ext4: Fix discard of inode prealloc space with delayed allocation.
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 /**
375  *      ext4_get_branch - read the chain of indirect blocks leading to data
376  *      @inode: inode in question
377  *      @depth: depth of the chain (1 - direct pointer, etc.)
378  *      @offsets: offsets of pointers in inode/indirect blocks
379  *      @chain: place to store the result
380  *      @err: here we store the error value
381  *
382  *      Function fills the array of triples <key, p, bh> and returns %NULL
383  *      if everything went OK or the pointer to the last filled triple
384  *      (incomplete one) otherwise. Upon the return chain[i].key contains
385  *      the number of (i+1)-th block in the chain (as it is stored in memory,
386  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
387  *      number (it points into struct inode for i==0 and into the bh->b_data
388  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389  *      block for i>0 and NULL for i==0. In other words, it holds the block
390  *      numbers of the chain, addresses they were taken from (and where we can
391  *      verify that chain did not change) and buffer_heads hosting these
392  *      numbers.
393  *
394  *      Function stops when it stumbles upon zero pointer (absent block)
395  *              (pointer to last triple returned, *@err == 0)
396  *      or when it gets an IO error reading an indirect block
397  *              (ditto, *@err == -EIO)
398  *      or when it reads all @depth-1 indirect blocks successfully and finds
399  *      the whole chain, all way to the data (returns %NULL, *err == 0).
400  *
401  *      Need to be called with
402  *      down_read(&EXT4_I(inode)->i_data_sem)
403  */
404 static Indirect *ext4_get_branch(struct inode *inode, int depth,
405                                  ext4_lblk_t  *offsets,
406                                  Indirect chain[4], int *err)
407 {
408         struct super_block *sb = inode->i_sb;
409         Indirect *p = chain;
410         struct buffer_head *bh;
411
412         *err = 0;
413         /* i_data is not going away, no lock needed */
414         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415         if (!p->key)
416                 goto no_block;
417         while (--depth) {
418                 bh = sb_bread(sb, le32_to_cpu(p->key));
419                 if (!bh)
420                         goto failure;
421                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422                 /* Reader: end */
423                 if (!p->key)
424                         goto no_block;
425         }
426         return NULL;
427
428 failure:
429         *err = -EIO;
430 no_block:
431         return p;
432 }
433
434 /**
435  *      ext4_find_near - find a place for allocation with sufficient locality
436  *      @inode: owner
437  *      @ind: descriptor of indirect block.
438  *
439  *      This function returns the preferred place for block allocation.
440  *      It is used when heuristic for sequential allocation fails.
441  *      Rules are:
442  *        + if there is a block to the left of our position - allocate near it.
443  *        + if pointer will live in indirect block - allocate near that block.
444  *        + if pointer will live in inode - allocate in the same
445  *          cylinder group.
446  *
447  * In the latter case we colour the starting block by the callers PID to
448  * prevent it from clashing with concurrent allocations for a different inode
449  * in the same block group.   The PID is used here so that functionally related
450  * files will be close-by on-disk.
451  *
452  *      Caller must make sure that @ind is valid and will stay that way.
453  */
454 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455 {
456         struct ext4_inode_info *ei = EXT4_I(inode);
457         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458         __le32 *p;
459         ext4_fsblk_t bg_start;
460         ext4_fsblk_t last_block;
461         ext4_grpblk_t colour;
462         ext4_group_t block_group;
463         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
464
465         /* Try to find previous block */
466         for (p = ind->p - 1; p >= start; p--) {
467                 if (*p)
468                         return le32_to_cpu(*p);
469         }
470
471         /* No such thing, so let's try location of indirect block */
472         if (ind->bh)
473                 return ind->bh->b_blocknr;
474
475         /*
476          * It is going to be referred to from the inode itself? OK, just put it
477          * into the same cylinder group then.
478          */
479         block_group = ei->i_block_group;
480         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
481                 block_group &= ~(flex_size-1);
482                 if (S_ISREG(inode->i_mode))
483                         block_group++;
484         }
485         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
486         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
487
488         /*
489          * If we are doing delayed allocation, we don't need take
490          * colour into account.
491          */
492         if (test_opt(inode->i_sb, DELALLOC))
493                 return bg_start;
494
495         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
496                 colour = (current->pid % 16) *
497                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
498         else
499                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
500         return bg_start + colour;
501 }
502
503 /**
504  *      ext4_find_goal - find a preferred place for allocation.
505  *      @inode: owner
506  *      @block:  block we want
507  *      @partial: pointer to the last triple within a chain
508  *
509  *      Normally this function find the preferred place for block allocation,
510  *      returns it.
511  */
512 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
513                 Indirect *partial)
514 {
515         /*
516          * XXX need to get goal block from mballoc's data structures
517          */
518
519         return ext4_find_near(inode, partial);
520 }
521
522 /**
523  *      ext4_blks_to_allocate: Look up the block map and count the number
524  *      of direct blocks need to be allocated for the given branch.
525  *
526  *      @branch: chain of indirect blocks
527  *      @k: number of blocks need for indirect blocks
528  *      @blks: number of data blocks to be mapped.
529  *      @blocks_to_boundary:  the offset in the indirect block
530  *
531  *      return the total number of blocks to be allocate, including the
532  *      direct and indirect blocks.
533  */
534 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
535                 int blocks_to_boundary)
536 {
537         unsigned int count = 0;
538
539         /*
540          * Simple case, [t,d]Indirect block(s) has not allocated yet
541          * then it's clear blocks on that path have not allocated
542          */
543         if (k > 0) {
544                 /* right now we don't handle cross boundary allocation */
545                 if (blks < blocks_to_boundary + 1)
546                         count += blks;
547                 else
548                         count += blocks_to_boundary + 1;
549                 return count;
550         }
551
552         count++;
553         while (count < blks && count <= blocks_to_boundary &&
554                 le32_to_cpu(*(branch[0].p + count)) == 0) {
555                 count++;
556         }
557         return count;
558 }
559
560 /**
561  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
562  *      @indirect_blks: the number of blocks need to allocate for indirect
563  *                      blocks
564  *
565  *      @new_blocks: on return it will store the new block numbers for
566  *      the indirect blocks(if needed) and the first direct block,
567  *      @blks:  on return it will store the total number of allocated
568  *              direct blocks
569  */
570 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
571                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
572                                 int indirect_blks, int blks,
573                                 ext4_fsblk_t new_blocks[4], int *err)
574 {
575         struct ext4_allocation_request ar;
576         int target, i;
577         unsigned long count = 0, blk_allocated = 0;
578         int index = 0;
579         ext4_fsblk_t current_block = 0;
580         int ret = 0;
581
582         /*
583          * Here we try to allocate the requested multiple blocks at once,
584          * on a best-effort basis.
585          * To build a branch, we should allocate blocks for
586          * the indirect blocks(if not allocated yet), and at least
587          * the first direct block of this branch.  That's the
588          * minimum number of blocks need to allocate(required)
589          */
590         /* first we try to allocate the indirect blocks */
591         target = indirect_blks;
592         while (target > 0) {
593                 count = target;
594                 /* allocating blocks for indirect blocks and direct blocks */
595                 current_block = ext4_new_meta_blocks(handle, inode,
596                                                         goal, &count, err);
597                 if (*err)
598                         goto failed_out;
599
600                 target -= count;
601                 /* allocate blocks for indirect blocks */
602                 while (index < indirect_blks && count) {
603                         new_blocks[index++] = current_block++;
604                         count--;
605                 }
606                 if (count > 0) {
607                         /*
608                          * save the new block number
609                          * for the first direct block
610                          */
611                         new_blocks[index] = current_block;
612                         printk(KERN_INFO "%s returned more blocks than "
613                                                 "requested\n", __func__);
614                         WARN_ON(1);
615                         break;
616                 }
617         }
618
619         target = blks - count ;
620         blk_allocated = count;
621         if (!target)
622                 goto allocated;
623         /* Now allocate data blocks */
624         memset(&ar, 0, sizeof(ar));
625         ar.inode = inode;
626         ar.goal = goal;
627         ar.len = target;
628         ar.logical = iblock;
629         if (S_ISREG(inode->i_mode))
630                 /* enable in-core preallocation only for regular files */
631                 ar.flags = EXT4_MB_HINT_DATA;
632
633         current_block = ext4_mb_new_blocks(handle, &ar, err);
634
635         if (*err && (target == blks)) {
636                 /*
637                  * if the allocation failed and we didn't allocate
638                  * any blocks before
639                  */
640                 goto failed_out;
641         }
642         if (!*err) {
643                 if (target == blks) {
644                 /*
645                  * save the new block number
646                  * for the first direct block
647                  */
648                         new_blocks[index] = current_block;
649                 }
650                 blk_allocated += ar.len;
651         }
652 allocated:
653         /* total number of blocks allocated for direct blocks */
654         ret = blk_allocated;
655         *err = 0;
656         return ret;
657 failed_out:
658         for (i = 0; i < index; i++)
659                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
660         return ret;
661 }
662
663 /**
664  *      ext4_alloc_branch - allocate and set up a chain of blocks.
665  *      @inode: owner
666  *      @indirect_blks: number of allocated indirect blocks
667  *      @blks: number of allocated direct blocks
668  *      @offsets: offsets (in the blocks) to store the pointers to next.
669  *      @branch: place to store the chain in.
670  *
671  *      This function allocates blocks, zeroes out all but the last one,
672  *      links them into chain and (if we are synchronous) writes them to disk.
673  *      In other words, it prepares a branch that can be spliced onto the
674  *      inode. It stores the information about that chain in the branch[], in
675  *      the same format as ext4_get_branch() would do. We are calling it after
676  *      we had read the existing part of chain and partial points to the last
677  *      triple of that (one with zero ->key). Upon the exit we have the same
678  *      picture as after the successful ext4_get_block(), except that in one
679  *      place chain is disconnected - *branch->p is still zero (we did not
680  *      set the last link), but branch->key contains the number that should
681  *      be placed into *branch->p to fill that gap.
682  *
683  *      If allocation fails we free all blocks we've allocated (and forget
684  *      their buffer_heads) and return the error value the from failed
685  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
686  *      as described above and return 0.
687  */
688 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
689                                 ext4_lblk_t iblock, int indirect_blks,
690                                 int *blks, ext4_fsblk_t goal,
691                                 ext4_lblk_t *offsets, Indirect *branch)
692 {
693         int blocksize = inode->i_sb->s_blocksize;
694         int i, n = 0;
695         int err = 0;
696         struct buffer_head *bh;
697         int num;
698         ext4_fsblk_t new_blocks[4];
699         ext4_fsblk_t current_block;
700
701         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
702                                 *blks, new_blocks, &err);
703         if (err)
704                 return err;
705
706         branch[0].key = cpu_to_le32(new_blocks[0]);
707         /*
708          * metadata blocks and data blocks are allocated.
709          */
710         for (n = 1; n <= indirect_blks;  n++) {
711                 /*
712                  * Get buffer_head for parent block, zero it out
713                  * and set the pointer to new one, then send
714                  * parent to disk.
715                  */
716                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
717                 branch[n].bh = bh;
718                 lock_buffer(bh);
719                 BUFFER_TRACE(bh, "call get_create_access");
720                 err = ext4_journal_get_create_access(handle, bh);
721                 if (err) {
722                         unlock_buffer(bh);
723                         brelse(bh);
724                         goto failed;
725                 }
726
727                 memset(bh->b_data, 0, blocksize);
728                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
729                 branch[n].key = cpu_to_le32(new_blocks[n]);
730                 *branch[n].p = branch[n].key;
731                 if (n == indirect_blks) {
732                         current_block = new_blocks[n];
733                         /*
734                          * End of chain, update the last new metablock of
735                          * the chain to point to the new allocated
736                          * data blocks numbers
737                          */
738                         for (i=1; i < num; i++)
739                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
740                 }
741                 BUFFER_TRACE(bh, "marking uptodate");
742                 set_buffer_uptodate(bh);
743                 unlock_buffer(bh);
744
745                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
746                 err = ext4_handle_dirty_metadata(handle, inode, bh);
747                 if (err)
748                         goto failed;
749         }
750         *blks = num;
751         return err;
752 failed:
753         /* Allocation failed, free what we already allocated */
754         for (i = 1; i <= n ; i++) {
755                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
756                 ext4_journal_forget(handle, branch[i].bh);
757         }
758         for (i = 0; i < indirect_blks; i++)
759                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
760
761         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
762
763         return err;
764 }
765
766 /**
767  * ext4_splice_branch - splice the allocated branch onto inode.
768  * @inode: owner
769  * @block: (logical) number of block we are adding
770  * @chain: chain of indirect blocks (with a missing link - see
771  *      ext4_alloc_branch)
772  * @where: location of missing link
773  * @num:   number of indirect blocks we are adding
774  * @blks:  number of direct blocks we are adding
775  *
776  * This function fills the missing link and does all housekeeping needed in
777  * inode (->i_blocks, etc.). In case of success we end up with the full
778  * chain to new block and return 0.
779  */
780 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
781                         ext4_lblk_t block, Indirect *where, int num, int blks)
782 {
783         int i;
784         int err = 0;
785         ext4_fsblk_t current_block;
786
787         /*
788          * If we're splicing into a [td]indirect block (as opposed to the
789          * inode) then we need to get write access to the [td]indirect block
790          * before the splice.
791          */
792         if (where->bh) {
793                 BUFFER_TRACE(where->bh, "get_write_access");
794                 err = ext4_journal_get_write_access(handle, where->bh);
795                 if (err)
796                         goto err_out;
797         }
798         /* That's it */
799
800         *where->p = where->key;
801
802         /*
803          * Update the host buffer_head or inode to point to more just allocated
804          * direct blocks blocks
805          */
806         if (num == 0 && blks > 1) {
807                 current_block = le32_to_cpu(where->key) + 1;
808                 for (i = 1; i < blks; i++)
809                         *(where->p + i) = cpu_to_le32(current_block++);
810         }
811
812         /* We are done with atomic stuff, now do the rest of housekeeping */
813
814         inode->i_ctime = ext4_current_time(inode);
815         ext4_mark_inode_dirty(handle, inode);
816
817         /* had we spliced it onto indirect block? */
818         if (where->bh) {
819                 /*
820                  * If we spliced it onto an indirect block, we haven't
821                  * altered the inode.  Note however that if it is being spliced
822                  * onto an indirect block at the very end of the file (the
823                  * file is growing) then we *will* alter the inode to reflect
824                  * the new i_size.  But that is not done here - it is done in
825                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
826                  */
827                 jbd_debug(5, "splicing indirect only\n");
828                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
829                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
830                 if (err)
831                         goto err_out;
832         } else {
833                 /*
834                  * OK, we spliced it into the inode itself on a direct block.
835                  * Inode was dirtied above.
836                  */
837                 jbd_debug(5, "splicing direct\n");
838         }
839         return err;
840
841 err_out:
842         for (i = 1; i <= num; i++) {
843                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
844                 ext4_journal_forget(handle, where[i].bh);
845                 ext4_free_blocks(handle, inode,
846                                         le32_to_cpu(where[i-1].key), 1, 0);
847         }
848         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
849
850         return err;
851 }
852
853 /*
854  * Allocation strategy is simple: if we have to allocate something, we will
855  * have to go the whole way to leaf. So let's do it before attaching anything
856  * to tree, set linkage between the newborn blocks, write them if sync is
857  * required, recheck the path, free and repeat if check fails, otherwise
858  * set the last missing link (that will protect us from any truncate-generated
859  * removals - all blocks on the path are immune now) and possibly force the
860  * write on the parent block.
861  * That has a nice additional property: no special recovery from the failed
862  * allocations is needed - we simply release blocks and do not touch anything
863  * reachable from inode.
864  *
865  * `handle' can be NULL if create == 0.
866  *
867  * return > 0, # of blocks mapped or allocated.
868  * return = 0, if plain lookup failed.
869  * return < 0, error case.
870  *
871  *
872  * Need to be called with
873  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
874  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
875  */
876 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
877                                   ext4_lblk_t iblock, unsigned int maxblocks,
878                                   struct buffer_head *bh_result,
879                                   int create, int extend_disksize)
880 {
881         int err = -EIO;
882         ext4_lblk_t offsets[4];
883         Indirect chain[4];
884         Indirect *partial;
885         ext4_fsblk_t goal;
886         int indirect_blks;
887         int blocks_to_boundary = 0;
888         int depth;
889         struct ext4_inode_info *ei = EXT4_I(inode);
890         int count = 0;
891         ext4_fsblk_t first_block = 0;
892         loff_t disksize;
893
894
895         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
896         J_ASSERT(handle != NULL || create == 0);
897         depth = ext4_block_to_path(inode, iblock, offsets,
898                                         &blocks_to_boundary);
899
900         if (depth == 0)
901                 goto out;
902
903         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
904
905         /* Simplest case - block found, no allocation needed */
906         if (!partial) {
907                 first_block = le32_to_cpu(chain[depth - 1].key);
908                 clear_buffer_new(bh_result);
909                 count++;
910                 /*map more blocks*/
911                 while (count < maxblocks && count <= blocks_to_boundary) {
912                         ext4_fsblk_t blk;
913
914                         blk = le32_to_cpu(*(chain[depth-1].p + count));
915
916                         if (blk == first_block + count)
917                                 count++;
918                         else
919                                 break;
920                 }
921                 goto got_it;
922         }
923
924         /* Next simple case - plain lookup or failed read of indirect block */
925         if (!create || err == -EIO)
926                 goto cleanup;
927
928         /*
929          * Okay, we need to do block allocation.
930         */
931         goal = ext4_find_goal(inode, iblock, partial);
932
933         /* the number of blocks need to allocate for [d,t]indirect blocks */
934         indirect_blks = (chain + depth) - partial - 1;
935
936         /*
937          * Next look up the indirect map to count the totoal number of
938          * direct blocks to allocate for this branch.
939          */
940         count = ext4_blks_to_allocate(partial, indirect_blks,
941                                         maxblocks, blocks_to_boundary);
942         /*
943          * Block out ext4_truncate while we alter the tree
944          */
945         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
946                                         &count, goal,
947                                         offsets + (partial - chain), partial);
948
949         /*
950          * The ext4_splice_branch call will free and forget any buffers
951          * on the new chain if there is a failure, but that risks using
952          * up transaction credits, especially for bitmaps where the
953          * credits cannot be returned.  Can we handle this somehow?  We
954          * may need to return -EAGAIN upwards in the worst case.  --sct
955          */
956         if (!err)
957                 err = ext4_splice_branch(handle, inode, iblock,
958                                         partial, indirect_blks, count);
959         /*
960          * i_disksize growing is protected by i_data_sem.  Don't forget to
961          * protect it if you're about to implement concurrent
962          * ext4_get_block() -bzzz
963         */
964         if (!err && extend_disksize) {
965                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
966                 if (disksize > i_size_read(inode))
967                         disksize = i_size_read(inode);
968                 if (disksize > ei->i_disksize)
969                         ei->i_disksize = disksize;
970         }
971         if (err)
972                 goto cleanup;
973
974         set_buffer_new(bh_result);
975 got_it:
976         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
977         if (count > blocks_to_boundary)
978                 set_buffer_boundary(bh_result);
979         err = count;
980         /* Clean up and exit */
981         partial = chain + depth - 1;    /* the whole chain */
982 cleanup:
983         while (partial > chain) {
984                 BUFFER_TRACE(partial->bh, "call brelse");
985                 brelse(partial->bh);
986                 partial--;
987         }
988         BUFFER_TRACE(bh_result, "returned");
989 out:
990         return err;
991 }
992
993 qsize_t ext4_get_reserved_space(struct inode *inode)
994 {
995         unsigned long long total;
996
997         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
998         total = EXT4_I(inode)->i_reserved_data_blocks +
999                 EXT4_I(inode)->i_reserved_meta_blocks;
1000         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1001
1002         return total;
1003 }
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate @blocks for non extent file based file
1007  */
1008 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1011         int ind_blks, dind_blks, tind_blks;
1012
1013         /* number of new indirect blocks needed */
1014         ind_blks = (blocks + icap - 1) / icap;
1015
1016         dind_blks = (ind_blks + icap - 1) / icap;
1017
1018         tind_blks = 1;
1019
1020         return ind_blks + dind_blks + tind_blks;
1021 }
1022
1023 /*
1024  * Calculate the number of metadata blocks need to reserve
1025  * to allocate given number of blocks
1026  */
1027 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1028 {
1029         if (!blocks)
1030                 return 0;
1031
1032         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1033                 return ext4_ext_calc_metadata_amount(inode, blocks);
1034
1035         return ext4_indirect_calc_metadata_amount(inode, blocks);
1036 }
1037
1038 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1039 {
1040         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1041         int total, mdb, mdb_free;
1042
1043         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044         /* recalculate the number of metablocks still need to be reserved */
1045         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1046         mdb = ext4_calc_metadata_amount(inode, total);
1047
1048         /* figure out how many metablocks to release */
1049         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1050         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1051
1052         if (mdb_free) {
1053                 /* Account for allocated meta_blocks */
1054                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1055
1056                 /* update fs dirty blocks counter */
1057                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1058                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1059                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1060         }
1061
1062         /* update per-inode reservations */
1063         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1064         EXT4_I(inode)->i_reserved_data_blocks -= used;
1065         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1066
1067         /*
1068          * free those over-booking quota for metadata blocks
1069          */
1070         if (mdb_free)
1071                 vfs_dq_release_reservation_block(inode, mdb_free);
1072
1073         /*
1074          * If we have done all the pending block allocations and if
1075          * there aren't any writers on the inode, we can discard the
1076          * inode's preallocations.
