ext4: Define a new set of flags for ext4_get_blocks()
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * Allocation strategy is simple: if we have to allocate something, we will
896  * have to go the whole way to leaf. So let's do it before attaching anything
897  * to tree, set linkage between the newborn blocks, write them if sync is
898  * required, recheck the path, free and repeat if check fails, otherwise
899  * set the last missing link (that will protect us from any truncate-generated
900  * removals - all blocks on the path are immune now) and possibly force the
901  * write on the parent block.
902  * That has a nice additional property: no special recovery from the failed
903  * allocations is needed - we simply release blocks and do not touch anything
904  * reachable from inode.
905  *
906  * `handle' can be NULL if create == 0.
907  *
908  * return > 0, # of blocks mapped or allocated.
909  * return = 0, if plain lookup failed.
910  * return < 0, error case.
911  *
912  *
913  * Need to be called with
914  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916  */
917 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
918                                   ext4_lblk_t iblock, unsigned int maxblocks,
919                                   struct buffer_head *bh_result,
920                                   int flags)
921 {
922         int err = -EIO;
923         ext4_lblk_t offsets[4];
924         Indirect chain[4];
925         Indirect *partial;
926         ext4_fsblk_t goal;
927         int indirect_blks;
928         int blocks_to_boundary = 0;
929         int depth;
930         struct ext4_inode_info *ei = EXT4_I(inode);
931         int count = 0;
932         ext4_fsblk_t first_block = 0;
933         loff_t disksize;
934
935
936         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
938         depth = ext4_block_to_path(inode, iblock, offsets,
939                                         &blocks_to_boundary);
940
941         if (depth == 0)
942                 goto out;
943
944         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946         /* Simplest case - block found, no allocation needed */
947         if (!partial) {
948                 first_block = le32_to_cpu(chain[depth - 1].key);
949                 clear_buffer_new(bh_result);
950                 count++;
951                 /*map more blocks*/
952                 while (count < maxblocks && count <= blocks_to_boundary) {
953                         ext4_fsblk_t blk;
954
955                         blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957                         if (blk == first_block + count)
958                                 count++;
959                         else
960                                 break;
961                 }
962                 goto got_it;
963         }
964
965         /* Next simple case - plain lookup or failed read of indirect block */
966         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967                 goto cleanup;
968
969         /*
970          * Okay, we need to do block allocation.
971         */
972         goal = ext4_find_goal(inode, iblock, partial);
973
974         /* the number of blocks need to allocate for [d,t]indirect blocks */
975         indirect_blks = (chain + depth) - partial - 1;
976
977         /*
978          * Next look up the indirect map to count the totoal number of
979          * direct blocks to allocate for this branch.
980          */
981         count = ext4_blks_to_allocate(partial, indirect_blks,
982                                         maxblocks, blocks_to_boundary);
983         /*
984          * Block out ext4_truncate while we alter the tree
985          */
986         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987                                         &count, goal,
988                                         offsets + (partial - chain), partial);
989
990         /*
991          * The ext4_splice_branch call will free and forget any buffers
992          * on the new chain if there is a failure, but that risks using
993          * up transaction credits, especially for bitmaps where the
994          * credits cannot be returned.  Can we handle this somehow?  We
995          * may need to return -EAGAIN upwards in the worst case.  --sct
996          */
997         if (!err)
998                 err = ext4_splice_branch(handle, inode, iblock,
999                                         partial, indirect_blks, count);
1000         /*
1001          * i_disksize growing is protected by i_data_sem.  Don't forget to
1002          * protect it if you're about to implement concurrent
1003          * ext4_get_block() -bzzz
1004         */
1005         if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
1006                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007                 if (disksize > i_size_read(inode))
1008                         disksize = i_size_read(inode);
1009                 if (disksize > ei->i_disksize)
1010                         ei->i_disksize = disksize;
1011         }
1012         if (err)
1013                 goto cleanup;
1014
1015         set_buffer_new(bh_result);
1016 got_it:
1017         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018         if (count > blocks_to_boundary)
1019                 set_buffer_boundary(bh_result);
1020         err = count;
1021         /* Clean up and exit */
1022         partial = chain + depth - 1;    /* the whole chain */
1023 cleanup:
1024         while (partial > chain) {
1025                 BUFFER_TRACE(partial->bh, "call brelse");
1026                 brelse(partial->bh);
1027                 partial--;
1028         }
1029         BUFFER_TRACE(bh_result, "returned");
1030 out:
1031         return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036         unsigned long long total;
1037
1038         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039         total = EXT4_I(inode)->i_reserved_data_blocks +
1040                 EXT4_I(inode)->i_reserved_meta_blocks;
1041         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043         return total;
1044 }
1045 /*
1046  * Calculate the number of metadata blocks need to reserve
1047  * to allocate @blocks for non extent file based file
1048  */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052         int ind_blks, dind_blks, tind_blks;
1053
1054         /* number of new indirect blocks needed */
1055         ind_blks = (blocks + icap - 1) / icap;
1056
1057         dind_blks = (ind_blks + icap - 1) / icap;
1058
1059         tind_blks = 1;
1060
1061         return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065  * Calculate the number of metadata blocks need to reserve
1066  * to allocate given number of blocks
1067  */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070         if (!blocks)
1071                 return 0;
1072
1073         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074                 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076         return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         int total, mdb, mdb_free;
1083
1084         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085         /* recalculate the number of metablocks still need to be reserved */
1086         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087         mdb = ext4_calc_metadata_amount(inode, total);
1088
1089         /* figure out how many metablocks to release */
1090         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093         if (mdb_free) {
1094                 /* Account for allocated meta_blocks */
1095                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097                 /* update fs dirty blocks counter */
1098                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101         }
1102
1103         /* update per-inode reservations */
1104         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1105         EXT4_I(inode)->i_reserved_data_blocks -= used;
1106         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108         /*
1109          * free those over-booking quota for metadata blocks
1110          */
1111         if (mdb_free)
1112                 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114         /*
1115          * If we have done all the pending block allocations and if
1116          * there aren't any writers on the inode, we can discard the
1117          * inode's preallocations.
1118          */
1119         if (!total && (atomic_read(&inode->i_writecount) == 0))
1120                 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124  * The ext4_get_blocks() function tries to look up the requested blocks,
1125  * and returns if the blocks are already mapped.
1126  *
1127  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128  * and store the allocated blocks in the result buffer head and mark it
1129  * mapped.
1130  *
1131  * If file type is extents based, it will call ext4_ext_get_blocks(),
1132  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1133  * based files
1134  *
1135  * On success, it returns the number of blocks being mapped or allocate.
1136  * if create==0 and the blocks are pre-allocated and uninitialized block,
1137  * the result buffer head is unmapped. If the create ==1, it will make sure
1138  * the buffer head is mapped.
1139  *
1140  * It returns 0 if plain look up failed (blocks have not been allocated), in
1141  * that casem, buffer head is unmapped
1142  *
1143  * It returns the error in case of allocation failure.
1144  */
1145 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1146                     unsigned int max_blocks, struct buffer_head *bh,
1147                     int flags)
1148 {
1149         int retval;
1150
1151         clear_buffer_mapped(bh);
1152         clear_buffer_unwritten(bh);
1153
1154         /*
1155          * Try to see if we can get  the block without requesting
1156          * for new file system block.
1157          */
1158         down_read((&EXT4_I(inode)->i_data_sem));
1159         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1160                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161                                 bh, 0);
1162         } else {
1163                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1164                                              bh, 0);
1165         }
1166         up_read((&EXT4_I(inode)->i_data_sem));
1167
1168         /* If it is only a block(s) look up */
1169         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1170                 return retval;
1171
1172         /*
1173          * Returns if the blocks have already allocated
1174          *
1175          * Note that if blocks have been preallocated
1176          * ext4_ext_get_block() returns th create = 0
1177          * with buffer head unmapped.
1178          */
1179         if (retval > 0 && buffer_mapped(bh))
1180                 return retval;
1181
1182         /*
1183          * When we call get_blocks without the create flag, the
1184          * BH_Unwritten flag could have gotten set if the blocks
1185          * requested were part of a uninitialized extent.  We need to
1186          * clear this flag now that we are committed to convert all or
1187          * part of the uninitialized extent to be an initialized
1188          * extent.  This is because we need to avoid the combination
1189          * of BH_Unwritten and BH_Mapped flags being simultaneously
1190          * set on the buffer_head.
1191          */
1192         clear_buffer_unwritten(bh);
1193
1194         /*
1195          * New blocks allocate and/or writing to uninitialized extent
1196          * will possibly result in updating i_data, so we take
1197          * the write lock of i_data_sem, and call get_blocks()
1198          * with create == 1 flag.
1199          */
1200         down_write((&EXT4_I(inode)->i_data_sem));
1201
1202         /*
1203          * if the caller is from delayed allocation writeout path
1204          * we have already reserved fs blocks for allocation
1205          * let the underlying get_block() function know to
1206          * avoid double accounting
1207          */
1208         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1209                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1210         /*
1211          * We need to check for EXT4 here because migrate
1212          * could have changed the inode type in between
1213          */
1214         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1215                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216                                               bh, flags);
1217         } else {
1218                 retval = ext4_ind_get_blocks(handle, inode, block,
1219                                              max_blocks, bh, flags);
1220
1221                 if (retval > 0 && buffer_new(bh)) {
1222                         /*
1223                          * We allocated new blocks which will result in
1224                          * i_data's format changing.  Force the migrate
1225                          * to fail by clearing migrate flags
1226                          */
1227                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1228                                                         ~EXT4_EXT_MIGRATE;
1229                 }
1230         }
1231
1232         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
1233                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1234                 /*
1235                  * Update reserved blocks/metadata blocks
1236                  * after successful block allocation
1237                  * which were deferred till now
1238                  */
1239                 if ((retval > 0) && buffer_delay(bh))
1240                         ext4_da_update_reserve_space(inode, retval);
1241         }
1242
1243         up_write((&EXT4_I(inode)->i_data_sem));
1244         return retval;
1245 }
1246
1247 /* Maximum number of blocks we map for direct IO at once. */
1248 #define DIO_MAX_BLOCKS 4096
1249
1250 int ext4_get_block(struct inode *inode, sector_t iblock,
1251                    struct buffer_head *bh_result, int create)
1252 {
1253         handle_t *handle = ext4_journal_current_handle();
1254         int ret = 0, started = 0;
1255         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1256         int dio_credits;
1257
1258         if (create && !handle) {
1259                 /* Direct IO write... */
1260                 if (max_blocks > DIO_MAX_BLOCKS)
1261                         max_blocks = DIO_MAX_BLOCKS;
1262                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1263                 handle = ext4_journal_start(inode, dio_credits);
1264                 if (IS_ERR(handle)) {
1265                         ret = PTR_ERR(handle);
1266                         goto out;
1267                 }
1268                 started = 1;
1269         }
1270
1271         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1272                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1273         if (ret > 0) {
1274                 bh_result->b_size = (ret << inode->i_blkbits);
1275                 ret = 0;
1276         }
1277         if (started)
1278                 ext4_journal_stop(handle);
1279 out:
1280         return ret;
1281 }
1282
1283 /*
1284  * `handle' can be NULL if create is zero
1285  */
1286 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1287                                 ext4_lblk_t block, int create, int *errp)
1288 {
1289         struct buffer_head dummy;
1290         int fatal = 0, err;
1291         int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
1292
1293         J_ASSERT(handle != NULL || create == 0);
1294
1295         dummy.b_state = 0;
1296         dummy.b_blocknr = -1000;
1297         buffer_trace_init(&dummy.b_history);
1298         if (create)
1299                 flags |= EXT4_GET_BLOCKS_CREATE;
1300         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1301         /*
1302          * ext4_get_blocks() returns number of blocks mapped. 0 in
1303          * case of a HOLE.
1304          */
1305         if (err > 0) {
1306                 if (err > 1)
1307                         WARN_ON(1);
1308                 err = 0;
1309         }
1310         *errp = err;
1311         if (!err && buffer_mapped(&dummy)) {
1312                 struct buffer_head *bh;
1313                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1314                 if (!bh) {
1315                         *errp = -EIO;
1316                         goto err;
1317                 }
1318                 if (buffer_new(&dummy)) {
1319                         J_ASSERT(create != 0);
1320                         J_ASSERT(handle != NULL);
1321
1322                         /*
1323                          * Now that we do not always journal data, we should
1324                          * keep in mind whether this should always journal the
1325                          * new buffer as metadata.  For now, regular file
1326                          * writes use ext4_get_block instead, so it's not a
1327                          * problem.
1328                          */
1329                         lock_buffer(bh);
1330                         BUFFER_TRACE(bh, "call get_create_access");
1331                         fatal = ext4_journal_get_create_access(handle, bh);
1332                         if (!fatal && !buffer_uptodate(bh)) {
1333                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1334                                 set_buffer_uptodate(bh);
1335                         }
1336                         unlock_buffer(bh);
1337                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1338                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1339                         if (!fatal)
1340                                 fatal = err;
1341                 } else {
1342                         BUFFER_TRACE(bh, "not a new buffer");
1343                 }
1344                 if (fatal) {
1345                         *errp = fatal;
1346                         brelse(bh);
1347                         bh = NULL;
1348                 }
1349                 return bh;
1350         }
1351 err:
1352         return NULL;
1353 }
1354
1355 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1356                                ext4_lblk_t block, int create, int *err)
1357 {
1358         struct buffer_head *bh;
1359
1360         bh = ext4_getblk(handle, inode, block, create, err);
1361         if (!bh)
1362                 return bh;
1363         if (buffer_uptodate(bh))
1364                 return bh;
1365         ll_rw_block(READ_META, 1, &bh);
1366         wait_on_buffer(bh);
1367         if (buffer_uptodate(bh))
1368                 return bh;
1369         put_bh(bh);
1370         *err = -EIO;
1371         return NULL;
1372 }
1373
1374 static int walk_page_buffers(handle_t *handle,
1375                              struct buffer_head *head,
1376                              unsigned from,
1377                              unsigned to,
1378                              int *partial,
1379                              int (*fn)(handle_t *handle,
1380                                        struct buffer_head *bh))
1381 {
1382         struct buffer_head *bh;
1383         unsigned block_start, block_end;
1384         unsigned blocksize = head->b_size;
1385         int err, ret = 0;
1386         struct buffer_head *next;
1387
1388         for (bh = head, block_start = 0;
1389              ret == 0 && (bh != head || !block_start);
1390              block_start = block_end, bh = next)
1391         {
1392                 next = bh->b_this_page;
1393                 block_end = block_start + blocksize;
1394                 if (block_end <= from || block_start >= to) {
1395                         if (partial && !buffer_uptodate(bh))
1396                                 *partial = 1;
1397                         continue;
1398                 }
1399                 err = (*fn)(handle, bh);
1400                 if (!ret)
1401                         ret = err;
1402         }
1403         return ret;
1404 }
1405
1406 /*
1407  * To preserve ordering, it is essential that the hole instantiation and
1408  * the data write be encapsulated in a single transaction.  We cannot
1409  * close off a transaction and start a new one between the ext4_get_block()
1410  * and the commit_write().  So doing the jbd2_journal_start at the start of
1411  * prepare_write() is the right place.
1412  *
1413  * Also, this function can nest inside ext4_writepage() ->
1414  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1415  * has generated enough buffer credits to do the whole page.  So we won't
1416  * block on the journal in that case, which is good, because the caller may
1417  * be PF_MEMALLOC.
1418  *
1419  * By accident, ext4 can be reentered when a transaction is open via
1420  * quota file writes.  If we were to commit the transaction while thus
1421  * reentered, there can be a deadlock - we would be holding a quota
1422  * lock, and the commit would never complete if another thread had a
1423  * transaction open and was blocking on the quota lock - a ranking
1424  * violation.
1425  *
1426  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1427  * will _not_ run commit under these circumstances because handle->h_ref
1428  * is elevated.  We'll still have enough credits for the tiny quotafile
1429  * write.
1430  */
1431 static int do_journal_get_write_access(handle_t *handle,
1432                                         struct buffer_head *bh)
1433 {
1434         if (!buffer_mapped(bh) || buffer_freed(bh))
1435                 return 0;
1436         return ext4_journal_get_write_access(handle, bh);
1437 }
1438
1439 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1440                                 loff_t pos, unsigned len, unsigned flags,
1441                                 struct page **pagep, void **fsdata)
1442 {
1443         struct inode *inode = mapping->host;
1444         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1445         handle_t *handle;
1446         int retries = 0;
1447         struct page *page;
1448         pgoff_t index;
1449         unsigned from, to;
1450
1451         trace_mark(ext4_write_begin,
1452                    "dev %s ino %lu pos %llu len %u flags %u",
1453                    inode->i_sb->s_id, inode->i_ino,
1454                    (unsigned long long) pos, len, flags);
1455         index = pos >> PAGE_CACHE_SHIFT;
1456         from = pos & (PAGE_CACHE_SIZE - 1);
1457         to = from + len;
1458
1459 retry:
1460         handle = ext4_journal_start(inode, needed_blocks);
1461         if (IS_ERR(handle)) {
1462                 ret = PTR_ERR(handle);
1463                 goto out;
1464         }
1465
1466         /* We cannot recurse into the filesystem as the transaction is already
1467          * started */
1468         flags |= AOP_FLAG_NOFS;
1469
1470         page = grab_cache_page_write_begin(mapping, index, flags);
1471         if (!page) {
1472                 ext4_journal_stop(handle);
1473                 ret = -ENOMEM;
1474                 goto out;
1475         }
1476         *pagep = page;
1477
1478         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1479                                 ext4_get_block);
1480
1481         if (!ret && ext4_should_journal_data(inode)) {
1482                 ret = walk_page_buffers(handle, page_buffers(page),
1483                                 from, to, NULL, do_journal_get_write_access);
1484         }
1485
1486         if (ret) {
1487                 unlock_page(page);
1488                 ext4_journal_stop(handle);
1489                 page_cache_release(page);
1490                 /*
1491                  * block_write_begin may have instantiated a few blocks
1492                  * outside i_size.  Trim these off again. Don't need
1493                  * i_size_read because we hold i_mutex.
