ext4: Validate extent details only when read from the disk
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 /**
375  *      ext4_get_branch - read the chain of indirect blocks leading to data
376  *      @inode: inode in question
377  *      @depth: depth of the chain (1 - direct pointer, etc.)
378  *      @offsets: offsets of pointers in inode/indirect blocks
379  *      @chain: place to store the result
380  *      @err: here we store the error value
381  *
382  *      Function fills the array of triples <key, p, bh> and returns %NULL
383  *      if everything went OK or the pointer to the last filled triple
384  *      (incomplete one) otherwise. Upon the return chain[i].key contains
385  *      the number of (i+1)-th block in the chain (as it is stored in memory,
386  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
387  *      number (it points into struct inode for i==0 and into the bh->b_data
388  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389  *      block for i>0 and NULL for i==0. In other words, it holds the block
390  *      numbers of the chain, addresses they were taken from (and where we can
391  *      verify that chain did not change) and buffer_heads hosting these
392  *      numbers.
393  *
394  *      Function stops when it stumbles upon zero pointer (absent block)
395  *              (pointer to last triple returned, *@err == 0)
396  *      or when it gets an IO error reading an indirect block
397  *              (ditto, *@err == -EIO)
398  *      or when it reads all @depth-1 indirect blocks successfully and finds
399  *      the whole chain, all way to the data (returns %NULL, *err == 0).
400  *
401  *      Need to be called with
402  *      down_read(&EXT4_I(inode)->i_data_sem)
403  */
404 static Indirect *ext4_get_branch(struct inode *inode, int depth,
405                                  ext4_lblk_t  *offsets,
406                                  Indirect chain[4], int *err)
407 {
408         struct super_block *sb = inode->i_sb;
409         Indirect *p = chain;
410         struct buffer_head *bh;
411
412         *err = 0;
413         /* i_data is not going away, no lock needed */
414         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415         if (!p->key)
416                 goto no_block;
417         while (--depth) {
418                 bh = sb_bread(sb, le32_to_cpu(p->key));
419                 if (!bh)
420                         goto failure;
421                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422                 /* Reader: end */
423                 if (!p->key)
424                         goto no_block;
425         }
426         return NULL;
427
428 failure:
429         *err = -EIO;
430 no_block:
431         return p;
432 }
433
434 /**
435  *      ext4_find_near - find a place for allocation with sufficient locality
436  *      @inode: owner
437  *      @ind: descriptor of indirect block.
438  *
439  *      This function returns the preferred place for block allocation.
440  *      It is used when heuristic for sequential allocation fails.
441  *      Rules are:
442  *        + if there is a block to the left of our position - allocate near it.
443  *        + if pointer will live in indirect block - allocate near that block.
444  *        + if pointer will live in inode - allocate in the same
445  *          cylinder group.
446  *
447  * In the latter case we colour the starting block by the callers PID to
448  * prevent it from clashing with concurrent allocations for a different inode
449  * in the same block group.   The PID is used here so that functionally related
450  * files will be close-by on-disk.
451  *
452  *      Caller must make sure that @ind is valid and will stay that way.
453  */
454 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455 {
456         struct ext4_inode_info *ei = EXT4_I(inode);
457         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458         __le32 *p;
459         ext4_fsblk_t bg_start;
460         ext4_fsblk_t last_block;
461         ext4_grpblk_t colour;
462         ext4_group_t block_group;
463         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
464
465         /* Try to find previous block */
466         for (p = ind->p - 1; p >= start; p--) {
467                 if (*p)
468                         return le32_to_cpu(*p);
469         }
470
471         /* No such thing, so let's try location of indirect block */
472         if (ind->bh)
473                 return ind->bh->b_blocknr;
474
475         /*
476          * It is going to be referred to from the inode itself? OK, just put it
477          * into the same cylinder group then.
478          */
479         block_group = ei->i_block_group;
480         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
481                 block_group &= ~(flex_size-1);
482                 if (S_ISREG(inode->i_mode))
483                         block_group++;
484         }
485         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
486         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
487
488         /*
489          * If we are doing delayed allocation, we don't need take
490          * colour into account.
491          */
492         if (test_opt(inode->i_sb, DELALLOC))
493                 return bg_start;
494
495         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
496                 colour = (current->pid % 16) *
497                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
498         else
499                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
500         return bg_start + colour;
501 }
502
503 /**
504  *      ext4_find_goal - find a preferred place for allocation.
505  *      @inode: owner
506  *      @block:  block we want
507  *      @partial: pointer to the last triple within a chain
508  *
509  *      Normally this function find the preferred place for block allocation,
510  *      returns it.
511  */
512 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
513                 Indirect *partial)
514 {
515         /*
516          * XXX need to get goal block from mballoc's data structures
517          */
518
519         return ext4_find_near(inode, partial);
520 }
521
522 /**
523  *      ext4_blks_to_allocate: Look up the block map and count the number
524  *      of direct blocks need to be allocated for the given branch.
525  *
526  *      @branch: chain of indirect blocks
527  *      @k: number of blocks need for indirect blocks
528  *      @blks: number of data blocks to be mapped.
529  *      @blocks_to_boundary:  the offset in the indirect block
530  *
531  *      return the total number of blocks to be allocate, including the
532  *      direct and indirect blocks.
533  */
534 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
535                 int blocks_to_boundary)
536 {
537         unsigned int count = 0;
538
539         /*
540          * Simple case, [t,d]Indirect block(s) has not allocated yet
541          * then it's clear blocks on that path have not allocated
542          */
543         if (k > 0) {
544                 /* right now we don't handle cross boundary allocation */
545                 if (blks < blocks_to_boundary + 1)
546                         count += blks;
547                 else
548                         count += blocks_to_boundary + 1;
549                 return count;
550         }
551
552         count++;
553         while (count < blks && count <= blocks_to_boundary &&
554                 le32_to_cpu(*(branch[0].p + count)) == 0) {
555                 count++;
556         }
557         return count;
558 }
559
560 /**
561  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
562  *      @indirect_blks: the number of blocks need to allocate for indirect
563  *                      blocks
564  *
565  *      @new_blocks: on return it will store the new block numbers for
566  *      the indirect blocks(if needed) and the first direct block,
567  *      @blks:  on return it will store the total number of allocated
568  *              direct blocks
569  */
570 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
571                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
572                                 int indirect_blks, int blks,
573                                 ext4_fsblk_t new_blocks[4], int *err)
574 {
575         struct ext4_allocation_request ar;
576         int target, i;
577         unsigned long count = 0, blk_allocated = 0;
578         int index = 0;
579         ext4_fsblk_t current_block = 0;
580         int ret = 0;
581
582         /*
583          * Here we try to allocate the requested multiple blocks at once,
584          * on a best-effort basis.
585          * To build a branch, we should allocate blocks for
586          * the indirect blocks(if not allocated yet), and at least
587          * the first direct block of this branch.  That's the
588          * minimum number of blocks need to allocate(required)
589          */
590         /* first we try to allocate the indirect blocks */
591         target = indirect_blks;
592         while (target > 0) {
593                 count = target;
594                 /* allocating blocks for indirect blocks and direct blocks */
595                 current_block = ext4_new_meta_blocks(handle, inode,
596                                                         goal, &count, err);
597                 if (*err)
598                         goto failed_out;
599
600                 target -= count;
601                 /* allocate blocks for indirect blocks */
602                 while (index < indirect_blks && count) {
603                         new_blocks[index++] = current_block++;
604                         count--;
605                 }
606                 if (count > 0) {
607                         /*
608                          * save the new block number
609                          * for the first direct block
610                          */
611                         new_blocks[index] = current_block;
612                         printk(KERN_INFO "%s returned more blocks than "
613                                                 "requested\n", __func__);
614                         WARN_ON(1);
615                         break;
616                 }
617         }
618
619         target = blks - count ;
620         blk_allocated = count;
621         if (!target)
622                 goto allocated;
623         /* Now allocate data blocks */
624         memset(&ar, 0, sizeof(ar));
625         ar.inode = inode;
626         ar.goal = goal;
627         ar.len = target;
628         ar.logical = iblock;
629         if (S_ISREG(inode->i_mode))
630                 /* enable in-core preallocation only for regular files */
631                 ar.flags = EXT4_MB_HINT_DATA;
632
633         current_block = ext4_mb_new_blocks(handle, &ar, err);
634
635         if (*err && (target == blks)) {
636                 /*
637                  * if the allocation failed and we didn't allocate
638                  * any blocks before
639                  */
640                 goto failed_out;
641         }
642         if (!*err) {
643                 if (target == blks) {
644                 /*
645                  * save the new block number
646                  * for the first direct block
647                  */
648                         new_blocks[index] = current_block;
649                 }
650                 blk_allocated += ar.len;
651         }
652 allocated:
653         /* total number of blocks allocated for direct blocks */
654         ret = blk_allocated;
655         *err = 0;
656         return ret;
657 failed_out:
658         for (i = 0; i < index; i++)
659                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
660         return ret;
661 }
662
663 /**
664  *      ext4_alloc_branch - allocate and set up a chain of blocks.
665  *      @inode: owner
666  *      @indirect_blks: number of allocated indirect blocks
667  *      @blks: number of allocated direct blocks
668  *      @offsets: offsets (in the blocks) to store the pointers to next.
669  *      @branch: place to store the chain in.
670  *
671  *      This function allocates blocks, zeroes out all but the last one,
672  *      links them into chain and (if we are synchronous) writes them to disk.
673  *      In other words, it prepares a branch that can be spliced onto the
674  *      inode. It stores the information about that chain in the branch[], in
675  *      the same format as ext4_get_branch() would do. We are calling it after
676  *      we had read the existing part of chain and partial points to the last
677  *      triple of that (one with zero ->key). Upon the exit we have the same
678  *      picture as after the successful ext4_get_block(), except that in one
679  *      place chain is disconnected - *branch->p is still zero (we did not
680  *      set the last link), but branch->key contains the number that should
681  *      be placed into *branch->p to fill that gap.
682  *
683  *      If allocation fails we free all blocks we've allocated (and forget
684  *      their buffer_heads) and return the error value the from failed
685  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
686  *      as described above and return 0.
687  */
688 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
689                                 ext4_lblk_t iblock, int indirect_blks,
690                                 int *blks, ext4_fsblk_t goal,
691                                 ext4_lblk_t *offsets, Indirect *branch)
692 {
693         int blocksize = inode->i_sb->s_blocksize;
694         int i, n = 0;
695         int err = 0;
696         struct buffer_head *bh;
697         int num;
698         ext4_fsblk_t new_blocks[4];
699         ext4_fsblk_t current_block;
700
701         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
702                                 *blks, new_blocks, &err);
703         if (err)
704                 return err;
705
706         branch[0].key = cpu_to_le32(new_blocks[0]);
707         /*
708          * metadata blocks and data blocks are allocated.
709          */
710         for (n = 1; n <= indirect_blks;  n++) {
711                 /*
712                  * Get buffer_head for parent block, zero it out
713                  * and set the pointer to new one, then send
714                  * parent to disk.
715                  */
716                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
717                 branch[n].bh = bh;
718                 lock_buffer(bh);
719                 BUFFER_TRACE(bh, "call get_create_access");
720                 err = ext4_journal_get_create_access(handle, bh);
721                 if (err) {
722                         unlock_buffer(bh);
723                         brelse(bh);
724                         goto failed;
725                 }
726
727                 memset(bh->b_data, 0, blocksize);
728                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
729                 branch[n].key = cpu_to_le32(new_blocks[n]);
730                 *branch[n].p = branch[n].key;
731                 if (n == indirect_blks) {
732                         current_block = new_blocks[n];
733                         /*
734                          * End of chain, update the last new metablock of
735                          * the chain to point to the new allocated
736                          * data blocks numbers
737                          */
738                         for (i=1; i < num; i++)
739                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
740                 }
741                 BUFFER_TRACE(bh, "marking uptodate");
742                 set_buffer_uptodate(bh);
743                 unlock_buffer(bh);
744
745                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
746                 err = ext4_handle_dirty_metadata(handle, inode, bh);
747                 if (err)
748                         goto failed;
749         }
750         *blks = num;
751         return err;
752 failed:
753         /* Allocation failed, free what we already allocated */
754         for (i = 1; i <= n ; i++) {
755                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
756                 ext4_journal_forget(handle, branch[i].bh);
757         }
758         for (i = 0; i < indirect_blks; i++)
759                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
760
761         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
762
763         return err;
764 }
765
766 /**
767  * ext4_splice_branch - splice the allocated branch onto inode.
768  * @inode: owner
769  * @block: (logical) number of block we are adding
770  * @chain: chain of indirect blocks (with a missing link - see
771  *      ext4_alloc_branch)
772  * @where: location of missing link
773  * @num:   number of indirect blocks we are adding
774  * @blks:  number of direct blocks we are adding
775  *
776  * This function fills the missing link and does all housekeeping needed in
777  * inode (->i_blocks, etc.). In case of success we end up with the full
778  * chain to new block and return 0.
