ext4: Add BUG_ON debugging checks to noalloc_get_block_write()
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * The ext4_ind_get_blocks() function handles non-extents inodes
896  * (i.e., using the traditional indirect/double-indirect i_blocks
897  * scheme) for ext4_get_blocks().
898  *
899  * Allocation strategy is simple: if we have to allocate something, we will
900  * have to go the whole way to leaf. So let's do it before attaching anything
901  * to tree, set linkage between the newborn blocks, write them if sync is
902  * required, recheck the path, free and repeat if check fails, otherwise
903  * set the last missing link (that will protect us from any truncate-generated
904  * removals - all blocks on the path are immune now) and possibly force the
905  * write on the parent block.
906  * That has a nice additional property: no special recovery from the failed
907  * allocations is needed - we simply release blocks and do not touch anything
908  * reachable from inode.
909  *
910  * `handle' can be NULL if create == 0.
911  *
912  * return > 0, # of blocks mapped or allocated.
913  * return = 0, if plain lookup failed.
914  * return < 0, error case.
915  *
916  * The ext4_ind_get_blocks() function should be called with
917  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920  * blocks.
921  */
922 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923                                   ext4_lblk_t iblock, unsigned int maxblocks,
924                                   struct buffer_head *bh_result,
925                                   int flags)
926 {
927         int err = -EIO;
928         ext4_lblk_t offsets[4];
929         Indirect chain[4];
930         Indirect *partial;
931         ext4_fsblk_t goal;
932         int indirect_blks;
933         int blocks_to_boundary = 0;
934         int depth;
935         struct ext4_inode_info *ei = EXT4_I(inode);
936         int count = 0;
937         ext4_fsblk_t first_block = 0;
938         loff_t disksize;
939
940
941         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
942         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
943         depth = ext4_block_to_path(inode, iblock, offsets,
944                                         &blocks_to_boundary);
945
946         if (depth == 0)
947                 goto out;
948
949         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
950
951         /* Simplest case - block found, no allocation needed */
952         if (!partial) {
953                 first_block = le32_to_cpu(chain[depth - 1].key);
954                 clear_buffer_new(bh_result);
955                 count++;
956                 /*map more blocks*/
957                 while (count < maxblocks && count <= blocks_to_boundary) {
958                         ext4_fsblk_t blk;
959
960                         blk = le32_to_cpu(*(chain[depth-1].p + count));
961
962                         if (blk == first_block + count)
963                                 count++;
964                         else
965                                 break;
966                 }
967                 goto got_it;
968         }
969
970         /* Next simple case - plain lookup or failed read of indirect block */
971         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
972                 goto cleanup;
973
974         /*
975          * Okay, we need to do block allocation.
976         */
977         goal = ext4_find_goal(inode, iblock, partial);
978
979         /* the number of blocks need to allocate for [d,t]indirect blocks */
980         indirect_blks = (chain + depth) - partial - 1;
981
982         /*
983          * Next look up the indirect map to count the totoal number of
984          * direct blocks to allocate for this branch.
985          */
986         count = ext4_blks_to_allocate(partial, indirect_blks,
987                                         maxblocks, blocks_to_boundary);
988         /*
989          * Block out ext4_truncate while we alter the tree
990          */
991         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
992                                         &count, goal,
993                                         offsets + (partial - chain), partial);
994
995         /*
996          * The ext4_splice_branch call will free and forget any buffers
997          * on the new chain if there is a failure, but that risks using
998          * up transaction credits, especially for bitmaps where the
999          * credits cannot be returned.  Can we handle this somehow?  We
1000          * may need to return -EAGAIN upwards in the worst case.  --sct
1001          */
1002         if (!err)
1003                 err = ext4_splice_branch(handle, inode, iblock,
1004                                         partial, indirect_blks, count);
1005         /*
1006          * i_disksize growing is protected by i_data_sem.  Don't forget to
1007          * protect it if you're about to implement concurrent
1008          * ext4_get_block() -bzzz
1009         */
1010         if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
1011                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1012                 if (disksize > i_size_read(inode))
1013                         disksize = i_size_read(inode);
1014                 if (disksize > ei->i_disksize)
1015                         ei->i_disksize = disksize;
1016         }
1017         if (err)
1018                 goto cleanup;
1019
1020         set_buffer_new(bh_result);
1021 got_it:
1022         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1023         if (count > blocks_to_boundary)
1024                 set_buffer_boundary(bh_result);
1025         err = count;
1026         /* Clean up and exit */
1027         partial = chain + depth - 1;    /* the whole chain */
1028 cleanup:
1029         while (partial > chain) {
1030                 BUFFER_TRACE(partial->bh, "call brelse");
1031                 brelse(partial->bh);
1032                 partial--;
1033         }
1034         BUFFER_TRACE(bh_result, "returned");
1035 out:
1036         return err;
1037 }
1038
1039 qsize_t ext4_get_reserved_space(struct inode *inode)
1040 {
1041         unsigned long long total;
1042
1043         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044         total = EXT4_I(inode)->i_reserved_data_blocks +
1045                 EXT4_I(inode)->i_reserved_meta_blocks;
1046         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047
1048         return total;
1049 }
1050 /*
1051  * Calculate the number of metadata blocks need to reserve
1052  * to allocate @blocks for non extent file based file
1053  */
1054 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1055 {
1056         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1057         int ind_blks, dind_blks, tind_blks;
1058
1059         /* number of new indirect blocks needed */
1060         ind_blks = (blocks + icap - 1) / icap;
1061
1062         dind_blks = (ind_blks + icap - 1) / icap;
1063
1064         tind_blks = 1;
1065
1066         return ind_blks + dind_blks + tind_blks;
1067 }
1068
1069 /*
1070  * Calculate the number of metadata blocks need to reserve
1071  * to allocate given number of blocks
1072  */
1073 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1074 {
1075         if (!blocks)
1076                 return 0;
1077
1078         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1079                 return ext4_ext_calc_metadata_amount(inode, blocks);
1080
1081         return ext4_indirect_calc_metadata_amount(inode, blocks);
1082 }
1083
1084 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1085 {
1086         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087         int total, mdb, mdb_free;
1088
1089         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1090         /* recalculate the number of metablocks still need to be reserved */
1091         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1092         mdb = ext4_calc_metadata_amount(inode, total);
1093
1094         /* figure out how many metablocks to release */
1095         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1096         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1097
1098         if (mdb_free) {
1099                 /* Account for allocated meta_blocks */
1100                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1101
1102                 /* update fs dirty blocks counter */
1103                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1104                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1105                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1106         }
1107
1108         /* update per-inode reservations */
1109         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1110         EXT4_I(inode)->i_reserved_data_blocks -= used;
1111         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1112
1113         /*
1114          * free those over-booking quota for metadata blocks
1115          */
1116         if (mdb_free)
1117                 vfs_dq_release_reservation_block(inode, mdb_free);
1118
1119         /*
1120          * If we have done all the pending block allocations and if
1121          * there aren't any writers on the inode, we can discard the
1122          * inode's preallocations.
1123          */
1124         if (!total && (atomic_read(&inode->i_writecount) == 0))
1125                 ext4_discard_preallocations(inode);
1126 }
1127
1128 /*
1129  * The ext4_get_blocks() function tries to look up the requested blocks,
1130  * and returns if the blocks are already mapped.
1131  *
1132  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133  * and store the allocated blocks in the result buffer head and mark it
1134  * mapped.
1135  *
1136  * If file type is extents based, it will call ext4_ext_get_blocks(),
1137  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138  * based files
1139  *
1140  * On success, it returns the number of blocks being mapped or allocate.
1141  * if create==0 and the blocks are pre-allocated and uninitialized block,
1142  * the result buffer head is unmapped. If the create ==1, it will make sure
1143  * the buffer head is mapped.
1144  *
1145  * It returns 0 if plain look up failed (blocks have not been allocated), in
1146  * that casem, buffer head is unmapped
1147  *
1148  * It returns the error in case of allocation failure.
1149  */
1150 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151                     unsigned int max_blocks, struct buffer_head *bh,
1152                     int flags)
1153 {
1154         int retval;
1155
1156         clear_buffer_mapped(bh);
1157         clear_buffer_unwritten(bh);
1158
1159         /*
1160          * Try to see if we can get the block without requesting a new
1161          * file system block.
1162          */
1163         down_read((&EXT4_I(inode)->i_data_sem));
1164         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166                                 bh, 0);
1167         } else {
1168                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169                                              bh, 0);
1170         }
1171         up_read((&EXT4_I(inode)->i_data_sem));
1172
1173         /* If it is only a block(s) look up */
1174         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1175                 return retval;
1176
1177         /*
1178          * Returns if the blocks have already allocated
1179          *
1180          * Note that if blocks have been preallocated
1181          * ext4_ext_get_block() returns th create = 0
1182          * with buffer head unmapped.
1183          */
1184         if (retval > 0 && buffer_mapped(bh))
1185                 return retval;
1186
1187         /*
1188          * When we call get_blocks without the create flag, the
1189          * BH_Unwritten flag could have gotten set if the blocks
1190          * requested were part of a uninitialized extent.  We need to
1191          * clear this flag now that we are committed to convert all or
1192          * part of the uninitialized extent to be an initialized
1193          * extent.  This is because we need to avoid the combination
1194          * of BH_Unwritten and BH_Mapped flags being simultaneously
1195          * set on the buffer_head.
1196          */
1197         clear_buffer_unwritten(bh);
1198
1199         /*
1200          * New blocks allocate and/or writing to uninitialized extent
1201          * will possibly result in updating i_data, so we take
1202          * the write lock of i_data_sem, and call get_blocks()
1203          * with create == 1 flag.
1204          */
1205         down_write((&EXT4_I(inode)->i_data_sem));
1206
1207         /*
1208          * if the caller is from delayed allocation writeout path
1209          * we have already reserved fs blocks for allocation
1210          * let the underlying get_block() function know to
1211          * avoid double accounting
1212          */
1213         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1214                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1215         /*
1216          * We need to check for EXT4 here because migrate
1217          * could have changed the inode type in between
1218          */
1219         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1220                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1221                                               bh, flags);
1222         } else {
1223                 retval = ext4_ind_get_blocks(handle, inode, block,
1224                                              max_blocks, bh, flags);
1225
1226                 if (retval > 0 && buffer_new(bh)) {
1227                         /*
1228                          * We allocated new blocks which will result in
1229                          * i_data's format changing.  Force the migrate
1230                          * to fail by clearing migrate flags
1231                          */
1232                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1233                                                         ~EXT4_EXT_MIGRATE;
1234                 }
1235         }
1236
1237         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
1238                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1239                 /*
1240                  * Update reserved blocks/metadata blocks
1241                  * after successful block allocation
1242                  * which were deferred till now
1243                  */
1244                 if ((retval > 0) && buffer_delay(bh))
1245                         ext4_da_update_reserve_space(inode, retval);
1246         }
1247
1248         up_write((&EXT4_I(inode)->i_data_sem));
1249         return retval;
1250 }
1251
1252 /* Maximum number of blocks we map for direct IO at once. */
1253 #define DIO_MAX_BLOCKS 4096
1254
1255 int ext4_get_block(struct inode *inode, sector_t iblock,
1256                    struct buffer_head *bh_result, int create)
1257 {
1258         handle_t *handle = ext4_journal_current_handle();
1259         int ret = 0, started = 0;
1260         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1261         int dio_credits;
1262
1263         if (create && !handle) {
1264                 /* Direct IO write... */
1265                 if (max_blocks > DIO_MAX_BLOCKS)
1266                         max_blocks = DIO_MAX_BLOCKS;
1267                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1268                 handle = ext4_journal_start(inode, dio_credits);
1269                 if (IS_ERR(handle)) {
1270                         ret = PTR_ERR(handle);
1271                         goto out;
1272                 }
1273                 started = 1;
1274         }
1275
1276         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1277                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1278         if (ret > 0) {
1279                 bh_result->b_size = (ret << inode->i_blkbits);
1280                 ret = 0;
1281         }
1282         if (started)
1283                 ext4_journal_stop(handle);
1284 out:
1285         return ret;
1286 }
1287
1288 /*
1289  * `handle' can be NULL if create is zero
1290  */
1291 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1292                                 ext4_lblk_t block, int create, int *errp)
1293 {
1294         struct buffer_head dummy;
1295         int fatal = 0, err;
1296         int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
1297
1298         J_ASSERT(handle != NULL || create == 0);
1299
1300         dummy.b_state = 0;
1301         dummy.b_blocknr = -1000;
1302         buffer_trace_init(&dummy.b_history);
1303         if (create)
1304                 flags |= EXT4_GET_BLOCKS_CREATE;
1305         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1306         /*
1307          * ext4_get_blocks() returns number of blocks mapped. 0 in
1308          * case of a HOLE.
1309          */
1310         if (err > 0) {
1311                 if (err > 1)
1312                         WARN_ON(1);
1313                 err = 0;
1314         }
1315         *errp = err;
1316         if (!err && buffer_mapped(&dummy)) {
1317                 struct buffer_head *bh;
1318                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1319                 if (!bh) {
1320                         *errp = -EIO;
1321                         goto err;
1322                 }
1323                 if (buffer_new(&dummy)) {
1324                         J_ASSERT(create != 0);
1325                         J_ASSERT(handle != NULL);
1326
1327                         /*
1328                          * Now that we do not always journal data, we should
1329                          * keep in mind whether this should always journal the
1330                          * new buffer as metadata.  For now, regular file
1331                          * writes use ext4_get_block instead, so it's not a
1332                          * problem.
1333                          */
1334                         lock_buffer(bh);
1335                         BUFFER_TRACE(bh, "call get_create_access");
1336                         fatal = ext4_journal_get_create_access(handle, bh);
1337                         if (!fatal && !buffer_uptodate(bh)) {
1338                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1339                                 set_buffer_uptodate(bh);
1340                         }
1341                         unlock_buffer(bh);
1342                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1343                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1344                         if (!fatal)
1345                                 fatal = err;
1346                 } else {
1347                         BUFFER_TRACE(bh, "not a new buffer");
1348                 }
1349                 if (fatal) {
1350                         *errp = fatal;
1351                         brelse(bh);
1352                         bh = NULL;
1353                 }
1354                 return bh;
1355         }
1356 err:
1357         return NULL;
1358 }
1359
1360 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1361                                ext4_lblk_t block, int create, int *err)
1362 {
1363         struct buffer_head *bh;
1364
1365         bh = ext4_getblk(handle, inode, block, create, err);
1366         if (!bh)
1367                 return bh;
1368         if (buffer_uptodate(bh))
1369                 return bh;
1370         ll_rw_block(READ_META, 1, &bh);
1371         wait_on_buffer(bh);
1372         if (buffer_uptodate(bh))
1373                 return bh;
1374         put_bh(bh);
1375         *err = -EIO;
1376         return NULL;
1377 }
1378
1379 static int walk_page_buffers(handle_t *handle,
1380                              struct buffer_head *head,
1381                              unsigned from,
1382                              unsigned to,
1383                              int *partial,
1384                              int (*fn)(handle_t *handle,
1385                                        struct buffer_head *bh))
1386 {
1387         struct buffer_head *bh;
1388         unsigned block_start, block_end;
1389         unsigned blocksize = head->b_size;
1390         int err, ret = 0;
1391         struct buffer_head *next;
1392
1393         for (bh = head, block_start = 0;
1394              ret == 0 && (bh != head || !block_start);
1395              block_start = block_end, bh = next)
1396         {
1397                 next = bh->b_this_page;
1398                 block_end = block_start + blocksize;
1399                 if (block_end <= from || block_start >= to) {
1400                         if (partial && !buffer_uptodate(bh))
1401                                 *partial = 1;
1402                         continue;
1403                 }
1404                 err = (*fn)(handle, bh);
1405                 if (!ret)
1406                         ret = err;
1407         }
1408         return ret;
1409 }
1410
1411 /*
1412  * To preserve ordering, it is essential that the hole instantiation and
1413  * the data write be encapsulated in a single transaction.  We cannot
1414  * close off a transaction and start a new one between the ext4_get_block()
1415  * and the commit_write().  So doing the jbd2_journal_start at the start of
1416  * prepare_write() is the right place.
1417  *
1418  * Also, this function can nest inside ext4_writepage() ->
1419  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1420  * has generated enough buffer credits to do the whole page.  So we won't
1421  * block on the journal in that case, which is good, because the caller may
1422  * be PF_MEMALLOC.
1423  *
1424  * By accident, ext4 can be reentered when a transaction is open via
1425  * quota file writes.  If we were to commit the transaction while thus
1426  * reentered, there can be a deadlock - we would be holding a quota
1427  * lock, and the commit would never complete if another thread had a
1428  * transaction open and was blocking on the quota lock - a ranking
1429  * violation.
1430  *
1431  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1432  * will _not_ run commit under these circumstances because handle->h_ref
1433  * is elevated.  We'll still have enough credits for the tiny quotafile
1434  * write.
1435  */
1436 static int do_journal_get_write_access(handle_t *handle,
1437                                         struct buffer_head *bh)
1438 {
1439         if (!buffer_mapped(bh) || buffer_freed(bh))
1440                 return 0;
1441         return ext4_journal_get_write_access(handle, bh);
1442 }
1443
1444 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1445                                 loff_t pos, unsigned len, unsigned flags,
1446                                 struct page **pagep, void **fsdata)
1447 {
1448         struct inode *inode = mapping->host;
1449         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1450         handle_t *handle;
1451         int retries = 0;
1452         struct page *page;
1453         pgoff_t index;
1454         unsigned from, to;
1455
1456         trace_mark(ext4_write_begin,
1457                    "dev %s ino %lu pos %llu len %u flags %u",
1458                    inode->i_sb->s_id, inode->i_ino,
1459                    (unsigned long long) pos, len, flags);
1460         index = pos >> PAGE_CACHE_SHIFT;
1461         from = pos & (PAGE_CACHE_SIZE - 1);
1462         to = from + len;
1463
1464 retry:
1465         handle = ext4_journal_start(inode, needed_blocks);
1466         if (IS_ERR(handle)) {
1467                 ret = PTR_ERR(handle);
1468                 goto out;
1469         }
1470
1471         /* We cannot recurse into the filesystem as the transaction is already
1472          * started */
1473         flags |= AOP_FLAG_NOFS;
1474
1475         page = grab_cache_page_write_begin(mapping, index, flags);
1476         if (!page) {
1477                 ext4_journal_stop(handle);
1478                 ret = -ENOMEM;
1479                 goto out;
1480         }
1481         *pagep = page;
1482
1483         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1484                                 ext4_get_block);
1485
1486         if (!ret && ext4_should_journal_data(inode)) {
1487                 ret = walk_page_buffers(handle, page_buffers(page),
1488                                 from, to, NULL, do_journal_get_write_access);
1489         }
1490
1491         if (ret) {
1492                 unlock_page(page);
1493                 ext4_journal_stop(handle);
1494                 page_cache_release(page);
1495                 /*
1496                  * block_write_begin may have instantiated a few blocks
1497                  * outside i_size.  Trim these off again. Don't need
1498                  * i_size_read because we hold i_mutex.