1077          */
1078         if (!total && (atomic_read(&inode->i_writecount) == 0))
1079                 ext4_discard_preallocations(inode);
1080 }
1081
1082 /*
1083  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1084  * and returns if the blocks are already mapped.
1085  *
1086  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1087  * and store the allocated blocks in the result buffer head and mark it
1088  * mapped.
1089  *
1090  * If file type is extents based, it will call ext4_ext_get_blocks(),
1091  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1092  * based files
1093  *
1094  * On success, it returns the number of blocks being mapped or allocate.
1095  * if create==0 and the blocks are pre-allocated and uninitialized block,
1096  * the result buffer head is unmapped. If the create ==1, it will make sure
1097  * the buffer head is mapped.
1098  *
1099  * It returns 0 if plain look up failed (blocks have not been allocated), in
1100  * that casem, buffer head is unmapped
1101  *
1102  * It returns the error in case of allocation failure.
1103  */
1104 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1105                         unsigned int max_blocks, struct buffer_head *bh,
1106                         int create, int extend_disksize, int flag)
1107 {
1108         int retval;
1109
1110         clear_buffer_mapped(bh);
1111
1112         /*
1113          * Try to see if we can get  the block without requesting
1114          * for new file system block.
1115          */
1116         down_read((&EXT4_I(inode)->i_data_sem));
1117         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1118                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1119                                 bh, 0, 0);
1120         } else {
1121                 retval = ext4_get_blocks_handle(handle,
1122                                 inode, block, max_blocks, bh, 0, 0);
1123         }
1124         up_read((&EXT4_I(inode)->i_data_sem));
1125
1126         /* If it is only a block(s) look up */
1127         if (!create)
1128                 return retval;
1129
1130         /*
1131          * Returns if the blocks have already allocated
1132          *
1133          * Note that if blocks have been preallocated
1134          * ext4_ext_get_block() returns th create = 0
1135          * with buffer head unmapped.
1136          */
1137         if (retval > 0 && buffer_mapped(bh))
1138                 return retval;
1139
1140         /*
1141          * New blocks allocate and/or writing to uninitialized extent
1142          * will possibly result in updating i_data, so we take
1143          * the write lock of i_data_sem, and call get_blocks()
1144          * with create == 1 flag.
1145          */
1146         down_write((&EXT4_I(inode)->i_data_sem));
1147
1148         /*
1149          * if the caller is from delayed allocation writeout path
1150          * we have already reserved fs blocks for allocation
1151          * let the underlying get_block() function know to
1152          * avoid double accounting
1153          */
1154         if (flag)
1155                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1156         /*
1157          * We need to check for EXT4 here because migrate
1158          * could have changed the inode type in between
1159          */
1160         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1161                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1162                                 bh, create, extend_disksize);
1163         } else {
1164                 retval = ext4_get_blocks_handle(handle, inode, block,
1165                                 max_blocks, bh, create, extend_disksize);
1166
1167                 if (retval > 0 && buffer_new(bh)) {
1168                         /*
1169                          * We allocated new blocks which will result in
1170                          * i_data's format changing.  Force the migrate
1171                          * to fail by clearing migrate flags
1172                          */
1173                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1174                                                         ~EXT4_EXT_MIGRATE;
1175                 }
1176         }
1177
1178         if (flag) {
1179                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1180                 /*
1181                  * Update reserved blocks/metadata blocks
1182                  * after successful block allocation
1183                  * which were deferred till now
1184                  */
1185                 if ((retval > 0) && buffer_delay(bh))
1186                         ext4_da_update_reserve_space(inode, retval);
1187         }
1188
1189         up_write((&EXT4_I(inode)->i_data_sem));
1190         return retval;
1191 }
1192
1193 /* Maximum number of blocks we map for direct IO at once. */
1194 #define DIO_MAX_BLOCKS 4096
1195
1196 int ext4_get_block(struct inode *inode, sector_t iblock,
1197                    struct buffer_head *bh_result, int create)
1198 {
1199         handle_t *handle = ext4_journal_current_handle();
1200         int ret = 0, started = 0;
1201         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1202         int dio_credits;
1203
1204         if (create && !handle) {
1205                 /* Direct IO write... */
1206                 if (max_blocks > DIO_MAX_BLOCKS)
1207                         max_blocks = DIO_MAX_BLOCKS;
1208                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1209                 handle = ext4_journal_start(inode, dio_credits);
1210                 if (IS_ERR(handle)) {
1211                         ret = PTR_ERR(handle);
1212                         goto out;
1213                 }
1214                 started = 1;
1215         }
1216
1217         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1218                                         max_blocks, bh_result, create, 0, 0);
1219         if (ret > 0) {
1220                 bh_result->b_size = (ret << inode->i_blkbits);
1221                 ret = 0;
1222         }
1223         if (started)
1224                 ext4_journal_stop(handle);
1225 out:
1226         return ret;
1227 }
1228
1229 /*
1230  * `handle' can be NULL if create is zero
1231  */
1232 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1233                                 ext4_lblk_t block, int create, int *errp)
1234 {
1235         struct buffer_head dummy;
1236         int fatal = 0, err;
1237
1238         J_ASSERT(handle != NULL || create == 0);
1239
1240         dummy.b_state = 0;
1241         dummy.b_blocknr = -1000;
1242         buffer_trace_init(&dummy.b_history);
1243         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1244                                         &dummy, create, 1, 0);
1245         /*
1246          * ext4_get_blocks_handle() returns number of blocks
1247          * mapped. 0 in case of a HOLE.
1248          */
1249         if (err > 0) {
1250                 if (err > 1)
1251                         WARN_ON(1);
1252                 err = 0;
1253         }
1254         *errp = err;
1255         if (!err && buffer_mapped(&dummy)) {
1256                 struct buffer_head *bh;
1257                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1258                 if (!bh) {
1259                         *errp = -EIO;
1260                         goto err;
1261                 }
1262                 if (buffer_new(&dummy)) {
1263                         J_ASSERT(create != 0);
1264                         J_ASSERT(handle != NULL);
1265
1266                         /*
1267                          * Now that we do not always journal data, we should
1268                          * keep in mind whether this should always journal the
1269                          * new buffer as metadata.  For now, regular file
1270                          * writes use ext4_get_block instead, so it's not a
1271                          * problem.
1272                          */
1273                         lock_buffer(bh);
1274                         BUFFER_TRACE(bh, "call get_create_access");
1275                         fatal = ext4_journal_get_create_access(handle, bh);
1276                         if (!fatal && !buffer_uptodate(bh)) {
1277                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1278                                 set_buffer_uptodate(bh);
1279                         }
1280                         unlock_buffer(bh);
1281                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1282                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1283                         if (!fatal)
1284                                 fatal = err;
1285                 } else {
1286                         BUFFER_TRACE(bh, "not a new buffer");
1287                 }
1288                 if (fatal) {
1289                         *errp = fatal;
1290                         brelse(bh);
1291                         bh = NULL;
1292                 }
1293                 return bh;
1294         }
1295 err:
1296         return NULL;
1297 }
1298
1299 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1300                                ext4_lblk_t block, int create, int *err)
1301 {
1302         struct buffer_head *bh;
1303
1304         bh = ext4_getblk(handle, inode, block, create, err);
1305         if (!bh)
1306                 return bh;
1307         if (buffer_uptodate(bh))
1308                 return bh;
1309         ll_rw_block(READ_META, 1, &bh);
1310         wait_on_buffer(bh);
1311         if (buffer_uptodate(bh))
1312                 return bh;
1313         put_bh(bh);
1314         *err = -EIO;
1315         return NULL;
1316 }
1317
1318 static int walk_page_buffers(handle_t *handle,
1319                              struct buffer_head *head,
1320                              unsigned from,
1321                              unsigned to,
1322                              int *partial,
1323                              int (*fn)(handle_t *handle,
1324                                        struct buffer_head *bh))
1325 {
1326         struct buffer_head *bh;
1327         unsigned block_start, block_end;
1328         unsigned blocksize = head->b_size;
1329         int err, ret = 0;
1330         struct buffer_head *next;
1331
1332         for (bh = head, block_start = 0;
1333              ret == 0 && (bh != head || !block_start);
1334              block_start = block_end, bh = next)
1335         {
1336                 next = bh->b_this_page;
1337                 block_end = block_start + blocksize;
1338                 if (block_end <= from || block_start >= to) {
1339                         if (partial && !buffer_uptodate(bh))
1340                                 *partial = 1;
1341                         continue;
1342                 }
1343                 err = (*fn)(handle, bh);
1344                 if (!ret)
1345                         ret = err;
1346         }
1347         return ret;
1348 }
1349
1350 /*
1351  * To preserve ordering, it is essential that the hole instantiation and
1352  * the data write be encapsulated in a single transaction.  We cannot
1353  * close off a transaction and start a new one between the ext4_get_block()
1354  * and the commit_write().  So doing the jbd2_journal_start at the start of
1355  * prepare_write() is the right place.
1356  *
1357  * Also, this function can nest inside ext4_writepage() ->
1358  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1359  * has generated enough buffer credits to do the whole page.  So we won't
1360  * block on the journal in that case, which is good, because the caller may
1361  * be PF_MEMALLOC.
1362  *
1363  * By accident, ext4 can be reentered when a transaction is open via
1364  * quota file writes.  If we were to commit the transaction while thus
1365  * reentered, there can be a deadlock - we would be holding a quota
1366  * lock, and the commit would never complete if another thread had a
1367  * transaction open and was blocking on the quota lock - a ranking
1368  * violation.
1369  *
1370  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1371  * will _not_ run commit under these circumstances because handle->h_ref
1372  * is elevated.  We'll still have enough credits for the tiny quotafile
1373  * write.
1374  */
1375 static int do_journal_get_write_access(handle_t *handle,
1376                                         struct buffer_head *bh)
1377 {
1378         if (!buffer_mapped(bh) || buffer_freed(bh))
1379                 return 0;
1380         return ext4_journal_get_write_access(handle, bh);
1381 }
1382
1383 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1384                                 loff_t pos, unsigned len, unsigned flags,
1385                                 struct page **pagep, void **fsdata)
1386 {
1387         struct inode *inode = mapping->host;
1388         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1389         handle_t *handle;
1390         int retries = 0;
1391         struct page *page;
1392         pgoff_t index;
1393         unsigned from, to;
1394
1395         trace_mark(ext4_write_begin,
1396                    "dev %s ino %lu pos %llu len %u flags %u",
1397                    inode->i_sb->s_id, inode->i_ino,
1398                    (unsigned long long) pos, len, flags);
1399         index = pos >> PAGE_CACHE_SHIFT;
1400         from = pos & (PAGE_CACHE_SIZE - 1);
1401         to = from + len;
1402
1403 retry:
1404         handle = ext4_journal_start(inode, needed_blocks);
1405         if (IS_ERR(handle)) {
1406                 ret = PTR_ERR(handle);
1407                 goto out;
1408         }
1409
1410         /* We cannot recurse into the filesystem as the transaction is already
1411          * started */
1412         flags |= AOP_FLAG_NOFS;
1413
1414         page = grab_cache_page_write_begin(mapping, index, flags);
1415         if (!page) {
1416                 ext4_journal_stop(handle);
1417                 ret = -ENOMEM;
1418                 goto out;
1419         }
1420         *pagep = page;
1421
1422         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1423                                 ext4_get_block);
1424
1425         if (!ret && ext4_should_journal_data(inode)) {
1426                 ret = walk_page_buffers(handle, page_buffers(page),
1427                                 from, to, NULL, do_journal_get_write_access);
1428         }
1429
1430         if (ret) {
1431                 unlock_page(page);
1432                 ext4_journal_stop(handle);
1433                 page_cache_release(page);
1434                 /*
1435                  * block_write_begin may have instantiated a few blocks
1436                  * outside i_size.  Trim these off again. Don't need
1437                  * i_size_read because we hold i_mutex.
1438                  */
1439                 if (pos + len > inode->i_size)
1440                         vmtruncate(inode, inode->i_size);
1441         }
1442
1443         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1444                 goto retry;
1445 out:
1446         return ret;
1447 }
1448
1449 /* For write_end() in data=journal mode */
1450 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1451 {
1452         if (!buffer_mapped(bh) || buffer_freed(bh))
1453                 return 0;
1454         set_buffer_uptodate(bh);
1455         return ext4_handle_dirty_metadata(handle, NULL, bh);
1456 }
1457
1458 /*
1459  * We need to pick up the new inode size which generic_commit_write gave us
1460  * `file' can be NULL - eg, when called from page_symlink().
1461  *
1462  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1463  * buffers are managed internally.
1464  */
1465 static int ext4_ordered_write_end(struct file *file,
1466                                 struct address_space *mapping,
1467                                 loff_t pos, unsigned len, unsigned copied,
1468                                 struct page *page, void *fsdata)
1469 {
1470         handle_t *handle = ext4_journal_current_handle();
1471         struct inode *inode = mapping->host;
1472         int ret = 0, ret2;
1473
1474         trace_mark(ext4_ordered_write_end,
1475                    "dev %s ino %lu pos %llu len %u copied %u",
1476                    inode->i_sb->s_id, inode->i_ino,
1477                    (unsigned long long) pos, len, copied);
1478         ret = ext4_jbd2_file_inode(handle, inode);
1479
1480         if (ret == 0) {
1481                 loff_t new_i_size;
1482
1483                 new_i_size = pos + copied;
1484                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1485                         ext4_update_i_disksize(inode, new_i_size);
1486                         /* We need to mark inode dirty even if
1487                          * new_i_size is less that inode->i_size
1488                          * bu greater than i_disksize.(hint delalloc)
1489                          */
1490                         ext4_mark_inode_dirty(handle, inode);
1491                 }
1492
1493                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1494                                                         page, fsdata);
1495                 copied = ret2;
1496                 if (ret2 < 0)
1497                         ret = ret2;
1498         }
1499         ret2 = ext4_journal_stop(handle);
1500         if (!ret)
1501                 ret = ret2;
1502
1503         return ret ? ret : copied;
1504 }
1505
1506 static int ext4_writeback_write_end(struct file *file,
1507                                 struct address_space *mapping,
1508                                 loff_t pos, unsigned len, unsigned copied,
1509                                 struct page *page, void *fsdata)
1510 {
1511         handle_t *handle = ext4_journal_current_handle();
1512         struct inode *inode = mapping->host;
1513         int ret = 0, ret2;
1514         loff_t new_i_size;
1515
1516         trace_mark(ext4_writeback_write_end,
1517                    "dev %s ino %lu pos %llu len %u copied %u",
1518                    inode->i_sb->s_id, inode->i_ino,
1519                    (unsigned long long) pos, len, copied);
1520         new_i_size = pos + copied;
1521         if (new_i_size > EXT4_I(inode)->i_disksize) {
1522                 ext4_update_i_disksize(inode, new_i_size);
1523                 /* We need to mark inode dirty even if
1524                  * new_i_size is less that inode->i_size
1525                  * bu greater than i_disksize.(hint delalloc)
1526                  */
1527                 ext4_mark_inode_dirty(handle, inode);
1528         }
1529
1530         ret2 = generic_write_end(file, mapping, pos, len, copied,
1531                                                         page, fsdata);
1532         copied = ret2;
1533         if (ret2 < 0)
1534                 ret = ret2;
1535
1536         ret2 = ext4_journal_stop(handle);
1537         if (!ret)
1538                 ret = ret2;
1539
1540         return ret ? ret : copied;
1541 }
1542
1543 static int ext4_journalled_write_end(struct file *file,
1544                                 struct address_space *mapping,
1545                                 loff_t pos, unsigned len, unsigned copied,
1546                                 struct page *page, void *fsdata)
1547 {
1548         handle_t *handle = ext4_journal_current_handle();
1549         struct inode *inode = mapping->host;
1550         int ret = 0, ret2;
1551         int partial = 0;
1552         unsigned from, to;
1553         loff_t new_i_size;
1554
1555         trace_mark(ext4_journalled_write_end,
1556                    "dev %s ino %lu pos %llu len %u copied %u",
1557                    inode->i_sb->s_id, inode->i_ino,
1558                    (unsigned long long) pos, len, copied);
1559         from = pos & (PAGE_CACHE_SIZE - 1);
1560         to = from + len;
1561
1562         if (copied < len) {
1563                 if (!PageUptodate(page))
1564                         copied = 0;
1565                 page_zero_new_buffers(page, from+copied, to);
1566         }
1567
1568         ret = walk_page_buffers(handle, page_buffers(page), from,
1569                                 to, &partial, write_end_fn);
1570         if (!partial)
1571                 SetPageUptodate(page);
1572         new_i_size = pos + copied;
1573         if (new_i_size > inode->i_size)
1574                 i_size_write(inode, pos+copied);
1575         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1576         if (new_i_size > EXT4_I(inode)->i_disksize) {
1577                 ext4_update_i_disksize(inode, new_i_size);
1578                 ret2 = ext4_mark_inode_dirty(handle, inode);
1579                 if (!ret)
1580                         ret = ret2;
1581         }
1582
1583         unlock_page(page);
1584         ret2 = ext4_journal_stop(handle);
1585         if (!ret)
1586                 ret = ret2;
1587         page_cache_release(page);
1588
1589         return ret ? ret : copied;
1590 }
1591
1592 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1593 {
1594         int retries = 0;
1595         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1596         unsigned long md_needed, mdblocks, total = 0;
1597
1598         /*
1599          * recalculate the amount of metadata blocks to reserve
1600          * in order to allocate nrblocks
1601          * worse case is one extent per block
1602          */
1603 repeat:
1604         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1606         mdblocks = ext4_calc_metadata_amount(inode, total);
1607         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1608
1609         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1610         total = md_needed + nrblocks;
1611
1612         /*
1613          * Make quota reservation here to prevent quota overflow
1614          * later. Real quota accounting is done at pages writeout
1615          * time.