1494                  */
1495                 if (pos + len > inode->i_size)
1496                         vmtruncate(inode, inode->i_size);
1497         }
1498
1499         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1500                 goto retry;
1501 out:
1502         return ret;
1503 }
1504
1505 /* For write_end() in data=journal mode */
1506 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1507 {
1508         if (!buffer_mapped(bh) || buffer_freed(bh))
1509                 return 0;
1510         set_buffer_uptodate(bh);
1511         return ext4_handle_dirty_metadata(handle, NULL, bh);
1512 }
1513
1514 /*
1515  * We need to pick up the new inode size which generic_commit_write gave us
1516  * `file' can be NULL - eg, when called from page_symlink().
1517  *
1518  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1519  * buffers are managed internally.
1520  */
1521 static int ext4_ordered_write_end(struct file *file,
1522                                 struct address_space *mapping,
1523                                 loff_t pos, unsigned len, unsigned copied,
1524                                 struct page *page, void *fsdata)
1525 {
1526         handle_t *handle = ext4_journal_current_handle();
1527         struct inode *inode = mapping->host;
1528         int ret = 0, ret2;
1529
1530         trace_mark(ext4_ordered_write_end,
1531                    "dev %s ino %lu pos %llu len %u copied %u",
1532                    inode->i_sb->s_id, inode->i_ino,
1533                    (unsigned long long) pos, len, copied);
1534         ret = ext4_jbd2_file_inode(handle, inode);
1535
1536         if (ret == 0) {
1537                 loff_t new_i_size;
1538
1539                 new_i_size = pos + copied;
1540                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1541                         ext4_update_i_disksize(inode, new_i_size);
1542                         /* We need to mark inode dirty even if
1543                          * new_i_size is less that inode->i_size
1544                          * bu greater than i_disksize.(hint delalloc)
1545                          */
1546                         ext4_mark_inode_dirty(handle, inode);
1547                 }
1548
1549                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1550                                                         page, fsdata);
1551                 copied = ret2;
1552                 if (ret2 < 0)
1553                         ret = ret2;
1554         }
1555         ret2 = ext4_journal_stop(handle);
1556         if (!ret)
1557                 ret = ret2;
1558
1559         return ret ? ret : copied;
1560 }
1561
1562 static int ext4_writeback_write_end(struct file *file,
1563                                 struct address_space *mapping,
1564                                 loff_t pos, unsigned len, unsigned copied,
1565                                 struct page *page, void *fsdata)
1566 {
1567         handle_t *handle = ext4_journal_current_handle();
1568         struct inode *inode = mapping->host;
1569         int ret = 0, ret2;
1570         loff_t new_i_size;
1571
1572         trace_mark(ext4_writeback_write_end,
1573                    "dev %s ino %lu pos %llu len %u copied %u",
1574                    inode->i_sb->s_id, inode->i_ino,
1575                    (unsigned long long) pos, len, copied);
1576         new_i_size = pos + copied;
1577         if (new_i_size > EXT4_I(inode)->i_disksize) {
1578                 ext4_update_i_disksize(inode, new_i_size);
1579                 /* We need to mark inode dirty even if
1580                  * new_i_size is less that inode->i_size
1581                  * bu greater than i_disksize.(hint delalloc)
1582                  */
1583                 ext4_mark_inode_dirty(handle, inode);
1584         }
1585
1586         ret2 = generic_write_end(file, mapping, pos, len, copied,
1587                                                         page, fsdata);
1588         copied = ret2;
1589         if (ret2 < 0)
1590                 ret = ret2;
1591
1592         ret2 = ext4_journal_stop(handle);
1593         if (!ret)
1594                 ret = ret2;
1595
1596         return ret ? ret : copied;
1597 }
1598
1599 static int ext4_journalled_write_end(struct file *file,
1600                                 struct address_space *mapping,
1601                                 loff_t pos, unsigned len, unsigned copied,
1602                                 struct page *page, void *fsdata)
1603 {
1604         handle_t *handle = ext4_journal_current_handle();
1605         struct inode *inode = mapping->host;
1606         int ret = 0, ret2;
1607         int partial = 0;
1608         unsigned from, to;
1609         loff_t new_i_size;
1610
1611         trace_mark(ext4_journalled_write_end,
1612                    "dev %s ino %lu pos %llu len %u copied %u",
1613                    inode->i_sb->s_id, inode->i_ino,
1614                    (unsigned long long) pos, len, copied);
1615         from = pos & (PAGE_CACHE_SIZE - 1);
1616         to = from + len;
1617
1618         if (copied < len) {
1619                 if (!PageUptodate(page))
1620                         copied = 0;
1621                 page_zero_new_buffers(page, from+copied, to);
1622         }
1623
1624         ret = walk_page_buffers(handle, page_buffers(page), from,
1625                                 to, &partial, write_end_fn);
1626         if (!partial)
1627                 SetPageUptodate(page);
1628         new_i_size = pos + copied;
1629         if (new_i_size > inode->i_size)
1630                 i_size_write(inode, pos+copied);
1631         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1632         if (new_i_size > EXT4_I(inode)->i_disksize) {
1633                 ext4_update_i_disksize(inode, new_i_size);
1634                 ret2 = ext4_mark_inode_dirty(handle, inode);
1635                 if (!ret)
1636                         ret = ret2;
1637         }
1638
1639         unlock_page(page);
1640         ret2 = ext4_journal_stop(handle);
1641         if (!ret)
1642                 ret = ret2;
1643         page_cache_release(page);
1644
1645         return ret ? ret : copied;
1646 }
1647
1648 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1649 {
1650         int retries = 0;
1651         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652         unsigned long md_needed, mdblocks, total = 0;
1653
1654         /*
1655          * recalculate the amount of metadata blocks to reserve
1656          * in order to allocate nrblocks
1657          * worse case is one extent per block
1658          */
1659 repeat:
1660         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1661         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1662         mdblocks = ext4_calc_metadata_amount(inode, total);
1663         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1664
1665         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1666         total = md_needed + nrblocks;
1667
1668         /*
1669          * Make quota reservation here to prevent quota overflow
1670          * later. Real quota accounting is done at pages writeout
1671          * time.
1672          */
1673         if (vfs_dq_reserve_block(inode, total)) {
1674                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1675                 return -EDQUOT;
1676         }
1677
1678         if (ext4_claim_free_blocks(sbi, total)) {
1679                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1680                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1681                         yield();
1682                         goto repeat;
1683                 }
1684                 vfs_dq_release_reservation_block(inode, total);
1685                 return -ENOSPC;
1686         }
1687         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1688         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1689
1690         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1691         return 0;       /* success */
1692 }
1693
1694 static void ext4_da_release_space(struct inode *inode, int to_free)
1695 {
1696         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1697         int total, mdb, mdb_free, release;
1698
1699         if (!to_free)
1700                 return;         /* Nothing to release, exit */
1701
1702         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1703
1704         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1705                 /*
1706                  * if there is no reserved blocks, but we try to free some
1707                  * then the counter is messed up somewhere.
1708                  * but since this function is called from invalidate
1709                  * page, it's harmless to return without any action
1710                  */
1711                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1712                             "blocks for inode %lu, but there is no reserved "
1713                             "data blocks\n", to_free, inode->i_ino);
1714                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1715                 return;
1716         }
1717
1718         /* recalculate the number of metablocks still need to be reserved */
1719         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1720         mdb = ext4_calc_metadata_amount(inode, total);
1721
1722         /* figure out how many metablocks to release */
1723         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1724         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1725
1726         release = to_free + mdb_free;
1727
1728         /* update fs dirty blocks counter for truncate case */
1729         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1730
1731         /* update per-inode reservations */
1732         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1733         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1734
1735         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1736         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1737         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1738
1739         vfs_dq_release_reservation_block(inode, release);
1740 }
1741
1742 static void ext4_da_page_release_reservation(struct page *page,
1743                                                 unsigned long offset)
1744 {
1745         int to_release = 0;
1746         struct buffer_head *head, *bh;
1747         unsigned int curr_off = 0;
1748
1749         head = page_buffers(page);
1750         bh = head;
1751         do {
1752                 unsigned int next_off = curr_off + bh->b_size;
1753
1754                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1755                         to_release++;
1756                         clear_buffer_delay(bh);
1757                 }
1758                 curr_off = next_off;
1759         } while ((bh = bh->b_this_page) != head);
1760         ext4_da_release_space(page->mapping->host, to_release);
1761 }
1762
1763 /*
1764  * Delayed allocation stuff
1765  */
1766
1767 struct mpage_da_data {
1768         struct inode *inode;
1769         sector_t b_blocknr;             /* start block number of extent */
1770         size_t b_size;                  /* size of extent */
1771         unsigned long b_state;          /* state of the extent */
1772         unsigned long first_page, next_page;    /* extent of pages */
1773         struct writeback_control *wbc;
1774         int io_done;
1775         int pages_written;
1776         int retval;
1777 };
1778
1779 /*
1780  * mpage_da_submit_io - walks through extent of pages and try to write
1781  * them with writepage() call back
1782  *
1783  * @mpd->inode: inode
1784  * @mpd->first_page: first page of the extent
1785  * @mpd->next_page: page after the last page of the extent
1786  *
1787  * By the time mpage_da_submit_io() is called we expect all blocks
1788  * to be allocated. this may be wrong if allocation failed.
1789  *
1790  * As pages are already locked by write_cache_pages(), we can't use it
1791  */
1792 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1793 {
1794         long pages_skipped;
1795         struct pagevec pvec;
1796         unsigned long index, end;
1797         int ret = 0, err, nr_pages, i;
1798         struct inode *inode = mpd->inode;
1799         struct address_space *mapping = inode->i_mapping;
1800
1801         BUG_ON(mpd->next_page <= mpd->first_page);
1802         /*
1803          * We need to start from the first_page to the next_page - 1
1804          * to make sure we also write the mapped dirty buffer_heads.
1805          * If we look at mpd->b_blocknr we would only be looking
1806          * at the currently mapped buffer_heads.
1807          */
1808         index = mpd->first_page;
1809         end = mpd->next_page - 1;
1810
1811         pagevec_init(&pvec, 0);
1812         while (index <= end) {
1813                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1814                 if (nr_pages == 0)
1815                         break;
1816                 for (i = 0; i < nr_pages; i++) {
1817                         struct page *page = pvec.pages[i];
1818
1819                         index = page->index;
1820                         if (index > end)
1821                                 break;
1822                         index++;
1823
1824                         BUG_ON(!PageLocked(page));
1825                         BUG_ON(PageWriteback(page));
1826
1827                         pages_skipped = mpd->wbc->pages_skipped;
1828                         err = mapping->a_ops->writepage(page, mpd->wbc);
1829                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1830                                 /*
1831                                  * have successfully written the page
1832                                  * without skipping the same
1833                                  */
1834                                 mpd->pages_written++;
1835                         /*
1836                          * In error case, we have to continue because
1837                          * remaining pages are still locked
1838                          * XXX: unlock and re-dirty them?
1839                          */
1840                         if (ret == 0)
1841                                 ret = err;
1842                 }
1843                 pagevec_release(&pvec);
1844         }
1845         return ret;
1846 }
1847
1848 /*
1849  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1850  *
1851  * @mpd->inode - inode to walk through
1852  * @exbh->b_blocknr - first block on a disk
1853  * @exbh->b_size - amount of space in bytes
1854  * @logical - first logical block to start assignment with
1855  *
1856  * the function goes through all passed space and put actual disk
1857  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1858  */
1859 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1860                                  struct buffer_head *exbh)
1861 {
1862         struct inode *inode = mpd->inode;
1863         struct address_space *mapping = inode->i_mapping;
1864         int blocks = exbh->b_size >> inode->i_blkbits;
1865         sector_t pblock = exbh->b_blocknr, cur_logical;
1866         struct buffer_head *head, *bh;
1867         pgoff_t index, end;
1868         struct pagevec pvec;
1869         int nr_pages, i;
1870
1871         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1872         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1873         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1874
1875         pagevec_init(&pvec, 0);
1876
1877         while (index <= end) {
1878                 /* XXX: optimize tail */
1879                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1880                 if (nr_pages == 0)
1881                         break;
1882                 for (i = 0; i < nr_pages; i++) {
1883                         struct page *page = pvec.pages[i];
1884
1885                         index = page->index;
1886                         if (index > end)
1887                                 break;
1888                         index++;
1889
1890                         BUG_ON(!PageLocked(page));
1891                         BUG_ON(PageWriteback(page));
1892                         BUG_ON(!page_has_buffers(page));
1893
1894                         bh = page_buffers(page);
1895                         head = bh;
1896
1897                         /* skip blocks out of the range */
1898                         do {
1899                                 if (cur_logical >= logical)
1900                                         break;
1901                                 cur_logical++;
1902                         } while ((bh = bh->b_this_page) != head);
1903
1904                         do {
1905                                 if (cur_logical >= logical + blocks)
1906                                         break;
1907
1908                                 if (buffer_delay(bh) ||
1909                                                 buffer_unwritten(bh)) {
1910
1911                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1912
1913                                         if (buffer_delay(bh)) {
1914                                                 clear_buffer_delay(bh);
1915                                                 bh->b_blocknr = pblock;
1916                                         } else {
1917                                                 /*
1918                                                  * unwritten already should have
1919                                                  * blocknr assigned. Verify that
1920                                                  */
1921                                                 clear_buffer_unwritten(bh);
1922                                                 BUG_ON(bh->b_blocknr != pblock);
1923                                         }
1924
1925                                 } else if (buffer_mapped(bh))
1926                                         BUG_ON(bh->b_blocknr != pblock);
1927
1928                                 cur_logical++;
1929                                 pblock++;
1930                         } while ((bh = bh->b_this_page) != head);
1931                 }
1932                 pagevec_release(&pvec);
1933         }
1934 }
1935
1936
1937 /*
1938  * __unmap_underlying_blocks - just a helper function to unmap
1939  * set of blocks described by @bh
1940  */
1941 static inline void __unmap_underlying_blocks(struct inode *inode,
1942                                              struct buffer_head *bh)
1943 {
1944         struct block_device *bdev = inode->i_sb->s_bdev;
1945         int blocks, i;
1946
1947         blocks = bh->b_size >> inode->i_blkbits;
1948         for (i = 0; i < blocks; i++)
1949                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1950 }
1951
1952 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1953                                         sector_t logical, long blk_cnt)
1954 {
1955         int nr_pages, i;
1956         pgoff_t index, end;
1957         struct pagevec pvec;
1958         struct inode *inode = mpd->inode;
1959         struct address_space *mapping = inode->i_mapping;
1960
1961         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1962         end   = (logical + blk_cnt - 1) >>
1963                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1964         while (index <= end) {
1965                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1966                 if (nr_pages == 0)
1967                         break;
1968                 for (i = 0; i < nr_pages; i++) {
1969                         struct page *page = pvec.pages[i];
1970                         index = page->index;
1971                         if (index > end)
1972                                 break;
1973                         index++;
1974
1975                         BUG_ON(!PageLocked(page));
1976                         BUG_ON(PageWriteback(page));
1977                         block_invalidatepage(page, 0);
1978                         ClearPageUptodate(page);
1979                         unlock_page(page);
1980                 }
1981         }
1982         return;
1983 }
1984
1985 static void ext4_print_free_blocks(struct inode *inode)
1986 {
1987         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1988         printk(KERN_EMERG "Total free blocks count %lld\n",
1989                         ext4_count_free_blocks(inode->i_sb));
1990         printk(KERN_EMERG "Free/Dirty block details\n");
1991         printk(KERN_EMERG "free_blocks=%lld\n",
1992                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1993         printk(KERN_EMERG "dirty_blocks=%lld\n",
1994                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1995         printk(KERN_EMERG "Block reservation details\n");
1996         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1997                         EXT4_I(inode)->i_reserved_data_blocks);
1998         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1999                         EXT4_I(inode)->i_reserved_meta_blocks);
2000         return;
2001 }
2002
2003 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2004                                    struct buffer_head *bh_result)
2005 {
2006         int ret;
2007         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2008         loff_t disksize = EXT4_I(inode)->i_disksize;
2009         handle_t *handle = NULL;
2010
2011         handle = ext4_journal_current_handle();
2012         BUG_ON(!handle);
2013         ret = ext4_get_blocks(handle, inode, iblock, max_blocks,
2014                               bh_result, EXT4_GET_BLOCKS_CREATE|
2015                               EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2016         if (ret <= 0)
2017                 return ret;
2018
2019         bh_result->b_size = (ret << inode->i_blkbits);
2020
2021         if (ext4_should_order_data(inode)) {
2022                 int retval;
2023                 retval = ext4_jbd2_file_inode(handle, inode);
2024                 if (retval)
2025                         /*
2026                          * Failed to add inode for ordered mode. Don't
2027                          * update file size
2028                          */
2029                         return retval;
2030         }
2031
2032         /*
2033          * Update on-disk size along with block allocation we don't
2034          * use 'extend_disksize' as size may change within already
2035          * allocated block -bzzz
2036          */
2037         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2038         if (disksize > i_size_read(inode))
2039                 disksize = i_size_read(inode);
2040         if (disksize > EXT4_I(inode)->i_disksize) {
2041                 ext4_update_i_disksize(inode, disksize);
2042                 ret = ext4_mark_inode_dirty(handle, inode);
2043                 return ret;
2044         }
2045         return 0;
2046 }
2047
2048 /*
2049  * mpage_da_map_blocks - go through given space
2050  *
2051  * @mpd - bh describing space
2052  *
2053  * The function skips space we know is already mapped to disk blocks.
