ext4: remove redundant test on unsigned
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51                                               loff_t new_size)
52 {
53         return jbd2_journal_begin_ordered_truncate(
54                                         EXT4_SB(inode->i_sb)->s_journal,
55                                         &EXT4_I(inode)->jinode,
56                                         new_size);
57 }
58
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
61 /*
62  * Test whether an inode is a fast symlink.
63  */
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
65 {
66         int ea_blocks = EXT4_I(inode)->i_file_acl ?
67                 (inode->i_sb->s_blocksize >> 9) : 0;
68
69         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 }
71
72 /*
73  * The ext4 forget function must perform a revoke if we are freeing data
74  * which has been journaled.  Metadata (eg. indirect blocks) must be
75  * revoked in all cases.
76  *
77  * "bh" may be NULL: a metadata block may have been freed from memory
78  * but there may still be a record of it in the journal, and that record
79  * still needs to be revoked.
80  *
81  * If the handle isn't valid we're not journaling, but we still need to
82  * call into ext4_journal_revoke() to put the buffer head.
83  */
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85                 struct buffer_head *bh, ext4_fsblk_t blocknr)
86 {
87         int err;
88
89         might_sleep();
90
91         BUFFER_TRACE(bh, "enter");
92
93         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94                   "data mode %x\n",
95                   bh, is_metadata, inode->i_mode,
96                   test_opt(inode->i_sb, DATA_FLAGS));
97
98         /* Never use the revoke function if we are doing full data
99          * journaling: there is no need to, and a V1 superblock won't
100          * support it.  Otherwise, only skip the revoke on un-journaled
101          * data blocks. */
102
103         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104             (!is_metadata && !ext4_should_journal_data(inode))) {
105                 if (bh) {
106                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
107                         return ext4_journal_forget(handle, bh);
108                 }
109                 return 0;
110         }
111
112         /*
113          * data!=journal && (is_metadata || should_journal_data(inode))
114          */
115         BUFFER_TRACE(bh, "call ext4_journal_revoke");
116         err = ext4_journal_revoke(handle, blocknr, bh);
117         if (err)
118                 ext4_abort(inode->i_sb, __func__,
119                            "error %d when attempting revoke", err);
120         BUFFER_TRACE(bh, "exit");
121         return err;
122 }
123
124 /*
125  * Work out how many blocks we need to proceed with the next chunk of a
126  * truncate transaction.
127  */
128 static unsigned long blocks_for_truncate(struct inode *inode)
129 {
130         ext4_lblk_t needed;
131
132         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133
134         /* Give ourselves just enough room to cope with inodes in which
135          * i_blocks is corrupt: we've seen disk corruptions in the past
136          * which resulted in random data in an inode which looked enough
137          * like a regular file for ext4 to try to delete it.  Things
138          * will go a bit crazy if that happens, but at least we should
139          * try not to panic the whole kernel. */
140         if (needed < 2)
141                 needed = 2;
142
143         /* But we need to bound the transaction so we don't overflow the
144          * journal. */
145         if (needed > EXT4_MAX_TRANS_DATA)
146                 needed = EXT4_MAX_TRANS_DATA;
147
148         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 }
150
151 /*
152  * Truncate transactions can be complex and absolutely huge.  So we need to
153  * be able to restart the transaction at a conventient checkpoint to make
154  * sure we don't overflow the journal.
155  *
156  * start_transaction gets us a new handle for a truncate transaction,
157  * and extend_transaction tries to extend the existing one a bit.  If
158  * extend fails, we need to propagate the failure up and restart the
159  * transaction in the top-level truncate loop. --sct
160  */
161 static handle_t *start_transaction(struct inode *inode)
162 {
163         handle_t *result;
164
165         result = ext4_journal_start(inode, blocks_for_truncate(inode));
166         if (!IS_ERR(result))
167                 return result;
168
169         ext4_std_error(inode->i_sb, PTR_ERR(result));
170         return result;
171 }
172
173 /*
174  * Try to extend this transaction for the purposes of truncation.
175  *
176  * Returns 0 if we managed to create more room.  If we can't create more
177  * room, and the transaction must be restarted we return 1.
178  */
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180 {
181         if (!ext4_handle_valid(handle))
182                 return 0;
183         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184                 return 0;
185         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186                 return 0;
187         return 1;
188 }
189
190 /*
191  * Restart the transaction associated with *handle.  This does a commit,
192  * so before we call here everything must be consistently dirtied against
193  * this transaction.
194  */
195 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196 {
197         BUG_ON(EXT4_JOURNAL(inode) == NULL);
198         jbd_debug(2, "restarting handle %p\n", handle);
199         return ext4_journal_restart(handle, blocks_for_truncate(inode));
200 }
201
202 /*
203  * Called at the last iput() if i_nlink is zero.
204  */
205 void ext4_delete_inode(struct inode *inode)
206 {
207         handle_t *handle;
208         int err;
209
210         if (ext4_should_order_data(inode))
211                 ext4_begin_ordered_truncate(inode, 0);
212         truncate_inode_pages(&inode->i_data, 0);
213
214         if (is_bad_inode(inode))
215                 goto no_delete;
216
217         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218         if (IS_ERR(handle)) {
219                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
220                 /*
221                  * If we're going to skip the normal cleanup, we still need to
222                  * make sure that the in-core orphan linked list is properly
223                  * cleaned up.
224                  */
225                 ext4_orphan_del(NULL, inode);
226                 goto no_delete;
227         }
228
229         if (IS_SYNC(inode))
230                 ext4_handle_sync(handle);
231         inode->i_size = 0;
232         err = ext4_mark_inode_dirty(handle, inode);
233         if (err) {
234                 ext4_warning(inode->i_sb, __func__,
235                              "couldn't mark inode dirty (err %d)", err);
236                 goto stop_handle;
237         }
238         if (inode->i_blocks)
239                 ext4_truncate(inode);
240
241         /*
242          * ext4_ext_truncate() doesn't reserve any slop when it
243          * restarts journal transactions; therefore there may not be
244          * enough credits left in the handle to remove the inode from
245          * the orphan list and set the dtime field.
246          */
247         if (!ext4_handle_has_enough_credits(handle, 3)) {
248                 err = ext4_journal_extend(handle, 3);
249                 if (err > 0)
250                         err = ext4_journal_restart(handle, 3);
251                 if (err != 0) {
252                         ext4_warning(inode->i_sb, __func__,
253                                      "couldn't extend journal (err %d)", err);
254                 stop_handle:
255                         ext4_journal_stop(handle);
256                         goto no_delete;
257                 }
258         }
259
260         /*
261          * Kill off the orphan record which ext4_truncate created.
262          * AKPM: I think this can be inside the above `if'.
263          * Note that ext4_orphan_del() has to be able to cope with the
264          * deletion of a non-existent orphan - this is because we don't
265          * know if ext4_truncate() actually created an orphan record.
266          * (Well, we could do this if we need to, but heck - it works)
267          */
268         ext4_orphan_del(handle, inode);
269         EXT4_I(inode)->i_dtime  = get_seconds();
270
271         /*
272          * One subtle ordering requirement: if anything has gone wrong
273          * (transaction abort, IO errors, whatever), then we can still
274          * do these next steps (the fs will already have been marked as
275          * having errors), but we can't free the inode if the mark_dirty
276          * fails.
277          */
278         if (ext4_mark_inode_dirty(handle, inode))
279                 /* If that failed, just do the required in-core inode clear. */
280                 clear_inode(inode);
281         else
282                 ext4_free_inode(handle, inode);
283         ext4_journal_stop(handle);
284         return;
285 no_delete:
286         clear_inode(inode);     /* We must guarantee clearing of inode... */
287 }
288
289 typedef struct {
290         __le32  *p;
291         __le32  key;
292         struct buffer_head *bh;
293 } Indirect;
294
295 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
296 {
297         p->key = *(p->p = v);
298         p->bh = bh;
299 }
300
301 /**
302  *      ext4_block_to_path - parse the block number into array of offsets
303  *      @inode: inode in question (we are only interested in its superblock)
304  *      @i_block: block number to be parsed
305  *      @offsets: array to store the offsets in
306  *      @boundary: set this non-zero if the referred-to block is likely to be
307  *             followed (on disk) by an indirect block.
308  *
309  *      To store the locations of file's data ext4 uses a data structure common
310  *      for UNIX filesystems - tree of pointers anchored in the inode, with
311  *      data blocks at leaves and indirect blocks in intermediate nodes.
312  *      This function translates the block number into path in that tree -
313  *      return value is the path length and @offsets[n] is the offset of
314  *      pointer to (n+1)th node in the nth one. If @block is out of range
315  *      (negative or too large) warning is printed and zero returned.
316  *
317  *      Note: function doesn't find node addresses, so no IO is needed. All
318  *      we need to know is the capacity of indirect blocks (taken from the
319  *      inode->i_sb).
320  */
321
322 /*
323  * Portability note: the last comparison (check that we fit into triple
324  * indirect block) is spelled differently, because otherwise on an
325  * architecture with 32-bit longs and 8Kb pages we might get into trouble
326  * if our filesystem had 8Kb blocks. We might use long long, but that would
327  * kill us on x86. Oh, well, at least the sign propagation does not matter -
328  * i_block would have to be negative in the very beginning, so we would not
329  * get there at all.
330  */
331
332 static int ext4_block_to_path(struct inode *inode,
333                               ext4_lblk_t i_block,
334                               ext4_lblk_t offsets[4], int *boundary)
335 {
336         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
337         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
338         const long direct_blocks = EXT4_NDIR_BLOCKS,
339                 indirect_blocks = ptrs,
340                 double_blocks = (1 << (ptrs_bits * 2));
341         int n = 0;
342         int final = 0;
343
344         if (i_block < direct_blocks) {
345                 offsets[n++] = i_block;
346                 final = direct_blocks;
347         } else if ((i_block -= direct_blocks) < indirect_blocks) {
348                 offsets[n++] = EXT4_IND_BLOCK;
349                 offsets[n++] = i_block;
350                 final = ptrs;
351         } else if ((i_block -= indirect_blocks) < double_blocks) {
352                 offsets[n++] = EXT4_DIND_BLOCK;
353                 offsets[n++] = i_block >> ptrs_bits;
354                 offsets[n++] = i_block & (ptrs - 1);
355                 final = ptrs;
356         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
357                 offsets[n++] = EXT4_TIND_BLOCK;
358                 offsets[n++] = i_block >> (ptrs_bits * 2);
359                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
360                 offsets[n++] = i_block & (ptrs - 1);
361                 final = ptrs;
362         } else {
363                 ext4_warning(inode->i_sb, "ext4_block_to_path",
364                              "block %lu > max in inode %lu",
365                              i_block + direct_blocks +
366                              indirect_blocks + double_blocks, inode->i_ino);
367         }
368         if (boundary)
369                 *boundary = final - 1 - (i_block & (ptrs - 1));
370         return n;
371 }
372
373 static int __ext4_check_blockref(const char *function, struct inode *inode,
374                                  __le32 *p, unsigned int max)
375 {
376         __le32 *bref = p;
377         unsigned int blk;
378
379         while (bref < p+max) {
380                 blk = le32_to_cpu(*bref++);
381                 if (blk &&
382                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
383                                                     blk, 1))) {
384                         ext4_error(inode->i_sb, function,
385                                    "invalid block reference %u "
386                                    "in inode #%lu", blk, inode->i_ino);
387                         return -EIO;
388                 }
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                                    Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                                  int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                              ext4_lblk_t iblock, ext4_fsblk_t goal,
613                              int indirect_blks, int blks,
614                              ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                         /*
686                          * save the new block number
687                          * for the first direct block
688                          */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                              ext4_lblk_t iblock, int indirect_blks,
731                              int *blks, ext4_fsblk_t goal,
732                              ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         /* Don't brelse(bh) here; it's done in
764                          * ext4_journal_forget() below */
765                         unlock_buffer(bh);
766                         goto failed;
767                 }
768
769                 memset(bh->b_data, 0, blocksize);
770                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771                 branch[n].key = cpu_to_le32(new_blocks[n]);
772                 *branch[n].p = branch[n].key;
773                 if (n == indirect_blks) {
774                         current_block = new_blocks[n];
775                         /*
776                          * End of chain, update the last new metablock of
777                          * the chain to point to the new allocated
778                          * data blocks numbers
779                          */
780                         for (i = 1; i < num; i++)
781                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
782                 }
783                 BUFFER_TRACE(bh, "marking uptodate");
784                 set_buffer_uptodate(bh);
785                 unlock_buffer(bh);
786
787                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788                 err = ext4_handle_dirty_metadata(handle, inode, bh);
789                 if (err)
790                         goto failed;
791         }
792         *blks = num;
793         return err;
794 failed:
795         /* Allocation failed, free what we already allocated */
796         for (i = 1; i <= n ; i++) {
797                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798                 ext4_journal_forget(handle, branch[i].bh);
799         }
800         for (i = 0; i < indirect_blks; i++)
801                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
802
803         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
804
805         return err;
806 }
807
808 /**
809  * ext4_splice_branch - splice the allocated branch onto inode.
810  * @inode: owner
811  * @block: (logical) number of block we are adding
812  * @chain: chain of indirect blocks (with a missing link - see
813  *      ext4_alloc_branch)
814  * @where: location of missing link
815  * @num:   number of indirect blocks we are adding
816  * @blks:  number of direct blocks we are adding
817  *
818  * This function fills the missing link and does all housekeeping needed in
819  * inode (->i_blocks, etc.). In case of success we end up with the full
820  * chain to new block and return 0.
821  */
822 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823                               ext4_lblk_t block, Indirect *where, int num,
824                               int blks)
825 {
826         int i;
827         int err = 0;
828         ext4_fsblk_t current_block;
829
830         /*
831          * If we're splicing into a [td]indirect block (as opposed to the
832          * inode) then we need to get write access to the [td]indirect block
833          * before the splice.
834          */
835         if (where->bh) {
836                 BUFFER_TRACE(where->bh, "get_write_access");
837                 err = ext4_journal_get_write_access(handle, where->bh);
838                 if (err)
839                         goto err_out;
840         }
841         /* That's it */
842
843         *where->p = where->key;
844
845         /*
846          * Update the host buffer_head or inode to point to more just allocated
847          * direct blocks blocks
848          */
849         if (num == 0 && blks > 1) {
850                 current_block = le32_to_cpu(where->key) + 1;
851                 for (i = 1; i < blks; i++)
852                         *(where->p + i) = cpu_to_le32(current_block++);
853         }
854
855         /* We are done with atomic stuff, now do the rest of housekeeping */
856         /* had we spliced it onto indirect block? */
857         if (where->bh) {
858                 /*
859                  * If we spliced it onto an indirect block, we haven't
860                  * altered the inode.  Note however that if it is being spliced
861                  * onto an indirect block at the very end of the file (the
862                  * file is growing) then we *will* alter the inode to reflect
863                  * the new i_size.  But that is not done here - it is done in
864                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
865                  */
866                 jbd_debug(5, "splicing indirect only\n");
867                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
868                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
869                 if (err)
870                         goto err_out;
871         } else {
872                 /*
873                  * OK, we spliced it into the inode itself on a direct block.
874                  */
875                 ext4_mark_inode_dirty(handle, inode);
876                 jbd_debug(5, "splicing direct\n");
877         }
878         return err;
879
880 err_out:
881         for (i = 1; i <= num; i++) {
882                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
883                 ext4_journal_forget(handle, where[i].bh);
884                 ext4_free_blocks(handle, inode,
885                                         le32_to_cpu(where[i-1].key), 1, 0);
886         }
887         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
888
889         return err;
890 }
891
892 /*
893  * The ext4_ind_get_blocks() function handles non-extents inodes
894  * (i.e., using the traditional indirect/double-indirect i_blocks
895  * scheme) for ext4_get_blocks().
896  *
897  * Allocation strategy is simple: if we have to allocate something, we will
898  * have to go the whole way to leaf. So let's do it before attaching anything
899  * to tree, set linkage between the newborn blocks, write them if sync is
900  * required, recheck the path, free and repeat if check fails, otherwise
901  * set the last missing link (that will protect us from any truncate-generated
902  * removals - all blocks on the path are immune now) and possibly force the
903  * write on the parent block.
904  * That has a nice additional property: no special recovery from the failed
905  * allocations is needed - we simply release blocks and do not touch anything
906  * reachable from inode.
907  *
908  * `handle' can be NULL if create == 0.
909  *
910  * return > 0, # of blocks mapped or allocated.
911  * return = 0, if plain lookup failed.
912  * return < 0, error case.
913  *
914  * The ext4_ind_get_blocks() function should be called with
915  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918  * blocks.
919  */
920 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
921                                ext4_lblk_t iblock, unsigned int maxblocks,
922                                struct buffer_head *bh_result,
923                                int flags)
924 {
925         int err = -EIO;
926         ext4_lblk_t offsets[4];
927         Indirect chain[4];
928         Indirect *partial;
929         ext4_fsblk_t goal;
930         int indirect_blks;
931         int blocks_to_boundary = 0;
932         int depth;
933         int count = 0;
934         ext4_fsblk_t first_block = 0;
935
936         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
938         depth = ext4_block_to_path(inode, iblock, offsets,
939                                    &blocks_to_boundary);
940
941         if (depth == 0)
942                 goto out;
943
944         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946         /* Simplest case - block found, no allocation needed */
947         if (!partial) {
948                 first_block = le32_to_cpu(chain[depth - 1].key);
949                 clear_buffer_new(bh_result);
950                 count++;
951                 /*map more blocks*/
952                 while (count < maxblocks && count <= blocks_to_boundary) {
953                         ext4_fsblk_t blk;
954
955                         blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957                         if (blk == first_block + count)
958                                 count++;
959                         else
960                                 break;
961                 }
962                 goto got_it;
963         }
964
965         /* Next simple case - plain lookup or failed read of indirect block */
966         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967                 goto cleanup;
968
969         /*
970          * Okay, we need to do block allocation.
971         */
972         goal = ext4_find_goal(inode, iblock, partial);
973
974         /* the number of blocks need to allocate for [d,t]indirect blocks */
975         indirect_blks = (chain + depth) - partial - 1;
976
977         /*
978          * Next look up the indirect map to count the totoal number of
979          * direct blocks to allocate for this branch.
