 0;
5346         if (PageMappedToDisk(page))
5347                 goto out_unlock;
5348
5349         if (page->index == size >> PAGE_CACHE_SHIFT)
5350                 len = size & ~PAGE_CACHE_MASK;
5351         else
5352                 len = PAGE_CACHE_SIZE;
5353
5354         if (page_has_buffers(page)) {
5355                 /* return if we have all the buffers mapped */
5356                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5357                                        ext4_bh_unmapped))
5358                         goto out_unlock;
5359         }
5360         /*
5361          * OK, we need to fill the hole... Do write_begin write_end
5362          * to do block allocation/reservation.We are not holding
5363          * inode.i__mutex here. That allow * parallel write_begin,
5364          * write_end call. lock_page prevent this from happening
5365          * on the same page though
5366          */
5367         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5368                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5369         if (ret < 0)
5370                 goto out_unlock;
5371         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5372                         len, len, page, fsdata);
5373         if (ret < 0)
5374                 goto out_unlock;
5375         ret = 0;
5376 out_unlock:
5377         if (ret)
5378                 ret = VM_FAULT_SIGBUS;
5379         up_read(&inode->i_alloc_sem);
5380         return ret;
5381 }