2054  *
2055  */
2056 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2057 {
2058         int err = 0;
2059         struct buffer_head new;
2060         sector_t next;
2061
2062         /*
2063          * We consider only non-mapped and non-allocated blocks
2064          */
2065         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2066                 !(mpd->b_state & (1 << BH_Delay)) &&
2067                 !(mpd->b_state & (1 << BH_Unwritten)))
2068                 return 0;
2069         /*
2070          * We need to make sure the BH_Delay flag is passed down to
2071          * ext4_da_get_block_write(), since it calls ext4_get_blocks()
2072          * with the EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.  This flag
2073          * causes ext4_get_blocks() to call
2074          * ext4_da_update_reserve_space() if the passed buffer head
2075          * has the BH_Delay flag set.  In the future, once we clean up
2076          * the interfaces to ext4_get_blocks(), we should pass in a
2077          * separate flag which requests that the delayed allocation
2078          * statistics should be updated, instead of depending on the
2079          * state information getting passed down via the map_bh's
2080          * state bitmasks plus the magic
2081          * EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
2082          */
2083         new.b_state = mpd->b_state & (1 << BH_Delay);
2084         new.b_blocknr = 0;
2085         new.b_size = mpd->b_size;
2086         next = mpd->b_blocknr;
2087         /*
2088          * If we didn't accumulate anything
2089          * to write simply return
2090          */
2091         if (!new.b_size)
2092                 return 0;
2093
2094         err = ext4_da_get_block_write(mpd->inode, next, &new);
2095         if (err) {
2096                 /*
2097                  * If get block returns with error we simply
2098                  * return. Later writepage will redirty the page and
2099                  * writepages will find the dirty page again
2100                  */
2101                 if (err == -EAGAIN)
2102                         return 0;
2103
2104                 if (err == -ENOSPC &&
2105                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2106                         mpd->retval = err;
2107                         return 0;
2108                 }
2109
2110                 /*
2111                  * get block failure will cause us to loop in
2112                  * writepages, because a_ops->writepage won't be able
2113                  * to make progress. The page will be redirtied by
2114                  * writepage and writepages will again try to write
2115                  * the same.
2116                  */
2117                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2118                                   "at logical offset %llu with max blocks "
2119                                   "%zd with error %d\n",
2120                                   __func__, mpd->inode->i_ino,
2121                                   (unsigned long long)next,
2122                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2123                 printk(KERN_EMERG "This should not happen.!! "
2124                                         "Data will be lost\n");
2125                 if (err == -ENOSPC) {
2126                         ext4_print_free_blocks(mpd->inode);
2127                 }
2128                 /* invlaidate all the pages */
2129                 ext4_da_block_invalidatepages(mpd, next,
2130                                 mpd->b_size >> mpd->inode->i_blkbits);
2131                 return err;
2132         }
2133         BUG_ON(new.b_size == 0);
2134
2135         if (buffer_new(&new))
2136                 __unmap_underlying_blocks(mpd->inode, &new);
2137
2138         /*
2139          * If blocks are delayed marked, we need to
2140          * put actual blocknr and drop delayed bit
2141          */
2142         if ((mpd->b_state & (1 << BH_Delay)) ||
2143             (mpd->b_state & (1 << BH_Unwritten)))
2144                 mpage_put_bnr_to_bhs(mpd, next, &new);
2145
2146         return 0;
2147 }
2148
2149 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2150                 (1 << BH_Delay) | (1 << BH_Unwritten))
2151
2152 /*
2153  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2154  *
2155  * @mpd->lbh - extent of blocks
2156  * @logical - logical number of the block in the file
2157  * @bh - bh of the block (used to access block's state)
2158  *
2159  * the function is used to collect contig. blocks in same state
2160  */
2161 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2162                                    sector_t logical, size_t b_size,
2163                                    unsigned long b_state)
2164 {
2165         sector_t next;
2166         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2167
2168         /* check if thereserved journal credits might overflow */
2169         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2170                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2171                         /*
2172                          * With non-extent format we are limited by the journal
2173                          * credit available.  Total credit needed to insert
2174                          * nrblocks contiguous blocks is dependent on the
2175                          * nrblocks.  So limit nrblocks.
2176                          */
2177                         goto flush_it;
2178                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2179                                 EXT4_MAX_TRANS_DATA) {
2180                         /*
2181                          * Adding the new buffer_head would make it cross the
2182                          * allowed limit for which we have journal credit
2183                          * reserved. So limit the new bh->b_size
2184                          */
2185                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2186                                                 mpd->inode->i_blkbits;
2187                         /* we will do mpage_da_submit_io in the next loop */
2188                 }
2189         }
2190         /*
2191          * First block in the extent
2192          */
2193         if (mpd->b_size == 0) {
2194                 mpd->b_blocknr = logical;
2195                 mpd->b_size = b_size;
2196                 mpd->b_state = b_state & BH_FLAGS;
2197                 return;
2198         }
2199
2200         next = mpd->b_blocknr + nrblocks;
2201         /*
2202          * Can we merge the block to our big extent?
2203          */
2204         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2205                 mpd->b_size += b_size;
2206                 return;
2207         }
2208
2209 flush_it:
2210         /*
2211          * We couldn't merge the block to our extent, so we
2212          * need to flush current  extent and start new one
2213          */
2214         if (mpage_da_map_blocks(mpd) == 0)
2215                 mpage_da_submit_io(mpd);
2216         mpd->io_done = 1;
2217         return;
2218 }
2219
2220 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2221 {
2222         /*
2223          * unmapped buffer is possible for holes.
2224          * delay buffer is possible with delayed allocation.
2225          * We also need to consider unwritten buffer as unmapped.
2226          */
2227         return (!buffer_mapped(bh) || buffer_delay(bh) ||
2228                                 buffer_unwritten(bh)) && buffer_dirty(bh);
2229 }
2230
2231 /*
2232  * __mpage_da_writepage - finds extent of pages and blocks
2233  *
2234  * @page: page to consider
2235  * @wbc: not used, we just follow rules
2236  * @data: context
2237  *
2238  * The function finds extents of pages and scan them for all blocks.
2239  */
2240 static int __mpage_da_writepage(struct page *page,
2241                                 struct writeback_control *wbc, void *data)
2242 {
2243         struct mpage_da_data *mpd = data;
2244         struct inode *inode = mpd->inode;
2245         struct buffer_head *bh, *head;
2246         sector_t logical;
2247
2248         if (mpd->io_done) {
2249                 /*
2250                  * Rest of the page in the page_vec
2251                  * redirty then and skip then. We will
2252                  * try to to write them again after
2253                  * starting a new transaction
2254                  */
2255                 redirty_page_for_writepage(wbc, page);
2256                 unlock_page(page);
2257                 return MPAGE_DA_EXTENT_TAIL;
2258         }
2259         /*
2260          * Can we merge this page to current extent?
2261          */
2262         if (mpd->next_page != page->index) {
2263                 /*
2264                  * Nope, we can't. So, we map non-allocated blocks
2265                  * and start IO on them using writepage()
2266                  */
2267                 if (mpd->next_page != mpd->first_page) {
2268                         if (mpage_da_map_blocks(mpd) == 0)
2269                                 mpage_da_submit_io(mpd);
2270                         /*
2271                          * skip rest of the page in the page_vec
2272                          */
2273                         mpd->io_done = 1;
2274                         redirty_page_for_writepage(wbc, page);
2275                         unlock_page(page);
2276                         return MPAGE_DA_EXTENT_TAIL;
2277                 }
2278
2279                 /*
2280                  * Start next extent of pages ...
2281                  */
2282                 mpd->first_page = page->index;
2283
2284                 /*
2285                  * ... and blocks
2286                  */
2287                 mpd->b_size = 0;
2288                 mpd->b_state = 0;
2289                 mpd->b_blocknr = 0;
2290         }
2291
2292         mpd->next_page = page->index + 1;
2293         logical = (sector_t) page->index <<
2294                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2295
2296         if (!page_has_buffers(page)) {
2297                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2298                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2299                 if (mpd->io_done)
2300                         return MPAGE_DA_EXTENT_TAIL;
2301         } else {
2302                 /*
2303                  * Page with regular buffer heads, just add all dirty ones
2304                  */
2305                 head = page_buffers(page);
2306                 bh = head;
2307                 do {
2308                         BUG_ON(buffer_locked(bh));
2309                         /*
2310                          * We need to try to allocate
2311                          * unmapped blocks in the same page.
2312                          * Otherwise we won't make progress
2313                          * with the page in ext4_da_writepage
2314                          */
2315                         if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2316                                 mpage_add_bh_to_extent(mpd, logical,
2317                                                        bh->b_size,
2318                                                        bh->b_state);
2319                                 if (mpd->io_done)
2320                                         return MPAGE_DA_EXTENT_TAIL;
2321                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2322                                 /*
2323                                  * mapped dirty buffer. We need to update
2324                                  * the b_state because we look at
2325                                  * b_state in mpage_da_map_blocks. We don't
2326                                  * update b_size because if we find an
2327                                  * unmapped buffer_head later we need to
2328                                  * use the b_state flag of that buffer_head.
2329                                  */
2330                                 if (mpd->b_size == 0)
2331                                         mpd->b_state = bh->b_state & BH_FLAGS;
2332                         }
2333                         logical++;
2334                 } while ((bh = bh->b_this_page) != head);
2335         }
2336
2337         return 0;
2338 }
2339
2340 /*
2341  * this is a special callback for ->write_begin() only
2342  * it's intention is to return mapped block or reserve space
2343  *
2344  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2345  * We also have b_blocknr = -1 and b_bdev initialized properly
2346  *
2347  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2348  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2349  * initialized properly.
2350  *
2351  */
2352 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2353                                   struct buffer_head *bh_result, int create)
2354 {
2355         int ret = 0;
2356         sector_t invalid_block = ~((sector_t) 0xffff);
2357
2358         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2359                 invalid_block = ~0;
2360
2361         BUG_ON(create == 0);
2362         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2363
2364         /*
2365          * first, we need to know whether the block is allocated already
2366          * preallocated blocks are unmapped but should treated
2367          * the same as allocated blocks.
2368          */
2369         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2370         if ((ret == 0) && !buffer_delay(bh_result)) {
2371                 /* the block isn't (pre)allocated yet, let's reserve space */
2372                 /*
2373                  * XXX: __block_prepare_write() unmaps passed block,
2374                  * is it OK?
2375                  */
2376                 ret = ext4_da_reserve_space(inode, 1);
2377                 if (ret)
2378                         /* not enough space to reserve */
2379                         return ret;
2380
2381                 map_bh(bh_result, inode->i_sb, invalid_block);
2382                 set_buffer_new(bh_result);
2383                 set_buffer_delay(bh_result);
2384         } else if (ret > 0) {
2385                 bh_result->b_size = (ret << inode->i_blkbits);
2386                 if (buffer_unwritten(bh_result)) {
2387                         /* A delayed write to unwritten bh should
2388                          * be marked new and mapped.  Mapped ensures
2389                          * that we don't do get_block multiple times
2390                          * when we write to the same offset and new
2391                          * ensures that we do proper zero out for
2392                          * partial write.
2393                          */
2394                         set_buffer_new(bh_result);
2395                         set_buffer_mapped(bh_result);
2396                 }
2397                 ret = 0;
2398         }
2399
2400         return ret;
2401 }
2402
2403 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2404                                    struct buffer_head *bh_result, int create)
2405 {
2406         int ret = 0;
2407         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2408
2409         /*
2410          * we don't want to do block allocation in writepage
2411          * so call get_block_wrap with create = 0
2412          */
2413         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2414         if (ret > 0) {
2415                 bh_result->b_size = (ret << inode->i_blkbits);
2416                 ret = 0;
2417         }
2418         return ret;
2419 }
2420
2421 /*
2422  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2423  * get called via journal_submit_inode_data_buffers (no journal handle)
2424  * get called via shrink_page_list via pdflush (no journal handle)
2425  * or grab_page_cache when doing write_begin (have journal handle)
2426  */
2427 static int ext4_da_writepage(struct page *page,
2428                                 struct writeback_control *wbc)
2429 {
2430         int ret = 0;
2431         loff_t size;
2432         unsigned int len;
2433         struct buffer_head *page_bufs;
2434         struct inode *inode = page->mapping->host;
2435
2436         trace_mark(ext4_da_writepage,
2437                    "dev %s ino %lu page_index %lu",
2438                    inode->i_sb->s_id, inode->i_ino, page->index);
2439         size = i_size_read(inode);
2440         if (page->index == size >> PAGE_CACHE_SHIFT)
2441                 len = size & ~PAGE_CACHE_MASK;
2442         else
2443                 len = PAGE_CACHE_SIZE;
2444
2445         if (page_has_buffers(page)) {
2446                 page_bufs = page_buffers(page);
2447                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2448                                         ext4_bh_unmapped_or_delay)) {
2449                         /*
2450                          * We don't want to do  block allocation
2451                          * So redirty the page and return
2452                          * We may reach here when we do a journal commit
2453                          * via journal_submit_inode_data_buffers.
2454                          * If we don't have mapping block we just ignore
2455                          * them. We can also reach here via shrink_page_list
2456                          */
2457                         redirty_page_for_writepage(wbc, page);
2458                         unlock_page(page);
2459                         return 0;
2460                 }
2461         } else {
2462                 /*
2463                  * The test for page_has_buffers() is subtle:
2464                  * We know the page is dirty but it lost buffers. That means
2465                  * that at some moment in time after write_begin()/write_end()
2466                  * has been called all buffers have been clean and thus they
2467                  * must have been written at least once. So they are all
2468                  * mapped and we can happily proceed with mapping them
2469                  * and writing the page.
2470                  *
2471                  * Try to initialize the buffer_heads and check whether
2472                  * all are mapped and non delay. We don't want to
2473                  * do block allocation here.
2474                  */
2475                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2476                                                 ext4_normal_get_block_write);
2477                 if (!ret) {
2478                         page_bufs = page_buffers(page);
2479                         /* check whether all are mapped and non delay */
2480                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2481                                                 ext4_bh_unmapped_or_delay)) {
2482                                 redirty_page_for_writepage(wbc, page);
2483                                 unlock_page(page);
2484                                 return 0;
2485                         }
2486                 } else {
2487                         /*
2488                          * We can't do block allocation here
2489                          * so just redity the page and unlock
2490                          * and return
2491                          */
2492                         redirty_page_for_writepage(wbc, page);
2493                         unlock_page(page);
2494                         return 0;
2495                 }
2496                 /* now mark the buffer_heads as dirty and uptodate */
2497                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2498         }
2499
2500         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2501                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2502         else
2503                 ret = block_write_full_page(page,
2504                                                 ext4_normal_get_block_write,
2505                                                 wbc);
2506
2507         return ret;
2508 }
2509
2510 /*
2511  * This is called via ext4_da_writepages() to
2512  * calulate the total number of credits to reserve to fit
2513  * a single extent allocation into a single transaction,
2514  * ext4_da_writpeages() will loop calling this before
2515  * the block allocation.
2516  */
2517
2518 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2519 {
2520         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2521
2522         /*
2523          * With non-extent format the journal credit needed to
2524          * insert nrblocks contiguous block is dependent on
2525          * number of contiguous block. So we will limit
2526          * number of contiguous block to a sane value
2527          */
2528         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2529             (max_blocks > EXT4_MAX_TRANS_DATA))
2530                 max_blocks = EXT4_MAX_TRANS_DATA;
2531
2532         return ext4_chunk_trans_blocks(inode, max_blocks);
2533 }
2534
2535 static int ext4_da_writepages(struct address_space *mapping,
2536                               struct writeback_control *wbc)
2537 {
2538         pgoff_t index;
2539         int range_whole = 0;
2540         handle_t *handle = NULL;
2541         struct mpage_da_data mpd;
2542         struct inode *inode = mapping->host;
2543         int no_nrwrite_index_update;
2544         int pages_written = 0;
2545         long pages_skipped;
2546         int range_cyclic, cycled = 1, io_done = 0;
2547         int needed_blocks, ret = 0, nr_to_writebump = 0;
2548         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2549
2550         trace_mark(ext4_da_writepages,
2551                    "dev %s ino %lu nr_t_write %ld "
2552                    "pages_skipped %ld range_start %llu "
2553                    "range_end %llu nonblocking %d "
2554                    "for_kupdate %d for_reclaim %d "
2555                    "for_writepages %d range_cyclic %d",
2556                    inode->i_sb->s_id, inode->i_ino,
2557                    wbc->nr_to_write, wbc->pages_skipped,
2558                    (unsigned long long) wbc->range_start,
2559                    (unsigned long long) wbc->range_end,
2560                    wbc->nonblocking, wbc->for_kupdate,
2561                    wbc->for_reclaim, wbc->for_writepages,
2562                    wbc->range_cyclic);
2563
2564         /*
2565          * No pages to write? This is mainly a kludge to avoid starting
2566          * a transaction for special inodes like journal inode on last iput()
2567          * because that could violate lock ordering on umount
2568          */
2569         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2570                 return 0;
2571
2572         /*
2573          * If the filesystem has aborted, it is read-only, so return
2574          * right away instead of dumping stack traces later on that
2575          * will obscure the real source of the problem.  We test
2576          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2577          * the latter could be true if the filesystem is mounted
2578          * read-only, and in that case, ext4_da_writepages should
2579          * *never* be called, so if that ever happens, we would want
2580          * the stack trace.
2581          */
2582         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2583                 return -EROFS;
2584
2585         /*
2586          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2587          * This make sure small files blocks are allocated in
2588          * single attempt. This ensure that small files
2589          * get less fragmented.
2590          */
2591         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2592                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2593                 wbc->nr_to_write = sbi->s_mb_stream_request;
2594         }
2595         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2596                 range_whole = 1;
2597
2598         range_cyclic = wbc->range_cyclic;
2599         if (wbc->range_cyclic) {
2600                 index = mapping->writeback_index;
2601                 if (index)
2602                         cycled = 0;
2603                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2604                 wbc->range_end  = LLONG_MAX;
2605                 wbc->range_cyclic = 0;
2606         } else
2607                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2608
2609         mpd.wbc = wbc;
2610         mpd.inode = mapping->host;
2611
2612         /*
2613          * we don't want write_cache_pages to update
2614          * nr_to_write and writeback_index
2615          */
2616         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2617         wbc->no_nrwrite_index_update = 1;
2618         pages_skipped = wbc->pages_skipped;
2619
2620 retry:
2621         while (!ret && wbc->nr_to_write > 0) {
2622
2623                 /*
2624                  * we  insert one extent at a time. So we need
2625                  * credit needed for single extent allocation.
2626                  * journalled mode is currently not supported
2627                  * by delalloc
2628                  */
2629                 BUG_ON(ext4_should_journal_data(inode));
2630                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2631
2632                 /* start a new transaction*/
2633                 handle = ext4_journal_start(inode, needed_blocks);
2634                 if (IS_ERR(handle)) {
2635                         ret = PTR_ERR(handle);
2636                         printk(KERN_CRIT "%s: jbd2_start: "
2637                                "%ld pages, ino %lu; err %d\n", __func__,
2638                                 wbc->nr_to_write, inode->i_ino, ret);
2639                         dump_stack();
2640                         goto out_writepages;
2641                 }
2642
2643                 /*
2644                  * Now call __mpage_da_writepage to find the next
2645                  * contiguous region of logical blocks that need
2646                  * blocks to be allocated by ext4.  We don't actually
2647                  * submit the blocks for I/O here, even though
2648                  * write_cache_pages thinks it will, and will set the
2649                  * pages as clean for write before calling
2650                  * __mpage_da_writepage().