980          */
981         count = ext4_blks_to_allocate(partial, indirect_blks,
982                                         maxblocks, blocks_to_boundary);
983         /*
984          * Block out ext4_truncate while we alter the tree
985          */
986         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987                                 &count, goal,
988                                 offsets + (partial - chain), partial);
989
990         /*
991          * The ext4_splice_branch call will free and forget any buffers
992          * on the new chain if there is a failure, but that risks using
993          * up transaction credits, especially for bitmaps where the
994          * credits cannot be returned.  Can we handle this somehow?  We
995          * may need to return -EAGAIN upwards in the worst case.  --sct
996          */
997         if (!err)
998                 err = ext4_splice_branch(handle, inode, iblock,
999                                          partial, indirect_blks, count);
1000         else
1001                 goto cleanup;
1002
1003         set_buffer_new(bh_result);
1004 got_it:
1005         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1006         if (count > blocks_to_boundary)
1007                 set_buffer_boundary(bh_result);
1008         err = count;
1009         /* Clean up and exit */
1010         partial = chain + depth - 1;    /* the whole chain */
1011 cleanup:
1012         while (partial > chain) {
1013                 BUFFER_TRACE(partial->bh, "call brelse");
1014                 brelse(partial->bh);
1015                 partial--;
1016         }
1017         BUFFER_TRACE(bh_result, "returned");
1018 out:
1019         return err;
1020 }
1021
1022 qsize_t ext4_get_reserved_space(struct inode *inode)
1023 {
1024         unsigned long long total;
1025
1026         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1027         total = EXT4_I(inode)->i_reserved_data_blocks +
1028                 EXT4_I(inode)->i_reserved_meta_blocks;
1029         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1030
1031         return total;
1032 }
1033 /*
1034  * Calculate the number of metadata blocks need to reserve
1035  * to allocate @blocks for non extent file based file
1036  */
1037 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1038 {
1039         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1040         int ind_blks, dind_blks, tind_blks;
1041
1042         /* number of new indirect blocks needed */
1043         ind_blks = (blocks + icap - 1) / icap;
1044
1045         dind_blks = (ind_blks + icap - 1) / icap;
1046
1047         tind_blks = 1;
1048
1049         return ind_blks + dind_blks + tind_blks;
1050 }
1051
1052 /*
1053  * Calculate the number of metadata blocks need to reserve
1054  * to allocate given number of blocks
1055  */
1056 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1057 {
1058         if (!blocks)
1059                 return 0;
1060
1061         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1062                 return ext4_ext_calc_metadata_amount(inode, blocks);
1063
1064         return ext4_indirect_calc_metadata_amount(inode, blocks);
1065 }
1066
1067 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1068 {
1069         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1070         int total, mdb, mdb_free;
1071
1072         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1073         /* recalculate the number of metablocks still need to be reserved */
1074         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1075         mdb = ext4_calc_metadata_amount(inode, total);
1076
1077         /* figure out how many metablocks to release */
1078         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1079         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1080
1081         if (mdb_free) {
1082                 /* Account for allocated meta_blocks */
1083                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1084
1085                 /* update fs dirty blocks counter */
1086                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1087                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1088                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1089         }
1090
1091         /* update per-inode reservations */
1092         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1093         EXT4_I(inode)->i_reserved_data_blocks -= used;
1094         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1095
1096         /*
1097          * free those over-booking quota for metadata blocks
1098          */
1099         if (mdb_free)
1100                 vfs_dq_release_reservation_block(inode, mdb_free);
1101
1102         /*
1103          * If we have done all the pending block allocations and if
1104          * there aren't any writers on the inode, we can discard the
1105          * inode's preallocations.
1106          */
1107         if (!total && (atomic_read(&inode->i_writecount) == 0))
1108                 ext4_discard_preallocations(inode);
1109 }
1110
1111 static int check_block_validity(struct inode *inode, sector_t logical,
1112                                 sector_t phys, int len)
1113 {
1114         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1115                 ext4_error(inode->i_sb, "check_block_validity",
1116                            "inode #%lu logical block %llu mapped to %llu "
1117                            "(size %d)", inode->i_ino,
1118                            (unsigned long long) logical,
1119                            (unsigned long long) phys, len);
1120                 WARN_ON(1);
1121                 return -EIO;
1122         }
1123         return 0;
1124 }
1125
1126 /*
1127  * The ext4_get_blocks() function tries to look up the requested blocks,
1128  * and returns if the blocks are already mapped.
1129  *
1130  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1131  * and store the allocated blocks in the result buffer head and mark it
1132  * mapped.
1133  *
1134  * If file type is extents based, it will call ext4_ext_get_blocks(),
1135  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1136  * based files
1137  *
1138  * On success, it returns the number of blocks being mapped or allocate.
1139  * if create==0 and the blocks are pre-allocated and uninitialized block,
1140  * the result buffer head is unmapped. If the create ==1, it will make sure
1141  * the buffer head is mapped.
1142  *
1143  * It returns 0 if plain look up failed (blocks have not been allocated), in
1144  * that casem, buffer head is unmapped
1145  *
1146  * It returns the error in case of allocation failure.
1147  */
1148 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1149                     unsigned int max_blocks, struct buffer_head *bh,
1150                     int flags)
1151 {
1152         int retval;
1153
1154         clear_buffer_mapped(bh);
1155         clear_buffer_unwritten(bh);
1156
1157         /*
1158          * Try to see if we can get the block without requesting a new
1159          * file system block.
1160          */
1161         down_read((&EXT4_I(inode)->i_data_sem));
1162         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1163                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1164                                 bh, 0);
1165         } else {
1166                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1167                                              bh, 0);
1168         }
1169         up_read((&EXT4_I(inode)->i_data_sem));
1170
1171         if (retval > 0 && buffer_mapped(bh)) {
1172                 int ret = check_block_validity(inode, block,
1173                                                bh->b_blocknr, retval);
1174                 if (ret != 0)
1175                         return ret;
1176         }
1177
1178         /* If it is only a block(s) look up */
1179         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1180                 return retval;
1181
1182         /*
1183          * Returns if the blocks have already allocated
1184          *
1185          * Note that if blocks have been preallocated
1186          * ext4_ext_get_block() returns th create = 0
1187          * with buffer head unmapped.
1188          */
1189         if (retval > 0 && buffer_mapped(bh))
1190                 return retval;
1191
1192         /*
1193          * When we call get_blocks without the create flag, the
1194          * BH_Unwritten flag could have gotten set if the blocks
1195          * requested were part of a uninitialized extent.  We need to
1196          * clear this flag now that we are committed to convert all or
1197          * part of the uninitialized extent to be an initialized
1198          * extent.  This is because we need to avoid the combination
1199          * of BH_Unwritten and BH_Mapped flags being simultaneously
1200          * set on the buffer_head.
1201          */
1202         clear_buffer_unwritten(bh);
1203
1204         /*
1205          * New blocks allocate and/or writing to uninitialized extent
1206          * will possibly result in updating i_data, so we take
1207          * the write lock of i_data_sem, and call get_blocks()
1208          * with create == 1 flag.
1209          */
1210         down_write((&EXT4_I(inode)->i_data_sem));
1211
1212         /*
1213          * if the caller is from delayed allocation writeout path
1214          * we have already reserved fs blocks for allocation
1215          * let the underlying get_block() function know to
1216          * avoid double accounting
1217          */
1218         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1219                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1220         /*
1221          * We need to check for EXT4 here because migrate
1222          * could have changed the inode type in between
1223          */
1224         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1225                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1226                                               bh, flags);
1227         } else {
1228                 retval = ext4_ind_get_blocks(handle, inode, block,
1229                                              max_blocks, bh, flags);
1230
1231                 if (retval > 0 && buffer_new(bh)) {
1232                         /*
1233                          * We allocated new blocks which will result in
1234                          * i_data's format changing.  Force the migrate
1235                          * to fail by clearing migrate flags
1236                          */
1237                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1238                                                         ~EXT4_EXT_MIGRATE;
1239                 }
1240         }
1241
1242         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1243                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1244
1245         /*
1246          * Update reserved blocks/metadata blocks after successful
1247          * block allocation which had been deferred till now.
1248          */
1249         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1250                 ext4_da_update_reserve_space(inode, retval);
1251
1252         up_write((&EXT4_I(inode)->i_data_sem));
1253         if (retval > 0 && buffer_mapped(bh)) {
1254                 int ret = check_block_validity(inode, block,
1255                                                bh->b_blocknr, retval);
1256                 if (ret != 0)
1257                         return ret;
1258         }
1259         return retval;
1260 }
1261
1262 /* Maximum number of blocks we map for direct IO at once. */
1263 #define DIO_MAX_BLOCKS 4096
1264
1265 int ext4_get_block(struct inode *inode, sector_t iblock,
1266                    struct buffer_head *bh_result, int create)
1267 {
1268         handle_t *handle = ext4_journal_current_handle();
1269         int ret = 0, started = 0;
1270         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1271         int dio_credits;
1272
1273         if (create && !handle) {
1274                 /* Direct IO write... */
1275                 if (max_blocks > DIO_MAX_BLOCKS)
1276                         max_blocks = DIO_MAX_BLOCKS;
1277                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1278                 handle = ext4_journal_start(inode, dio_credits);
1279                 if (IS_ERR(handle)) {
1280                         ret = PTR_ERR(handle);
1281                         goto out;
1282                 }
1283                 started = 1;
1284         }
1285
1286         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1287                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1288         if (ret > 0) {
1289                 bh_result->b_size = (ret << inode->i_blkbits);
1290                 ret = 0;
1291         }
1292         if (started)
1293                 ext4_journal_stop(handle);
1294 out:
1295         return ret;
1296 }
1297
1298 /*
1299  * `handle' can be NULL if create is zero
1300  */
1301 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1302                                 ext4_lblk_t block, int create, int *errp)
1303 {
1304         struct buffer_head dummy;
1305         int fatal = 0, err;
1306         int flags = 0;
1307
1308         J_ASSERT(handle != NULL || create == 0);
1309
1310         dummy.b_state = 0;
1311         dummy.b_blocknr = -1000;
1312         buffer_trace_init(&dummy.b_history);
1313         if (create)
1314                 flags |= EXT4_GET_BLOCKS_CREATE;
1315         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1316         /*
1317          * ext4_get_blocks() returns number of blocks mapped. 0 in
1318          * case of a HOLE.
1319          */
1320         if (err > 0) {
1321                 if (err > 1)
1322                         WARN_ON(1);
1323                 err = 0;
1324         }
1325         *errp = err;
1326         if (!err && buffer_mapped(&dummy)) {
1327                 struct buffer_head *bh;
1328                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1329                 if (!bh) {
1330                         *errp = -EIO;
1331                         goto err;
1332                 }
1333                 if (buffer_new(&dummy)) {
1334                         J_ASSERT(create != 0);
1335                         J_ASSERT(handle != NULL);
1336
1337                         /*
1338                          * Now that we do not always journal data, we should
1339                          * keep in mind whether this should always journal the
1340                          * new buffer as metadata.  For now, regular file
1341                          * writes use ext4_get_block instead, so it's not a
1342                          * problem.
1343                          */
1344                         lock_buffer(bh);
1345                         BUFFER_TRACE(bh, "call get_create_access");
1346                         fatal = ext4_journal_get_create_access(handle, bh);
1347                         if (!fatal && !buffer_uptodate(bh)) {
1348                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1349                                 set_buffer_uptodate(bh);
1350                         }
1351                         unlock_buffer(bh);
1352                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1353                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1354                         if (!fatal)
1355                                 fatal = err;
1356                 } else {
1357                         BUFFER_TRACE(bh, "not a new buffer");
1358                 }
1359                 if (fatal) {
1360                         *errp = fatal;
1361                         brelse(bh);
1362                         bh = NULL;
1363                 }
1364                 return bh;
1365         }
1366 err:
1367         return NULL;
1368 }
1369
1370 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1371                                ext4_lblk_t block, int create, int *err)
1372 {
1373         struct buffer_head *bh;
1374
1375         bh = ext4_getblk(handle, inode, block, create, err);
1376         if (!bh)
1377                 return bh;
1378         if (buffer_uptodate(bh))
1379                 return bh;
1380         ll_rw_block(READ_META, 1, &bh);
1381         wait_on_buffer(bh);
1382         if (buffer_uptodate(bh))
1383                 return bh;
1384         put_bh(bh);
1385         *err = -EIO;
1386         return NULL;
1387 }
1388
1389 static int walk_page_buffers(handle_t *handle,
1390                              struct buffer_head *head,
1391                              unsigned from,
1392                              unsigned to,
1393                              int *partial,
1394                              int (*fn)(handle_t *handle,
1395                                        struct buffer_head *bh))
1396 {
1397         struct buffer_head *bh;
1398         unsigned block_start, block_end;
1399         unsigned blocksize = head->b_size;
1400         int err, ret = 0;
1401         struct buffer_head *next;
1402
1403         for (bh = head, block_start = 0;
1404              ret == 0 && (bh != head || !block_start);
1405              block_start = block_end, bh = next) {
1406                 next = bh->b_this_page;
1407                 block_end = block_start + blocksize;
1408                 if (block_end <= from || block_start >= to) {
1409                         if (partial && !buffer_uptodate(bh))
1410                                 *partial = 1;
1411                         continue;
1412                 }
1413                 err = (*fn)(handle, bh);
1414                 if (!ret)
1415                         ret = err;
1416         }
1417         return ret;
1418 }
1419
1420 /*
1421  * To preserve ordering, it is essential that the hole instantiation and
1422  * the data write be encapsulated in a single transaction.  We cannot
1423  * close off a transaction and start a new one between the ext4_get_block()
1424  * and the commit_write().  So doing the jbd2_journal_start at the start of
1425  * prepare_write() is the right place.
1426  *
1427  * Also, this function can nest inside ext4_writepage() ->
1428  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1429  * has generated enough buffer credits to do the whole page.  So we won't
1430  * block on the journal in that case, which is good, because the caller may
1431  * be PF_MEMALLOC.
1432  *
1433  * By accident, ext4 can be reentered when a transaction is open via
1434  * quota file writes.  If we were to commit the transaction while thus
1435  * reentered, there can be a deadlock - we would be holding a quota
1436  * lock, and the commit would never complete if another thread had a
1437  * transaction open and was blocking on the quota lock - a ranking
1438  * violation.
1439  *
1440  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1441  * will _not_ run commit under these circumstances because handle->h_ref
1442  * is elevated.  We'll still have enough credits for the tiny quotafile
1443  * write.
1444  */
1445 static int do_journal_get_write_access(handle_t *handle,
1446                                        struct buffer_head *bh)
1447 {
1448         if (!buffer_mapped(bh) || buffer_freed(bh))
1449                 return 0;
1450         return ext4_journal_get_write_access(handle, bh);
1451 }
1452
1453 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1454                             loff_t pos, unsigned len, unsigned flags,
1455                             struct page **pagep, void **fsdata)
1456 {
1457         struct inode *inode = mapping->host;
1458         int ret, needed_blocks;
1459         handle_t *handle;
1460         int retries = 0;
1461         struct page *page;
1462         pgoff_t index;
1463         unsigned from, to;
1464
1465         trace_ext4_write_begin(inode, pos, len, flags);
1466         /*
1467          * Reserve one block more for addition to orphan list in case
1468          * we allocate blocks but write fails for some reason
1469          */
1470         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1471         index = pos >> PAGE_CACHE_SHIFT;
1472         from = pos & (PAGE_CACHE_SIZE - 1);
1473         to = from + len;
1474
1475 retry:
1476         handle = ext4_journal_start(inode, needed_blocks);
1477         if (IS_ERR(handle)) {
1478                 ret = PTR_ERR(handle);
1479                 goto out;
1480         }
1481
1482         /* We cannot recurse into the filesystem as the transaction is already
1483          * started */
1484         flags |= AOP_FLAG_NOFS;
1485
1486         page = grab_cache_page_write_begin(mapping, index, flags);
1487         if (!page) {
1488                 ext4_journal_stop(handle);
1489                 ret = -ENOMEM;
1490                 goto out;
1491         }
1492         *pagep = page;
1493
1494         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1495                                 ext4_get_block);
1496
1497         if (!ret && ext4_should_journal_data(inode)) {
1498                 ret = walk_page_buffers(handle, page_buffers(page),
1499                                 from, to, NULL, do_journal_get_write_access);
1500         }
1501
1502         if (ret) {
1503                 unlock_page(page);
1504                 page_cache_release(page);
1505                 /*
1506                  * block_write_begin may have instantiated a few blocks
1507                  * outside i_size.  Trim these off again. Don't need
1508                  * i_size_read because we hold i_mutex.
1509                  *
1510                  * Add inode to orphan list in case we crash before
1511                  * truncate finishes
1512                  */
1513                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1514                         ext4_orphan_add(handle, inode);
1515
1516                 ext4_journal_stop(handle);
1517                 if (pos + len > inode->i_size) {
1518                         ext4_truncate(inode);
1519                         /*
1520                          * If truncate failed early the inode might
1521                          * still be on the orphan list; we need to
1522                          * make sure the inode is removed from the
1523                          * orphan list in that case.
1524                          */
1525                         if (inode->i_nlink)
1526                                 ext4_orphan_del(NULL, inode);
1527                 }
1528         }
1529
1530         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1531                 goto retry;
1532 out:
1533         return ret;
1534 }
1535
1536 /* For write_end() in data=journal mode */
1537 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1538 {
1539         if (!buffer_mapped(bh) || buffer_freed(bh))
1540                 return 0;
1541         set_buffer_uptodate(bh);
1542         return ext4_handle_dirty_metadata(handle, NULL, bh);
1543 }
1544
1545 static int ext4_generic_write_end(struct file *file,
1546                                   struct address_space *mapping,
1547                                   loff_t pos, unsigned len, unsigned copied,
1548                                   struct page *page, void *fsdata)
1549 {
1550         int i_size_changed = 0;
1551         struct inode *inode = mapping->host;
1552         handle_t *handle = ext4_journal_current_handle();
1553
1554         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1555
1556         /*
1557          * No need to use i_size_read() here, the i_size
1558          * cannot change under us because we hold i_mutex.
1559          *
1560          * But it's important to update i_size while still holding page lock:
1561          * page writeout could otherwise come in and zero beyond i_size.
1562          */
1563         if (pos + copied > inode->i_size) {
1564                 i_size_write(inode, pos + copied);
1565                 i_size_changed = 1;
1566         }
1567
1568         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1569                 /* We need to mark inode dirty even if
1570                  * new_i_size is less that inode->i_size
1571                  * bu greater than i_disksize.(hint delalloc)
1572                  */
1573                 ext4_update_i_disksize(inode, (pos + copied));
1574                 i_size_changed = 1;
1575         }
1576         unlock_page(page);
1577         page_cache_release(page);
1578
1579         /*
1580          * Don't mark the inode dirty under page lock. First, it unnecessarily
1581          * makes the holding time of page lock longer. Second, it forces lock
1582          * ordering of page lock and transaction start for journaling
1583          * filesystems.
1584          */
1585         if (i_size_changed)
1586                 ext4_mark_inode_dirty(handle, inode);
1587
1588         return copied;
1589 }
1590
1591 /*
1592  * We need to pick up the new inode size which generic_commit_write gave us
1593  * `file' can be NULL - eg, when called from page_symlink().
1594  *
1595  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1596  * buffers are managed internally.
1597  */
1598 static int ext4_ordered_write_end(struct file *file,
1599                                   struct address_space *mapping,
1600                                   loff_t pos, unsigned len, unsigned copied,
1601                                   struct page *page, void *fsdata)
1602 {
1603         handle_t *handle = ext4_journal_current_handle();
1604         struct inode *inode = mapping->host;
1605         int ret = 0, ret2;
1606
1607         trace_ext4_ordered_write_end(inode, pos, len, copied);
1608         ret = ext4_jbd2_file_inode(handle, inode);
1609
1610         if (ret == 0) {
1611                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1612                                                         page, fsdata);
1613                 copied = ret2;
1614                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1615                         /* if we have allocated more blocks and copied
1616                          * less. We will have blocks allocated outside
1617                          * inode->i_size. So truncate them
1618                          */
1619                         ext4_orphan_add(handle, inode);
1620                 if (ret2 < 0)
1621                         ret = ret2;
1622         }
1623         ret2 = ext4_journal_stop(handle);
1624         if (!ret)
1625                 ret = ret2;
1626
1627         if (pos + len > inode->i_size) {
1628                 ext4_truncate(inode);
1629                 /*
1630                  * If truncate failed early the inode might still be
1631                  * on the orphan list; we need to make sure the inode
1632                  * is removed from the orphan list in that case.
1633                  */
1634                 if (inode->i_nlink)
1635                         ext4_orphan_del(NULL, inode);
1636         }
1637
1638
1639         return ret ? ret : copied;
1640 }
1641
1642 static int ext4_writeback_write_end(struct file *file,
1643                                     struct address_space *mapping,
1644                                     loff_t pos, unsigned len, unsigned copied,
1645                                     struct page *page, void *fsdata)
1646 {
1647         handle_t *handle = ext4_journal_current_handle();
1648         struct inode *inode = mapping->host;
1649         int ret = 0, ret2;
1650
1651         trace_ext4_writeback_write_end(inode, pos, len, copied);
1652         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1653                                                         page, fsdata);
1654         copied = ret2;
1655         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1656                 /* if we have allocated more blocks and copied
1657                  * less. We will have blocks allocated outside
1658                  * inode->i_size. So truncate them
1659                  */
1660                 ext4_orphan_add(handle, inode);
1661
1662         if (ret2 < 0)
1663                 ret = ret2;
1664
1665         ret2 = ext4_journal_stop(handle);
1666         if (!ret)
1667                 ret = ret2;
1668
1669         if (pos + len > inode->i_size) {
1670                 ext4_truncate(inode);
1671                 /*
1672                  * If truncate failed early the inode might still be
1673                  * on the orphan list; we need to make sure the inode
1674                  * is removed from the orphan list in that case.