779  */
780 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
781                         ext4_lblk_t block, Indirect *where, int num, int blks)
782 {
783         int i;
784         int err = 0;
785         ext4_fsblk_t current_block;
786
787         /*
788          * If we're splicing into a [td]indirect block (as opposed to the
789          * inode) then we need to get write access to the [td]indirect block
790          * before the splice.
791          */
792         if (where->bh) {
793                 BUFFER_TRACE(where->bh, "get_write_access");
794                 err = ext4_journal_get_write_access(handle, where->bh);
795                 if (err)
796                         goto err_out;
797         }
798         /* That's it */
799
800         *where->p = where->key;
801
802         /*
803          * Update the host buffer_head or inode to point to more just allocated
804          * direct blocks blocks
805          */
806         if (num == 0 && blks > 1) {
807                 current_block = le32_to_cpu(where->key) + 1;
808                 for (i = 1; i < blks; i++)
809                         *(where->p + i) = cpu_to_le32(current_block++);
810         }
811
812         /* We are done with atomic stuff, now do the rest of housekeeping */
813
814         inode->i_ctime = ext4_current_time(inode);
815         ext4_mark_inode_dirty(handle, inode);
816
817         /* had we spliced it onto indirect block? */
818         if (where->bh) {
819                 /*
820                  * If we spliced it onto an indirect block, we haven't
821                  * altered the inode.  Note however that if it is being spliced
822                  * onto an indirect block at the very end of the file (the
823                  * file is growing) then we *will* alter the inode to reflect
824                  * the new i_size.  But that is not done here - it is done in
825                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
826                  */
827                 jbd_debug(5, "splicing indirect only\n");
828                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
829                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
830                 if (err)
831                         goto err_out;
832         } else {
833                 /*
834                  * OK, we spliced it into the inode itself on a direct block.
835                  * Inode was dirtied above.
836                  */
837                 jbd_debug(5, "splicing direct\n");
838         }
839         return err;
840
841 err_out:
842         for (i = 1; i <= num; i++) {
843                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
844                 ext4_journal_forget(handle, where[i].bh);
845                 ext4_free_blocks(handle, inode,
846                                         le32_to_cpu(where[i-1].key), 1, 0);
847         }
848         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
849
850         return err;
851 }
852
853 /*
854  * Allocation strategy is simple: if we have to allocate something, we will
855  * have to go the whole way to leaf. So let's do it before attaching anything
856  * to tree, set linkage between the newborn blocks, write them if sync is
857  * required, recheck the path, free and repeat if check fails, otherwise
858  * set the last missing link (that will protect us from any truncate-generated
859  * removals - all blocks on the path are immune now) and possibly force the
860  * write on the parent block.
861  * That has a nice additional property: no special recovery from the failed
862  * allocations is needed - we simply release blocks and do not touch anything
863  * reachable from inode.
864  *
865  * `handle' can be NULL if create == 0.
866  *
867  * return > 0, # of blocks mapped or allocated.
868  * return = 0, if plain lookup failed.
869  * return < 0, error case.
870  *
871  *
872  * Need to be called with
873  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
874  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
875  */
876 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
877                                   ext4_lblk_t iblock, unsigned int maxblocks,
878                                   struct buffer_head *bh_result,
879                                   int create, int extend_disksize)
880 {
881         int err = -EIO;
882         ext4_lblk_t offsets[4];
883         Indirect chain[4];
884         Indirect *partial;
885         ext4_fsblk_t goal;
886         int indirect_blks;
887         int blocks_to_boundary = 0;
888         int depth;
889         struct ext4_inode_info *ei = EXT4_I(inode);
890         int count = 0;
891         ext4_fsblk_t first_block = 0;
892         loff_t disksize;
893
894
895         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
896         J_ASSERT(handle != NULL || create == 0);
897         depth = ext4_block_to_path(inode, iblock, offsets,
898                                         &blocks_to_boundary);
899
900         if (depth == 0)
901                 goto out;
902
903         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
904
905         /* Simplest case - block found, no allocation needed */
906         if (!partial) {
907                 first_block = le32_to_cpu(chain[depth - 1].key);
908                 clear_buffer_new(bh_result);
909                 count++;
910                 /*map more blocks*/
911                 while (count < maxblocks && count <= blocks_to_boundary) {
912                         ext4_fsblk_t blk;
913
914                         blk = le32_to_cpu(*(chain[depth-1].p + count));
915
916                         if (blk == first_block + count)
917                                 count++;
918                         else
919                                 break;
920                 }
921                 goto got_it;
922         }
923
924         /* Next simple case - plain lookup or failed read of indirect block */
925         if (!create || err == -EIO)
926                 goto cleanup;
927
928         /*
929          * Okay, we need to do block allocation.
930         */
931         goal = ext4_find_goal(inode, iblock, partial);
932
933         /* the number of blocks need to allocate for [d,t]indirect blocks */
934         indirect_blks = (chain + depth) - partial - 1;
935
936         /*
937          * Next look up the indirect map to count the totoal number of
938          * direct blocks to allocate for this branch.
939          */
940         count = ext4_blks_to_allocate(partial, indirect_blks,
941                                         maxblocks, blocks_to_boundary);
942         /*
943          * Block out ext4_truncate while we alter the tree
944          */
945         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
946                                         &count, goal,
947                                         offsets + (partial - chain), partial);
948
949         /*
950          * The ext4_splice_branch call will free and forget any buffers
951          * on the new chain if there is a failure, but that risks using
952          * up transaction credits, especially for bitmaps where the
953          * credits cannot be returned.  Can we handle this somehow?  We
954          * may need to return -EAGAIN upwards in the worst case.  --sct
955          */
956         if (!err)
957                 err = ext4_splice_branch(handle, inode, iblock,
958                                         partial, indirect_blks, count);
959         /*
960          * i_disksize growing is protected by i_data_sem.  Don't forget to
961          * protect it if you're about to implement concurrent
962          * ext4_get_block() -bzzz
963         */
964         if (!err && extend_disksize) {
965                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
966                 if (disksize > i_size_read(inode))
967                         disksize = i_size_read(inode);
968                 if (disksize > ei->i_disksize)
969                         ei->i_disksize = disksize;
970         }
971         if (err)
972                 goto cleanup;
973
974         set_buffer_new(bh_result);
975 got_it:
976         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
977         if (count > blocks_to_boundary)
978                 set_buffer_boundary(bh_result);
979         err = count;
980         /* Clean up and exit */
981         partial = chain + depth - 1;    /* the whole chain */
982 cleanup:
983         while (partial > chain) {
984                 BUFFER_TRACE(partial->bh, "call brelse");
985                 brelse(partial->bh);
986                 partial--;
987         }
988         BUFFER_TRACE(bh_result, "returned");
989 out:
990         return err;
991 }
992
993 qsize_t ext4_get_reserved_space(struct inode *inode)
994 {
995         unsigned long long total;
996
997         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
998         total = EXT4_I(inode)->i_reserved_data_blocks +
999                 EXT4_I(inode)->i_reserved_meta_blocks;
1000         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1001
1002         return total;
1003 }
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate @blocks for non extent file based file
1007  */
1008 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1011         int ind_blks, dind_blks, tind_blks;
1012
1013         /* number of new indirect blocks needed */
1014         ind_blks = (blocks + icap - 1) / icap;
1015
1016         dind_blks = (ind_blks + icap - 1) / icap;
1017
1018         tind_blks = 1;
1019
1020         return ind_blks + dind_blks + tind_blks;
1021 }
1022
1023 /*
1024  * Calculate the number of metadata blocks need to reserve
1025  * to allocate given number of blocks
1026  */
1027 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1028 {
1029         if (!blocks)
1030                 return 0;
1031
1032         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1033                 return ext4_ext_calc_metadata_amount(inode, blocks);
1034
1035         return ext4_indirect_calc_metadata_amount(inode, blocks);
1036 }
1037
1038 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1039 {
1040         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1041         int total, mdb, mdb_free;
1042
1043         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044         /* recalculate the number of metablocks still need to be reserved */
1045         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1046         mdb = ext4_calc_metadata_amount(inode, total);
1047
1048         /* figure out how many metablocks to release */
1049         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1050         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1051
1052         if (mdb_free) {
1053                 /* Account for allocated meta_blocks */
1054                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1055
1056                 /* update fs dirty blocks counter */
1057                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1058                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1059                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1060         }
1061
1062         /* update per-inode reservations */
1063         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1064         EXT4_I(inode)->i_reserved_data_blocks -= used;
1065         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1066
1067         /*
1068          * free those over-booking quota for metadata blocks
1069          */
1070
1071         if (mdb_free)
1072                 vfs_dq_release_reservation_block(inode, mdb_free);
1073 }
1074
1075 /*
1076  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1077  * and returns if the blocks are already mapped.
1078  *
1079  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1080  * and store the allocated blocks in the result buffer head and mark it
1081  * mapped.
1082  *
1083  * If file type is extents based, it will call ext4_ext_get_blocks(),
1084  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1085  * based files
1086  *
1087  * On success, it returns the number of blocks being mapped or allocate.
1088  * if create==0 and the blocks are pre-allocated and uninitialized block,
1089  * the result buffer head is unmapped. If the create ==1, it will make sure
1090  * the buffer head is mapped.
1091  *
1092  * It returns 0 if plain look up failed (blocks have not been allocated), in
1093  * that casem, buffer head is unmapped
1094  *
1095  * It returns the error in case of allocation failure.
1096  */
1097 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1098                         unsigned int max_blocks, struct buffer_head *bh,
1099                         int create, int extend_disksize, int flag)
1100 {
1101         int retval;
1102
1103         clear_buffer_mapped(bh);
1104
1105         /*
1106          * Try to see if we can get  the block without requesting
1107          * for new file system block.
1108          */
1109         down_read((&EXT4_I(inode)->i_data_sem));
1110         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1111                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1112                                 bh, 0, 0);
1113         } else {
1114                 retval = ext4_get_blocks_handle(handle,
1115                                 inode, block, max_blocks, bh, 0, 0);
1116         }
1117         up_read((&EXT4_I(inode)->i_data_sem));
1118
1119         /* If it is only a block(s) look up */
1120         if (!create)
1121                 return retval;
1122
1123         /*
1124          * Returns if the blocks have already allocated
1125          *
1126          * Note that if blocks have been preallocated
1127          * ext4_ext_get_block() returns th create = 0
1128          * with buffer head unmapped.
1129          */
1130         if (retval > 0 && buffer_mapped(bh))
1131                 return retval;
1132
1133         /*
1134          * New blocks allocate and/or writing to uninitialized extent
1135          * will possibly result in updating i_data, so we take
1136          * the write lock of i_data_sem, and call get_blocks()
1137          * with create == 1 flag.
1138          */
1139         down_write((&EXT4_I(inode)->i_data_sem));
1140
1141         /*
1142          * if the caller is from delayed allocation writeout path
1143          * we have already reserved fs blocks for allocation
1144          * let the underlying get_block() function know to
1145          * avoid double accounting
1146          */
1147         if (flag)
1148                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1149         /*
1150          * We need to check for EXT4 here because migrate
1151          * could have changed the inode type in between
1152          */
1153         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1154                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1155                                 bh, create, extend_disksize);
1156         } else {
1157                 retval = ext4_get_blocks_handle(handle, inode, block,
1158                                 max_blocks, bh, create, extend_disksize);
1159
1160                 if (retval > 0 && buffer_new(bh)) {
1161                         /*
1162                          * We allocated new blocks which will result in
1163                          * i_data's format changing.  Force the migrate
1164                          * to fail by clearing migrate flags
1165                          */
1166                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1167                                                         ~EXT4_EXT_MIGRATE;
1168                 }
1169         }
1170
1171         if (flag) {
1172                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1173                 /*
1174                  * Update reserved blocks/metadata blocks
1175                  * after successful block allocation
1176                  * which were deferred till now
1177                  */
1178                 if ((retval > 0) && buffer_delay(bh))
1179                         ext4_da_update_reserve_space(inode, retval);
1180         }
1181
1182         up_write((&EXT4_I(inode)->i_data_sem));
1183         return retval;
1184 }
1185
1186 /* Maximum number of blocks we map for direct IO at once. */
1187 #define DIO_MAX_BLOCKS 4096
1188
1189 int ext4_get_block(struct inode *inode, sector_t iblock,
1190                    struct buffer_head *bh_result, int create)
1191 {
1192         handle_t *handle = ext4_journal_current_handle();
1193         int ret = 0, started = 0;
1194         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1195         int dio_credits;
1196
1197         if (create && !handle) {
1198                 /* Direct IO write... */
1199                 if (max_blocks > DIO_MAX_BLOCKS)
1200                         max_blocks = DIO_MAX_BLOCKS;
1201                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1202                 handle = ext4_journal_start(inode, dio_credits);
1203                 if (IS_ERR(handle)) {
1204                         ret = PTR_ERR(handle);
1205                         goto out;
1206                 }
1207                 started = 1;
1208         }
1209
1210         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1211                                         max_blocks, bh_result, create, 0, 0);
1212         if (ret > 0) {
1213                 bh_result->b_size = (ret << inode->i_blkbits);
1214                 ret = 0;
1215         }
1216         if (started)
1217                 ext4_journal_stop(handle);
1218 out:
1219         return ret;
1220 }
1221
1222 /*
1223  * `handle' can be NULL if create is zero
1224  */
1225 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1226                                 ext4_lblk_t block, int create, int *errp)
1227 {
1228         struct buffer_head dummy;
1229         int fatal = 0, err;
1230
1231         J_ASSERT(handle != NULL || create == 0);
1232
1233         dummy.b_state = 0;
1234         dummy.b_blocknr = -1000;
1235         buffer_trace_init(&dummy.b_history);
1236         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1237                                         &dummy, create, 1, 0);
1238         /*
1239          * ext4_get_blocks_handle() returns number of blocks
1240          * mapped. 0 in case of a HOLE.