1616          */
1617         if (vfs_dq_reserve_block(inode, total)) {
1618                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1619                 return -EDQUOT;
1620         }
1621
1622         if (ext4_claim_free_blocks(sbi, total)) {
1623                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1624                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1625                         yield();
1626                         goto repeat;
1627                 }
1628                 vfs_dq_release_reservation_block(inode, total);
1629                 return -ENOSPC;
1630         }
1631         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1632         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1633
1634         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1635         return 0;       /* success */
1636 }
1637
1638 static void ext4_da_release_space(struct inode *inode, int to_free)
1639 {
1640         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1641         int total, mdb, mdb_free, release;
1642
1643         if (!to_free)
1644                 return;         /* Nothing to release, exit */
1645
1646         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1647
1648         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1649                 /*
1650                  * if there is no reserved blocks, but we try to free some
1651                  * then the counter is messed up somewhere.
1652                  * but since this function is called from invalidate
1653                  * page, it's harmless to return without any action
1654                  */
1655                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1656                             "blocks for inode %lu, but there is no reserved "
1657                             "data blocks\n", to_free, inode->i_ino);
1658                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1659                 return;
1660         }
1661
1662         /* recalculate the number of metablocks still need to be reserved */
1663         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1664         mdb = ext4_calc_metadata_amount(inode, total);
1665
1666         /* figure out how many metablocks to release */
1667         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1668         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1669
1670         release = to_free + mdb_free;
1671
1672         /* update fs dirty blocks counter for truncate case */
1673         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1674
1675         /* update per-inode reservations */
1676         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1677         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1678
1679         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1680         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1681         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1682
1683         vfs_dq_release_reservation_block(inode, release);
1684 }
1685
1686 static void ext4_da_page_release_reservation(struct page *page,
1687                                                 unsigned long offset)
1688 {
1689         int to_release = 0;
1690         struct buffer_head *head, *bh;
1691         unsigned int curr_off = 0;
1692
1693         head = page_buffers(page);
1694         bh = head;
1695         do {
1696                 unsigned int next_off = curr_off + bh->b_size;
1697
1698                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1699                         to_release++;
1700                         clear_buffer_delay(bh);
1701                 }
1702                 curr_off = next_off;
1703         } while ((bh = bh->b_this_page) != head);
1704         ext4_da_release_space(page->mapping->host, to_release);
1705 }
1706
1707 /*
1708  * Delayed allocation stuff
1709  */
1710
1711 struct mpage_da_data {
1712         struct inode *inode;
1713         sector_t b_blocknr;             /* start block number of extent */
1714         size_t b_size;                  /* size of extent */
1715         unsigned long b_state;          /* state of the extent */
1716         unsigned long first_page, next_page;    /* extent of pages */
1717         struct writeback_control *wbc;
1718         int io_done;
1719         int pages_written;
1720         int retval;
1721 };
1722
1723 /*
1724  * mpage_da_submit_io - walks through extent of pages and try to write
1725  * them with writepage() call back
1726  *
1727  * @mpd->inode: inode
1728  * @mpd->first_page: first page of the extent
1729  * @mpd->next_page: page after the last page of the extent
1730  *
1731  * By the time mpage_da_submit_io() is called we expect all blocks
1732  * to be allocated. this may be wrong if allocation failed.
1733  *
1734  * As pages are already locked by write_cache_pages(), we can't use it
1735  */
1736 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1737 {
1738         long pages_skipped;
1739         struct pagevec pvec;
1740         unsigned long index, end;
1741         int ret = 0, err, nr_pages, i;
1742         struct inode *inode = mpd->inode;
1743         struct address_space *mapping = inode->i_mapping;
1744
1745         BUG_ON(mpd->next_page <= mpd->first_page);
1746         /*
1747          * We need to start from the first_page to the next_page - 1
1748          * to make sure we also write the mapped dirty buffer_heads.
1749          * If we look at mpd->b_blocknr we would only be looking
1750          * at the currently mapped buffer_heads.
1751          */
1752         index = mpd->first_page;
1753         end = mpd->next_page - 1;
1754
1755         pagevec_init(&pvec, 0);
1756         while (index <= end) {
1757                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1758                 if (nr_pages == 0)
1759                         break;
1760                 for (i = 0; i < nr_pages; i++) {
1761                         struct page *page = pvec.pages[i];
1762
1763                         index = page->index;
1764                         if (index > end)
1765                                 break;
1766                         index++;
1767
1768                         BUG_ON(!PageLocked(page));
1769                         BUG_ON(PageWriteback(page));
1770
1771                         pages_skipped = mpd->wbc->pages_skipped;
1772                         err = mapping->a_ops->writepage(page, mpd->wbc);
1773                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1774                                 /*
1775                                  * have successfully written the page
1776                                  * without skipping the same
1777                                  */
1778                                 mpd->pages_written++;
1779                         /*
1780                          * In error case, we have to continue because
1781                          * remaining pages are still locked
1782                          * XXX: unlock and re-dirty them?
1783                          */
1784                         if (ret == 0)
1785                                 ret = err;
1786                 }
1787                 pagevec_release(&pvec);
1788         }
1789         return ret;
1790 }
1791
1792 /*
1793  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1794  *
1795  * @mpd->inode - inode to walk through
1796  * @exbh->b_blocknr - first block on a disk
1797  * @exbh->b_size - amount of space in bytes
1798  * @logical - first logical block to start assignment with
1799  *
1800  * the function goes through all passed space and put actual disk
1801  * block numbers into buffer heads, dropping BH_Delay
1802  */
1803 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1804                                  struct buffer_head *exbh)
1805 {
1806         struct inode *inode = mpd->inode;
1807         struct address_space *mapping = inode->i_mapping;
1808         int blocks = exbh->b_size >> inode->i_blkbits;
1809         sector_t pblock = exbh->b_blocknr, cur_logical;
1810         struct buffer_head *head, *bh;
1811         pgoff_t index, end;
1812         struct pagevec pvec;
1813         int nr_pages, i;
1814
1815         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1816         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1817         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1818
1819         pagevec_init(&pvec, 0);
1820
1821         while (index <= end) {
1822                 /* XXX: optimize tail */
1823                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1824                 if (nr_pages == 0)
1825                         break;
1826                 for (i = 0; i < nr_pages; i++) {
1827                         struct page *page = pvec.pages[i];
1828
1829                         index = page->index;
1830                         if (index > end)
1831                                 break;
1832                         index++;
1833
1834                         BUG_ON(!PageLocked(page));
1835                         BUG_ON(PageWriteback(page));
1836                         BUG_ON(!page_has_buffers(page));
1837
1838                         bh = page_buffers(page);
1839                         head = bh;
1840
1841                         /* skip blocks out of the range */
1842                         do {
1843                                 if (cur_logical >= logical)
1844                                         break;
1845                                 cur_logical++;
1846                         } while ((bh = bh->b_this_page) != head);
1847
1848                         do {
1849                                 if (cur_logical >= logical + blocks)
1850                                         break;
1851                                 if (buffer_delay(bh)) {
1852                                         bh->b_blocknr = pblock;
1853                                         clear_buffer_delay(bh);
1854                                         bh->b_bdev = inode->i_sb->s_bdev;
1855                                 } else if (buffer_unwritten(bh)) {
1856                                         bh->b_blocknr = pblock;
1857                                         clear_buffer_unwritten(bh);
1858                                         set_buffer_mapped(bh);
1859                                         set_buffer_new(bh);
1860                                         bh->b_bdev = inode->i_sb->s_bdev;
1861                                 } else if (buffer_mapped(bh))
1862                                         BUG_ON(bh->b_blocknr != pblock);
1863
1864                                 cur_logical++;
1865                                 pblock++;
1866                         } while ((bh = bh->b_this_page) != head);
1867                 }
1868                 pagevec_release(&pvec);
1869         }
1870 }
1871
1872
1873 /*
1874  * __unmap_underlying_blocks - just a helper function to unmap
1875  * set of blocks described by @bh
1876  */
1877 static inline void __unmap_underlying_blocks(struct inode *inode,
1878                                              struct buffer_head *bh)
1879 {
1880         struct block_device *bdev = inode->i_sb->s_bdev;
1881         int blocks, i;
1882
1883         blocks = bh->b_size >> inode->i_blkbits;
1884         for (i = 0; i < blocks; i++)
1885                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1886 }
1887
1888 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1889                                         sector_t logical, long blk_cnt)
1890 {
1891         int nr_pages, i;
1892         pgoff_t index, end;
1893         struct pagevec pvec;
1894         struct inode *inode = mpd->inode;
1895         struct address_space *mapping = inode->i_mapping;
1896
1897         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1898         end   = (logical + blk_cnt - 1) >>
1899                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1900         while (index <= end) {
1901                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1902                 if (nr_pages == 0)
1903                         break;
1904                 for (i = 0; i < nr_pages; i++) {
1905                         struct page *page = pvec.pages[i];
1906                         index = page->index;
1907                         if (index > end)
1908                                 break;
1909                         index++;
1910
1911                         BUG_ON(!PageLocked(page));
1912                         BUG_ON(PageWriteback(page));
1913                         block_invalidatepage(page, 0);
1914                         ClearPageUptodate(page);
1915                         unlock_page(page);
1916                 }
1917         }
1918         return;
1919 }
1920
1921 static void ext4_print_free_blocks(struct inode *inode)
1922 {
1923         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1924         printk(KERN_EMERG "Total free blocks count %lld\n",
1925                         ext4_count_free_blocks(inode->i_sb));
1926         printk(KERN_EMERG "Free/Dirty block details\n");
1927         printk(KERN_EMERG "free_blocks=%lld\n",
1928                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1929         printk(KERN_EMERG "dirty_blocks=%lld\n",
1930                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1931         printk(KERN_EMERG "Block reservation details\n");
1932         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1933                         EXT4_I(inode)->i_reserved_data_blocks);
1934         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1935                         EXT4_I(inode)->i_reserved_meta_blocks);
1936         return;
1937 }
1938
1939 #define         EXT4_DELALLOC_RSVED     1
1940 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1941                                    struct buffer_head *bh_result, int create)
1942 {
1943         int ret;
1944         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1945         loff_t disksize = EXT4_I(inode)->i_disksize;
1946         handle_t *handle = NULL;
1947
1948         handle = ext4_journal_current_handle();
1949         BUG_ON(!handle);
1950         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
1951                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
1952         if (ret <= 0)
1953                 return ret;
1954
1955         bh_result->b_size = (ret << inode->i_blkbits);
1956
1957         if (ext4_should_order_data(inode)) {
1958                 int retval;
1959                 retval = ext4_jbd2_file_inode(handle, inode);
1960                 if (retval)
1961                         /*
1962                          * Failed to add inode for ordered mode. Don't
1963                          * update file size
1964                          */
1965                         return retval;
1966         }
1967
1968         /*
1969          * Update on-disk size along with block allocation we don't
1970          * use 'extend_disksize' as size may change within already
1971          * allocated block -bzzz
1972          */
1973         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
1974         if (disksize > i_size_read(inode))
1975                 disksize = i_size_read(inode);
1976         if (disksize > EXT4_I(inode)->i_disksize) {
1977                 ext4_update_i_disksize(inode, disksize);
1978                 ret = ext4_mark_inode_dirty(handle, inode);
1979                 return ret;
1980         }
1981         return 0;
1982 }
1983
1984 /*
1985  * mpage_da_map_blocks - go through given space
1986  *
1987  * @mpd - bh describing space
1988  *
1989  * The function skips space we know is already mapped to disk blocks.
1990  *
1991  */
1992 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1993 {
1994         int err = 0;
1995         struct buffer_head new;
1996         sector_t next;
1997
1998         /*
1999          * We consider only non-mapped and non-allocated blocks
2000          */
2001         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2002             !(mpd->b_state & (1 << BH_Delay)))
2003                 return 0;
2004         new.b_state = mpd->b_state;
2005         new.b_blocknr = 0;
2006         new.b_size = mpd->b_size;
2007         next = mpd->b_blocknr;
2008         /*
2009          * If we didn't accumulate anything
2010          * to write simply return
2011          */
2012         if (!new.b_size)
2013                 return 0;
2014
2015         err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2016         if (err) {
2017                 /*
2018                  * If get block returns with error we simply
2019                  * return. Later writepage will redirty the page and
2020                  * writepages will find the dirty page again
2021                  */
2022                 if (err == -EAGAIN)
2023                         return 0;
2024
2025                 if (err == -ENOSPC &&
2026                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2027                         mpd->retval = err;
2028                         return 0;
2029                 }
2030
2031                 /*
2032                  * get block failure will cause us to loop in
2033                  * writepages, because a_ops->writepage won't be able
2034                  * to make progress. The page will be redirtied by
2035                  * writepage and writepages will again try to write
2036                  * the same.
2037                  */
2038                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2039                                   "at logical offset %llu with max blocks "
2040                                   "%zd with error %d\n",
2041                                   __func__, mpd->inode->i_ino,
2042                                   (unsigned long long)next,
2043                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2044                 printk(KERN_EMERG "This should not happen.!! "
2045                                         "Data will be lost\n");
2046                 if (err == -ENOSPC) {
2047                         ext4_print_free_blocks(mpd->inode);
2048                 }
2049                 /* invlaidate all the pages */
2050                 ext4_da_block_invalidatepages(mpd, next,
2051                                 mpd->b_size >> mpd->inode->i_blkbits);
2052                 return err;
2053         }
2054         BUG_ON(new.b_size == 0);
2055
2056         if (buffer_new(&new))
2057                 __unmap_underlying_blocks(mpd->inode, &new);
2058
2059         /*
2060          * If blocks are delayed marked, we need to
2061          * put actual blocknr and drop delayed bit
2062          */
2063         if ((mpd->b_state & (1 << BH_Delay)) ||
2064             (mpd->b_state & (1 << BH_Unwritten)))
2065                 mpage_put_bnr_to_bhs(mpd, next, &new);
2066
2067         return 0;
2068 }
2069
2070 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2071                 (1 << BH_Delay) | (1 << BH_Unwritten))
2072
2073 /*
2074  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2075  *
2076  * @mpd->lbh - extent of blocks
2077  * @logical - logical number of the block in the file
2078  * @bh - bh of the block (used to access block's state)
2079  *
2080  * the function is used to collect contig. blocks in same state
2081  */
2082 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2083                                    sector_t logical, size_t b_size,
2084                                    unsigned long b_state)
2085 {
2086         sector_t next;
2087         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2088
2089         /* check if thereserved journal credits might overflow */
2090         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2091                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2092                         /*
2093                          * With non-extent format we are limited by the journal
2094                          * credit available.  Total credit needed to insert
2095                          * nrblocks contiguous blocks is dependent on the
2096                          * nrblocks.  So limit nrblocks.
2097                          */
2098                         goto flush_it;
2099                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2100                                 EXT4_MAX_TRANS_DATA) {
2101                         /*
2102                          * Adding the new buffer_head would make it cross the
2103                          * allowed limit for which we have journal credit
2104                          * reserved. So limit the new bh->b_size
2105                          */
2106                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2107                                                 mpd->inode->i_blkbits;
2108                         /* we will do mpage_da_submit_io in the next loop */
2109                 }
2110         }
2111         /*
2112          * First block in the extent
2113          */
2114         if (mpd->b_size == 0) {
2115                 mpd->b_blocknr = logical;
2116                 mpd->b_size = b_size;
2117                 mpd->b_state = b_state & BH_FLAGS;
2118                 return;
2119         }
2120
2121         next = mpd->b_blocknr + nrblocks;
2122         /*
2123          * Can we merge the block to our big extent?
2124          */
2125         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2126                 mpd->b_size += b_size;
2127                 return;
2128         }
2129
2130 flush_it:
2131         /*
2132          * We couldn't merge the block to our extent, so we
2133          * need to flush current  extent and start new one
2134          */
2135         if (mpage_da_map_blocks(mpd) == 0)
2136                 mpage_da_submit_io(mpd);
2137         mpd->io_done = 1;
2138         return;
2139 }
2140
2141 /*
2142  * __mpage_da_writepage - finds extent of pages and blocks
2143  *
2144  * @page: page to consider
2145  * @wbc: not used, we just follow rules
2146  * @data: context
2147  *
2148  * The function finds extents of pages and scan them for all blocks.
2149  */
2150 static int __mpage_da_writepage(struct page *page,
2151                                 struct writeback_control *wbc, void *data)
2152 {
2153         struct mpage_da_data *mpd = data;
2154         struct inode *inode = mpd->inode;
2155         struct buffer_head *bh, *head;
2156         sector_t logical;
2157
2158         if (mpd->io_done) {
2159                 /*
2160                  * Rest of the page in the page_vec
2161                  * redirty then and skip then. We will
2162                  * try to to write them again after
2163                  * starting a new transaction
2164                  */
2165                 redirty_page_for_writepage(wbc, page);
2166                 unlock_page(page);
2167                 return MPAGE_DA_EXTENT_TAIL;
2168         }
2169         /*
2170          * Can we merge this page to current extent?
2171          */
2172         if (mpd->next_page != page->index) {
2173                 /*
2174                  * Nope, we can't. So, we map non-allocated blocks
2175                  * and start IO on them using writepage()
2176                  */
2177                 if (mpd->next_page != mpd->first_page) {
2178                         if (mpage_da_map_blocks(mpd) == 0)
2179                                 mpage_da_submit_io(mpd);
2180                         /*
2181                          * skip rest of the page in the page_vec
2182                          */
2183                         mpd->io_done = 1;
2184                         redirty_page_for_writepage(wbc, page);
2185                         unlock_page(page);
2186                         return MPAGE_DA_EXTENT_TAIL;
2187                 }
2188
2189                 /*
2190                  * Start next extent of pages ...
2191                  */
2192                 mpd->first_page = page->index;
2193
2194                 /*
2195                  * ... and blocks
2196                  */
2197                 mpd->b_size = 0;
2198                 mpd->b_state = 0;
2199                 mpd->b_blocknr = 0;
2200         }
2201
2202         mpd->next_page = page->index + 1;
2203         logical = (sector_t) page->index <<
2204                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2205
2206         if (!page_has_buffers(page)) {
2207                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2208                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2209                 if (mpd->io_done)
2210                         return MPAGE_DA_EXTENT_TAIL;
2211         } else {
2212                 /*
2213                  * Page with regular buffer heads, just add all dirty ones
2214                  */
2215                 head = page_buffers(page);
2216                 bh = head;
2217                 do {
2218                         BUG_ON(buffer_locked(bh));
2219                         /*
2220                          * We need to try to allocate
2221                          * unmapped blocks in the same page.
2222                          * Otherwise we won't make progress
2223                          * with the page in ext4_da_writepage
2224                          */
2225                         if (buffer_dirty(bh) &&
2226                             (!buffer_mapped(bh) || buffer_delay(bh))) {
2227                                 mpage_add_bh_to_extent(mpd, logical,
2228                                                        bh->b_size,
2229                                                        bh->b_state);
2230                                 if (mpd->io_done)
2231                                         return MPAGE_DA_EXTENT_TAIL;
2232                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2233                                 /*
2234                                  * mapped dirty buffer. We need to update
2235                                  * the b_state because we look at
2236                                  * b_state in mpage_da_map_blocks. We don't
2237                                  * update b_size because if we find an
2238                                  * unmapped buffer_head later we need to
2239                                  * use the b_state flag of that buffer_head.
2240                                  */
2241                                 if (mpd->b_size == 0)
2242                                         mpd->b_state = bh->b_state & BH_FLAGS;
2243                         }
2244                         logical++;
2245                 } while ((bh = bh->b_this_page) != head);
2246         }
2247
2248         return 0;
2249 }
2250
2251 /*
2252  * this is a special callback for ->write_begin() only
2253  * it's intention is to return mapped block or reserve space
2254  */
2255 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2256                                   struct buffer_head *bh_result, int create)
2257 {
2258         int ret = 0;
2259
2260         BUG_ON(create == 0);
2261         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2262
2263         /*
2264          * first, we need to know whether the block is allocated already
2265          * preallocated blocks are unmapped but should treated
2266          * the same as allocated blocks.
2267          */
2268         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2269         if ((ret == 0) && !buffer_delay(bh_result)) {
2270                 /* the block isn't (pre)allocated yet, let's reserve space */
2271                 /*
2272                  * XXX: __block_prepare_write() unmaps passed block,
2273                  * is it OK?