1675                  */
1676                 if (inode->i_nlink)
1677                         ext4_orphan_del(NULL, inode);
1678         }
1679
1680         return ret ? ret : copied;
1681 }
1682
1683 static int ext4_journalled_write_end(struct file *file,
1684                                      struct address_space *mapping,
1685                                      loff_t pos, unsigned len, unsigned copied,
1686                                      struct page *page, void *fsdata)
1687 {
1688         handle_t *handle = ext4_journal_current_handle();
1689         struct inode *inode = mapping->host;
1690         int ret = 0, ret2;
1691         int partial = 0;
1692         unsigned from, to;
1693         loff_t new_i_size;
1694
1695         trace_ext4_journalled_write_end(inode, pos, len, copied);
1696         from = pos & (PAGE_CACHE_SIZE - 1);
1697         to = from + len;
1698
1699         if (copied < len) {
1700                 if (!PageUptodate(page))
1701                         copied = 0;
1702                 page_zero_new_buffers(page, from+copied, to);
1703         }
1704
1705         ret = walk_page_buffers(handle, page_buffers(page), from,
1706                                 to, &partial, write_end_fn);
1707         if (!partial)
1708                 SetPageUptodate(page);
1709         new_i_size = pos + copied;
1710         if (new_i_size > inode->i_size)
1711                 i_size_write(inode, pos+copied);
1712         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1713         if (new_i_size > EXT4_I(inode)->i_disksize) {
1714                 ext4_update_i_disksize(inode, new_i_size);
1715                 ret2 = ext4_mark_inode_dirty(handle, inode);
1716                 if (!ret)
1717                         ret = ret2;
1718         }
1719
1720         unlock_page(page);
1721         page_cache_release(page);
1722         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1723                 /* if we have allocated more blocks and copied
1724                  * less. We will have blocks allocated outside
1725                  * inode->i_size. So truncate them
1726                  */
1727                 ext4_orphan_add(handle, inode);
1728
1729         ret2 = ext4_journal_stop(handle);
1730         if (!ret)
1731                 ret = ret2;
1732         if (pos + len > inode->i_size) {
1733                 ext4_truncate(inode);
1734                 /*
1735                  * If truncate failed early the inode might still be
1736                  * on the orphan list; we need to make sure the inode
1737                  * is removed from the orphan list in that case.
1738                  */
1739                 if (inode->i_nlink)
1740                         ext4_orphan_del(NULL, inode);
1741         }
1742
1743         return ret ? ret : copied;
1744 }
1745
1746 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1747 {
1748         int retries = 0;
1749         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1750         unsigned long md_needed, mdblocks, total = 0;
1751
1752         /*
1753          * recalculate the amount of metadata blocks to reserve
1754          * in order to allocate nrblocks
1755          * worse case is one extent per block
1756          */
1757 repeat:
1758         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1759         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1760         mdblocks = ext4_calc_metadata_amount(inode, total);
1761         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1762
1763         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1764         total = md_needed + nrblocks;
1765
1766         /*
1767          * Make quota reservation here to prevent quota overflow
1768          * later. Real quota accounting is done at pages writeout
1769          * time.
1770          */
1771         if (vfs_dq_reserve_block(inode, total)) {
1772                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1773                 return -EDQUOT;
1774         }
1775
1776         if (ext4_claim_free_blocks(sbi, total)) {
1777                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1778                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1779                         yield();
1780                         goto repeat;
1781                 }
1782                 vfs_dq_release_reservation_block(inode, total);
1783                 return -ENOSPC;
1784         }
1785         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1786         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1787
1788         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1789         return 0;       /* success */
1790 }
1791
1792 static void ext4_da_release_space(struct inode *inode, int to_free)
1793 {
1794         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1795         int total, mdb, mdb_free, release;
1796
1797         if (!to_free)
1798                 return;         /* Nothing to release, exit */
1799
1800         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1801
1802         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1803                 /*
1804                  * if there is no reserved blocks, but we try to free some
1805                  * then the counter is messed up somewhere.
1806                  * but since this function is called from invalidate
1807                  * page, it's harmless to return without any action
1808                  */
1809                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1810                             "blocks for inode %lu, but there is no reserved "
1811                             "data blocks\n", to_free, inode->i_ino);
1812                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1813                 return;
1814         }
1815
1816         /* recalculate the number of metablocks still need to be reserved */
1817         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1818         mdb = ext4_calc_metadata_amount(inode, total);
1819
1820         /* figure out how many metablocks to release */
1821         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1822         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1823
1824         release = to_free + mdb_free;
1825
1826         /* update fs dirty blocks counter for truncate case */
1827         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1828
1829         /* update per-inode reservations */
1830         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1831         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1832
1833         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1834         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1835         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1836
1837         vfs_dq_release_reservation_block(inode, release);
1838 }
1839
1840 static void ext4_da_page_release_reservation(struct page *page,
1841                                              unsigned long offset)
1842 {
1843         int to_release = 0;
1844         struct buffer_head *head, *bh;
1845         unsigned int curr_off = 0;
1846
1847         head = page_buffers(page);
1848         bh = head;
1849         do {
1850                 unsigned int next_off = curr_off + bh->b_size;
1851
1852                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1853                         to_release++;
1854                         clear_buffer_delay(bh);
1855                 }
1856                 curr_off = next_off;
1857         } while ((bh = bh->b_this_page) != head);
1858         ext4_da_release_space(page->mapping->host, to_release);
1859 }
1860
1861 /*
1862  * Delayed allocation stuff
1863  */
1864
1865 struct mpage_da_data {
1866         struct inode *inode;
1867         sector_t b_blocknr;             /* start block number of extent */
1868         size_t b_size;                  /* size of extent */
1869         unsigned long b_state;          /* state of the extent */
1870         unsigned long first_page, next_page;    /* extent of pages */
1871         struct writeback_control *wbc;
1872         int io_done;
1873         int pages_written;
1874         int retval;
1875 };
1876
1877 /*
1878  * mpage_da_submit_io - walks through extent of pages and try to write
1879  * them with writepage() call back
1880  *
1881  * @mpd->inode: inode
1882  * @mpd->first_page: first page of the extent
1883  * @mpd->next_page: page after the last page of the extent
1884  *
1885  * By the time mpage_da_submit_io() is called we expect all blocks
1886  * to be allocated. this may be wrong if allocation failed.
1887  *
1888  * As pages are already locked by write_cache_pages(), we can't use it
1889  */
1890 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1891 {
1892         long pages_skipped;
1893         struct pagevec pvec;
1894         unsigned long index, end;
1895         int ret = 0, err, nr_pages, i;
1896         struct inode *inode = mpd->inode;
1897         struct address_space *mapping = inode->i_mapping;
1898
1899         BUG_ON(mpd->next_page <= mpd->first_page);
1900         /*
1901          * We need to start from the first_page to the next_page - 1
1902          * to make sure we also write the mapped dirty buffer_heads.
1903          * If we look at mpd->b_blocknr we would only be looking
1904          * at the currently mapped buffer_heads.
1905          */
1906         index = mpd->first_page;
1907         end = mpd->next_page - 1;
1908
1909         pagevec_init(&pvec, 0);
1910         while (index <= end) {
1911                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1912                 if (nr_pages == 0)
1913                         break;
1914                 for (i = 0; i < nr_pages; i++) {
1915                         struct page *page = pvec.pages[i];
1916
1917                         index = page->index;
1918                         if (index > end)
1919                                 break;
1920                         index++;
1921
1922                         BUG_ON(!PageLocked(page));
1923                         BUG_ON(PageWriteback(page));
1924
1925                         pages_skipped = mpd->wbc->pages_skipped;
1926                         err = mapping->a_ops->writepage(page, mpd->wbc);
1927                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1928                                 /*
1929                                  * have successfully written the page
1930                                  * without skipping the same
1931                                  */
1932                                 mpd->pages_written++;
1933                         /*
1934                          * In error case, we have to continue because
1935                          * remaining pages are still locked
1936                          * XXX: unlock and re-dirty them?
1937                          */
1938                         if (ret == 0)
1939                                 ret = err;
1940                 }
1941                 pagevec_release(&pvec);
1942         }
1943         return ret;
1944 }
1945
1946 /*
1947  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1948  *
1949  * @mpd->inode - inode to walk through
1950  * @exbh->b_blocknr - first block on a disk
1951  * @exbh->b_size - amount of space in bytes
1952  * @logical - first logical block to start assignment with
1953  *
1954  * the function goes through all passed space and put actual disk
1955  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1956  */
1957 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1958                                  struct buffer_head *exbh)
1959 {
1960         struct inode *inode = mpd->inode;
1961         struct address_space *mapping = inode->i_mapping;
1962         int blocks = exbh->b_size >> inode->i_blkbits;
1963         sector_t pblock = exbh->b_blocknr, cur_logical;
1964         struct buffer_head *head, *bh;
1965         pgoff_t index, end;
1966         struct pagevec pvec;
1967         int nr_pages, i;
1968
1969         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1970         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1971         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972
1973         pagevec_init(&pvec, 0);
1974
1975         while (index <= end) {
1976                 /* XXX: optimize tail */
1977                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1978                 if (nr_pages == 0)
1979                         break;
1980                 for (i = 0; i < nr_pages; i++) {
1981                         struct page *page = pvec.pages[i];
1982
1983                         index = page->index;
1984                         if (index > end)
1985                                 break;
1986                         index++;
1987
1988                         BUG_ON(!PageLocked(page));
1989                         BUG_ON(PageWriteback(page));
1990                         BUG_ON(!page_has_buffers(page));
1991
1992                         bh = page_buffers(page);
1993                         head = bh;
1994
1995                         /* skip blocks out of the range */
1996                         do {
1997                                 if (cur_logical >= logical)
1998                                         break;
1999                                 cur_logical++;
2000                         } while ((bh = bh->b_this_page) != head);
2001
2002                         do {
2003                                 if (cur_logical >= logical + blocks)
2004                                         break;
2005
2006                                 if (buffer_delay(bh) ||
2007                                                 buffer_unwritten(bh)) {
2008
2009                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2010
2011                                         if (buffer_delay(bh)) {
2012                                                 clear_buffer_delay(bh);
2013                                                 bh->b_blocknr = pblock;
2014                                         } else {
2015                                                 /*
2016                                                  * unwritten already should have
2017                                                  * blocknr assigned. Verify that
2018                                                  */
2019                                                 clear_buffer_unwritten(bh);
2020                                                 BUG_ON(bh->b_blocknr != pblock);
2021                                         }
2022
2023                                 } else if (buffer_mapped(bh))
2024                                         BUG_ON(bh->b_blocknr != pblock);
2025
2026                                 cur_logical++;
2027                                 pblock++;
2028                         } while ((bh = bh->b_this_page) != head);
2029                 }
2030                 pagevec_release(&pvec);
2031         }
2032 }
2033
2034
2035 /*
2036  * __unmap_underlying_blocks - just a helper function to unmap
2037  * set of blocks described by @bh
2038  */
2039 static inline void __unmap_underlying_blocks(struct inode *inode,
2040                                              struct buffer_head *bh)
2041 {
2042         struct block_device *bdev = inode->i_sb->s_bdev;
2043         int blocks, i;
2044
2045         blocks = bh->b_size >> inode->i_blkbits;
2046         for (i = 0; i < blocks; i++)
2047                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2048 }
2049
2050 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2051                                         sector_t logical, long blk_cnt)
2052 {
2053         int nr_pages, i;
2054         pgoff_t index, end;
2055         struct pagevec pvec;
2056         struct inode *inode = mpd->inode;
2057         struct address_space *mapping = inode->i_mapping;
2058
2059         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2060         end   = (logical + blk_cnt - 1) >>
2061                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062         while (index <= end) {
2063                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2064                 if (nr_pages == 0)
2065                         break;
2066                 for (i = 0; i < nr_pages; i++) {
2067                         struct page *page = pvec.pages[i];
2068                         index = page->index;
2069                         if (index > end)
2070                                 break;
2071                         index++;
2072
2073                         BUG_ON(!PageLocked(page));
2074                         BUG_ON(PageWriteback(page));
2075                         block_invalidatepage(page, 0);
2076                         ClearPageUptodate(page);
2077                         unlock_page(page);
2078                 }
2079         }
2080         return;
2081 }
2082
2083 static void ext4_print_free_blocks(struct inode *inode)
2084 {
2085         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2086         printk(KERN_EMERG "Total free blocks count %lld\n",
2087                         ext4_count_free_blocks(inode->i_sb));
2088         printk(KERN_EMERG "Free/Dirty block details\n");
2089         printk(KERN_EMERG "free_blocks=%lld\n",
2090                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2091         printk(KERN_EMERG "dirty_blocks=%lld\n",
2092                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2093         printk(KERN_EMERG "Block reservation details\n");
2094         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2095                         EXT4_I(inode)->i_reserved_data_blocks);
2096         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2097                         EXT4_I(inode)->i_reserved_meta_blocks);
2098         return;
2099 }
2100
2101 /*
2102  * mpage_da_map_blocks - go through given space
2103  *
2104  * @mpd - bh describing space
2105  *
2106  * The function skips space we know is already mapped to disk blocks.
2107  *
2108  */
2109 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2110 {
2111         int err, blks, get_blocks_flags;
2112         struct buffer_head new;
2113         sector_t next = mpd->b_blocknr;
2114         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2115         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2116         handle_t *handle = NULL;
2117
2118         /*
2119          * We consider only non-mapped and non-allocated blocks
2120          */
2121         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2122                 !(mpd->b_state & (1 << BH_Delay)) &&
2123                 !(mpd->b_state & (1 << BH_Unwritten)))
2124                 return 0;
2125
2126         /*
2127          * If we didn't accumulate anything to write simply return
2128          */
2129         if (!mpd->b_size)
2130                 return 0;
2131
2132         handle = ext4_journal_current_handle();
2133         BUG_ON(!handle);
2134
2135         /*
2136          * Call ext4_get_blocks() to allocate any delayed allocation
2137          * blocks, or to convert an uninitialized extent to be
2138          * initialized (in the case where we have written into
2139          * one or more preallocated blocks).
2140          *
2141          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2142          * indicate that we are on the delayed allocation path.  This
2143          * affects functions in many different parts of the allocation
2144          * call path.  This flag exists primarily because we don't
2145          * want to change *many* call functions, so ext4_get_blocks()
2146          * will set the magic i_delalloc_reserved_flag once the
2147          * inode's allocation semaphore is taken.
2148          *
2149          * If the blocks in questions were delalloc blocks, set
2150          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2151          * variables are updated after the blocks have been allocated.
2152          */
2153         new.b_state = 0;
2154         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2155                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2156         if (mpd->b_state & (1 << BH_Delay))
2157                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2158         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2159                                &new, get_blocks_flags);
2160         if (blks < 0) {
2161                 err = blks;
2162                 /*
2163                  * If get block returns with error we simply
2164                  * return. Later writepage will redirty the page and
2165                  * writepages will find the dirty page again
2166                  */
2167                 if (err == -EAGAIN)
2168                         return 0;
2169
2170                 if (err == -ENOSPC &&
2171                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2172                         mpd->retval = err;
2173                         return 0;
2174                 }
2175
2176                 /*
2177                  * get block failure will cause us to loop in
2178                  * writepages, because a_ops->writepage won't be able
2179                  * to make progress. The page will be redirtied by
2180                  * writepage and writepages will again try to write
2181                  * the same.
2182                  */
2183                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2184                                   "at logical offset %llu with max blocks "
2185                                   "%zd with error %d\n",
2186                                   __func__, mpd->inode->i_ino,
2187                                   (unsigned long long)next,
2188                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2189                 printk(KERN_EMERG "This should not happen.!! "
2190                                         "Data will be lost\n");
2191                 if (err == -ENOSPC) {
2192                         ext4_print_free_blocks(mpd->inode);
2193                 }
2194                 /* invalidate all the pages */
2195                 ext4_da_block_invalidatepages(mpd, next,
2196                                 mpd->b_size >> mpd->inode->i_blkbits);
2197                 return err;
2198         }
2199         BUG_ON(blks == 0);
2200
2201         new.b_size = (blks << mpd->inode->i_blkbits);
2202
2203         if (buffer_new(&new))
2204                 __unmap_underlying_blocks(mpd->inode, &new);
2205
2206         /*
2207          * If blocks are delayed marked, we need to
2208          * put actual blocknr and drop delayed bit
2209          */
2210         if ((mpd->b_state & (1 << BH_Delay)) ||
2211             (mpd->b_state & (1 << BH_Unwritten)))
2212                 mpage_put_bnr_to_bhs(mpd, next, &new);
2213
2214         if (ext4_should_order_data(mpd->inode)) {
2215                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2216                 if (err)
2217                         return err;
2218         }
2219
2220         /*
2221          * Update on-disk size along with block allocation.
2222          */
2223         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2224         if (disksize > i_size_read(mpd->inode))
2225                 disksize = i_size_read(mpd->inode);
2226         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2227                 ext4_update_i_disksize(mpd->inode, disksize);
2228                 return ext4_mark_inode_dirty(handle, mpd->inode);
2229         }
2230
2231         return 0;
2232 }
2233
2234 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2235                 (1 << BH_Delay) | (1 << BH_Unwritten))
2236
2237 /*
2238  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2239  *
2240  * @mpd->lbh - extent of blocks
2241  * @logical - logical number of the block in the file
2242  * @bh - bh of the block (used to access block's state)
2243  *
2244  * the function is used to collect contig. blocks in same state
2245  */
2246 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2247                                    sector_t logical, size_t b_size,
2248                                    unsigned long b_state)
2249 {
2250         sector_t next;
2251         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2252
2253         /* check if thereserved journal credits might overflow */
2254         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2255                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2256                         /*
2257                          * With non-extent format we are limited by the journal
2258                          * credit available.  Total credit needed to insert
2259                          * nrblocks contiguous blocks is dependent on the
2260                          * nrblocks.  So limit nrblocks.
2261                          */
2262                         goto flush_it;
2263                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2264                                 EXT4_MAX_TRANS_DATA) {
2265                         /*
2266                          * Adding the new buffer_head would make it cross the
2267                          * allowed limit for which we have journal credit
2268                          * reserved. So limit the new bh->b_size
2269                          */
2270                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2271                                                 mpd->inode->i_blkbits;
2272                         /* we will do mpage_da_submit_io in the next loop */
2273                 }
2274         }
2275         /*
2276          * First block in the extent
2277          */
2278         if (mpd->b_size == 0) {
2279                 mpd->b_blocknr = logical;
2280                 mpd->b_size = b_size;
2281                 mpd->b_state = b_state & BH_FLAGS;
2282                 return;
2283         }
2284
2285         next = mpd->b_blocknr + nrblocks;
2286         /*
2287          * Can we merge the block to our big extent?
2288          */
2289         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2290                 mpd->b_size += b_size;
2291                 return;
2292         }
2293
2294 flush_it:
2295         /*
2296          * We couldn't merge the block to our extent, so we
2297          * need to flush current  extent and start new one
2298          */
2299         if (mpage_da_map_blocks(mpd) == 0)
2300                 mpage_da_submit_io(mpd);
2301         mpd->io_done = 1;
2302         return;
2303 }
2304
2305 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2306 {
2307         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2308 }
2309
2310 /*
2311  * __mpage_da_writepage - finds extent of pages and blocks
2312  *
2313  * @page: page to consider
2314  * @wbc: not used, we just follow rules
2315  * @data: context
2316  *
2317  * The function finds extents of pages and scan them for all blocks.