1241          */
1242         if (err > 0) {
1243                 if (err > 1)
1244                         WARN_ON(1);
1245                 err = 0;
1246         }
1247         *errp = err;
1248         if (!err && buffer_mapped(&dummy)) {
1249                 struct buffer_head *bh;
1250                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1251                 if (!bh) {
1252                         *errp = -EIO;
1253                         goto err;
1254                 }
1255                 if (buffer_new(&dummy)) {
1256                         J_ASSERT(create != 0);
1257                         J_ASSERT(handle != NULL);
1258
1259                         /*
1260                          * Now that we do not always journal data, we should
1261                          * keep in mind whether this should always journal the
1262                          * new buffer as metadata.  For now, regular file
1263                          * writes use ext4_get_block instead, so it's not a
1264                          * problem.
1265                          */
1266                         lock_buffer(bh);
1267                         BUFFER_TRACE(bh, "call get_create_access");
1268                         fatal = ext4_journal_get_create_access(handle, bh);
1269                         if (!fatal && !buffer_uptodate(bh)) {
1270                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1271                                 set_buffer_uptodate(bh);
1272                         }
1273                         unlock_buffer(bh);
1274                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1275                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1276                         if (!fatal)
1277                                 fatal = err;
1278                 } else {
1279                         BUFFER_TRACE(bh, "not a new buffer");
1280                 }
1281                 if (fatal) {
1282                         *errp = fatal;
1283                         brelse(bh);
1284                         bh = NULL;
1285                 }
1286                 return bh;
1287         }
1288 err:
1289         return NULL;
1290 }
1291
1292 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1293                                ext4_lblk_t block, int create, int *err)
1294 {
1295         struct buffer_head *bh;
1296
1297         bh = ext4_getblk(handle, inode, block, create, err);
1298         if (!bh)
1299                 return bh;
1300         if (buffer_uptodate(bh))
1301                 return bh;
1302         ll_rw_block(READ_META, 1, &bh);
1303         wait_on_buffer(bh);
1304         if (buffer_uptodate(bh))
1305                 return bh;
1306         put_bh(bh);
1307         *err = -EIO;
1308         return NULL;
1309 }
1310
1311 static int walk_page_buffers(handle_t *handle,
1312                              struct buffer_head *head,
1313                              unsigned from,
1314                              unsigned to,
1315                              int *partial,
1316                              int (*fn)(handle_t *handle,
1317                                        struct buffer_head *bh))
1318 {
1319         struct buffer_head *bh;
1320         unsigned block_start, block_end;
1321         unsigned blocksize = head->b_size;
1322         int err, ret = 0;
1323         struct buffer_head *next;
1324
1325         for (bh = head, block_start = 0;
1326              ret == 0 && (bh != head || !block_start);
1327              block_start = block_end, bh = next)
1328         {
1329                 next = bh->b_this_page;
1330                 block_end = block_start + blocksize;
1331                 if (block_end <= from || block_start >= to) {
1332                         if (partial && !buffer_uptodate(bh))
1333                                 *partial = 1;
1334                         continue;
1335                 }
1336                 err = (*fn)(handle, bh);
1337                 if (!ret)
1338                         ret = err;
1339         }
1340         return ret;
1341 }
1342
1343 /*
1344  * To preserve ordering, it is essential that the hole instantiation and
1345  * the data write be encapsulated in a single transaction.  We cannot
1346  * close off a transaction and start a new one between the ext4_get_block()
1347  * and the commit_write().  So doing the jbd2_journal_start at the start of
1348  * prepare_write() is the right place.
1349  *
1350  * Also, this function can nest inside ext4_writepage() ->
1351  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1352  * has generated enough buffer credits to do the whole page.  So we won't
1353  * block on the journal in that case, which is good, because the caller may
1354  * be PF_MEMALLOC.
1355  *
1356  * By accident, ext4 can be reentered when a transaction is open via
1357  * quota file writes.  If we were to commit the transaction while thus
1358  * reentered, there can be a deadlock - we would be holding a quota
1359  * lock, and the commit would never complete if another thread had a
1360  * transaction open and was blocking on the quota lock - a ranking
1361  * violation.
1362  *
1363  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1364  * will _not_ run commit under these circumstances because handle->h_ref
1365  * is elevated.  We'll still have enough credits for the tiny quotafile
1366  * write.
1367  */
1368 static int do_journal_get_write_access(handle_t *handle,
1369                                         struct buffer_head *bh)
1370 {
1371         if (!buffer_mapped(bh) || buffer_freed(bh))
1372                 return 0;
1373         return ext4_journal_get_write_access(handle, bh);
1374 }
1375
1376 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1377                                 loff_t pos, unsigned len, unsigned flags,
1378                                 struct page **pagep, void **fsdata)
1379 {
1380         struct inode *inode = mapping->host;
1381         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1382         handle_t *handle;
1383         int retries = 0;
1384         struct page *page;
1385         pgoff_t index;
1386         unsigned from, to;
1387
1388         trace_mark(ext4_write_begin,
1389                    "dev %s ino %lu pos %llu len %u flags %u",
1390                    inode->i_sb->s_id, inode->i_ino,
1391                    (unsigned long long) pos, len, flags);
1392         index = pos >> PAGE_CACHE_SHIFT;
1393         from = pos & (PAGE_CACHE_SIZE - 1);
1394         to = from + len;
1395
1396 retry:
1397         handle = ext4_journal_start(inode, needed_blocks);
1398         if (IS_ERR(handle)) {
1399                 ret = PTR_ERR(handle);
1400                 goto out;
1401         }
1402
1403         /* We cannot recurse into the filesystem as the transaction is already
1404          * started */
1405         flags |= AOP_FLAG_NOFS;
1406
1407         page = grab_cache_page_write_begin(mapping, index, flags);
1408         if (!page) {
1409                 ext4_journal_stop(handle);
1410                 ret = -ENOMEM;
1411                 goto out;
1412         }
1413         *pagep = page;
1414
1415         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1416                                 ext4_get_block);
1417
1418         if (!ret && ext4_should_journal_data(inode)) {
1419                 ret = walk_page_buffers(handle, page_buffers(page),
1420                                 from, to, NULL, do_journal_get_write_access);
1421         }
1422
1423         if (ret) {
1424                 unlock_page(page);
1425                 ext4_journal_stop(handle);
1426                 page_cache_release(page);
1427                 /*
1428                  * block_write_begin may have instantiated a few blocks
1429                  * outside i_size.  Trim these off again. Don't need
1430                  * i_size_read because we hold i_mutex.
1431                  */
1432                 if (pos + len > inode->i_size)
1433                         vmtruncate(inode, inode->i_size);
1434         }
1435
1436         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1437                 goto retry;
1438 out:
1439         return ret;
1440 }
1441
1442 /* For write_end() in data=journal mode */
1443 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1444 {
1445         if (!buffer_mapped(bh) || buffer_freed(bh))
1446                 return 0;
1447         set_buffer_uptodate(bh);
1448         return ext4_handle_dirty_metadata(handle, NULL, bh);
1449 }
1450
1451 /*
1452  * We need to pick up the new inode size which generic_commit_write gave us
1453  * `file' can be NULL - eg, when called from page_symlink().
1454  *
1455  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1456  * buffers are managed internally.
1457  */
1458 static int ext4_ordered_write_end(struct file *file,
1459                                 struct address_space *mapping,
1460                                 loff_t pos, unsigned len, unsigned copied,
1461                                 struct page *page, void *fsdata)
1462 {
1463         handle_t *handle = ext4_journal_current_handle();
1464         struct inode *inode = mapping->host;
1465         int ret = 0, ret2;
1466
1467         trace_mark(ext4_ordered_write_end,
1468                    "dev %s ino %lu pos %llu len %u copied %u",
1469                    inode->i_sb->s_id, inode->i_ino,
1470                    (unsigned long long) pos, len, copied);
1471         ret = ext4_jbd2_file_inode(handle, inode);
1472
1473         if (ret == 0) {
1474                 loff_t new_i_size;
1475
1476                 new_i_size = pos + copied;
1477                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1478                         ext4_update_i_disksize(inode, new_i_size);
1479                         /* We need to mark inode dirty even if
1480                          * new_i_size is less that inode->i_size
1481                          * bu greater than i_disksize.(hint delalloc)
1482                          */
1483                         ext4_mark_inode_dirty(handle, inode);
1484                 }
1485
1486                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1487                                                         page, fsdata);
1488                 copied = ret2;
1489                 if (ret2 < 0)
1490                         ret = ret2;
1491         }
1492         ret2 = ext4_journal_stop(handle);
1493         if (!ret)
1494                 ret = ret2;
1495
1496         return ret ? ret : copied;
1497 }
1498
1499 static int ext4_writeback_write_end(struct file *file,
1500                                 struct address_space *mapping,
1501                                 loff_t pos, unsigned len, unsigned copied,
1502                                 struct page *page, void *fsdata)
1503 {
1504         handle_t *handle = ext4_journal_current_handle();
1505         struct inode *inode = mapping->host;
1506         int ret = 0, ret2;
1507         loff_t new_i_size;
1508
1509         trace_mark(ext4_writeback_write_end,
1510                    "dev %s ino %lu pos %llu len %u copied %u",
1511                    inode->i_sb->s_id, inode->i_ino,
1512                    (unsigned long long) pos, len, copied);
1513         new_i_size = pos + copied;
1514         if (new_i_size > EXT4_I(inode)->i_disksize) {
1515                 ext4_update_i_disksize(inode, new_i_size);
1516                 /* We need to mark inode dirty even if
1517                  * new_i_size is less that inode->i_size
1518                  * bu greater than i_disksize.(hint delalloc)
1519                  */
1520                 ext4_mark_inode_dirty(handle, inode);
1521         }
1522
1523         ret2 = generic_write_end(file, mapping, pos, len, copied,
1524                                                         page, fsdata);
1525         copied = ret2;
1526         if (ret2 < 0)
1527                 ret = ret2;
1528
1529         ret2 = ext4_journal_stop(handle);
1530         if (!ret)
1531                 ret = ret2;
1532
1533         return ret ? ret : copied;
1534 }
1535
1536 static int ext4_journalled_write_end(struct file *file,
1537                                 struct address_space *mapping,
1538                                 loff_t pos, unsigned len, unsigned copied,
1539                                 struct page *page, void *fsdata)
1540 {
1541         handle_t *handle = ext4_journal_current_handle();
1542         struct inode *inode = mapping->host;
1543         int ret = 0, ret2;
1544         int partial = 0;
1545         unsigned from, to;
1546         loff_t new_i_size;
1547
1548         trace_mark(ext4_journalled_write_end,
1549                    "dev %s ino %lu pos %llu len %u copied %u",
1550                    inode->i_sb->s_id, inode->i_ino,
1551                    (unsigned long long) pos, len, copied);
1552         from = pos & (PAGE_CACHE_SIZE - 1);
1553         to = from + len;
1554
1555         if (copied < len) {
1556                 if (!PageUptodate(page))
1557                         copied = 0;
1558                 page_zero_new_buffers(page, from+copied, to);
1559         }
1560
1561         ret = walk_page_buffers(handle, page_buffers(page), from,
1562                                 to, &partial, write_end_fn);
1563         if (!partial)
1564                 SetPageUptodate(page);
1565         new_i_size = pos + copied;
1566         if (new_i_size > inode->i_size)
1567                 i_size_write(inode, pos+copied);
1568         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1569         if (new_i_size > EXT4_I(inode)->i_disksize) {
1570                 ext4_update_i_disksize(inode, new_i_size);
1571                 ret2 = ext4_mark_inode_dirty(handle, inode);
1572                 if (!ret)
1573                         ret = ret2;
1574         }
1575
1576         unlock_page(page);
1577         ret2 = ext4_journal_stop(handle);
1578         if (!ret)
1579                 ret = ret2;
1580         page_cache_release(page);
1581
1582         return ret ? ret : copied;
1583 }
1584
1585 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1586 {
1587         int retries = 0;
1588         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589         unsigned long md_needed, mdblocks, total = 0;
1590
1591         /*
1592          * recalculate the amount of metadata blocks to reserve
1593          * in order to allocate nrblocks
1594          * worse case is one extent per block
1595          */
1596 repeat:
1597         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1598         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1599         mdblocks = ext4_calc_metadata_amount(inode, total);
1600         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1601
1602         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1603         total = md_needed + nrblocks;
1604
1605         /*
1606          * Make quota reservation here to prevent quota overflow
1607          * later. Real quota accounting is done at pages writeout
1608          * time.