2274                  */
2275                 ret = ext4_da_reserve_space(inode, 1);
2276                 if (ret)
2277                         /* not enough space to reserve */
2278                         return ret;
2279
2280                 map_bh(bh_result, inode->i_sb, 0);
2281                 set_buffer_new(bh_result);
2282                 set_buffer_delay(bh_result);
2283         } else if (ret > 0) {
2284                 bh_result->b_size = (ret << inode->i_blkbits);
2285                 ret = 0;
2286         }
2287
2288         return ret;
2289 }
2290
2291 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2292 {
2293         /*
2294          * unmapped buffer is possible for holes.
2295          * delay buffer is possible with delayed allocation
2296          */
2297         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2298 }
2299
2300 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2301                                    struct buffer_head *bh_result, int create)
2302 {
2303         int ret = 0;
2304         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2305
2306         /*
2307          * we don't want to do block allocation in writepage
2308          * so call get_block_wrap with create = 0
2309          */
2310         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2311                                    bh_result, 0, 0, 0);
2312         if (ret > 0) {
2313                 bh_result->b_size = (ret << inode->i_blkbits);
2314                 ret = 0;
2315         }
2316         return ret;
2317 }
2318
2319 /*
2320  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2321  * get called via journal_submit_inode_data_buffers (no journal handle)
2322  * get called via shrink_page_list via pdflush (no journal handle)
2323  * or grab_page_cache when doing write_begin (have journal handle)
2324  */
2325 static int ext4_da_writepage(struct page *page,
2326                                 struct writeback_control *wbc)
2327 {
2328         int ret = 0;
2329         loff_t size;
2330         unsigned int len;
2331         struct buffer_head *page_bufs;
2332         struct inode *inode = page->mapping->host;
2333
2334         trace_mark(ext4_da_writepage,
2335                    "dev %s ino %lu page_index %lu",
2336                    inode->i_sb->s_id, inode->i_ino, page->index);
2337         size = i_size_read(inode);
2338         if (page->index == size >> PAGE_CACHE_SHIFT)
2339                 len = size & ~PAGE_CACHE_MASK;
2340         else
2341                 len = PAGE_CACHE_SIZE;
2342
2343         if (page_has_buffers(page)) {
2344                 page_bufs = page_buffers(page);
2345                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2346                                         ext4_bh_unmapped_or_delay)) {
2347                         /*
2348                          * We don't want to do  block allocation
2349                          * So redirty the page and return
2350                          * We may reach here when we do a journal commit
2351                          * via journal_submit_inode_data_buffers.
2352                          * If we don't have mapping block we just ignore
2353                          * them. We can also reach here via shrink_page_list
2354                          */
2355                         redirty_page_for_writepage(wbc, page);
2356                         unlock_page(page);
2357                         return 0;
2358                 }
2359         } else {
2360                 /*
2361                  * The test for page_has_buffers() is subtle:
2362                  * We know the page is dirty but it lost buffers. That means
2363                  * that at some moment in time after write_begin()/write_end()
2364                  * has been called all buffers have been clean and thus they
2365                  * must have been written at least once. So they are all
2366                  * mapped and we can happily proceed with mapping them
2367                  * and writing the page.
2368                  *
2369                  * Try to initialize the buffer_heads and check whether
2370                  * all are mapped and non delay. We don't want to
2371                  * do block allocation here.
2372                  */
2373                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2374                                                 ext4_normal_get_block_write);
2375                 if (!ret) {
2376                         page_bufs = page_buffers(page);
2377                         /* check whether all are mapped and non delay */
2378                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2379                                                 ext4_bh_unmapped_or_delay)) {
2380                                 redirty_page_for_writepage(wbc, page);
2381                                 unlock_page(page);
2382                                 return 0;
2383                         }
2384                 } else {
2385                         /*
2386                          * We can't do block allocation here
2387                          * so just redity the page and unlock
2388                          * and return
2389                          */
2390                         redirty_page_for_writepage(wbc, page);
2391                         unlock_page(page);
2392                         return 0;
2393                 }
2394                 /* now mark the buffer_heads as dirty and uptodate */
2395                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2396         }
2397
2398         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2399                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2400         else
2401                 ret = block_write_full_page(page,
2402                                                 ext4_normal_get_block_write,
2403                                                 wbc);
2404
2405         return ret;
2406 }
2407
2408 /*
2409  * This is called via ext4_da_writepages() to
2410  * calulate the total number of credits to reserve to fit
2411  * a single extent allocation into a single transaction,
2412  * ext4_da_writpeages() will loop calling this before
2413  * the block allocation.
2414  */
2415
2416 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2417 {
2418         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2419
2420         /*
2421          * With non-extent format the journal credit needed to
2422          * insert nrblocks contiguous block is dependent on
2423          * number of contiguous block. So we will limit
2424          * number of contiguous block to a sane value
2425          */
2426         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2427             (max_blocks > EXT4_MAX_TRANS_DATA))
2428                 max_blocks = EXT4_MAX_TRANS_DATA;
2429
2430         return ext4_chunk_trans_blocks(inode, max_blocks);
2431 }
2432
2433 static int ext4_da_writepages(struct address_space *mapping,
2434                               struct writeback_control *wbc)
2435 {
2436         pgoff_t index;
2437         int range_whole = 0;
2438         handle_t *handle = NULL;
2439         struct mpage_da_data mpd;
2440         struct inode *inode = mapping->host;
2441         int no_nrwrite_index_update;
2442         int pages_written = 0;
2443         long pages_skipped;
2444         int range_cyclic, cycled = 1, io_done = 0;
2445         int needed_blocks, ret = 0, nr_to_writebump = 0;
2446         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2447
2448         trace_mark(ext4_da_writepages,
2449                    "dev %s ino %lu nr_t_write %ld "
2450                    "pages_skipped %ld range_start %llu "
2451                    "range_end %llu nonblocking %d "
2452                    "for_kupdate %d for_reclaim %d "
2453                    "for_writepages %d range_cyclic %d",
2454                    inode->i_sb->s_id, inode->i_ino,
2455                    wbc->nr_to_write, wbc->pages_skipped,
2456                    (unsigned long long) wbc->range_start,
2457                    (unsigned long long) wbc->range_end,
2458                    wbc->nonblocking, wbc->for_kupdate,
2459                    wbc->for_reclaim, wbc->for_writepages,
2460                    wbc->range_cyclic);
2461
2462         /*
2463          * No pages to write? This is mainly a kludge to avoid starting
2464          * a transaction for special inodes like journal inode on last iput()
2465          * because that could violate lock ordering on umount
2466          */
2467         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2468                 return 0;
2469
2470         /*
2471          * If the filesystem has aborted, it is read-only, so return
2472          * right away instead of dumping stack traces later on that
2473          * will obscure the real source of the problem.  We test
2474          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2475          * the latter could be true if the filesystem is mounted
2476          * read-only, and in that case, ext4_da_writepages should
2477          * *never* be called, so if that ever happens, we would want
2478          * the stack trace.
2479          */
2480         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2481                 return -EROFS;
2482
2483         /*
2484          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2485          * This make sure small files blocks are allocated in
2486          * single attempt. This ensure that small files
2487          * get less fragmented.
2488          */
2489         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2490                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2491                 wbc->nr_to_write = sbi->s_mb_stream_request;
2492         }
2493         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2494                 range_whole = 1;
2495
2496         range_cyclic = wbc->range_cyclic;
2497         if (wbc->range_cyclic) {
2498                 index = mapping->writeback_index;
2499                 if (index)
2500                         cycled = 0;
2501                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2502                 wbc->range_end  = LLONG_MAX;
2503                 wbc->range_cyclic = 0;
2504         } else
2505                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2506
2507         mpd.wbc = wbc;
2508         mpd.inode = mapping->host;
2509
2510         /*
2511          * we don't want write_cache_pages to update
2512          * nr_to_write and writeback_index
2513          */
2514         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2515         wbc->no_nrwrite_index_update = 1;
2516         pages_skipped = wbc->pages_skipped;
2517
2518 retry:
2519         while (!ret && wbc->nr_to_write > 0) {
2520
2521                 /*
2522                  * we  insert one extent at a time. So we need
2523                  * credit needed for single extent allocation.
2524                  * journalled mode is currently not supported
2525                  * by delalloc
2526                  */
2527                 BUG_ON(ext4_should_journal_data(inode));
2528                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2529
2530                 /* start a new transaction*/
2531                 handle = ext4_journal_start(inode, needed_blocks);
2532                 if (IS_ERR(handle)) {
2533                         ret = PTR_ERR(handle);
2534                         printk(KERN_CRIT "%s: jbd2_start: "
2535                                "%ld pages, ino %lu; err %d\n", __func__,
2536                                 wbc->nr_to_write, inode->i_ino, ret);
2537                         dump_stack();
2538                         goto out_writepages;
2539                 }
2540
2541                 /*
2542                  * Now call __mpage_da_writepage to find the next
2543                  * contiguous region of logical blocks that need
2544                  * blocks to be allocated by ext4.  We don't actually
2545                  * submit the blocks for I/O here, even though
2546                  * write_cache_pages thinks it will, and will set the
2547                  * pages as clean for write before calling
2548                  * __mpage_da_writepage().
2549                  */
2550                 mpd.b_size = 0;
2551                 mpd.b_state = 0;
2552                 mpd.b_blocknr = 0;
2553                 mpd.first_page = 0;
2554                 mpd.next_page = 0;
2555                 mpd.io_done = 0;
2556                 mpd.pages_written = 0;
2557                 mpd.retval = 0;
2558                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2559                                         &mpd);
2560                 /*
2561                  * If we have a contigous extent of pages and we
2562                  * haven't done the I/O yet, map the blocks and submit
2563                  * them for I/O.
2564                  */
2565                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2566                         if (mpage_da_map_blocks(&mpd) == 0)
2567                                 mpage_da_submit_io(&mpd);
2568                         mpd.io_done = 1;
2569                         ret = MPAGE_DA_EXTENT_TAIL;
2570                 }
2571                 wbc->nr_to_write -= mpd.pages_written;
2572
2573                 ext4_journal_stop(handle);
2574
2575                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2576                         /* commit the transaction which would
2577                          * free blocks released in the transaction
2578                          * and try again
2579                          */
2580                         jbd2_journal_force_commit_nested(sbi->s_journal);
2581                         wbc->pages_skipped = pages_skipped;
2582                         ret = 0;
2583                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2584                         /*
2585                          * got one extent now try with
2586                          * rest of the pages
2587                          */
2588                         pages_written += mpd.pages_written;
2589                         wbc->pages_skipped = pages_skipped;
2590                         ret = 0;
2591                         io_done = 1;
2592                 } else if (wbc->nr_to_write)
2593                         /*
2594                          * There is no more writeout needed
2595                          * or we requested for a noblocking writeout
2596                          * and we found the device congested
2597                          */
2598                         break;
2599         }
2600         if (!io_done && !cycled) {
2601                 cycled = 1;
2602                 index = 0;
2603                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2604                 wbc->range_end  = mapping->writeback_index - 1;
2605                 goto retry;
2606         }
2607         if (pages_skipped != wbc->pages_skipped)
2608                 printk(KERN_EMERG "This should not happen leaving %s "
2609                                 "with nr_to_write = %ld ret = %d\n",
2610                                 __func__, wbc->nr_to_write, ret);
2611
2612         /* Update index */
2613         index += pages_written;
2614         wbc->range_cyclic = range_cyclic;
2615         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2616                 /*
2617                  * set the writeback_index so that range_cyclic
2618                  * mode will write it back later
2619                  */
2620                 mapping->writeback_index = index;
2621
2622 out_writepages:
2623         if (!no_nrwrite_index_update)
2624                 wbc->no_nrwrite_index_update = 0;
2625         wbc->nr_to_write -= nr_to_writebump;
2626         trace_mark(ext4_da_writepage_result,
2627                    "dev %s ino %lu ret %d pages_written %d "
2628                    "pages_skipped %ld congestion %d "
2629                    "more_io %d no_nrwrite_index_update %d",
2630                    inode->i_sb->s_id, inode->i_ino, ret,
2631                    pages_written, wbc->pages_skipped,
2632                    wbc->encountered_congestion, wbc->more_io,
2633                    wbc->no_nrwrite_index_update);
2634         return ret;
2635 }
2636
2637 #define FALL_BACK_TO_NONDELALLOC 1
2638 static int ext4_nonda_switch(struct super_block *sb)
2639 {
2640         s64 free_blocks, dirty_blocks;
2641         struct ext4_sb_info *sbi = EXT4_SB(sb);
2642
2643         /*
2644          * switch to non delalloc mode if we are running low
2645          * on free block. The free block accounting via percpu
2646          * counters can get slightly wrong with percpu_counter_batch getting
2647          * accumulated on each CPU without updating global counters
2648          * Delalloc need an accurate free block accounting. So switch
2649          * to non delalloc when we are near to error range.
2650          */
2651         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2652         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2653         if (2 * free_blocks < 3 * dirty_blocks ||
2654                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2655                 /*
2656                  * free block count is less that 150% of dirty blocks
2657                  * or free blocks is less that watermark
2658                  */
2659                 return 1;
2660         }
2661         return 0;
2662 }
2663
2664 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2665                                 loff_t pos, unsigned len, unsigned flags,
2666                                 struct page **pagep, void **fsdata)
2667 {
2668         int ret, retries = 0;
2669         struct page *page;
2670         pgoff_t index;
2671         unsigned from, to;
2672         struct inode *inode = mapping->host;
2673         handle_t *handle;
2674
2675         index = pos >> PAGE_CACHE_SHIFT;
2676         from = pos & (PAGE_CACHE_SIZE - 1);
2677         to = from + len;
2678
2679         if (ext4_nonda_switch(inode->i_sb)) {
2680                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2681                 return ext4_write_begin(file, mapping, pos,
2682                                         len, flags, pagep, fsdata);
2683         }
2684         *fsdata = (void *)0;
2685
2686         trace_mark(ext4_da_write_begin,
2687                    "dev %s ino %lu pos %llu len %u flags %u",
2688                    inode->i_sb->s_id, inode->i_ino,
2689                    (unsigned long long) pos, len, flags);
2690 retry:
2691         /*
2692          * With delayed allocation, we don't log the i_disksize update
2693          * if there is delayed block allocation. But we still need
2694          * to journalling the i_disksize update if writes to the end
2695          * of file which has an already mapped buffer.
2696          */
2697         handle = ext4_journal_start(inode, 1);
2698         if (IS_ERR(handle)) {
2699                 ret = PTR_ERR(handle);
2700                 goto out;
2701         }
2702         /* We cannot recurse into the filesystem as the transaction is already
2703          * started */
2704         flags |= AOP_FLAG_NOFS;
2705
2706         page = grab_cache_page_write_begin(mapping, index, flags);
2707         if (!page) {
2708                 ext4_journal_stop(handle);
2709                 ret = -ENOMEM;
2710                 goto out;
2711         }
2712         *pagep = page;
2713
2714         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2715                                                         ext4_da_get_block_prep);
2716         if (ret < 0) {
2717                 unlock_page(page);
2718                 ext4_journal_stop(handle);
2719                 page_cache_release(page);
2720                 /*
2721                  * block_write_begin may have instantiated a few blocks
2722                  * outside i_size.  Trim these off again. Don't need
2723                  * i_size_read because we hold i_mutex.
2724                  */
2725                 if (pos + len > inode->i_size)
2726                         vmtruncate(inode, inode->i_size);
2727         }
2728
2729         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2730                 goto retry;
2731 out:
2732         return ret;
2733 }
2734
2735 /*
2736  * Check if we should update i_disksize
2737  * when write to the end of file but not require block allocation
2738  */
2739 static int ext4_da_should_update_i_disksize(struct page *page,
2740                                          unsigned long offset)
2741 {
2742         struct buffer_head *bh;
2743         struct inode *inode = page->mapping->host;
2744         unsigned int idx;
2745         int i;
2746
2747         bh = page_buffers(page);
2748         idx = offset >> inode->i_blkbits;
2749
2750         for (i = 0; i < idx; i++)
2751                 bh = bh->b_this_page;
2752
2753         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2754                 return 0;
2755         return 1;
2756 }
2757
2758 static int ext4_da_write_end(struct file *file,
2759                                 struct address_space *mapping,
2760                                 loff_t pos, unsigned len, unsigned copied,
2761                                 struct page *page, void *fsdata)
2762 {
2763         struct inode *inode = mapping->host;
2764         int ret = 0, ret2;
2765         handle_t *handle = ext4_journal_current_handle();
2766         loff_t new_i_size;
2767         unsigned long start, end;
2768         int write_mode = (int)(unsigned long)fsdata;
2769
2770         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2771                 if (ext4_should_order_data(inode)) {
2772                         return ext4_ordered_write_end(file, mapping, pos,
2773                                         len, copied, page, fsdata);
2774                 } else if (ext4_should_writeback_data(inode)) {
2775                         return ext4_writeback_write_end(file, mapping, pos,
2776                                         len, copied, page, fsdata);
2777                 } else {
2778                         BUG();
2779                 }
2780         }
2781
2782         trace_mark(ext4_da_write_end,
2783                    "dev %s ino %lu pos %llu len %u copied %u",
2784                    inode->i_sb->s_id, inode->i_ino,
2785                    (unsigned long long) pos, len, copied);
2786         start = pos & (PAGE_CACHE_SIZE - 1);
2787         end = start + copied - 1;
2788
2789         /*
2790          * generic_write_end() will run mark_inode_dirty() if i_size
2791          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2792          * into that.
2793          */
2794
2795         new_i_size = pos + copied;
2796         if (new_i_size > EXT4_I(inode)->i_disksize) {
2797                 if (ext4_da_should_update_i_disksize(page, end)) {
2798                         down_write(&EXT4_I(inode)->i_data_sem);
2799                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2800                                 /*
2801                                  * Updating i_disksize when extending file
2802                                  * without needing block allocation
2803                                  */
2804                                 if (ext4_should_order_data(inode))
2805                                         ret = ext4_jbd2_file_inode(handle,
2806                                                                    inode);
2807
2808                                 EXT4_I(inode)->i_disksize = new_i_size;
2809                         }
2810                         up_write(&EXT4_I(inode)->i_data_sem);
2811                         /* We need to mark inode dirty even if
2812                          * new_i_size is less that inode->i_size
2813                          * bu greater than i_disksize.(hint delalloc)
2814                          */
2815                         ext4_mark_inode_dirty(handle, inode);
2816                 }
2817         }
2818         ret2 = generic_write_end(file, mapping, pos, len, copied,
2819                                                         page, fsdata);
2820         copied = ret2;
2821         if (ret2 < 0)
2822                 ret = ret2;
2823         ret2 = ext4_journal_stop(handle);
2824         if (!ret)
2825                 ret = ret2;
2826
2827         return ret ? ret : copied;
2828 }
2829
2830 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2831 {
2832         /*
2833          * Drop reserved blocks
2834          */
2835         BUG_ON(!PageLocked(page));
2836         if (!page_has_buffers(page))
2837                 goto out;
2838
2839         ext4_da_page_release_reservation(page, offset);
2840
2841 out:
2842         ext4_invalidatepage(page, offset);
2843
2844         return;
2845 }
2846
2847 /*
2848  * Force all delayed allocation blocks to be allocated for a given inode.
2849  */
2850 int ext4_alloc_da_blocks(struct inode *inode)
2851 {
2852         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2853             !EXT4_I(inode)->i_reserved_meta_blocks)
2854                 return 0;
2855
2856         /*
2857          * We do something simple for now.  The filemap_flush() will
2858          * also start triggering a write of the data blocks, which is
2859          * not strictly speaking necessary (and for users of
2860          * laptop_mode, not even desirable).  However, to do otherwise
2861          * would require replicating code paths in:
2862          * 
2863          * ext4_da_writepages() ->
2864          *    write_cache_pages() ---> (via passed in callback function)
2865          *        __mpage_da_writepage() -->
2866          *           mpage_add_bh_to_extent()
2867          *           mpage_da_map_blocks()
2868          *
2869          * The problem is that write_cache_pages(), located in
2870          * mm/page-writeback.c, marks pages clean in preparation for
2871          * doing I/O, which is not desirable if we're not planning on
2872          * doing I/O at all.