2318  */
2319 static int __mpage_da_writepage(struct page *page,
2320                                 struct writeback_control *wbc, void *data)
2321 {
2322         struct mpage_da_data *mpd = data;
2323         struct inode *inode = mpd->inode;
2324         struct buffer_head *bh, *head;
2325         sector_t logical;
2326
2327         if (mpd->io_done) {
2328                 /*
2329                  * Rest of the page in the page_vec
2330                  * redirty then and skip then. We will
2331                  * try to to write them again after
2332                  * starting a new transaction
2333                  */
2334                 redirty_page_for_writepage(wbc, page);
2335                 unlock_page(page);
2336                 return MPAGE_DA_EXTENT_TAIL;
2337         }
2338         /*
2339          * Can we merge this page to current extent?
2340          */
2341         if (mpd->next_page != page->index) {
2342                 /*
2343                  * Nope, we can't. So, we map non-allocated blocks
2344                  * and start IO on them using writepage()
2345                  */
2346                 if (mpd->next_page != mpd->first_page) {
2347                         if (mpage_da_map_blocks(mpd) == 0)
2348                                 mpage_da_submit_io(mpd);
2349                         /*
2350                          * skip rest of the page in the page_vec
2351                          */
2352                         mpd->io_done = 1;
2353                         redirty_page_for_writepage(wbc, page);
2354                         unlock_page(page);
2355                         return MPAGE_DA_EXTENT_TAIL;
2356                 }
2357
2358                 /*
2359                  * Start next extent of pages ...
2360                  */
2361                 mpd->first_page = page->index;
2362
2363                 /*
2364                  * ... and blocks
2365                  */
2366                 mpd->b_size = 0;
2367                 mpd->b_state = 0;
2368                 mpd->b_blocknr = 0;
2369         }
2370
2371         mpd->next_page = page->index + 1;
2372         logical = (sector_t) page->index <<
2373                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2374
2375         if (!page_has_buffers(page)) {
2376                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2377                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2378                 if (mpd->io_done)
2379                         return MPAGE_DA_EXTENT_TAIL;
2380         } else {
2381                 /*
2382                  * Page with regular buffer heads, just add all dirty ones
2383                  */
2384                 head = page_buffers(page);
2385                 bh = head;
2386                 do {
2387                         BUG_ON(buffer_locked(bh));
2388                         /*
2389                          * We need to try to allocate
2390                          * unmapped blocks in the same page.
2391                          * Otherwise we won't make progress
2392                          * with the page in ext4_writepage
2393                          */
2394                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2395                                 mpage_add_bh_to_extent(mpd, logical,
2396                                                        bh->b_size,
2397                                                        bh->b_state);
2398                                 if (mpd->io_done)
2399                                         return MPAGE_DA_EXTENT_TAIL;
2400                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2401                                 /*
2402                                  * mapped dirty buffer. We need to update
2403                                  * the b_state because we look at
2404                                  * b_state in mpage_da_map_blocks. We don't
2405                                  * update b_size because if we find an
2406                                  * unmapped buffer_head later we need to
2407                                  * use the b_state flag of that buffer_head.
2408                                  */
2409                                 if (mpd->b_size == 0)
2410                                         mpd->b_state = bh->b_state & BH_FLAGS;
2411                         }
2412                         logical++;
2413                 } while ((bh = bh->b_this_page) != head);
2414         }
2415
2416         return 0;
2417 }
2418
2419 /*
2420  * This is a special get_blocks_t callback which is used by
2421  * ext4_da_write_begin().  It will either return mapped block or
2422  * reserve space for a single block.
2423  *
2424  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2425  * We also have b_blocknr = -1 and b_bdev initialized properly
2426  *
2427  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2428  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2429  * initialized properly.
2430  */
2431 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2432                                   struct buffer_head *bh_result, int create)
2433 {
2434         int ret = 0;
2435         sector_t invalid_block = ~((sector_t) 0xffff);
2436
2437         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2438                 invalid_block = ~0;
2439
2440         BUG_ON(create == 0);
2441         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2442
2443         /*
2444          * first, we need to know whether the block is allocated already
2445          * preallocated blocks are unmapped but should treated
2446          * the same as allocated blocks.
2447          */
2448         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2449         if ((ret == 0) && !buffer_delay(bh_result)) {
2450                 /* the block isn't (pre)allocated yet, let's reserve space */
2451                 /*
2452                  * XXX: __block_prepare_write() unmaps passed block,
2453                  * is it OK?
2454                  */
2455                 ret = ext4_da_reserve_space(inode, 1);
2456                 if (ret)
2457                         /* not enough space to reserve */
2458                         return ret;
2459
2460                 map_bh(bh_result, inode->i_sb, invalid_block);
2461                 set_buffer_new(bh_result);
2462                 set_buffer_delay(bh_result);
2463         } else if (ret > 0) {
2464                 bh_result->b_size = (ret << inode->i_blkbits);
2465                 if (buffer_unwritten(bh_result)) {
2466                         /* A delayed write to unwritten bh should
2467                          * be marked new and mapped.  Mapped ensures
2468                          * that we don't do get_block multiple times
2469                          * when we write to the same offset and new
2470                          * ensures that we do proper zero out for
2471                          * partial write.
2472                          */
2473                         set_buffer_new(bh_result);
2474                         set_buffer_mapped(bh_result);
2475                 }
2476                 ret = 0;
2477         }
2478
2479         return ret;
2480 }
2481
2482 /*
2483  * This function is used as a standard get_block_t calback function
2484  * when there is no desire to allocate any blocks.  It is used as a
2485  * callback function for block_prepare_write(), nobh_writepage(), and
2486  * block_write_full_page().  These functions should only try to map a
2487  * single block at a time.
2488  *
2489  * Since this function doesn't do block allocations even if the caller
2490  * requests it by passing in create=1, it is critically important that
2491  * any caller checks to make sure that any buffer heads are returned
2492  * by this function are either all already mapped or marked for
2493  * delayed allocation before calling nobh_writepage() or
2494  * block_write_full_page().  Otherwise, b_blocknr could be left
2495  * unitialized, and the page write functions will be taken by
2496  * surprise.
2497  */
2498 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2499                                    struct buffer_head *bh_result, int create)
2500 {
2501         int ret = 0;
2502         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2503
2504         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2505
2506         /*
2507          * we don't want to do block allocation in writepage
2508          * so call get_block_wrap with create = 0
2509          */
2510         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2511         if (ret > 0) {
2512                 bh_result->b_size = (ret << inode->i_blkbits);
2513                 ret = 0;
2514         }
2515         return ret;
2516 }
2517
2518 static int bget_one(handle_t *handle, struct buffer_head *bh)
2519 {
2520         get_bh(bh);
2521         return 0;
2522 }
2523
2524 static int bput_one(handle_t *handle, struct buffer_head *bh)
2525 {
2526         put_bh(bh);
2527         return 0;
2528 }
2529
2530 static int __ext4_journalled_writepage(struct page *page,
2531                                        struct writeback_control *wbc,
2532                                        unsigned int len)
2533 {
2534         struct address_space *mapping = page->mapping;
2535         struct inode *inode = mapping->host;
2536         struct buffer_head *page_bufs;
2537         handle_t *handle = NULL;
2538         int ret = 0;
2539         int err;
2540
2541         page_bufs = page_buffers(page);
2542         BUG_ON(!page_bufs);
2543         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2544         /* As soon as we unlock the page, it can go away, but we have
2545          * references to buffers so we are safe */
2546         unlock_page(page);
2547
2548         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2549         if (IS_ERR(handle)) {
2550                 ret = PTR_ERR(handle);
2551                 goto out;
2552         }
2553
2554         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2555                                 do_journal_get_write_access);
2556
2557         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2558                                 write_end_fn);
2559         if (ret == 0)
2560                 ret = err;
2561         err = ext4_journal_stop(handle);
2562         if (!ret)
2563                 ret = err;
2564
2565         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2566         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2567 out:
2568         return ret;
2569 }
2570
2571 /*
2572  * Note that we don't need to start a transaction unless we're journaling data
2573  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2574  * need to file the inode to the transaction's list in ordered mode because if
2575  * we are writing back data added by write(), the inode is already there and if
2576  * we are writing back data modified via mmap(), noone guarantees in which
2577  * transaction the data will hit the disk. In case we are journaling data, we
2578  * cannot start transaction directly because transaction start ranks above page
2579  * lock so we have to do some magic.
2580  *
2581  * This function can get called via...
2582  *   - ext4_da_writepages after taking page lock (have journal handle)
2583  *   - journal_submit_inode_data_buffers (no journal handle)
2584  *   - shrink_page_list via pdflush (no journal handle)
2585  *   - grab_page_cache when doing write_begin (have journal handle)
2586  *
2587  * We don't do any block allocation in this function. If we have page with
2588  * multiple blocks we need to write those buffer_heads that are mapped. This
2589  * is important for mmaped based write. So if we do with blocksize 1K
2590  * truncate(f, 1024);
2591  * a = mmap(f, 0, 4096);
2592  * a[0] = 'a';
2593  * truncate(f, 4096);
2594  * we have in the page first buffer_head mapped via page_mkwrite call back
2595  * but other bufer_heads would be unmapped but dirty(dirty done via the
2596  * do_wp_page). So writepage should write the first block. If we modify
2597  * the mmap area beyond 1024 we will again get a page_fault and the
2598  * page_mkwrite callback will do the block allocation and mark the
2599  * buffer_heads mapped.
2600  *
2601  * We redirty the page if we have any buffer_heads that is either delay or
2602  * unwritten in the page.
2603  *
2604  * We can get recursively called as show below.
2605  *
2606  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2607  *              ext4_writepage()
2608  *
2609  * But since we don't do any block allocation we should not deadlock.
2610  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2611  */
2612 static int ext4_writepage(struct page *page,
2613                           struct writeback_control *wbc)
2614 {
2615         int ret = 0;
2616         loff_t size;
2617         unsigned int len;
2618         struct buffer_head *page_bufs;
2619         struct inode *inode = page->mapping->host;
2620
2621         trace_ext4_writepage(inode, page);
2622         size = i_size_read(inode);
2623         if (page->index == size >> PAGE_CACHE_SHIFT)
2624                 len = size & ~PAGE_CACHE_MASK;
2625         else
2626                 len = PAGE_CACHE_SIZE;
2627
2628         if (page_has_buffers(page)) {
2629                 page_bufs = page_buffers(page);
2630                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2631                                         ext4_bh_delay_or_unwritten)) {
2632                         /*
2633                          * We don't want to do  block allocation
2634                          * So redirty the page and return
2635                          * We may reach here when we do a journal commit
2636                          * via journal_submit_inode_data_buffers.
2637                          * If we don't have mapping block we just ignore
2638                          * them. We can also reach here via shrink_page_list
2639                          */
2640                         redirty_page_for_writepage(wbc, page);
2641                         unlock_page(page);
2642                         return 0;
2643                 }
2644         } else {
2645                 /*
2646                  * The test for page_has_buffers() is subtle:
2647                  * We know the page is dirty but it lost buffers. That means
2648                  * that at some moment in time after write_begin()/write_end()
2649                  * has been called all buffers have been clean and thus they
2650                  * must have been written at least once. So they are all
2651                  * mapped and we can happily proceed with mapping them
2652                  * and writing the page.
2653                  *
2654                  * Try to initialize the buffer_heads and check whether
2655                  * all are mapped and non delay. We don't want to
2656                  * do block allocation here.
2657                  */
2658                 ret = block_prepare_write(page, 0, len,
2659                                           noalloc_get_block_write);
2660                 if (!ret) {
2661                         page_bufs = page_buffers(page);
2662                         /* check whether all are mapped and non delay */
2663                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2664                                                 ext4_bh_delay_or_unwritten)) {
2665                                 redirty_page_for_writepage(wbc, page);
2666                                 unlock_page(page);
2667                                 return 0;
2668                         }
2669                 } else {
2670                         /*
2671                          * We can't do block allocation here
2672                          * so just redity the page and unlock
2673                          * and return
2674                          */
2675                         redirty_page_for_writepage(wbc, page);
2676                         unlock_page(page);
2677                         return 0;
2678                 }
2679                 /* now mark the buffer_heads as dirty and uptodate */
2680                 block_commit_write(page, 0, len);
2681         }
2682
2683         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2684                 /*
2685                  * It's mmapped pagecache.  Add buffers and journal it.  There
2686                  * doesn't seem much point in redirtying the page here.
2687                  */
2688                 ClearPageChecked(page);
2689                 return __ext4_journalled_writepage(page, wbc, len);
2690         }
2691
2692         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2693                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2694         else
2695                 ret = block_write_full_page(page, noalloc_get_block_write,
2696                                             wbc);
2697
2698         return ret;
2699 }
2700
2701 /*
2702  * This is called via ext4_da_writepages() to
2703  * calulate the total number of credits to reserve to fit
2704  * a single extent allocation into a single transaction,
2705  * ext4_da_writpeages() will loop calling this before
2706  * the block allocation.
2707  */
2708
2709 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2710 {
2711         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2712
2713         /*
2714          * With non-extent format the journal credit needed to
2715          * insert nrblocks contiguous block is dependent on
2716          * number of contiguous block. So we will limit
2717          * number of contiguous block to a sane value
2718          */
2719         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2720             (max_blocks > EXT4_MAX_TRANS_DATA))
2721                 max_blocks = EXT4_MAX_TRANS_DATA;
2722
2723         return ext4_chunk_trans_blocks(inode, max_blocks);
2724 }
2725
2726 static int ext4_da_writepages(struct address_space *mapping,
2727                               struct writeback_control *wbc)
2728 {
2729         pgoff_t index;
2730         int range_whole = 0;
2731         handle_t *handle = NULL;
2732         struct mpage_da_data mpd;
2733         struct inode *inode = mapping->host;
2734         int no_nrwrite_index_update;
2735         int pages_written = 0;
2736         long pages_skipped;
2737         int range_cyclic, cycled = 1, io_done = 0;
2738         int needed_blocks, ret = 0, nr_to_writebump = 0;
2739         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2740
2741         trace_ext4_da_writepages(inode, wbc);
2742
2743         /*
2744          * No pages to write? This is mainly a kludge to avoid starting
2745          * a transaction for special inodes like journal inode on last iput()
2746          * because that could violate lock ordering on umount
2747          */
2748         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2749                 return 0;
2750
2751         /*
2752          * If the filesystem has aborted, it is read-only, so return
2753          * right away instead of dumping stack traces later on that
2754          * will obscure the real source of the problem.  We test
2755          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2756          * the latter could be true if the filesystem is mounted
2757          * read-only, and in that case, ext4_da_writepages should
2758          * *never* be called, so if that ever happens, we would want
2759          * the stack trace.
2760          */
2761         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2762                 return -EROFS;
2763
2764         /*
2765          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2766          * This make sure small files blocks are allocated in
2767          * single attempt. This ensure that small files
2768          * get less fragmented.
2769          */
2770         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2771                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2772                 wbc->nr_to_write = sbi->s_mb_stream_request;
2773         }
2774         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775                 range_whole = 1;
2776
2777         range_cyclic = wbc->range_cyclic;
2778         if (wbc->range_cyclic) {
2779                 index = mapping->writeback_index;
2780                 if (index)
2781                         cycled = 0;
2782                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2783                 wbc->range_end  = LLONG_MAX;
2784                 wbc->range_cyclic = 0;
2785         } else
2786                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2787
2788         mpd.wbc = wbc;
2789         mpd.inode = mapping->host;
2790
2791         /*
2792          * we don't want write_cache_pages to update
2793          * nr_to_write and writeback_index
2794          */
2795         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2796         wbc->no_nrwrite_index_update = 1;
2797         pages_skipped = wbc->pages_skipped;
2798
2799 retry:
2800         while (!ret && wbc->nr_to_write > 0) {
2801
2802                 /*
2803                  * we  insert one extent at a time. So we need
2804                  * credit needed for single extent allocation.
2805                  * journalled mode is currently not supported
2806                  * by delalloc
2807                  */
2808                 BUG_ON(ext4_should_journal_data(inode));
2809                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2810
2811                 /* start a new transaction*/
2812                 handle = ext4_journal_start(inode, needed_blocks);
2813                 if (IS_ERR(handle)) {
2814                         ret = PTR_ERR(handle);
2815                         printk(KERN_CRIT "%s: jbd2_start: "
2816                                "%ld pages, ino %lu; err %d\n", __func__,
2817                                 wbc->nr_to_write, inode->i_ino, ret);
2818                         dump_stack();
2819                         goto out_writepages;
2820                 }
2821
2822                 /*
2823                  * Now call __mpage_da_writepage to find the next
2824                  * contiguous region of logical blocks that need
2825                  * blocks to be allocated by ext4.  We don't actually
2826                  * submit the blocks for I/O here, even though
2827                  * write_cache_pages thinks it will, and will set the
2828                  * pages as clean for write before calling
2829                  * __mpage_da_writepage().
2830                  */
2831                 mpd.b_size = 0;
2832                 mpd.b_state = 0;
2833                 mpd.b_blocknr = 0;
2834                 mpd.first_page = 0;
2835                 mpd.next_page = 0;
2836                 mpd.io_done = 0;
2837                 mpd.pages_written = 0;
2838                 mpd.retval = 0;
2839                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2840                                         &mpd);
2841                 /*
2842                  * If we have a contigous extent of pages and we
2843                  * haven't done the I/O yet, map the blocks and submit
2844                  * them for I/O.
2845                  */
2846                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2847                         if (mpage_da_map_blocks(&mpd) == 0)
2848                                 mpage_da_submit_io(&mpd);
2849                         mpd.io_done = 1;
2850                         ret = MPAGE_DA_EXTENT_TAIL;
2851                 }
2852                 wbc->nr_to_write -= mpd.pages_written;
2853
2854                 ext4_journal_stop(handle);
2855
2856                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2857                         /* commit the transaction which would
2858                          * free blocks released in the transaction
2859                          * and try again
2860                          */
2861                         jbd2_journal_force_commit_nested(sbi->s_journal);
2862                         wbc->pages_skipped = pages_skipped;
2863                         ret = 0;
2864                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2865                         /*
2866                          * got one extent now try with
2867                          * rest of the pages
2868                          */
2869                         pages_written += mpd.pages_written;
2870                         wbc->pages_skipped = pages_skipped;
2871                         ret = 0;
2872                         io_done = 1;
2873                 } else if (wbc->nr_to_write)
2874                         /*
2875                          * There is no more writeout needed
2876                          * or we requested for a noblocking writeout
2877                          * and we found the device congested
2878                          */
2879                         break;
2880         }
2881         if (!io_done && !cycled) {
2882                 cycled = 1;
2883                 index = 0;
2884                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2885                 wbc->range_end  = mapping->writeback_index - 1;
2886                 goto retry;
2887         }
2888         if (pages_skipped != wbc->pages_skipped)
2889                 printk(KERN_EMERG "This should not happen leaving %s "
2890                                 "with nr_to_write = %ld ret = %d\n",
2891                                 __func__, wbc->nr_to_write, ret);
2892
2893         /* Update index */
2894         index += pages_written;
2895         wbc->range_cyclic = range_cyclic;
2896         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2897                 /*
2898                  * set the writeback_index so that range_cyclic
2899                  * mode will write it back later
2900                  */
2901                 mapping->writeback_index = index;
2902
2903 out_writepages:
2904         if (!no_nrwrite_index_update)
2905                 wbc->no_nrwrite_index_update = 0;
2906         wbc->nr_to_write -= nr_to_writebump;
2907         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2908         return ret;
2909 }
2910
2911 #define FALL_BACK_TO_NONDELALLOC 1
2912 static int ext4_nonda_switch(struct super_block *sb)
2913 {
2914         s64 free_blocks, dirty_blocks;
2915         struct ext4_sb_info *sbi = EXT4_SB(sb);
2916
2917         /*
2918          * switch to non delalloc mode if we are running low
2919          * on free block. The free block accounting via percpu
2920          * counters can get slightly wrong with percpu_counter_batch getting
2921          * accumulated on each CPU without updating global counters
2922          * Delalloc need an accurate free block accounting. So switch
2923          * to non delalloc when we are near to error range.