2651                  */
2652                 mpd.b_size = 0;
2653                 mpd.b_state = 0;
2654                 mpd.b_blocknr = 0;
2655                 mpd.first_page = 0;
2656                 mpd.next_page = 0;
2657                 mpd.io_done = 0;
2658                 mpd.pages_written = 0;
2659                 mpd.retval = 0;
2660                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2661                                         &mpd);
2662                 /*
2663                  * If we have a contigous extent of pages and we
2664                  * haven't done the I/O yet, map the blocks and submit
2665                  * them for I/O.
2666                  */
2667                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2668                         if (mpage_da_map_blocks(&mpd) == 0)
2669                                 mpage_da_submit_io(&mpd);
2670                         mpd.io_done = 1;
2671                         ret = MPAGE_DA_EXTENT_TAIL;
2672                 }
2673                 wbc->nr_to_write -= mpd.pages_written;
2674
2675                 ext4_journal_stop(handle);
2676
2677                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2678                         /* commit the transaction which would
2679                          * free blocks released in the transaction
2680                          * and try again
2681                          */
2682                         jbd2_journal_force_commit_nested(sbi->s_journal);
2683                         wbc->pages_skipped = pages_skipped;
2684                         ret = 0;
2685                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2686                         /*
2687                          * got one extent now try with
2688                          * rest of the pages
2689                          */
2690                         pages_written += mpd.pages_written;
2691                         wbc->pages_skipped = pages_skipped;
2692                         ret = 0;
2693                         io_done = 1;
2694                 } else if (wbc->nr_to_write)
2695                         /*
2696                          * There is no more writeout needed
2697                          * or we requested for a noblocking writeout
2698                          * and we found the device congested
2699                          */
2700                         break;
2701         }
2702         if (!io_done && !cycled) {
2703                 cycled = 1;
2704                 index = 0;
2705                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2706                 wbc->range_end  = mapping->writeback_index - 1;
2707                 goto retry;
2708         }
2709         if (pages_skipped != wbc->pages_skipped)
2710                 printk(KERN_EMERG "This should not happen leaving %s "
2711                                 "with nr_to_write = %ld ret = %d\n",
2712                                 __func__, wbc->nr_to_write, ret);
2713
2714         /* Update index */
2715         index += pages_written;
2716         wbc->range_cyclic = range_cyclic;
2717         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2718                 /*
2719                  * set the writeback_index so that range_cyclic
2720                  * mode will write it back later
2721                  */
2722                 mapping->writeback_index = index;
2723
2724 out_writepages:
2725         if (!no_nrwrite_index_update)
2726                 wbc->no_nrwrite_index_update = 0;
2727         wbc->nr_to_write -= nr_to_writebump;
2728         trace_mark(ext4_da_writepage_result,
2729                    "dev %s ino %lu ret %d pages_written %d "
2730                    "pages_skipped %ld congestion %d "
2731                    "more_io %d no_nrwrite_index_update %d",
2732                    inode->i_sb->s_id, inode->i_ino, ret,
2733                    pages_written, wbc->pages_skipped,
2734                    wbc->encountered_congestion, wbc->more_io,
2735                    wbc->no_nrwrite_index_update);
2736         return ret;
2737 }
2738
2739 #define FALL_BACK_TO_NONDELALLOC 1
2740 static int ext4_nonda_switch(struct super_block *sb)
2741 {
2742         s64 free_blocks, dirty_blocks;
2743         struct ext4_sb_info *sbi = EXT4_SB(sb);
2744
2745         /*
2746          * switch to non delalloc mode if we are running low
2747          * on free block. The free block accounting via percpu
2748          * counters can get slightly wrong with percpu_counter_batch getting
2749          * accumulated on each CPU without updating global counters
2750          * Delalloc need an accurate free block accounting. So switch
2751          * to non delalloc when we are near to error range.
2752          */
2753         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2754         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2755         if (2 * free_blocks < 3 * dirty_blocks ||
2756                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2757                 /*
2758                  * free block count is less that 150% of dirty blocks
2759                  * or free blocks is less that watermark
2760                  */
2761                 return 1;
2762         }
2763         return 0;
2764 }
2765
2766 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2767                                 loff_t pos, unsigned len, unsigned flags,
2768                                 struct page **pagep, void **fsdata)
2769 {
2770         int ret, retries = 0;
2771         struct page *page;
2772         pgoff_t index;
2773         unsigned from, to;
2774         struct inode *inode = mapping->host;
2775         handle_t *handle;
2776
2777         index = pos >> PAGE_CACHE_SHIFT;
2778         from = pos & (PAGE_CACHE_SIZE - 1);
2779         to = from + len;
2780
2781         if (ext4_nonda_switch(inode->i_sb)) {
2782                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2783                 return ext4_write_begin(file, mapping, pos,
2784                                         len, flags, pagep, fsdata);
2785         }
2786         *fsdata = (void *)0;
2787
2788         trace_mark(ext4_da_write_begin,
2789                    "dev %s ino %lu pos %llu len %u flags %u",
2790                    inode->i_sb->s_id, inode->i_ino,
2791                    (unsigned long long) pos, len, flags);
2792 retry:
2793         /*
2794          * With delayed allocation, we don't log the i_disksize update
2795          * if there is delayed block allocation. But we still need
2796          * to journalling the i_disksize update if writes to the end
2797          * of file which has an already mapped buffer.
2798          */
2799         handle = ext4_journal_start(inode, 1);
2800         if (IS_ERR(handle)) {
2801                 ret = PTR_ERR(handle);
2802                 goto out;
2803         }
2804         /* We cannot recurse into the filesystem as the transaction is already
2805          * started */
2806         flags |= AOP_FLAG_NOFS;
2807
2808         page = grab_cache_page_write_begin(mapping, index, flags);
2809         if (!page) {
2810                 ext4_journal_stop(handle);
2811                 ret = -ENOMEM;
2812                 goto out;
2813         }
2814         *pagep = page;
2815
2816         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2817                                                         ext4_da_get_block_prep);
2818         if (ret < 0) {
2819                 unlock_page(page);
2820                 ext4_journal_stop(handle);
2821                 page_cache_release(page);
2822                 /*
2823                  * block_write_begin may have instantiated a few blocks
2824                  * outside i_size.  Trim these off again. Don't need
2825                  * i_size_read because we hold i_mutex.
2826                  */
2827                 if (pos + len > inode->i_size)
2828                         vmtruncate(inode, inode->i_size);
2829         }
2830
2831         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2832                 goto retry;
2833 out:
2834         return ret;
2835 }
2836
2837 /*
2838  * Check if we should update i_disksize
2839  * when write to the end of file but not require block allocation
2840  */
2841 static int ext4_da_should_update_i_disksize(struct page *page,
2842                                          unsigned long offset)
2843 {
2844         struct buffer_head *bh;
2845         struct inode *inode = page->mapping->host;
2846         unsigned int idx;
2847         int i;
2848
2849         bh = page_buffers(page);
2850         idx = offset >> inode->i_blkbits;
2851
2852         for (i = 0; i < idx; i++)
2853                 bh = bh->b_this_page;
2854
2855         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2856                 return 0;
2857         return 1;
2858 }
2859
2860 static int ext4_da_write_end(struct file *file,
2861                                 struct address_space *mapping,
2862                                 loff_t pos, unsigned len, unsigned copied,
2863                                 struct page *page, void *fsdata)
2864 {
2865         struct inode *inode = mapping->host;
2866         int ret = 0, ret2;
2867         handle_t *handle = ext4_journal_current_handle();
2868         loff_t new_i_size;
2869         unsigned long start, end;
2870         int write_mode = (int)(unsigned long)fsdata;
2871
2872         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2873                 if (ext4_should_order_data(inode)) {
2874                         return ext4_ordered_write_end(file, mapping, pos,
2875                                         len, copied, page, fsdata);
2876                 } else if (ext4_should_writeback_data(inode)) {
2877                         return ext4_writeback_write_end(file, mapping, pos,
2878                                         len, copied, page, fsdata);
2879                 } else {
2880                         BUG();
2881                 }
2882         }
2883
2884         trace_mark(ext4_da_write_end,
2885                    "dev %s ino %lu pos %llu len %u copied %u",
2886                    inode->i_sb->s_id, inode->i_ino,
2887                    (unsigned long long) pos, len, copied);
2888         start = pos & (PAGE_CACHE_SIZE - 1);
2889         end = start + copied - 1;
2890
2891         /*
2892          * generic_write_end() will run mark_inode_dirty() if i_size
2893          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2894          * into that.
2895          */
2896
2897         new_i_size = pos + copied;
2898         if (new_i_size > EXT4_I(inode)->i_disksize) {
2899                 if (ext4_da_should_update_i_disksize(page, end)) {
2900                         down_write(&EXT4_I(inode)->i_data_sem);
2901                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2902                                 /*
2903                                  * Updating i_disksize when extending file
2904                                  * without needing block allocation
2905                                  */
2906                                 if (ext4_should_order_data(inode))
2907                                         ret = ext4_jbd2_file_inode(handle,
2908                                                                    inode);
2909
2910                                 EXT4_I(inode)->i_disksize = new_i_size;
2911                         }
2912                         up_write(&EXT4_I(inode)->i_data_sem);
2913                         /* We need to mark inode dirty even if
2914                          * new_i_size is less that inode->i_size
2915                          * bu greater than i_disksize.(hint delalloc)
2916                          */
2917                         ext4_mark_inode_dirty(handle, inode);
2918                 }
2919         }
2920         ret2 = generic_write_end(file, mapping, pos, len, copied,
2921                                                         page, fsdata);
2922         copied = ret2;
2923         if (ret2 < 0)
2924                 ret = ret2;
2925         ret2 = ext4_journal_stop(handle);
2926         if (!ret)
2927                 ret = ret2;
2928
2929         return ret ? ret : copied;
2930 }
2931
2932 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2933 {
2934         /*
2935          * Drop reserved blocks
2936          */
2937         BUG_ON(!PageLocked(page));
2938         if (!page_has_buffers(page))
2939                 goto out;
2940
2941         ext4_da_page_release_reservation(page, offset);
2942
2943 out:
2944         ext4_invalidatepage(page, offset);
2945
2946         return;
2947 }
2948
2949 /*
2950  * Force all delayed allocation blocks to be allocated for a given inode.
2951  */
2952 int ext4_alloc_da_blocks(struct inode *inode)
2953 {
2954         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2955             !EXT4_I(inode)->i_reserved_meta_blocks)
2956                 return 0;
2957
2958         /*
2959          * We do something simple for now.  The filemap_flush() will
2960          * also start triggering a write of the data blocks, which is
2961          * not strictly speaking necessary (and for users of
2962          * laptop_mode, not even desirable).  However, to do otherwise
2963          * would require replicating code paths in:
2964          * 
2965          * ext4_da_writepages() ->
2966          *    write_cache_pages() ---> (via passed in callback function)
2967          *        __mpage_da_writepage() -->
2968          *           mpage_add_bh_to_extent()
2969          *           mpage_da_map_blocks()
2970          *
2971          * The problem is that write_cache_pages(), located in
2972          * mm/page-writeback.c, marks pages clean in preparation for
2973          * doing I/O, which is not desirable if we're not planning on
2974          * doing I/O at all.
2975          *
2976          * We could call write_cache_pages(), and then redirty all of
2977          * the pages by calling redirty_page_for_writeback() but that
2978          * would be ugly in the extreme.  So instead we would need to
2979          * replicate parts of the code in the above functions,
2980          * simplifying them becuase we wouldn't actually intend to
2981          * write out the pages, but rather only collect contiguous
2982          * logical block extents, call the multi-block allocator, and
2983          * then update the buffer heads with the block allocations.
2984          * 
2985          * For now, though, we'll cheat by calling filemap_flush(),
2986          * which will map the blocks, and start the I/O, but not
2987          * actually wait for the I/O to complete.
2988          */
2989         return filemap_flush(inode->i_mapping);
2990 }
2991
2992 /*
2993  * bmap() is special.  It gets used by applications such as lilo and by
2994  * the swapper to find the on-disk block of a specific piece of data.
2995  *
2996  * Naturally, this is dangerous if the block concerned is still in the
2997  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2998  * filesystem and enables swap, then they may get a nasty shock when the
2999  * data getting swapped to that swapfile suddenly gets overwritten by
3000  * the original zero's written out previously to the journal and
3001  * awaiting writeback in the kernel's buffer cache.
3002  *
3003  * So, if we see any bmap calls here on a modified, data-journaled file,
3004  * take extra steps to flush any blocks which might be in the cache.
3005  */
3006 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3007 {
3008         struct inode *inode = mapping->host;
3009         journal_t *journal;
3010         int err;
3011
3012         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3013                         test_opt(inode->i_sb, DELALLOC)) {
3014                 /*
3015                  * With delalloc we want to sync the file
3016                  * so that we can make sure we allocate
3017                  * blocks for file
3018                  */
3019                 filemap_write_and_wait(mapping);
3020         }
3021
3022         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3023                 /*
3024                  * This is a REALLY heavyweight approach, but the use of
3025                  * bmap on dirty files is expected to be extremely rare:
3026                  * only if we run lilo or swapon on a freshly made file
3027                  * do we expect this to happen.
3028                  *
3029                  * (bmap requires CAP_SYS_RAWIO so this does not
3030                  * represent an unprivileged user DOS attack --- we'd be
3031                  * in trouble if mortal users could trigger this path at
3032                  * will.)
3033                  *
3034                  * NB. EXT4_STATE_JDATA is not set on files other than
3035                  * regular files.  If somebody wants to bmap a directory
3036                  * or symlink and gets confused because the buffer
3037                  * hasn't yet been flushed to disk, they deserve
3038                  * everything they get.
3039                  */
3040
3041                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3042                 journal = EXT4_JOURNAL(inode);
3043                 jbd2_journal_lock_updates(journal);
3044                 err = jbd2_journal_flush(journal);
3045                 jbd2_journal_unlock_updates(journal);
3046
3047                 if (err)
3048                         return 0;
3049         }
3050
3051         return generic_block_bmap(mapping, block, ext4_get_block);
3052 }
3053
3054 static int bget_one(handle_t *handle, struct buffer_head *bh)
3055 {
3056         get_bh(bh);
3057         return 0;
3058 }
3059
3060 static int bput_one(handle_t *handle, struct buffer_head *bh)
3061 {
3062         put_bh(bh);
3063         return 0;
3064 }
3065
3066 /*
3067  * Note that we don't need to start a transaction unless we're journaling data
3068  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3069  * need to file the inode to the transaction's list in ordered mode because if
3070  * we are writing back data added by write(), the inode is already there and if
3071  * we are writing back data modified via mmap(), noone guarantees in which
3072  * transaction the data will hit the disk. In case we are journaling data, we
3073  * cannot start transaction directly because transaction start ranks above page
3074  * lock so we have to do some magic.
3075  *
3076  * In all journaling modes block_write_full_page() will start the I/O.
3077  *
3078  * Problem:
3079  *
3080  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3081  *              ext4_writepage()
3082  *
3083  * Similar for:
3084  *
3085  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3086  *
3087  * Same applies to ext4_get_block().  We will deadlock on various things like
3088  * lock_journal and i_data_sem
3089  *
3090  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3091  * allocations fail.
3092  *
3093  * 16May01: If we're reentered then journal_current_handle() will be
3094  *          non-zero. We simply *return*.
3095  *
3096  * 1 July 2001: @@@ FIXME:
3097  *   In journalled data mode, a data buffer may be metadata against the
3098  *   current transaction.  But the same file is part of a shared mapping
3099  *   and someone does a writepage() on it.
3100  *
3101  *   We will move the buffer onto the async_data list, but *after* it has
3102  *   been dirtied. So there's a small window where we have dirty data on
3103  *   BJ_Metadata.
3104  *
3105  *   Note that this only applies to the last partial page in the file.  The
3106  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3107  *   broken code anyway: it's wrong for msync()).
3108  *
3109  *   It's a rare case: affects the final partial page, for journalled data
3110  *   where the file is subject to bith write() and writepage() in the same
3111  *   transction.  To fix it we'll need a custom block_write_full_page().
3112  *   We'll probably need that anyway for journalling writepage() output.
3113  *
3114  * We don't honour synchronous mounts for writepage().  That would be
3115  * disastrous.  Any write() or metadata operation will sync the fs for
3116  * us.
3117  *
3118  */
3119 static int __ext4_normal_writepage(struct page *page,
3120                                 struct writeback_control *wbc)
3121 {
3122         struct inode *inode = page->mapping->host;
3123
3124         if (test_opt(inode->i_sb, NOBH))
3125                 return nobh_writepage(page,
3126                                         ext4_normal_get_block_write, wbc);
3127         else
3128                 return block_write_full_page(page,
3129                                                 ext4_normal_get_block_write,
3130                                                 wbc);
3131 }
3132
3133 static int ext4_normal_writepage(struct page *page,
3134                                 struct writeback_control *wbc)
3135 {
3136         struct inode *inode = page->mapping->host;
3137         loff_t size = i_size_read(inode);
3138         loff_t len;
3139
3140         trace_mark(ext4_normal_writepage,
3141                    "dev %s ino %lu page_index %lu",
3142                    inode->i_sb->s_id, inode->i_ino, page->index);
3143         J_ASSERT(PageLocked(page));
3144         if (page->index == size >> PAGE_CACHE_SHIFT)
3145                 len = size & ~PAGE_CACHE_MASK;
3146         else
3147                 len = PAGE_CACHE_SIZE;
3148
3149         if (page_has_buffers(page)) {
3150                 /* if page has buffers it should all be mapped
3151                  * and allocated. If there are not buffers attached
3152                  * to the page we know the page is dirty but it lost
3153                  * buffers. That means that at some moment in time
3154                  * after write_begin() / write_end() has been called
3155                  * all buffers have been clean and thus they must have been
3156                  * written at least once. So they are all mapped and we can
3157                  * happily proceed with mapping them and writing the page.