2873          *
2874          * We could call write_cache_pages(), and then redirty all of
2875          * the pages by calling redirty_page_for_writeback() but that
2876          * would be ugly in the extreme.  So instead we would need to
2877          * replicate parts of the code in the above functions,
2878          * simplifying them becuase we wouldn't actually intend to
2879          * write out the pages, but rather only collect contiguous
2880          * logical block extents, call the multi-block allocator, and
2881          * then update the buffer heads with the block allocations.
2882          * 
2883          * For now, though, we'll cheat by calling filemap_flush(),
2884          * which will map the blocks, and start the I/O, but not
2885          * actually wait for the I/O to complete.
2886          */
2887         return filemap_flush(inode->i_mapping);
2888 }
2889
2890 /*
2891  * bmap() is special.  It gets used by applications such as lilo and by
2892  * the swapper to find the on-disk block of a specific piece of data.
2893  *
2894  * Naturally, this is dangerous if the block concerned is still in the
2895  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2896  * filesystem and enables swap, then they may get a nasty shock when the
2897  * data getting swapped to that swapfile suddenly gets overwritten by
2898  * the original zero's written out previously to the journal and
2899  * awaiting writeback in the kernel's buffer cache.
2900  *
2901  * So, if we see any bmap calls here on a modified, data-journaled file,
2902  * take extra steps to flush any blocks which might be in the cache.
2903  */
2904 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2905 {
2906         struct inode *inode = mapping->host;
2907         journal_t *journal;
2908         int err;
2909
2910         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2911                         test_opt(inode->i_sb, DELALLOC)) {
2912                 /*
2913                  * With delalloc we want to sync the file
2914                  * so that we can make sure we allocate
2915                  * blocks for file
2916                  */
2917                 filemap_write_and_wait(mapping);
2918         }
2919
2920         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2921                 /*
2922                  * This is a REALLY heavyweight approach, but the use of
2923                  * bmap on dirty files is expected to be extremely rare:
2924                  * only if we run lilo or swapon on a freshly made file
2925                  * do we expect this to happen.
2926                  *
2927                  * (bmap requires CAP_SYS_RAWIO so this does not
2928                  * represent an unprivileged user DOS attack --- we'd be
2929                  * in trouble if mortal users could trigger this path at
2930                  * will.)
2931                  *
2932                  * NB. EXT4_STATE_JDATA is not set on files other than
2933                  * regular files.  If somebody wants to bmap a directory
2934                  * or symlink and gets confused because the buffer
2935                  * hasn't yet been flushed to disk, they deserve
2936                  * everything they get.
2937                  */
2938
2939                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2940                 journal = EXT4_JOURNAL(inode);
2941                 jbd2_journal_lock_updates(journal);
2942                 err = jbd2_journal_flush(journal);
2943                 jbd2_journal_unlock_updates(journal);
2944
2945                 if (err)
2946                         return 0;
2947         }
2948
2949         return generic_block_bmap(mapping, block, ext4_get_block);
2950 }
2951
2952 static int bget_one(handle_t *handle, struct buffer_head *bh)
2953 {
2954         get_bh(bh);
2955         return 0;
2956 }
2957
2958 static int bput_one(handle_t *handle, struct buffer_head *bh)
2959 {
2960         put_bh(bh);
2961         return 0;
2962 }
2963
2964 /*
2965  * Note that we don't need to start a transaction unless we're journaling data
2966  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2967  * need to file the inode to the transaction's list in ordered mode because if
2968  * we are writing back data added by write(), the inode is already there and if
2969  * we are writing back data modified via mmap(), noone guarantees in which
2970  * transaction the data will hit the disk. In case we are journaling data, we
2971  * cannot start transaction directly because transaction start ranks above page
2972  * lock so we have to do some magic.
2973  *
2974  * In all journaling modes block_write_full_page() will start the I/O.
2975  *
2976  * Problem:
2977  *
2978  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2979  *              ext4_writepage()
2980  *
2981  * Similar for:
2982  *
2983  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2984  *
2985  * Same applies to ext4_get_block().  We will deadlock on various things like
2986  * lock_journal and i_data_sem
2987  *
2988  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2989  * allocations fail.
2990  *
2991  * 16May01: If we're reentered then journal_current_handle() will be
2992  *          non-zero. We simply *return*.
2993  *
2994  * 1 July 2001: @@@ FIXME:
2995  *   In journalled data mode, a data buffer may be metadata against the
2996  *   current transaction.  But the same file is part of a shared mapping
2997  *   and someone does a writepage() on it.
2998  *
2999  *   We will move the buffer onto the async_data list, but *after* it has
3000  *   been dirtied. So there's a small window where we have dirty data on
3001  *   BJ_Metadata.
3002  *
3003  *   Note that this only applies to the last partial page in the file.  The
3004  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3005  *   broken code anyway: it's wrong for msync()).
3006  *
3007  *   It's a rare case: affects the final partial page, for journalled data
3008  *   where the file is subject to bith write() and writepage() in the same
3009  *   transction.  To fix it we'll need a custom block_write_full_page().
3010  *   We'll probably need that anyway for journalling writepage() output.
3011  *
3012  * We don't honour synchronous mounts for writepage().  That would be
3013  * disastrous.  Any write() or metadata operation will sync the fs for
3014  * us.
3015  *
3016  */
3017 static int __ext4_normal_writepage(struct page *page,
3018                                 struct writeback_control *wbc)
3019 {
3020         struct inode *inode = page->mapping->host;
3021
3022         if (test_opt(inode->i_sb, NOBH))
3023                 return nobh_writepage(page,
3024                                         ext4_normal_get_block_write, wbc);
3025         else
3026                 return block_write_full_page(page,
3027                                                 ext4_normal_get_block_write,
3028                                                 wbc);
3029 }
3030
3031 static int ext4_normal_writepage(struct page *page,
3032                                 struct writeback_control *wbc)
3033 {
3034         struct inode *inode = page->mapping->host;
3035         loff_t size = i_size_read(inode);
3036         loff_t len;
3037
3038         trace_mark(ext4_normal_writepage,
3039                    "dev %s ino %lu page_index %lu",
3040                    inode->i_sb->s_id, inode->i_ino, page->index);
3041         J_ASSERT(PageLocked(page));
3042         if (page->index == size >> PAGE_CACHE_SHIFT)
3043                 len = size & ~PAGE_CACHE_MASK;
3044         else
3045                 len = PAGE_CACHE_SIZE;
3046
3047         if (page_has_buffers(page)) {
3048                 /* if page has buffers it should all be mapped
3049                  * and allocated. If there are not buffers attached
3050                  * to the page we know the page is dirty but it lost
3051                  * buffers. That means that at some moment in time
3052                  * after write_begin() / write_end() has been called
3053                  * all buffers have been clean and thus they must have been
3054                  * written at least once. So they are all mapped and we can
3055                  * happily proceed with mapping them and writing the page.
3056                  */
3057                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3058                                         ext4_bh_unmapped_or_delay));
3059         }
3060
3061         if (!ext4_journal_current_handle())
3062                 return __ext4_normal_writepage(page, wbc);
3063
3064         redirty_page_for_writepage(wbc, page);
3065         unlock_page(page);
3066         return 0;
3067 }
3068
3069 static int __ext4_journalled_writepage(struct page *page,
3070                                 struct writeback_control *wbc)
3071 {
3072         struct address_space *mapping = page->mapping;
3073         struct inode *inode = mapping->host;
3074         struct buffer_head *page_bufs;
3075         handle_t *handle = NULL;
3076         int ret = 0;
3077         int err;
3078
3079         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3080                                         ext4_normal_get_block_write);
3081         if (ret != 0)
3082                 goto out_unlock;
3083
3084         page_bufs = page_buffers(page);
3085         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3086                                                                 bget_one);
3087         /* As soon as we unlock the page, it can go away, but we have
3088          * references to buffers so we are safe */
3089         unlock_page(page);
3090
3091         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3092         if (IS_ERR(handle)) {
3093                 ret = PTR_ERR(handle);
3094                 goto out;
3095         }
3096
3097         ret = walk_page_buffers(handle, page_bufs, 0,
3098                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3099
3100         err = walk_page_buffers(handle, page_bufs, 0,
3101                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3102         if (ret == 0)
3103                 ret = err;
3104         err = ext4_journal_stop(handle);
3105         if (!ret)
3106                 ret = err;
3107
3108         walk_page_buffers(handle, page_bufs, 0,
3109                                 PAGE_CACHE_SIZE, NULL, bput_one);
3110         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3111         goto out;
3112
3113 out_unlock:
3114         unlock_page(page);
3115 out:
3116         return ret;
3117 }
3118
3119 static int ext4_journalled_writepage(struct page *page,
3120                                 struct writeback_control *wbc)
3121 {
3122         struct inode *inode = page->mapping->host;
3123         loff_t size = i_size_read(inode);
3124         loff_t len;
3125
3126         trace_mark(ext4_journalled_writepage,
3127                    "dev %s ino %lu page_index %lu",
3128                    inode->i_sb->s_id, inode->i_ino, page->index);
3129         J_ASSERT(PageLocked(page));
3130         if (page->index == size >> PAGE_CACHE_SHIFT)
3131                 len = size & ~PAGE_CACHE_MASK;
3132         else
3133                 len = PAGE_CACHE_SIZE;
3134
3135         if (page_has_buffers(page)) {
3136                 /* if page has buffers it should all be mapped
3137                  * and allocated. If there are not buffers attached
3138                  * to the page we know the page is dirty but it lost
3139                  * buffers. That means that at some moment in time
3140                  * after write_begin() / write_end() has been called
3141                  * all buffers have been clean and thus they must have been
3142                  * written at least once. So they are all mapped and we can
3143                  * happily proceed with mapping them and writing the page.
3144                  */
3145                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3146                                         ext4_bh_unmapped_or_delay));
3147         }
3148
3149         if (ext4_journal_current_handle())
3150                 goto no_write;
3151
3152         if (PageChecked(page)) {
3153                 /*
3154                  * It's mmapped pagecache.  Add buffers and journal it.  There
3155                  * doesn't seem much point in redirtying the page here.
3156                  */
3157                 ClearPageChecked(page);
3158                 return __ext4_journalled_writepage(page, wbc);
3159         } else {
3160                 /*
3161                  * It may be a page full of checkpoint-mode buffers.  We don't
3162                  * really know unless we go poke around in the buffer_heads.
3163                  * But block_write_full_page will do the right thing.
3164                  */
3165                 return block_write_full_page(page,
3166                                                 ext4_normal_get_block_write,
3167                                                 wbc);
3168         }
3169 no_write:
3170         redirty_page_for_writepage(wbc, page);
3171         unlock_page(page);
3172         return 0;
3173 }
3174
3175 static int ext4_readpage(struct file *file, struct page *page)
3176 {
3177         return mpage_readpage(page, ext4_get_block);
3178 }
3179
3180 static int
3181 ext4_readpages(struct file *file, struct address_space *mapping,
3182                 struct list_head *pages, unsigned nr_pages)
3183 {
3184         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3185 }
3186
3187 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3188 {
3189         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3190
3191         /*
3192          * If it's a full truncate we just forget about the pending dirtying
3193          */
3194         if (offset == 0)
3195                 ClearPageChecked(page);
3196
3197         if (journal)
3198                 jbd2_journal_invalidatepage(journal, page, offset);
3199         else
3200                 block_invalidatepage(page, offset);
3201 }
3202
3203 static int ext4_releasepage(struct page *page, gfp_t wait)
3204 {
3205         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3206
3207         WARN_ON(PageChecked(page));
3208         if (!page_has_buffers(page))
3209                 return 0;
3210         if (journal)
3211                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3212         else
3213                 return try_to_free_buffers(page);
3214 }
3215
3216 /*
3217  * If the O_DIRECT write will extend the file then add this inode to the
3218  * orphan list.  So recovery will truncate it back to the original size
3219  * if the machine crashes during the write.
3220  *
3221  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3222  * crashes then stale disk data _may_ be exposed inside the file. But current
3223  * VFS code falls back into buffered path in that case so we are safe.
3224  */
3225 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3226                         const struct iovec *iov, loff_t offset,
3227                         unsigned long nr_segs)
3228 {
3229         struct file *file = iocb->ki_filp;
3230         struct inode *inode = file->f_mapping->host;
3231         struct ext4_inode_info *ei = EXT4_I(inode);
3232         handle_t *handle;
3233         ssize_t ret;
3234         int orphan = 0;
3235         size_t count = iov_length(iov, nr_segs);
3236
3237         if (rw == WRITE) {
3238                 loff_t final_size = offset + count;
3239
3240                 if (final_size > inode->i_size) {
3241                         /* Credits for sb + inode write */
3242                         handle = ext4_journal_start(inode, 2);
3243                         if (IS_ERR(handle)) {
3244                                 ret = PTR_ERR(handle);
3245                                 goto out;
3246                         }
3247                         ret = ext4_orphan_add(handle, inode);
3248                         if (ret) {
3249                                 ext4_journal_stop(handle);
3250                                 goto out;
3251                         }
3252                         orphan = 1;
3253                         ei->i_disksize = inode->i_size;
3254                         ext4_journal_stop(handle);
3255                 }
3256         }
3257
3258         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3259                                  offset, nr_segs,
3260                                  ext4_get_block, NULL);
3261
3262         if (orphan) {
3263                 int err;
3264
3265                 /* Credits for sb + inode write */
3266                 handle = ext4_journal_start(inode, 2);
3267                 if (IS_ERR(handle)) {
3268                         /* This is really bad luck. We've written the data
3269                          * but cannot extend i_size. Bail out and pretend
3270                          * the write failed... */
3271                         ret = PTR_ERR(handle);
3272                         goto out;
3273                 }
3274                 if (inode->i_nlink)
3275                         ext4_orphan_del(handle, inode);
3276                 if (ret > 0) {
3277                         loff_t end = offset + ret;
3278                         if (end > inode->i_size) {
3279                                 ei->i_disksize = end;
3280                                 i_size_write(inode, end);
3281                                 /*
3282                                  * We're going to return a positive `ret'
3283                                  * here due to non-zero-length I/O, so there's
3284                                  * no way of reporting error returns from
3285                                  * ext4_mark_inode_dirty() to userspace.  So
3286                                  * ignore it.
3287                                  */
3288                                 ext4_mark_inode_dirty(handle, inode);
3289                         }
3290                 }
3291                 err = ext4_journal_stop(handle);
3292                 if (ret == 0)
3293                         ret = err;
3294         }
3295 out:
3296         return ret;
3297 }
3298
3299 /*
3300  * Pages can be marked dirty completely asynchronously from ext4's journalling
3301  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3302  * much here because ->set_page_dirty is called under VFS locks.  The page is
3303  * not necessarily locked.
3304  *
3305  * We cannot just dirty the page and leave attached buffers clean, because the
3306  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3307  * or jbddirty because all the journalling code will explode.
3308  *
3309  * So what we do is to mark the page "pending dirty" and next time writepage
3310  * is called, propagate that into the buffers appropriately.
3311  */
3312 static int ext4_journalled_set_page_dirty(struct page *page)
3313 {
3314         SetPageChecked(page);
3315         return __set_page_dirty_nobuffers(page);
3316 }
3317
3318 static const struct address_space_operations ext4_ordered_aops = {
3319         .readpage               = ext4_readpage,
3320         .readpages              = ext4_readpages,
3321         .writepage              = ext4_normal_writepage,
3322         .sync_page              = block_sync_page,
3323         .write_begin            = ext4_write_begin,
3324         .write_end              = ext4_ordered_write_end,
3325         .bmap                   = ext4_bmap,
3326         .invalidatepage         = ext4_invalidatepage,
3327         .releasepage            = ext4_releasepage,
3328         .direct_IO              = ext4_direct_IO,
3329         .migratepage            = buffer_migrate_page,
3330         .is_partially_uptodate  = block_is_partially_uptodate,
3331 };
3332
3333 static const struct address_space_operations ext4_writeback_aops = {
3334         .readpage               = ext4_readpage,
3335         .readpages              = ext4_readpages,
3336         .writepage              = ext4_normal_writepage,
3337         .sync_page              = block_sync_page,
3338         .write_begin            = ext4_write_begin,
3339         .write_end              = ext4_writeback_write_end,
3340         .bmap                   = ext4_bmap,
3341         .invalidatepage         = ext4_invalidatepage,
3342         .releasepage            = ext4_releasepage,
3343         .direct_IO              = ext4_direct_IO,
3344         .migratepage            = buffer_migrate_page,
3345         .is_partially_uptodate  = block_is_partially_uptodate,
3346 };
3347
3348 static const struct address_space_operations ext4_journalled_aops = {
3349         .readpage               = ext4_readpage,
3350         .readpages              = ext4_readpages,
3351         .writepage              = ext4_journalled_writepage,
3352         .sync_page              = block_sync_page,
3353         .write_begin            = ext4_write_begin,
3354         .write_end              = ext4_journalled_write_end,
3355         .set_page_dirty         = ext4_journalled_set_page_dirty,
3356         .bmap                   = ext4_bmap,
3357         .invalidatepage         = ext4_invalidatepage,
3358         .releasepage            = ext4_releasepage,
3359         .is_partially_uptodate  = block_is_partially_uptodate,
3360 };
3361
3362 static const struct address_space_operations ext4_da_aops = {
3363         .readpage               = ext4_readpage,
3364         .readpages              = ext4_readpages,
3365         .writepage              = ext4_da_writepage,
3366         .writepages             = ext4_da_writepages,
3367         .sync_page              = block_sync_page,
3368         .write_begin            = ext4_da_write_begin,
3369         .write_end              = ext4_da_write_end,
3370         .bmap                   = ext4_bmap,
3371         .invalidatepage         = ext4_da_invalidatepage,
3372         .releasepage            = ext4_releasepage,
3373         .direct_IO              = ext4_direct_IO,
3374         .migratepage            = buffer_migrate_page,
3375         .is_partially_uptodate  = block_is_partially_uptodate,
3376 };
3377
3378 void ext4_set_aops(struct inode *inode)
3379 {
3380         if (ext4_should_order_data(inode) &&
3381                 test_opt(inode->i_sb, DELALLOC))
3382                 inode->i_mapping->a_ops = &ext4_da_aops;
3383         else if (ext4_should_order_data(inode))
3384                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3385         else if (ext4_should_writeback_data(inode) &&
3386                  test_opt(inode->i_sb, DELALLOC))
3387                 inode->i_mapping->a_ops = &ext4_da_aops;
3388         else if (ext4_should_writeback_data(inode))
3389                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3390         else
3391                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3392 }
3393
3394 /*
3395  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3396  * up to the end of the block which corresponds to `from'.
3397  * This required during truncate. We need to physically zero the tail end
3398  * of that block so it doesn't yield old data if the file is later grown.
3399  */
3400 int ext4_block_truncate_page(handle_t *handle,
3401                 struct address_space *mapping, loff_t from)
3402 {
3403         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3404         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3405         unsigned blocksize, length, pos;
3406         ext4_lblk_t iblock;
3407         struct inode *inode = mapping->host;
3408         struct buffer_head *bh;
3409         struct page *page;
3410         int err = 0;
3411
3412         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3413         if (!page)
3414                 return -EINVAL;
3415
3416         blocksize = inode->i_sb->s_blocksize;
3417         length = blocksize - (offset & (blocksize - 1));
3418         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3419
3420         /*
3421          * For "nobh" option,  we can only work if we don't need to
3422          * read-in the page - otherwise we create buffers to do the IO.