1499                  */
1500                 if (pos + len > inode->i_size)
1501                         vmtruncate(inode, inode->i_size);
1502         }
1503
1504         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1505                 goto retry;
1506 out:
1507         return ret;
1508 }
1509
1510 /* For write_end() in data=journal mode */
1511 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1512 {
1513         if (!buffer_mapped(bh) || buffer_freed(bh))
1514                 return 0;
1515         set_buffer_uptodate(bh);
1516         return ext4_handle_dirty_metadata(handle, NULL, bh);
1517 }
1518
1519 /*
1520  * We need to pick up the new inode size which generic_commit_write gave us
1521  * `file' can be NULL - eg, when called from page_symlink().
1522  *
1523  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1524  * buffers are managed internally.
1525  */
1526 static int ext4_ordered_write_end(struct file *file,
1527                                 struct address_space *mapping,
1528                                 loff_t pos, unsigned len, unsigned copied,
1529                                 struct page *page, void *fsdata)
1530 {
1531         handle_t *handle = ext4_journal_current_handle();
1532         struct inode *inode = mapping->host;
1533         int ret = 0, ret2;
1534
1535         trace_mark(ext4_ordered_write_end,
1536                    "dev %s ino %lu pos %llu len %u copied %u",
1537                    inode->i_sb->s_id, inode->i_ino,
1538                    (unsigned long long) pos, len, copied);
1539         ret = ext4_jbd2_file_inode(handle, inode);
1540
1541         if (ret == 0) {
1542                 loff_t new_i_size;
1543
1544                 new_i_size = pos + copied;
1545                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1546                         ext4_update_i_disksize(inode, new_i_size);
1547                         /* We need to mark inode dirty even if
1548                          * new_i_size is less that inode->i_size
1549                          * bu greater than i_disksize.(hint delalloc)
1550                          */
1551                         ext4_mark_inode_dirty(handle, inode);
1552                 }
1553
1554                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1555                                                         page, fsdata);
1556                 copied = ret2;
1557                 if (ret2 < 0)
1558                         ret = ret2;
1559         }
1560         ret2 = ext4_journal_stop(handle);
1561         if (!ret)
1562                 ret = ret2;
1563
1564         return ret ? ret : copied;
1565 }
1566
1567 static int ext4_writeback_write_end(struct file *file,
1568                                 struct address_space *mapping,
1569                                 loff_t pos, unsigned len, unsigned copied,
1570                                 struct page *page, void *fsdata)
1571 {
1572         handle_t *handle = ext4_journal_current_handle();
1573         struct inode *inode = mapping->host;
1574         int ret = 0, ret2;
1575         loff_t new_i_size;
1576
1577         trace_mark(ext4_writeback_write_end,
1578                    "dev %s ino %lu pos %llu len %u copied %u",
1579                    inode->i_sb->s_id, inode->i_ino,
1580                    (unsigned long long) pos, len, copied);
1581         new_i_size = pos + copied;
1582         if (new_i_size > EXT4_I(inode)->i_disksize) {
1583                 ext4_update_i_disksize(inode, new_i_size);
1584                 /* We need to mark inode dirty even if
1585                  * new_i_size is less that inode->i_size
1586                  * bu greater than i_disksize.(hint delalloc)
1587                  */
1588                 ext4_mark_inode_dirty(handle, inode);
1589         }
1590
1591         ret2 = generic_write_end(file, mapping, pos, len, copied,
1592                                                         page, fsdata);
1593         copied = ret2;
1594         if (ret2 < 0)
1595                 ret = ret2;
1596
1597         ret2 = ext4_journal_stop(handle);
1598         if (!ret)
1599                 ret = ret2;
1600
1601         return ret ? ret : copied;
1602 }
1603
1604 static int ext4_journalled_write_end(struct file *file,
1605                                 struct address_space *mapping,
1606                                 loff_t pos, unsigned len, unsigned copied,
1607                                 struct page *page, void *fsdata)
1608 {
1609         handle_t *handle = ext4_journal_current_handle();
1610         struct inode *inode = mapping->host;
1611         int ret = 0, ret2;
1612         int partial = 0;
1613         unsigned from, to;
1614         loff_t new_i_size;
1615
1616         trace_mark(ext4_journalled_write_end,
1617                    "dev %s ino %lu pos %llu len %u copied %u",
1618                    inode->i_sb->s_id, inode->i_ino,
1619                    (unsigned long long) pos, len, copied);
1620         from = pos & (PAGE_CACHE_SIZE - 1);
1621         to = from + len;
1622
1623         if (copied < len) {
1624                 if (!PageUptodate(page))
1625                         copied = 0;
1626                 page_zero_new_buffers(page, from+copied, to);
1627         }
1628
1629         ret = walk_page_buffers(handle, page_buffers(page), from,
1630                                 to, &partial, write_end_fn);
1631         if (!partial)
1632                 SetPageUptodate(page);
1633         new_i_size = pos + copied;
1634         if (new_i_size > inode->i_size)
1635                 i_size_write(inode, pos+copied);
1636         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1637         if (new_i_size > EXT4_I(inode)->i_disksize) {
1638                 ext4_update_i_disksize(inode, new_i_size);
1639                 ret2 = ext4_mark_inode_dirty(handle, inode);
1640                 if (!ret)
1641                         ret = ret2;
1642         }
1643
1644         unlock_page(page);
1645         ret2 = ext4_journal_stop(handle);
1646         if (!ret)
1647                 ret = ret2;
1648         page_cache_release(page);
1649
1650         return ret ? ret : copied;
1651 }
1652
1653 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1654 {
1655         int retries = 0;
1656         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1657         unsigned long md_needed, mdblocks, total = 0;
1658
1659         /*
1660          * recalculate the amount of metadata blocks to reserve
1661          * in order to allocate nrblocks
1662          * worse case is one extent per block
1663          */
1664 repeat:
1665         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1666         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1667         mdblocks = ext4_calc_metadata_amount(inode, total);
1668         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1669
1670         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1671         total = md_needed + nrblocks;
1672
1673         /*
1674          * Make quota reservation here to prevent quota overflow
1675          * later. Real quota accounting is done at pages writeout
1676          * time.
1677          */
1678         if (vfs_dq_reserve_block(inode, total)) {
1679                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1680                 return -EDQUOT;
1681         }
1682
1683         if (ext4_claim_free_blocks(sbi, total)) {
1684                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1685                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1686                         yield();
1687                         goto repeat;
1688                 }
1689                 vfs_dq_release_reservation_block(inode, total);
1690                 return -ENOSPC;
1691         }
1692         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1693         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1694
1695         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1696         return 0;       /* success */
1697 }
1698
1699 static void ext4_da_release_space(struct inode *inode, int to_free)
1700 {
1701         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1702         int total, mdb, mdb_free, release;
1703
1704         if (!to_free)
1705                 return;         /* Nothing to release, exit */
1706
1707         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1708
1709         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1710                 /*
1711                  * if there is no reserved blocks, but we try to free some
1712                  * then the counter is messed up somewhere.
1713                  * but since this function is called from invalidate
1714                  * page, it's harmless to return without any action
1715                  */
1716                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1717                             "blocks for inode %lu, but there is no reserved "
1718                             "data blocks\n", to_free, inode->i_ino);
1719                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1720                 return;
1721         }
1722
1723         /* recalculate the number of metablocks still need to be reserved */
1724         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1725         mdb = ext4_calc_metadata_amount(inode, total);
1726
1727         /* figure out how many metablocks to release */
1728         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1729         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1730
1731         release = to_free + mdb_free;
1732
1733         /* update fs dirty blocks counter for truncate case */
1734         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1735
1736         /* update per-inode reservations */
1737         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1738         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1739
1740         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1741         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1742         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1743
1744         vfs_dq_release_reservation_block(inode, release);
1745 }
1746
1747 static void ext4_da_page_release_reservation(struct page *page,
1748                                                 unsigned long offset)
1749 {
1750         int to_release = 0;
1751         struct buffer_head *head, *bh;
1752         unsigned int curr_off = 0;
1753
1754         head = page_buffers(page);
1755         bh = head;
1756         do {
1757                 unsigned int next_off = curr_off + bh->b_size;
1758
1759                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1760                         to_release++;
1761                         clear_buffer_delay(bh);
1762                 }
1763                 curr_off = next_off;
1764         } while ((bh = bh->b_this_page) != head);
1765         ext4_da_release_space(page->mapping->host, to_release);
1766 }
1767
1768 /*
1769  * Delayed allocation stuff
1770  */
1771
1772 struct mpage_da_data {
1773         struct inode *inode;
1774         sector_t b_blocknr;             /* start block number of extent */
1775         size_t b_size;                  /* size of extent */
1776         unsigned long b_state;          /* state of the extent */
1777         unsigned long first_page, next_page;    /* extent of pages */
1778         struct writeback_control *wbc;
1779         int io_done;
1780         int pages_written;
1781         int retval;
1782 };
1783
1784 /*
1785  * mpage_da_submit_io - walks through extent of pages and try to write
1786  * them with writepage() call back
1787  *
1788  * @mpd->inode: inode
1789  * @mpd->first_page: first page of the extent
1790  * @mpd->next_page: page after the last page of the extent
1791  *
1792  * By the time mpage_da_submit_io() is called we expect all blocks
1793  * to be allocated. this may be wrong if allocation failed.
1794  *
1795  * As pages are already locked by write_cache_pages(), we can't use it
1796  */
1797 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1798 {
1799         long pages_skipped;
1800         struct pagevec pvec;
1801         unsigned long index, end;
1802         int ret = 0, err, nr_pages, i;
1803         struct inode *inode = mpd->inode;
1804         struct address_space *mapping = inode->i_mapping;
1805
1806         BUG_ON(mpd->next_page <= mpd->first_page);
1807         /*
1808          * We need to start from the first_page to the next_page - 1
1809          * to make sure we also write the mapped dirty buffer_heads.
1810          * If we look at mpd->b_blocknr we would only be looking
1811          * at the currently mapped buffer_heads.
1812          */
1813         index = mpd->first_page;
1814         end = mpd->next_page - 1;
1815
1816         pagevec_init(&pvec, 0);
1817         while (index <= end) {
1818                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1819                 if (nr_pages == 0)
1820                         break;
1821                 for (i = 0; i < nr_pages; i++) {
1822                         struct page *page = pvec.pages[i];
1823
1824                         index = page->index;
1825                         if (index > end)
1826                                 break;
1827                         index++;
1828
1829                         BUG_ON(!PageLocked(page));
1830                         BUG_ON(PageWriteback(page));
1831
1832                         pages_skipped = mpd->wbc->pages_skipped;
1833                         err = mapping->a_ops->writepage(page, mpd->wbc);
1834                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1835                                 /*
1836                                  * have successfully written the page
1837                                  * without skipping the same
1838                                  */
1839                                 mpd->pages_written++;
1840                         /*
1841                          * In error case, we have to continue because
1842                          * remaining pages are still locked
1843                          * XXX: unlock and re-dirty them?
1844                          */
1845                         if (ret == 0)
1846                                 ret = err;
1847                 }
1848                 pagevec_release(&pvec);
1849         }
1850         return ret;
1851 }
1852
1853 /*
1854  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1855  *
1856  * @mpd->inode - inode to walk through
1857  * @exbh->b_blocknr - first block on a disk
1858  * @exbh->b_size - amount of space in bytes
1859  * @logical - first logical block to start assignment with
1860  *
1861  * the function goes through all passed space and put actual disk
1862  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1863  */
1864 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1865                                  struct buffer_head *exbh)
1866 {
1867         struct inode *inode = mpd->inode;
1868         struct address_space *mapping = inode->i_mapping;
1869         int blocks = exbh->b_size >> inode->i_blkbits;
1870         sector_t pblock = exbh->b_blocknr, cur_logical;
1871         struct buffer_head *head, *bh;
1872         pgoff_t index, end;
1873         struct pagevec pvec;
1874         int nr_pages, i;
1875
1876         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1877         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1879
1880         pagevec_init(&pvec, 0);
1881
1882         while (index <= end) {
1883                 /* XXX: optimize tail */
1884                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1885                 if (nr_pages == 0)
1886                         break;
1887                 for (i = 0; i < nr_pages; i++) {
1888                         struct page *page = pvec.pages[i];
1889
1890                         index = page->index;
1891                         if (index > end)
1892                                 break;
1893                         index++;
1894
1895                         BUG_ON(!PageLocked(page));
1896                         BUG_ON(PageWriteback(page));
1897                         BUG_ON(!page_has_buffers(page));
1898
1899                         bh = page_buffers(page);
1900                         head = bh;
1901
1902                         /* skip blocks out of the range */
1903                         do {
1904                                 if (cur_logical >= logical)
1905                                         break;
1906                                 cur_logical++;
1907                         } while ((bh = bh->b_this_page) != head);
1908
1909                         do {
1910                                 if (cur_logical >= logical + blocks)
1911                                         break;
1912
1913                                 if (buffer_delay(bh) ||
1914                                                 buffer_unwritten(bh)) {
1915
1916                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1917
1918                                         if (buffer_delay(bh)) {
1919                                                 clear_buffer_delay(bh);
1920                                                 bh->b_blocknr = pblock;
1921                                         } else {
1922                                                 /*
1923                                                  * unwritten already should have
1924                                                  * blocknr assigned. Verify that
1925                                                  */
1926                                                 clear_buffer_unwritten(bh);
1927                                                 BUG_ON(bh->b_blocknr != pblock);
1928                                         }
1929
1930                                 } else if (buffer_mapped(bh))
1931                                         BUG_ON(bh->b_blocknr != pblock);
1932
1933                                 cur_logical++;
1934                                 pblock++;
1935                         } while ((bh = bh->b_this_page) != head);
1936                 }
1937                 pagevec_release(&pvec);
1938         }
1939 }
1940
1941
1942 /*
1943  * __unmap_underlying_blocks - just a helper function to unmap
1944  * set of blocks described by @bh
1945  */
1946 static inline void __unmap_underlying_blocks(struct inode *inode,
1947                                              struct buffer_head *bh)
1948 {
1949         struct block_device *bdev = inode->i_sb->s_bdev;
1950         int blocks, i;
1951
1952         blocks = bh->b_size >> inode->i_blkbits;
1953         for (i = 0; i < blocks; i++)
1954                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1955 }
1956
1957 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1958                                         sector_t logical, long blk_cnt)
1959 {
1960         int nr_pages, i;
1961         pgoff_t index, end;
1962         struct pagevec pvec;
1963         struct inode *inode = mpd->inode;
1964         struct address_space *mapping = inode->i_mapping;
1965
1966         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1967         end   = (logical + blk_cnt - 1) >>
1968                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1969         while (index <= end) {
1970                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1971                 if (nr_pages == 0)
1972                         break;
1973                 for (i = 0; i < nr_pages; i++) {
1974                         struct page *page = pvec.pages[i];
1975                         index = page->index;
1976                         if (index > end)
1977                                 break;
1978                         index++;
1979
1980                         BUG_ON(!PageLocked(page));
1981                         BUG_ON(PageWriteback(page));
1982                         block_invalidatepage(page, 0);
1983                         ClearPageUptodate(page);
1984                         unlock_page(page);
1985                 }
1986         }
1987         return;
1988 }
1989
1990 static void ext4_print_free_blocks(struct inode *inode)
1991 {
1992         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1993         printk(KERN_EMERG "Total free blocks count %lld\n",
1994                         ext4_count_free_blocks(inode->i_sb));
1995         printk(KERN_EMERG "Free/Dirty block details\n");
1996         printk(KERN_EMERG "free_blocks=%lld\n",
1997                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1998         printk(KERN_EMERG "dirty_blocks=%lld\n",
1999                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2000         printk(KERN_EMERG "Block reservation details\n");
2001         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2002                         EXT4_I(inode)->i_reserved_data_blocks);
2003         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2004                         EXT4_I(inode)->i_reserved_meta_blocks);
2005         return;
2006 }
2007
2008 /*
2009  * This function is used by mpage_da_map_blocks().  We separate it out
2010  * as a separate function just to make life easier, and because
2011  * mpage_da_map_blocks() used to be a generic function that took a
2012  * get_block_t.
2013  */
2014 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2015                                    struct buffer_head *bh_result)
2016 {
2017         int ret;
2018         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2019         loff_t disksize = EXT4_I(inode)->i_disksize;
2020         handle_t *handle = NULL;
2021
2022         handle = ext4_journal_current_handle();
2023         BUG_ON(!handle);
2024         ret = ext4_get_blocks(handle, inode, iblock, max_blocks,
2025                               bh_result, EXT4_GET_BLOCKS_CREATE|
2026                               EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2027         if (ret <= 0)
2028                 return ret;
2029
2030         bh_result->b_size = (ret << inode->i_blkbits);
2031
2032         if (ext4_should_order_data(inode)) {
2033                 int retval;
2034                 retval = ext4_jbd2_file_inode(handle, inode);
2035                 if (retval)
2036                         /*
2037                          * Failed to add inode for ordered mode. Don't
2038                          * update file size
2039                          */
2040                         return retval;
2041         }
2042
2043         /*
2044          * Update on-disk size along with block allocation we don't
2045          * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2046          * within already allocated block -bzzz
2047          */
2048         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2049         if (disksize > i_size_read(inode))
2050                 disksize = i_size_read(inode);
2051         if (disksize > EXT4_I(inode)->i_disksize) {
2052                 ext4_update_i_disksize(inode, disksize);
2053                 ret = ext4_mark_inode_dirty(handle, inode);
2054                 return ret;
2055         }
2056         return 0;
2057 }
2058
2059 /*
2060  * mpage_da_map_blocks - go through given space
2061  *
2062  * @mpd - bh describing space
2063  *
2064  * The function skips space we know is already mapped to disk blocks.