2924          */
2925         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2926         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2927         if (2 * free_blocks < 3 * dirty_blocks ||
2928                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2929                 /*
2930                  * free block count is less that 150% of dirty blocks
2931                  * or free blocks is less that watermark
2932                  */
2933                 return 1;
2934         }
2935         return 0;
2936 }
2937
2938 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2939                                loff_t pos, unsigned len, unsigned flags,
2940                                struct page **pagep, void **fsdata)
2941 {
2942         int ret, retries = 0;
2943         struct page *page;
2944         pgoff_t index;
2945         unsigned from, to;
2946         struct inode *inode = mapping->host;
2947         handle_t *handle;
2948
2949         index = pos >> PAGE_CACHE_SHIFT;
2950         from = pos & (PAGE_CACHE_SIZE - 1);
2951         to = from + len;
2952
2953         if (ext4_nonda_switch(inode->i_sb)) {
2954                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2955                 return ext4_write_begin(file, mapping, pos,
2956                                         len, flags, pagep, fsdata);
2957         }
2958         *fsdata = (void *)0;
2959         trace_ext4_da_write_begin(inode, pos, len, flags);
2960 retry:
2961         /*
2962          * With delayed allocation, we don't log the i_disksize update
2963          * if there is delayed block allocation. But we still need
2964          * to journalling the i_disksize update if writes to the end
2965          * of file which has an already mapped buffer.
2966          */
2967         handle = ext4_journal_start(inode, 1);
2968         if (IS_ERR(handle)) {
2969                 ret = PTR_ERR(handle);
2970                 goto out;
2971         }
2972         /* We cannot recurse into the filesystem as the transaction is already
2973          * started */
2974         flags |= AOP_FLAG_NOFS;
2975
2976         page = grab_cache_page_write_begin(mapping, index, flags);
2977         if (!page) {
2978                 ext4_journal_stop(handle);
2979                 ret = -ENOMEM;
2980                 goto out;
2981         }
2982         *pagep = page;
2983
2984         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2985                                 ext4_da_get_block_prep);
2986         if (ret < 0) {
2987                 unlock_page(page);
2988                 ext4_journal_stop(handle);
2989                 page_cache_release(page);
2990                 /*
2991                  * block_write_begin may have instantiated a few blocks
2992                  * outside i_size.  Trim these off again. Don't need
2993                  * i_size_read because we hold i_mutex.
2994                  */
2995                 if (pos + len > inode->i_size)
2996                         ext4_truncate(inode);
2997         }
2998
2999         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3000                 goto retry;
3001 out:
3002         return ret;
3003 }
3004
3005 /*
3006  * Check if we should update i_disksize
3007  * when write to the end of file but not require block allocation
3008  */
3009 static int ext4_da_should_update_i_disksize(struct page *page,
3010                                             unsigned long offset)
3011 {
3012         struct buffer_head *bh;
3013         struct inode *inode = page->mapping->host;
3014         unsigned int idx;
3015         int i;
3016
3017         bh = page_buffers(page);
3018         idx = offset >> inode->i_blkbits;
3019
3020         for (i = 0; i < idx; i++)
3021                 bh = bh->b_this_page;
3022
3023         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3024                 return 0;
3025         return 1;
3026 }
3027
3028 static int ext4_da_write_end(struct file *file,
3029                              struct address_space *mapping,
3030                              loff_t pos, unsigned len, unsigned copied,
3031                              struct page *page, void *fsdata)
3032 {
3033         struct inode *inode = mapping->host;
3034         int ret = 0, ret2;
3035         handle_t *handle = ext4_journal_current_handle();
3036         loff_t new_i_size;
3037         unsigned long start, end;
3038         int write_mode = (int)(unsigned long)fsdata;
3039
3040         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3041                 if (ext4_should_order_data(inode)) {
3042                         return ext4_ordered_write_end(file, mapping, pos,
3043                                         len, copied, page, fsdata);
3044                 } else if (ext4_should_writeback_data(inode)) {
3045                         return ext4_writeback_write_end(file, mapping, pos,
3046                                         len, copied, page, fsdata);
3047                 } else {
3048                         BUG();
3049                 }
3050         }
3051
3052         trace_ext4_da_write_end(inode, pos, len, copied);
3053         start = pos & (PAGE_CACHE_SIZE - 1);
3054         end = start + copied - 1;
3055
3056         /*
3057          * generic_write_end() will run mark_inode_dirty() if i_size
3058          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3059          * into that.
3060          */
3061
3062         new_i_size = pos + copied;
3063         if (new_i_size > EXT4_I(inode)->i_disksize) {
3064                 if (ext4_da_should_update_i_disksize(page, end)) {
3065                         down_write(&EXT4_I(inode)->i_data_sem);
3066                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3067                                 /*
3068                                  * Updating i_disksize when extending file
3069                                  * without needing block allocation
3070                                  */
3071                                 if (ext4_should_order_data(inode))
3072                                         ret = ext4_jbd2_file_inode(handle,
3073                                                                    inode);
3074
3075                                 EXT4_I(inode)->i_disksize = new_i_size;
3076                         }
3077                         up_write(&EXT4_I(inode)->i_data_sem);
3078                         /* We need to mark inode dirty even if
3079                          * new_i_size is less that inode->i_size
3080                          * bu greater than i_disksize.(hint delalloc)
3081                          */
3082                         ext4_mark_inode_dirty(handle, inode);
3083                 }
3084         }
3085         ret2 = generic_write_end(file, mapping, pos, len, copied,
3086                                                         page, fsdata);
3087         copied = ret2;
3088         if (ret2 < 0)
3089                 ret = ret2;
3090         ret2 = ext4_journal_stop(handle);
3091         if (!ret)
3092                 ret = ret2;
3093
3094         return ret ? ret : copied;
3095 }
3096
3097 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3098 {
3099         /*
3100          * Drop reserved blocks
3101          */
3102         BUG_ON(!PageLocked(page));
3103         if (!page_has_buffers(page))
3104                 goto out;
3105
3106         ext4_da_page_release_reservation(page, offset);
3107
3108 out:
3109         ext4_invalidatepage(page, offset);
3110
3111         return;
3112 }
3113
3114 /*
3115  * Force all delayed allocation blocks to be allocated for a given inode.
3116  */
3117 int ext4_alloc_da_blocks(struct inode *inode)
3118 {
3119         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3120             !EXT4_I(inode)->i_reserved_meta_blocks)
3121                 return 0;
3122
3123         /*
3124          * We do something simple for now.  The filemap_flush() will
3125          * also start triggering a write of the data blocks, which is
3126          * not strictly speaking necessary (and for users of
3127          * laptop_mode, not even desirable).  However, to do otherwise
3128          * would require replicating code paths in:
3129          *
3130          * ext4_da_writepages() ->
3131          *    write_cache_pages() ---> (via passed in callback function)
3132          *        __mpage_da_writepage() -->
3133          *           mpage_add_bh_to_extent()
3134          *           mpage_da_map_blocks()
3135          *
3136          * The problem is that write_cache_pages(), located in
3137          * mm/page-writeback.c, marks pages clean in preparation for
3138          * doing I/O, which is not desirable if we're not planning on
3139          * doing I/O at all.
3140          *
3141          * We could call write_cache_pages(), and then redirty all of
3142          * the pages by calling redirty_page_for_writeback() but that
3143          * would be ugly in the extreme.  So instead we would need to
3144          * replicate parts of the code in the above functions,
3145          * simplifying them becuase we wouldn't actually intend to
3146          * write out the pages, but rather only collect contiguous
3147          * logical block extents, call the multi-block allocator, and
3148          * then update the buffer heads with the block allocations.
3149          *
3150          * For now, though, we'll cheat by calling filemap_flush(),
3151          * which will map the blocks, and start the I/O, but not
3152          * actually wait for the I/O to complete.
3153          */
3154         return filemap_flush(inode->i_mapping);
3155 }
3156
3157 /*
3158  * bmap() is special.  It gets used by applications such as lilo and by
3159  * the swapper to find the on-disk block of a specific piece of data.
3160  *
3161  * Naturally, this is dangerous if the block concerned is still in the
3162  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3163  * filesystem and enables swap, then they may get a nasty shock when the
3164  * data getting swapped to that swapfile suddenly gets overwritten by
3165  * the original zero's written out previously to the journal and
3166  * awaiting writeback in the kernel's buffer cache.
3167  *
3168  * So, if we see any bmap calls here on a modified, data-journaled file,
3169  * take extra steps to flush any blocks which might be in the cache.
3170  */
3171 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3172 {
3173         struct inode *inode = mapping->host;
3174         journal_t *journal;
3175         int err;
3176
3177         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3178                         test_opt(inode->i_sb, DELALLOC)) {
3179                 /*
3180                  * With delalloc we want to sync the file
3181                  * so that we can make sure we allocate
3182                  * blocks for file
3183                  */
3184                 filemap_write_and_wait(mapping);
3185         }
3186
3187         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3188                 /*
3189                  * This is a REALLY heavyweight approach, but the use of
3190                  * bmap on dirty files is expected to be extremely rare:
3191                  * only if we run lilo or swapon on a freshly made file
3192                  * do we expect this to happen.
3193                  *
3194                  * (bmap requires CAP_SYS_RAWIO so this does not
3195                  * represent an unprivileged user DOS attack --- we'd be
3196                  * in trouble if mortal users could trigger this path at
3197                  * will.)
3198                  *
3199                  * NB. EXT4_STATE_JDATA is not set on files other than
3200                  * regular files.  If somebody wants to bmap a directory
3201                  * or symlink and gets confused because the buffer
3202                  * hasn't yet been flushed to disk, they deserve
3203                  * everything they get.
3204                  */
3205
3206                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3207                 journal = EXT4_JOURNAL(inode);
3208                 jbd2_journal_lock_updates(journal);
3209                 err = jbd2_journal_flush(journal);
3210                 jbd2_journal_unlock_updates(journal);
3211
3212                 if (err)
3213                         return 0;
3214         }
3215
3216         return generic_block_bmap(mapping, block, ext4_get_block);
3217 }
3218
3219 static int ext4_readpage(struct file *file, struct page *page)
3220 {
3221         return mpage_readpage(page, ext4_get_block);
3222 }
3223
3224 static int
3225 ext4_readpages(struct file *file, struct address_space *mapping,
3226                 struct list_head *pages, unsigned nr_pages)
3227 {
3228         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3229 }
3230
3231 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3232 {
3233         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3234
3235         /*
3236          * If it's a full truncate we just forget about the pending dirtying
3237          */
3238         if (offset == 0)
3239                 ClearPageChecked(page);
3240
3241         if (journal)
3242                 jbd2_journal_invalidatepage(journal, page, offset);
3243         else
3244                 block_invalidatepage(page, offset);
3245 }
3246
3247 static int ext4_releasepage(struct page *page, gfp_t wait)
3248 {
3249         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3250
3251         WARN_ON(PageChecked(page));
3252         if (!page_has_buffers(page))
3253                 return 0;
3254         if (journal)
3255                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3256         else
3257                 return try_to_free_buffers(page);
3258 }
3259
3260 /*
3261  * If the O_DIRECT write will extend the file then add this inode to the
3262  * orphan list.  So recovery will truncate it back to the original size
3263  * if the machine crashes during the write.
3264  *
3265  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3266  * crashes then stale disk data _may_ be exposed inside the file. But current
3267  * VFS code falls back into buffered path in that case so we are safe.
3268  */
3269 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3270                               const struct iovec *iov, loff_t offset,
3271                               unsigned long nr_segs)
3272 {
3273         struct file *file = iocb->ki_filp;
3274         struct inode *inode = file->f_mapping->host;
3275         struct ext4_inode_info *ei = EXT4_I(inode);
3276         handle_t *handle;
3277         ssize_t ret;
3278         int orphan = 0;
3279         size_t count = iov_length(iov, nr_segs);
3280
3281         if (rw == WRITE) {
3282                 loff_t final_size = offset + count;
3283
3284                 if (final_size > inode->i_size) {
3285                         /* Credits for sb + inode write */
3286                         handle = ext4_journal_start(inode, 2);
3287                         if (IS_ERR(handle)) {
3288                                 ret = PTR_ERR(handle);
3289                                 goto out;
3290                         }
3291                         ret = ext4_orphan_add(handle, inode);
3292                         if (ret) {
3293                                 ext4_journal_stop(handle);
3294                                 goto out;
3295                         }
3296                         orphan = 1;
3297                         ei->i_disksize = inode->i_size;
3298                         ext4_journal_stop(handle);
3299                 }
3300         }
3301
3302         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3303                                  offset, nr_segs,
3304                                  ext4_get_block, NULL);
3305
3306         if (orphan) {
3307                 int err;
3308
3309                 /* Credits for sb + inode write */
3310                 handle = ext4_journal_start(inode, 2);
3311                 if (IS_ERR(handle)) {
3312                         /* This is really bad luck. We've written the data
3313                          * but cannot extend i_size. Bail out and pretend
3314                          * the write failed... */
3315                         ret = PTR_ERR(handle);
3316                         goto out;
3317                 }
3318                 if (inode->i_nlink)
3319                         ext4_orphan_del(handle, inode);
3320                 if (ret > 0) {
3321                         loff_t end = offset + ret;
3322                         if (end > inode->i_size) {
3323                                 ei->i_disksize = end;
3324                                 i_size_write(inode, end);
3325                                 /*
3326                                  * We're going to return a positive `ret'
3327                                  * here due to non-zero-length I/O, so there's
3328                                  * no way of reporting error returns from
3329                                  * ext4_mark_inode_dirty() to userspace.  So
3330                                  * ignore it.
3331                                  */
3332                                 ext4_mark_inode_dirty(handle, inode);
3333                         }
3334                 }
3335                 err = ext4_journal_stop(handle);
3336                 if (ret == 0)
3337                         ret = err;
3338         }
3339 out:
3340         return ret;
3341 }
3342
3343 /*
3344  * Pages can be marked dirty completely asynchronously from ext4's journalling
3345  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3346  * much here because ->set_page_dirty is called under VFS locks.  The page is
3347  * not necessarily locked.
3348  *
3349  * We cannot just dirty the page and leave attached buffers clean, because the
3350  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3351  * or jbddirty because all the journalling code will explode.
3352  *
3353  * So what we do is to mark the page "pending dirty" and next time writepage
3354  * is called, propagate that into the buffers appropriately.
3355  */
3356 static int ext4_journalled_set_page_dirty(struct page *page)
3357 {
3358         SetPageChecked(page);
3359         return __set_page_dirty_nobuffers(page);
3360 }
3361
3362 static const struct address_space_operations ext4_ordered_aops = {
3363         .readpage               = ext4_readpage,
3364         .readpages              = ext4_readpages,
3365         .writepage              = ext4_writepage,
3366         .sync_page              = block_sync_page,
3367         .write_begin            = ext4_write_begin,
3368         .write_end              = ext4_ordered_write_end,
3369         .bmap                   = ext4_bmap,
3370         .invalidatepage         = ext4_invalidatepage,
3371         .releasepage            = ext4_releasepage,
3372         .direct_IO              = ext4_direct_IO,
3373         .migratepage            = buffer_migrate_page,
3374         .is_partially_uptodate  = block_is_partially_uptodate,
3375 };
3376
3377 static const struct address_space_operations ext4_writeback_aops = {
3378         .readpage               = ext4_readpage,
3379         .readpages              = ext4_readpages,
3380         .writepage              = ext4_writepage,
3381         .sync_page              = block_sync_page,
3382         .write_begin            = ext4_write_begin,
3383         .write_end              = ext4_writeback_write_end,
3384         .bmap                   = ext4_bmap,
3385         .invalidatepage         = ext4_invalidatepage,
3386         .releasepage            = ext4_releasepage,
3387         .direct_IO              = ext4_direct_IO,
3388         .migratepage            = buffer_migrate_page,
3389         .is_partially_uptodate  = block_is_partially_uptodate,
3390 };
3391
3392 static const struct address_space_operations ext4_journalled_aops = {
3393         .readpage               = ext4_readpage,
3394         .readpages              = ext4_readpages,
3395         .writepage              = ext4_writepage,
3396         .sync_page              = block_sync_page,
3397         .write_begin            = ext4_write_begin,
3398         .write_end              = ext4_journalled_write_end,
3399         .set_page_dirty         = ext4_journalled_set_page_dirty,
3400         .bmap                   = ext4_bmap,
3401         .invalidatepage         = ext4_invalidatepage,
3402         .releasepage            = ext4_releasepage,
3403         .is_partially_uptodate  = block_is_partially_uptodate,
3404 };
3405
3406 static const struct address_space_operations ext4_da_aops = {
3407         .readpage               = ext4_readpage,
3408         .readpages              = ext4_readpages,
3409         .writepage              = ext4_writepage,
3410         .writepages             = ext4_da_writepages,
3411         .sync_page              = block_sync_page,
3412         .write_begin            = ext4_da_write_begin,
3413         .write_end              = ext4_da_write_end,
3414         .bmap                   = ext4_bmap,
3415         .invalidatepage         = ext4_da_invalidatepage,
3416         .releasepage            = ext4_releasepage,
3417         .direct_IO              = ext4_direct_IO,
3418         .migratepage            = buffer_migrate_page,
3419         .is_partially_uptodate  = block_is_partially_uptodate,
3420 };
3421
3422 void ext4_set_aops(struct inode *inode)
3423 {
3424         if (ext4_should_order_data(inode) &&
3425                 test_opt(inode->i_sb, DELALLOC))
3426                 inode->i_mapping->a_ops = &ext4_da_aops;
3427         else if (ext4_should_order_data(inode))
3428                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3429         else if (ext4_should_writeback_data(inode) &&
3430                  test_opt(inode->i_sb, DELALLOC))
3431                 inode->i_mapping->a_ops = &ext4_da_aops;
3432         else if (ext4_should_writeback_data(inode))
3433                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3434         else
3435                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3436 }
3437
3438 /*
3439  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3440  * up to the end of the block which corresponds to `from'.
3441  * This required during truncate. We need to physically zero the tail end
3442  * of that block so it doesn't yield old data if the file is later grown.
3443  */
3444 int ext4_block_truncate_page(handle_t *handle,
3445                 struct address_space *mapping, loff_t from)
3446 {
3447         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3448         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3449         unsigned blocksize, length, pos;
3450         ext4_lblk_t iblock;
3451         struct inode *inode = mapping->host;
3452         struct buffer_head *bh;
3453         struct page *page;
3454         int err = 0;
3455
3456         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3457                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3458         if (!page)
3459                 return -EINVAL;
3460
3461         blocksize = inode->i_sb->s_blocksize;
3462         length = blocksize - (offset & (blocksize - 1));
3463         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3464
3465         /*
3466          * For "nobh" option,  we can only work if we don't need to
3467          * read-in the page - otherwise we create buffers to do the IO.