1609          */
1610         if (vfs_dq_reserve_block(inode, total)) {
1611                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1612                 return -EDQUOT;
1613         }
1614
1615         if (ext4_claim_free_blocks(sbi, total)) {
1616                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1617                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1618                         yield();
1619                         goto repeat;
1620                 }
1621                 vfs_dq_release_reservation_block(inode, total);
1622                 return -ENOSPC;
1623         }
1624         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1625         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1626
1627         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1628         return 0;       /* success */
1629 }
1630
1631 static void ext4_da_release_space(struct inode *inode, int to_free)
1632 {
1633         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1634         int total, mdb, mdb_free, release;
1635
1636         if (!to_free)
1637                 return;         /* Nothing to release, exit */
1638
1639         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1640
1641         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1642                 /*
1643                  * if there is no reserved blocks, but we try to free some
1644                  * then the counter is messed up somewhere.
1645                  * but since this function is called from invalidate
1646                  * page, it's harmless to return without any action
1647                  */
1648                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1649                             "blocks for inode %lu, but there is no reserved "
1650                             "data blocks\n", to_free, inode->i_ino);
1651                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1652                 return;
1653         }
1654
1655         /* recalculate the number of metablocks still need to be reserved */
1656         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1657         mdb = ext4_calc_metadata_amount(inode, total);
1658
1659         /* figure out how many metablocks to release */
1660         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1661         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1662
1663         release = to_free + mdb_free;
1664
1665         /* update fs dirty blocks counter for truncate case */
1666         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1667
1668         /* update per-inode reservations */
1669         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1670         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1671
1672         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1673         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1674         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1675
1676         vfs_dq_release_reservation_block(inode, release);
1677 }
1678
1679 static void ext4_da_page_release_reservation(struct page *page,
1680                                                 unsigned long offset)
1681 {
1682         int to_release = 0;
1683         struct buffer_head *head, *bh;
1684         unsigned int curr_off = 0;
1685
1686         head = page_buffers(page);
1687         bh = head;
1688         do {
1689                 unsigned int next_off = curr_off + bh->b_size;
1690
1691                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1692                         to_release++;
1693                         clear_buffer_delay(bh);
1694                 }
1695                 curr_off = next_off;
1696         } while ((bh = bh->b_this_page) != head);
1697         ext4_da_release_space(page->mapping->host, to_release);
1698 }
1699
1700 /*
1701  * Delayed allocation stuff
1702  */
1703
1704 struct mpage_da_data {
1705         struct inode *inode;
1706         struct buffer_head lbh;                 /* extent of blocks */
1707         unsigned long first_page, next_page;    /* extent of pages */
1708         get_block_t *get_block;
1709         struct writeback_control *wbc;
1710         int io_done;
1711         int pages_written;
1712         int retval;
1713 };
1714
1715 /*
1716  * mpage_da_submit_io - walks through extent of pages and try to write
1717  * them with writepage() call back
1718  *
1719  * @mpd->inode: inode
1720  * @mpd->first_page: first page of the extent
1721  * @mpd->next_page: page after the last page of the extent
1722  * @mpd->get_block: the filesystem's block mapper function
1723  *
1724  * By the time mpage_da_submit_io() is called we expect all blocks
1725  * to be allocated. this may be wrong if allocation failed.
1726  *
1727  * As pages are already locked by write_cache_pages(), we can't use it
1728  */
1729 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1730 {
1731         long pages_skipped;
1732         struct pagevec pvec;
1733         unsigned long index, end;
1734         int ret = 0, err, nr_pages, i;
1735         struct inode *inode = mpd->inode;
1736         struct address_space *mapping = inode->i_mapping;
1737
1738         BUG_ON(mpd->next_page <= mpd->first_page);
1739         /*
1740          * We need to start from the first_page to the next_page - 1
1741          * to make sure we also write the mapped dirty buffer_heads.
1742          * If we look at mpd->lbh.b_blocknr we would only be looking
1743          * at the currently mapped buffer_heads.
1744          */
1745         index = mpd->first_page;
1746         end = mpd->next_page - 1;
1747
1748         pagevec_init(&pvec, 0);
1749         while (index <= end) {
1750                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1751                 if (nr_pages == 0)
1752                         break;
1753                 for (i = 0; i < nr_pages; i++) {
1754                         struct page *page = pvec.pages[i];
1755
1756                         index = page->index;
1757                         if (index > end)
1758                                 break;
1759                         index++;
1760
1761                         BUG_ON(!PageLocked(page));
1762                         BUG_ON(PageWriteback(page));
1763
1764                         pages_skipped = mpd->wbc->pages_skipped;
1765                         err = mapping->a_ops->writepage(page, mpd->wbc);
1766                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1767                                 /*
1768                                  * have successfully written the page
1769                                  * without skipping the same
1770                                  */
1771                                 mpd->pages_written++;
1772                         /*
1773                          * In error case, we have to continue because
1774                          * remaining pages are still locked
1775                          * XXX: unlock and re-dirty them?
1776                          */
1777                         if (ret == 0)
1778                                 ret = err;
1779                 }
1780                 pagevec_release(&pvec);
1781         }
1782         return ret;
1783 }
1784
1785 /*
1786  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1787  *
1788  * @mpd->inode - inode to walk through
1789  * @exbh->b_blocknr - first block on a disk
1790  * @exbh->b_size - amount of space in bytes
1791  * @logical - first logical block to start assignment with
1792  *
1793  * the function goes through all passed space and put actual disk
1794  * block numbers into buffer heads, dropping BH_Delay
1795  */
1796 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1797                                  struct buffer_head *exbh)
1798 {
1799         struct inode *inode = mpd->inode;
1800         struct address_space *mapping = inode->i_mapping;
1801         int blocks = exbh->b_size >> inode->i_blkbits;
1802         sector_t pblock = exbh->b_blocknr, cur_logical;
1803         struct buffer_head *head, *bh;
1804         pgoff_t index, end;
1805         struct pagevec pvec;
1806         int nr_pages, i;
1807
1808         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1809         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1810         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1811
1812         pagevec_init(&pvec, 0);
1813
1814         while (index <= end) {
1815                 /* XXX: optimize tail */
1816                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1817                 if (nr_pages == 0)
1818                         break;
1819                 for (i = 0; i < nr_pages; i++) {
1820                         struct page *page = pvec.pages[i];
1821
1822                         index = page->index;
1823                         if (index > end)
1824                                 break;
1825                         index++;
1826
1827                         BUG_ON(!PageLocked(page));
1828                         BUG_ON(PageWriteback(page));
1829                         BUG_ON(!page_has_buffers(page));
1830
1831                         bh = page_buffers(page);
1832                         head = bh;
1833
1834                         /* skip blocks out of the range */
1835                         do {
1836                                 if (cur_logical >= logical)
1837                                         break;
1838                                 cur_logical++;
1839                         } while ((bh = bh->b_this_page) != head);
1840
1841                         do {
1842                                 if (cur_logical >= logical + blocks)
1843                                         break;
1844                                 if (buffer_delay(bh)) {
1845                                         bh->b_blocknr = pblock;
1846                                         clear_buffer_delay(bh);
1847                                         bh->b_bdev = inode->i_sb->s_bdev;
1848                                 } else if (buffer_unwritten(bh)) {
1849                                         bh->b_blocknr = pblock;
1850                                         clear_buffer_unwritten(bh);
1851                                         set_buffer_mapped(bh);
1852                                         set_buffer_new(bh);
1853                                         bh->b_bdev = inode->i_sb->s_bdev;
1854                                 } else if (buffer_mapped(bh))
1855                                         BUG_ON(bh->b_blocknr != pblock);
1856
1857                                 cur_logical++;
1858                                 pblock++;
1859                         } while ((bh = bh->b_this_page) != head);
1860                 }
1861                 pagevec_release(&pvec);
1862         }
1863 }
1864
1865
1866 /*
1867  * __unmap_underlying_blocks - just a helper function to unmap
1868  * set of blocks described by @bh
1869  */
1870 static inline void __unmap_underlying_blocks(struct inode *inode,
1871                                              struct buffer_head *bh)
1872 {
1873         struct block_device *bdev = inode->i_sb->s_bdev;
1874         int blocks, i;
1875
1876         blocks = bh->b_size >> inode->i_blkbits;
1877         for (i = 0; i < blocks; i++)
1878                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1879 }
1880
1881 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1882                                         sector_t logical, long blk_cnt)
1883 {
1884         int nr_pages, i;
1885         pgoff_t index, end;
1886         struct pagevec pvec;
1887         struct inode *inode = mpd->inode;
1888         struct address_space *mapping = inode->i_mapping;
1889
1890         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1891         end   = (logical + blk_cnt - 1) >>
1892                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1893         while (index <= end) {
1894                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1895                 if (nr_pages == 0)
1896                         break;
1897                 for (i = 0; i < nr_pages; i++) {
1898                         struct page *page = pvec.pages[i];
1899                         index = page->index;
1900                         if (index > end)
1901                                 break;
1902                         index++;
1903
1904                         BUG_ON(!PageLocked(page));
1905                         BUG_ON(PageWriteback(page));
1906                         block_invalidatepage(page, 0);
1907                         ClearPageUptodate(page);
1908                         unlock_page(page);
1909                 }
1910         }
1911         return;
1912 }
1913
1914 static void ext4_print_free_blocks(struct inode *inode)
1915 {
1916         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1917         printk(KERN_EMERG "Total free blocks count %lld\n",
1918                         ext4_count_free_blocks(inode->i_sb));
1919         printk(KERN_EMERG "Free/Dirty block details\n");
1920         printk(KERN_EMERG "free_blocks=%lld\n",
1921                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1922         printk(KERN_EMERG "dirty_blocks=%lld\n",
1923                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1924         printk(KERN_EMERG "Block reservation details\n");
1925         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1926                         EXT4_I(inode)->i_reserved_data_blocks);
1927         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1928                         EXT4_I(inode)->i_reserved_meta_blocks);
1929         return;
1930 }
1931
1932 /*
1933  * mpage_da_map_blocks - go through given space
1934  *
1935  * @mpd->lbh - bh describing space
1936  * @mpd->get_block - the filesystem's block mapper function
1937  *
1938  * The function skips space we know is already mapped to disk blocks.
1939  *
1940  */
1941 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1942 {
1943         int err = 0;
1944         struct buffer_head new;
1945         struct buffer_head *lbh = &mpd->lbh;
1946         sector_t next;
1947
1948         /*
1949          * We consider only non-mapped and non-allocated blocks
1950          */
1951         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1952                 return 0;
1953         new.b_state = lbh->b_state;
1954         new.b_blocknr = 0;
1955         new.b_size = lbh->b_size;
1956         next = lbh->b_blocknr;
1957         /*
1958          * If we didn't accumulate anything
1959          * to write simply return
1960          */
1961         if (!new.b_size)
1962                 return 0;
1963         err = mpd->get_block(mpd->inode, next, &new, 1);
1964         if (err) {
1965
1966                 /* If get block returns with error
1967                  * we simply return. Later writepage
1968                  * will redirty the page and writepages
1969                  * will find the dirty page again
1970                  */
1971                 if (err == -EAGAIN)
1972                         return 0;
1973
1974                 if (err == -ENOSPC &&
1975                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1976                         mpd->retval = err;
1977                         return 0;
1978                 }
1979
1980                 /*
1981                  * get block failure will cause us
1982                  * to loop in writepages. Because
1983                  * a_ops->writepage won't be able to
1984                  * make progress. The page will be redirtied
1985                  * by writepage and writepages will again
1986                  * try to write the same.
1987                  */
1988                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1989                                   "at logical offset %llu with max blocks "
1990                                   "%zd with error %d\n",
1991                                   __func__, mpd->inode->i_ino,
1992                                   (unsigned long long)next,
1993                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1994                 printk(KERN_EMERG "This should not happen.!! "
1995                                         "Data will be lost\n");
1996                 if (err == -ENOSPC) {
1997                         ext4_print_free_blocks(mpd->inode);
1998                 }
1999                 /* invlaidate all the pages */
2000                 ext4_da_block_invalidatepages(mpd, next,
2001                                 lbh->b_size >> mpd->inode->i_blkbits);
2002                 return err;
2003         }
2004         BUG_ON(new.b_size == 0);
2005
2006         if (buffer_new(&new))
2007                 __unmap_underlying_blocks(mpd->inode, &new);
2008
2009         /*
2010          * If blocks are delayed marked, we need to
2011          * put actual blocknr and drop delayed bit
2012          */
2013         if (buffer_delay(lbh) || buffer_unwritten(lbh))
2014                 mpage_put_bnr_to_bhs(mpd, next, &new);
2015
2016         return 0;
2017 }
2018
2019 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2020                 (1 << BH_Delay) | (1 << BH_Unwritten))
2021
2022 /*
2023  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2024  *
2025  * @mpd->lbh - extent of blocks
2026  * @logical - logical number of the block in the file
2027  * @bh - bh of the block (used to access block's state)
2028  *
2029  * the function is used to collect contig. blocks in same state
2030  */
2031 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2032                                    sector_t logical, struct buffer_head *bh)
2033 {
2034         sector_t next;
2035         size_t b_size = bh->b_size;
2036         struct buffer_head *lbh = &mpd->lbh;
2037         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
2038
2039         /* check if thereserved journal credits might overflow */
2040         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2041                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2042                         /*
2043                          * With non-extent format we are limited by the journal
2044                          * credit available.  Total credit needed to insert
2045                          * nrblocks contiguous blocks is dependent on the
2046                          * nrblocks.  So limit nrblocks.