2065  *
2066  */
2067 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2068 {
2069         int err = 0;
2070         struct buffer_head new;
2071         sector_t next;
2072
2073         /*
2074          * We consider only non-mapped and non-allocated blocks
2075          */
2076         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2077                 !(mpd->b_state & (1 << BH_Delay)) &&
2078                 !(mpd->b_state & (1 << BH_Unwritten)))
2079                 return 0;
2080         /*
2081          * We need to make sure the BH_Delay flag is passed down to
2082          * ext4_da_get_block_write(), since it calls ext4_get_blocks()
2083          * with the EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.  This flag
2084          * causes ext4_get_blocks() to call
2085          * ext4_da_update_reserve_space() if the passed buffer head
2086          * has the BH_Delay flag set.  In the future, once we clean up
2087          * the interfaces to ext4_get_blocks(), we should pass in a
2088          * separate flag which requests that the delayed allocation
2089          * statistics should be updated, instead of depending on the
2090          * state information getting passed down via the map_bh's
2091          * state bitmasks plus the magic
2092          * EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
2093          */
2094         new.b_state = mpd->b_state & (1 << BH_Delay);
2095         new.b_blocknr = 0;
2096         new.b_size = mpd->b_size;
2097         next = mpd->b_blocknr;
2098         /*
2099          * If we didn't accumulate anything
2100          * to write simply return
2101          */
2102         if (!new.b_size)
2103                 return 0;
2104
2105         err = ext4_da_get_block_write(mpd->inode, next, &new);
2106         if (err) {
2107                 /*
2108                  * If get block returns with error we simply
2109                  * return. Later writepage will redirty the page and
2110                  * writepages will find the dirty page again
2111                  */
2112                 if (err == -EAGAIN)
2113                         return 0;
2114
2115                 if (err == -ENOSPC &&
2116                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2117                         mpd->retval = err;
2118                         return 0;
2119                 }
2120
2121                 /*
2122                  * get block failure will cause us to loop in
2123                  * writepages, because a_ops->writepage won't be able
2124                  * to make progress. The page will be redirtied by
2125                  * writepage and writepages will again try to write
2126                  * the same.
2127                  */
2128                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2129                                   "at logical offset %llu with max blocks "
2130                                   "%zd with error %d\n",
2131                                   __func__, mpd->inode->i_ino,
2132                                   (unsigned long long)next,
2133                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2134                 printk(KERN_EMERG "This should not happen.!! "
2135                                         "Data will be lost\n");
2136                 if (err == -ENOSPC) {
2137                         ext4_print_free_blocks(mpd->inode);
2138                 }
2139                 /* invlaidate all the pages */
2140                 ext4_da_block_invalidatepages(mpd, next,
2141                                 mpd->b_size >> mpd->inode->i_blkbits);
2142                 return err;
2143         }
2144         BUG_ON(new.b_size == 0);
2145
2146         if (buffer_new(&new))
2147                 __unmap_underlying_blocks(mpd->inode, &new);
2148
2149         /*
2150          * If blocks are delayed marked, we need to
2151          * put actual blocknr and drop delayed bit
2152          */
2153         if ((mpd->b_state & (1 << BH_Delay)) ||
2154             (mpd->b_state & (1 << BH_Unwritten)))
2155                 mpage_put_bnr_to_bhs(mpd, next, &new);
2156
2157         return 0;
2158 }
2159
2160 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2161                 (1 << BH_Delay) | (1 << BH_Unwritten))
2162
2163 /*
2164  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2165  *
2166  * @mpd->lbh - extent of blocks
2167  * @logical - logical number of the block in the file
2168  * @bh - bh of the block (used to access block's state)
2169  *
2170  * the function is used to collect contig. blocks in same state
2171  */
2172 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2173                                    sector_t logical, size_t b_size,
2174                                    unsigned long b_state)
2175 {
2176         sector_t next;
2177         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2178
2179         /* check if thereserved journal credits might overflow */
2180         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2181                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2182                         /*
2183                          * With non-extent format we are limited by the journal
2184                          * credit available.  Total credit needed to insert
2185                          * nrblocks contiguous blocks is dependent on the
2186                          * nrblocks.  So limit nrblocks.
2187                          */
2188                         goto flush_it;
2189                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2190                                 EXT4_MAX_TRANS_DATA) {
2191                         /*
2192                          * Adding the new buffer_head would make it cross the
2193                          * allowed limit for which we have journal credit
2194                          * reserved. So limit the new bh->b_size
2195                          */
2196                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2197                                                 mpd->inode->i_blkbits;
2198                         /* we will do mpage_da_submit_io in the next loop */
2199                 }
2200         }
2201         /*
2202          * First block in the extent
2203          */
2204         if (mpd->b_size == 0) {
2205                 mpd->b_blocknr = logical;
2206                 mpd->b_size = b_size;
2207                 mpd->b_state = b_state & BH_FLAGS;
2208                 return;
2209         }
2210
2211         next = mpd->b_blocknr + nrblocks;
2212         /*
2213          * Can we merge the block to our big extent?
2214          */
2215         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2216                 mpd->b_size += b_size;
2217                 return;
2218         }
2219
2220 flush_it:
2221         /*
2222          * We couldn't merge the block to our extent, so we
2223          * need to flush current  extent and start new one
2224          */
2225         if (mpage_da_map_blocks(mpd) == 0)
2226                 mpage_da_submit_io(mpd);
2227         mpd->io_done = 1;
2228         return;
2229 }
2230
2231 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2232 {
2233         /*
2234          * unmapped buffer is possible for holes.
2235          * delay buffer is possible with delayed allocation.
2236          * We also need to consider unwritten buffer as unmapped.
2237          */
2238         return (!buffer_mapped(bh) || buffer_delay(bh) ||
2239                                 buffer_unwritten(bh)) && buffer_dirty(bh);
2240 }
2241
2242 /*
2243  * __mpage_da_writepage - finds extent of pages and blocks
2244  *
2245  * @page: page to consider
2246  * @wbc: not used, we just follow rules
2247  * @data: context
2248  *
2249  * The function finds extents of pages and scan them for all blocks.
2250  */
2251 static int __mpage_da_writepage(struct page *page,
2252                                 struct writeback_control *wbc, void *data)
2253 {
2254         struct mpage_da_data *mpd = data;
2255         struct inode *inode = mpd->inode;
2256         struct buffer_head *bh, *head;
2257         sector_t logical;
2258
2259         if (mpd->io_done) {
2260                 /*
2261                  * Rest of the page in the page_vec
2262                  * redirty then and skip then. We will
2263                  * try to to write them again after
2264                  * starting a new transaction
2265                  */
2266                 redirty_page_for_writepage(wbc, page);
2267                 unlock_page(page);
2268                 return MPAGE_DA_EXTENT_TAIL;
2269         }
2270         /*
2271          * Can we merge this page to current extent?
2272          */
2273         if (mpd->next_page != page->index) {
2274                 /*
2275                  * Nope, we can't. So, we map non-allocated blocks
2276                  * and start IO on them using writepage()
2277                  */
2278                 if (mpd->next_page != mpd->first_page) {
2279                         if (mpage_da_map_blocks(mpd) == 0)
2280                                 mpage_da_submit_io(mpd);
2281                         /*
2282                          * skip rest of the page in the page_vec
2283                          */
2284                         mpd->io_done = 1;
2285                         redirty_page_for_writepage(wbc, page);
2286                         unlock_page(page);
2287                         return MPAGE_DA_EXTENT_TAIL;
2288                 }
2289
2290                 /*
2291                  * Start next extent of pages ...
2292                  */
2293                 mpd->first_page = page->index;
2294
2295                 /*
2296                  * ... and blocks
2297                  */
2298                 mpd->b_size = 0;
2299                 mpd->b_state = 0;
2300                 mpd->b_blocknr = 0;
2301         }
2302
2303         mpd->next_page = page->index + 1;
2304         logical = (sector_t) page->index <<
2305                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2306
2307         if (!page_has_buffers(page)) {
2308                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2309                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2310                 if (mpd->io_done)
2311                         return MPAGE_DA_EXTENT_TAIL;
2312         } else {
2313                 /*
2314                  * Page with regular buffer heads, just add all dirty ones
2315                  */
2316                 head = page_buffers(page);
2317                 bh = head;
2318                 do {
2319                         BUG_ON(buffer_locked(bh));
2320                         /*
2321                          * We need to try to allocate
2322                          * unmapped blocks in the same page.
2323                          * Otherwise we won't make progress
2324                          * with the page in ext4_da_writepage
2325                          */
2326                         if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2327                                 mpage_add_bh_to_extent(mpd, logical,
2328                                                        bh->b_size,
2329                                                        bh->b_state);
2330                                 if (mpd->io_done)
2331                                         return MPAGE_DA_EXTENT_TAIL;
2332                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2333                                 /*
2334                                  * mapped dirty buffer. We need to update
2335                                  * the b_state because we look at
2336                                  * b_state in mpage_da_map_blocks. We don't
2337                                  * update b_size because if we find an
2338                                  * unmapped buffer_head later we need to
2339                                  * use the b_state flag of that buffer_head.
2340                                  */
2341                                 if (mpd->b_size == 0)
2342                                         mpd->b_state = bh->b_state & BH_FLAGS;
2343                         }
2344                         logical++;
2345                 } while ((bh = bh->b_this_page) != head);
2346         }
2347
2348         return 0;
2349 }
2350
2351 /*
2352  * This is a special get_blocks_t callback which is used by
2353  * ext4_da_write_begin().  It will either return mapped block or
2354  * reserve space for a single block.
2355  *
2356  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2357  * We also have b_blocknr = -1 and b_bdev initialized properly
2358  *
2359  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2360  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2361  * initialized properly.
2362  */
2363 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2364                                   struct buffer_head *bh_result, int create)
2365 {
2366         int ret = 0;
2367         sector_t invalid_block = ~((sector_t) 0xffff);
2368
2369         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2370                 invalid_block = ~0;
2371
2372         BUG_ON(create == 0);
2373         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2374
2375         /*
2376          * first, we need to know whether the block is allocated already
2377          * preallocated blocks are unmapped but should treated
2378          * the same as allocated blocks.
2379          */
2380         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2381         if ((ret == 0) && !buffer_delay(bh_result)) {
2382                 /* the block isn't (pre)allocated yet, let's reserve space */
2383                 /*
2384                  * XXX: __block_prepare_write() unmaps passed block,
2385                  * is it OK?
2386                  */
2387                 ret = ext4_da_reserve_space(inode, 1);
2388                 if (ret)
2389                         /* not enough space to reserve */
2390                         return ret;
2391
2392                 map_bh(bh_result, inode->i_sb, invalid_block);
2393                 set_buffer_new(bh_result);
2394                 set_buffer_delay(bh_result);
2395         } else if (ret > 0) {
2396                 bh_result->b_size = (ret << inode->i_blkbits);
2397                 if (buffer_unwritten(bh_result)) {
2398                         /* A delayed write to unwritten bh should
2399                          * be marked new and mapped.  Mapped ensures
2400                          * that we don't do get_block multiple times
2401                          * when we write to the same offset and new
2402                          * ensures that we do proper zero out for
2403                          * partial write.
2404                          */
2405                         set_buffer_new(bh_result);
2406                         set_buffer_mapped(bh_result);
2407                 }
2408                 ret = 0;
2409         }
2410
2411         return ret;
2412 }
2413
2414 /*
2415  * This function is used as a standard get_block_t calback function
2416  * when there is no desire to allocate any blocks.  It is used as a
2417  * callback function for block_prepare_write(), nobh_writepage(), and
2418  * block_write_full_page().  These functions should only try to map a
2419  * single block at a time.
2420  *
2421  * Since this function doesn't do block allocations even if the caller
2422  * requests it by passing in create=1, it is critically important that
2423  * any caller checks to make sure that any buffer heads are returned
2424  * by this function are either all already mapped or marked for
2425  * delayed allocation before calling nobh_writepage() or
2426  * block_write_full_page().  Otherwise, b_blocknr could be left
2427  * unitialized, and the page write functions will be taken by
2428  * surprise.
2429  */
2430 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2431                                    struct buffer_head *bh_result, int create)
2432 {
2433         int ret = 0;
2434         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2435
2436         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2437
2438         /*
2439          * we don't want to do block allocation in writepage
2440          * so call get_block_wrap with create = 0
2441          */
2442         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2443         BUG_ON(create && ret == 0);
2444         if (ret > 0) {
2445                 bh_result->b_size = (ret << inode->i_blkbits);
2446                 ret = 0;
2447         }
2448         return ret;
2449 }
2450
2451 /*
2452  * This function can get called via...
2453  *   - ext4_da_writepages after taking page lock (have journal handle)
2454  *   - journal_submit_inode_data_buffers (no journal handle)
2455  *   - shrink_page_list via pdflush (no journal handle)
2456  *   - grab_page_cache when doing write_begin (have journal handle)
2457  */
2458 static int ext4_da_writepage(struct page *page,
2459                                 struct writeback_control *wbc)
2460 {
2461         int ret = 0;
2462         loff_t size;
2463         unsigned int len;
2464         struct buffer_head *page_bufs;
2465         struct inode *inode = page->mapping->host;
2466
2467         trace_mark(ext4_da_writepage,
2468                    "dev %s ino %lu page_index %lu",
2469                    inode->i_sb->s_id, inode->i_ino, page->index);
2470         size = i_size_read(inode);
2471         if (page->index == size >> PAGE_CACHE_SHIFT)
2472                 len = size & ~PAGE_CACHE_MASK;
2473         else
2474                 len = PAGE_CACHE_SIZE;
2475
2476         if (page_has_buffers(page)) {
2477                 page_bufs = page_buffers(page);
2478                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2479                                         ext4_bh_unmapped_or_delay)) {
2480                         /*
2481                          * We don't want to do  block allocation
2482                          * So redirty the page and return
2483                          * We may reach here when we do a journal commit
2484                          * via journal_submit_inode_data_buffers.
2485                          * If we don't have mapping block we just ignore
2486                          * them. We can also reach here via shrink_page_list
2487                          */
2488                         redirty_page_for_writepage(wbc, page);
2489                         unlock_page(page);
2490                         return 0;
2491                 }
2492         } else {
2493                 /*
2494                  * The test for page_has_buffers() is subtle:
2495                  * We know the page is dirty but it lost buffers. That means
2496                  * that at some moment in time after write_begin()/write_end()
2497                  * has been called all buffers have been clean and thus they
2498                  * must have been written at least once. So they are all
2499                  * mapped and we can happily proceed with mapping them
2500                  * and writing the page.
2501                  *
2502                  * Try to initialize the buffer_heads and check whether
2503                  * all are mapped and non delay. We don't want to
2504                  * do block allocation here.
2505                  */
2506                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2507                                           noalloc_get_block_write);
2508                 if (!ret) {
2509                         page_bufs = page_buffers(page);
2510                         /* check whether all are mapped and non delay */
2511                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2512                                                 ext4_bh_unmapped_or_delay)) {
2513                                 redirty_page_for_writepage(wbc, page);
2514                                 unlock_page(page);
2515                                 return 0;
2516                         }
2517                 } else {
2518                         /*
2519                          * We can't do block allocation here
2520                          * so just redity the page and unlock
2521                          * and return
2522                          */
2523                         redirty_page_for_writepage(wbc, page);
2524                         unlock_page(page);
2525                         return 0;
2526                 }
2527                 /* now mark the buffer_heads as dirty and uptodate */
2528                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2529         }
2530
2531         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2532                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2533         else
2534                 ret = block_write_full_page(page, noalloc_get_block_write,
2535                                             wbc);
2536
2537         return ret;
2538 }
2539
2540 /*
2541  * This is called via ext4_da_writepages() to
2542  * calulate the total number of credits to reserve to fit
2543  * a single extent allocation into a single transaction,
2544  * ext4_da_writpeages() will loop calling this before
2545  * the block allocation.
2546  */
2547
2548 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2549 {
2550         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2551
2552         /*
2553          * With non-extent format the journal credit needed to
2554          * insert nrblocks contiguous block is dependent on
2555          * number of contiguous block. So we will limit
2556          * number of contiguous block to a sane value
2557          */
2558         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2559             (max_blocks > EXT4_MAX_TRANS_DATA))
2560                 max_blocks = EXT4_MAX_TRANS_DATA;
2561
2562         return ext4_chunk_trans_blocks(inode, max_blocks);
2563 }
2564
2565 static int ext4_da_writepages(struct address_space *mapping,
2566                               struct writeback_control *wbc)
2567 {
2568         pgoff_t index;
2569         int range_whole = 0;
2570         handle_t *handle = NULL;
2571         struct mpage_da_data mpd;
2572         struct inode *inode = mapping->host;
2573         int no_nrwrite_index_update;
2574         int pages_written = 0;
2575         long pages_skipped;
2576         int range_cyclic, cycled = 1, io_done = 0;
2577         int needed_blocks, ret = 0, nr_to_writebump = 0;
2578         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579
2580         trace_mark(ext4_da_writepages,
2581                    "dev %s ino %lu nr_t_write %ld "
2582                    "pages_skipped %ld range_start %llu "
2583                    "range_end %llu nonblocking %d "
2584                    "for_kupdate %d for_reclaim %d "
2585                    "for_writepages %d range_cyclic %d",
2586                    inode->i_sb->s_id, inode->i_ino,
2587                    wbc->nr_to_write, wbc->pages_skipped,
2588                    (unsigned long long) wbc->range_start,
2589                    (unsigned long long) wbc->range_end,
2590                    wbc->nonblocking, wbc->for_kupdate,
2591                    wbc->for_reclaim, wbc->for_writepages,
2592                    wbc->range_cyclic);
2593
2594         /*
2595          * No pages to write? This is mainly a kludge to avoid starting
2596          * a transaction for special inodes like journal inode on last iput()
2597          * because that could violate lock ordering on umount
2598          */
2599         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2600                 return 0;
2601
2602         /*
2603          * If the filesystem has aborted, it is read-only, so return
2604          * right away instead of dumping stack traces later on that
2605          * will obscure the real source of the problem.  We test
2606          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2607          * the latter could be true if the filesystem is mounted
2608          * read-only, and in that case, ext4_da_writepages should
2609          * *never* be called, so if that ever happens, we would want
2610          * the stack trace.
2611          */
2612         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2613                 return -EROFS;
2614
2615         /*
2616          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2617          * This make sure small files blocks are allocated in
2618          * single attempt. This ensure that small files
2619          * get less fragmented.