3423          */
3424         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3425              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3426                 zero_user(page, offset, length);
3427                 set_page_dirty(page);
3428                 goto unlock;
3429         }
3430
3431         if (!page_has_buffers(page))
3432                 create_empty_buffers(page, blocksize, 0);
3433
3434         /* Find the buffer that contains "offset" */
3435         bh = page_buffers(page);
3436         pos = blocksize;
3437         while (offset >= pos) {
3438                 bh = bh->b_this_page;
3439                 iblock++;
3440                 pos += blocksize;
3441         }
3442
3443         err = 0;
3444         if (buffer_freed(bh)) {
3445                 BUFFER_TRACE(bh, "freed: skip");
3446                 goto unlock;
3447         }
3448
3449         if (!buffer_mapped(bh)) {
3450                 BUFFER_TRACE(bh, "unmapped");
3451                 ext4_get_block(inode, iblock, bh, 0);
3452                 /* unmapped? It's a hole - nothing to do */
3453                 if (!buffer_mapped(bh)) {
3454                         BUFFER_TRACE(bh, "still unmapped");
3455                         goto unlock;
3456                 }
3457         }
3458
3459         /* Ok, it's mapped. Make sure it's up-to-date */
3460         if (PageUptodate(page))
3461                 set_buffer_uptodate(bh);
3462
3463         if (!buffer_uptodate(bh)) {
3464                 err = -EIO;
3465                 ll_rw_block(READ, 1, &bh);
3466                 wait_on_buffer(bh);
3467                 /* Uhhuh. Read error. Complain and punt. */
3468                 if (!buffer_uptodate(bh))
3469                         goto unlock;
3470         }
3471
3472         if (ext4_should_journal_data(inode)) {
3473                 BUFFER_TRACE(bh, "get write access");
3474                 err = ext4_journal_get_write_access(handle, bh);
3475                 if (err)
3476                         goto unlock;
3477         }
3478
3479         zero_user(page, offset, length);
3480
3481         BUFFER_TRACE(bh, "zeroed end of block");
3482
3483         err = 0;
3484         if (ext4_should_journal_data(inode)) {
3485                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3486         } else {
3487                 if (ext4_should_order_data(inode))
3488                         err = ext4_jbd2_file_inode(handle, inode);
3489                 mark_buffer_dirty(bh);
3490         }
3491
3492 unlock:
3493         unlock_page(page);
3494         page_cache_release(page);
3495         return err;
3496 }
3497
3498 /*
3499  * Probably it should be a library function... search for first non-zero word
3500  * or memcmp with zero_page, whatever is better for particular architecture.
3501  * Linus?
3502  */
3503 static inline int all_zeroes(__le32 *p, __le32 *q)
3504 {
3505         while (p < q)
3506                 if (*p++)
3507                         return 0;
3508         return 1;
3509 }
3510
3511 /**
3512  *      ext4_find_shared - find the indirect blocks for partial truncation.
3513  *      @inode:   inode in question
3514  *      @depth:   depth of the affected branch
3515  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3516  *      @chain:   place to store the pointers to partial indirect blocks
3517  *      @top:     place to the (detached) top of branch
3518  *
3519  *      This is a helper function used by ext4_truncate().
3520  *
3521  *      When we do truncate() we may have to clean the ends of several
3522  *      indirect blocks but leave the blocks themselves alive. Block is
3523  *      partially truncated if some data below the new i_size is refered
3524  *      from it (and it is on the path to the first completely truncated
3525  *      data block, indeed).  We have to free the top of that path along
3526  *      with everything to the right of the path. Since no allocation
3527  *      past the truncation point is possible until ext4_truncate()
3528  *      finishes, we may safely do the latter, but top of branch may
3529  *      require special attention - pageout below the truncation point
3530  *      might try to populate it.
3531  *
3532  *      We atomically detach the top of branch from the tree, store the
3533  *      block number of its root in *@top, pointers to buffer_heads of
3534  *      partially truncated blocks - in @chain[].bh and pointers to
3535  *      their last elements that should not be removed - in
3536  *      @chain[].p. Return value is the pointer to last filled element
3537  *      of @chain.
3538  *
3539  *      The work left to caller to do the actual freeing of subtrees:
3540  *              a) free the subtree starting from *@top
3541  *              b) free the subtrees whose roots are stored in
3542  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3543  *              c) free the subtrees growing from the inode past the @chain[0].
3544  *                      (no partially truncated stuff there).  */
3545
3546 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3547                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3548 {
3549         Indirect *partial, *p;
3550         int k, err;
3551
3552         *top = 0;
3553         /* Make k index the deepest non-null offest + 1 */
3554         for (k = depth; k > 1 && !offsets[k-1]; k--)
3555                 ;
3556         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3557         /* Writer: pointers */
3558         if (!partial)
3559                 partial = chain + k-1;
3560         /*
3561          * If the branch acquired continuation since we've looked at it -
3562          * fine, it should all survive and (new) top doesn't belong to us.
3563          */
3564         if (!partial->key && *partial->p)
3565                 /* Writer: end */
3566                 goto no_top;
3567         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3568                 ;
3569         /*
3570          * OK, we've found the last block that must survive. The rest of our
3571          * branch should be detached before unlocking. However, if that rest
3572          * of branch is all ours and does not grow immediately from the inode
3573          * it's easier to cheat and just decrement partial->p.
3574          */
3575         if (p == chain + k - 1 && p > chain) {
3576                 p->p--;
3577         } else {
3578                 *top = *p->p;
3579                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3580 #if 0
3581                 *p->p = 0;
3582 #endif
3583         }
3584         /* Writer: end */
3585
3586         while (partial > p) {
3587                 brelse(partial->bh);
3588                 partial--;
3589         }
3590 no_top:
3591         return partial;
3592 }
3593
3594 /*
3595  * Zero a number of block pointers in either an inode or an indirect block.
3596  * If we restart the transaction we must again get write access to the
3597  * indirect block for further modification.
3598  *
3599  * We release `count' blocks on disk, but (last - first) may be greater
3600  * than `count' because there can be holes in there.
3601  */
3602 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3603                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3604                 unsigned long count, __le32 *first, __le32 *last)
3605 {
3606         __le32 *p;
3607         if (try_to_extend_transaction(handle, inode)) {
3608                 if (bh) {
3609                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3610                         ext4_handle_dirty_metadata(handle, inode, bh);
3611                 }
3612                 ext4_mark_inode_dirty(handle, inode);
3613                 ext4_journal_test_restart(handle, inode);
3614                 if (bh) {
3615                         BUFFER_TRACE(bh, "retaking write access");
3616                         ext4_journal_get_write_access(handle, bh);
3617                 }
3618         }
3619
3620         /*
3621          * Any buffers which are on the journal will be in memory. We find
3622          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3623          * on them.  We've already detached each block from the file, so
3624          * bforget() in jbd2_journal_forget() should be safe.
3625          *
3626          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3627          */
3628         for (p = first; p < last; p++) {
3629                 u32 nr = le32_to_cpu(*p);
3630                 if (nr) {
3631                         struct buffer_head *tbh;
3632
3633                         *p = 0;
3634                         tbh = sb_find_get_block(inode->i_sb, nr);
3635                         ext4_forget(handle, 0, inode, tbh, nr);
3636                 }
3637         }
3638
3639         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3640 }
3641
3642 /**
3643  * ext4_free_data - free a list of data blocks
3644  * @handle:     handle for this transaction
3645  * @inode:      inode we are dealing with
3646  * @this_bh:    indirect buffer_head which contains *@first and *@last
3647  * @first:      array of block numbers
3648  * @last:       points immediately past the end of array
3649  *
3650  * We are freeing all blocks refered from that array (numbers are stored as
3651  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3652  *
3653  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3654  * blocks are contiguous then releasing them at one time will only affect one
3655  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3656  * actually use a lot of journal space.
3657  *
3658  * @this_bh will be %NULL if @first and @last point into the inode's direct
3659  * block pointers.
3660  */
3661 static void ext4_free_data(handle_t *handle, struct inode *inode,
3662                            struct buffer_head *this_bh,
3663                            __le32 *first, __le32 *last)
3664 {
3665         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3666         unsigned long count = 0;            /* Number of blocks in the run */
3667         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3668                                                corresponding to
3669                                                block_to_free */
3670         ext4_fsblk_t nr;                    /* Current block # */
3671         __le32 *p;                          /* Pointer into inode/ind
3672                                                for current block */
3673         int err;
3674
3675         if (this_bh) {                          /* For indirect block */
3676                 BUFFER_TRACE(this_bh, "get_write_access");
3677                 err = ext4_journal_get_write_access(handle, this_bh);
3678                 /* Important: if we can't update the indirect pointers
3679                  * to the blocks, we can't free them. */
3680                 if (err)
3681                         return;
3682         }
3683
3684         for (p = first; p < last; p++) {
3685                 nr = le32_to_cpu(*p);
3686                 if (nr) {
3687                         /* accumulate blocks to free if they're contiguous */
3688                         if (count == 0) {
3689                                 block_to_free = nr;
3690                                 block_to_free_p = p;
3691                                 count = 1;
3692                         } else if (nr == block_to_free + count) {
3693                                 count++;
3694                         } else {
3695                                 ext4_clear_blocks(handle, inode, this_bh,
3696                                                   block_to_free,
3697                                                   count, block_to_free_p, p);
3698                                 block_to_free = nr;
3699                                 block_to_free_p = p;
3700                                 count = 1;
3701                         }
3702                 }
3703         }
3704
3705         if (count > 0)
3706                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3707                                   count, block_to_free_p, p);
3708
3709         if (this_bh) {
3710                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3711
3712                 /*
3713                  * The buffer head should have an attached journal head at this
3714                  * point. However, if the data is corrupted and an indirect
3715                  * block pointed to itself, it would have been detached when
3716                  * the block was cleared. Check for this instead of OOPSing.
3717                  */
3718                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3719                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3720                 else
3721                         ext4_error(inode->i_sb, __func__,
3722                                    "circular indirect block detected, "
3723                                    "inode=%lu, block=%llu",
3724                                    inode->i_ino,
3725                                    (unsigned long long) this_bh->b_blocknr);
3726         }
3727 }
3728
3729 /**
3730  *      ext4_free_branches - free an array of branches
3731  *      @handle: JBD handle for this transaction
3732  *      @inode: inode we are dealing with
3733  *      @parent_bh: the buffer_head which contains *@first and *@last
3734  *      @first: array of block numbers
3735  *      @last:  pointer immediately past the end of array
3736  *      @depth: depth of the branches to free
3737  *
3738  *      We are freeing all blocks refered from these branches (numbers are
3739  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3740  *      appropriately.
3741  */
3742 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3743                                struct buffer_head *parent_bh,
3744                                __le32 *first, __le32 *last, int depth)
3745 {
3746         ext4_fsblk_t nr;
3747         __le32 *p;
3748
3749         if (ext4_handle_is_aborted(handle))
3750                 return;
3751
3752         if (depth--) {
3753                 struct buffer_head *bh;
3754                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3755                 p = last;
3756                 while (--p >= first) {
3757                         nr = le32_to_cpu(*p);
3758                         if (!nr)
3759                                 continue;               /* A hole */
3760
3761                         /* Go read the buffer for the next level down */
3762                         bh = sb_bread(inode->i_sb, nr);
3763
3764                         /*
3765                          * A read failure? Report error and clear slot
3766                          * (should be rare).
3767                          */
3768                         if (!bh) {
3769                                 ext4_error(inode->i_sb, "ext4_free_branches",
3770                                            "Read failure, inode=%lu, block=%llu",
3771                                            inode->i_ino, nr);
3772                                 continue;
3773                         }
3774
3775                         /* This zaps the entire block.  Bottom up. */
3776                         BUFFER_TRACE(bh, "free child branches");
3777                         ext4_free_branches(handle, inode, bh,
3778                                         (__le32 *) bh->b_data,
3779                                         (__le32 *) bh->b_data + addr_per_block,
3780                                         depth);
3781
3782                         /*
3783                          * We've probably journalled the indirect block several
3784                          * times during the truncate.  But it's no longer
3785                          * needed and we now drop it from the transaction via
3786                          * jbd2_journal_revoke().
3787                          *
3788                          * That's easy if it's exclusively part of this
3789                          * transaction.  But if it's part of the committing
3790                          * transaction then jbd2_journal_forget() will simply
3791                          * brelse() it.  That means that if the underlying
3792                          * block is reallocated in ext4_get_block(),
3793                          * unmap_underlying_metadata() will find this block
3794                          * and will try to get rid of it.  damn, damn.
3795                          *
3796                          * If this block has already been committed to the
3797                          * journal, a revoke record will be written.  And
3798                          * revoke records must be emitted *before* clearing
3799                          * this block's bit in the bitmaps.
3800                          */
3801                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3802
3803                         /*
3804                          * Everything below this this pointer has been
3805                          * released.  Now let this top-of-subtree go.
3806                          *
3807                          * We want the freeing of this indirect block to be
3808                          * atomic in the journal with the updating of the
3809                          * bitmap block which owns it.  So make some room in
3810                          * the journal.
3811                          *
3812                          * We zero the parent pointer *after* freeing its
3813                          * pointee in the bitmaps, so if extend_transaction()
3814                          * for some reason fails to put the bitmap changes and
3815                          * the release into the same transaction, recovery
3816                          * will merely complain about releasing a free block,
3817                          * rather than leaking blocks.
3818                          */
3819                         if (ext4_handle_is_aborted(handle))
3820                                 return;
3821                         if (try_to_extend_transaction(handle, inode)) {
3822                                 ext4_mark_inode_dirty(handle, inode);
3823                                 ext4_journal_test_restart(handle, inode);
3824                         }
3825
3826                         ext4_free_blocks(handle, inode, nr, 1, 1);
3827
3828                         if (parent_bh) {
3829                                 /*
3830                                  * The block which we have just freed is
3831                                  * pointed to by an indirect block: journal it
3832                                  */
3833                                 BUFFER_TRACE(parent_bh, "get_write_access");
3834                                 if (!ext4_journal_get_write_access(handle,
3835                                                                    parent_bh)){
3836                                         *p = 0;
3837                                         BUFFER_TRACE(parent_bh,
3838                                         "call ext4_handle_dirty_metadata");
3839                                         ext4_handle_dirty_metadata(handle,
3840                                                                    inode,
3841                                                                    parent_bh);
3842                                 }
3843                         }
3844                 }
3845         } else {
3846                 /* We have reached the bottom of the tree. */
3847                 BUFFER_TRACE(parent_bh, "free data blocks");
3848                 ext4_free_data(handle, inode, parent_bh, first, last);
3849         }
3850 }
3851
3852 int ext4_can_truncate(struct inode *inode)
3853 {
3854         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3855                 return 0;
3856         if (S_ISREG(inode->i_mode))
3857                 return 1;
3858         if (S_ISDIR(inode->i_mode))
3859                 return 1;
3860         if (S_ISLNK(inode->i_mode))
3861                 return !ext4_inode_is_fast_symlink(inode);
3862         return 0;
3863 }
3864
3865 /*
3866  * ext4_truncate()
3867  *
3868  * We block out ext4_get_block() block instantiations across the entire
3869  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3870  * simultaneously on behalf of the same inode.
3871  *
3872  * As we work through the truncate and commmit bits of it to the journal there
3873  * is one core, guiding principle: the file's tree must always be consistent on
3874  * disk.  We must be able to restart the truncate after a crash.
3875  *
3876  * The file's tree may be transiently inconsistent in memory (although it
3877  * probably isn't), but whenever we close off and commit a journal transaction,
3878  * the contents of (the filesystem + the journal) must be consistent and
3879  * restartable.  It's pretty simple, really: bottom up, right to left (although
3880  * left-to-right works OK too).
3881  *
3882  * Note that at recovery time, journal replay occurs *before* the restart of
3883  * truncate against the orphan inode list.
3884  *
3885  * The committed inode has the new, desired i_size (which is the same as
3886  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3887  * that this inode's truncate did not complete and it will again call
3888  * ext4_truncate() to have another go.  So there will be instantiated blocks
3889  * to the right of the truncation point in a crashed ext4 filesystem.  But
3890  * that's fine - as long as they are linked from the inode, the post-crash
3891  * ext4_truncate() run will find them and release them.
3892  */
3893 void ext4_truncate(struct inode *inode)
3894 {
3895         handle_t *handle;
3896         struct ext4_inode_info *ei = EXT4_I(inode);
3897         __le32 *i_data = ei->i_data;
3898         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3899         struct address_space *mapping = inode->i_mapping;
3900         ext4_lblk_t offsets[4];
3901         Indirect chain[4];
3902         Indirect *partial;
3903         __le32 nr = 0;
3904         int n;
3905         ext4_lblk_t last_block;
3906         unsigned blocksize = inode->i_sb->s_blocksize;
3907
3908         if (!ext4_can_truncate(inode))
3909                 return;
3910
3911         if (inode->i_size == 0)
3912                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3913
3914         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3915                 ext4_ext_truncate(inode);
3916                 return;
3917         }
3918
3919         handle = start_transaction(inode);
3920         if (IS_ERR(handle))
3921                 return;         /* AKPM: return what? */
3922
3923         last_block = (inode->i_size + blocksize-1)
3924                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3925
3926         if (inode->i_size & (blocksize - 1))
3927                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3928                         goto out_stop;
3929
3930         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3931         if (n == 0)
3932                 goto out_stop;  /* error */
3933
3934         /*
3935          * OK.  This truncate is going to happen.  We add the inode to the
3936          * orphan list, so that if this truncate spans multiple transactions,
3937          * and we crash, we will resume the truncate when the filesystem
3938          * recovers.  It also marks the inode dirty, to catch the new size.
3939          *
3940          * Implication: the file must always be in a sane, consistent
3941          * truncatable state while each transaction commits.
3942          */
3943         if (ext4_orphan_add(handle, inode))
3944                 goto out_stop;
3945
3946         /*
3947          * From here we block out all ext4_get_block() callers who want to
3948          * modify the block allocation tree.
3949          */
3950         down_write(&ei->i_data_sem);
3951
3952         ext4_discard_preallocations(inode);
3953
3954         /*
3955          * The orphan list entry will now protect us from any crash which
3956          * occurs before the truncate completes, so it is now safe to propagate
3957          * the new, shorter inode size (held for now in i_size) into the
3958          * on-disk inode. We do this via i_disksize, which is the value which
3959          * ext4 *really* writes onto the disk inode.
3960          */
3961         ei->i_disksize = inode->i_size;
3962
3963         if (n == 1) {           /* direct blocks */
3964                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3965                                i_data + EXT4_NDIR_BLOCKS);
3966                 goto do_indirects;
3967         }
3968
3969         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3970         /* Kill the top of shared branch (not detached) */
3971         if (nr) {
3972                 if (partial == chain) {
3973                         /* Shared branch grows from the inode */
3974                         ext4_free_branches(handle, inode, NULL,
3975                                            &nr, &nr+1, (chain+n-1) - partial);
3976                         *partial->p = 0;
3977                         /*
3978                          * We mark the inode dirty prior to restart,
3979                          * and prior to stop.  No need for it here.