3158                  */
3159                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3160                                         ext4_bh_unmapped_or_delay));
3161         }
3162
3163         if (!ext4_journal_current_handle())
3164                 return __ext4_normal_writepage(page, wbc);
3165
3166         redirty_page_for_writepage(wbc, page);
3167         unlock_page(page);
3168         return 0;
3169 }
3170
3171 static int __ext4_journalled_writepage(struct page *page,
3172                                 struct writeback_control *wbc)
3173 {
3174         struct address_space *mapping = page->mapping;
3175         struct inode *inode = mapping->host;
3176         struct buffer_head *page_bufs;
3177         handle_t *handle = NULL;
3178         int ret = 0;
3179         int err;
3180
3181         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3182                                         ext4_normal_get_block_write);
3183         if (ret != 0)
3184                 goto out_unlock;
3185
3186         page_bufs = page_buffers(page);
3187         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3188                                                                 bget_one);
3189         /* As soon as we unlock the page, it can go away, but we have
3190          * references to buffers so we are safe */
3191         unlock_page(page);
3192
3193         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3194         if (IS_ERR(handle)) {
3195                 ret = PTR_ERR(handle);
3196                 goto out;
3197         }
3198
3199         ret = walk_page_buffers(handle, page_bufs, 0,
3200                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3201
3202         err = walk_page_buffers(handle, page_bufs, 0,
3203                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3204         if (ret == 0)
3205                 ret = err;
3206         err = ext4_journal_stop(handle);
3207         if (!ret)
3208                 ret = err;
3209
3210         walk_page_buffers(handle, page_bufs, 0,
3211                                 PAGE_CACHE_SIZE, NULL, bput_one);
3212         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3213         goto out;
3214
3215 out_unlock:
3216         unlock_page(page);
3217 out:
3218         return ret;
3219 }
3220
3221 static int ext4_journalled_writepage(struct page *page,
3222                                 struct writeback_control *wbc)
3223 {
3224         struct inode *inode = page->mapping->host;
3225         loff_t size = i_size_read(inode);
3226         loff_t len;
3227
3228         trace_mark(ext4_journalled_writepage,
3229                    "dev %s ino %lu page_index %lu",
3230                    inode->i_sb->s_id, inode->i_ino, page->index);
3231         J_ASSERT(PageLocked(page));
3232         if (page->index == size >> PAGE_CACHE_SHIFT)
3233                 len = size & ~PAGE_CACHE_MASK;
3234         else
3235                 len = PAGE_CACHE_SIZE;
3236
3237         if (page_has_buffers(page)) {
3238                 /* if page has buffers it should all be mapped
3239                  * and allocated. If there are not buffers attached
3240                  * to the page we know the page is dirty but it lost
3241                  * buffers. That means that at some moment in time
3242                  * after write_begin() / write_end() has been called
3243                  * all buffers have been clean and thus they must have been
3244                  * written at least once. So they are all mapped and we can
3245                  * happily proceed with mapping them and writing the page.
3246                  */
3247                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3248                                         ext4_bh_unmapped_or_delay));
3249         }
3250
3251         if (ext4_journal_current_handle())
3252                 goto no_write;
3253
3254         if (PageChecked(page)) {
3255                 /*
3256                  * It's mmapped pagecache.  Add buffers and journal it.  There
3257                  * doesn't seem much point in redirtying the page here.
3258                  */
3259                 ClearPageChecked(page);
3260                 return __ext4_journalled_writepage(page, wbc);
3261         } else {
3262                 /*
3263                  * It may be a page full of checkpoint-mode buffers.  We don't
3264                  * really know unless we go poke around in the buffer_heads.
3265                  * But block_write_full_page will do the right thing.
3266                  */
3267                 return block_write_full_page(page,
3268                                                 ext4_normal_get_block_write,
3269                                                 wbc);
3270         }
3271 no_write:
3272         redirty_page_for_writepage(wbc, page);
3273         unlock_page(page);
3274         return 0;
3275 }
3276
3277 static int ext4_readpage(struct file *file, struct page *page)
3278 {
3279         return mpage_readpage(page, ext4_get_block);
3280 }
3281
3282 static int
3283 ext4_readpages(struct file *file, struct address_space *mapping,
3284                 struct list_head *pages, unsigned nr_pages)
3285 {
3286         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3287 }
3288
3289 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3290 {
3291         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3292
3293         /*
3294          * If it's a full truncate we just forget about the pending dirtying
3295          */
3296         if (offset == 0)
3297                 ClearPageChecked(page);
3298
3299         if (journal)
3300                 jbd2_journal_invalidatepage(journal, page, offset);
3301         else
3302                 block_invalidatepage(page, offset);
3303 }
3304
3305 static int ext4_releasepage(struct page *page, gfp_t wait)
3306 {
3307         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3308
3309         WARN_ON(PageChecked(page));
3310         if (!page_has_buffers(page))
3311                 return 0;
3312         if (journal)
3313                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3314         else
3315                 return try_to_free_buffers(page);
3316 }
3317
3318 /*
3319  * If the O_DIRECT write will extend the file then add this inode to the
3320  * orphan list.  So recovery will truncate it back to the original size
3321  * if the machine crashes during the write.
3322  *
3323  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3324  * crashes then stale disk data _may_ be exposed inside the file. But current
3325  * VFS code falls back into buffered path in that case so we are safe.
3326  */
3327 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3328                         const struct iovec *iov, loff_t offset,
3329                         unsigned long nr_segs)
3330 {
3331         struct file *file = iocb->ki_filp;
3332         struct inode *inode = file->f_mapping->host;
3333         struct ext4_inode_info *ei = EXT4_I(inode);
3334         handle_t *handle;
3335         ssize_t ret;
3336         int orphan = 0;
3337         size_t count = iov_length(iov, nr_segs);
3338
3339         if (rw == WRITE) {
3340                 loff_t final_size = offset + count;
3341
3342                 if (final_size > inode->i_size) {
3343                         /* Credits for sb + inode write */
3344                         handle = ext4_journal_start(inode, 2);
3345                         if (IS_ERR(handle)) {
3346                                 ret = PTR_ERR(handle);
3347                                 goto out;
3348                         }
3349                         ret = ext4_orphan_add(handle, inode);
3350                         if (ret) {
3351                                 ext4_journal_stop(handle);
3352                                 goto out;
3353                         }
3354                         orphan = 1;
3355                         ei->i_disksize = inode->i_size;
3356                         ext4_journal_stop(handle);
3357                 }
3358         }
3359
3360         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3361                                  offset, nr_segs,
3362                                  ext4_get_block, NULL);
3363
3364         if (orphan) {
3365                 int err;
3366
3367                 /* Credits for sb + inode write */
3368                 handle = ext4_journal_start(inode, 2);
3369                 if (IS_ERR(handle)) {
3370                         /* This is really bad luck. We've written the data
3371                          * but cannot extend i_size. Bail out and pretend
3372                          * the write failed... */
3373                         ret = PTR_ERR(handle);
3374                         goto out;
3375                 }
3376                 if (inode->i_nlink)
3377                         ext4_orphan_del(handle, inode);
3378                 if (ret > 0) {
3379                         loff_t end = offset + ret;
3380                         if (end > inode->i_size) {
3381                                 ei->i_disksize = end;
3382                                 i_size_write(inode, end);
3383                                 /*
3384                                  * We're going to return a positive `ret'
3385                                  * here due to non-zero-length I/O, so there's
3386                                  * no way of reporting error returns from
3387                                  * ext4_mark_inode_dirty() to userspace.  So
3388                                  * ignore it.
3389                                  */
3390                                 ext4_mark_inode_dirty(handle, inode);
3391                         }
3392                 }
3393                 err = ext4_journal_stop(handle);
3394                 if (ret == 0)
3395                         ret = err;
3396         }
3397 out:
3398         return ret;
3399 }
3400
3401 /*
3402  * Pages can be marked dirty completely asynchronously from ext4's journalling
3403  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3404  * much here because ->set_page_dirty is called under VFS locks.  The page is
3405  * not necessarily locked.
3406  *
3407  * We cannot just dirty the page and leave attached buffers clean, because the
3408  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3409  * or jbddirty because all the journalling code will explode.
3410  *
3411  * So what we do is to mark the page "pending dirty" and next time writepage
3412  * is called, propagate that into the buffers appropriately.
3413  */
3414 static int ext4_journalled_set_page_dirty(struct page *page)
3415 {
3416         SetPageChecked(page);
3417         return __set_page_dirty_nobuffers(page);
3418 }
3419
3420 static const struct address_space_operations ext4_ordered_aops = {
3421         .readpage               = ext4_readpage,
3422         .readpages              = ext4_readpages,
3423         .writepage              = ext4_normal_writepage,
3424         .sync_page              = block_sync_page,
3425         .write_begin            = ext4_write_begin,
3426         .write_end              = ext4_ordered_write_end,
3427         .bmap                   = ext4_bmap,
3428         .invalidatepage         = ext4_invalidatepage,
3429         .releasepage            = ext4_releasepage,
3430         .direct_IO              = ext4_direct_IO,
3431         .migratepage            = buffer_migrate_page,
3432         .is_partially_uptodate  = block_is_partially_uptodate,
3433 };
3434
3435 static const struct address_space_operations ext4_writeback_aops = {
3436         .readpage               = ext4_readpage,
3437         .readpages              = ext4_readpages,
3438         .writepage              = ext4_normal_writepage,
3439         .sync_page              = block_sync_page,
3440         .write_begin            = ext4_write_begin,
3441         .write_end              = ext4_writeback_write_end,
3442         .bmap                   = ext4_bmap,
3443         .invalidatepage         = ext4_invalidatepage,
3444         .releasepage            = ext4_releasepage,
3445         .direct_IO              = ext4_direct_IO,
3446         .migratepage            = buffer_migrate_page,
3447         .is_partially_uptodate  = block_is_partially_uptodate,
3448 };
3449
3450 static const struct address_space_operations ext4_journalled_aops = {
3451         .readpage               = ext4_readpage,
3452         .readpages              = ext4_readpages,
3453         .writepage              = ext4_journalled_writepage,
3454         .sync_page              = block_sync_page,
3455         .write_begin            = ext4_write_begin,
3456         .write_end              = ext4_journalled_write_end,
3457         .set_page_dirty         = ext4_journalled_set_page_dirty,
3458         .bmap                   = ext4_bmap,
3459         .invalidatepage         = ext4_invalidatepage,
3460         .releasepage            = ext4_releasepage,
3461         .is_partially_uptodate  = block_is_partially_uptodate,
3462 };
3463
3464 static const struct address_space_operations ext4_da_aops = {
3465         .readpage               = ext4_readpage,
3466         .readpages              = ext4_readpages,
3467         .writepage              = ext4_da_writepage,
3468         .writepages             = ext4_da_writepages,
3469         .sync_page              = block_sync_page,
3470         .write_begin            = ext4_da_write_begin,
3471         .write_end              = ext4_da_write_end,
3472         .bmap                   = ext4_bmap,
3473         .invalidatepage         = ext4_da_invalidatepage,
3474         .releasepage            = ext4_releasepage,
3475         .direct_IO              = ext4_direct_IO,
3476         .migratepage            = buffer_migrate_page,
3477         .is_partially_uptodate  = block_is_partially_uptodate,
3478 };
3479
3480 void ext4_set_aops(struct inode *inode)
3481 {
3482         if (ext4_should_order_data(inode) &&
3483                 test_opt(inode->i_sb, DELALLOC))
3484                 inode->i_mapping->a_ops = &ext4_da_aops;
3485         else if (ext4_should_order_data(inode))
3486                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3487         else if (ext4_should_writeback_data(inode) &&
3488                  test_opt(inode->i_sb, DELALLOC))
3489                 inode->i_mapping->a_ops = &ext4_da_aops;
3490         else if (ext4_should_writeback_data(inode))
3491                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3492         else
3493                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3494 }
3495
3496 /*
3497  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3498  * up to the end of the block which corresponds to `from'.
3499  * This required during truncate. We need to physically zero the tail end
3500  * of that block so it doesn't yield old data if the file is later grown.
3501  */
3502 int ext4_block_truncate_page(handle_t *handle,
3503                 struct address_space *mapping, loff_t from)
3504 {
3505         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3506         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3507         unsigned blocksize, length, pos;
3508         ext4_lblk_t iblock;
3509         struct inode *inode = mapping->host;
3510         struct buffer_head *bh;
3511         struct page *page;
3512         int err = 0;
3513
3514         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3515         if (!page)
3516                 return -EINVAL;
3517
3518         blocksize = inode->i_sb->s_blocksize;
3519         length = blocksize - (offset & (blocksize - 1));
3520         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3521
3522         /*
3523          * For "nobh" option,  we can only work if we don't need to
3524          * read-in the page - otherwise we create buffers to do the IO.
3525          */
3526         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3527              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3528                 zero_user(page, offset, length);
3529                 set_page_dirty(page);
3530                 goto unlock;
3531         }
3532
3533         if (!page_has_buffers(page))
3534                 create_empty_buffers(page, blocksize, 0);
3535
3536         /* Find the buffer that contains "offset" */
3537         bh = page_buffers(page);
3538         pos = blocksize;
3539         while (offset >= pos) {
3540                 bh = bh->b_this_page;
3541                 iblock++;
3542                 pos += blocksize;
3543         }
3544
3545         err = 0;
3546         if (buffer_freed(bh)) {
3547                 BUFFER_TRACE(bh, "freed: skip");
3548                 goto unlock;
3549         }
3550
3551         if (!buffer_mapped(bh)) {
3552                 BUFFER_TRACE(bh, "unmapped");
3553                 ext4_get_block(inode, iblock, bh, 0);
3554                 /* unmapped? It's a hole - nothing to do */
3555                 if (!buffer_mapped(bh)) {
3556                         BUFFER_TRACE(bh, "still unmapped");
3557                         goto unlock;
3558                 }
3559         }
3560
3561         /* Ok, it's mapped. Make sure it's up-to-date */
3562         if (PageUptodate(page))
3563                 set_buffer_uptodate(bh);
3564
3565         if (!buffer_uptodate(bh)) {
3566                 err = -EIO;
3567                 ll_rw_block(READ, 1, &bh);
3568                 wait_on_buffer(bh);
3569                 /* Uhhuh. Read error. Complain and punt. */
3570                 if (!buffer_uptodate(bh))
3571                         goto unlock;
3572         }
3573
3574         if (ext4_should_journal_data(inode)) {
3575                 BUFFER_TRACE(bh, "get write access");
3576                 err = ext4_journal_get_write_access(handle, bh);
3577                 if (err)
3578                         goto unlock;
3579         }
3580
3581         zero_user(page, offset, length);
3582
3583         BUFFER_TRACE(bh, "zeroed end of block");
3584
3585         err = 0;
3586         if (ext4_should_journal_data(inode)) {
3587                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3588         } else {
3589                 if (ext4_should_order_data(inode))
3590                         err = ext4_jbd2_file_inode(handle, inode);
3591                 mark_buffer_dirty(bh);
3592         }
3593
3594 unlock:
3595         unlock_page(page);
3596         page_cache_release(page);
3597         return err;
3598 }
3599
3600 /*
3601  * Probably it should be a library function... search for first non-zero word
3602  * or memcmp with zero_page, whatever is better for particular architecture.
3603  * Linus?
3604  */
3605 static inline int all_zeroes(__le32 *p, __le32 *q)
3606 {
3607         while (p < q)
3608                 if (*p++)
3609                         return 0;
3610         return 1;
3611 }
3612
3613 /**
3614  *      ext4_find_shared - find the indirect blocks for partial truncation.
3615  *      @inode:   inode in question
3616  *      @depth:   depth of the affected branch
3617  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3618  *      @chain:   place to store the pointers to partial indirect blocks
3619  *      @top:     place to the (detached) top of branch
3620  *
3621  *      This is a helper function used by ext4_truncate().
3622  *
3623  *      When we do truncate() we may have to clean the ends of several
3624  *      indirect blocks but leave the blocks themselves alive. Block is
3625  *      partially truncated if some data below the new i_size is refered
3626  *      from it (and it is on the path to the first completely truncated
3627  *      data block, indeed).  We have to free the top of that path along
3628  *      with everything to the right of the path. Since no allocation
3629  *      past the truncation point is possible until ext4_truncate()
3630  *      finishes, we may safely do the latter, but top of branch may
3631  *      require special attention - pageout below the truncation point
3632  *      might try to populate it.
3633  *
3634  *      We atomically detach the top of branch from the tree, store the
3635  *      block number of its root in *@top, pointers to buffer_heads of
3636  *      partially truncated blocks - in @chain[].bh and pointers to
3637  *      their last elements that should not be removed - in
3638  *      @chain[].p. Return value is the pointer to last filled element
3639  *      of @chain.
3640  *
3641  *      The work left to caller to do the actual freeing of subtrees:
3642  *              a) free the subtree starting from *@top
3643  *              b) free the subtrees whose roots are stored in
3644  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3645  *              c) free the subtrees growing from the inode past the @chain[0].
3646  *                      (no partially truncated stuff there).  */
3647
3648 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3649                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3650 {
3651         Indirect *partial, *p;
3652         int k, err;
3653
3654         *top = 0;
3655         /* Make k index the deepest non-null offest + 1 */
3656         for (k = depth; k > 1 && !offsets[k-1]; k--)
3657                 ;
3658         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3659         /* Writer: pointers */
3660         if (!partial)
3661                 partial = chain + k-1;
3662         /*
3663          * If the branch acquired continuation since we've looked at it -
3664          * fine, it should all survive and (new) top doesn't belong to us.
3665          */
3666         if (!partial->key && *partial->p)
3667                 /* Writer: end */
3668                 goto no_top;
3669         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3670                 ;
3671         /*
3672          * OK, we've found the last block that must survive. The rest of our
3673          * branch should be detached before unlocking. However, if that rest
3674          * of branch is all ours and does not grow immediately from the inode
3675          * it's easier to cheat and just decrement partial->p.
3676          */
3677         if (p == chain + k - 1 && p > chain) {
3678                 p->p--;
3679         } else {
3680                 *top = *p->p;
3681                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3682 #if 0
3683                 *p->p = 0;
3684 #endif
3685         }
3686         /* Writer: end */
3687
3688         while (partial > p) {
3689                 brelse(partial->bh);
3690                 partial--;
3691         }
3692 no_top:
3693         return partial;
3694 }
3695
3696 /*
3697  * Zero a number of block pointers in either an inode or an indirect block.