2620          */
2621         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2622                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2623                 wbc->nr_to_write = sbi->s_mb_stream_request;
2624         }
2625         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2626                 range_whole = 1;
2627
2628         range_cyclic = wbc->range_cyclic;
2629         if (wbc->range_cyclic) {
2630                 index = mapping->writeback_index;
2631                 if (index)
2632                         cycled = 0;
2633                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2634                 wbc->range_end  = LLONG_MAX;
2635                 wbc->range_cyclic = 0;
2636         } else
2637                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2638
2639         mpd.wbc = wbc;
2640         mpd.inode = mapping->host;
2641
2642         /*
2643          * we don't want write_cache_pages to update
2644          * nr_to_write and writeback_index
2645          */
2646         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2647         wbc->no_nrwrite_index_update = 1;
2648         pages_skipped = wbc->pages_skipped;
2649
2650 retry:
2651         while (!ret && wbc->nr_to_write > 0) {
2652
2653                 /*
2654                  * we  insert one extent at a time. So we need
2655                  * credit needed for single extent allocation.
2656                  * journalled mode is currently not supported
2657                  * by delalloc
2658                  */
2659                 BUG_ON(ext4_should_journal_data(inode));
2660                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2661
2662                 /* start a new transaction*/
2663                 handle = ext4_journal_start(inode, needed_blocks);
2664                 if (IS_ERR(handle)) {
2665                         ret = PTR_ERR(handle);
2666                         printk(KERN_CRIT "%s: jbd2_start: "
2667                                "%ld pages, ino %lu; err %d\n", __func__,
2668                                 wbc->nr_to_write, inode->i_ino, ret);
2669                         dump_stack();
2670                         goto out_writepages;
2671                 }
2672
2673                 /*
2674                  * Now call __mpage_da_writepage to find the next
2675                  * contiguous region of logical blocks that need
2676                  * blocks to be allocated by ext4.  We don't actually
2677                  * submit the blocks for I/O here, even though
2678                  * write_cache_pages thinks it will, and will set the
2679                  * pages as clean for write before calling
2680                  * __mpage_da_writepage().
2681                  */
2682                 mpd.b_size = 0;
2683                 mpd.b_state = 0;
2684                 mpd.b_blocknr = 0;
2685                 mpd.first_page = 0;
2686                 mpd.next_page = 0;
2687                 mpd.io_done = 0;
2688                 mpd.pages_written = 0;
2689                 mpd.retval = 0;
2690                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2691                                         &mpd);
2692                 /*
2693                  * If we have a contigous extent of pages and we
2694                  * haven't done the I/O yet, map the blocks and submit
2695                  * them for I/O.
2696                  */
2697                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2698                         if (mpage_da_map_blocks(&mpd) == 0)
2699                                 mpage_da_submit_io(&mpd);
2700                         mpd.io_done = 1;
2701                         ret = MPAGE_DA_EXTENT_TAIL;
2702                 }
2703                 wbc->nr_to_write -= mpd.pages_written;
2704
2705                 ext4_journal_stop(handle);
2706
2707                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2708                         /* commit the transaction which would
2709                          * free blocks released in the transaction
2710                          * and try again
2711                          */
2712                         jbd2_journal_force_commit_nested(sbi->s_journal);
2713                         wbc->pages_skipped = pages_skipped;
2714                         ret = 0;
2715                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2716                         /*
2717                          * got one extent now try with
2718                          * rest of the pages
2719                          */
2720                         pages_written += mpd.pages_written;
2721                         wbc->pages_skipped = pages_skipped;
2722                         ret = 0;
2723                         io_done = 1;
2724                 } else if (wbc->nr_to_write)
2725                         /*
2726                          * There is no more writeout needed
2727                          * or we requested for a noblocking writeout
2728                          * and we found the device congested
2729                          */
2730                         break;
2731         }
2732         if (!io_done && !cycled) {
2733                 cycled = 1;
2734                 index = 0;
2735                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2736                 wbc->range_end  = mapping->writeback_index - 1;
2737                 goto retry;
2738         }
2739         if (pages_skipped != wbc->pages_skipped)
2740                 printk(KERN_EMERG "This should not happen leaving %s "
2741                                 "with nr_to_write = %ld ret = %d\n",
2742                                 __func__, wbc->nr_to_write, ret);
2743
2744         /* Update index */
2745         index += pages_written;
2746         wbc->range_cyclic = range_cyclic;
2747         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2748                 /*
2749                  * set the writeback_index so that range_cyclic
2750                  * mode will write it back later
2751                  */
2752                 mapping->writeback_index = index;
2753
2754 out_writepages:
2755         if (!no_nrwrite_index_update)
2756                 wbc->no_nrwrite_index_update = 0;
2757         wbc->nr_to_write -= nr_to_writebump;
2758         trace_mark(ext4_da_writepage_result,
2759                    "dev %s ino %lu ret %d pages_written %d "
2760                    "pages_skipped %ld congestion %d "
2761                    "more_io %d no_nrwrite_index_update %d",
2762                    inode->i_sb->s_id, inode->i_ino, ret,
2763                    pages_written, wbc->pages_skipped,
2764                    wbc->encountered_congestion, wbc->more_io,
2765                    wbc->no_nrwrite_index_update);
2766         return ret;
2767 }
2768
2769 #define FALL_BACK_TO_NONDELALLOC 1
2770 static int ext4_nonda_switch(struct super_block *sb)
2771 {
2772         s64 free_blocks, dirty_blocks;
2773         struct ext4_sb_info *sbi = EXT4_SB(sb);
2774
2775         /*
2776          * switch to non delalloc mode if we are running low
2777          * on free block. The free block accounting via percpu
2778          * counters can get slightly wrong with percpu_counter_batch getting
2779          * accumulated on each CPU without updating global counters
2780          * Delalloc need an accurate free block accounting. So switch
2781          * to non delalloc when we are near to error range.
2782          */
2783         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2784         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2785         if (2 * free_blocks < 3 * dirty_blocks ||
2786                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2787                 /*
2788                  * free block count is less that 150% of dirty blocks
2789                  * or free blocks is less that watermark
2790                  */
2791                 return 1;
2792         }
2793         return 0;
2794 }
2795
2796 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2797                                 loff_t pos, unsigned len, unsigned flags,
2798                                 struct page **pagep, void **fsdata)
2799 {
2800         int ret, retries = 0;
2801         struct page *page;
2802         pgoff_t index;
2803         unsigned from, to;
2804         struct inode *inode = mapping->host;
2805         handle_t *handle;
2806
2807         index = pos >> PAGE_CACHE_SHIFT;
2808         from = pos & (PAGE_CACHE_SIZE - 1);
2809         to = from + len;
2810
2811         if (ext4_nonda_switch(inode->i_sb)) {
2812                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2813                 return ext4_write_begin(file, mapping, pos,
2814                                         len, flags, pagep, fsdata);
2815         }
2816         *fsdata = (void *)0;
2817
2818         trace_mark(ext4_da_write_begin,
2819                    "dev %s ino %lu pos %llu len %u flags %u",
2820                    inode->i_sb->s_id, inode->i_ino,
2821                    (unsigned long long) pos, len, flags);
2822 retry:
2823         /*
2824          * With delayed allocation, we don't log the i_disksize update
2825          * if there is delayed block allocation. But we still need
2826          * to journalling the i_disksize update if writes to the end
2827          * of file which has an already mapped buffer.
2828          */
2829         handle = ext4_journal_start(inode, 1);
2830         if (IS_ERR(handle)) {
2831                 ret = PTR_ERR(handle);
2832                 goto out;
2833         }
2834         /* We cannot recurse into the filesystem as the transaction is already
2835          * started */
2836         flags |= AOP_FLAG_NOFS;
2837
2838         page = grab_cache_page_write_begin(mapping, index, flags);
2839         if (!page) {
2840                 ext4_journal_stop(handle);
2841                 ret = -ENOMEM;
2842                 goto out;
2843         }
2844         *pagep = page;
2845
2846         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2847                                 ext4_da_get_block_prep);
2848         if (ret < 0) {
2849                 unlock_page(page);
2850                 ext4_journal_stop(handle);
2851                 page_cache_release(page);
2852                 /*
2853                  * block_write_begin may have instantiated a few blocks
2854                  * outside i_size.  Trim these off again. Don't need
2855                  * i_size_read because we hold i_mutex.
2856                  */
2857                 if (pos + len > inode->i_size)
2858                         vmtruncate(inode, inode->i_size);
2859         }
2860
2861         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2862                 goto retry;
2863 out:
2864         return ret;
2865 }
2866
2867 /*
2868  * Check if we should update i_disksize
2869  * when write to the end of file but not require block allocation
2870  */
2871 static int ext4_da_should_update_i_disksize(struct page *page,
2872                                          unsigned long offset)
2873 {
2874         struct buffer_head *bh;
2875         struct inode *inode = page->mapping->host;
2876         unsigned int idx;
2877         int i;
2878
2879         bh = page_buffers(page);
2880         idx = offset >> inode->i_blkbits;
2881
2882         for (i = 0; i < idx; i++)
2883                 bh = bh->b_this_page;
2884
2885         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2886                 return 0;
2887         return 1;
2888 }
2889
2890 static int ext4_da_write_end(struct file *file,
2891                                 struct address_space *mapping,
2892                                 loff_t pos, unsigned len, unsigned copied,
2893                                 struct page *page, void *fsdata)
2894 {
2895         struct inode *inode = mapping->host;
2896         int ret = 0, ret2;
2897         handle_t *handle = ext4_journal_current_handle();
2898         loff_t new_i_size;
2899         unsigned long start, end;
2900         int write_mode = (int)(unsigned long)fsdata;
2901
2902         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2903                 if (ext4_should_order_data(inode)) {
2904                         return ext4_ordered_write_end(file, mapping, pos,
2905                                         len, copied, page, fsdata);
2906                 } else if (ext4_should_writeback_data(inode)) {
2907                         return ext4_writeback_write_end(file, mapping, pos,
2908                                         len, copied, page, fsdata);
2909                 } else {
2910                         BUG();
2911                 }
2912         }
2913
2914         trace_mark(ext4_da_write_end,
2915                    "dev %s ino %lu pos %llu len %u copied %u",
2916                    inode->i_sb->s_id, inode->i_ino,
2917                    (unsigned long long) pos, len, copied);
2918         start = pos & (PAGE_CACHE_SIZE - 1);
2919         end = start + copied - 1;
2920
2921         /*
2922          * generic_write_end() will run mark_inode_dirty() if i_size
2923          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2924          * into that.
2925          */
2926
2927         new_i_size = pos + copied;
2928         if (new_i_size > EXT4_I(inode)->i_disksize) {
2929                 if (ext4_da_should_update_i_disksize(page, end)) {
2930                         down_write(&EXT4_I(inode)->i_data_sem);
2931                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2932                                 /*
2933                                  * Updating i_disksize when extending file
2934                                  * without needing block allocation
2935                                  */
2936                                 if (ext4_should_order_data(inode))
2937                                         ret = ext4_jbd2_file_inode(handle,
2938                                                                    inode);
2939
2940                                 EXT4_I(inode)->i_disksize = new_i_size;
2941                         }
2942                         up_write(&EXT4_I(inode)->i_data_sem);
2943                         /* We need to mark inode dirty even if
2944                          * new_i_size is less that inode->i_size
2945                          * bu greater than i_disksize.(hint delalloc)
2946                          */
2947                         ext4_mark_inode_dirty(handle, inode);
2948                 }
2949         }
2950         ret2 = generic_write_end(file, mapping, pos, len, copied,
2951                                                         page, fsdata);
2952         copied = ret2;
2953         if (ret2 < 0)
2954                 ret = ret2;
2955         ret2 = ext4_journal_stop(handle);
2956         if (!ret)
2957                 ret = ret2;
2958
2959         return ret ? ret : copied;
2960 }
2961
2962 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2963 {
2964         /*
2965          * Drop reserved blocks
2966          */
2967         BUG_ON(!PageLocked(page));
2968         if (!page_has_buffers(page))
2969                 goto out;
2970
2971         ext4_da_page_release_reservation(page, offset);
2972
2973 out:
2974         ext4_invalidatepage(page, offset);
2975
2976         return;
2977 }
2978
2979 /*
2980  * Force all delayed allocation blocks to be allocated for a given inode.
2981  */
2982 int ext4_alloc_da_blocks(struct inode *inode)
2983 {
2984         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2985             !EXT4_I(inode)->i_reserved_meta_blocks)
2986                 return 0;
2987
2988         /*
2989          * We do something simple for now.  The filemap_flush() will
2990          * also start triggering a write of the data blocks, which is
2991          * not strictly speaking necessary (and for users of
2992          * laptop_mode, not even desirable).  However, to do otherwise
2993          * would require replicating code paths in:
2994          * 
2995          * ext4_da_writepages() ->
2996          *    write_cache_pages() ---> (via passed in callback function)
2997          *        __mpage_da_writepage() -->
2998          *           mpage_add_bh_to_extent()
2999          *           mpage_da_map_blocks()
3000          *
3001          * The problem is that write_cache_pages(), located in
3002          * mm/page-writeback.c, marks pages clean in preparation for
3003          * doing I/O, which is not desirable if we're not planning on
3004          * doing I/O at all.
3005          *
3006          * We could call write_cache_pages(), and then redirty all of
3007          * the pages by calling redirty_page_for_writeback() but that
3008          * would be ugly in the extreme.  So instead we would need to
3009          * replicate parts of the code in the above functions,
3010          * simplifying them becuase we wouldn't actually intend to
3011          * write out the pages, but rather only collect contiguous
3012          * logical block extents, call the multi-block allocator, and
3013          * then update the buffer heads with the block allocations.
3014          * 
3015          * For now, though, we'll cheat by calling filemap_flush(),
3016          * which will map the blocks, and start the I/O, but not
3017          * actually wait for the I/O to complete.
3018          */
3019         return filemap_flush(inode->i_mapping);
3020 }
3021
3022 /*
3023  * bmap() is special.  It gets used by applications such as lilo and by
3024  * the swapper to find the on-disk block of a specific piece of data.
3025  *
3026  * Naturally, this is dangerous if the block concerned is still in the
3027  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3028  * filesystem and enables swap, then they may get a nasty shock when the
3029  * data getting swapped to that swapfile suddenly gets overwritten by
3030  * the original zero's written out previously to the journal and
3031  * awaiting writeback in the kernel's buffer cache.
3032  *
3033  * So, if we see any bmap calls here on a modified, data-journaled file,
3034  * take extra steps to flush any blocks which might be in the cache.
3035  */
3036 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3037 {
3038         struct inode *inode = mapping->host;
3039         journal_t *journal;
3040         int err;
3041
3042         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3043                         test_opt(inode->i_sb, DELALLOC)) {
3044                 /*
3045                  * With delalloc we want to sync the file
3046                  * so that we can make sure we allocate
3047                  * blocks for file
3048                  */
3049                 filemap_write_and_wait(mapping);
3050         }
3051
3052         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3053                 /*
3054                  * This is a REALLY heavyweight approach, but the use of
3055                  * bmap on dirty files is expected to be extremely rare:
3056                  * only if we run lilo or swapon on a freshly made file
3057                  * do we expect this to happen.
3058                  *
3059                  * (bmap requires CAP_SYS_RAWIO so this does not
3060                  * represent an unprivileged user DOS attack --- we'd be
3061                  * in trouble if mortal users could trigger this path at
3062                  * will.)
3063                  *
3064                  * NB. EXT4_STATE_JDATA is not set on files other than
3065                  * regular files.  If somebody wants to bmap a directory
3066                  * or symlink and gets confused because the buffer
3067                  * hasn't yet been flushed to disk, they deserve
3068                  * everything they get.
3069                  */
3070
3071                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3072                 journal = EXT4_JOURNAL(inode);
3073                 jbd2_journal_lock_updates(journal);
3074                 err = jbd2_journal_flush(journal);
3075                 jbd2_journal_unlock_updates(journal);
3076
3077                 if (err)
3078                         return 0;
3079         }
3080
3081         return generic_block_bmap(mapping, block, ext4_get_block);
3082 }
3083
3084 static int bget_one(handle_t *handle, struct buffer_head *bh)
3085 {
3086         get_bh(bh);
3087         return 0;
3088 }
3089
3090 static int bput_one(handle_t *handle, struct buffer_head *bh)
3091 {
3092         put_bh(bh);
3093         return 0;
3094 }
3095
3096 /*
3097  * Note that we don't need to start a transaction unless we're journaling data
3098  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3099  * need to file the inode to the transaction's list in ordered mode because if
3100  * we are writing back data added by write(), the inode is already there and if
3101  * we are writing back data modified via mmap(), noone guarantees in which
3102  * transaction the data will hit the disk. In case we are journaling data, we
3103  * cannot start transaction directly because transaction start ranks above page
3104  * lock so we have to do some magic.
3105  *
3106  * In all journaling modes block_write_full_page() will start the I/O.
3107  *
3108  * Problem:
3109  *
3110  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3111  *              ext4_writepage()
3112  *
3113  * Similar for:
3114  *
3115  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3116  *
3117  * Same applies to ext4_get_block().  We will deadlock on various things like
3118  * lock_journal and i_data_sem
3119  *
3120  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3121  * allocations fail.
3122  *
3123  * 16May01: If we're reentered then journal_current_handle() will be
3124  *          non-zero. We simply *return*.
3125  *
3126  * 1 July 2001: @@@ FIXME:
3127  *   In journalled data mode, a data buffer may be metadata against the
3128  *   current transaction.  But the same file is part of a shared mapping
3129  *   and someone does a writepage() on it.
3130  *
3131  *   We will move the buffer onto the async_data list, but *after* it has
3132  *   been dirtied. So there's a small window where we have dirty data on
3133  *   BJ_Metadata.
3134  *
3135  *   Note that this only applies to the last partial page in the file.  The
3136  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3137  *   broken code anyway: it's wrong for msync()).
3138  *
3139  *   It's a rare case: affects the final partial page, for journalled data
3140  *   where the file is subject to bith write() and writepage() in the same
3141  *   transction.  To fix it we'll need a custom block_write_full_page().
3142  *   We'll probably need that anyway for journalling writepage() output.
3143  *
3144  * We don't honour synchronous mounts for writepage().  That would be
3145  * disastrous.  Any write() or metadata operation will sync the fs for
3146  * us.