2047                          */
2048                         goto flush_it;
2049                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2050                                 EXT4_MAX_TRANS_DATA) {
2051                         /*
2052                          * Adding the new buffer_head would make it cross the
2053                          * allowed limit for which we have journal credit
2054                          * reserved. So limit the new bh->b_size
2055                          */
2056                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2057                                                 mpd->inode->i_blkbits;
2058                         /* we will do mpage_da_submit_io in the next loop */
2059                 }
2060         }
2061         /*
2062          * First block in the extent
2063          */
2064         if (lbh->b_size == 0) {
2065                 lbh->b_blocknr = logical;
2066                 lbh->b_size = b_size;
2067                 lbh->b_state = bh->b_state & BH_FLAGS;
2068                 return;
2069         }
2070
2071         next = lbh->b_blocknr + nrblocks;
2072         /*
2073          * Can we merge the block to our big extent?
2074          */
2075         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2076                 lbh->b_size += b_size;
2077                 return;
2078         }
2079
2080 flush_it:
2081         /*
2082          * We couldn't merge the block to our extent, so we
2083          * need to flush current  extent and start new one
2084          */
2085         if (mpage_da_map_blocks(mpd) == 0)
2086                 mpage_da_submit_io(mpd);
2087         mpd->io_done = 1;
2088         return;
2089 }
2090
2091 /*
2092  * __mpage_da_writepage - finds extent of pages and blocks
2093  *
2094  * @page: page to consider
2095  * @wbc: not used, we just follow rules
2096  * @data: context
2097  *
2098  * The function finds extents of pages and scan them for all blocks.
2099  */
2100 static int __mpage_da_writepage(struct page *page,
2101                                 struct writeback_control *wbc, void *data)
2102 {
2103         struct mpage_da_data *mpd = data;
2104         struct inode *inode = mpd->inode;
2105         struct buffer_head *bh, *head, fake;
2106         sector_t logical;
2107
2108         if (mpd->io_done) {
2109                 /*
2110                  * Rest of the page in the page_vec
2111                  * redirty then and skip then. We will
2112                  * try to to write them again after
2113                  * starting a new transaction
2114                  */
2115                 redirty_page_for_writepage(wbc, page);
2116                 unlock_page(page);
2117                 return MPAGE_DA_EXTENT_TAIL;
2118         }
2119         /*
2120          * Can we merge this page to current extent?
2121          */
2122         if (mpd->next_page != page->index) {
2123                 /*
2124                  * Nope, we can't. So, we map non-allocated blocks
2125                  * and start IO on them using writepage()
2126                  */
2127                 if (mpd->next_page != mpd->first_page) {
2128                         if (mpage_da_map_blocks(mpd) == 0)
2129                                 mpage_da_submit_io(mpd);
2130                         /*
2131                          * skip rest of the page in the page_vec
2132                          */
2133                         mpd->io_done = 1;
2134                         redirty_page_for_writepage(wbc, page);
2135                         unlock_page(page);
2136                         return MPAGE_DA_EXTENT_TAIL;
2137                 }
2138
2139                 /*
2140                  * Start next extent of pages ...
2141                  */
2142                 mpd->first_page = page->index;
2143
2144                 /*
2145                  * ... and blocks
2146                  */
2147                 mpd->lbh.b_size = 0;
2148                 mpd->lbh.b_state = 0;
2149                 mpd->lbh.b_blocknr = 0;
2150         }
2151
2152         mpd->next_page = page->index + 1;
2153         logical = (sector_t) page->index <<
2154                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2155
2156         if (!page_has_buffers(page)) {
2157                 /*
2158                  * There is no attached buffer heads yet (mmap?)
2159                  * we treat the page asfull of dirty blocks
2160                  */
2161                 bh = &fake;
2162                 bh->b_size = PAGE_CACHE_SIZE;
2163                 bh->b_state = 0;
2164                 set_buffer_dirty(bh);
2165                 set_buffer_uptodate(bh);
2166                 mpage_add_bh_to_extent(mpd, logical, bh);
2167                 if (mpd->io_done)
2168                         return MPAGE_DA_EXTENT_TAIL;
2169         } else {
2170                 /*
2171                  * Page with regular buffer heads, just add all dirty ones
2172                  */
2173                 head = page_buffers(page);
2174                 bh = head;
2175                 do {
2176                         BUG_ON(buffer_locked(bh));
2177                         /*
2178                          * We need to try to allocate
2179                          * unmapped blocks in the same page.
2180                          * Otherwise we won't make progress
2181                          * with the page in ext4_da_writepage
2182                          */
2183                         if (buffer_dirty(bh) &&
2184                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2185                                 mpage_add_bh_to_extent(mpd, logical, bh);
2186                                 if (mpd->io_done)
2187                                         return MPAGE_DA_EXTENT_TAIL;
2188                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2189                                 /*
2190                                  * mapped dirty buffer. We need to update
2191                                  * the b_state because we look at
2192                                  * b_state in mpage_da_map_blocks. We don't
2193                                  * update b_size because if we find an
2194                                  * unmapped buffer_head later we need to
2195                                  * use the b_state flag of that buffer_head.
2196                                  */
2197                                 if (mpd->lbh.b_size == 0)
2198                                         mpd->lbh.b_state =
2199                                                 bh->b_state & BH_FLAGS;
2200                         }
2201                         logical++;
2202                 } while ((bh = bh->b_this_page) != head);
2203         }
2204
2205         return 0;
2206 }
2207
2208 /*
2209  * mpage_da_writepages - walk the list of dirty pages of the given
2210  * address space, allocates non-allocated blocks, maps newly-allocated
2211  * blocks to existing bhs and issue IO them
2212  *
2213  * @mapping: address space structure to write
2214  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2215  * @get_block: the filesystem's block mapper function.
2216  *
2217  * This is a library function, which implements the writepages()
2218  * address_space_operation.
2219  */
2220 static int mpage_da_writepages(struct address_space *mapping,
2221                                struct writeback_control *wbc,
2222                                struct mpage_da_data *mpd)
2223 {
2224         int ret;
2225
2226         if (!mpd->get_block)
2227                 return generic_writepages(mapping, wbc);
2228
2229         mpd->lbh.b_size = 0;
2230         mpd->lbh.b_state = 0;
2231         mpd->lbh.b_blocknr = 0;
2232         mpd->first_page = 0;
2233         mpd->next_page = 0;
2234         mpd->io_done = 0;
2235         mpd->pages_written = 0;
2236         mpd->retval = 0;
2237
2238         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2239         /*
2240          * Handle last extent of pages
2241          */
2242         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2243                 if (mpage_da_map_blocks(mpd) == 0)
2244                         mpage_da_submit_io(mpd);
2245
2246                 mpd->io_done = 1;
2247                 ret = MPAGE_DA_EXTENT_TAIL;
2248         }
2249         wbc->nr_to_write -= mpd->pages_written;
2250         return ret;
2251 }
2252
2253 /*
2254  * this is a special callback for ->write_begin() only
2255  * it's intention is to return mapped block or reserve space
2256  */
2257 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2258                                   struct buffer_head *bh_result, int create)
2259 {
2260         int ret = 0;
2261
2262         BUG_ON(create == 0);
2263         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2264
2265         /*
2266          * first, we need to know whether the block is allocated already
2267          * preallocated blocks are unmapped but should treated
2268          * the same as allocated blocks.
2269          */
2270         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2271         if ((ret == 0) && !buffer_delay(bh_result)) {
2272                 /* the block isn't (pre)allocated yet, let's reserve space */
2273                 /*
2274                  * XXX: __block_prepare_write() unmaps passed block,
2275                  * is it OK?
2276                  */
2277                 ret = ext4_da_reserve_space(inode, 1);
2278                 if (ret)
2279                         /* not enough space to reserve */
2280                         return ret;
2281
2282                 map_bh(bh_result, inode->i_sb, 0);
2283                 set_buffer_new(bh_result);
2284                 set_buffer_delay(bh_result);
2285         } else if (ret > 0) {
2286                 bh_result->b_size = (ret << inode->i_blkbits);
2287                 ret = 0;
2288         }
2289
2290         return ret;
2291 }
2292 #define         EXT4_DELALLOC_RSVED     1
2293 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2294                                    struct buffer_head *bh_result, int create)
2295 {
2296         int ret;
2297         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2298         loff_t disksize = EXT4_I(inode)->i_disksize;
2299         handle_t *handle = NULL;
2300
2301         handle = ext4_journal_current_handle();
2302         BUG_ON(!handle);
2303         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2304                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2305         if (ret > 0) {
2306
2307                 bh_result->b_size = (ret << inode->i_blkbits);
2308
2309                 if (ext4_should_order_data(inode)) {
2310                         int retval;
2311                         retval = ext4_jbd2_file_inode(handle, inode);
2312                         if (retval)
2313                                 /*
2314                                  * Failed to add inode for ordered
2315                                  * mode. Don't update file size
2316                                  */
2317                                 return retval;
2318                 }
2319
2320                 /*
2321                  * Update on-disk size along with block allocation
2322                  * we don't use 'extend_disksize' as size may change
2323                  * within already allocated block -bzzz
2324                  */
2325                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2326                 if (disksize > i_size_read(inode))
2327                         disksize = i_size_read(inode);
2328                 if (disksize > EXT4_I(inode)->i_disksize) {
2329                         ext4_update_i_disksize(inode, disksize);
2330                         ret = ext4_mark_inode_dirty(handle, inode);
2331                         return ret;
2332                 }
2333                 ret = 0;
2334         }
2335         return ret;
2336 }
2337
2338 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2339 {
2340         /*
2341          * unmapped buffer is possible for holes.
2342          * delay buffer is possible with delayed allocation
2343          */
2344         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2345 }
2346
2347 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2348                                    struct buffer_head *bh_result, int create)
2349 {
2350         int ret = 0;
2351         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2352
2353         /*
2354          * we don't want to do block allocation in writepage
2355          * so call get_block_wrap with create = 0
2356          */
2357         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2358                                    bh_result, 0, 0, 0);
2359         if (ret > 0) {
2360                 bh_result->b_size = (ret << inode->i_blkbits);
2361                 ret = 0;
2362         }
2363         return ret;
2364 }
2365
2366 /*
2367  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2368  * get called via journal_submit_inode_data_buffers (no journal handle)
2369  * get called via shrink_page_list via pdflush (no journal handle)
2370  * or grab_page_cache when doing write_begin (have journal handle)
2371  */
2372 static int ext4_da_writepage(struct page *page,
2373                                 struct writeback_control *wbc)
2374 {
2375         int ret = 0;
2376         loff_t size;
2377         unsigned int len;
2378         struct buffer_head *page_bufs;
2379         struct inode *inode = page->mapping->host;
2380
2381         trace_mark(ext4_da_writepage,
2382                    "dev %s ino %lu page_index %lu",
2383                    inode->i_sb->s_id, inode->i_ino, page->index);
2384         size = i_size_read(inode);
2385         if (page->index == size >> PAGE_CACHE_SHIFT)
2386                 len = size & ~PAGE_CACHE_MASK;
2387         else
2388                 len = PAGE_CACHE_SIZE;
2389
2390         if (page_has_buffers(page)) {
2391                 page_bufs = page_buffers(page);
2392                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2393                                         ext4_bh_unmapped_or_delay)) {
2394                         /*
2395                          * We don't want to do  block allocation
2396                          * So redirty the page and return
2397                          * We may reach here when we do a journal commit
2398                          * via journal_submit_inode_data_buffers.
2399                          * If we don't have mapping block we just ignore
2400                          * them. We can also reach here via shrink_page_list
2401                          */
2402                         redirty_page_for_writepage(wbc, page);
2403                         unlock_page(page);
2404                         return 0;
2405                 }
2406         } else {
2407                 /*
2408                  * The test for page_has_buffers() is subtle:
2409                  * We know the page is dirty but it lost buffers. That means
2410                  * that at some moment in time after write_begin()/write_end()
2411                  * has been called all buffers have been clean and thus they
2412                  * must have been written at least once. So they are all
2413                  * mapped and we can happily proceed with mapping them
2414                  * and writing the page.
2415                  *
2416                  * Try to initialize the buffer_heads and check whether
2417                  * all are mapped and non delay. We don't want to
2418                  * do block allocation here.