3698  * If we restart the transaction we must again get write access to the
3699  * indirect block for further modification.
3700  *
3701  * We release `count' blocks on disk, but (last - first) may be greater
3702  * than `count' because there can be holes in there.
3703  */
3704 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3705                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3706                 unsigned long count, __le32 *first, __le32 *last)
3707 {
3708         __le32 *p;
3709         if (try_to_extend_transaction(handle, inode)) {
3710                 if (bh) {
3711                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3712                         ext4_handle_dirty_metadata(handle, inode, bh);
3713                 }
3714                 ext4_mark_inode_dirty(handle, inode);
3715                 ext4_journal_test_restart(handle, inode);
3716                 if (bh) {
3717                         BUFFER_TRACE(bh, "retaking write access");
3718                         ext4_journal_get_write_access(handle, bh);
3719                 }
3720         }
3721
3722         /*
3723          * Any buffers which are on the journal will be in memory. We find
3724          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3725          * on them.  We've already detached each block from the file, so
3726          * bforget() in jbd2_journal_forget() should be safe.
3727          *
3728          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3729          */
3730         for (p = first; p < last; p++) {
3731                 u32 nr = le32_to_cpu(*p);
3732                 if (nr) {
3733                         struct buffer_head *tbh;
3734
3735                         *p = 0;
3736                         tbh = sb_find_get_block(inode->i_sb, nr);
3737                         ext4_forget(handle, 0, inode, tbh, nr);
3738                 }
3739         }
3740
3741         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3742 }
3743
3744 /**
3745  * ext4_free_data - free a list of data blocks
3746  * @handle:     handle for this transaction
3747  * @inode:      inode we are dealing with
3748  * @this_bh:    indirect buffer_head which contains *@first and *@last
3749  * @first:      array of block numbers
3750  * @last:       points immediately past the end of array
3751  *
3752  * We are freeing all blocks refered from that array (numbers are stored as
3753  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3754  *
3755  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3756  * blocks are contiguous then releasing them at one time will only affect one
3757  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3758  * actually use a lot of journal space.
3759  *
3760  * @this_bh will be %NULL if @first and @last point into the inode's direct
3761  * block pointers.
3762  */
3763 static void ext4_free_data(handle_t *handle, struct inode *inode,
3764                            struct buffer_head *this_bh,
3765                            __le32 *first, __le32 *last)
3766 {
3767         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3768         unsigned long count = 0;            /* Number of blocks in the run */
3769         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3770                                                corresponding to
3771                                                block_to_free */
3772         ext4_fsblk_t nr;                    /* Current block # */
3773         __le32 *p;                          /* Pointer into inode/ind
3774                                                for current block */
3775         int err;
3776
3777         if (this_bh) {                          /* For indirect block */
3778                 BUFFER_TRACE(this_bh, "get_write_access");
3779                 err = ext4_journal_get_write_access(handle, this_bh);
3780                 /* Important: if we can't update the indirect pointers
3781                  * to the blocks, we can't free them. */
3782                 if (err)
3783                         return;
3784         }
3785
3786         for (p = first; p < last; p++) {
3787                 nr = le32_to_cpu(*p);
3788                 if (nr) {
3789                         /* accumulate blocks to free if they're contiguous */
3790                         if (count == 0) {
3791                                 block_to_free = nr;
3792                                 block_to_free_p = p;
3793                                 count = 1;
3794                         } else if (nr == block_to_free + count) {
3795                                 count++;
3796                         } else {
3797                                 ext4_clear_blocks(handle, inode, this_bh,
3798                                                   block_to_free,
3799                                                   count, block_to_free_p, p);
3800                                 block_to_free = nr;
3801                                 block_to_free_p = p;
3802                                 count = 1;
3803                         }
3804                 }
3805         }
3806
3807         if (count > 0)
3808                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3809                                   count, block_to_free_p, p);
3810
3811         if (this_bh) {
3812                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3813
3814                 /*
3815                  * The buffer head should have an attached journal head at this
3816                  * point. However, if the data is corrupted and an indirect
3817                  * block pointed to itself, it would have been detached when
3818                  * the block was cleared. Check for this instead of OOPSing.
3819                  */
3820                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3821                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3822                 else
3823                         ext4_error(inode->i_sb, __func__,
3824                                    "circular indirect block detected, "
3825                                    "inode=%lu, block=%llu",
3826                                    inode->i_ino,
3827                                    (unsigned long long) this_bh->b_blocknr);
3828         }
3829 }
3830
3831 /**
3832  *      ext4_free_branches - free an array of branches
3833  *      @handle: JBD handle for this transaction
3834  *      @inode: inode we are dealing with
3835  *      @parent_bh: the buffer_head which contains *@first and *@last
3836  *      @first: array of block numbers
3837  *      @last:  pointer immediately past the end of array
3838  *      @depth: depth of the branches to free
3839  *
3840  *      We are freeing all blocks refered from these branches (numbers are
3841  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3842  *      appropriately.
3843  */
3844 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3845                                struct buffer_head *parent_bh,
3846                                __le32 *first, __le32 *last, int depth)
3847 {
3848         ext4_fsblk_t nr;
3849         __le32 *p;
3850
3851         if (ext4_handle_is_aborted(handle))
3852                 return;
3853
3854         if (depth--) {
3855                 struct buffer_head *bh;
3856                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3857                 p = last;
3858                 while (--p >= first) {
3859                         nr = le32_to_cpu(*p);
3860                         if (!nr)
3861                                 continue;               /* A hole */
3862
3863                         /* Go read the buffer for the next level down */
3864                         bh = sb_bread(inode->i_sb, nr);
3865
3866                         /*
3867                          * A read failure? Report error and clear slot
3868                          * (should be rare).
3869                          */
3870                         if (!bh) {
3871                                 ext4_error(inode->i_sb, "ext4_free_branches",
3872                                            "Read failure, inode=%lu, block=%llu",
3873                                            inode->i_ino, nr);
3874                                 continue;
3875                         }
3876
3877                         /* This zaps the entire block.  Bottom up. */
3878                         BUFFER_TRACE(bh, "free child branches");
3879                         ext4_free_branches(handle, inode, bh,
3880                                         (__le32 *) bh->b_data,
3881                                         (__le32 *) bh->b_data + addr_per_block,
3882                                         depth);
3883
3884                         /*
3885                          * We've probably journalled the indirect block several
3886                          * times during the truncate.  But it's no longer
3887                          * needed and we now drop it from the transaction via
3888                          * jbd2_journal_revoke().
3889                          *
3890                          * That's easy if it's exclusively part of this
3891                          * transaction.  But if it's part of the committing
3892                          * transaction then jbd2_journal_forget() will simply
3893                          * brelse() it.  That means that if the underlying
3894                          * block is reallocated in ext4_get_block(),
3895                          * unmap_underlying_metadata() will find this block
3896                          * and will try to get rid of it.  damn, damn.
3897                          *
3898                          * If this block has already been committed to the
3899                          * journal, a revoke record will be written.  And
3900                          * revoke records must be emitted *before* clearing
3901                          * this block's bit in the bitmaps.
3902                          */
3903                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3904
3905                         /*
3906                          * Everything below this this pointer has been
3907                          * released.  Now let this top-of-subtree go.
3908                          *
3909                          * We want the freeing of this indirect block to be
3910                          * atomic in the journal with the updating of the
3911                          * bitmap block which owns it.  So make some room in
3912                          * the journal.
3913                          *
3914                          * We zero the parent pointer *after* freeing its
3915                          * pointee in the bitmaps, so if extend_transaction()
3916                          * for some reason fails to put the bitmap changes and
3917                          * the release into the same transaction, recovery
3918                          * will merely complain about releasing a free block,
3919                          * rather than leaking blocks.
3920                          */
3921                         if (ext4_handle_is_aborted(handle))
3922                                 return;
3923                         if (try_to_extend_transaction(handle, inode)) {
3924                                 ext4_mark_inode_dirty(handle, inode);
3925                                 ext4_journal_test_restart(handle, inode);
3926                         }
3927
3928                         ext4_free_blocks(handle, inode, nr, 1, 1);
3929
3930                         if (parent_bh) {
3931                                 /*
3932                                  * The block which we have just freed is
3933                                  * pointed to by an indirect block: journal it
3934                                  */
3935                                 BUFFER_TRACE(parent_bh, "get_write_access");
3936                                 if (!ext4_journal_get_write_access(handle,
3937                                                                    parent_bh)){
3938                                         *p = 0;
3939                                         BUFFER_TRACE(parent_bh,
3940                                         "call ext4_handle_dirty_metadata");
3941                                         ext4_handle_dirty_metadata(handle,
3942                                                                    inode,
3943                                                                    parent_bh);
3944                                 }
3945                         }
3946                 }
3947         } else {
3948                 /* We have reached the bottom of the tree. */
3949                 BUFFER_TRACE(parent_bh, "free data blocks");
3950                 ext4_free_data(handle, inode, parent_bh, first, last);
3951         }
3952 }
3953
3954 int ext4_can_truncate(struct inode *inode)
3955 {
3956         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3957                 return 0;
3958         if (S_ISREG(inode->i_mode))
3959                 return 1;
3960         if (S_ISDIR(inode->i_mode))
3961                 return 1;
3962         if (S_ISLNK(inode->i_mode))
3963                 return !ext4_inode_is_fast_symlink(inode);
3964         return 0;
3965 }
3966
3967 /*
3968  * ext4_truncate()
3969  *
3970  * We block out ext4_get_block() block instantiations across the entire
3971  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3972  * simultaneously on behalf of the same inode.
3973  *
3974  * As we work through the truncate and commmit bits of it to the journal there
3975  * is one core, guiding principle: the file's tree must always be consistent on
3976  * disk.  We must be able to restart the truncate after a crash.
3977  *
3978  * The file's tree may be transiently inconsistent in memory (although it
3979  * probably isn't), but whenever we close off and commit a journal transaction,
3980  * the contents of (the filesystem + the journal) must be consistent and
3981  * restartable.  It's pretty simple, really: bottom up, right to left (although
3982  * left-to-right works OK too).
3983  *
3984  * Note that at recovery time, journal replay occurs *before* the restart of
3985  * truncate against the orphan inode list.
3986  *
3987  * The committed inode has the new, desired i_size (which is the same as
3988  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3989  * that this inode's truncate did not complete and it will again call
3990  * ext4_truncate() to have another go.  So there will be instantiated blocks
3991  * to the right of the truncation point in a crashed ext4 filesystem.  But
3992  * that's fine - as long as they are linked from the inode, the post-crash
3993  * ext4_truncate() run will find them and release them.
3994  */
3995 void ext4_truncate(struct inode *inode)
3996 {
3997         handle_t *handle;
3998         struct ext4_inode_info *ei = EXT4_I(inode);
3999         __le32 *i_data = ei->i_data;
4000         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4001         struct address_space *mapping = inode->i_mapping;
4002         ext4_lblk_t offsets[4];
4003         Indirect chain[4];
4004         Indirect *partial;
4005         __le32 nr = 0;
4006         int n;
4007         ext4_lblk_t last_block;
4008         unsigned blocksize = inode->i_sb->s_blocksize;
4009
4010         if (!ext4_can_truncate(inode))
4011                 return;
4012
4013         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4014                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4015
4016         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4017                 ext4_ext_truncate(inode);
4018                 return;
4019         }
4020
4021         handle = start_transaction(inode);
4022         if (IS_ERR(handle))
4023                 return;         /* AKPM: return what? */
4024
4025         last_block = (inode->i_size + blocksize-1)
4026                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4027
4028         if (inode->i_size & (blocksize - 1))
4029                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4030                         goto out_stop;
4031
4032         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4033         if (n == 0)
4034                 goto out_stop;  /* error */
4035
4036         /*
4037          * OK.  This truncate is going to happen.  We add the inode to the
4038          * orphan list, so that if this truncate spans multiple transactions,
4039          * and we crash, we will resume the truncate when the filesystem
4040          * recovers.  It also marks the inode dirty, to catch the new size.
4041          *
4042          * Implication: the file must always be in a sane, consistent
4043          * truncatable state while each transaction commits.
4044          */
4045         if (ext4_orphan_add(handle, inode))
4046                 goto out_stop;
4047
4048         /*
4049          * From here we block out all ext4_get_block() callers who want to
4050          * modify the block allocation tree.
4051          */
4052         down_write(&ei->i_data_sem);
4053
4054         ext4_discard_preallocations(inode);
4055
4056         /*
4057          * The orphan list entry will now protect us from any crash which
4058          * occurs before the truncate completes, so it is now safe to propagate
4059          * the new, shorter inode size (held for now in i_size) into the
4060          * on-disk inode. We do this via i_disksize, which is the value which
4061          * ext4 *really* writes onto the disk inode.
4062          */
4063         ei->i_disksize = inode->i_size;
4064
4065         if (n == 1) {           /* direct blocks */
4066                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4067                                i_data + EXT4_NDIR_BLOCKS);
4068                 goto do_indirects;
4069         }
4070
4071         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4072         /* Kill the top of shared branch (not detached) */
4073         if (nr) {
4074                 if (partial == chain) {
4075                         /* Shared branch grows from the inode */
4076                         ext4_free_branches(handle, inode, NULL,
4077                                            &nr, &nr+1, (chain+n-1) - partial);
4078                         *partial->p = 0;
4079                         /*
4080                          * We mark the inode dirty prior to restart,
4081                          * and prior to stop.  No need for it here.
4082                          */
4083                 } else {
4084                         /* Shared branch grows from an indirect block */
4085                         BUFFER_TRACE(partial->bh, "get_write_access");
4086                         ext4_free_branches(handle, inode, partial->bh,
4087                                         partial->p,
4088                                         partial->p+1, (chain+n-1) - partial);
4089                 }
4090         }
4091         /* Clear the ends of indirect blocks on the shared branch */
4092         while (partial > chain) {
4093                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4094                                    (__le32*)partial->bh->b_data+addr_per_block,
4095                                    (chain+n-1) - partial);
4096                 BUFFER_TRACE(partial->bh, "call brelse");
4097                 brelse (partial->bh);
4098                 partial--;
4099         }
4100 do_indirects:
4101         /* Kill the remaining (whole) subtrees */
4102         switch (offsets[0]) {
4103         default:
4104                 nr = i_data[EXT4_IND_BLOCK];
4105                 if (nr) {
4106                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4107                         i_data[EXT4_IND_BLOCK] = 0;
4108                 }
4109         case EXT4_IND_BLOCK:
4110                 nr = i_data[EXT4_DIND_BLOCK];
4111                 if (nr) {
4112                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4113                         i_data[EXT4_DIND_BLOCK] = 0;
4114                 }
4115         case EXT4_DIND_BLOCK:
4116                 nr = i_data[EXT4_TIND_BLOCK];
4117                 if (nr) {
4118                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4119                         i_data[EXT4_TIND_BLOCK] = 0;
4120                 }
4121         case EXT4_TIND_BLOCK:
4122                 ;
4123         }
4124
4125         up_write(&ei->i_data_sem);
4126         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4127         ext4_mark_inode_dirty(handle, inode);
4128
4129         /*
4130          * In a multi-transaction truncate, we only make the final transaction
4131          * synchronous
4132          */
4133         if (IS_SYNC(inode))
4134                 ext4_handle_sync(handle);
4135 out_stop:
4136         /*
4137          * If this was a simple ftruncate(), and the file will remain alive
4138          * then we need to clear up the orphan record which we created above.
4139          * However, if this was a real unlink then we were called by
4140          * ext4_delete_inode(), and we allow that function to clean up the
4141          * orphan info for us.
4142          */
4143         if (inode->i_nlink)
4144                 ext4_orphan_del(handle, inode);
4145
4146         ext4_journal_stop(handle);
4147 }
4148
4149 /*
4150  * ext4_get_inode_loc returns with an extra refcount against the inode's
4151  * underlying buffer_head on success. If 'in_mem' is true, we have all
4152  * data in memory that is needed to recreate the on-disk version of this
4153  * inode.
4154  */
4155 static int __ext4_get_inode_loc(struct inode *inode,
4156                                 struct ext4_iloc *iloc, int in_mem)
4157 {
4158         struct ext4_group_desc  *gdp;
4159         struct buffer_head      *bh;
4160         struct super_block      *sb = inode->i_sb;
4161         ext4_fsblk_t            block;
4162         int                     inodes_per_block, inode_offset;
4163
4164         iloc->bh = NULL;
4165         if (!ext4_valid_inum(sb, inode->i_ino))
4166                 return -EIO;
4167
4168         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4169         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4170         if (!gdp)
4171                 return -EIO;
4172
4173         /*
4174          * Figure out the offset within the block group inode table
4175          */
4176         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4177         inode_offset = ((inode->i_ino - 1) %
4178                         EXT4_INODES_PER_GROUP(sb));
4179         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4180         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4181
4182         bh = sb_getblk(sb, block);
4183         if (!bh) {
4184                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4185                            "inode block - inode=%lu, block=%llu",
4186                            inode->i_ino, block);
4187                 return -EIO;
4188         }
4189         if (!buffer_uptodate(bh)) {
4190                 lock_buffer(bh);
4191
4192                 /*
4193                  * If the buffer has the write error flag, we have failed
4194                  * to write out another inode in the same block.  In this
4195                  * case, we don't have to read the block because we may
4196                  * read the old inode data successfully.
4197                  */
4198                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4199                         set_buffer_uptodate(bh);
4200
4201                 if (buffer_uptodate(bh)) {
4202                         /* someone brought it uptodate while we waited */
4203                         unlock_buffer(bh);
4204                         goto has_buffer;
4205                 }
4206
4207                 /*
4208                  * If we have all information of the inode in memory and this
4209                  * is the only valid inode in the block, we need not read the
4210                  * block.
4211                  */
4212                 if (in_mem) {
4213                         struct buffer_head *bitmap_bh;
4214                         int i, start;
4215
4216                         start = inode_offset & ~(inodes_per_block - 1);
4217
4218                         /* Is the inode bitmap in cache? */
4219                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4220                         if (!bitmap_bh)
4221                                 goto make_io;
4222
4223                         /*
4224                          * If the inode bitmap isn't in cache then the
4225                          * optimisation may end up performing two reads instead
4226                          * of one, so skip it.