3147  *
3148  */
3149 static int __ext4_normal_writepage(struct page *page,
3150                                 struct writeback_control *wbc)
3151 {
3152         struct inode *inode = page->mapping->host;
3153
3154         if (test_opt(inode->i_sb, NOBH))
3155                 return nobh_writepage(page, noalloc_get_block_write, wbc);
3156         else
3157                 return block_write_full_page(page, noalloc_get_block_write,
3158                                              wbc);
3159 }
3160
3161 static int ext4_normal_writepage(struct page *page,
3162                                 struct writeback_control *wbc)
3163 {
3164         struct inode *inode = page->mapping->host;
3165         loff_t size = i_size_read(inode);
3166         loff_t len;
3167
3168         trace_mark(ext4_normal_writepage,
3169                    "dev %s ino %lu page_index %lu",
3170                    inode->i_sb->s_id, inode->i_ino, page->index);
3171         J_ASSERT(PageLocked(page));
3172         if (page->index == size >> PAGE_CACHE_SHIFT)
3173                 len = size & ~PAGE_CACHE_MASK;
3174         else
3175                 len = PAGE_CACHE_SIZE;
3176
3177         if (page_has_buffers(page)) {
3178                 /* if page has buffers it should all be mapped
3179                  * and allocated. If there are not buffers attached
3180                  * to the page we know the page is dirty but it lost
3181                  * buffers. That means that at some moment in time
3182                  * after write_begin() / write_end() has been called
3183                  * all buffers have been clean and thus they must have been
3184                  * written at least once. So they are all mapped and we can
3185                  * happily proceed with mapping them and writing the page.
3186                  */
3187                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3188                                         ext4_bh_unmapped_or_delay));
3189         }
3190
3191         if (!ext4_journal_current_handle())
3192                 return __ext4_normal_writepage(page, wbc);
3193
3194         redirty_page_for_writepage(wbc, page);
3195         unlock_page(page);
3196         return 0;
3197 }
3198
3199 static int __ext4_journalled_writepage(struct page *page,
3200                                 struct writeback_control *wbc)
3201 {
3202         struct address_space *mapping = page->mapping;
3203         struct inode *inode = mapping->host;
3204         struct buffer_head *page_bufs;
3205         handle_t *handle = NULL;
3206         int ret = 0;
3207         int err;
3208
3209         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3210                                   noalloc_get_block_write);
3211         if (ret != 0)
3212                 goto out_unlock;
3213
3214         page_bufs = page_buffers(page);
3215         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3216                                                                 bget_one);
3217         /* As soon as we unlock the page, it can go away, but we have
3218          * references to buffers so we are safe */
3219         unlock_page(page);
3220
3221         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3222         if (IS_ERR(handle)) {
3223                 ret = PTR_ERR(handle);
3224                 goto out;
3225         }
3226
3227         ret = walk_page_buffers(handle, page_bufs, 0,
3228                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3229
3230         err = walk_page_buffers(handle, page_bufs, 0,
3231                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3232         if (ret == 0)
3233                 ret = err;
3234         err = ext4_journal_stop(handle);
3235         if (!ret)
3236                 ret = err;
3237
3238         walk_page_buffers(handle, page_bufs, 0,
3239                                 PAGE_CACHE_SIZE, NULL, bput_one);
3240         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3241         goto out;
3242
3243 out_unlock:
3244         unlock_page(page);
3245 out:
3246         return ret;
3247 }
3248
3249 static int ext4_journalled_writepage(struct page *page,
3250                                 struct writeback_control *wbc)
3251 {
3252         struct inode *inode = page->mapping->host;
3253         loff_t size = i_size_read(inode);
3254         loff_t len;
3255
3256         trace_mark(ext4_journalled_writepage,
3257                    "dev %s ino %lu page_index %lu",
3258                    inode->i_sb->s_id, inode->i_ino, page->index);
3259         J_ASSERT(PageLocked(page));
3260         if (page->index == size >> PAGE_CACHE_SHIFT)
3261                 len = size & ~PAGE_CACHE_MASK;
3262         else
3263                 len = PAGE_CACHE_SIZE;
3264
3265         if (page_has_buffers(page)) {
3266                 /* if page has buffers it should all be mapped
3267                  * and allocated. If there are not buffers attached
3268                  * to the page we know the page is dirty but it lost
3269                  * buffers. That means that at some moment in time
3270                  * after write_begin() / write_end() has been called
3271                  * all buffers have been clean and thus they must have been
3272                  * written at least once. So they are all mapped and we can
3273                  * happily proceed with mapping them and writing the page.
3274                  */
3275                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3276                                         ext4_bh_unmapped_or_delay));
3277         }
3278
3279         if (ext4_journal_current_handle())
3280                 goto no_write;
3281
3282         if (PageChecked(page)) {
3283                 /*
3284                  * It's mmapped pagecache.  Add buffers and journal it.  There
3285                  * doesn't seem much point in redirtying the page here.
3286                  */
3287                 ClearPageChecked(page);
3288                 return __ext4_journalled_writepage(page, wbc);
3289         } else {
3290                 /*
3291                  * It may be a page full of checkpoint-mode buffers.  We don't
3292                  * really know unless we go poke around in the buffer_heads.
3293                  * But block_write_full_page will do the right thing.
3294                  */
3295                 return block_write_full_page(page, noalloc_get_block_write,
3296                                              wbc);
3297         }
3298 no_write:
3299         redirty_page_for_writepage(wbc, page);
3300         unlock_page(page);
3301         return 0;
3302 }
3303
3304 static int ext4_readpage(struct file *file, struct page *page)
3305 {
3306         return mpage_readpage(page, ext4_get_block);
3307 }
3308
3309 static int
3310 ext4_readpages(struct file *file, struct address_space *mapping,
3311                 struct list_head *pages, unsigned nr_pages)
3312 {
3313         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3314 }
3315
3316 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3317 {
3318         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3319
3320         /*
3321          * If it's a full truncate we just forget about the pending dirtying
3322          */
3323         if (offset == 0)
3324                 ClearPageChecked(page);
3325
3326         if (journal)
3327                 jbd2_journal_invalidatepage(journal, page, offset);
3328         else
3329                 block_invalidatepage(page, offset);
3330 }
3331
3332 static int ext4_releasepage(struct page *page, gfp_t wait)
3333 {
3334         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3335
3336         WARN_ON(PageChecked(page));
3337         if (!page_has_buffers(page))
3338                 return 0;
3339         if (journal)
3340                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3341         else
3342                 return try_to_free_buffers(page);
3343 }
3344
3345 /*
3346  * If the O_DIRECT write will extend the file then add this inode to the
3347  * orphan list.  So recovery will truncate it back to the original size
3348  * if the machine crashes during the write.
3349  *
3350  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3351  * crashes then stale disk data _may_ be exposed inside the file. But current
3352  * VFS code falls back into buffered path in that case so we are safe.
3353  */
3354 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3355                         const struct iovec *iov, loff_t offset,
3356                         unsigned long nr_segs)
3357 {
3358         struct file *file = iocb->ki_filp;
3359         struct inode *inode = file->f_mapping->host;
3360         struct ext4_inode_info *ei = EXT4_I(inode);
3361         handle_t *handle;
3362         ssize_t ret;
3363         int orphan = 0;
3364         size_t count = iov_length(iov, nr_segs);
3365
3366         if (rw == WRITE) {
3367                 loff_t final_size = offset + count;
3368
3369                 if (final_size > inode->i_size) {
3370                         /* Credits for sb + inode write */
3371                         handle = ext4_journal_start(inode, 2);
3372                         if (IS_ERR(handle)) {
3373                                 ret = PTR_ERR(handle);
3374                                 goto out;
3375                         }
3376                         ret = ext4_orphan_add(handle, inode);
3377                         if (ret) {
3378                                 ext4_journal_stop(handle);
3379                                 goto out;
3380                         }
3381                         orphan = 1;
3382                         ei->i_disksize = inode->i_size;
3383                         ext4_journal_stop(handle);
3384                 }
3385         }
3386
3387         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3388                                  offset, nr_segs,
3389                                  ext4_get_block, NULL);
3390
3391         if (orphan) {
3392                 int err;
3393
3394                 /* Credits for sb + inode write */
3395                 handle = ext4_journal_start(inode, 2);
3396                 if (IS_ERR(handle)) {
3397                         /* This is really bad luck. We've written the data
3398                          * but cannot extend i_size. Bail out and pretend
3399                          * the write failed... */
3400                         ret = PTR_ERR(handle);
3401                         goto out;
3402                 }
3403                 if (inode->i_nlink)
3404                         ext4_orphan_del(handle, inode);
3405                 if (ret > 0) {
3406                         loff_t end = offset + ret;
3407                         if (end > inode->i_size) {
3408                                 ei->i_disksize = end;
3409                                 i_size_write(inode, end);
3410                                 /*
3411                                  * We're going to return a positive `ret'
3412                                  * here due to non-zero-length I/O, so there's
3413                                  * no way of reporting error returns from
3414                                  * ext4_mark_inode_dirty() to userspace.  So
3415                                  * ignore it.
3416                                  */
3417                                 ext4_mark_inode_dirty(handle, inode);
3418                         }
3419                 }
3420                 err = ext4_journal_stop(handle);
3421                 if (ret == 0)
3422                         ret = err;
3423         }
3424 out:
3425         return ret;
3426 }
3427
3428 /*
3429  * Pages can be marked dirty completely asynchronously from ext4's journalling
3430  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3431  * much here because ->set_page_dirty is called under VFS locks.  The page is
3432  * not necessarily locked.
3433  *
3434  * We cannot just dirty the page and leave attached buffers clean, because the
3435  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3436  * or jbddirty because all the journalling code will explode.
3437  *
3438  * So what we do is to mark the page "pending dirty" and next time writepage
3439  * is called, propagate that into the buffers appropriately.
3440  */
3441 static int ext4_journalled_set_page_dirty(struct page *page)
3442 {
3443         SetPageChecked(page);
3444         return __set_page_dirty_nobuffers(page);
3445 }
3446
3447 static const struct address_space_operations ext4_ordered_aops = {
3448         .readpage               = ext4_readpage,
3449         .readpages              = ext4_readpages,
3450         .writepage              = ext4_normal_writepage,
3451         .sync_page              = block_sync_page,
3452         .write_begin            = ext4_write_begin,
3453         .write_end              = ext4_ordered_write_end,
3454         .bmap                   = ext4_bmap,
3455         .invalidatepage         = ext4_invalidatepage,
3456         .releasepage            = ext4_releasepage,
3457         .direct_IO              = ext4_direct_IO,
3458         .migratepage            = buffer_migrate_page,
3459         .is_partially_uptodate  = block_is_partially_uptodate,
3460 };
3461
3462 static const struct address_space_operations ext4_writeback_aops = {
3463         .readpage               = ext4_readpage,
3464         .readpages              = ext4_readpages,
3465         .writepage              = ext4_normal_writepage,
3466         .sync_page              = block_sync_page,
3467         .write_begin            = ext4_write_begin,
3468         .write_end              = ext4_writeback_write_end,
3469         .bmap                   = ext4_bmap,
3470         .invalidatepage         = ext4_invalidatepage,
3471         .releasepage            = ext4_releasepage,
3472         .direct_IO              = ext4_direct_IO,
3473         .migratepage            = buffer_migrate_page,
3474         .is_partially_uptodate  = block_is_partially_uptodate,
3475 };
3476
3477 static const struct address_space_operations ext4_journalled_aops = {
3478         .readpage               = ext4_readpage,
3479         .readpages              = ext4_readpages,
3480         .writepage              = ext4_journalled_writepage,
3481         .sync_page              = block_sync_page,
3482         .write_begin            = ext4_write_begin,
3483         .write_end              = ext4_journalled_write_end,
3484         .set_page_dirty         = ext4_journalled_set_page_dirty,
3485         .bmap                   = ext4_bmap,
3486         .invalidatepage         = ext4_invalidatepage,
3487         .releasepage            = ext4_releasepage,
3488         .is_partially_uptodate  = block_is_partially_uptodate,
3489 };
3490
3491 static const struct address_space_operations ext4_da_aops = {
3492         .readpage               = ext4_readpage,
3493         .readpages              = ext4_readpages,
3494         .writepage              = ext4_da_writepage,
3495         .writepages             = ext4_da_writepages,
3496         .sync_page              = block_sync_page,
3497         .write_begin            = ext4_da_write_begin,
3498         .write_end              = ext4_da_write_end,
3499         .bmap                   = ext4_bmap,
3500         .invalidatepage         = ext4_da_invalidatepage,
3501         .releasepage            = ext4_releasepage,
3502         .direct_IO              = ext4_direct_IO,
3503         .migratepage            = buffer_migrate_page,
3504         .is_partially_uptodate  = block_is_partially_uptodate,
3505 };
3506
3507 void ext4_set_aops(struct inode *inode)
3508 {
3509         if (ext4_should_order_data(inode) &&
3510                 test_opt(inode->i_sb, DELALLOC))
3511                 inode->i_mapping->a_ops = &ext4_da_aops;
3512         else if (ext4_should_order_data(inode))
3513                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3514         else if (ext4_should_writeback_data(inode) &&
3515                  test_opt(inode->i_sb, DELALLOC))
3516                 inode->i_mapping->a_ops = &ext4_da_aops;
3517         else if (ext4_should_writeback_data(inode))
3518                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3519         else
3520                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3521 }
3522
3523 /*
3524  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3525  * up to the end of the block which corresponds to `from'.
3526  * This required during truncate. We need to physically zero the tail end
3527  * of that block so it doesn't yield old data if the file is later grown.
3528  */
3529 int ext4_block_truncate_page(handle_t *handle,
3530                 struct address_space *mapping, loff_t from)
3531 {
3532         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3533         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3534         unsigned blocksize, length, pos;
3535         ext4_lblk_t iblock;
3536         struct inode *inode = mapping->host;
3537         struct buffer_head *bh;
3538         struct page *page;
3539         int err = 0;
3540
3541         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3542         if (!page)
3543                 return -EINVAL;
3544
3545         blocksize = inode->i_sb->s_blocksize;
3546         length = blocksize - (offset & (blocksize - 1));
3547         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3548
3549         /*
3550          * For "nobh" option,  we can only work if we don't need to
3551          * read-in the page - otherwise we create buffers to do the IO.
3552          */
3553         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3554              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3555                 zero_user(page, offset, length);
3556                 set_page_dirty(page);
3557                 goto unlock;
3558         }
3559
3560         if (!page_has_buffers(page))
3561                 create_empty_buffers(page, blocksize, 0);
3562
3563         /* Find the buffer that contains "offset" */
3564         bh = page_buffers(page);
3565         pos = blocksize;
3566         while (offset >= pos) {
3567                 bh = bh->b_this_page;
3568                 iblock++;
3569                 pos += blocksize;
3570         }
3571
3572         err = 0;
3573         if (buffer_freed(bh)) {
3574                 BUFFER_TRACE(bh, "freed: skip");
3575                 goto unlock;
3576         }
3577
3578         if (!buffer_mapped(bh)) {
3579                 BUFFER_TRACE(bh, "unmapped");
3580                 ext4_get_block(inode, iblock, bh, 0);
3581                 /* unmapped? It's a hole - nothing to do */
3582                 if (!buffer_mapped(bh)) {
3583                         BUFFER_TRACE(bh, "still unmapped");
3584                         goto unlock;
3585                 }
3586         }
3587
3588         /* Ok, it's mapped. Make sure it's up-to-date */
3589         if (PageUptodate(page))
3590                 set_buffer_uptodate(bh);
3591
3592         if (!buffer_uptodate(bh)) {
3593                 err = -EIO;
3594                 ll_rw_block(READ, 1, &bh);
3595                 wait_on_buffer(bh);
3596                 /* Uhhuh. Read error. Complain and punt. */
3597                 if (!buffer_uptodate(bh))
3598                         goto unlock;
3599         }
3600
3601         if (ext4_should_journal_data(inode)) {
3602                 BUFFER_TRACE(bh, "get write access");
3603                 err = ext4_journal_get_write_access(handle, bh);
3604                 if (err)
3605                         goto unlock;
3606         }
3607
3608         zero_user(page, offset, length);
3609
3610         BUFFER_TRACE(bh, "zeroed end of block");
3611
3612         err = 0;
3613         if (ext4_should_journal_data(inode)) {
3614                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3615         } else {
3616                 if (ext4_should_order_data(inode))
3617                         err = ext4_jbd2_file_inode(handle, inode);
3618                 mark_buffer_dirty(bh);
3619         }
3620
3621 unlock:
3622         unlock_page(page);
3623         page_cache_release(page);
3624         return err;
3625 }
3626
3627 /*
3628  * Probably it should be a library function... search for first non-zero word
3629  * or memcmp with zero_page, whatever is better for particular architecture.
3630  * Linus?
3631  */
3632 static inline int all_zeroes(__le32 *p, __le32 *q)
3633 {
3634         while (p < q)
3635                 if (*p++)
3636                         return 0;
3637         return 1;
3638 }
3639
3640 /**
3641  *      ext4_find_shared - find the indirect blocks for partial truncation.
3642  *      @inode:   inode in question
3643  *      @depth:   depth of the affected branch
3644  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3645  *      @chain:   place to store the pointers to partial indirect blocks
3646  *      @top:     place to the (detached) top of branch
3647  *
3648  *      This is a helper function used by ext4_truncate().
3649  *
3650  *      When we do truncate() we may have to clean the ends of several
3651  *      indirect blocks but leave the blocks themselves alive. Block is
3652  *      partially truncated if some data below the new i_size is refered
3653  *      from it (and it is on the path to the first completely truncated
3654  *      data block, indeed).  We have to free the top of that path along
3655  *      with everything to the right of the path. Since no allocation
3656  *      past the truncation point is possible until ext4_truncate()
3657  *      finishes, we may safely do the latter, but top of branch may
3658  *      require special attention - pageout below the truncation point
3659  *      might try to populate it.
3660  *
3661  *      We atomically detach the top of branch from the tree, store the
3662  *      block number of its root in *@top, pointers to buffer_heads of
3663  *      partially truncated blocks - in @chain[].bh and pointers to
3664  *      their last elements that should not be removed - in
3665  *      @chain[].p. Return value is the pointer to last filled element
3666  *      of @chain.
3667  *
3668  *      The work left to caller to do the actual freeing of subtrees:
3669  *              a) free the subtree starting from *@top
3670  *              b) free the subtrees whose roots are stored in
3671  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3672  *              c) free the subtrees growing from the inode past the @chain[0].
3673  *                      (no partially truncated stuff there).  */
3674
3675 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3676                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3677 {
3678         Indirect *partial, *p;
3679         int k, err;
3680
3681         *top = 0;
3682         /* Make k index the deepest non-null offest + 1 */
3683         for (k = depth; k > 1 && !offsets[k-1]; k--)
3684                 ;
3685         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3686         /* Writer: pointers */
3687         if (!partial)
3688                 partial = chain + k-1;
3689         /*
3690          * If the branch acquired continuation since we've looked at it -
3691          * fine, it should all survive and (new) top doesn't belong to us.