3468          */
3469         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3470              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3471                 zero_user(page, offset, length);
3472                 set_page_dirty(page);
3473                 goto unlock;
3474         }
3475
3476         if (!page_has_buffers(page))
3477                 create_empty_buffers(page, blocksize, 0);
3478
3479         /* Find the buffer that contains "offset" */
3480         bh = page_buffers(page);
3481         pos = blocksize;
3482         while (offset >= pos) {
3483                 bh = bh->b_this_page;
3484                 iblock++;
3485                 pos += blocksize;
3486         }
3487
3488         err = 0;
3489         if (buffer_freed(bh)) {
3490                 BUFFER_TRACE(bh, "freed: skip");
3491                 goto unlock;
3492         }
3493
3494         if (!buffer_mapped(bh)) {
3495                 BUFFER_TRACE(bh, "unmapped");
3496                 ext4_get_block(inode, iblock, bh, 0);
3497                 /* unmapped? It's a hole - nothing to do */
3498                 if (!buffer_mapped(bh)) {
3499                         BUFFER_TRACE(bh, "still unmapped");
3500                         goto unlock;
3501                 }
3502         }
3503
3504         /* Ok, it's mapped. Make sure it's up-to-date */
3505         if (PageUptodate(page))
3506                 set_buffer_uptodate(bh);
3507
3508         if (!buffer_uptodate(bh)) {
3509                 err = -EIO;
3510                 ll_rw_block(READ, 1, &bh);
3511                 wait_on_buffer(bh);
3512                 /* Uhhuh. Read error. Complain and punt. */
3513                 if (!buffer_uptodate(bh))
3514                         goto unlock;
3515         }
3516
3517         if (ext4_should_journal_data(inode)) {
3518                 BUFFER_TRACE(bh, "get write access");
3519                 err = ext4_journal_get_write_access(handle, bh);
3520                 if (err)
3521                         goto unlock;
3522         }
3523
3524         zero_user(page, offset, length);
3525
3526         BUFFER_TRACE(bh, "zeroed end of block");
3527
3528         err = 0;
3529         if (ext4_should_journal_data(inode)) {
3530                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3531         } else {
3532                 if (ext4_should_order_data(inode))
3533                         err = ext4_jbd2_file_inode(handle, inode);
3534                 mark_buffer_dirty(bh);
3535         }
3536
3537 unlock:
3538         unlock_page(page);
3539         page_cache_release(page);
3540         return err;
3541 }
3542
3543 /*
3544  * Probably it should be a library function... search for first non-zero word
3545  * or memcmp with zero_page, whatever is better for particular architecture.
3546  * Linus?
3547  */
3548 static inline int all_zeroes(__le32 *p, __le32 *q)
3549 {
3550         while (p < q)
3551                 if (*p++)
3552                         return 0;
3553         return 1;
3554 }
3555
3556 /**
3557  *      ext4_find_shared - find the indirect blocks for partial truncation.
3558  *      @inode:   inode in question
3559  *      @depth:   depth of the affected branch
3560  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3561  *      @chain:   place to store the pointers to partial indirect blocks
3562  *      @top:     place to the (detached) top of branch
3563  *
3564  *      This is a helper function used by ext4_truncate().
3565  *
3566  *      When we do truncate() we may have to clean the ends of several
3567  *      indirect blocks but leave the blocks themselves alive. Block is
3568  *      partially truncated if some data below the new i_size is refered
3569  *      from it (and it is on the path to the first completely truncated
3570  *      data block, indeed).  We have to free the top of that path along
3571  *      with everything to the right of the path. Since no allocation
3572  *      past the truncation point is possible until ext4_truncate()
3573  *      finishes, we may safely do the latter, but top of branch may
3574  *      require special attention - pageout below the truncation point
3575  *      might try to populate it.
3576  *
3577  *      We atomically detach the top of branch from the tree, store the
3578  *      block number of its root in *@top, pointers to buffer_heads of
3579  *      partially truncated blocks - in @chain[].bh and pointers to
3580  *      their last elements that should not be removed - in
3581  *      @chain[].p. Return value is the pointer to last filled element
3582  *      of @chain.
3583  *
3584  *      The work left to caller to do the actual freeing of subtrees:
3585  *              a) free the subtree starting from *@top
3586  *              b) free the subtrees whose roots are stored in
3587  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3588  *              c) free the subtrees growing from the inode past the @chain[0].
3589  *                      (no partially truncated stuff there).  */
3590
3591 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3592                                   ext4_lblk_t offsets[4], Indirect chain[4],
3593                                   __le32 *top)
3594 {
3595         Indirect *partial, *p;
3596         int k, err;
3597
3598         *top = 0;
3599         /* Make k index the deepest non-null offest + 1 */
3600         for (k = depth; k > 1 && !offsets[k-1]; k--)
3601                 ;
3602         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3603         /* Writer: pointers */
3604         if (!partial)
3605                 partial = chain + k-1;
3606         /*
3607          * If the branch acquired continuation since we've looked at it -
3608          * fine, it should all survive and (new) top doesn't belong to us.
3609          */
3610         if (!partial->key && *partial->p)
3611                 /* Writer: end */
3612                 goto no_top;
3613         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3614                 ;
3615         /*
3616          * OK, we've found the last block that must survive. The rest of our
3617          * branch should be detached before unlocking. However, if that rest
3618          * of branch is all ours and does not grow immediately from the inode
3619          * it's easier to cheat and just decrement partial->p.
3620          */
3621         if (p == chain + k - 1 && p > chain) {
3622                 p->p--;
3623         } else {
3624                 *top = *p->p;
3625                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3626 #if 0
3627                 *p->p = 0;
3628 #endif
3629         }
3630         /* Writer: end */
3631
3632         while (partial > p) {
3633                 brelse(partial->bh);
3634                 partial--;
3635         }
3636 no_top:
3637         return partial;
3638 }
3639
3640 /*
3641  * Zero a number of block pointers in either an inode or an indirect block.
3642  * If we restart the transaction we must again get write access to the
3643  * indirect block for further modification.
3644  *
3645  * We release `count' blocks on disk, but (last - first) may be greater
3646  * than `count' because there can be holes in there.
3647  */
3648 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3649                               struct buffer_head *bh,
3650                               ext4_fsblk_t block_to_free,
3651                               unsigned long count, __le32 *first,
3652                               __le32 *last)
3653 {
3654         __le32 *p;
3655         if (try_to_extend_transaction(handle, inode)) {
3656                 if (bh) {
3657                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3658                         ext4_handle_dirty_metadata(handle, inode, bh);
3659                 }
3660                 ext4_mark_inode_dirty(handle, inode);
3661                 ext4_journal_test_restart(handle, inode);
3662                 if (bh) {
3663                         BUFFER_TRACE(bh, "retaking write access");
3664                         ext4_journal_get_write_access(handle, bh);
3665                 }
3666         }
3667
3668         /*
3669          * Any buffers which are on the journal will be in memory. We
3670          * find them on the hash table so jbd2_journal_revoke() will
3671          * run jbd2_journal_forget() on them.  We've already detached
3672          * each block from the file, so bforget() in
3673          * jbd2_journal_forget() should be safe.
3674          *
3675          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3676          */
3677         for (p = first; p < last; p++) {
3678                 u32 nr = le32_to_cpu(*p);
3679                 if (nr) {
3680                         struct buffer_head *tbh;
3681
3682                         *p = 0;
3683                         tbh = sb_find_get_block(inode->i_sb, nr);
3684                         ext4_forget(handle, 0, inode, tbh, nr);
3685                 }
3686         }
3687
3688         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3689 }
3690
3691 /**
3692  * ext4_free_data - free a list of data blocks
3693  * @handle:     handle for this transaction
3694  * @inode:      inode we are dealing with
3695  * @this_bh:    indirect buffer_head which contains *@first and *@last
3696  * @first:      array of block numbers
3697  * @last:       points immediately past the end of array
3698  *
3699  * We are freeing all blocks refered from that array (numbers are stored as
3700  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3701  *
3702  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3703  * blocks are contiguous then releasing them at one time will only affect one
3704  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3705  * actually use a lot of journal space.
3706  *
3707  * @this_bh will be %NULL if @first and @last point into the inode's direct
3708  * block pointers.
3709  */
3710 static void ext4_free_data(handle_t *handle, struct inode *inode,
3711                            struct buffer_head *this_bh,
3712                            __le32 *first, __le32 *last)
3713 {
3714         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3715         unsigned long count = 0;            /* Number of blocks in the run */
3716         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3717                                                corresponding to
3718                                                block_to_free */
3719         ext4_fsblk_t nr;                    /* Current block # */
3720         __le32 *p;                          /* Pointer into inode/ind
3721                                                for current block */
3722         int err;
3723
3724         if (this_bh) {                          /* For indirect block */
3725                 BUFFER_TRACE(this_bh, "get_write_access");
3726                 err = ext4_journal_get_write_access(handle, this_bh);
3727                 /* Important: if we can't update the indirect pointers
3728                  * to the blocks, we can't free them. */
3729                 if (err)
3730                         return;
3731         }
3732
3733         for (p = first; p < last; p++) {
3734                 nr = le32_to_cpu(*p);
3735                 if (nr) {
3736                         /* accumulate blocks to free if they're contiguous */
3737                         if (count == 0) {
3738                                 block_to_free = nr;
3739                                 block_to_free_p = p;
3740                                 count = 1;
3741                         } else if (nr == block_to_free + count) {
3742                                 count++;
3743                         } else {
3744                                 ext4_clear_blocks(handle, inode, this_bh,
3745                                                   block_to_free,
3746                                                   count, block_to_free_p, p);
3747                                 block_to_free = nr;
3748                                 block_to_free_p = p;
3749                                 count = 1;
3750                         }
3751                 }
3752         }
3753
3754         if (count > 0)
3755                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3756                                   count, block_to_free_p, p);
3757
3758         if (this_bh) {
3759                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3760
3761                 /*
3762                  * The buffer head should have an attached journal head at this
3763                  * point. However, if the data is corrupted and an indirect
3764                  * block pointed to itself, it would have been detached when
3765                  * the block was cleared. Check for this instead of OOPSing.
3766                  */
3767                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3768                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3769                 else
3770                         ext4_error(inode->i_sb, __func__,
3771                                    "circular indirect block detected, "
3772                                    "inode=%lu, block=%llu",
3773                                    inode->i_ino,
3774                                    (unsigned long long) this_bh->b_blocknr);
3775         }
3776 }
3777
3778 /**
3779  *      ext4_free_branches - free an array of branches
3780  *      @handle: JBD handle for this transaction
3781  *      @inode: inode we are dealing with
3782  *      @parent_bh: the buffer_head which contains *@first and *@last
3783  *      @first: array of block numbers
3784  *      @last:  pointer immediately past the end of array
3785  *      @depth: depth of the branches to free
3786  *
3787  *      We are freeing all blocks refered from these branches (numbers are
3788  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3789  *      appropriately.
3790  */
3791 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3792                                struct buffer_head *parent_bh,
3793                                __le32 *first, __le32 *last, int depth)
3794 {
3795         ext4_fsblk_t nr;
3796         __le32 *p;
3797
3798         if (ext4_handle_is_aborted(handle))
3799                 return;
3800
3801         if (depth--) {
3802                 struct buffer_head *bh;
3803                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3804                 p = last;
3805                 while (--p >= first) {
3806                         nr = le32_to_cpu(*p);
3807                         if (!nr)
3808                                 continue;               /* A hole */
3809
3810                         /* Go read the buffer for the next level down */
3811                         bh = sb_bread(inode->i_sb, nr);
3812
3813                         /*
3814                          * A read failure? Report error and clear slot
3815                          * (should be rare).
3816                          */
3817                         if (!bh) {
3818                                 ext4_error(inode->i_sb, "ext4_free_branches",
3819                                            "Read failure, inode=%lu, block=%llu",
3820                                            inode->i_ino, nr);
3821                                 continue;
3822                         }
3823
3824                         /* This zaps the entire block.  Bottom up. */
3825                         BUFFER_TRACE(bh, "free child branches");
3826                         ext4_free_branches(handle, inode, bh,
3827                                         (__le32 *) bh->b_data,
3828                                         (__le32 *) bh->b_data + addr_per_block,
3829                                         depth);
3830
3831                         /*
3832                          * We've probably journalled the indirect block several
3833                          * times during the truncate.  But it's no longer
3834                          * needed and we now drop it from the transaction via
3835                          * jbd2_journal_revoke().
3836                          *
3837                          * That's easy if it's exclusively part of this
3838                          * transaction.  But if it's part of the committing
3839                          * transaction then jbd2_journal_forget() will simply
3840                          * brelse() it.  That means that if the underlying
3841                          * block is reallocated in ext4_get_block(),
3842                          * unmap_underlying_metadata() will find this block
3843                          * and will try to get rid of it.  damn, damn.
3844                          *
3845                          * If this block has already been committed to the
3846                          * journal, a revoke record will be written.  And
3847                          * revoke records must be emitted *before* clearing
3848                          * this block's bit in the bitmaps.
3849                          */
3850                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3851
3852                         /*
3853                          * Everything below this this pointer has been
3854                          * released.  Now let this top-of-subtree go.
3855                          *
3856                          * We want the freeing of this indirect block to be
3857                          * atomic in the journal with the updating of the
3858                          * bitmap block which owns it.  So make some room in
3859                          * the journal.
3860                          *
3861                          * We zero the parent pointer *after* freeing its
3862                          * pointee in the bitmaps, so if extend_transaction()
3863                          * for some reason fails to put the bitmap changes and
3864                          * the release into the same transaction, recovery
3865                          * will merely complain about releasing a free block,
3866                          * rather than leaking blocks.
3867                          */
3868                         if (ext4_handle_is_aborted(handle))
3869                                 return;
3870                         if (try_to_extend_transaction(handle, inode)) {
3871                                 ext4_mark_inode_dirty(handle, inode);
3872                                 ext4_journal_test_restart(handle, inode);
3873                         }
3874
3875                         ext4_free_blocks(handle, inode, nr, 1, 1);
3876
3877                         if (parent_bh) {
3878                                 /*
3879                                  * The block which we have just freed is
3880                                  * pointed to by an indirect block: journal it
3881                                  */
3882                                 BUFFER_TRACE(parent_bh, "get_write_access");
3883                                 if (!ext4_journal_get_write_access(handle,
3884                                                                    parent_bh)){
3885                                         *p = 0;
3886                                         BUFFER_TRACE(parent_bh,
3887                                         "call ext4_handle_dirty_metadata");
3888                                         ext4_handle_dirty_metadata(handle,
3889                                                                    inode,
3890                                                                    parent_bh);
3891                                 }
3892                         }
3893                 }
3894         } else {
3895                 /* We have reached the bottom of the tree. */
3896                 BUFFER_TRACE(parent_bh, "free data blocks");
3897                 ext4_free_data(handle, inode, parent_bh, first, last);
3898         }
3899 }
3900
3901 int ext4_can_truncate(struct inode *inode)
3902 {
3903         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3904                 return 0;
3905         if (S_ISREG(inode->i_mode))
3906                 return 1;
3907         if (S_ISDIR(inode->i_mode))
3908                 return 1;
3909         if (S_ISLNK(inode->i_mode))
3910                 return !ext4_inode_is_fast_symlink(inode);
3911         return 0;
3912 }
3913
3914 /*
3915  * ext4_truncate()
3916  *
3917  * We block out ext4_get_block() block instantiations across the entire
3918  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3919  * simultaneously on behalf of the same inode.
3920  *
3921  * As we work through the truncate and commmit bits of it to the journal there
3922  * is one core, guiding principle: the file's tree must always be consistent on
3923  * disk.  We must be able to restart the truncate after a crash.
3924  *
3925  * The file's tree may be transiently inconsistent in memory (although it
3926  * probably isn't), but whenever we close off and commit a journal transaction,
3927  * the contents of (the filesystem + the journal) must be consistent and
3928  * restartable.  It's pretty simple, really: bottom up, right to left (although
3929  * left-to-right works OK too).
3930  *
3931  * Note that at recovery time, journal replay occurs *before* the restart of
3932  * truncate against the orphan inode list.
3933  *
3934  * The committed inode has the new, desired i_size (which is the same as
3935  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3936  * that this inode's truncate did not complete and it will again call
3937  * ext4_truncate() to have another go.  So there will be instantiated blocks
3938  * to the right of the truncation point in a crashed ext4 filesystem.  But
3939  * that's fine - as long as they are linked from the inode, the post-crash
3940  * ext4_truncate() run will find them and release them.
3941  */
3942 void ext4_truncate(struct inode *inode)
3943 {
3944         handle_t *handle;
3945         struct ext4_inode_info *ei = EXT4_I(inode);
3946         __le32 *i_data = ei->i_data;
3947         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3948         struct address_space *mapping = inode->i_mapping;
3949         ext4_lblk_t offsets[4];
3950         Indirect chain[4];
3951         Indirect *partial;
3952         __le32 nr = 0;
3953         int n;
3954         ext4_lblk_t last_block;
3955         unsigned blocksize = inode->i_sb->s_blocksize;
3956
3957         if (!ext4_can_truncate(inode))
3958                 return;
3959
3960         if (ei->i_disksize && inode->i_size == 0 &&
3961             !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3962                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3963
3964         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3965                 ext4_ext_truncate(inode);
3966                 return;
3967         }
3968
3969         handle = start_transaction(inode);
3970         if (IS_ERR(handle))
3971                 return;         /* AKPM: return what? */
3972
3973         last_block = (inode->i_size + blocksize-1)
3974                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3975
3976         if (inode->i_size & (blocksize - 1))
3977                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3978                         goto out_stop;
3979
3980         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3981         if (n == 0)
3982                 goto out_stop;  /* error */
3983
3984         /*
3985          * OK.  This truncate is going to happen.  We add the inode to the
3986          * orphan list, so that if this truncate spans multiple transactions,
3987          * and we crash, we will resume the truncate when the filesystem
3988          * recovers.  It also marks the inode dirty, to catch the new size.
3989          *
3990          * Implication: the file must always be in a sane, consistent
3991          * truncatable state while each transaction commits.
3992          */
3993         if (ext4_orphan_add(handle, inode))
3994                 goto out_stop;
3995
3996         /*
3997          * From here we block out all ext4_get_block() callers who want to
3998          * modify the block allocation tree.
3999          */
4000         down_write(&ei->i_data_sem);
4001
4002         ext4_discard_preallocations(inode);
4003
4004         /*
4005          * The orphan list entry will now protect us from any crash which
4006          * occurs before the truncate completes, so it is now safe to propagate
4007          * the new, shorter inode size (held for now in i_size) into the
4008          * on-disk inode. We do this via i_disksize, which is the value which
4009          * ext4 *really* writes onto the disk inode.
4010          */
4011         ei->i_disksize = inode->i_size;
4012
4013         if (n == 1) {           /* direct blocks */
4014                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4015                                i_data + EXT4_NDIR_BLOCKS);
4016                 goto do_indirects;
4017         }
4018
4019         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4020         /* Kill the top of shared branch (not detached) */
4021         if (nr) {
4022                 if (partial == chain) {
4023                         /* Shared branch grows from the inode */
4024                         ext4_free_branches(handle, inode, NULL,
4025                                            &nr, &nr+1, (chain+n-1) - partial);
4026                         *partial->p = 0;
4027                         /*
4028                          * We mark the inode dirty prior to restart,
4029                          * and prior to stop.  No need for it here.