4227                          */
4228                         if (!buffer_uptodate(bitmap_bh)) {
4229                                 brelse(bitmap_bh);
4230                                 goto make_io;
4231                         }
4232                         for (i = start; i < start + inodes_per_block; i++) {
4233                                 if (i == inode_offset)
4234                                         continue;
4235                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4236                                         break;
4237                         }
4238                         brelse(bitmap_bh);
4239                         if (i == start + inodes_per_block) {
4240                                 /* all other inodes are free, so skip I/O */
4241                                 memset(bh->b_data, 0, bh->b_size);
4242                                 set_buffer_uptodate(bh);
4243                                 unlock_buffer(bh);
4244                                 goto has_buffer;
4245                         }
4246                 }
4247
4248 make_io:
4249                 /*
4250                  * If we need to do any I/O, try to pre-readahead extra
4251                  * blocks from the inode table.
4252                  */
4253                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4254                         ext4_fsblk_t b, end, table;
4255                         unsigned num;
4256
4257                         table = ext4_inode_table(sb, gdp);
4258                         /* s_inode_readahead_blks is always a power of 2 */
4259                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4260                         if (table > b)
4261                                 b = table;
4262                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4263                         num = EXT4_INODES_PER_GROUP(sb);
4264                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4265                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4266                                 num -= ext4_itable_unused_count(sb, gdp);
4267                         table += num / inodes_per_block;
4268                         if (end > table)
4269                                 end = table;
4270                         while (b <= end)
4271                                 sb_breadahead(sb, b++);
4272                 }
4273
4274                 /*
4275                  * There are other valid inodes in the buffer, this inode
4276                  * has in-inode xattrs, or we don't have this inode in memory.
4277                  * Read the block from disk.
4278                  */
4279                 get_bh(bh);
4280                 bh->b_end_io = end_buffer_read_sync;
4281                 submit_bh(READ_META, bh);
4282                 wait_on_buffer(bh);
4283                 if (!buffer_uptodate(bh)) {
4284                         ext4_error(sb, __func__,
4285                                    "unable to read inode block - inode=%lu, "
4286                                    "block=%llu", inode->i_ino, block);
4287                         brelse(bh);
4288                         return -EIO;
4289                 }
4290         }
4291 has_buffer:
4292         iloc->bh = bh;
4293         return 0;
4294 }
4295
4296 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4297 {
4298         /* We have all inode data except xattrs in memory here. */
4299         return __ext4_get_inode_loc(inode, iloc,
4300                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4301 }
4302
4303 void ext4_set_inode_flags(struct inode *inode)
4304 {
4305         unsigned int flags = EXT4_I(inode)->i_flags;
4306
4307         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4308         if (flags & EXT4_SYNC_FL)
4309                 inode->i_flags |= S_SYNC;
4310         if (flags & EXT4_APPEND_FL)
4311                 inode->i_flags |= S_APPEND;
4312         if (flags & EXT4_IMMUTABLE_FL)
4313                 inode->i_flags |= S_IMMUTABLE;
4314         if (flags & EXT4_NOATIME_FL)
4315                 inode->i_flags |= S_NOATIME;
4316         if (flags & EXT4_DIRSYNC_FL)
4317                 inode->i_flags |= S_DIRSYNC;
4318 }
4319
4320 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4321 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4322 {
4323         unsigned int flags = ei->vfs_inode.i_flags;
4324
4325         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4326                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4327         if (flags & S_SYNC)
4328                 ei->i_flags |= EXT4_SYNC_FL;
4329         if (flags & S_APPEND)
4330                 ei->i_flags |= EXT4_APPEND_FL;
4331         if (flags & S_IMMUTABLE)
4332                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4333         if (flags & S_NOATIME)
4334                 ei->i_flags |= EXT4_NOATIME_FL;
4335         if (flags & S_DIRSYNC)
4336                 ei->i_flags |= EXT4_DIRSYNC_FL;
4337 }
4338 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4339                                         struct ext4_inode_info *ei)
4340 {
4341         blkcnt_t i_blocks ;
4342         struct inode *inode = &(ei->vfs_inode);
4343         struct super_block *sb = inode->i_sb;
4344
4345         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4346                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4347                 /* we are using combined 48 bit field */
4348                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4349                                         le32_to_cpu(raw_inode->i_blocks_lo);
4350                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4351                         /* i_blocks represent file system block size */
4352                         return i_blocks  << (inode->i_blkbits - 9);
4353                 } else {
4354                         return i_blocks;
4355                 }
4356         } else {
4357                 return le32_to_cpu(raw_inode->i_blocks_lo);
4358         }
4359 }
4360
4361 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4362 {
4363         struct ext4_iloc iloc;
4364         struct ext4_inode *raw_inode;
4365         struct ext4_inode_info *ei;
4366         struct buffer_head *bh;
4367         struct inode *inode;
4368         long ret;
4369         int block;
4370
4371         inode = iget_locked(sb, ino);
4372         if (!inode)
4373                 return ERR_PTR(-ENOMEM);
4374         if (!(inode->i_state & I_NEW))
4375                 return inode;
4376
4377         ei = EXT4_I(inode);
4378 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4379         ei->i_acl = EXT4_ACL_NOT_CACHED;
4380         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4381 #endif
4382
4383         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4384         if (ret < 0)
4385                 goto bad_inode;
4386         bh = iloc.bh;
4387         raw_inode = ext4_raw_inode(&iloc);
4388         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4389         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4390         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4391         if (!(test_opt(inode->i_sb, NO_UID32))) {
4392                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4393                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4394         }
4395         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4396
4397         ei->i_state = 0;
4398         ei->i_dir_start_lookup = 0;
4399         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4400         /* We now have enough fields to check if the inode was active or not.
4401          * This is needed because nfsd might try to access dead inodes
4402          * the test is that same one that e2fsck uses
4403          * NeilBrown 1999oct15
4404          */
4405         if (inode->i_nlink == 0) {
4406                 if (inode->i_mode == 0 ||
4407                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4408                         /* this inode is deleted */
4409                         brelse(bh);
4410                         ret = -ESTALE;
4411                         goto bad_inode;
4412                 }
4413                 /* The only unlinked inodes we let through here have
4414                  * valid i_mode and are being read by the orphan
4415                  * recovery code: that's fine, we're about to complete
4416                  * the process of deleting those. */
4417         }
4418         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4419         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4420         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4421         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4422                 ei->i_file_acl |=
4423                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4424         inode->i_size = ext4_isize(raw_inode);
4425         ei->i_disksize = inode->i_size;
4426         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4427         ei->i_block_group = iloc.block_group;
4428         ei->i_last_alloc_group = ~0;
4429         /*
4430          * NOTE! The in-memory inode i_data array is in little-endian order
4431          * even on big-endian machines: we do NOT byteswap the block numbers!
4432          */
4433         for (block = 0; block < EXT4_N_BLOCKS; block++)
4434                 ei->i_data[block] = raw_inode->i_block[block];
4435         INIT_LIST_HEAD(&ei->i_orphan);
4436
4437         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4438                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4439                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4440                     EXT4_INODE_SIZE(inode->i_sb)) {
4441                         brelse(bh);
4442                         ret = -EIO;
4443                         goto bad_inode;
4444                 }
4445                 if (ei->i_extra_isize == 0) {
4446                         /* The extra space is currently unused. Use it. */
4447                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4448                                             EXT4_GOOD_OLD_INODE_SIZE;
4449                 } else {
4450                         __le32 *magic = (void *)raw_inode +
4451                                         EXT4_GOOD_OLD_INODE_SIZE +
4452                                         ei->i_extra_isize;
4453                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4454                                  ei->i_state |= EXT4_STATE_XATTR;
4455                 }
4456         } else
4457                 ei->i_extra_isize = 0;
4458
4459         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4460         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4461         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4462         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4463
4464         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4465         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4466                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4467                         inode->i_version |=
4468                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4469         }
4470
4471         ret = 0;
4472         if (ei->i_file_acl &&
4473             ((ei->i_file_acl < 
4474               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4475                EXT4_SB(sb)->s_gdb_count)) ||
4476              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4477                 ext4_error(sb, __func__,
4478                            "bad extended attribute block %llu in inode #%lu",
4479                            ei->i_file_acl, inode->i_ino);
4480                 ret = -EIO;
4481                 goto bad_inode;
4482         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4483                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4484                     (S_ISLNK(inode->i_mode) &&
4485                      !ext4_inode_is_fast_symlink(inode)))
4486                         /* Validate extent which is part of inode */
4487                         ret = ext4_ext_check_inode(inode);
4488         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4489                    (S_ISLNK(inode->i_mode) &&
4490                     !ext4_inode_is_fast_symlink(inode))) {
4491                 /* Validate block references which are part of inode */
4492                 ret = ext4_check_inode_blockref(inode);
4493         }
4494         if (ret) {
4495                 brelse(bh);
4496                 goto bad_inode;
4497         }
4498
4499         if (S_ISREG(inode->i_mode)) {
4500                 inode->i_op = &ext4_file_inode_operations;
4501                 inode->i_fop = &ext4_file_operations;
4502                 ext4_set_aops(inode);
4503         } else if (S_ISDIR(inode->i_mode)) {
4504                 inode->i_op = &ext4_dir_inode_operations;
4505                 inode->i_fop = &ext4_dir_operations;
4506         } else if (S_ISLNK(inode->i_mode)) {
4507                 if (ext4_inode_is_fast_symlink(inode)) {
4508                         inode->i_op = &ext4_fast_symlink_inode_operations;
4509                         nd_terminate_link(ei->i_data, inode->i_size,
4510                                 sizeof(ei->i_data) - 1);
4511                 } else {
4512                         inode->i_op = &ext4_symlink_inode_operations;
4513                         ext4_set_aops(inode);
4514                 }
4515         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4516               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4517                 inode->i_op = &ext4_special_inode_operations;
4518                 if (raw_inode->i_block[0])
4519                         init_special_inode(inode, inode->i_mode,
4520                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4521                 else
4522                         init_special_inode(inode, inode->i_mode,
4523                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4524         } else {
4525                 brelse(bh);
4526                 ret = -EIO;
4527                 ext4_error(inode->i_sb, __func__, 
4528                            "bogus i_mode (%o) for inode=%lu",
4529                            inode->i_mode, inode->i_ino);
4530                 goto bad_inode;
4531         }
4532         brelse(iloc.bh);
4533         ext4_set_inode_flags(inode);
4534         unlock_new_inode(inode);
4535         return inode;
4536
4537 bad_inode:
4538         iget_failed(inode);
4539         return ERR_PTR(ret);
4540 }
4541
4542 static int ext4_inode_blocks_set(handle_t *handle,
4543                                 struct ext4_inode *raw_inode,
4544                                 struct ext4_inode_info *ei)
4545 {
4546         struct inode *inode = &(ei->vfs_inode);
4547         u64 i_blocks = inode->i_blocks;
4548         struct super_block *sb = inode->i_sb;
4549
4550         if (i_blocks <= ~0U) {
4551                 /*
4552                  * i_blocks can be represnted in a 32 bit variable
4553                  * as multiple of 512 bytes
4554                  */
4555                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4556                 raw_inode->i_blocks_high = 0;
4557                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4558                 return 0;
4559         }
4560         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4561                 return -EFBIG;
4562
4563         if (i_blocks <= 0xffffffffffffULL) {
4564                 /*
4565                  * i_blocks can be represented in a 48 bit variable
4566                  * as multiple of 512 bytes
4567                  */
4568                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4569                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4570                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4571         } else {
4572                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4573                 /* i_block is stored in file system block size */
4574                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4575                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4576                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4577         }
4578         return 0;
4579 }
4580
4581 /*
4582  * Post the struct inode info into an on-disk inode location in the
4583  * buffer-cache.  This gobbles the caller's reference to the
4584  * buffer_head in the inode location struct.
4585  *
4586  * The caller must have write access to iloc->bh.
4587  */
4588 static int ext4_do_update_inode(handle_t *handle,
4589                                 struct inode *inode,
4590                                 struct ext4_iloc *iloc)
4591 {
4592         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4593         struct ext4_inode_info *ei = EXT4_I(inode);
4594         struct buffer_head *bh = iloc->bh;
4595         int err = 0, rc, block;
4596
4597         /* For fields not not tracking in the in-memory inode,
4598          * initialise them to zero for new inodes. */
4599         if (ei->i_state & EXT4_STATE_NEW)
4600                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4601
4602         ext4_get_inode_flags(ei);
4603         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4604         if (!(test_opt(inode->i_sb, NO_UID32))) {
4605                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4606                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4607 /*
4608  * Fix up interoperability with old kernels. Otherwise, old inodes get
4609  * re-used with the upper 16 bits of the uid/gid intact
4610  */
4611                 if (!ei->i_dtime) {
4612                         raw_inode->i_uid_high =
4613                                 cpu_to_le16(high_16_bits(inode->i_uid));
4614                         raw_inode->i_gid_high =
4615                                 cpu_to_le16(high_16_bits(inode->i_gid));
4616                 } else {
4617                         raw_inode->i_uid_high = 0;
4618                         raw_inode->i_gid_high = 0;
4619                 }
4620         } else {
4621                 raw_inode->i_uid_low =
4622                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4623                 raw_inode->i_gid_low =
4624                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4625                 raw_inode->i_uid_high = 0;
4626                 raw_inode->i_gid_high = 0;
4627         }
4628         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4629
4630         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4631         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4632         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4633         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4634
4635         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4636                 goto out_brelse;
4637         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4638         /* clear the migrate flag in the raw_inode */
4639         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4640         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4641             cpu_to_le32(EXT4_OS_HURD))
4642                 raw_inode->i_file_acl_high =
4643                         cpu_to_le16(ei->i_file_acl >> 32);
4644         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4645         ext4_isize_set(raw_inode, ei->i_disksize);
4646         if (ei->i_disksize > 0x7fffffffULL) {
4647                 struct super_block *sb = inode->i_sb;
4648                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4649                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4650                                 EXT4_SB(sb)->s_es->s_rev_level ==
4651                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4652                         /* If this is the first large file
4653                          * created, add a flag to the superblock.
4654                          */
4655                         err = ext4_journal_get_write_access(handle,
4656                                         EXT4_SB(sb)->s_sbh);
4657                         if (err)
4658                                 goto out_brelse;
4659                         ext4_update_dynamic_rev(sb);
4660                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4661                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4662                         sb->s_dirt = 1;
4663                         ext4_handle_sync(handle);
4664                         err = ext4_handle_dirty_metadata(handle, inode,
4665                                         EXT4_SB(sb)->s_sbh);
4666                 }
4667         }
4668         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4669         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4670                 if (old_valid_dev(inode->i_rdev)) {
4671                         raw_inode->i_block[0] =
4672                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4673                         raw_inode->i_block[1] = 0;
4674                 } else {
4675                         raw_inode->i_block[0] = 0;
4676                         raw_inode->i_block[1] =
4677                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4678                         raw_inode->i_block[2] = 0;
4679                 }
4680         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4681                 raw_inode->i_block[block] = ei->i_data[block];
4682
4683         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4684         if (ei->i_extra_isize) {
4685                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4686                         raw_inode->i_version_hi =
4687                         cpu_to_le32(inode->i_version >> 32);
4688                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4689         }
4690
4691         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4692         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4693         if (!err)
4694                 err = rc;
4695         ei->i_state &= ~EXT4_STATE_NEW;
4696
4697 out_brelse:
4698         brelse(bh);
4699         ext4_std_error(inode->i_sb, err);
4700         return err;
4701 }
4702
4703 /*
4704  * ext4_write_inode()
4705  *
4706  * We are called from a few places:
4707  *
4708  * - Within generic_file_write() for O_SYNC files.
4709  *   Here, there will be no transaction running. We wait for any running
4710  *   trasnaction to commit.
4711  *
4712  * - Within sys_sync(), kupdate and such.
4713  *   We wait on commit, if tol to.
4714  *
4715  * - Within prune_icache() (PF_MEMALLOC == true)
4716  *   Here we simply return.  We can't afford to block kswapd on the
4717  *   journal commit.
4718  *
4719  * In all cases it is actually safe for us to return without doing anything,
4720  * because the inode has been copied into a raw inode buffer in
4721  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4722  * knfsd.
4723  *
4724  * Note that we are absolutely dependent upon all inode dirtiers doing the
4725  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4726  * which we are interested.
4727  *
4728  * It would be a bug for them to not do this.  The code:
4729  *
4730  *      mark_inode_dirty(inode)
4731  *      stuff();
4732  *      inode->i_size = expr;
4733  *
4734  * is in error because a kswapd-driven write_inode() could occur while
4735  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4736  * will no longer be on the superblock's dirty inode list.
4737  */
4738 int ext4_write_inode(struct inode *inode, int wait)
4739 {
4740         if (current->flags & PF_MEMALLOC)
4741                 return 0;
4742
4743         if (ext4_journal_current_handle()) {
4744                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4745                 dump_stack();
4746                 return -EIO;
4747         }
4748
4749         if (!wait)
4750                 return 0;
4751
4752         return ext4_force_commit(inode->i_sb);
4753 }
4754
4755 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4756 {
4757         int err = 0;
4758
4759         mark_buffer_dirty(bh);
4760         if (inode && inode_needs_sync(inode)) {
4761                 sync_dirty_buffer(bh);
4762                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4763                         ext4_error(inode->i_sb, __func__,
4764                                    "IO error syncing inode, "
4765                                    "inode=%lu, block=%llu",
4766                                    inode->i_ino,
4767                                    (unsigned long long)bh->b_blocknr);
4768                         err = -EIO;
4769                 }
4770         }
4771         return err;
4772 }
4773
4774 /*
4775  * ext4_setattr()
4776  *
4777  * Called from notify_change.
4778  *
4779  * We want to trap VFS attempts to truncate the file as soon as
4780  * possible.  In particular, we want to make sure that when the VFS
4781  * shrinks i_size, we put the inode on the orphan list and modify
4782  * i_disksize immediately, so that during the subsequent flushing of
4783  * dirty pages and freeing of disk blocks, we can guarantee that any
4784  * commit will leave the blocks being flushed in an unused state on
4785  * disk.  (On recovery, the inode will get truncated and the blocks will
4786  * be freed, so we have a strong guarantee that no future commit will
4787  * leave these blocks visible to the user.)