3692          */
3693         if (!partial->key && *partial->p)
3694                 /* Writer: end */
3695                 goto no_top;
3696         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3697                 ;
3698         /*
3699          * OK, we've found the last block that must survive. The rest of our
3700          * branch should be detached before unlocking. However, if that rest
3701          * of branch is all ours and does not grow immediately from the inode
3702          * it's easier to cheat and just decrement partial->p.
3703          */
3704         if (p == chain + k - 1 && p > chain) {
3705                 p->p--;
3706         } else {
3707                 *top = *p->p;
3708                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3709 #if 0
3710                 *p->p = 0;
3711 #endif
3712         }
3713         /* Writer: end */
3714
3715         while (partial > p) {
3716                 brelse(partial->bh);
3717                 partial--;
3718         }
3719 no_top:
3720         return partial;
3721 }
3722
3723 /*
3724  * Zero a number of block pointers in either an inode or an indirect block.
3725  * If we restart the transaction we must again get write access to the
3726  * indirect block for further modification.
3727  *
3728  * We release `count' blocks on disk, but (last - first) may be greater
3729  * than `count' because there can be holes in there.
3730  */
3731 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3732                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3733                 unsigned long count, __le32 *first, __le32 *last)
3734 {
3735         __le32 *p;
3736         if (try_to_extend_transaction(handle, inode)) {
3737                 if (bh) {
3738                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3739                         ext4_handle_dirty_metadata(handle, inode, bh);
3740                 }
3741                 ext4_mark_inode_dirty(handle, inode);
3742                 ext4_journal_test_restart(handle, inode);
3743                 if (bh) {
3744                         BUFFER_TRACE(bh, "retaking write access");
3745                         ext4_journal_get_write_access(handle, bh);
3746                 }
3747         }
3748
3749         /*
3750          * Any buffers which are on the journal will be in memory. We find
3751          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3752          * on them.  We've already detached each block from the file, so
3753          * bforget() in jbd2_journal_forget() should be safe.
3754          *
3755          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3756          */
3757         for (p = first; p < last; p++) {
3758                 u32 nr = le32_to_cpu(*p);
3759                 if (nr) {
3760                         struct buffer_head *tbh;
3761
3762                         *p = 0;
3763                         tbh = sb_find_get_block(inode->i_sb, nr);
3764                         ext4_forget(handle, 0, inode, tbh, nr);
3765                 }
3766         }
3767
3768         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3769 }
3770
3771 /**
3772  * ext4_free_data - free a list of data blocks
3773  * @handle:     handle for this transaction
3774  * @inode:      inode we are dealing with
3775  * @this_bh:    indirect buffer_head which contains *@first and *@last
3776  * @first:      array of block numbers
3777  * @last:       points immediately past the end of array
3778  *
3779  * We are freeing all blocks refered from that array (numbers are stored as
3780  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3781  *
3782  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3783  * blocks are contiguous then releasing them at one time will only affect one
3784  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3785  * actually use a lot of journal space.
3786  *
3787  * @this_bh will be %NULL if @first and @last point into the inode's direct
3788  * block pointers.
3789  */
3790 static void ext4_free_data(handle_t *handle, struct inode *inode,
3791                            struct buffer_head *this_bh,
3792                            __le32 *first, __le32 *last)
3793 {
3794         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3795         unsigned long count = 0;            /* Number of blocks in the run */
3796         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3797                                                corresponding to
3798                                                block_to_free */
3799         ext4_fsblk_t nr;                    /* Current block # */
3800         __le32 *p;                          /* Pointer into inode/ind
3801                                                for current block */
3802         int err;
3803
3804         if (this_bh) {                          /* For indirect block */
3805                 BUFFER_TRACE(this_bh, "get_write_access");
3806                 err = ext4_journal_get_write_access(handle, this_bh);
3807                 /* Important: if we can't update the indirect pointers
3808                  * to the blocks, we can't free them. */
3809                 if (err)
3810                         return;
3811         }
3812
3813         for (p = first; p < last; p++) {
3814                 nr = le32_to_cpu(*p);
3815                 if (nr) {
3816                         /* accumulate blocks to free if they're contiguous */
3817                         if (count == 0) {
3818                                 block_to_free = nr;
3819                                 block_to_free_p = p;
3820                                 count = 1;
3821                         } else if (nr == block_to_free + count) {
3822                                 count++;
3823                         } else {
3824                                 ext4_clear_blocks(handle, inode, this_bh,
3825                                                   block_to_free,
3826                                                   count, block_to_free_p, p);
3827                                 block_to_free = nr;
3828                                 block_to_free_p = p;
3829                                 count = 1;
3830                         }
3831                 }
3832         }
3833
3834         if (count > 0)
3835                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3836                                   count, block_to_free_p, p);
3837
3838         if (this_bh) {
3839                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3840
3841                 /*
3842                  * The buffer head should have an attached journal head at this
3843                  * point. However, if the data is corrupted and an indirect
3844                  * block pointed to itself, it would have been detached when
3845                  * the block was cleared. Check for this instead of OOPSing.
3846                  */
3847                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3848                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3849                 else
3850                         ext4_error(inode->i_sb, __func__,
3851                                    "circular indirect block detected, "
3852                                    "inode=%lu, block=%llu",
3853                                    inode->i_ino,
3854                                    (unsigned long long) this_bh->b_blocknr);
3855         }
3856 }
3857
3858 /**
3859  *      ext4_free_branches - free an array of branches
3860  *      @handle: JBD handle for this transaction
3861  *      @inode: inode we are dealing with
3862  *      @parent_bh: the buffer_head which contains *@first and *@last
3863  *      @first: array of block numbers
3864  *      @last:  pointer immediately past the end of array
3865  *      @depth: depth of the branches to free
3866  *
3867  *      We are freeing all blocks refered from these branches (numbers are
3868  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3869  *      appropriately.
3870  */
3871 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3872                                struct buffer_head *parent_bh,
3873                                __le32 *first, __le32 *last, int depth)
3874 {
3875         ext4_fsblk_t nr;
3876         __le32 *p;
3877
3878         if (ext4_handle_is_aborted(handle))
3879                 return;
3880
3881         if (depth--) {
3882                 struct buffer_head *bh;
3883                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3884                 p = last;
3885                 while (--p >= first) {
3886                         nr = le32_to_cpu(*p);
3887                         if (!nr)
3888                                 continue;               /* A hole */
3889
3890                         /* Go read the buffer for the next level down */
3891                         bh = sb_bread(inode->i_sb, nr);
3892
3893                         /*
3894                          * A read failure? Report error and clear slot
3895                          * (should be rare).
3896                          */
3897                         if (!bh) {
3898                                 ext4_error(inode->i_sb, "ext4_free_branches",
3899                                            "Read failure, inode=%lu, block=%llu",
3900                                            inode->i_ino, nr);
3901                                 continue;
3902                         }
3903
3904                         /* This zaps the entire block.  Bottom up. */
3905                         BUFFER_TRACE(bh, "free child branches");
3906                         ext4_free_branches(handle, inode, bh,
3907                                         (__le32 *) bh->b_data,
3908                                         (__le32 *) bh->b_data + addr_per_block,
3909                                         depth);
3910
3911                         /*
3912                          * We've probably journalled the indirect block several
3913                          * times during the truncate.  But it's no longer
3914                          * needed and we now drop it from the transaction via
3915                          * jbd2_journal_revoke().
3916                          *
3917                          * That's easy if it's exclusively part of this
3918                          * transaction.  But if it's part of the committing
3919                          * transaction then jbd2_journal_forget() will simply
3920                          * brelse() it.  That means that if the underlying
3921                          * block is reallocated in ext4_get_block(),
3922                          * unmap_underlying_metadata() will find this block
3923                          * and will try to get rid of it.  damn, damn.
3924                          *
3925                          * If this block has already been committed to the
3926                          * journal, a revoke record will be written.  And
3927                          * revoke records must be emitted *before* clearing
3928                          * this block's bit in the bitmaps.
3929                          */
3930                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3931
3932                         /*
3933                          * Everything below this this pointer has been
3934                          * released.  Now let this top-of-subtree go.
3935                          *
3936                          * We want the freeing of this indirect block to be
3937                          * atomic in the journal with the updating of the
3938                          * bitmap block which owns it.  So make some room in
3939                          * the journal.
3940                          *
3941                          * We zero the parent pointer *after* freeing its
3942                          * pointee in the bitmaps, so if extend_transaction()
3943                          * for some reason fails to put the bitmap changes and
3944                          * the release into the same transaction, recovery
3945                          * will merely complain about releasing a free block,
3946                          * rather than leaking blocks.
3947                          */
3948                         if (ext4_handle_is_aborted(handle))
3949                                 return;
3950                         if (try_to_extend_transaction(handle, inode)) {
3951                                 ext4_mark_inode_dirty(handle, inode);
3952                                 ext4_journal_test_restart(handle, inode);
3953                         }
3954
3955                         ext4_free_blocks(handle, inode, nr, 1, 1);
3956
3957                         if (parent_bh) {
3958                                 /*
3959                                  * The block which we have just freed is
3960                                  * pointed to by an indirect block: journal it
3961                                  */
3962                                 BUFFER_TRACE(parent_bh, "get_write_access");
3963                                 if (!ext4_journal_get_write_access(handle,
3964                                                                    parent_bh)){
3965                                         *p = 0;
3966                                         BUFFER_TRACE(parent_bh,
3967                                         "call ext4_handle_dirty_metadata");
3968                                         ext4_handle_dirty_metadata(handle,
3969                                                                    inode,
3970                                                                    parent_bh);
3971                                 }
3972                         }
3973                 }
3974         } else {
3975                 /* We have reached the bottom of the tree. */
3976                 BUFFER_TRACE(parent_bh, "free data blocks");
3977                 ext4_free_data(handle, inode, parent_bh, first, last);
3978         }
3979 }
3980
3981 int ext4_can_truncate(struct inode *inode)
3982 {
3983         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3984                 return 0;
3985         if (S_ISREG(inode->i_mode))
3986                 return 1;
3987         if (S_ISDIR(inode->i_mode))
3988                 return 1;
3989         if (S_ISLNK(inode->i_mode))
3990                 return !ext4_inode_is_fast_symlink(inode);
3991         return 0;
3992 }
3993
3994 /*
3995  * ext4_truncate()
3996  *
3997  * We block out ext4_get_block() block instantiations across the entire
3998  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3999  * simultaneously on behalf of the same inode.
4000  *
4001  * As we work through the truncate and commmit bits of it to the journal there
4002  * is one core, guiding principle: the file's tree must always be consistent on
4003  * disk.  We must be able to restart the truncate after a crash.
4004  *
4005  * The file's tree may be transiently inconsistent in memory (although it
4006  * probably isn't), but whenever we close off and commit a journal transaction,
4007  * the contents of (the filesystem + the journal) must be consistent and
4008  * restartable.  It's pretty simple, really: bottom up, right to left (although
4009  * left-to-right works OK too).
4010  *
4011  * Note that at recovery time, journal replay occurs *before* the restart of
4012  * truncate against the orphan inode list.
4013  *
4014  * The committed inode has the new, desired i_size (which is the same as
4015  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4016  * that this inode's truncate did not complete and it will again call
4017  * ext4_truncate() to have another go.  So there will be instantiated blocks
4018  * to the right of the truncation point in a crashed ext4 filesystem.  But
4019  * that's fine - as long as they are linked from the inode, the post-crash
4020  * ext4_truncate() run will find them and release them.
4021  */
4022 void ext4_truncate(struct inode *inode)
4023 {
4024         handle_t *handle;
4025         struct ext4_inode_info *ei = EXT4_I(inode);
4026         __le32 *i_data = ei->i_data;
4027         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4028         struct address_space *mapping = inode->i_mapping;
4029         ext4_lblk_t offsets[4];
4030         Indirect chain[4];
4031         Indirect *partial;
4032         __le32 nr = 0;
4033         int n;
4034         ext4_lblk_t last_block;
4035         unsigned blocksize = inode->i_sb->s_blocksize;
4036
4037         if (!ext4_can_truncate(inode))
4038                 return;
4039
4040         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4041                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4042
4043         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4044                 ext4_ext_truncate(inode);
4045                 return;
4046         }
4047
4048         handle = start_transaction(inode);
4049         if (IS_ERR(handle))
4050                 return;         /* AKPM: return what? */
4051
4052         last_block = (inode->i_size + blocksize-1)
4053                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4054
4055         if (inode->i_size & (blocksize - 1))
4056                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4057                         goto out_stop;
4058
4059         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4060         if (n == 0)
4061                 goto out_stop;  /* error */
4062
4063         /*
4064          * OK.  This truncate is going to happen.  We add the inode to the
4065          * orphan list, so that if this truncate spans multiple transactions,
4066          * and we crash, we will resume the truncate when the filesystem
4067          * recovers.  It also marks the inode dirty, to catch the new size.
4068          *
4069          * Implication: the file must always be in a sane, consistent
4070          * truncatable state while each transaction commits.
4071          */
4072         if (ext4_orphan_add(handle, inode))
4073                 goto out_stop;
4074
4075         /*
4076          * From here we block out all ext4_get_block() callers who want to
4077          * modify the block allocation tree.
4078          */
4079         down_write(&ei->i_data_sem);
4080
4081         ext4_discard_preallocations(inode);
4082
4083         /*
4084          * The orphan list entry will now protect us from any crash which
4085          * occurs before the truncate completes, so it is now safe to propagate
4086          * the new, shorter inode size (held for now in i_size) into the
4087          * on-disk inode. We do this via i_disksize, which is the value which
4088          * ext4 *really* writes onto the disk inode.
4089          */
4090         ei->i_disksize = inode->i_size;
4091
4092         if (n == 1) {           /* direct blocks */
4093                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4094                                i_data + EXT4_NDIR_BLOCKS);
4095                 goto do_indirects;
4096         }
4097
4098         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4099         /* Kill the top of shared branch (not detached) */
4100         if (nr) {
4101                 if (partial == chain) {
4102                         /* Shared branch grows from the inode */
4103                         ext4_free_branches(handle, inode, NULL,
4104                                            &nr, &nr+1, (chain+n-1) - partial);
4105                         *partial->p = 0;
4106                         /*
4107                          * We mark the inode dirty prior to restart,
4108                          * and prior to stop.  No need for it here.
4109                          */
4110                 } else {
4111                         /* Shared branch grows from an indirect block */
4112                         BUFFER_TRACE(partial->bh, "get_write_access");
4113                         ext4_free_branches(handle, inode, partial->bh,
4114                                         partial->p,
4115                                         partial->p+1, (chain+n-1) - partial);
4116                 }
4117         }
4118         /* Clear the ends of indirect blocks on the shared branch */
4119         while (partial > chain) {
4120                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4121                                    (__le32*)partial->bh->b_data+addr_per_block,
4122                                    (chain+n-1) - partial);
4123                 BUFFER_TRACE(partial->bh, "call brelse");
4124                 brelse (partial->bh);
4125                 partial--;
4126         }
4127 do_indirects:
4128         /* Kill the remaining (whole) subtrees */
4129         switch (offsets[0]) {
4130         default:
4131                 nr = i_data[EXT4_IND_BLOCK];
4132                 if (nr) {
4133                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4134                         i_data[EXT4_IND_BLOCK] = 0;
4135                 }
4136         case EXT4_IND_BLOCK:
4137                 nr = i_data[EXT4_DIND_BLOCK];
4138                 if (nr) {
4139                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4140                         i_data[EXT4_DIND_BLOCK] = 0;
4141                 }
4142         case EXT4_DIND_BLOCK:
4143                 nr = i_data[EXT4_TIND_BLOCK];
4144                 if (nr) {
4145                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4146                         i_data[EXT4_TIND_BLOCK] = 0;
4147                 }
4148         case EXT4_TIND_BLOCK:
4149                 ;
4150         }
4151
4152         up_write(&ei->i_data_sem);
4153         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4154         ext4_mark_inode_dirty(handle, inode);
4155
4156         /*
4157          * In a multi-transaction truncate, we only make the final transaction
4158          * synchronous
4159          */
4160         if (IS_SYNC(inode))
4161                 ext4_handle_sync(handle);
4162 out_stop:
4163         /*
4164          * If this was a simple ftruncate(), and the file will remain alive
4165          * then we need to clear up the orphan record which we created above.
4166          * However, if this was a real unlink then we were called by
4167          * ext4_delete_inode(), and we allow that function to clean up the
4168          * orphan info for us.
4169          */
4170         if (inode->i_nlink)
4171                 ext4_orphan_del(handle, inode);
4172
4173         ext4_journal_stop(handle);
4174 }
4175
4176 /*
4177  * ext4_get_inode_loc returns with an extra refcount against the inode's
4178  * underlying buffer_head on success. If 'in_mem' is true, we have all
4179  * data in memory that is needed to recreate the on-disk version of this
4180  * inode.
4181  */
4182 static int __ext4_get_inode_loc(struct inode *inode,
4183                                 struct ext4_iloc *iloc, int in_mem)
4184 {
4185         struct ext4_group_desc  *gdp;
4186         struct buffer_head      *bh;
4187         struct super_block      *sb = inode->i_sb;
4188         ext4_fsblk_t            block;
4189         int                     inodes_per_block, inode_offset;
4190
4191         iloc->bh = NULL;
4192         if (!ext4_valid_inum(sb, inode->i_ino))
4193                 return -EIO;
4194
4195         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4196         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4197         if (!gdp)
4198                 return -EIO;
4199
4200         /*
4201          * Figure out the offset within the block group inode table
4202          */
4203         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4204         inode_offset = ((inode->i_ino - 1) %
4205                         EXT4_INODES_PER_GROUP(sb));
4206         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4207         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4208
4209         bh = sb_getblk(sb, block);
4210         if (!bh) {
4211                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4212                            "inode block - inode=%lu, block=%llu",
4213                            inode->i_ino, block);
4214                 return -EIO;
4215         }
4216         if (!buffer_uptodate(bh)) {
4217                 lock_buffer(bh);
4218
4219                 /*
4220                  * If the buffer has the write error flag, we have failed
4221                  * to write out another inode in the same block.  In this
4222                  * case, we don't have to read the block because we may
4223                  * read the old inode data successfully.
4224                  */
4225                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4226                         set_buffer_uptodate(bh);
4227
4228                 if (buffer_uptodate(bh)) {
4229                         /* someone brought it uptodate while we waited */
4230                         unlock_buffer(bh);
4231                         goto has_buffer;
4232                 }
4233
4234                 /*
4235                  * If we have all information of the inode in memory and this
4236                  * is the only valid inode in the block, we need not read the
4237                  * block.