4030                          */
4031                 } else {
4032                         /* Shared branch grows from an indirect block */
4033                         BUFFER_TRACE(partial->bh, "get_write_access");
4034                         ext4_free_branches(handle, inode, partial->bh,
4035                                         partial->p,
4036                                         partial->p+1, (chain+n-1) - partial);
4037                 }
4038         }
4039         /* Clear the ends of indirect blocks on the shared branch */
4040         while (partial > chain) {
4041                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4042                                    (__le32*)partial->bh->b_data+addr_per_block,
4043                                    (chain+n-1) - partial);
4044                 BUFFER_TRACE(partial->bh, "call brelse");
4045                 brelse(partial->bh);
4046                 partial--;
4047         }
4048 do_indirects:
4049         /* Kill the remaining (whole) subtrees */
4050         switch (offsets[0]) {
4051         default:
4052                 nr = i_data[EXT4_IND_BLOCK];
4053                 if (nr) {
4054                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4055                         i_data[EXT4_IND_BLOCK] = 0;
4056                 }
4057         case EXT4_IND_BLOCK:
4058                 nr = i_data[EXT4_DIND_BLOCK];
4059                 if (nr) {
4060                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4061                         i_data[EXT4_DIND_BLOCK] = 0;
4062                 }
4063         case EXT4_DIND_BLOCK:
4064                 nr = i_data[EXT4_TIND_BLOCK];
4065                 if (nr) {
4066                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4067                         i_data[EXT4_TIND_BLOCK] = 0;
4068                 }
4069         case EXT4_TIND_BLOCK:
4070                 ;
4071         }
4072
4073         up_write(&ei->i_data_sem);
4074         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4075         ext4_mark_inode_dirty(handle, inode);
4076
4077         /*
4078          * In a multi-transaction truncate, we only make the final transaction
4079          * synchronous
4080          */
4081         if (IS_SYNC(inode))
4082                 ext4_handle_sync(handle);
4083 out_stop:
4084         /*
4085          * If this was a simple ftruncate(), and the file will remain alive
4086          * then we need to clear up the orphan record which we created above.
4087          * However, if this was a real unlink then we were called by
4088          * ext4_delete_inode(), and we allow that function to clean up the
4089          * orphan info for us.
4090          */
4091         if (inode->i_nlink)
4092                 ext4_orphan_del(handle, inode);
4093
4094         ext4_journal_stop(handle);
4095 }
4096
4097 /*
4098  * ext4_get_inode_loc returns with an extra refcount against the inode's
4099  * underlying buffer_head on success. If 'in_mem' is true, we have all
4100  * data in memory that is needed to recreate the on-disk version of this
4101  * inode.
4102  */
4103 static int __ext4_get_inode_loc(struct inode *inode,
4104                                 struct ext4_iloc *iloc, int in_mem)
4105 {
4106         struct ext4_group_desc  *gdp;
4107         struct buffer_head      *bh;
4108         struct super_block      *sb = inode->i_sb;
4109         ext4_fsblk_t            block;
4110         int                     inodes_per_block, inode_offset;
4111
4112         iloc->bh = NULL;
4113         if (!ext4_valid_inum(sb, inode->i_ino))
4114                 return -EIO;
4115
4116         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4117         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4118         if (!gdp)
4119                 return -EIO;
4120
4121         /*
4122          * Figure out the offset within the block group inode table
4123          */
4124         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4125         inode_offset = ((inode->i_ino - 1) %
4126                         EXT4_INODES_PER_GROUP(sb));
4127         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4128         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4129
4130         bh = sb_getblk(sb, block);
4131         if (!bh) {
4132                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4133                            "inode block - inode=%lu, block=%llu",
4134                            inode->i_ino, block);
4135                 return -EIO;
4136         }
4137         if (!buffer_uptodate(bh)) {
4138                 lock_buffer(bh);
4139
4140                 /*
4141                  * If the buffer has the write error flag, we have failed
4142                  * to write out another inode in the same block.  In this
4143                  * case, we don't have to read the block because we may
4144                  * read the old inode data successfully.
4145                  */
4146                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4147                         set_buffer_uptodate(bh);
4148
4149                 if (buffer_uptodate(bh)) {
4150                         /* someone brought it uptodate while we waited */
4151                         unlock_buffer(bh);
4152                         goto has_buffer;
4153                 }
4154
4155                 /*
4156                  * If we have all information of the inode in memory and this
4157                  * is the only valid inode in the block, we need not read the
4158                  * block.
4159                  */
4160                 if (in_mem) {
4161                         struct buffer_head *bitmap_bh;
4162                         int i, start;
4163
4164                         start = inode_offset & ~(inodes_per_block - 1);
4165
4166                         /* Is the inode bitmap in cache? */
4167                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4168                         if (!bitmap_bh)
4169                                 goto make_io;
4170
4171                         /*
4172                          * If the inode bitmap isn't in cache then the
4173                          * optimisation may end up performing two reads instead
4174                          * of one, so skip it.
4175                          */
4176                         if (!buffer_uptodate(bitmap_bh)) {
4177                                 brelse(bitmap_bh);
4178                                 goto make_io;
4179                         }
4180                         for (i = start; i < start + inodes_per_block; i++) {
4181                                 if (i == inode_offset)
4182                                         continue;
4183                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4184                                         break;
4185                         }
4186                         brelse(bitmap_bh);
4187                         if (i == start + inodes_per_block) {
4188                                 /* all other inodes are free, so skip I/O */
4189                                 memset(bh->b_data, 0, bh->b_size);
4190                                 set_buffer_uptodate(bh);
4191                                 unlock_buffer(bh);
4192                                 goto has_buffer;
4193                         }
4194                 }
4195
4196 make_io:
4197                 /*
4198                  * If we need to do any I/O, try to pre-readahead extra
4199                  * blocks from the inode table.
4200                  */
4201                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4202                         ext4_fsblk_t b, end, table;
4203                         unsigned num;
4204
4205                         table = ext4_inode_table(sb, gdp);
4206                         /* s_inode_readahead_blks is always a power of 2 */
4207                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4208                         if (table > b)
4209                                 b = table;
4210                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4211                         num = EXT4_INODES_PER_GROUP(sb);
4212                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4213                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4214                                 num -= ext4_itable_unused_count(sb, gdp);
4215                         table += num / inodes_per_block;
4216                         if (end > table)
4217                                 end = table;
4218                         while (b <= end)
4219                                 sb_breadahead(sb, b++);
4220                 }
4221
4222                 /*
4223                  * There are other valid inodes in the buffer, this inode
4224                  * has in-inode xattrs, or we don't have this inode in memory.
4225                  * Read the block from disk.
4226                  */
4227                 get_bh(bh);
4228                 bh->b_end_io = end_buffer_read_sync;
4229                 submit_bh(READ_META, bh);
4230                 wait_on_buffer(bh);
4231                 if (!buffer_uptodate(bh)) {
4232                         ext4_error(sb, __func__,
4233                                    "unable to read inode block - inode=%lu, "
4234                                    "block=%llu", inode->i_ino, block);
4235                         brelse(bh);
4236                         return -EIO;
4237                 }
4238         }
4239 has_buffer:
4240         iloc->bh = bh;
4241         return 0;
4242 }
4243
4244 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4245 {
4246         /* We have all inode data except xattrs in memory here. */
4247         return __ext4_get_inode_loc(inode, iloc,
4248                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4249 }
4250
4251 void ext4_set_inode_flags(struct inode *inode)
4252 {
4253         unsigned int flags = EXT4_I(inode)->i_flags;
4254
4255         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4256         if (flags & EXT4_SYNC_FL)
4257                 inode->i_flags |= S_SYNC;
4258         if (flags & EXT4_APPEND_FL)
4259                 inode->i_flags |= S_APPEND;
4260         if (flags & EXT4_IMMUTABLE_FL)
4261                 inode->i_flags |= S_IMMUTABLE;
4262         if (flags & EXT4_NOATIME_FL)
4263                 inode->i_flags |= S_NOATIME;
4264         if (flags & EXT4_DIRSYNC_FL)
4265                 inode->i_flags |= S_DIRSYNC;
4266 }
4267
4268 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4269 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4270 {
4271         unsigned int flags = ei->vfs_inode.i_flags;
4272
4273         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4274                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4275         if (flags & S_SYNC)
4276                 ei->i_flags |= EXT4_SYNC_FL;
4277         if (flags & S_APPEND)
4278                 ei->i_flags |= EXT4_APPEND_FL;
4279         if (flags & S_IMMUTABLE)
4280                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4281         if (flags & S_NOATIME)
4282                 ei->i_flags |= EXT4_NOATIME_FL;
4283         if (flags & S_DIRSYNC)
4284                 ei->i_flags |= EXT4_DIRSYNC_FL;
4285 }
4286
4287 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4288                                   struct ext4_inode_info *ei)
4289 {
4290         blkcnt_t i_blocks ;
4291         struct inode *inode = &(ei->vfs_inode);
4292         struct super_block *sb = inode->i_sb;
4293
4294         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4295                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4296                 /* we are using combined 48 bit field */
4297                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4298                                         le32_to_cpu(raw_inode->i_blocks_lo);
4299                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4300                         /* i_blocks represent file system block size */
4301                         return i_blocks  << (inode->i_blkbits - 9);
4302                 } else {
4303                         return i_blocks;
4304                 }
4305         } else {
4306                 return le32_to_cpu(raw_inode->i_blocks_lo);
4307         }
4308 }
4309
4310 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4311 {
4312         struct ext4_iloc iloc;
4313         struct ext4_inode *raw_inode;
4314         struct ext4_inode_info *ei;
4315         struct buffer_head *bh;
4316         struct inode *inode;
4317         long ret;
4318         int block;
4319
4320         inode = iget_locked(sb, ino);
4321         if (!inode)
4322                 return ERR_PTR(-ENOMEM);
4323         if (!(inode->i_state & I_NEW))
4324                 return inode;
4325
4326         ei = EXT4_I(inode);
4327
4328         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4329         if (ret < 0)
4330                 goto bad_inode;
4331         bh = iloc.bh;
4332         raw_inode = ext4_raw_inode(&iloc);
4333         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4334         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4335         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4336         if (!(test_opt(inode->i_sb, NO_UID32))) {
4337                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4338                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4339         }
4340         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4341
4342         ei->i_state = 0;
4343         ei->i_dir_start_lookup = 0;
4344         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4345         /* We now have enough fields to check if the inode was active or not.
4346          * This is needed because nfsd might try to access dead inodes
4347          * the test is that same one that e2fsck uses
4348          * NeilBrown 1999oct15
4349          */
4350         if (inode->i_nlink == 0) {
4351                 if (inode->i_mode == 0 ||
4352                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4353                         /* this inode is deleted */
4354                         brelse(bh);
4355                         ret = -ESTALE;
4356                         goto bad_inode;
4357                 }
4358                 /* The only unlinked inodes we let through here have
4359                  * valid i_mode and are being read by the orphan
4360                  * recovery code: that's fine, we're about to complete
4361                  * the process of deleting those. */
4362         }
4363         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4364         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4365         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4366         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4367                 ei->i_file_acl |=
4368                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4369         inode->i_size = ext4_isize(raw_inode);
4370         ei->i_disksize = inode->i_size;
4371         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4372         ei->i_block_group = iloc.block_group;
4373         ei->i_last_alloc_group = ~0;
4374         /*
4375          * NOTE! The in-memory inode i_data array is in little-endian order
4376          * even on big-endian machines: we do NOT byteswap the block numbers!
4377          */
4378         for (block = 0; block < EXT4_N_BLOCKS; block++)
4379                 ei->i_data[block] = raw_inode->i_block[block];
4380         INIT_LIST_HEAD(&ei->i_orphan);
4381
4382         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4383                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4384                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4385                     EXT4_INODE_SIZE(inode->i_sb)) {
4386                         brelse(bh);
4387                         ret = -EIO;
4388                         goto bad_inode;
4389                 }
4390                 if (ei->i_extra_isize == 0) {
4391                         /* The extra space is currently unused. Use it. */
4392                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4393                                             EXT4_GOOD_OLD_INODE_SIZE;
4394                 } else {
4395                         __le32 *magic = (void *)raw_inode +
4396                                         EXT4_GOOD_OLD_INODE_SIZE +
4397                                         ei->i_extra_isize;
4398                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4399                                 ei->i_state |= EXT4_STATE_XATTR;
4400                 }
4401         } else
4402                 ei->i_extra_isize = 0;
4403
4404         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4405         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4406         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4407         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4408
4409         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4410         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4411                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4412                         inode->i_version |=
4413                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4414         }
4415
4416         ret = 0;
4417         if (ei->i_file_acl &&
4418             ((ei->i_file_acl <
4419               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4420                EXT4_SB(sb)->s_gdb_count)) ||
4421              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4422                 ext4_error(sb, __func__,
4423                            "bad extended attribute block %llu in inode #%lu",
4424                            ei->i_file_acl, inode->i_ino);
4425                 ret = -EIO;
4426                 goto bad_inode;
4427         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4428                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4429                     (S_ISLNK(inode->i_mode) &&
4430                      !ext4_inode_is_fast_symlink(inode)))
4431                         /* Validate extent which is part of inode */
4432                         ret = ext4_ext_check_inode(inode);
4433         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4434                    (S_ISLNK(inode->i_mode) &&
4435                     !ext4_inode_is_fast_symlink(inode))) {
4436                 /* Validate block references which are part of inode */
4437                 ret = ext4_check_inode_blockref(inode);
4438         }
4439         if (ret) {
4440                 brelse(bh);
4441                 goto bad_inode;
4442         }
4443
4444         if (S_ISREG(inode->i_mode)) {
4445                 inode->i_op = &ext4_file_inode_operations;
4446                 inode->i_fop = &ext4_file_operations;
4447                 ext4_set_aops(inode);
4448         } else if (S_ISDIR(inode->i_mode)) {
4449                 inode->i_op = &ext4_dir_inode_operations;
4450                 inode->i_fop = &ext4_dir_operations;
4451         } else if (S_ISLNK(inode->i_mode)) {
4452                 if (ext4_inode_is_fast_symlink(inode)) {
4453                         inode->i_op = &ext4_fast_symlink_inode_operations;
4454                         nd_terminate_link(ei->i_data, inode->i_size,
4455                                 sizeof(ei->i_data) - 1);
4456                 } else {
4457                         inode->i_op = &ext4_symlink_inode_operations;
4458                         ext4_set_aops(inode);
4459                 }
4460         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4461               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4462                 inode->i_op = &ext4_special_inode_operations;
4463                 if (raw_inode->i_block[0])
4464                         init_special_inode(inode, inode->i_mode,
4465                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4466                 else
4467                         init_special_inode(inode, inode->i_mode,
4468                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4469         } else {
4470                 brelse(bh);
4471                 ret = -EIO;
4472                 ext4_error(inode->i_sb, __func__,
4473                            "bogus i_mode (%o) for inode=%lu",
4474                            inode->i_mode, inode->i_ino);
4475                 goto bad_inode;
4476         }
4477         brelse(iloc.bh);
4478         ext4_set_inode_flags(inode);
4479         unlock_new_inode(inode);
4480         return inode;
4481
4482 bad_inode:
4483         iget_failed(inode);
4484         return ERR_PTR(ret);
4485 }
4486
4487 static int ext4_inode_blocks_set(handle_t *handle,
4488                                 struct ext4_inode *raw_inode,
4489                                 struct ext4_inode_info *ei)
4490 {
4491         struct inode *inode = &(ei->vfs_inode);
4492         u64 i_blocks = inode->i_blocks;
4493         struct super_block *sb = inode->i_sb;
4494
4495         if (i_blocks <= ~0U) {
4496                 /*
4497                  * i_blocks can be represnted in a 32 bit variable
4498                  * as multiple of 512 bytes
4499                  */
4500                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4501                 raw_inode->i_blocks_high = 0;
4502                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4503                 return 0;
4504         }
4505         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4506                 return -EFBIG;
4507
4508         if (i_blocks <= 0xffffffffffffULL) {
4509                 /*
4510                  * i_blocks can be represented in a 48 bit variable
4511                  * as multiple of 512 bytes
4512                  */
4513                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4514                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4515                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4516         } else {
4517                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4518                 /* i_block is stored in file system block size */
4519                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4520                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4521                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4522         }
4523         return 0;
4524 }
4525
4526 /*
4527  * Post the struct inode info into an on-disk inode location in the
4528  * buffer-cache.  This gobbles the caller's reference to the
4529  * buffer_head in the inode location struct.
4530  *
4531  * The caller must have write access to iloc->bh.
4532  */
4533 static int ext4_do_update_inode(handle_t *handle,
4534                                 struct inode *inode,
4535                                 struct ext4_iloc *iloc)
4536 {
4537         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4538         struct ext4_inode_info *ei = EXT4_I(inode);
4539         struct buffer_head *bh = iloc->bh;
4540         int err = 0, rc, block;
4541
4542         /* For fields not not tracking in the in-memory inode,
4543          * initialise them to zero for new inodes. */
4544         if (ei->i_state & EXT4_STATE_NEW)
4545                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4546
4547         ext4_get_inode_flags(ei);
4548         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4549         if (!(test_opt(inode->i_sb, NO_UID32))) {
4550                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4551                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4552 /*
4553  * Fix up interoperability with old kernels. Otherwise, old inodes get
4554  * re-used with the upper 16 bits of the uid/gid intact
4555  */
4556                 if (!ei->i_dtime) {
4557                         raw_inode->i_uid_high =
4558                                 cpu_to_le16(high_16_bits(inode->i_uid));
4559                         raw_inode->i_gid_high =
4560                                 cpu_to_le16(high_16_bits(inode->i_gid));
4561                 } else {
4562                         raw_inode->i_uid_high = 0;
4563                         raw_inode->i_gid_high = 0;
4564                 }
4565         } else {
4566                 raw_inode->i_uid_low =
4567                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4568                 raw_inode->i_gid_low =
4569                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4570                 raw_inode->i_uid_high = 0;
4571                 raw_inode->i_gid_high = 0;
4572         }
4573         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4574
4575         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4576         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4577         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4578         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4579
4580         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4581                 goto out_brelse;
4582         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4583         /* clear the migrate flag in the raw_inode */
4584         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4585         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4586             cpu_to_le32(EXT4_OS_HURD))
4587                 raw_inode->i_file_acl_high =
4588                         cpu_to_le16(ei->i_file_acl >> 32);
4589         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4590         ext4_isize_set(raw_inode, ei->i_disksize);
4591         if (ei->i_disksize > 0x7fffffffULL) {
4592                 struct super_block *sb = inode->i_sb;
4593                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4594                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4595                                 EXT4_SB(sb)->s_es->s_rev_level ==
4596                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4597                         /* If this is the first large file
4598                          * created, add a flag to the superblock.
4599                          */
4600                         err = ext4_journal_get_write_access(handle,
4601                                         EXT4_SB(sb)->s_sbh);
4602                         if (err)
4603                                 goto out_brelse;
4604                         ext4_update_dynamic_rev(sb);
4605                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4606                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4607                         sb->s_dirt = 1;
4608                         ext4_handle_sync(handle);
4609                         err = ext4_handle_dirty_metadata(handle, inode,
4610                                         EXT4_SB(sb)->s_sbh);
4611                 }
4612         }
4613         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4614         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4615                 if (old_valid_dev(inode->i_rdev)) {
4616                         raw_inode->i_block[0] =
4617                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4618                         raw_inode->i_block[1] = 0;
4619                 } else {
4620                         raw_inode->i_block[0] = 0;
4621                         raw_inode->i_block[1] =
4622                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4623                         raw_inode->i_block[2] = 0;
4624                 }
4625         } else
4626                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4627                         raw_inode->i_block[block] = ei->i_data[block];
4628
4629         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4630         if (ei->i_extra_isize) {
4631                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4632                         raw_inode->i_version_hi =
4633                         cpu_to_le32(inode->i_version >> 32);
4634                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4635         }
4636
4637         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4638         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4639         if (!err)
4640                 err = rc;
4641         ei->i_state &= ~EXT4_STATE_NEW;
4642
4643 out_brelse:
4644         brelse(bh);
4645         ext4_std_error(inode->i_sb, err);
4646         return err;
4647 }
4648
4649 /*
4650  * ext4_write_inode()
4651  *
4652  * We are called from a few places:
4653  *
4654  * - Within generic_file_write() for O_SYNC files.
4655  *   Here, there will be no transaction running. We wait for any running
4656  *   trasnaction to commit.
4657  *
4658  * - Within sys_sync(), kupdate and such.
4659  *   We wait on commit, if tol to.
4660  *
4661  * - Within prune_icache() (PF_MEMALLOC == true)
4662  *   Here we simply return.  We can't afford to block kswapd on the
4663  *   journal commit.
4664  *
4665  * In all cases it is actually safe for us to return without doing anything,
4666  * because the inode has been copied into a raw inode buffer in
4667  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4668  * knfsd.