2419                  */
2420                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2421                                                 ext4_normal_get_block_write);
2422                 if (!ret) {
2423                         page_bufs = page_buffers(page);
2424                         /* check whether all are mapped and non delay */
2425                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2426                                                 ext4_bh_unmapped_or_delay)) {
2427                                 redirty_page_for_writepage(wbc, page);
2428                                 unlock_page(page);
2429                                 return 0;
2430                         }
2431                 } else {
2432                         /*
2433                          * We can't do block allocation here
2434                          * so just redity the page and unlock
2435                          * and return
2436                          */
2437                         redirty_page_for_writepage(wbc, page);
2438                         unlock_page(page);
2439                         return 0;
2440                 }
2441                 /* now mark the buffer_heads as dirty and uptodate */
2442                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2443         }
2444
2445         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2446                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2447         else
2448                 ret = block_write_full_page(page,
2449                                                 ext4_normal_get_block_write,
2450                                                 wbc);
2451
2452         return ret;
2453 }
2454
2455 /*
2456  * This is called via ext4_da_writepages() to
2457  * calulate the total number of credits to reserve to fit
2458  * a single extent allocation into a single transaction,
2459  * ext4_da_writpeages() will loop calling this before
2460  * the block allocation.
2461  */
2462
2463 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2464 {
2465         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2466
2467         /*
2468          * With non-extent format the journal credit needed to
2469          * insert nrblocks contiguous block is dependent on
2470          * number of contiguous block. So we will limit
2471          * number of contiguous block to a sane value
2472          */
2473         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2474             (max_blocks > EXT4_MAX_TRANS_DATA))
2475                 max_blocks = EXT4_MAX_TRANS_DATA;
2476
2477         return ext4_chunk_trans_blocks(inode, max_blocks);
2478 }
2479
2480 static int ext4_da_writepages(struct address_space *mapping,
2481                               struct writeback_control *wbc)
2482 {
2483         pgoff_t index;
2484         int range_whole = 0;
2485         handle_t *handle = NULL;
2486         struct mpage_da_data mpd;
2487         struct inode *inode = mapping->host;
2488         int no_nrwrite_index_update;
2489         int pages_written = 0;
2490         long pages_skipped;
2491         int range_cyclic, cycled = 1, io_done = 0;
2492         int needed_blocks, ret = 0, nr_to_writebump = 0;
2493         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2494
2495         trace_mark(ext4_da_writepages,
2496                    "dev %s ino %lu nr_t_write %ld "
2497                    "pages_skipped %ld range_start %llu "
2498                    "range_end %llu nonblocking %d "
2499                    "for_kupdate %d for_reclaim %d "
2500                    "for_writepages %d range_cyclic %d",
2501                    inode->i_sb->s_id, inode->i_ino,
2502                    wbc->nr_to_write, wbc->pages_skipped,
2503                    (unsigned long long) wbc->range_start,
2504                    (unsigned long long) wbc->range_end,
2505                    wbc->nonblocking, wbc->for_kupdate,
2506                    wbc->for_reclaim, wbc->for_writepages,
2507                    wbc->range_cyclic);
2508
2509         /*
2510          * No pages to write? This is mainly a kludge to avoid starting
2511          * a transaction for special inodes like journal inode on last iput()
2512          * because that could violate lock ordering on umount
2513          */
2514         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2515                 return 0;
2516
2517         /*
2518          * If the filesystem has aborted, it is read-only, so return
2519          * right away instead of dumping stack traces later on that
2520          * will obscure the real source of the problem.  We test
2521          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2522          * the latter could be true if the filesystem is mounted
2523          * read-only, and in that case, ext4_da_writepages should
2524          * *never* be called, so if that ever happens, we would want
2525          * the stack trace.
2526          */
2527         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2528                 return -EROFS;
2529
2530         /*
2531          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2532          * This make sure small files blocks are allocated in
2533          * single attempt. This ensure that small files
2534          * get less fragmented.
2535          */
2536         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2537                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2538                 wbc->nr_to_write = sbi->s_mb_stream_request;
2539         }
2540         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2541                 range_whole = 1;
2542
2543         range_cyclic = wbc->range_cyclic;
2544         if (wbc->range_cyclic) {
2545                 index = mapping->writeback_index;
2546                 if (index)
2547                         cycled = 0;
2548                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2549                 wbc->range_end  = LLONG_MAX;
2550                 wbc->range_cyclic = 0;
2551         } else
2552                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2553
2554         mpd.wbc = wbc;
2555         mpd.inode = mapping->host;
2556
2557         /*
2558          * we don't want write_cache_pages to update
2559          * nr_to_write and writeback_index
2560          */
2561         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2562         wbc->no_nrwrite_index_update = 1;
2563         pages_skipped = wbc->pages_skipped;
2564
2565 retry:
2566         while (!ret && wbc->nr_to_write > 0) {
2567
2568                 /*
2569                  * we  insert one extent at a time. So we need
2570                  * credit needed for single extent allocation.
2571                  * journalled mode is currently not supported
2572                  * by delalloc
2573                  */
2574                 BUG_ON(ext4_should_journal_data(inode));
2575                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2576
2577                 /* start a new transaction*/
2578                 handle = ext4_journal_start(inode, needed_blocks);
2579                 if (IS_ERR(handle)) {
2580                         ret = PTR_ERR(handle);
2581                         printk(KERN_CRIT "%s: jbd2_start: "
2582                                "%ld pages, ino %lu; err %d\n", __func__,
2583                                 wbc->nr_to_write, inode->i_ino, ret);
2584                         dump_stack();
2585                         goto out_writepages;
2586                 }
2587                 mpd.get_block = ext4_da_get_block_write;
2588                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2589
2590                 ext4_journal_stop(handle);
2591
2592                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2593                         /* commit the transaction which would
2594                          * free blocks released in the transaction
2595                          * and try again
2596                          */
2597                         jbd2_journal_force_commit_nested(sbi->s_journal);
2598                         wbc->pages_skipped = pages_skipped;
2599                         ret = 0;
2600                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2601                         /*
2602                          * got one extent now try with
2603                          * rest of the pages
2604                          */
2605                         pages_written += mpd.pages_written;
2606                         wbc->pages_skipped = pages_skipped;
2607                         ret = 0;
2608                         io_done = 1;
2609                 } else if (wbc->nr_to_write)
2610                         /*
2611                          * There is no more writeout needed
2612                          * or we requested for a noblocking writeout
2613                          * and we found the device congested
2614                          */
2615                         break;
2616         }
2617         if (!io_done && !cycled) {
2618                 cycled = 1;
2619                 index = 0;
2620                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2621                 wbc->range_end  = mapping->writeback_index - 1;
2622                 goto retry;
2623         }
2624         if (pages_skipped != wbc->pages_skipped)
2625                 printk(KERN_EMERG "This should not happen leaving %s "
2626                                 "with nr_to_write = %ld ret = %d\n",
2627                                 __func__, wbc->nr_to_write, ret);
2628
2629         /* Update index */
2630         index += pages_written;
2631         wbc->range_cyclic = range_cyclic;
2632         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2633                 /*
2634                  * set the writeback_index so that range_cyclic
2635                  * mode will write it back later
2636                  */
2637                 mapping->writeback_index = index;
2638
2639 out_writepages:
2640         if (!no_nrwrite_index_update)
2641                 wbc->no_nrwrite_index_update = 0;
2642         wbc->nr_to_write -= nr_to_writebump;
2643         trace_mark(ext4_da_writepage_result,
2644                    "dev %s ino %lu ret %d pages_written %d "
2645                    "pages_skipped %ld congestion %d "
2646                    "more_io %d no_nrwrite_index_update %d",
2647                    inode->i_sb->s_id, inode->i_ino, ret,
2648                    pages_written, wbc->pages_skipped,
2649                    wbc->encountered_congestion, wbc->more_io,
2650                    wbc->no_nrwrite_index_update);
2651         return ret;
2652 }
2653
2654 #define FALL_BACK_TO_NONDELALLOC 1
2655 static int ext4_nonda_switch(struct super_block *sb)
2656 {
2657         s64 free_blocks, dirty_blocks;
2658         struct ext4_sb_info *sbi = EXT4_SB(sb);
2659
2660         /*
2661          * switch to non delalloc mode if we are running low
2662          * on free block. The free block accounting via percpu
2663          * counters can get slightly wrong with percpu_counter_batch getting
2664          * accumulated on each CPU without updating global counters
2665          * Delalloc need an accurate free block accounting. So switch
2666          * to non delalloc when we are near to error range.
2667          */
2668         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2669         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2670         if (2 * free_blocks < 3 * dirty_blocks ||
2671                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2672                 /*
2673                  * free block count is less that 150% of dirty blocks
2674                  * or free blocks is less that watermark
2675                  */
2676                 return 1;
2677         }
2678         return 0;
2679 }
2680
2681 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2682                                 loff_t pos, unsigned len, unsigned flags,
2683                                 struct page **pagep, void **fsdata)
2684 {
2685         int ret, retries = 0;
2686         struct page *page;
2687         pgoff_t index;
2688         unsigned from, to;
2689         struct inode *inode = mapping->host;
2690         handle_t *handle;
2691
2692         index = pos >> PAGE_CACHE_SHIFT;
2693         from = pos & (PAGE_CACHE_SIZE - 1);
2694         to = from + len;
2695
2696         if (ext4_nonda_switch(inode->i_sb)) {
2697                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2698                 return ext4_write_begin(file, mapping, pos,
2699                                         len, flags, pagep, fsdata);
2700         }
2701         *fsdata = (void *)0;
2702
2703         trace_mark(ext4_da_write_begin,
2704                    "dev %s ino %lu pos %llu len %u flags %u",
2705                    inode->i_sb->s_id, inode->i_ino,
2706                    (unsigned long long) pos, len, flags);
2707 retry:
2708         /*
2709          * With delayed allocation, we don't log the i_disksize update
2710          * if there is delayed block allocation. But we still need
2711          * to journalling the i_disksize update if writes to the end
2712          * of file which has an already mapped buffer.
2713          */
2714         handle = ext4_journal_start(inode, 1);
2715         if (IS_ERR(handle)) {
2716                 ret = PTR_ERR(handle);
2717                 goto out;
2718         }
2719         /* We cannot recurse into the filesystem as the transaction is already
2720          * started */
2721         flags |= AOP_FLAG_NOFS;
2722
2723         page = grab_cache_page_write_begin(mapping, index, flags);
2724         if (!page) {
2725                 ext4_journal_stop(handle);
2726                 ret = -ENOMEM;
2727                 goto out;
2728         }
2729         *pagep = page;
2730
2731         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2732                                                         ext4_da_get_block_prep);
2733         if (ret < 0) {
2734                 unlock_page(page);
2735                 ext4_journal_stop(handle);
2736                 page_cache_release(page);
2737                 /*
2738                  * block_write_begin may have instantiated a few blocks
2739                  * outside i_size.  Trim these off again. Don't need
2740                  * i_size_read because we hold i_mutex.
2741                  */
2742                 if (pos + len > inode->i_size)
2743                         vmtruncate(inode, inode->i_size);
2744         }
2745
2746         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2747                 goto retry;
2748 out:
2749         return ret;
2750 }
2751
2752 /*
2753  * Check if we should update i_disksize
2754  * when write to the end of file but not require block allocation
2755  */
2756 static int ext4_da_should_update_i_disksize(struct page *page,
2757                                          unsigned long offset)
2758 {
2759         struct buffer_head *bh;
2760         struct inode *inode = page->mapping->host;
2761         unsigned int idx;
2762         int i;
2763
2764         bh = page_buffers(page);
2765         idx = offset >> inode->i_blkbits;
2766
2767         for (i = 0; i < idx; i++)
2768                 bh = bh->b_this_page;
2769
2770         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2771                 return 0;
2772         return 1;
2773 }
2774
2775 static int ext4_da_write_end(struct file *file,
2776                                 struct address_space *mapping,
2777                                 loff_t pos, unsigned len, unsigned copied,
2778                                 struct page *page, void *fsdata)
2779 {
2780         struct inode *inode = mapping->host;
2781         int ret = 0, ret2;
2782         handle_t *handle = ext4_journal_current_handle();
2783         loff_t new_i_size;
2784         unsigned long start, end;
2785         int write_mode = (int)(unsigned long)fsdata;
2786
2787         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2788                 if (ext4_should_order_data(inode)) {
2789                         return ext4_ordered_write_end(file, mapping, pos,
2790                                         len, copied, page, fsdata);
2791                 } else if (ext4_should_writeback_data(inode)) {
2792                         return ext4_writeback_write_end(file, mapping, pos,
2793                                         len, copied, page, fsdata);
2794                 } else {
2795                         BUG();
2796                 }
2797         }
2798
2799         trace_mark(ext4_da_write_end,
2800                    "dev %s ino %lu pos %llu len %u copied %u",
2801                    inode->i_sb->s_id, inode->i_ino,
2802                    (unsigned long long) pos, len, copied);
2803         start = pos & (PAGE_CACHE_SIZE - 1);
2804         end = start + copied - 1;
2805
2806         /*
2807          * generic_write_end() will run mark_inode_dirty() if i_size
2808          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2809          * into that.