4238                  */
4239                 if (in_mem) {
4240                         struct buffer_head *bitmap_bh;
4241                         int i, start;
4242
4243                         start = inode_offset & ~(inodes_per_block - 1);
4244
4245                         /* Is the inode bitmap in cache? */
4246                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4247                         if (!bitmap_bh)
4248                                 goto make_io;
4249
4250                         /*
4251                          * If the inode bitmap isn't in cache then the
4252                          * optimisation may end up performing two reads instead
4253                          * of one, so skip it.
4254                          */
4255                         if (!buffer_uptodate(bitmap_bh)) {
4256                                 brelse(bitmap_bh);
4257                                 goto make_io;
4258                         }
4259                         for (i = start; i < start + inodes_per_block; i++) {
4260                                 if (i == inode_offset)
4261                                         continue;
4262                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4263                                         break;
4264                         }
4265                         brelse(bitmap_bh);
4266                         if (i == start + inodes_per_block) {
4267                                 /* all other inodes are free, so skip I/O */
4268                                 memset(bh->b_data, 0, bh->b_size);
4269                                 set_buffer_uptodate(bh);
4270                                 unlock_buffer(bh);
4271                                 goto has_buffer;
4272                         }
4273                 }
4274
4275 make_io:
4276                 /*
4277                  * If we need to do any I/O, try to pre-readahead extra
4278                  * blocks from the inode table.
4279                  */
4280                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4281                         ext4_fsblk_t b, end, table;
4282                         unsigned num;
4283
4284                         table = ext4_inode_table(sb, gdp);
4285                         /* s_inode_readahead_blks is always a power of 2 */
4286                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4287                         if (table > b)
4288                                 b = table;
4289                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4290                         num = EXT4_INODES_PER_GROUP(sb);
4291                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4292                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4293                                 num -= ext4_itable_unused_count(sb, gdp);
4294                         table += num / inodes_per_block;
4295                         if (end > table)
4296                                 end = table;
4297                         while (b <= end)
4298                                 sb_breadahead(sb, b++);
4299                 }
4300
4301                 /*
4302                  * There are other valid inodes in the buffer, this inode
4303                  * has in-inode xattrs, or we don't have this inode in memory.
4304                  * Read the block from disk.
4305                  */
4306                 get_bh(bh);
4307                 bh->b_end_io = end_buffer_read_sync;
4308                 submit_bh(READ_META, bh);
4309                 wait_on_buffer(bh);
4310                 if (!buffer_uptodate(bh)) {
4311                         ext4_error(sb, __func__,
4312                                    "unable to read inode block - inode=%lu, "
4313                                    "block=%llu", inode->i_ino, block);
4314                         brelse(bh);
4315                         return -EIO;
4316                 }
4317         }
4318 has_buffer:
4319         iloc->bh = bh;
4320         return 0;
4321 }
4322
4323 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4324 {
4325         /* We have all inode data except xattrs in memory here. */
4326         return __ext4_get_inode_loc(inode, iloc,
4327                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4328 }
4329
4330 void ext4_set_inode_flags(struct inode *inode)
4331 {
4332         unsigned int flags = EXT4_I(inode)->i_flags;
4333
4334         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4335         if (flags & EXT4_SYNC_FL)
4336                 inode->i_flags |= S_SYNC;
4337         if (flags & EXT4_APPEND_FL)
4338                 inode->i_flags |= S_APPEND;
4339         if (flags & EXT4_IMMUTABLE_FL)
4340                 inode->i_flags |= S_IMMUTABLE;
4341         if (flags & EXT4_NOATIME_FL)
4342                 inode->i_flags |= S_NOATIME;
4343         if (flags & EXT4_DIRSYNC_FL)
4344                 inode->i_flags |= S_DIRSYNC;
4345 }
4346
4347 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4348 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4349 {
4350         unsigned int flags = ei->vfs_inode.i_flags;
4351
4352         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4353                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4354         if (flags & S_SYNC)
4355                 ei->i_flags |= EXT4_SYNC_FL;
4356         if (flags & S_APPEND)
4357                 ei->i_flags |= EXT4_APPEND_FL;
4358         if (flags & S_IMMUTABLE)
4359                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4360         if (flags & S_NOATIME)
4361                 ei->i_flags |= EXT4_NOATIME_FL;
4362         if (flags & S_DIRSYNC)
4363                 ei->i_flags |= EXT4_DIRSYNC_FL;
4364 }
4365 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4366                                         struct ext4_inode_info *ei)
4367 {
4368         blkcnt_t i_blocks ;
4369         struct inode *inode = &(ei->vfs_inode);
4370         struct super_block *sb = inode->i_sb;
4371
4372         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4373                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4374                 /* we are using combined 48 bit field */
4375                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4376                                         le32_to_cpu(raw_inode->i_blocks_lo);
4377                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4378                         /* i_blocks represent file system block size */
4379                         return i_blocks  << (inode->i_blkbits - 9);
4380                 } else {
4381                         return i_blocks;
4382                 }
4383         } else {
4384                 return le32_to_cpu(raw_inode->i_blocks_lo);
4385         }
4386 }
4387
4388 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4389 {
4390         struct ext4_iloc iloc;
4391         struct ext4_inode *raw_inode;
4392         struct ext4_inode_info *ei;
4393         struct buffer_head *bh;
4394         struct inode *inode;
4395         long ret;
4396         int block;
4397
4398         inode = iget_locked(sb, ino);
4399         if (!inode)
4400                 return ERR_PTR(-ENOMEM);
4401         if (!(inode->i_state & I_NEW))
4402                 return inode;
4403
4404         ei = EXT4_I(inode);
4405 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4406         ei->i_acl = EXT4_ACL_NOT_CACHED;
4407         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4408 #endif
4409
4410         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4411         if (ret < 0)
4412                 goto bad_inode;
4413         bh = iloc.bh;
4414         raw_inode = ext4_raw_inode(&iloc);
4415         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4416         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4417         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4418         if (!(test_opt(inode->i_sb, NO_UID32))) {
4419                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4420                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4421         }
4422         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4423
4424         ei->i_state = 0;
4425         ei->i_dir_start_lookup = 0;
4426         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4427         /* We now have enough fields to check if the inode was active or not.
4428          * This is needed because nfsd might try to access dead inodes
4429          * the test is that same one that e2fsck uses
4430          * NeilBrown 1999oct15
4431          */
4432         if (inode->i_nlink == 0) {
4433                 if (inode->i_mode == 0 ||
4434                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4435                         /* this inode is deleted */
4436                         brelse(bh);
4437                         ret = -ESTALE;
4438                         goto bad_inode;
4439                 }
4440                 /* The only unlinked inodes we let through here have
4441                  * valid i_mode and are being read by the orphan
4442                  * recovery code: that's fine, we're about to complete
4443                  * the process of deleting those. */
4444         }
4445         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4446         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4447         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4448         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4449                 ei->i_file_acl |=
4450                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4451         inode->i_size = ext4_isize(raw_inode);
4452         ei->i_disksize = inode->i_size;
4453         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4454         ei->i_block_group = iloc.block_group;
4455         ei->i_last_alloc_group = ~0;
4456         /*
4457          * NOTE! The in-memory inode i_data array is in little-endian order
4458          * even on big-endian machines: we do NOT byteswap the block numbers!
4459          */
4460         for (block = 0; block < EXT4_N_BLOCKS; block++)
4461                 ei->i_data[block] = raw_inode->i_block[block];
4462         INIT_LIST_HEAD(&ei->i_orphan);
4463
4464         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4466                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4467                     EXT4_INODE_SIZE(inode->i_sb)) {
4468                         brelse(bh);
4469                         ret = -EIO;
4470                         goto bad_inode;
4471                 }
4472                 if (ei->i_extra_isize == 0) {
4473                         /* The extra space is currently unused. Use it. */
4474                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4475                                             EXT4_GOOD_OLD_INODE_SIZE;
4476                 } else {
4477                         __le32 *magic = (void *)raw_inode +
4478                                         EXT4_GOOD_OLD_INODE_SIZE +
4479                                         ei->i_extra_isize;
4480                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4481                                  ei->i_state |= EXT4_STATE_XATTR;
4482                 }
4483         } else
4484                 ei->i_extra_isize = 0;
4485
4486         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4487         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4488         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4489         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4490
4491         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4492         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4493                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4494                         inode->i_version |=
4495                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4496         }
4497
4498         ret = 0;
4499         if (ei->i_file_acl &&
4500             ((ei->i_file_acl < 
4501               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4502                EXT4_SB(sb)->s_gdb_count)) ||
4503              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4504                 ext4_error(sb, __func__,
4505                            "bad extended attribute block %llu in inode #%lu",
4506                            ei->i_file_acl, inode->i_ino);
4507                 ret = -EIO;
4508                 goto bad_inode;
4509         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4510                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4511                     (S_ISLNK(inode->i_mode) &&
4512                      !ext4_inode_is_fast_symlink(inode)))
4513                         /* Validate extent which is part of inode */
4514                         ret = ext4_ext_check_inode(inode);
4515         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4516                    (S_ISLNK(inode->i_mode) &&
4517                     !ext4_inode_is_fast_symlink(inode))) {
4518                 /* Validate block references which are part of inode */
4519                 ret = ext4_check_inode_blockref(inode);
4520         }
4521         if (ret) {
4522                 brelse(bh);
4523                 goto bad_inode;
4524         }
4525
4526         if (S_ISREG(inode->i_mode)) {
4527                 inode->i_op = &ext4_file_inode_operations;
4528                 inode->i_fop = &ext4_file_operations;
4529                 ext4_set_aops(inode);
4530         } else if (S_ISDIR(inode->i_mode)) {
4531                 inode->i_op = &ext4_dir_inode_operations;
4532                 inode->i_fop = &ext4_dir_operations;
4533         } else if (S_ISLNK(inode->i_mode)) {
4534                 if (ext4_inode_is_fast_symlink(inode)) {
4535                         inode->i_op = &ext4_fast_symlink_inode_operations;
4536                         nd_terminate_link(ei->i_data, inode->i_size,
4537                                 sizeof(ei->i_data) - 1);
4538                 } else {
4539                         inode->i_op = &ext4_symlink_inode_operations;
4540                         ext4_set_aops(inode);
4541                 }
4542         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4543               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4544                 inode->i_op = &ext4_special_inode_operations;
4545                 if (raw_inode->i_block[0])
4546                         init_special_inode(inode, inode->i_mode,
4547                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4548                 else
4549                         init_special_inode(inode, inode->i_mode,
4550                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4551         } else {
4552                 brelse(bh);
4553                 ret = -EIO;
4554                 ext4_error(inode->i_sb, __func__, 
4555                            "bogus i_mode (%o) for inode=%lu",
4556                            inode->i_mode, inode->i_ino);
4557                 goto bad_inode;
4558         }
4559         brelse(iloc.bh);
4560         ext4_set_inode_flags(inode);
4561         unlock_new_inode(inode);
4562         return inode;
4563
4564 bad_inode:
4565         iget_failed(inode);
4566         return ERR_PTR(ret);
4567 }
4568
4569 static int ext4_inode_blocks_set(handle_t *handle,
4570                                 struct ext4_inode *raw_inode,
4571                                 struct ext4_inode_info *ei)
4572 {
4573         struct inode *inode = &(ei->vfs_inode);
4574         u64 i_blocks = inode->i_blocks;
4575         struct super_block *sb = inode->i_sb;
4576
4577         if (i_blocks <= ~0U) {
4578                 /*
4579                  * i_blocks can be represnted in a 32 bit variable
4580                  * as multiple of 512 bytes
4581                  */
4582                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4583                 raw_inode->i_blocks_high = 0;
4584                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4585                 return 0;
4586         }
4587         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4588                 return -EFBIG;
4589
4590         if (i_blocks <= 0xffffffffffffULL) {
4591                 /*
4592                  * i_blocks can be represented in a 48 bit variable
4593                  * as multiple of 512 bytes
4594                  */
4595                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4596                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4597                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4598         } else {
4599                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4600                 /* i_block is stored in file system block size */
4601                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4602                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4603                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4604         }
4605         return 0;
4606 }
4607
4608 /*
4609  * Post the struct inode info into an on-disk inode location in the
4610  * buffer-cache.  This gobbles the caller's reference to the
4611  * buffer_head in the inode location struct.
4612  *
4613  * The caller must have write access to iloc->bh.
4614  */
4615 static int ext4_do_update_inode(handle_t *handle,
4616                                 struct inode *inode,
4617                                 struct ext4_iloc *iloc)
4618 {
4619         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4620         struct ext4_inode_info *ei = EXT4_I(inode);
4621         struct buffer_head *bh = iloc->bh;
4622         int err = 0, rc, block;
4623
4624         /* For fields not not tracking in the in-memory inode,
4625          * initialise them to zero for new inodes. */
4626         if (ei->i_state & EXT4_STATE_NEW)
4627                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4628
4629         ext4_get_inode_flags(ei);
4630         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4631         if (!(test_opt(inode->i_sb, NO_UID32))) {
4632                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4633                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4634 /*
4635  * Fix up interoperability with old kernels. Otherwise, old inodes get
4636  * re-used with the upper 16 bits of the uid/gid intact
4637  */
4638                 if (!ei->i_dtime) {
4639                         raw_inode->i_uid_high =
4640                                 cpu_to_le16(high_16_bits(inode->i_uid));
4641                         raw_inode->i_gid_high =
4642                                 cpu_to_le16(high_16_bits(inode->i_gid));
4643                 } else {
4644                         raw_inode->i_uid_high = 0;
4645                         raw_inode->i_gid_high = 0;
4646                 }
4647         } else {
4648                 raw_inode->i_uid_low =
4649                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4650                 raw_inode->i_gid_low =
4651                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4652                 raw_inode->i_uid_high = 0;
4653                 raw_inode->i_gid_high = 0;
4654         }
4655         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4656
4657         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4658         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4659         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4660         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4661
4662         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4663                 goto out_brelse;
4664         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4665         /* clear the migrate flag in the raw_inode */
4666         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4667         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4668             cpu_to_le32(EXT4_OS_HURD))
4669                 raw_inode->i_file_acl_high =
4670                         cpu_to_le16(ei->i_file_acl >> 32);
4671         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4672         ext4_isize_set(raw_inode, ei->i_disksize);
4673         if (ei->i_disksize > 0x7fffffffULL) {
4674                 struct super_block *sb = inode->i_sb;
4675                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4676                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4677                                 EXT4_SB(sb)->s_es->s_rev_level ==
4678                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4679                         /* If this is the first large file
4680                          * created, add a flag to the superblock.
4681                          */
4682                         err = ext4_journal_get_write_access(handle,
4683                                         EXT4_SB(sb)->s_sbh);
4684                         if (err)
4685                                 goto out_brelse;
4686                         ext4_update_dynamic_rev(sb);
4687                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4688                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4689                         sb->s_dirt = 1;
4690                         ext4_handle_sync(handle);
4691                         err = ext4_handle_dirty_metadata(handle, inode,
4692                                         EXT4_SB(sb)->s_sbh);
4693                 }
4694         }
4695         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4696         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4697                 if (old_valid_dev(inode->i_rdev)) {
4698                         raw_inode->i_block[0] =
4699                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4700                         raw_inode->i_block[1] = 0;
4701                 } else {
4702                         raw_inode->i_block[0] = 0;
4703                         raw_inode->i_block[1] =
4704                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4705                         raw_inode->i_block[2] = 0;
4706                 }
4707         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4708                 raw_inode->i_block[block] = ei->i_data[block];
4709
4710         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4711         if (ei->i_extra_isize) {
4712                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4713                         raw_inode->i_version_hi =
4714                         cpu_to_le32(inode->i_version >> 32);
4715                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4716         }
4717
4718         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4719         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4720         if (!err)
4721                 err = rc;
4722         ei->i_state &= ~EXT4_STATE_NEW;
4723
4724 out_brelse:
4725         brelse(bh);
4726         ext4_std_error(inode->i_sb, err);
4727         return err;
4728 }
4729
4730 /*
4731  * ext4_write_inode()
4732  *
4733  * We are called from a few places:
4734  *
4735  * - Within generic_file_write() for O_SYNC files.
4736  *   Here, there will be no transaction running. We wait for any running
4737  *   trasnaction to commit.
4738  *
4739  * - Within sys_sync(), kupdate and such.
4740  *   We wait on commit, if tol to.
4741  *
4742  * - Within prune_icache() (PF_MEMALLOC == true)
4743  *   Here we simply return.  We can't afford to block kswapd on the
4744  *   journal commit.
4745  *
4746  * In all cases it is actually safe for us to return without doing anything,
4747  * because the inode has been copied into a raw inode buffer in
4748  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4749  * knfsd.
4750  *
4751  * Note that we are absolutely dependent upon all inode dirtiers doing the
4752  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4753  * which we are interested.
4754  *
4755  * It would be a bug for them to not do this.  The code:
4756  *
4757  *      mark_inode_dirty(inode)
4758  *      stuff();
4759  *      inode->i_size = expr;
4760  *
4761  * is in error because a kswapd-driven write_inode() could occur while
4762  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4763  * will no longer be on the superblock's dirty inode list.
4764  */
4765 int ext4_write_inode(struct inode *inode, int wait)
4766 {
4767         if (current->flags & PF_MEMALLOC)
4768                 return 0;
4769
4770         if (ext4_journal_current_handle()) {
4771                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4772                 dump_stack();
4773                 return -EIO;
4774         }
4775
4776         if (!wait)
4777                 return 0;
4778
4779         return ext4_force_commit(inode->i_sb);
4780 }
4781
4782 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4783 {
4784         int err = 0;
4785
4786         mark_buffer_dirty(bh);
4787         if (inode && inode_needs_sync(inode)) {
4788                 sync_dirty_buffer(bh);
4789                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4790                         ext4_error(inode->i_sb, __func__,
4791                                    "IO error syncing inode, "
4792                                    "inode=%lu, block=%llu",
4793                                    inode->i_ino,
4794                                    (unsigned long long)bh->b_blocknr);
4795                         err = -EIO;
4796                 }
4797         }
4798         return err;
4799 }
4800
4801 /*
4802  * ext4_setattr()
4803  *
4804  * Called from notify_change.