4669  *
4670  * Note that we are absolutely dependent upon all inode dirtiers doing the
4671  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4672  * which we are interested.
4673  *
4674  * It would be a bug for them to not do this.  The code:
4675  *
4676  *      mark_inode_dirty(inode)
4677  *      stuff();
4678  *      inode->i_size = expr;
4679  *
4680  * is in error because a kswapd-driven write_inode() could occur while
4681  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4682  * will no longer be on the superblock's dirty inode list.
4683  */
4684 int ext4_write_inode(struct inode *inode, int wait)
4685 {
4686         if (current->flags & PF_MEMALLOC)
4687                 return 0;
4688
4689         if (ext4_journal_current_handle()) {
4690                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4691                 dump_stack();
4692                 return -EIO;
4693         }
4694
4695         if (!wait)
4696                 return 0;
4697
4698         return ext4_force_commit(inode->i_sb);
4699 }
4700
4701 /*
4702  * ext4_setattr()
4703  *
4704  * Called from notify_change.
4705  *
4706  * We want to trap VFS attempts to truncate the file as soon as
4707  * possible.  In particular, we want to make sure that when the VFS
4708  * shrinks i_size, we put the inode on the orphan list and modify
4709  * i_disksize immediately, so that during the subsequent flushing of
4710  * dirty pages and freeing of disk blocks, we can guarantee that any
4711  * commit will leave the blocks being flushed in an unused state on
4712  * disk.  (On recovery, the inode will get truncated and the blocks will
4713  * be freed, so we have a strong guarantee that no future commit will
4714  * leave these blocks visible to the user.)
4715  *
4716  * Another thing we have to assure is that if we are in ordered mode
4717  * and inode is still attached to the committing transaction, we must
4718  * we start writeout of all the dirty pages which are being truncated.
4719  * This way we are sure that all the data written in the previous
4720  * transaction are already on disk (truncate waits for pages under
4721  * writeback).
4722  *
4723  * Called with inode->i_mutex down.
4724  */
4725 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4726 {
4727         struct inode *inode = dentry->d_inode;
4728         int error, rc = 0;
4729         const unsigned int ia_valid = attr->ia_valid;
4730
4731         error = inode_change_ok(inode, attr);
4732         if (error)
4733                 return error;
4734
4735         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4736                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4737                 handle_t *handle;
4738
4739                 /* (user+group)*(old+new) structure, inode write (sb,
4740                  * inode block, ? - but truncate inode update has it) */
4741                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4742                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4743                 if (IS_ERR(handle)) {
4744                         error = PTR_ERR(handle);
4745                         goto err_out;
4746                 }
4747                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4748                 if (error) {
4749                         ext4_journal_stop(handle);
4750                         return error;
4751                 }
4752                 /* Update corresponding info in inode so that everything is in
4753                  * one transaction */
4754                 if (attr->ia_valid & ATTR_UID)
4755                         inode->i_uid = attr->ia_uid;
4756                 if (attr->ia_valid & ATTR_GID)
4757                         inode->i_gid = attr->ia_gid;
4758                 error = ext4_mark_inode_dirty(handle, inode);
4759                 ext4_journal_stop(handle);
4760         }
4761
4762         if (attr->ia_valid & ATTR_SIZE) {
4763                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4764                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4765
4766                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4767                                 error = -EFBIG;
4768                                 goto err_out;
4769                         }
4770                 }
4771         }
4772
4773         if (S_ISREG(inode->i_mode) &&
4774             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4775                 handle_t *handle;
4776
4777                 handle = ext4_journal_start(inode, 3);
4778                 if (IS_ERR(handle)) {
4779                         error = PTR_ERR(handle);
4780                         goto err_out;
4781                 }
4782
4783                 error = ext4_orphan_add(handle, inode);
4784                 EXT4_I(inode)->i_disksize = attr->ia_size;
4785                 rc = ext4_mark_inode_dirty(handle, inode);
4786                 if (!error)
4787                         error = rc;
4788                 ext4_journal_stop(handle);
4789
4790                 if (ext4_should_order_data(inode)) {
4791                         error = ext4_begin_ordered_truncate(inode,
4792                                                             attr->ia_size);
4793                         if (error) {
4794                                 /* Do as much error cleanup as possible */
4795                                 handle = ext4_journal_start(inode, 3);
4796                                 if (IS_ERR(handle)) {
4797                                         ext4_orphan_del(NULL, inode);
4798                                         goto err_out;
4799                                 }
4800                                 ext4_orphan_del(handle, inode);
4801                                 ext4_journal_stop(handle);
4802                                 goto err_out;
4803                         }
4804                 }
4805         }
4806
4807         rc = inode_setattr(inode, attr);
4808
4809         /* If inode_setattr's call to ext4_truncate failed to get a
4810          * transaction handle at all, we need to clean up the in-core
4811          * orphan list manually. */
4812         if (inode->i_nlink)
4813                 ext4_orphan_del(NULL, inode);
4814
4815         if (!rc && (ia_valid & ATTR_MODE))
4816                 rc = ext4_acl_chmod(inode);
4817
4818 err_out:
4819         ext4_std_error(inode->i_sb, error);
4820         if (!error)
4821                 error = rc;
4822         return error;
4823 }
4824
4825 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4826                  struct kstat *stat)
4827 {
4828         struct inode *inode;
4829         unsigned long delalloc_blocks;
4830
4831         inode = dentry->d_inode;
4832         generic_fillattr(inode, stat);
4833
4834         /*
4835          * We can't update i_blocks if the block allocation is delayed
4836          * otherwise in the case of system crash before the real block
4837          * allocation is done, we will have i_blocks inconsistent with
4838          * on-disk file blocks.
4839          * We always keep i_blocks updated together with real
4840          * allocation. But to not confuse with user, stat
4841          * will return the blocks that include the delayed allocation
4842          * blocks for this file.
4843          */
4844         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4845         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4846         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4847
4848         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4849         return 0;
4850 }
4851
4852 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4853                                       int chunk)
4854 {
4855         int indirects;
4856
4857         /* if nrblocks are contiguous */
4858         if (chunk) {
4859                 /*
4860                  * With N contiguous data blocks, it need at most
4861                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4862                  * 2 dindirect blocks
4863                  * 1 tindirect block
4864                  */
4865                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4866                 return indirects + 3;
4867         }
4868         /*
4869          * if nrblocks are not contiguous, worse case, each block touch
4870          * a indirect block, and each indirect block touch a double indirect
4871          * block, plus a triple indirect block
4872          */
4873         indirects = nrblocks * 2 + 1;
4874         return indirects;
4875 }
4876
4877 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4878 {
4879         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4880                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4881         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4882 }
4883
4884 /*
4885  * Account for index blocks, block groups bitmaps and block group
4886  * descriptor blocks if modify datablocks and index blocks
4887  * worse case, the indexs blocks spread over different block groups
4888  *
4889  * If datablocks are discontiguous, they are possible to spread over
4890  * different block groups too. If they are contiugous, with flexbg,
4891  * they could still across block group boundary.
4892  *
4893  * Also account for superblock, inode, quota and xattr blocks
4894  */
4895 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4896 {
4897         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4898         int gdpblocks;
4899         int idxblocks;
4900         int ret = 0;
4901
4902         /*
4903          * How many index blocks need to touch to modify nrblocks?
4904          * The "Chunk" flag indicating whether the nrblocks is
4905          * physically contiguous on disk
4906          *
4907          * For Direct IO and fallocate, they calls get_block to allocate
4908          * one single extent at a time, so they could set the "Chunk" flag
4909          */
4910         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4911
4912         ret = idxblocks;
4913
4914         /*
4915          * Now let's see how many group bitmaps and group descriptors need
4916          * to account
4917          */
4918         groups = idxblocks;
4919         if (chunk)
4920                 groups += 1;
4921         else
4922                 groups += nrblocks;
4923
4924         gdpblocks = groups;
4925         if (groups > ngroups)
4926                 groups = ngroups;
4927         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4928                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4929
4930         /* bitmaps and block group descriptor blocks */
4931         ret += groups + gdpblocks;
4932
4933         /* Blocks for super block, inode, quota and xattr blocks */
4934         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4935
4936         return ret;
4937 }
4938
4939 /*
4940  * Calulate the total number of credits to reserve to fit
4941  * the modification of a single pages into a single transaction,
4942  * which may include multiple chunks of block allocations.
4943  *
4944  * This could be called via ext4_write_begin()
4945  *
4946  * We need to consider the worse case, when
4947  * one new block per extent.
4948  */
4949 int ext4_writepage_trans_blocks(struct inode *inode)
4950 {
4951         int bpp = ext4_journal_blocks_per_page(inode);
4952         int ret;
4953
4954         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4955
4956         /* Account for data blocks for journalled mode */
4957         if (ext4_should_journal_data(inode))
4958                 ret += bpp;
4959         return ret;
4960 }
4961
4962 /*
4963  * Calculate the journal credits for a chunk of data modification.
4964  *
4965  * This is called from DIO, fallocate or whoever calling
4966  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4967  *
4968  * journal buffers for data blocks are not included here, as DIO
4969  * and fallocate do no need to journal data buffers.
4970  */
4971 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4972 {
4973         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4974 }
4975
4976 /*
4977  * The caller must have previously called ext4_reserve_inode_write().
4978  * Give this, we know that the caller already has write access to iloc->bh.
4979  */
4980 int ext4_mark_iloc_dirty(handle_t *handle,
4981                          struct inode *inode, struct ext4_iloc *iloc)
4982 {
4983         int err = 0;
4984
4985         if (test_opt(inode->i_sb, I_VERSION))
4986                 inode_inc_iversion(inode);
4987
4988         /* the do_update_inode consumes one bh->b_count */
4989         get_bh(iloc->bh);
4990
4991         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4992         err = ext4_do_update_inode(handle, inode, iloc);
4993         put_bh(iloc->bh);
4994         return err;
4995 }
4996
4997 /*
4998  * On success, We end up with an outstanding reference count against
4999  * iloc->bh.  This _must_ be cleaned up later.
5000  */
5001
5002 int
5003 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5004                          struct ext4_iloc *iloc)
5005 {
5006         int err;
5007
5008         err = ext4_get_inode_loc(inode, iloc);
5009         if (!err) {
5010                 BUFFER_TRACE(iloc->bh, "get_write_access");
5011                 err = ext4_journal_get_write_access(handle, iloc->bh);
5012                 if (err) {
5013                         brelse(iloc->bh);
5014                         iloc->bh = NULL;
5015                 }
5016         }
5017         ext4_std_error(inode->i_sb, err);
5018         return err;
5019 }
5020
5021 /*
5022  * Expand an inode by new_extra_isize bytes.
5023  * Returns 0 on success or negative error number on failure.
5024  */
5025 static int ext4_expand_extra_isize(struct inode *inode,
5026                                    unsigned int new_extra_isize,
5027                                    struct ext4_iloc iloc,
5028                                    handle_t *handle)
5029 {
5030         struct ext4_inode *raw_inode;
5031         struct ext4_xattr_ibody_header *header;
5032         struct ext4_xattr_entry *entry;
5033
5034         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5035                 return 0;
5036
5037         raw_inode = ext4_raw_inode(&iloc);
5038
5039         header = IHDR(inode, raw_inode);
5040         entry = IFIRST(header);
5041
5042         /* No extended attributes present */
5043         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5044                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5045                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5046                         new_extra_isize);
5047                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5048                 return 0;
5049         }
5050
5051         /* try to expand with EAs present */
5052         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5053                                           raw_inode, handle);
5054 }
5055
5056 /*
5057  * What we do here is to mark the in-core inode as clean with respect to inode
5058  * dirtiness (it may still be data-dirty).
5059  * This means that the in-core inode may be reaped by prune_icache
5060  * without having to perform any I/O.  This is a very good thing,
5061  * because *any* task may call prune_icache - even ones which
5062  * have a transaction open against a different journal.
5063  *
5064  * Is this cheating?  Not really.  Sure, we haven't written the
5065  * inode out, but prune_icache isn't a user-visible syncing function.
5066  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5067  * we start and wait on commits.
5068  *
5069  * Is this efficient/effective?  Well, we're being nice to the system
5070  * by cleaning up our inodes proactively so they can be reaped
5071  * without I/O.  But we are potentially leaving up to five seconds'
5072  * worth of inodes floating about which prune_icache wants us to
5073  * write out.  One way to fix that would be to get prune_icache()
5074  * to do a write_super() to free up some memory.  It has the desired
5075  * effect.
5076  */
5077 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5078 {
5079         struct ext4_iloc iloc;
5080         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5081         static unsigned int mnt_count;
5082         int err, ret;
5083
5084         might_sleep();
5085         err = ext4_reserve_inode_write(handle, inode, &iloc);
5086         if (ext4_handle_valid(handle) &&
5087             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5088             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5089                 /*
5090                  * We need extra buffer credits since we may write into EA block
5091                  * with this same handle. If journal_extend fails, then it will
5092                  * only result in a minor loss of functionality for that inode.
5093                  * If this is felt to be critical, then e2fsck should be run to
5094                  * force a large enough s_min_extra_isize.
5095                  */
5096                 if ((jbd2_journal_extend(handle,
5097                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5098                         ret = ext4_expand_extra_isize(inode,
5099                                                       sbi->s_want_extra_isize,
5100                                                       iloc, handle);
5101                         if (ret) {
5102                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5103                                 if (mnt_count !=
5104                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5105                                         ext4_warning(inode->i_sb, __func__,
5106                                         "Unable to expand inode %lu. Delete"
5107                                         " some EAs or run e2fsck.",
5108                                         inode->i_ino);
5109                                         mnt_count =
5110                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5111                                 }
5112                         }
5113                 }
5114         }
5115         if (!err)
5116                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5117         return err;
5118 }
5119
5120 /*
5121  * ext4_dirty_inode() is called from __mark_inode_dirty()
5122  *
5123  * We're really interested in the case where a file is being extended.
5124  * i_size has been changed by generic_commit_write() and we thus need
5125  * to include the updated inode in the current transaction.
5126  *
5127  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5128  * are allocated to the file.
5129  *
5130  * If the inode is marked synchronous, we don't honour that here - doing
5131  * so would cause a commit on atime updates, which we don't bother doing.
5132  * We handle synchronous inodes at the highest possible level.
5133  */
5134 void ext4_dirty_inode(struct inode *inode)
5135 {
5136         handle_t *current_handle = ext4_journal_current_handle();
5137         handle_t *handle;
5138
5139         if (!ext4_handle_valid(current_handle)) {
5140                 ext4_mark_inode_dirty(current_handle, inode);
5141                 return;
5142         }
5143
5144         handle = ext4_journal_start(inode, 2);
5145         if (IS_ERR(handle))
5146                 goto out;
5147         if (current_handle &&
5148                 current_handle->h_transaction != handle->h_transaction) {
5149                 /* This task has a transaction open against a different fs */
5150                 printk(KERN_EMERG "%s: transactions do not match!\n",
5151                        __func__);
5152         } else {
5153                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5154                                 current_handle);
5155                 ext4_mark_inode_dirty(handle, inode);
5156         }
5157         ext4_journal_stop(handle);
5158 out:
5159         return;
5160 }
5161
5162 #if 0
5163 /*
5164  * Bind an inode's backing buffer_head into this transaction, to prevent
5165  * it from being flushed to disk early.  Unlike
5166  * ext4_reserve_inode_write, this leaves behind no bh reference and
5167  * returns no iloc structure, so the caller needs to repeat the iloc
5168  * lookup to mark the inode dirty later.
5169  */
5170 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5171 {
5172         struct ext4_iloc iloc;
5173
5174         int err = 0;
5175         if (handle) {
5176                 err = ext4_get_inode_loc(inode, &iloc);
5177                 if (!err) {
5178                         BUFFER_TRACE(iloc.bh, "get_write_access");
5179                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5180                         if (!err)
5181                                 err = ext4_handle_dirty_metadata(handle,
5182                                                                  inode,
5183                                                                  iloc.bh);
5184                         brelse(iloc.bh);
5185                 }
5186         }
5187         ext4_std_error(inode->i_sb, err);
5188         return err;
5189 }
5190 #endif
5191
5192 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5193 {
5194         journal_t *journal;
5195         handle_t *handle;
5196         int err;
5197
5198         /*
5199          * We have to be very careful here: changing a data block's
5200          * journaling status dynamically is dangerous.  If we write a
5201          * data block to the journal, change the status and then delete
5202          * that block, we risk forgetting to revoke the old log record
5203          * from the journal and so a subsequent replay can corrupt data.
5204          * So, first we make sure that the journal is empty and that
5205          * nobody is changing anything.
5206          */
5207
5208         journal = EXT4_JOURNAL(inode);
5209         if (!journal)
5210                 return 0;
5211         if (is_journal_aborted(journal))
5212                 return -EROFS;
5213
5214         jbd2_journal_lock_updates(journal);
5215         jbd2_journal_flush(journal);
5216
5217         /*
5218          * OK, there are no updates running now, and all cached data is
5219          * synced to disk.  We are now in a completely consistent state
5220          * which doesn't have anything in the journal, and we know that
5221          * no filesystem updates are running, so it is safe to modify
5222          * the inode's in-core data-journaling state flag now.
5223          */
5224
5225         if (val)
5226                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5227         else
5228                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5229         ext4_set_aops(inode);
5230
5231         jbd2_journal_unlock_updates(journal);
5232
5233         /* Finally we can mark the inode as dirty. */
5234
5235         handle = ext4_journal_start(inode, 1);
5236         if (IS_ERR(handle))
5237                 return PTR_ERR(handle);
5238
5239         err = ext4_mark_inode_dirty(handle, inode);
5240         ext4_handle_sync(handle);
5241         ext4_journal_stop(handle);
5242         ext4_std_error(inode->i_sb, err);
5243
5244         return err;
5245 }
5246
5247 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5248 {
5249         return !buffer_mapped(bh);
5250 }
5251
5252 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5253 {
5254         struct page *page = vmf->page;
5255         loff_t size;
5256         unsigned long len;
5257         int ret = -EINVAL;
5258         void *fsdata;
5259         struct file *file = vma->vm_file;
5260         struct inode *inode = file->f_path.dentry->d_inode;
5261         struct address_space *mapping = inode->i_mapping;
5262
5263         /*
5264          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5265          * get i_mutex because we are already holding mmap_sem.
5266          */
5267         down_read(&inode->i_alloc_sem);
5268         size = i_size_read(inode);
5269         if (page->mapping != mapping || size <= page_offset(page)
5270             || !PageUptodate(page)) {
5271                 /* page got truncated from under us? */
5272                 goto out_unlock;
5273         }
5274         ret = 0;
5275         if (PageMappedToDisk(page))
5276                 goto out_unlock;
5277
5278         if (page->index == size >> PAGE_CACHE_SHIFT)
5279                 len = size & ~PAGE_CACHE_MASK;
5280         else
5281                 len = PAGE_CACHE_SIZE;
5282
5283         if (page_has_buffers(page)) {
5284                 /* return if we have all the buffers mapped */
5285                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5286                                        ext4_bh_unmapped))
5287                         goto out_unlock;
5288         }
5289         /*
5290          * OK, we need to fill the hole... Do write_begin write_end
5291          * to do block allocation/reservation.We are not holding
5292          * inode.i__mutex here. That allow * parallel write_begin,
5293          * write_end call. lock_page prevent this from happening
5294          * on the same page though
5295          */
5296         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5297                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5298         if (ret < 0)
5299                 goto out_unlock;
5300         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5301                         len, len, page, fsdata);
5302         if (ret < 0)
5303                 goto out_unlock;
5304         ret = 0;
5305 out_unlock:
5306         if (ret)
5307                 ret = VM_FAULT_SIGBUS;
5308         up_read(&inode->i_alloc_sem);
5309         return ret;
5310 }