2810          */
2811
2812         new_i_size = pos + copied;
2813         if (new_i_size > EXT4_I(inode)->i_disksize) {
2814                 if (ext4_da_should_update_i_disksize(page, end)) {
2815                         down_write(&EXT4_I(inode)->i_data_sem);
2816                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2817                                 /*
2818                                  * Updating i_disksize when extending file
2819                                  * without needing block allocation
2820                                  */
2821                                 if (ext4_should_order_data(inode))
2822                                         ret = ext4_jbd2_file_inode(handle,
2823                                                                    inode);
2824
2825                                 EXT4_I(inode)->i_disksize = new_i_size;
2826                         }
2827                         up_write(&EXT4_I(inode)->i_data_sem);
2828                         /* We need to mark inode dirty even if
2829                          * new_i_size is less that inode->i_size
2830                          * bu greater than i_disksize.(hint delalloc)
2831                          */
2832                         ext4_mark_inode_dirty(handle, inode);
2833                 }
2834         }
2835         ret2 = generic_write_end(file, mapping, pos, len, copied,
2836                                                         page, fsdata);
2837         copied = ret2;
2838         if (ret2 < 0)
2839                 ret = ret2;
2840         ret2 = ext4_journal_stop(handle);
2841         if (!ret)
2842                 ret = ret2;
2843
2844         return ret ? ret : copied;
2845 }
2846
2847 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2848 {
2849         /*
2850          * Drop reserved blocks
2851          */
2852         BUG_ON(!PageLocked(page));
2853         if (!page_has_buffers(page))
2854                 goto out;
2855
2856         ext4_da_page_release_reservation(page, offset);
2857
2858 out:
2859         ext4_invalidatepage(page, offset);
2860
2861         return;
2862 }
2863
2864
2865 /*
2866  * bmap() is special.  It gets used by applications such as lilo and by
2867  * the swapper to find the on-disk block of a specific piece of data.
2868  *
2869  * Naturally, this is dangerous if the block concerned is still in the
2870  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2871  * filesystem and enables swap, then they may get a nasty shock when the
2872  * data getting swapped to that swapfile suddenly gets overwritten by
2873  * the original zero's written out previously to the journal and
2874  * awaiting writeback in the kernel's buffer cache.
2875  *
2876  * So, if we see any bmap calls here on a modified, data-journaled file,
2877  * take extra steps to flush any blocks which might be in the cache.
2878  */
2879 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2880 {
2881         struct inode *inode = mapping->host;
2882         journal_t *journal;
2883         int err;
2884
2885         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2886                         test_opt(inode->i_sb, DELALLOC)) {
2887                 /*
2888                  * With delalloc we want to sync the file
2889                  * so that we can make sure we allocate
2890                  * blocks for file
2891                  */
2892                 filemap_write_and_wait(mapping);
2893         }
2894
2895         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2896                 /*
2897                  * This is a REALLY heavyweight approach, but the use of
2898                  * bmap on dirty files is expected to be extremely rare:
2899                  * only if we run lilo or swapon on a freshly made file
2900                  * do we expect this to happen.
2901                  *
2902                  * (bmap requires CAP_SYS_RAWIO so this does not
2903                  * represent an unprivileged user DOS attack --- we'd be
2904                  * in trouble if mortal users could trigger this path at
2905                  * will.)
2906                  *
2907                  * NB. EXT4_STATE_JDATA is not set on files other than
2908                  * regular files.  If somebody wants to bmap a directory
2909                  * or symlink and gets confused because the buffer
2910                  * hasn't yet been flushed to disk, they deserve
2911                  * everything they get.
2912                  */
2913
2914                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2915                 journal = EXT4_JOURNAL(inode);
2916                 jbd2_journal_lock_updates(journal);
2917                 err = jbd2_journal_flush(journal);
2918                 jbd2_journal_unlock_updates(journal);
2919
2920                 if (err)
2921                         return 0;
2922         }
2923
2924         return generic_block_bmap(mapping, block, ext4_get_block);
2925 }
2926
2927 static int bget_one(handle_t *handle, struct buffer_head *bh)
2928 {
2929         get_bh(bh);
2930         return 0;
2931 }
2932
2933 static int bput_one(handle_t *handle, struct buffer_head *bh)
2934 {
2935         put_bh(bh);
2936         return 0;
2937 }
2938
2939 /*
2940  * Note that we don't need to start a transaction unless we're journaling data
2941  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2942  * need to file the inode to the transaction's list in ordered mode because if
2943  * we are writing back data added by write(), the inode is already there and if
2944  * we are writing back data modified via mmap(), noone guarantees in which
2945  * transaction the data will hit the disk. In case we are journaling data, we
2946  * cannot start transaction directly because transaction start ranks above page
2947  * lock so we have to do some magic.
2948  *
2949  * In all journaling modes block_write_full_page() will start the I/O.
2950  *
2951  * Problem:
2952  *
2953  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2954  *              ext4_writepage()
2955  *
2956  * Similar for:
2957  *
2958  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2959  *
2960  * Same applies to ext4_get_block().  We will deadlock on various things like
2961  * lock_journal and i_data_sem
2962  *
2963  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2964  * allocations fail.
2965  *
2966  * 16May01: If we're reentered then journal_current_handle() will be
2967  *          non-zero. We simply *return*.
2968  *
2969  * 1 July 2001: @@@ FIXME:
2970  *   In journalled data mode, a data buffer may be metadata against the
2971  *   current transaction.  But the same file is part of a shared mapping
2972  *   and someone does a writepage() on it.
2973  *
2974  *   We will move the buffer onto the async_data list, but *after* it has
2975  *   been dirtied. So there's a small window where we have dirty data on
2976  *   BJ_Metadata.
2977  *
2978  *   Note that this only applies to the last partial page in the file.  The
2979  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2980  *   broken code anyway: it's wrong for msync()).
2981  *
2982  *   It's a rare case: affects the final partial page, for journalled data
2983  *   where the file is subject to bith write() and writepage() in the same
2984  *   transction.  To fix it we'll need a custom block_write_full_page().
2985  *   We'll probably need that anyway for journalling writepage() output.
2986  *
2987  * We don't honour synchronous mounts for writepage().  That would be
2988  * disastrous.  Any write() or metadata operation will sync the fs for
2989  * us.
2990  *
2991  */
2992 static int __ext4_normal_writepage(struct page *page,
2993                                 struct writeback_control *wbc)
2994 {
2995         struct inode *inode = page->mapping->host;
2996
2997         if (test_opt(inode->i_sb, NOBH))
2998                 return nobh_writepage(page,
2999                                         ext4_normal_get_block_write, wbc);
3000         else
3001                 return block_write_full_page(page,
3002                                                 ext4_normal_get_block_write,
3003                                                 wbc);
3004 }
3005
3006 static int ext4_normal_writepage(struct page *page,
3007                                 struct writeback_control *wbc)
3008 {
3009         struct inode *inode = page->mapping->host;
3010         loff_t size = i_size_read(inode);
3011         loff_t len;
3012
3013         trace_mark(ext4_normal_writepage,
3014                    "dev %s ino %lu page_index %lu",
3015                    inode->i_sb->s_id, inode->i_ino, page->index);
3016         J_ASSERT(PageLocked(page));
3017         if (page->index == size >> PAGE_CACHE_SHIFT)
3018                 len = size & ~PAGE_CACHE_MASK;
3019         else
3020                 len = PAGE_CACHE_SIZE;
3021
3022         if (page_has_buffers(page)) {
3023                 /* if page has buffers it should all be mapped
3024                  * and allocated. If there are not buffers attached
3025                  * to the page we know the page is dirty but it lost
3026                  * buffers. That means that at some moment in time
3027                  * after write_begin() / write_end() has been called
3028                  * all buffers have been clean and thus they must have been
3029                  * written at least once. So they are all mapped and we can
3030                  * happily proceed with mapping them and writing the page.
3031                  */
3032                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3033                                         ext4_bh_unmapped_or_delay));
3034         }
3035
3036         if (!ext4_journal_current_handle())
3037                 return __ext4_normal_writepage(page, wbc);
3038
3039         redirty_page_for_writepage(wbc, page);
3040         unlock_page(page);
3041         return 0;
3042 }
3043
3044 static int __ext4_journalled_writepage(struct page *page,
3045                                 struct writeback_control *wbc)
3046 {
3047         struct address_space *mapping = page->mapping;
3048         struct inode *inode = mapping->host;
3049         struct buffer_head *page_bufs;
3050         handle_t *handle = NULL;
3051         int ret = 0;
3052         int err;
3053
3054         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3055                                         ext4_normal_get_block_write);
3056         if (ret != 0)
3057                 goto out_unlock;
3058
3059         page_bufs = page_buffers(page);
3060         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3061                                                                 bget_one);
3062         /* As soon as we unlock the page, it can go away, but we have
3063          * references to buffers so we are safe */
3064         unlock_page(page);
3065
3066         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3067         if (IS_ERR(handle)) {
3068                 ret = PTR_ERR(handle);
3069                 goto out;
3070         }
3071
3072         ret = walk_page_buffers(handle, page_bufs, 0,
3073                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3074
3075         err = walk_page_buffers(handle, page_bufs, 0,
3076                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3077         if (ret == 0)
3078                 ret = err;
3079         err = ext4_journal_stop(handle);
3080         if (!ret)
3081                 ret = err;
3082
3083         walk_page_buffers(handle, page_bufs, 0,
3084                                 PAGE_CACHE_SIZE, NULL, bput_one);
3085         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3086         goto out;
3087
3088 out_unlock:
3089         unlock_page(page);
3090 out:
3091         return ret;
3092 }
3093
3094 static int ext4_journalled_writepage(struct page *page,
3095                                 struct writeback_control *wbc)
3096 {
3097         struct inode *inode = page->mapping->host;
3098         loff_t size = i_size_read(inode);
3099         loff_t len;
3100
3101         trace_mark(ext4_journalled_writepage,
3102                    "dev %s ino %lu page_index %lu",
3103                    inode->i_sb->s_id, inode->i_ino, page->index);
3104         J_ASSERT(PageLocked(page));
3105         if (page->index == size >> PAGE_CACHE_SHIFT)
3106                 len = size & ~PAGE_CACHE_MASK;
3107         else
3108                 len = PAGE_CACHE_SIZE;
3109
3110         if (page_has_buffers(page)) {
3111                 /* if page has buffers it should all be mapped
3112                  * and allocated. If there are not buffers attached
3113                  * to the page we know the page is dirty but it lost
3114                  * buffers. That means that at some moment in time
3115                  * after write_begin() / write_end() has been called
3116                  * all buffers have been clean and thus they must have been
3117                  * written at least once. So they are all mapped and we can
3118                  * happily proceed with mapping them and writing the page.
3119                  */
3120                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3121                                         ext4_bh_unmapped_or_delay));
3122         }
3123
3124         if (ext4_journal_current_handle())
3125                 goto no_write;
3126
3127         if (PageChecked(page)) {
3128                 /*
3129                  * It's mmapped pagecache.  Add buffers and journal it.  There
3130                  * doesn't seem much point in redirtying the page here.
3131                  */
3132                 ClearPageChecked(page);
3133                 return __ext4_journalled_writepage(page, wbc);
3134         } else {
3135                 /*
3136                  * It may be a page full of checkpoint-mode buffers.  We don't
3137                  * really know unless we go poke around in the buffer_heads.
3138                  * But block_write_full_page will do the right thing.
3139                  */
3140                 return block_write_full_page(page,
3141                                                 ext4_normal_get_block_write,
3142                                                 wbc);
3143         }
3144 no_write:
3145         redirty_page_for_writepage(wbc, page);
3146         unlock_page(page);
3147         return 0;
3148 }
3149
3150 static int ext4_readpage(struct file *file, struct page *page)
3151 {
3152         return mpage_readpage(page, ext4_get_block);
3153 }
3154
3155 static int
3156 ext4_readpages(struct file *file, struct address_space *mapping,
3157                 struct list_head *pages, unsigned nr_pages)
3158 {
3159         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3160 }
3161
3162 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3163 {
3164         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3165
3166         /*
3167          * If it's a full truncate we just forget about the pending dirtying
3168          */
3169         if (offset == 0)
3170                 ClearPageChecked(page);
3171
3172         if (journal)
3173                 jbd2_journal_invalidatepage(journal, page, offset);
3174         else
3175                 block_invalidatepage(page, offset);
3176 }
3177
3178 static int ext4_releasepage(struct page *page, gfp_t wait)
3179 {
3180         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3181
3182         WARN_ON(PageChecked(page));
3183         if (!page_has_buffers(page))
3184                 return 0;
3185         if (journal)
3186                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3187         else
3188                 return try_to_free_buffers(page);
3189 }
3190
3191 /*
3192  * If the O_DIRECT write will extend the file then add this inode to the
3193  * orphan list.  So recovery will truncate it back to the original size
3194  * if the machine crashes during the write.
3195  *
3196  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3197  * crashes then stale disk data _may_ be exposed inside the file. But current
3198  * VFS code falls back into buffered path in that case so we are safe.