4805  *
4806  * We want to trap VFS attempts to truncate the file as soon as
4807  * possible.  In particular, we want to make sure that when the VFS
4808  * shrinks i_size, we put the inode on the orphan list and modify
4809  * i_disksize immediately, so that during the subsequent flushing of
4810  * dirty pages and freeing of disk blocks, we can guarantee that any
4811  * commit will leave the blocks being flushed in an unused state on
4812  * disk.  (On recovery, the inode will get truncated and the blocks will
4813  * be freed, so we have a strong guarantee that no future commit will
4814  * leave these blocks visible to the user.)
4815  *
4816  * Another thing we have to assure is that if we are in ordered mode
4817  * and inode is still attached to the committing transaction, we must
4818  * we start writeout of all the dirty pages which are being truncated.
4819  * This way we are sure that all the data written in the previous
4820  * transaction are already on disk (truncate waits for pages under
4821  * writeback).
4822  *
4823  * Called with inode->i_mutex down.
4824  */
4825 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4826 {
4827         struct inode *inode = dentry->d_inode;
4828         int error, rc = 0;
4829         const unsigned int ia_valid = attr->ia_valid;
4830
4831         error = inode_change_ok(inode, attr);
4832         if (error)
4833                 return error;
4834
4835         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4836                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4837                 handle_t *handle;
4838
4839                 /* (user+group)*(old+new) structure, inode write (sb,
4840                  * inode block, ? - but truncate inode update has it) */
4841                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4842                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4843                 if (IS_ERR(handle)) {
4844                         error = PTR_ERR(handle);
4845                         goto err_out;
4846                 }
4847                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4848                 if (error) {
4849                         ext4_journal_stop(handle);
4850                         return error;
4851                 }
4852                 /* Update corresponding info in inode so that everything is in
4853                  * one transaction */
4854                 if (attr->ia_valid & ATTR_UID)
4855                         inode->i_uid = attr->ia_uid;
4856                 if (attr->ia_valid & ATTR_GID)
4857                         inode->i_gid = attr->ia_gid;
4858                 error = ext4_mark_inode_dirty(handle, inode);
4859                 ext4_journal_stop(handle);
4860         }
4861
4862         if (attr->ia_valid & ATTR_SIZE) {
4863                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4864                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4865
4866                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4867                                 error = -EFBIG;
4868                                 goto err_out;
4869                         }
4870                 }
4871         }
4872
4873         if (S_ISREG(inode->i_mode) &&
4874             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4875                 handle_t *handle;
4876
4877                 handle = ext4_journal_start(inode, 3);
4878                 if (IS_ERR(handle)) {
4879                         error = PTR_ERR(handle);
4880                         goto err_out;
4881                 }
4882
4883                 error = ext4_orphan_add(handle, inode);
4884                 EXT4_I(inode)->i_disksize = attr->ia_size;
4885                 rc = ext4_mark_inode_dirty(handle, inode);
4886                 if (!error)
4887                         error = rc;
4888                 ext4_journal_stop(handle);
4889
4890                 if (ext4_should_order_data(inode)) {
4891                         error = ext4_begin_ordered_truncate(inode,
4892                                                             attr->ia_size);
4893                         if (error) {
4894                                 /* Do as much error cleanup as possible */
4895                                 handle = ext4_journal_start(inode, 3);
4896                                 if (IS_ERR(handle)) {
4897                                         ext4_orphan_del(NULL, inode);
4898                                         goto err_out;
4899                                 }
4900                                 ext4_orphan_del(handle, inode);
4901                                 ext4_journal_stop(handle);
4902                                 goto err_out;
4903                         }
4904                 }
4905         }
4906
4907         rc = inode_setattr(inode, attr);
4908
4909         /* If inode_setattr's call to ext4_truncate failed to get a
4910          * transaction handle at all, we need to clean up the in-core
4911          * orphan list manually. */
4912         if (inode->i_nlink)
4913                 ext4_orphan_del(NULL, inode);
4914
4915         if (!rc && (ia_valid & ATTR_MODE))
4916                 rc = ext4_acl_chmod(inode);
4917
4918 err_out:
4919         ext4_std_error(inode->i_sb, error);
4920         if (!error)
4921                 error = rc;
4922         return error;
4923 }
4924
4925 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4926                  struct kstat *stat)
4927 {
4928         struct inode *inode;
4929         unsigned long delalloc_blocks;
4930
4931         inode = dentry->d_inode;
4932         generic_fillattr(inode, stat);
4933
4934         /*
4935          * We can't update i_blocks if the block allocation is delayed
4936          * otherwise in the case of system crash before the real block
4937          * allocation is done, we will have i_blocks inconsistent with
4938          * on-disk file blocks.
4939          * We always keep i_blocks updated together with real
4940          * allocation. But to not confuse with user, stat
4941          * will return the blocks that include the delayed allocation
4942          * blocks for this file.
4943          */
4944         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4945         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4946         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4947
4948         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4949         return 0;
4950 }
4951
4952 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4953                                       int chunk)
4954 {
4955         int indirects;
4956
4957         /* if nrblocks are contiguous */
4958         if (chunk) {
4959                 /*
4960                  * With N contiguous data blocks, it need at most
4961                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4962                  * 2 dindirect blocks
4963                  * 1 tindirect block
4964                  */
4965                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4966                 return indirects + 3;
4967         }
4968         /*
4969          * if nrblocks are not contiguous, worse case, each block touch
4970          * a indirect block, and each indirect block touch a double indirect
4971          * block, plus a triple indirect block
4972          */
4973         indirects = nrblocks * 2 + 1;
4974         return indirects;
4975 }
4976
4977 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4978 {
4979         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4980                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4981         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4982 }
4983
4984 /*
4985  * Account for index blocks, block groups bitmaps and block group
4986  * descriptor blocks if modify datablocks and index blocks
4987  * worse case, the indexs blocks spread over different block groups
4988  *
4989  * If datablocks are discontiguous, they are possible to spread over
4990  * different block groups too. If they are contiugous, with flexbg,
4991  * they could still across block group boundary.
4992  *
4993  * Also account for superblock, inode, quota and xattr blocks
4994  */
4995 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4996 {
4997         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4998         int gdpblocks;
4999         int idxblocks;
5000         int ret = 0;
5001
5002         /*
5003          * How many index blocks need to touch to modify nrblocks?
5004          * The "Chunk" flag indicating whether the nrblocks is
5005          * physically contiguous on disk
5006          *
5007          * For Direct IO and fallocate, they calls get_block to allocate
5008          * one single extent at a time, so they could set the "Chunk" flag
5009          */
5010         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5011
5012         ret = idxblocks;
5013
5014         /*
5015          * Now let's see how many group bitmaps and group descriptors need
5016          * to account
5017          */
5018         groups = idxblocks;
5019         if (chunk)
5020                 groups += 1;
5021         else
5022                 groups += nrblocks;
5023
5024         gdpblocks = groups;
5025         if (groups > ngroups)
5026                 groups = ngroups;
5027         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5028                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5029
5030         /* bitmaps and block group descriptor blocks */
5031         ret += groups + gdpblocks;
5032
5033         /* Blocks for super block, inode, quota and xattr blocks */
5034         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5035
5036         return ret;
5037 }
5038
5039 /*
5040  * Calulate the total number of credits to reserve to fit
5041  * the modification of a single pages into a single transaction,
5042  * which may include multiple chunks of block allocations.
5043  *
5044  * This could be called via ext4_write_begin()
5045  *
5046  * We need to consider the worse case, when
5047  * one new block per extent.
5048  */
5049 int ext4_writepage_trans_blocks(struct inode *inode)
5050 {
5051         int bpp = ext4_journal_blocks_per_page(inode);
5052         int ret;
5053
5054         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5055
5056         /* Account for data blocks for journalled mode */
5057         if (ext4_should_journal_data(inode))
5058                 ret += bpp;
5059         return ret;
5060 }
5061
5062 /*
5063  * Calculate the journal credits for a chunk of data modification.
5064  *
5065  * This is called from DIO, fallocate or whoever calling
5066  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5067  *
5068  * journal buffers for data blocks are not included here, as DIO
5069  * and fallocate do no need to journal data buffers.
5070  */
5071 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5072 {
5073         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5074 }
5075
5076 /*
5077  * The caller must have previously called ext4_reserve_inode_write().
5078  * Give this, we know that the caller already has write access to iloc->bh.
5079  */
5080 int ext4_mark_iloc_dirty(handle_t *handle,
5081                 struct inode *inode, struct ext4_iloc *iloc)
5082 {
5083         int err = 0;
5084
5085         if (test_opt(inode->i_sb, I_VERSION))
5086                 inode_inc_iversion(inode);
5087
5088         /* the do_update_inode consumes one bh->b_count */
5089         get_bh(iloc->bh);
5090
5091         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5092         err = ext4_do_update_inode(handle, inode, iloc);
5093         put_bh(iloc->bh);
5094         return err;
5095 }
5096
5097 /*
5098  * On success, We end up with an outstanding reference count against
5099  * iloc->bh.  This _must_ be cleaned up later.
5100  */
5101
5102 int
5103 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5104                          struct ext4_iloc *iloc)
5105 {
5106         int err;
5107
5108         err = ext4_get_inode_loc(inode, iloc);
5109         if (!err) {
5110                 BUFFER_TRACE(iloc->bh, "get_write_access");
5111                 err = ext4_journal_get_write_access(handle, iloc->bh);
5112                 if (err) {
5113                         brelse(iloc->bh);
5114                         iloc->bh = NULL;
5115                 }
5116         }
5117         ext4_std_error(inode->i_sb, err);
5118         return err;
5119 }
5120
5121 /*
5122  * Expand an inode by new_extra_isize bytes.
5123  * Returns 0 on success or negative error number on failure.
5124  */
5125 static int ext4_expand_extra_isize(struct inode *inode,
5126                                    unsigned int new_extra_isize,
5127                                    struct ext4_iloc iloc,
5128                                    handle_t *handle)
5129 {
5130         struct ext4_inode *raw_inode;
5131         struct ext4_xattr_ibody_header *header;
5132         struct ext4_xattr_entry *entry;
5133
5134         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5135                 return 0;
5136
5137         raw_inode = ext4_raw_inode(&iloc);
5138
5139         header = IHDR(inode, raw_inode);
5140         entry = IFIRST(header);
5141
5142         /* No extended attributes present */
5143         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5144                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5145                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5146                         new_extra_isize);
5147                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5148                 return 0;
5149         }
5150
5151         /* try to expand with EAs present */
5152         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5153                                           raw_inode, handle);
5154 }
5155
5156 /*
5157  * What we do here is to mark the in-core inode as clean with respect to inode
5158  * dirtiness (it may still be data-dirty).
5159  * This means that the in-core inode may be reaped by prune_icache
5160  * without having to perform any I/O.  This is a very good thing,
5161  * because *any* task may call prune_icache - even ones which
5162  * have a transaction open against a different journal.
5163  *
5164  * Is this cheating?  Not really.  Sure, we haven't written the
5165  * inode out, but prune_icache isn't a user-visible syncing function.
5166  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5167  * we start and wait on commits.
5168  *
5169  * Is this efficient/effective?  Well, we're being nice to the system
5170  * by cleaning up our inodes proactively so they can be reaped
5171  * without I/O.  But we are potentially leaving up to five seconds'
5172  * worth of inodes floating about which prune_icache wants us to
5173  * write out.  One way to fix that would be to get prune_icache()
5174  * to do a write_super() to free up some memory.  It has the desired
5175  * effect.
5176  */
5177 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5178 {
5179         struct ext4_iloc iloc;
5180         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5181         static unsigned int mnt_count;
5182         int err, ret;
5183
5184         might_sleep();
5185         err = ext4_reserve_inode_write(handle, inode, &iloc);
5186         if (ext4_handle_valid(handle) &&
5187             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5188             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5189                 /*
5190                  * We need extra buffer credits since we may write into EA block
5191                  * with this same handle. If journal_extend fails, then it will
5192                  * only result in a minor loss of functionality for that inode.
5193                  * If this is felt to be critical, then e2fsck should be run to
5194                  * force a large enough s_min_extra_isize.
5195                  */
5196                 if ((jbd2_journal_extend(handle,
5197                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5198                         ret = ext4_expand_extra_isize(inode,
5199                                                       sbi->s_want_extra_isize,
5200                                                       iloc, handle);
5201                         if (ret) {
5202                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5203                                 if (mnt_count !=
5204                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5205                                         ext4_warning(inode->i_sb, __func__,
5206                                         "Unable to expand inode %lu. Delete"
5207                                         " some EAs or run e2fsck.",
5208                                         inode->i_ino);
5209                                         mnt_count =
5210                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5211                                 }
5212                         }
5213                 }
5214         }
5215         if (!err)
5216                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5217         return err;
5218 }
5219
5220 /*
5221  * ext4_dirty_inode() is called from __mark_inode_dirty()
5222  *
5223  * We're really interested in the case where a file is being extended.
5224  * i_size has been changed by generic_commit_write() and we thus need
5225  * to include the updated inode in the current transaction.
5226  *
5227  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5228  * are allocated to the file.
5229  *
5230  * If the inode is marked synchronous, we don't honour that here - doing
5231  * so would cause a commit on atime updates, which we don't bother doing.
5232  * We handle synchronous inodes at the highest possible level.
5233  */
5234 void ext4_dirty_inode(struct inode *inode)
5235 {
5236         handle_t *current_handle = ext4_journal_current_handle();
5237         handle_t *handle;
5238
5239         if (!ext4_handle_valid(current_handle)) {
5240                 ext4_mark_inode_dirty(current_handle, inode);
5241                 return;
5242         }
5243
5244         handle = ext4_journal_start(inode, 2);
5245         if (IS_ERR(handle))
5246                 goto out;
5247         if (current_handle &&
5248                 current_handle->h_transaction != handle->h_transaction) {
5249                 /* This task has a transaction open against a different fs */
5250                 printk(KERN_EMERG "%s: transactions do not match!\n",
5251                        __func__);
5252         } else {
5253                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5254                                 current_handle);
5255                 ext4_mark_inode_dirty(handle, inode);
5256         }
5257         ext4_journal_stop(handle);
5258 out:
5259         return;
5260 }
5261
5262 #if 0
5263 /*
5264  * Bind an inode's backing buffer_head into this transaction, to prevent
5265  * it from being flushed to disk early.  Unlike
5266  * ext4_reserve_inode_write, this leaves behind no bh reference and
5267  * returns no iloc structure, so the caller needs to repeat the iloc
5268  * lookup to mark the inode dirty later.
5269  */
5270 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5271 {
5272         struct ext4_iloc iloc;
5273
5274         int err = 0;
5275         if (handle) {
5276                 err = ext4_get_inode_loc(inode, &iloc);
5277                 if (!err) {
5278                         BUFFER_TRACE(iloc.bh, "get_write_access");
5279                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5280                         if (!err)
5281                                 err = ext4_handle_dirty_metadata(handle,
5282                                                                  inode,
5283                                                                  iloc.bh);
5284                         brelse(iloc.bh);
5285                 }
5286         }
5287         ext4_std_error(inode->i_sb, err);
5288         return err;
5289 }
5290 #endif
5291
5292 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5293 {
5294         journal_t *journal;
5295         handle_t *handle;
5296         int err;
5297
5298         /*
5299          * We have to be very careful here: changing a data block's
5300          * journaling status dynamically is dangerous.  If we write a
5301          * data block to the journal, change the status and then delete
5302          * that block, we risk forgetting to revoke the old log record
5303          * from the journal and so a subsequent replay can corrupt data.
5304          * So, first we make sure that the journal is empty and that
5305          * nobody is changing anything.
5306          */
5307
5308         journal = EXT4_JOURNAL(inode);
5309         if (!journal)
5310                 return 0;
5311         if (is_journal_aborted(journal))
5312                 return -EROFS;
5313
5314         jbd2_journal_lock_updates(journal);
5315         jbd2_journal_flush(journal);
5316
5317         /*
5318          * OK, there are no updates running now, and all cached data is
5319          * synced to disk.  We are now in a completely consistent state
5320          * which doesn't have anything in the journal, and we know that
5321          * no filesystem updates are running, so it is safe to modify
5322          * the inode's in-core data-journaling state flag now.
5323          */
5324
5325         if (val)
5326                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5327         else
5328                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5329         ext4_set_aops(inode);
5330
5331         jbd2_journal_unlock_updates(journal);
5332
5333         /* Finally we can mark the inode as dirty. */
5334
5335         handle = ext4_journal_start(inode, 1);
5336         if (IS_ERR(handle))
5337                 return PTR_ERR(handle);
5338
5339         err = ext4_mark_inode_dirty(handle, inode);
5340         ext4_handle_sync(handle);
5341         ext4_journal_stop(handle);
5342         ext4_std_error(inode->i_sb, err);
5343
5344         return err;
5345 }
5346
5347 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5348 {
5349         return !buffer_mapped(bh);
5350 }
5351
5352 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5353 {
5354         struct page *page = vmf->page;
5355         loff_t size;
5356         unsigned long len;
5357         int ret = -EINVAL;
5358         void *fsdata;
5359         struct file *file = vma->vm_file;
5360         struct inode *inode = file->f_path.dentry->d_inode;
5361         struct address_space *mapping = inode->i_mapping;
5362
5363         /*
5364          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5365          * get i_mutex because we are already holding mmap_sem.
5366          */
5367         down_read(&inode->i_alloc_sem);
5368         size = i_size_read(inode);
5369         if (page->mapping != mapping || size <= page_offset(page)
5370             || !PageUptodate(page)) {
5371                 /* page got truncated from under us? */
5372                 goto out_unlock;
5373         }
5374         ret = 0;
5375         if (PageMappedToDisk(page))
5376                 goto out_unlock;
5377
5378         if (page->index == size >> PAGE_CACHE_SHIFT)
5379                 len = size & ~PAGE_CACHE_MASK;
5380         else
5381                 len = PAGE_CACHE_SIZE;
5382
5383         if (page_has_buffers(page)) {
5384                 /* return if we have all the buffers mapped */
5385                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5386                                        ext4_bh_unmapped))
5387                         goto out_unlock;
5388         }
5389         /*
5390          * OK, we need to fill the hole... Do write_begin write_end
5391          * to do block allocation/reservation.We are not holding
5392          * inode.i__mutex here. That allow * parallel write_begin,
5393          * write_end call. lock_page prevent this from happening
5394          * on the same page though
5395          */
5396         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5397                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5398         if (ret < 0)
5399                 goto out_unlock;
5400         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5401                         len, len, page, fsdata);
5402         if (ret < 0)
5403                 goto out_unlock;
5404         ret = 0;
5405 out_unlock:
5406         if (ret)
5407                 ret = VM_FAULT_SIGBUS;
5408         up_read(&inode->i_alloc_sem);
5409         return ret;
5410 }