3980                          */
3981                 } else {
3982                         /* Shared branch grows from an indirect block */
3983                         BUFFER_TRACE(partial->bh, "get_write_access");
3984                         ext4_free_branches(handle, inode, partial->bh,
3985                                         partial->p,
3986                                         partial->p+1, (chain+n-1) - partial);
3987                 }
3988         }
3989         /* Clear the ends of indirect blocks on the shared branch */
3990         while (partial > chain) {
3991                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3992                                    (__le32*)partial->bh->b_data+addr_per_block,
3993                                    (chain+n-1) - partial);
3994                 BUFFER_TRACE(partial->bh, "call brelse");
3995                 brelse (partial->bh);
3996                 partial--;
3997         }
3998 do_indirects:
3999         /* Kill the remaining (whole) subtrees */
4000         switch (offsets[0]) {
4001         default:
4002                 nr = i_data[EXT4_IND_BLOCK];
4003                 if (nr) {
4004                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4005                         i_data[EXT4_IND_BLOCK] = 0;
4006                 }
4007         case EXT4_IND_BLOCK:
4008                 nr = i_data[EXT4_DIND_BLOCK];
4009                 if (nr) {
4010                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4011                         i_data[EXT4_DIND_BLOCK] = 0;
4012                 }
4013         case EXT4_DIND_BLOCK:
4014                 nr = i_data[EXT4_TIND_BLOCK];
4015                 if (nr) {
4016                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4017                         i_data[EXT4_TIND_BLOCK] = 0;
4018                 }
4019         case EXT4_TIND_BLOCK:
4020                 ;
4021         }
4022
4023         up_write(&ei->i_data_sem);
4024         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4025         ext4_mark_inode_dirty(handle, inode);
4026
4027         /*
4028          * In a multi-transaction truncate, we only make the final transaction
4029          * synchronous
4030          */
4031         if (IS_SYNC(inode))
4032                 ext4_handle_sync(handle);
4033 out_stop:
4034         /*
4035          * If this was a simple ftruncate(), and the file will remain alive
4036          * then we need to clear up the orphan record which we created above.
4037          * However, if this was a real unlink then we were called by
4038          * ext4_delete_inode(), and we allow that function to clean up the
4039          * orphan info for us.
4040          */
4041         if (inode->i_nlink)
4042                 ext4_orphan_del(handle, inode);
4043
4044         ext4_journal_stop(handle);
4045 }
4046
4047 /*
4048  * ext4_get_inode_loc returns with an extra refcount against the inode's
4049  * underlying buffer_head on success. If 'in_mem' is true, we have all
4050  * data in memory that is needed to recreate the on-disk version of this
4051  * inode.
4052  */
4053 static int __ext4_get_inode_loc(struct inode *inode,
4054                                 struct ext4_iloc *iloc, int in_mem)
4055 {
4056         struct ext4_group_desc  *gdp;
4057         struct buffer_head      *bh;
4058         struct super_block      *sb = inode->i_sb;
4059         ext4_fsblk_t            block;
4060         int                     inodes_per_block, inode_offset;
4061
4062         iloc->bh = NULL;
4063         if (!ext4_valid_inum(sb, inode->i_ino))
4064                 return -EIO;
4065
4066         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4067         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4068         if (!gdp)
4069                 return -EIO;
4070
4071         /*
4072          * Figure out the offset within the block group inode table
4073          */
4074         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4075         inode_offset = ((inode->i_ino - 1) %
4076                         EXT4_INODES_PER_GROUP(sb));
4077         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4078         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4079
4080         bh = sb_getblk(sb, block);
4081         if (!bh) {
4082                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4083                            "inode block - inode=%lu, block=%llu",
4084                            inode->i_ino, block);
4085                 return -EIO;
4086         }
4087         if (!buffer_uptodate(bh)) {
4088                 lock_buffer(bh);
4089
4090                 /*
4091                  * If the buffer has the write error flag, we have failed
4092                  * to write out another inode in the same block.  In this
4093                  * case, we don't have to read the block because we may
4094                  * read the old inode data successfully.
4095                  */
4096                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4097                         set_buffer_uptodate(bh);
4098
4099                 if (buffer_uptodate(bh)) {
4100                         /* someone brought it uptodate while we waited */
4101                         unlock_buffer(bh);
4102                         goto has_buffer;
4103                 }
4104
4105                 /*
4106                  * If we have all information of the inode in memory and this
4107                  * is the only valid inode in the block, we need not read the
4108                  * block.
4109                  */
4110                 if (in_mem) {
4111                         struct buffer_head *bitmap_bh;
4112                         int i, start;
4113
4114                         start = inode_offset & ~(inodes_per_block - 1);
4115
4116                         /* Is the inode bitmap in cache? */
4117                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4118                         if (!bitmap_bh)
4119                                 goto make_io;
4120
4121                         /*
4122                          * If the inode bitmap isn't in cache then the
4123                          * optimisation may end up performing two reads instead
4124                          * of one, so skip it.
4125                          */
4126                         if (!buffer_uptodate(bitmap_bh)) {
4127                                 brelse(bitmap_bh);
4128                                 goto make_io;
4129                         }
4130                         for (i = start; i < start + inodes_per_block; i++) {
4131                                 if (i == inode_offset)
4132                                         continue;
4133                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4134                                         break;
4135                         }
4136                         brelse(bitmap_bh);
4137                         if (i == start + inodes_per_block) {
4138                                 /* all other inodes are free, so skip I/O */
4139                                 memset(bh->b_data, 0, bh->b_size);
4140                                 set_buffer_uptodate(bh);
4141                                 unlock_buffer(bh);
4142                                 goto has_buffer;
4143                         }
4144                 }
4145
4146 make_io:
4147                 /*
4148                  * If we need to do any I/O, try to pre-readahead extra
4149                  * blocks from the inode table.
4150                  */
4151                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4152                         ext4_fsblk_t b, end, table;
4153                         unsigned num;
4154
4155                         table = ext4_inode_table(sb, gdp);
4156                         /* Make sure s_inode_readahead_blks is a power of 2 */
4157                         while (EXT4_SB(sb)->s_inode_readahead_blks &
4158                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
4159                                 EXT4_SB(sb)->s_inode_readahead_blks = 
4160                                    (EXT4_SB(sb)->s_inode_readahead_blks &
4161                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
4162                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4163                         if (table > b)
4164                                 b = table;
4165                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4166                         num = EXT4_INODES_PER_GROUP(sb);
4167                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4168                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4169                                 num -= ext4_itable_unused_count(sb, gdp);
4170                         table += num / inodes_per_block;
4171                         if (end > table)
4172                                 end = table;
4173                         while (b <= end)
4174                                 sb_breadahead(sb, b++);
4175                 }
4176
4177                 /*
4178                  * There are other valid inodes in the buffer, this inode
4179                  * has in-inode xattrs, or we don't have this inode in memory.
4180                  * Read the block from disk.
4181                  */
4182                 get_bh(bh);
4183                 bh->b_end_io = end_buffer_read_sync;
4184                 submit_bh(READ_META, bh);
4185                 wait_on_buffer(bh);
4186                 if (!buffer_uptodate(bh)) {
4187                         ext4_error(sb, __func__,
4188                                    "unable to read inode block - inode=%lu, "
4189                                    "block=%llu", inode->i_ino, block);
4190                         brelse(bh);
4191                         return -EIO;
4192                 }
4193         }
4194 has_buffer:
4195         iloc->bh = bh;
4196         return 0;
4197 }
4198
4199 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4200 {
4201         /* We have all inode data except xattrs in memory here. */
4202         return __ext4_get_inode_loc(inode, iloc,
4203                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4204 }
4205
4206 void ext4_set_inode_flags(struct inode *inode)
4207 {
4208         unsigned int flags = EXT4_I(inode)->i_flags;
4209
4210         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4211         if (flags & EXT4_SYNC_FL)
4212                 inode->i_flags |= S_SYNC;
4213         if (flags & EXT4_APPEND_FL)
4214                 inode->i_flags |= S_APPEND;
4215         if (flags & EXT4_IMMUTABLE_FL)
4216                 inode->i_flags |= S_IMMUTABLE;
4217         if (flags & EXT4_NOATIME_FL)
4218                 inode->i_flags |= S_NOATIME;
4219         if (flags & EXT4_DIRSYNC_FL)
4220                 inode->i_flags |= S_DIRSYNC;
4221 }
4222
4223 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4224 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4225 {
4226         unsigned int flags = ei->vfs_inode.i_flags;
4227
4228         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4229                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4230         if (flags & S_SYNC)
4231                 ei->i_flags |= EXT4_SYNC_FL;
4232         if (flags & S_APPEND)
4233                 ei->i_flags |= EXT4_APPEND_FL;
4234         if (flags & S_IMMUTABLE)
4235                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4236         if (flags & S_NOATIME)
4237                 ei->i_flags |= EXT4_NOATIME_FL;
4238         if (flags & S_DIRSYNC)
4239                 ei->i_flags |= EXT4_DIRSYNC_FL;
4240 }
4241 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4242                                         struct ext4_inode_info *ei)
4243 {
4244         blkcnt_t i_blocks ;
4245         struct inode *inode = &(ei->vfs_inode);
4246         struct super_block *sb = inode->i_sb;
4247
4248         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4249                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4250                 /* we are using combined 48 bit field */
4251                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4252                                         le32_to_cpu(raw_inode->i_blocks_lo);
4253                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4254                         /* i_blocks represent file system block size */
4255                         return i_blocks  << (inode->i_blkbits - 9);
4256                 } else {
4257                         return i_blocks;
4258                 }
4259         } else {
4260                 return le32_to_cpu(raw_inode->i_blocks_lo);
4261         }
4262 }
4263
4264 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4265 {
4266         struct ext4_iloc iloc;
4267         struct ext4_inode *raw_inode;
4268         struct ext4_inode_info *ei;
4269         struct buffer_head *bh;
4270         struct inode *inode;
4271         long ret;
4272         int block;
4273
4274         inode = iget_locked(sb, ino);
4275         if (!inode)
4276                 return ERR_PTR(-ENOMEM);
4277         if (!(inode->i_state & I_NEW))
4278                 return inode;
4279
4280         ei = EXT4_I(inode);
4281 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4282         ei->i_acl = EXT4_ACL_NOT_CACHED;
4283         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4284 #endif
4285
4286         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4287         if (ret < 0)
4288                 goto bad_inode;
4289         bh = iloc.bh;
4290         raw_inode = ext4_raw_inode(&iloc);
4291         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4292         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4293         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4294         if (!(test_opt(inode->i_sb, NO_UID32))) {
4295                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4296                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4297         }
4298         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4299
4300         ei->i_state = 0;
4301         ei->i_dir_start_lookup = 0;
4302         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4303         /* We now have enough fields to check if the inode was active or not.
4304          * This is needed because nfsd might try to access dead inodes
4305          * the test is that same one that e2fsck uses
4306          * NeilBrown 1999oct15
4307          */
4308         if (inode->i_nlink == 0) {
4309                 if (inode->i_mode == 0 ||
4310                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4311                         /* this inode is deleted */
4312                         brelse(bh);
4313                         ret = -ESTALE;
4314                         goto bad_inode;
4315                 }
4316                 /* The only unlinked inodes we let through here have
4317                  * valid i_mode and are being read by the orphan
4318                  * recovery code: that's fine, we're about to complete
4319                  * the process of deleting those. */
4320         }
4321         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4322         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4323         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4324         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4325             cpu_to_le32(EXT4_OS_HURD)) {
4326                 ei->i_file_acl |=
4327                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4328         }
4329         inode->i_size = ext4_isize(raw_inode);
4330         ei->i_disksize = inode->i_size;
4331         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4332         ei->i_block_group = iloc.block_group;
4333         ei->i_last_alloc_group = ~0;
4334         /*
4335          * NOTE! The in-memory inode i_data array is in little-endian order
4336          * even on big-endian machines: we do NOT byteswap the block numbers!
4337          */
4338         for (block = 0; block < EXT4_N_BLOCKS; block++)
4339                 ei->i_data[block] = raw_inode->i_block[block];
4340         INIT_LIST_HEAD(&ei->i_orphan);
4341
4342         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4343                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4344                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4345                     EXT4_INODE_SIZE(inode->i_sb)) {
4346                         brelse(bh);
4347                         ret = -EIO;
4348                         goto bad_inode;
4349                 }
4350                 if (ei->i_extra_isize == 0) {
4351                         /* The extra space is currently unused. Use it. */
4352                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4353                                             EXT4_GOOD_OLD_INODE_SIZE;
4354                 } else {
4355                         __le32 *magic = (void *)raw_inode +
4356                                         EXT4_GOOD_OLD_INODE_SIZE +
4357                                         ei->i_extra_isize;
4358                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4359                                  ei->i_state |= EXT4_STATE_XATTR;
4360                 }
4361         } else
4362                 ei->i_extra_isize = 0;
4363
4364         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4365         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4366         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4367         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4368
4369         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4370         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4371                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4372                         inode->i_version |=
4373                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4374         }
4375
4376         if (ei->i_flags & EXT4_EXTENTS_FL) {
4377                 /* Validate extent which is part of inode */
4378                 ret = ext4_ext_check_inode(inode);
4379                 if (ret) {
4380                         brelse(bh);
4381                         goto bad_inode;
4382                 }
4383
4384         }
4385
4386         if (S_ISREG(inode->i_mode)) {
4387                 inode->i_op = &ext4_file_inode_operations;
4388                 inode->i_fop = &ext4_file_operations;
4389                 ext4_set_aops(inode);
4390         } else if (S_ISDIR(inode->i_mode)) {
4391                 inode->i_op = &ext4_dir_inode_operations;
4392                 inode->i_fop = &ext4_dir_operations;
4393         } else if (S_ISLNK(inode->i_mode)) {
4394                 if (ext4_inode_is_fast_symlink(inode)) {
4395                         inode->i_op = &ext4_fast_symlink_inode_operations;
4396                         nd_terminate_link(ei->i_data, inode->i_size,
4397                                 sizeof(ei->i_data) - 1);
4398                 } else {
4399                         inode->i_op = &ext4_symlink_inode_operations;
4400                         ext4_set_aops(inode);
4401                 }
4402         } else {
4403                 inode->i_op = &ext4_special_inode_operations;
4404                 if (raw_inode->i_block[0])
4405                         init_special_inode(inode, inode->i_mode,
4406                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4407                 else
4408                         init_special_inode(inode, inode->i_mode,
4409                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4410         }
4411         brelse(iloc.bh);
4412         ext4_set_inode_flags(inode);
4413         unlock_new_inode(inode);
4414         return inode;
4415
4416 bad_inode:
4417         iget_failed(inode);
4418         return ERR_PTR(ret);
4419 }
4420
4421 static int ext4_inode_blocks_set(handle_t *handle,
4422                                 struct ext4_inode *raw_inode,
4423                                 struct ext4_inode_info *ei)
4424 {
4425         struct inode *inode = &(ei->vfs_inode);
4426         u64 i_blocks = inode->i_blocks;
4427         struct super_block *sb = inode->i_sb;
4428
4429         if (i_blocks <= ~0U) {
4430                 /*
4431                  * i_blocks can be represnted in a 32 bit variable
4432                  * as multiple of 512 bytes
4433                  */
4434                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4435                 raw_inode->i_blocks_high = 0;
4436                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4437                 return 0;
4438         }
4439         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4440                 return -EFBIG;
4441
4442         if (i_blocks <= 0xffffffffffffULL) {
4443                 /*
4444                  * i_blocks can be represented in a 48 bit variable
4445                  * as multiple of 512 bytes
4446                  */
4447                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4448                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4449                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4450         } else {
4451                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4452                 /* i_block is stored in file system block size */
4453                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4454                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4455                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4456         }
4457         return 0;
4458 }
4459
4460 /*
4461  * Post the struct inode info into an on-disk inode location in the
4462  * buffer-cache.  This gobbles the caller's reference to the
4463  * buffer_head in the inode location struct.
4464  *
4465  * The caller must have write access to iloc->bh.
4466  */
4467 static int ext4_do_update_inode(handle_t *handle,
4468                                 struct inode *inode,
4469                                 struct ext4_iloc *iloc)
4470 {
4471         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4472         struct ext4_inode_info *ei = EXT4_I(inode);
4473         struct buffer_head *bh = iloc->bh;
4474         int err = 0, rc, block;
4475
4476         /* For fields not not tracking in the in-memory inode,
4477          * initialise them to zero for new inodes. */
4478         if (ei->i_state & EXT4_STATE_NEW)
4479                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4480
4481         ext4_get_inode_flags(ei);
4482         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4483         if (!(test_opt(inode->i_sb, NO_UID32))) {
4484                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4485                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4486 /*
4487  * Fix up interoperability with old kernels. Otherwise, old inodes get
4488  * re-used with the upper 16 bits of the uid/gid intact
4489  */
4490                 if (!ei->i_dtime) {
4491                         raw_inode->i_uid_high =
4492                                 cpu_to_le16(high_16_bits(inode->i_uid));
4493                         raw_inode->i_gid_high =
4494                                 cpu_to_le16(high_16_bits(inode->i_gid));
4495                 } else {
4496                         raw_inode->i_uid_high = 0;
4497                         raw_inode->i_gid_high = 0;
4498                 }
4499         } else {
4500                 raw_inode->i_uid_low =
4501                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4502                 raw_inode->i_gid_low =
4503                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4504                 raw_inode->i_uid_high = 0;
4505                 raw_inode->i_gid_high = 0;
4506         }
4507         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4508
4509         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4510         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4511         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4512         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4513
4514         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4515                 goto out_brelse;
4516         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4517         /* clear the migrate flag in the raw_inode */
4518         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4519         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4520             cpu_to_le32(EXT4_OS_HURD))
4521                 raw_inode->i_file_acl_high =
4522                         cpu_to_le16(ei->i_file_acl >> 32);
4523         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4524         ext4_isize_set(raw_inode, ei->i_disksize);
4525         if (ei->i_disksize > 0x7fffffffULL) {
4526                 struct super_block *sb = inode->i_sb;
4527                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4528                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4529                                 EXT4_SB(sb)->s_es->s_rev_level ==
4530                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4531                         /* If this is the first large file
4532                          * created, add a flag to the superblock.
4533                          */
4534                         err = ext4_journal_get_write_access(handle,
4535                                         EXT4_SB(sb)->s_sbh);
4536                         if (err)
4537                                 goto out_brelse;
4538                         ext4_update_dynamic_rev(sb);
4539                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4540                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4541                         sb->s_dirt = 1;
4542                         ext4_handle_sync(handle);
4543                         err = ext4_handle_dirty_metadata(handle, inode,
4544                                         EXT4_SB(sb)->s_sbh);
4545                 }
4546         }
4547         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4548         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4549                 if (old_valid_dev(inode->i_rdev)) {
4550                         raw_inode->i_block[0] =
4551                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4552                         raw_inode->i_block[1] = 0;
4553                 } else {
4554                         raw_inode->i_block[0] = 0;
4555                         raw_inode->i_block[1] =
4556                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4557                         raw_inode->i_block[2] = 0;
4558                 }
4559         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4560                 raw_inode->i_block[block] = ei->i_data[block];
4561
4562         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4563         if (ei->i_extra_isize) {
4564                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4565                         raw_inode->i_version_hi =
4566                         cpu_to_le32(inode->i_version >> 32);
4567                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4568         }
4569
4570         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4571         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4572         if (!err)
4573                 err = rc;
4574         ei->i_state &= ~EXT4_STATE_NEW;
4575
4576 out_brelse:
4577         brelse(bh);
4578         ext4_std_error(inode->i_sb, err);
4579         return err;
4580 }
4581
4582 /*
4583  * ext4_write_inode()
4584  *
4585  * We are called from a few places:
4586  *
4587  * - Within generic_file_write() for O_SYNC files.
4588  *   Here, there will be no transaction running. We wait for any running
4589  *   trasnaction to commit.
4590  *
4591  * - Within sys_sync(), kupdate and such.
4592  *   We wait on commit, if tol to.
4593  *
4594  * - Within prune_icache() (PF_MEMALLOC == true)
4595  *   Here we simply return.  We can't afford to block kswapd on the
4596  *   journal commit.
4597  *
4598  * In all cases it is actually safe for us to return without doing anything,
4599  * because the inode has been copied into a raw inode buffer in
4600  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4601  * knfsd.
4602  *
4603  * Note that we are absolutely dependent upon all inode dirtiers doing the
4604  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4605  * which we are interested.