4788  *
4789  * Another thing we have to assure is that if we are in ordered mode
4790  * and inode is still attached to the committing transaction, we must
4791  * we start writeout of all the dirty pages which are being truncated.
4792  * This way we are sure that all the data written in the previous
4793  * transaction are already on disk (truncate waits for pages under
4794  * writeback).
4795  *
4796  * Called with inode->i_mutex down.
4797  */
4798 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4799 {
4800         struct inode *inode = dentry->d_inode;
4801         int error, rc = 0;
4802         const unsigned int ia_valid = attr->ia_valid;
4803
4804         error = inode_change_ok(inode, attr);
4805         if (error)
4806                 return error;
4807
4808         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4809                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4810                 handle_t *handle;
4811
4812                 /* (user+group)*(old+new) structure, inode write (sb,
4813                  * inode block, ? - but truncate inode update has it) */
4814                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4815                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4816                 if (IS_ERR(handle)) {
4817                         error = PTR_ERR(handle);
4818                         goto err_out;
4819                 }
4820                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4821                 if (error) {
4822                         ext4_journal_stop(handle);
4823                         return error;
4824                 }
4825                 /* Update corresponding info in inode so that everything is in
4826                  * one transaction */
4827                 if (attr->ia_valid & ATTR_UID)
4828                         inode->i_uid = attr->ia_uid;
4829                 if (attr->ia_valid & ATTR_GID)
4830                         inode->i_gid = attr->ia_gid;
4831                 error = ext4_mark_inode_dirty(handle, inode);
4832                 ext4_journal_stop(handle);
4833         }
4834
4835         if (attr->ia_valid & ATTR_SIZE) {
4836                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4837                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4838
4839                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4840                                 error = -EFBIG;
4841                                 goto err_out;
4842                         }
4843                 }
4844         }
4845
4846         if (S_ISREG(inode->i_mode) &&
4847             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4848                 handle_t *handle;
4849
4850                 handle = ext4_journal_start(inode, 3);
4851                 if (IS_ERR(handle)) {
4852                         error = PTR_ERR(handle);
4853                         goto err_out;
4854                 }
4855
4856                 error = ext4_orphan_add(handle, inode);
4857                 EXT4_I(inode)->i_disksize = attr->ia_size;
4858                 rc = ext4_mark_inode_dirty(handle, inode);
4859                 if (!error)
4860                         error = rc;
4861                 ext4_journal_stop(handle);
4862
4863                 if (ext4_should_order_data(inode)) {
4864                         error = ext4_begin_ordered_truncate(inode,
4865                                                             attr->ia_size);
4866                         if (error) {
4867                                 /* Do as much error cleanup as possible */
4868                                 handle = ext4_journal_start(inode, 3);
4869                                 if (IS_ERR(handle)) {
4870                                         ext4_orphan_del(NULL, inode);
4871                                         goto err_out;
4872                                 }
4873                                 ext4_orphan_del(handle, inode);
4874                                 ext4_journal_stop(handle);
4875                                 goto err_out;
4876                         }
4877                 }
4878         }
4879
4880         rc = inode_setattr(inode, attr);
4881
4882         /* If inode_setattr's call to ext4_truncate failed to get a
4883          * transaction handle at all, we need to clean up the in-core
4884          * orphan list manually. */
4885         if (inode->i_nlink)
4886                 ext4_orphan_del(NULL, inode);
4887
4888         if (!rc && (ia_valid & ATTR_MODE))
4889                 rc = ext4_acl_chmod(inode);
4890
4891 err_out:
4892         ext4_std_error(inode->i_sb, error);
4893         if (!error)
4894                 error = rc;
4895         return error;
4896 }
4897
4898 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4899                  struct kstat *stat)
4900 {
4901         struct inode *inode;
4902         unsigned long delalloc_blocks;
4903
4904         inode = dentry->d_inode;
4905         generic_fillattr(inode, stat);
4906
4907         /*
4908          * We can't update i_blocks if the block allocation is delayed
4909          * otherwise in the case of system crash before the real block
4910          * allocation is done, we will have i_blocks inconsistent with
4911          * on-disk file blocks.
4912          * We always keep i_blocks updated together with real
4913          * allocation. But to not confuse with user, stat
4914          * will return the blocks that include the delayed allocation
4915          * blocks for this file.
4916          */
4917         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4918         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4919         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4920
4921         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4922         return 0;
4923 }
4924
4925 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4926                                       int chunk)
4927 {
4928         int indirects;
4929
4930         /* if nrblocks are contiguous */
4931         if (chunk) {
4932                 /*
4933                  * With N contiguous data blocks, it need at most
4934                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4935                  * 2 dindirect blocks
4936                  * 1 tindirect block
4937                  */
4938                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4939                 return indirects + 3;
4940         }
4941         /*
4942          * if nrblocks are not contiguous, worse case, each block touch
4943          * a indirect block, and each indirect block touch a double indirect
4944          * block, plus a triple indirect block
4945          */
4946         indirects = nrblocks * 2 + 1;
4947         return indirects;
4948 }
4949
4950 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4951 {
4952         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4953                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4954         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4955 }
4956
4957 /*
4958  * Account for index blocks, block groups bitmaps and block group
4959  * descriptor blocks if modify datablocks and index blocks
4960  * worse case, the indexs blocks spread over different block groups
4961  *
4962  * If datablocks are discontiguous, they are possible to spread over
4963  * different block groups too. If they are contiugous, with flexbg,
4964  * they could still across block group boundary.
4965  *
4966  * Also account for superblock, inode, quota and xattr blocks
4967  */
4968 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4969 {
4970         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4971         int gdpblocks;
4972         int idxblocks;
4973         int ret = 0;
4974
4975         /*
4976          * How many index blocks need to touch to modify nrblocks?
4977          * The "Chunk" flag indicating whether the nrblocks is
4978          * physically contiguous on disk
4979          *
4980          * For Direct IO and fallocate, they calls get_block to allocate
4981          * one single extent at a time, so they could set the "Chunk" flag
4982          */
4983         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4984
4985         ret = idxblocks;
4986
4987         /*
4988          * Now let's see how many group bitmaps and group descriptors need
4989          * to account
4990          */
4991         groups = idxblocks;
4992         if (chunk)
4993                 groups += 1;
4994         else
4995                 groups += nrblocks;
4996
4997         gdpblocks = groups;
4998         if (groups > ngroups)
4999                 groups = ngroups;
5000         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5001                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5002
5003         /* bitmaps and block group descriptor blocks */
5004         ret += groups + gdpblocks;
5005
5006         /* Blocks for super block, inode, quota and xattr blocks */
5007         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5008
5009         return ret;
5010 }
5011
5012 /*
5013  * Calulate the total number of credits to reserve to fit
5014  * the modification of a single pages into a single transaction,
5015  * which may include multiple chunks of block allocations.
5016  *
5017  * This could be called via ext4_write_begin()
5018  *
5019  * We need to consider the worse case, when
5020  * one new block per extent.
5021  */
5022 int ext4_writepage_trans_blocks(struct inode *inode)
5023 {
5024         int bpp = ext4_journal_blocks_per_page(inode);
5025         int ret;
5026
5027         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5028
5029         /* Account for data blocks for journalled mode */
5030         if (ext4_should_journal_data(inode))
5031                 ret += bpp;
5032         return ret;
5033 }
5034
5035 /*
5036  * Calculate the journal credits for a chunk of data modification.
5037  *
5038  * This is called from DIO, fallocate or whoever calling
5039  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5040  *
5041  * journal buffers for data blocks are not included here, as DIO
5042  * and fallocate do no need to journal data buffers.
5043  */
5044 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5045 {
5046         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5047 }
5048
5049 /*
5050  * The caller must have previously called ext4_reserve_inode_write().
5051  * Give this, we know that the caller already has write access to iloc->bh.
5052  */
5053 int ext4_mark_iloc_dirty(handle_t *handle,
5054                 struct inode *inode, struct ext4_iloc *iloc)
5055 {
5056         int err = 0;
5057
5058         if (test_opt(inode->i_sb, I_VERSION))
5059                 inode_inc_iversion(inode);
5060
5061         /* the do_update_inode consumes one bh->b_count */
5062         get_bh(iloc->bh);
5063
5064         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5065         err = ext4_do_update_inode(handle, inode, iloc);
5066         put_bh(iloc->bh);
5067         return err;
5068 }
5069
5070 /*
5071  * On success, We end up with an outstanding reference count against
5072  * iloc->bh.  This _must_ be cleaned up later.
5073  */
5074
5075 int
5076 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5077                          struct ext4_iloc *iloc)
5078 {
5079         int err;
5080
5081         err = ext4_get_inode_loc(inode, iloc);
5082         if (!err) {
5083                 BUFFER_TRACE(iloc->bh, "get_write_access");
5084                 err = ext4_journal_get_write_access(handle, iloc->bh);
5085                 if (err) {
5086                         brelse(iloc->bh);
5087                         iloc->bh = NULL;
5088                 }
5089         }
5090         ext4_std_error(inode->i_sb, err);
5091         return err;
5092 }
5093
5094 /*
5095  * Expand an inode by new_extra_isize bytes.
5096  * Returns 0 on success or negative error number on failure.
5097  */
5098 static int ext4_expand_extra_isize(struct inode *inode,
5099                                    unsigned int new_extra_isize,
5100                                    struct ext4_iloc iloc,
5101                                    handle_t *handle)
5102 {
5103         struct ext4_inode *raw_inode;
5104         struct ext4_xattr_ibody_header *header;
5105         struct ext4_xattr_entry *entry;
5106
5107         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5108                 return 0;
5109
5110         raw_inode = ext4_raw_inode(&iloc);
5111
5112         header = IHDR(inode, raw_inode);
5113         entry = IFIRST(header);
5114
5115         /* No extended attributes present */
5116         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5117                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5118                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5119                         new_extra_isize);
5120                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5121                 return 0;
5122         }
5123
5124         /* try to expand with EAs present */
5125         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5126                                           raw_inode, handle);
5127 }
5128
5129 /*
5130  * What we do here is to mark the in-core inode as clean with respect to inode
5131  * dirtiness (it may still be data-dirty).
5132  * This means that the in-core inode may be reaped by prune_icache
5133  * without having to perform any I/O.  This is a very good thing,
5134  * because *any* task may call prune_icache - even ones which
5135  * have a transaction open against a different journal.
5136  *
5137  * Is this cheating?  Not really.  Sure, we haven't written the
5138  * inode out, but prune_icache isn't a user-visible syncing function.
5139  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5140  * we start and wait on commits.
5141  *
5142  * Is this efficient/effective?  Well, we're being nice to the system
5143  * by cleaning up our inodes proactively so they can be reaped
5144  * without I/O.  But we are potentially leaving up to five seconds'
5145  * worth of inodes floating about which prune_icache wants us to
5146  * write out.  One way to fix that would be to get prune_icache()
5147  * to do a write_super() to free up some memory.  It has the desired
5148  * effect.
5149  */
5150 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5151 {
5152         struct ext4_iloc iloc;
5153         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5154         static unsigned int mnt_count;
5155         int err, ret;
5156
5157         might_sleep();
5158         err = ext4_reserve_inode_write(handle, inode, &iloc);
5159         if (ext4_handle_valid(handle) &&
5160             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5161             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5162                 /*
5163                  * We need extra buffer credits since we may write into EA block
5164                  * with this same handle. If journal_extend fails, then it will
5165                  * only result in a minor loss of functionality for that inode.
5166                  * If this is felt to be critical, then e2fsck should be run to
5167                  * force a large enough s_min_extra_isize.
5168                  */
5169                 if ((jbd2_journal_extend(handle,
5170                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5171                         ret = ext4_expand_extra_isize(inode,
5172                                                       sbi->s_want_extra_isize,
5173                                                       iloc, handle);
5174                         if (ret) {
5175                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5176                                 if (mnt_count !=
5177                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5178                                         ext4_warning(inode->i_sb, __func__,
5179                                         "Unable to expand inode %lu. Delete"
5180                                         " some EAs or run e2fsck.",
5181                                         inode->i_ino);
5182                                         mnt_count =
5183                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5184                                 }
5185                         }
5186                 }
5187         }
5188         if (!err)
5189                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5190         return err;
5191 }
5192
5193 /*
5194  * ext4_dirty_inode() is called from __mark_inode_dirty()
5195  *
5196  * We're really interested in the case where a file is being extended.
5197  * i_size has been changed by generic_commit_write() and we thus need
5198  * to include the updated inode in the current transaction.
5199  *
5200  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5201  * are allocated to the file.
5202  *
5203  * If the inode is marked synchronous, we don't honour that here - doing
5204  * so would cause a commit on atime updates, which we don't bother doing.
5205  * We handle synchronous inodes at the highest possible level.
5206  */
5207 void ext4_dirty_inode(struct inode *inode)
5208 {
5209         handle_t *current_handle = ext4_journal_current_handle();
5210         handle_t *handle;
5211
5212         if (!ext4_handle_valid(current_handle)) {
5213                 ext4_mark_inode_dirty(current_handle, inode);
5214                 return;
5215         }
5216
5217         handle = ext4_journal_start(inode, 2);
5218         if (IS_ERR(handle))
5219                 goto out;
5220         if (current_handle &&
5221                 current_handle->h_transaction != handle->h_transaction) {
5222                 /* This task has a transaction open against a different fs */
5223                 printk(KERN_EMERG "%s: transactions do not match!\n",
5224                        __func__);
5225         } else {
5226                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5227                                 current_handle);
5228                 ext4_mark_inode_dirty(handle, inode);
5229         }
5230         ext4_journal_stop(handle);
5231 out:
5232         return;
5233 }
5234
5235 #if 0
5236 /*
5237  * Bind an inode's backing buffer_head into this transaction, to prevent
5238  * it from being flushed to disk early.  Unlike
5239  * ext4_reserve_inode_write, this leaves behind no bh reference and
5240  * returns no iloc structure, so the caller needs to repeat the iloc
5241  * lookup to mark the inode dirty later.
5242  */
5243 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5244 {
5245         struct ext4_iloc iloc;
5246
5247         int err = 0;
5248         if (handle) {
5249                 err = ext4_get_inode_loc(inode, &iloc);
5250                 if (!err) {
5251                         BUFFER_TRACE(iloc.bh, "get_write_access");
5252                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5253                         if (!err)
5254                                 err = ext4_handle_dirty_metadata(handle,
5255                                                                  inode,
5256                                                                  iloc.bh);
5257                         brelse(iloc.bh);
5258                 }
5259         }
5260         ext4_std_error(inode->i_sb, err);
5261         return err;
5262 }
5263 #endif
5264
5265 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5266 {
5267         journal_t *journal;
5268         handle_t *handle;
5269         int err;
5270
5271         /*
5272          * We have to be very careful here: changing a data block's
5273          * journaling status dynamically is dangerous.  If we write a
5274          * data block to the journal, change the status and then delete
5275          * that block, we risk forgetting to revoke the old log record
5276          * from the journal and so a subsequent replay can corrupt data.
5277          * So, first we make sure that the journal is empty and that
5278          * nobody is changing anything.
5279          */
5280
5281         journal = EXT4_JOURNAL(inode);
5282         if (!journal)
5283                 return 0;
5284         if (is_journal_aborted(journal))
5285                 return -EROFS;
5286
5287         jbd2_journal_lock_updates(journal);
5288         jbd2_journal_flush(journal);
5289
5290         /*
5291          * OK, there are no updates running now, and all cached data is
5292          * synced to disk.  We are now in a completely consistent state
5293          * which doesn't have anything in the journal, and we know that
5294          * no filesystem updates are running, so it is safe to modify
5295          * the inode's in-core data-journaling state flag now.
5296          */
5297
5298         if (val)
5299                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5300         else
5301                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5302         ext4_set_aops(inode);
5303
5304         jbd2_journal_unlock_updates(journal);
5305
5306         /* Finally we can mark the inode as dirty. */
5307
5308         handle = ext4_journal_start(inode, 1);
5309         if (IS_ERR(handle))
5310                 return PTR_ERR(handle);
5311
5312         err = ext4_mark_inode_dirty(handle, inode);
5313         ext4_handle_sync(handle);
5314         ext4_journal_stop(handle);
5315         ext4_std_error(inode->i_sb, err);
5316
5317         return err;
5318 }
5319
5320 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5321 {
5322         return !buffer_mapped(bh);
5323 }
5324
5325 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5326 {
5327         struct page *page = vmf->page;
5328         loff_t size;
5329         unsigned long len;
5330         int ret = -EINVAL;
5331         void *fsdata;
5332         struct file *file = vma->vm_file;
5333         struct inode *inode = file->f_path.dentry->d_inode;
5334         struct address_space *mapping = inode->i_mapping;
5335
5336         /*
5337          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5338          * get i_mutex because we are already holding mmap_sem.
5339          */
5340         down_read(&inode->i_alloc_sem);
5341         size = i_size_read(inode);
5342         if (page->mapping != mapping || size <= page_offset(page)
5343             || !PageUptodate(page)) {
5344                 /* page got truncated from under us? */
5345                 goto out_unlock;
5346         }
5347         ret = 0;
5348         if (PageMappedToDisk(page))
5349                 goto out_unlock;
5350
5351         if (page->index == size >> PAGE_CACHE_SHIFT)
5352                 len = size & ~PAGE_CACHE_MASK;
5353         else
5354                 len = PAGE_CACHE_SIZE;
5355
5356         if (page_has_buffers(page)) {
5357                 /* return if we have all the buffers mapped */
5358                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5359                                        ext4_bh_unmapped))
5360                         goto out_unlock;
5361         }
5362         /*
5363          * OK, we need to fill the hole... Do write_begin write_end
5364          * to do block allocation/reservation.We are not holding
5365          * inode.i__mutex here. That allow * parallel write_begin,
5366          * write_end call. lock_page prevent this from happening
5367          * on the same page though
5368          */
5369         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5370                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5371         if (ret < 0)
5372                 goto out_unlock;
5373         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5374                         len, len, page, fsdata);
5375         if (ret < 0)
5376                 goto out_unlock;
5377         ret = 0;
5378 out_unlock:
5379         if (ret)
5380                 ret = VM_FAULT_SIGBUS;
5381         up_read(&inode->i_alloc_sem);
5382         return ret;
5383 }