4606  *
4607  * It would be a bug for them to not do this.  The code:
4608  *
4609  *      mark_inode_dirty(inode)
4610  *      stuff();
4611  *      inode->i_size = expr;
4612  *
4613  * is in error because a kswapd-driven write_inode() could occur while
4614  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4615  * will no longer be on the superblock's dirty inode list.
4616  */
4617 int ext4_write_inode(struct inode *inode, int wait)
4618 {
4619         if (current->flags & PF_MEMALLOC)
4620                 return 0;
4621
4622         if (ext4_journal_current_handle()) {
4623                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4624                 dump_stack();
4625                 return -EIO;
4626         }
4627
4628         if (!wait)
4629                 return 0;
4630
4631         return ext4_force_commit(inode->i_sb);
4632 }
4633
4634 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4635 {
4636         int err = 0;
4637
4638         mark_buffer_dirty(bh);
4639         if (inode && inode_needs_sync(inode)) {
4640                 sync_dirty_buffer(bh);
4641                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4642                         ext4_error(inode->i_sb, __func__,
4643                                    "IO error syncing inode, "
4644                                    "inode=%lu, block=%llu",
4645                                    inode->i_ino,
4646                                    (unsigned long long)bh->b_blocknr);
4647                         err = -EIO;
4648                 }
4649         }
4650         return err;
4651 }
4652
4653 /*
4654  * ext4_setattr()
4655  *
4656  * Called from notify_change.
4657  *
4658  * We want to trap VFS attempts to truncate the file as soon as
4659  * possible.  In particular, we want to make sure that when the VFS
4660  * shrinks i_size, we put the inode on the orphan list and modify
4661  * i_disksize immediately, so that during the subsequent flushing of
4662  * dirty pages and freeing of disk blocks, we can guarantee that any
4663  * commit will leave the blocks being flushed in an unused state on
4664  * disk.  (On recovery, the inode will get truncated and the blocks will
4665  * be freed, so we have a strong guarantee that no future commit will
4666  * leave these blocks visible to the user.)
4667  *
4668  * Another thing we have to assure is that if we are in ordered mode
4669  * and inode is still attached to the committing transaction, we must
4670  * we start writeout of all the dirty pages which are being truncated.
4671  * This way we are sure that all the data written in the previous
4672  * transaction are already on disk (truncate waits for pages under
4673  * writeback).
4674  *
4675  * Called with inode->i_mutex down.
4676  */
4677 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4678 {
4679         struct inode *inode = dentry->d_inode;
4680         int error, rc = 0;
4681         const unsigned int ia_valid = attr->ia_valid;
4682
4683         error = inode_change_ok(inode, attr);
4684         if (error)
4685                 return error;
4686
4687         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4688                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4689                 handle_t *handle;
4690
4691                 /* (user+group)*(old+new) structure, inode write (sb,
4692                  * inode block, ? - but truncate inode update has it) */
4693                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4694                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4695                 if (IS_ERR(handle)) {
4696                         error = PTR_ERR(handle);
4697                         goto err_out;
4698                 }
4699                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4700                 if (error) {
4701                         ext4_journal_stop(handle);
4702                         return error;
4703                 }
4704                 /* Update corresponding info in inode so that everything is in
4705                  * one transaction */
4706                 if (attr->ia_valid & ATTR_UID)
4707                         inode->i_uid = attr->ia_uid;
4708                 if (attr->ia_valid & ATTR_GID)
4709                         inode->i_gid = attr->ia_gid;
4710                 error = ext4_mark_inode_dirty(handle, inode);
4711                 ext4_journal_stop(handle);
4712         }
4713
4714         if (attr->ia_valid & ATTR_SIZE) {
4715                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4716                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4717
4718                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4719                                 error = -EFBIG;
4720                                 goto err_out;
4721                         }
4722                 }
4723         }
4724
4725         if (S_ISREG(inode->i_mode) &&
4726             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4727                 handle_t *handle;
4728
4729                 handle = ext4_journal_start(inode, 3);
4730                 if (IS_ERR(handle)) {
4731                         error = PTR_ERR(handle);
4732                         goto err_out;
4733                 }
4734
4735                 error = ext4_orphan_add(handle, inode);
4736                 EXT4_I(inode)->i_disksize = attr->ia_size;
4737                 rc = ext4_mark_inode_dirty(handle, inode);
4738                 if (!error)
4739                         error = rc;
4740                 ext4_journal_stop(handle);
4741
4742                 if (ext4_should_order_data(inode)) {
4743                         error = ext4_begin_ordered_truncate(inode,
4744                                                             attr->ia_size);
4745                         if (error) {
4746                                 /* Do as much error cleanup as possible */
4747                                 handle = ext4_journal_start(inode, 3);
4748                                 if (IS_ERR(handle)) {
4749                                         ext4_orphan_del(NULL, inode);
4750                                         goto err_out;
4751                                 }
4752                                 ext4_orphan_del(handle, inode);
4753                                 ext4_journal_stop(handle);
4754                                 goto err_out;
4755                         }
4756                 }
4757         }
4758
4759         rc = inode_setattr(inode, attr);
4760
4761         /* If inode_setattr's call to ext4_truncate failed to get a
4762          * transaction handle at all, we need to clean up the in-core
4763          * orphan list manually. */
4764         if (inode->i_nlink)
4765                 ext4_orphan_del(NULL, inode);
4766
4767         if (!rc && (ia_valid & ATTR_MODE))
4768                 rc = ext4_acl_chmod(inode);
4769
4770 err_out:
4771         ext4_std_error(inode->i_sb, error);
4772         if (!error)
4773                 error = rc;
4774         return error;
4775 }
4776
4777 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4778                  struct kstat *stat)
4779 {
4780         struct inode *inode;
4781         unsigned long delalloc_blocks;
4782
4783         inode = dentry->d_inode;
4784         generic_fillattr(inode, stat);
4785
4786         /*
4787          * We can't update i_blocks if the block allocation is delayed
4788          * otherwise in the case of system crash before the real block
4789          * allocation is done, we will have i_blocks inconsistent with
4790          * on-disk file blocks.
4791          * We always keep i_blocks updated together with real
4792          * allocation. But to not confuse with user, stat
4793          * will return the blocks that include the delayed allocation
4794          * blocks for this file.
4795          */
4796         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4797         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4798         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4799
4800         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4801         return 0;
4802 }
4803
4804 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4805                                       int chunk)
4806 {
4807         int indirects;
4808
4809         /* if nrblocks are contiguous */
4810         if (chunk) {
4811                 /*
4812                  * With N contiguous data blocks, it need at most
4813                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4814                  * 2 dindirect blocks
4815                  * 1 tindirect block
4816                  */
4817                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4818                 return indirects + 3;
4819         }
4820         /*
4821          * if nrblocks are not contiguous, worse case, each block touch
4822          * a indirect block, and each indirect block touch a double indirect
4823          * block, plus a triple indirect block
4824          */
4825         indirects = nrblocks * 2 + 1;
4826         return indirects;
4827 }
4828
4829 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4830 {
4831         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4832                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4833         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4834 }
4835
4836 /*
4837  * Account for index blocks, block groups bitmaps and block group
4838  * descriptor blocks if modify datablocks and index blocks
4839  * worse case, the indexs blocks spread over different block groups
4840  *
4841  * If datablocks are discontiguous, they are possible to spread over
4842  * different block groups too. If they are contiugous, with flexbg,
4843  * they could still across block group boundary.
4844  *
4845  * Also account for superblock, inode, quota and xattr blocks
4846  */
4847 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4848 {
4849         int groups, gdpblocks;
4850         int idxblocks;
4851         int ret = 0;
4852
4853         /*
4854          * How many index blocks need to touch to modify nrblocks?
4855          * The "Chunk" flag indicating whether the nrblocks is
4856          * physically contiguous on disk
4857          *
4858          * For Direct IO and fallocate, they calls get_block to allocate
4859          * one single extent at a time, so they could set the "Chunk" flag
4860          */
4861         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4862
4863         ret = idxblocks;
4864
4865         /*
4866          * Now let's see how many group bitmaps and group descriptors need
4867          * to account
4868          */
4869         groups = idxblocks;
4870         if (chunk)
4871                 groups += 1;
4872         else
4873                 groups += nrblocks;
4874
4875         gdpblocks = groups;
4876         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4877                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4878         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4879                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4880
4881         /* bitmaps and block group descriptor blocks */
4882         ret += groups + gdpblocks;
4883
4884         /* Blocks for super block, inode, quota and xattr blocks */
4885         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4886
4887         return ret;
4888 }
4889
4890 /*
4891  * Calulate the total number of credits to reserve to fit
4892  * the modification of a single pages into a single transaction,
4893  * which may include multiple chunks of block allocations.
4894  *
4895  * This could be called via ext4_write_begin()
4896  *
4897  * We need to consider the worse case, when
4898  * one new block per extent.
4899  */
4900 int ext4_writepage_trans_blocks(struct inode *inode)
4901 {
4902         int bpp = ext4_journal_blocks_per_page(inode);
4903         int ret;
4904
4905         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4906
4907         /* Account for data blocks for journalled mode */
4908         if (ext4_should_journal_data(inode))
4909                 ret += bpp;
4910         return ret;
4911 }
4912
4913 /*
4914  * Calculate the journal credits for a chunk of data modification.
4915  *
4916  * This is called from DIO, fallocate or whoever calling
4917  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4918  *
4919  * journal buffers for data blocks are not included here, as DIO
4920  * and fallocate do no need to journal data buffers.
4921  */
4922 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4923 {
4924         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4925 }
4926
4927 /*
4928  * The caller must have previously called ext4_reserve_inode_write().
4929  * Give this, we know that the caller already has write access to iloc->bh.
4930  */
4931 int ext4_mark_iloc_dirty(handle_t *handle,
4932                 struct inode *inode, struct ext4_iloc *iloc)
4933 {
4934         int err = 0;
4935
4936         if (test_opt(inode->i_sb, I_VERSION))
4937                 inode_inc_iversion(inode);
4938
4939         /* the do_update_inode consumes one bh->b_count */
4940         get_bh(iloc->bh);
4941
4942         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4943         err = ext4_do_update_inode(handle, inode, iloc);
4944         put_bh(iloc->bh);
4945         return err;
4946 }
4947
4948 /*
4949  * On success, We end up with an outstanding reference count against
4950  * iloc->bh.  This _must_ be cleaned up later.
4951  */
4952
4953 int
4954 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4955                          struct ext4_iloc *iloc)
4956 {
4957         int err;
4958
4959         err = ext4_get_inode_loc(inode, iloc);
4960         if (!err) {
4961                 BUFFER_TRACE(iloc->bh, "get_write_access");
4962                 err = ext4_journal_get_write_access(handle, iloc->bh);
4963                 if (err) {
4964                         brelse(iloc->bh);
4965                         iloc->bh = NULL;
4966                 }
4967         }
4968         ext4_std_error(inode->i_sb, err);
4969         return err;
4970 }
4971
4972 /*
4973  * Expand an inode by new_extra_isize bytes.
4974  * Returns 0 on success or negative error number on failure.
4975  */
4976 static int ext4_expand_extra_isize(struct inode *inode,
4977                                    unsigned int new_extra_isize,
4978                                    struct ext4_iloc iloc,
4979                                    handle_t *handle)
4980 {
4981         struct ext4_inode *raw_inode;
4982         struct ext4_xattr_ibody_header *header;
4983         struct ext4_xattr_entry *entry;
4984
4985         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4986                 return 0;
4987
4988         raw_inode = ext4_raw_inode(&iloc);
4989
4990         header = IHDR(inode, raw_inode);
4991         entry = IFIRST(header);
4992
4993         /* No extended attributes present */
4994         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4995                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4996                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4997                         new_extra_isize);
4998                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4999                 return 0;
5000         }
5001
5002         /* try to expand with EAs present */
5003         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5004                                           raw_inode, handle);
5005 }
5006
5007 /*
5008  * What we do here is to mark the in-core inode as clean with respect to inode
5009  * dirtiness (it may still be data-dirty).
5010  * This means that the in-core inode may be reaped by prune_icache
5011  * without having to perform any I/O.  This is a very good thing,
5012  * because *any* task may call prune_icache - even ones which
5013  * have a transaction open against a different journal.
5014  *
5015  * Is this cheating?  Not really.  Sure, we haven't written the
5016  * inode out, but prune_icache isn't a user-visible syncing function.
5017  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5018  * we start and wait on commits.
5019  *
5020  * Is this efficient/effective?  Well, we're being nice to the system
5021  * by cleaning up our inodes proactively so they can be reaped
5022  * without I/O.  But we are potentially leaving up to five seconds'
5023  * worth of inodes floating about which prune_icache wants us to
5024  * write out.  One way to fix that would be to get prune_icache()
5025  * to do a write_super() to free up some memory.  It has the desired
5026  * effect.
5027  */
5028 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5029 {
5030         struct ext4_iloc iloc;
5031         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5032         static unsigned int mnt_count;
5033         int err, ret;
5034
5035         might_sleep();
5036         err = ext4_reserve_inode_write(handle, inode, &iloc);
5037         if (ext4_handle_valid(handle) &&
5038             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5039             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5040                 /*
5041                  * We need extra buffer credits since we may write into EA block
5042                  * with this same handle. If journal_extend fails, then it will
5043                  * only result in a minor loss of functionality for that inode.
5044                  * If this is felt to be critical, then e2fsck should be run to
5045                  * force a large enough s_min_extra_isize.
5046                  */
5047                 if ((jbd2_journal_extend(handle,
5048                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5049                         ret = ext4_expand_extra_isize(inode,
5050                                                       sbi->s_want_extra_isize,
5051                                                       iloc, handle);
5052                         if (ret) {
5053                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5054                                 if (mnt_count !=
5055                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5056                                         ext4_warning(inode->i_sb, __func__,
5057                                         "Unable to expand inode %lu. Delete"
5058                                         " some EAs or run e2fsck.",
5059                                         inode->i_ino);
5060                                         mnt_count =
5061                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5062                                 }
5063                         }
5064                 }
5065         }
5066         if (!err)
5067                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5068         return err;
5069 }
5070
5071 /*
5072  * ext4_dirty_inode() is called from __mark_inode_dirty()
5073  *
5074  * We're really interested in the case where a file is being extended.
5075  * i_size has been changed by generic_commit_write() and we thus need
5076  * to include the updated inode in the current transaction.
5077  *
5078  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5079  * are allocated to the file.
5080  *
5081  * If the inode is marked synchronous, we don't honour that here - doing
5082  * so would cause a commit on atime updates, which we don't bother doing.
5083  * We handle synchronous inodes at the highest possible level.
5084  */
5085 void ext4_dirty_inode(struct inode *inode)
5086 {
5087         handle_t *current_handle = ext4_journal_current_handle();
5088         handle_t *handle;
5089
5090         if (!ext4_handle_valid(current_handle)) {
5091                 ext4_mark_inode_dirty(current_handle, inode);
5092                 return;
5093         }
5094
5095         handle = ext4_journal_start(inode, 2);
5096         if (IS_ERR(handle))
5097                 goto out;
5098         if (current_handle &&
5099                 current_handle->h_transaction != handle->h_transaction) {
5100                 /* This task has a transaction open against a different fs */
5101                 printk(KERN_EMERG "%s: transactions do not match!\n",
5102                        __func__);
5103         } else {
5104                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5105                                 current_handle);
5106                 ext4_mark_inode_dirty(handle, inode);
5107         }
5108         ext4_journal_stop(handle);
5109 out:
5110         return;
5111 }
5112
5113 #if 0
5114 /*
5115  * Bind an inode's backing buffer_head into this transaction, to prevent
5116  * it from being flushed to disk early.  Unlike
5117  * ext4_reserve_inode_write, this leaves behind no bh reference and
5118  * returns no iloc structure, so the caller needs to repeat the iloc
5119  * lookup to mark the inode dirty later.
5120  */
5121 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5122 {
5123         struct ext4_iloc iloc;
5124
5125         int err = 0;
5126         if (handle) {
5127                 err = ext4_get_inode_loc(inode, &iloc);
5128                 if (!err) {
5129                         BUFFER_TRACE(iloc.bh, "get_write_access");
5130                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5131                         if (!err)
5132                                 err = ext4_handle_dirty_metadata(handle,
5133                                                                  inode,
5134                                                                  iloc.bh);
5135                         brelse(iloc.bh);
5136                 }
5137         }
5138         ext4_std_error(inode->i_sb, err);
5139         return err;
5140 }
5141 #endif
5142
5143 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5144 {
5145         journal_t *journal;
5146         handle_t *handle;
5147         int err;
5148
5149         /*
5150          * We have to be very careful here: changing a data block's
5151          * journaling status dynamically is dangerous.  If we write a
5152          * data block to the journal, change the status and then delete
5153          * that block, we risk forgetting to revoke the old log record
5154          * from the journal and so a subsequent replay can corrupt data.
5155          * So, first we make sure that the journal is empty and that
5156          * nobody is changing anything.
5157          */
5158
5159         journal = EXT4_JOURNAL(inode);
5160         if (!journal)
5161                 return 0;
5162         if (is_journal_aborted(journal))
5163                 return -EROFS;
5164
5165         jbd2_journal_lock_updates(journal);
5166         jbd2_journal_flush(journal);
5167
5168         /*
5169          * OK, there are no updates running now, and all cached data is
5170          * synced to disk.  We are now in a completely consistent state
5171          * which doesn't have anything in the journal, and we know that
5172          * no filesystem updates are running, so it is safe to modify
5173          * the inode's in-core data-journaling state flag now.
5174          */
5175
5176         if (val)
5177                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5178         else
5179                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5180         ext4_set_aops(inode);
5181
5182         jbd2_journal_unlock_updates(journal);
5183
5184         /* Finally we can mark the inode as dirty. */
5185
5186         handle = ext4_journal_start(inode, 1);
5187         if (IS_ERR(handle))
5188                 return PTR_ERR(handle);
5189
5190         err = ext4_mark_inode_dirty(handle, inode);
5191         ext4_handle_sync(handle);
5192         ext4_journal_stop(handle);
5193         ext4_std_error(inode->i_sb, err);
5194
5195         return err;
5196 }
5197
5198 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5199 {
5200         return !buffer_mapped(bh);
5201 }
5202
5203 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5204 {
5205         loff_t size;
5206         unsigned long len;
5207         int ret = -EINVAL;
5208         void *fsdata;
5209         struct file *file = vma->vm_file;
5210         struct inode *inode = file->f_path.dentry->d_inode;
5211         struct address_space *mapping = inode->i_mapping;
5212
5213         /*
5214          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5215          * get i_mutex because we are already holding mmap_sem.
5216          */
5217         down_read(&inode->i_alloc_sem);
5218         size = i_size_read(inode);
5219         if (page->mapping != mapping || size <= page_offset(page)
5220             || !PageUptodate(page)) {
5221                 /* page got truncated from under us? */
5222                 goto out_unlock;
5223         }
5224         ret = 0;
5225         if (PageMappedToDisk(page))
5226                 goto out_unlock;
5227
5228         if (page->index == size >> PAGE_CACHE_SHIFT)
5229                 len = size & ~PAGE_CACHE_MASK;
5230         else
5231                 len = PAGE_CACHE_SIZE;
5232
5233         if (page_has_buffers(page)) {
5234                 /* return if we have all the buffers mapped */
5235                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5236                                        ext4_bh_unmapped))
5237                         goto out_unlock;
5238         }
5239         /*
5240          * OK, we need to fill the hole... Do write_begin write_end
5241          * to do block allocation/reservation.We are not holding
5242          * inode.i__mutex here. That allow * parallel write_begin,
5243          * write_end call. lock_page prevent this from happening
5244          * on the same page though
5245          */
5246         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5247                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5248         if (ret < 0)
5249                 goto out_unlock;
5250         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5251                         len, len, page, fsdata);
5252         if (ret < 0)
5253                 goto out_unlock;
5254         ret = 0;
5255 out_unlock:
5256         up_read(&inode->i_alloc_sem);
5257         return ret;
5258 }