3199  */
3200 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3201                         const struct iovec *iov, loff_t offset,
3202                         unsigned long nr_segs)
3203 {
3204         struct file *file = iocb->ki_filp;
3205         struct inode *inode = file->f_mapping->host;
3206         struct ext4_inode_info *ei = EXT4_I(inode);
3207         handle_t *handle;
3208         ssize_t ret;
3209         int orphan = 0;
3210         size_t count = iov_length(iov, nr_segs);
3211
3212         if (rw == WRITE) {
3213                 loff_t final_size = offset + count;
3214
3215                 if (final_size > inode->i_size) {
3216                         /* Credits for sb + inode write */
3217                         handle = ext4_journal_start(inode, 2);
3218                         if (IS_ERR(handle)) {
3219                                 ret = PTR_ERR(handle);
3220                                 goto out;
3221                         }
3222                         ret = ext4_orphan_add(handle, inode);
3223                         if (ret) {
3224                                 ext4_journal_stop(handle);
3225                                 goto out;
3226                         }
3227                         orphan = 1;
3228                         ei->i_disksize = inode->i_size;
3229                         ext4_journal_stop(handle);
3230                 }
3231         }
3232
3233         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3234                                  offset, nr_segs,
3235                                  ext4_get_block, NULL);
3236
3237         if (orphan) {
3238                 int err;
3239
3240                 /* Credits for sb + inode write */
3241                 handle = ext4_journal_start(inode, 2);
3242                 if (IS_ERR(handle)) {
3243                         /* This is really bad luck. We've written the data
3244                          * but cannot extend i_size. Bail out and pretend
3245                          * the write failed... */
3246                         ret = PTR_ERR(handle);
3247                         goto out;
3248                 }
3249                 if (inode->i_nlink)
3250                         ext4_orphan_del(handle, inode);
3251                 if (ret > 0) {
3252                         loff_t end = offset + ret;
3253                         if (end > inode->i_size) {
3254                                 ei->i_disksize = end;
3255                                 i_size_write(inode, end);
3256                                 /*
3257                                  * We're going to return a positive `ret'
3258                                  * here due to non-zero-length I/O, so there's
3259                                  * no way of reporting error returns from
3260                                  * ext4_mark_inode_dirty() to userspace.  So
3261                                  * ignore it.
3262                                  */
3263                                 ext4_mark_inode_dirty(handle, inode);
3264                         }
3265                 }
3266                 err = ext4_journal_stop(handle);
3267                 if (ret == 0)
3268                         ret = err;
3269         }
3270 out:
3271         return ret;
3272 }
3273
3274 /*
3275  * Pages can be marked dirty completely asynchronously from ext4's journalling
3276  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3277  * much here because ->set_page_dirty is called under VFS locks.  The page is
3278  * not necessarily locked.
3279  *
3280  * We cannot just dirty the page and leave attached buffers clean, because the
3281  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3282  * or jbddirty because all the journalling code will explode.
3283  *
3284  * So what we do is to mark the page "pending dirty" and next time writepage
3285  * is called, propagate that into the buffers appropriately.
3286  */
3287 static int ext4_journalled_set_page_dirty(struct page *page)
3288 {
3289         SetPageChecked(page);
3290         return __set_page_dirty_nobuffers(page);
3291 }
3292
3293 static const struct address_space_operations ext4_ordered_aops = {
3294         .readpage               = ext4_readpage,
3295         .readpages              = ext4_readpages,
3296         .writepage              = ext4_normal_writepage,
3297         .sync_page              = block_sync_page,
3298         .write_begin            = ext4_write_begin,
3299         .write_end              = ext4_ordered_write_end,
3300         .bmap                   = ext4_bmap,
3301         .invalidatepage         = ext4_invalidatepage,
3302         .releasepage            = ext4_releasepage,
3303         .direct_IO              = ext4_direct_IO,
3304         .migratepage            = buffer_migrate_page,
3305         .is_partially_uptodate  = block_is_partially_uptodate,
3306 };
3307
3308 static const struct address_space_operations ext4_writeback_aops = {
3309         .readpage               = ext4_readpage,
3310         .readpages              = ext4_readpages,
3311         .writepage              = ext4_normal_writepage,
3312         .sync_page              = block_sync_page,
3313         .write_begin            = ext4_write_begin,
3314         .write_end              = ext4_writeback_write_end,
3315         .bmap                   = ext4_bmap,
3316         .invalidatepage         = ext4_invalidatepage,
3317         .releasepage            = ext4_releasepage,
3318         .direct_IO              = ext4_direct_IO,
3319         .migratepage            = buffer_migrate_page,
3320         .is_partially_uptodate  = block_is_partially_uptodate,
3321 };
3322
3323 static const struct address_space_operations ext4_journalled_aops = {
3324         .readpage               = ext4_readpage,
3325         .readpages              = ext4_readpages,
3326         .writepage              = ext4_journalled_writepage,
3327         .sync_page              = block_sync_page,
3328         .write_begin            = ext4_write_begin,
3329         .write_end              = ext4_journalled_write_end,
3330         .set_page_dirty         = ext4_journalled_set_page_dirty,
3331         .bmap                   = ext4_bmap,
3332         .invalidatepage         = ext4_invalidatepage,
3333         .releasepage            = ext4_releasepage,
3334         .is_partially_uptodate  = block_is_partially_uptodate,
3335 };
3336
3337 static const struct address_space_operations ext4_da_aops = {
3338         .readpage               = ext4_readpage,
3339         .readpages              = ext4_readpages,
3340         .writepage              = ext4_da_writepage,
3341         .writepages             = ext4_da_writepages,
3342         .sync_page              = block_sync_page,
3343         .write_begin            = ext4_da_write_begin,
3344         .write_end              = ext4_da_write_end,
3345         .bmap                   = ext4_bmap,
3346         .invalidatepage         = ext4_da_invalidatepage,
3347         .releasepage            = ext4_releasepage,
3348         .direct_IO              = ext4_direct_IO,
3349         .migratepage            = buffer_migrate_page,
3350         .is_partially_uptodate  = block_is_partially_uptodate,
3351 };
3352
3353 void ext4_set_aops(struct inode *inode)
3354 {
3355         if (ext4_should_order_data(inode) &&
3356                 test_opt(inode->i_sb, DELALLOC))
3357                 inode->i_mapping->a_ops = &ext4_da_aops;
3358         else if (ext4_should_order_data(inode))
3359                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3360         else if (ext4_should_writeback_data(inode) &&
3361                  test_opt(inode->i_sb, DELALLOC))
3362                 inode->i_mapping->a_ops = &ext4_da_aops;
3363         else if (ext4_should_writeback_data(inode))
3364                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3365         else
3366                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3367 }
3368
3369 /*
3370  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3371  * up to the end of the block which corresponds to `from'.
3372  * This required during truncate. We need to physically zero the tail end
3373  * of that block so it doesn't yield old data if the file is later grown.
3374  */
3375 int ext4_block_truncate_page(handle_t *handle,
3376                 struct address_space *mapping, loff_t from)
3377 {
3378         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3379         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3380         unsigned blocksize, length, pos;
3381         ext4_lblk_t iblock;
3382         struct inode *inode = mapping->host;
3383         struct buffer_head *bh;
3384         struct page *page;
3385         int err = 0;
3386
3387         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3388         if (!page)
3389                 return -EINVAL;
3390
3391         blocksize = inode->i_sb->s_blocksize;
3392         length = blocksize - (offset & (blocksize - 1));
3393         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3394
3395         /*
3396          * For "nobh" option,  we can only work if we don't need to
3397          * read-in the page - otherwise we create buffers to do the IO.
3398          */
3399         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3400              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3401                 zero_user(page, offset, length);
3402                 set_page_dirty(page);
3403                 goto unlock;
3404         }
3405
3406         if (!page_has_buffers(page))
3407                 create_empty_buffers(page, blocksize, 0);
3408
3409         /* Find the buffer that contains "offset" */
3410         bh = page_buffers(page);
3411         pos = blocksize;
3412         while (offset >= pos) {
3413                 bh = bh->b_this_page;
3414                 iblock++;
3415                 pos += blocksize;
3416         }
3417
3418         err = 0;
3419         if (buffer_freed(bh)) {
3420                 BUFFER_TRACE(bh, "freed: skip");
3421                 goto unlock;
3422         }
3423
3424         if (!buffer_mapped(bh)) {
3425                 BUFFER_TRACE(bh, "unmapped");
3426                 ext4_get_block(inode, iblock, bh, 0);
3427                 /* unmapped? It's a hole - nothing to do */
3428                 if (!buffer_mapped(bh)) {
3429                         BUFFER_TRACE(bh, "still unmapped");
3430                         goto unlock;
3431                 }
3432         }
3433
3434         /* Ok, it's mapped. Make sure it's up-to-date */
3435         if (PageUptodate(page))
3436                 set_buffer_uptodate(bh);
3437
3438         if (!buffer_uptodate(bh)) {
3439                 err = -EIO;
3440                 ll_rw_block(READ, 1, &bh);
3441                 wait_on_buffer(bh);
3442                 /* Uhhuh. Read error. Complain and punt. */
3443                 if (!buffer_uptodate(bh))
3444                         goto unlock;
3445         }
3446
3447         if (ext4_should_journal_data(inode)) {
3448                 BUFFER_TRACE(bh, "get write access");
3449                 err = ext4_journal_get_write_access(handle, bh);
3450                 if (err)
3451                         goto unlock;
3452         }
3453
3454         zero_user(page, offset, length);
3455
3456         BUFFER_TRACE(bh, "zeroed end of block");
3457
3458         err = 0;
3459         if (ext4_should_journal_data(inode)) {
3460                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3461         } else {
3462                 if (ext4_should_order_data(inode))
3463                         err = ext4_jbd2_file_inode(handle, inode);
3464                 mark_buffer_dirty(bh);
3465         }
3466
3467 unlock:
3468         unlock_page(page);
3469         page_cache_release(page);
3470         return err;
3471 }
3472
3473 /*
3474  * Probably it should be a library function... search for first non-zero word
3475  * or memcmp with zero_page, whatever is better for particular architecture.
3476  * Linus?
3477  */
3478 static inline int all_zeroes(__le32 *p, __le32 *q)
3479 {
3480         while (p < q)
3481                 if (*p++)
3482                         return 0;
3483         return 1;
3484 }
3485
3486 /**
3487  *      ext4_find_shared - find the indirect blocks for partial truncation.
3488  *      @inode:   inode in question
3489  *      @depth:   depth of the affected branch
3490  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3491  *      @chain:   place to store the pointers to partial indirect blocks
3492  *      @top:     place to the (detached) top of branch
3493  *
3494  *      This is a helper function used by ext4_truncate().
3495  *
3496  *      When we do truncate() we may have to clean the ends of several
3497  *      indirect blocks but leave the blocks themselves alive. Block is
3498  *      partially truncated if some data below the new i_size is refered
3499  *      from it (and it is on the path to the first completely truncated
3500  *      data block, indeed).  We have to free the top of that path along
3501  *      with everything to the right of the path. Since no allocation
3502  *      past the truncation point is possible until ext4_truncate()
3503  *      finishes, we may safely do the latter, but top of branch may
3504  *      require special attention - pageout below the truncation point
3505  *      might try to populate it.
3506  *
3507  *      We atomically detach the top of branch from the tree, store the
3508  *      block number of its root in *@top, pointers to buffer_heads of
3509  *      partially truncated blocks - in @chain[].bh and pointers to
3510  *      their last elements that should not be removed - in
3511  *      @chain[].p. Return value is the pointer to last filled element
3512  *      of @chain.
3513  *
3514  *      The work left to caller to do the actual freeing of subtrees:
3515  *              a) free the subtree starting from *@top
3516  *              b) free the subtrees whose roots are stored in
3517  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3518  *              c) free the subtrees growing from the inode past the @chain[0].
3519  *                      (no partially truncated stuff there).  */
3520
3521 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3522                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3523 {
3524         Indirect *partial, *p;
3525         int k, err;
3526
3527         *top = 0;
3528         /* Make k index the deepest non-null offest + 1 */
3529         for (k = depth; k > 1 && !offsets[k-1]; k--)
3530                 ;
3531         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3532         /* Writer: pointers */
3533         if (!partial)
3534                 partial = chain + k-1;
3535         /*
3536          * If the branch acquired continuation since we've looked at it -
3537          * fine, it should all survive and (new) top doesn't belong to us.
3538          */
3539         if (!partial->key && *partial->p)
3540                 /* Writer: end */
3541                 goto no_top;
3542         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3543                 ;
3544         /*
3545          * OK, we've found the last block that must survive. The rest of our
3546          * branch should be detached before unlocking. However, if that rest
3547          * of branch is all ours and does not grow immediately from the inode
3548          * it's easier to cheat and just decrement partial->p.
3549          */
3550         if (p == chain + k - 1 && p > chain) {
3551                 p->p--;
3552         } else {
3553                 *top = *p->p;
3554                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3555 #if 0
3556                 *p->p = 0;
3557 #endif
3558         }
3559         /* Writer: end */
3560
3561         while (partial > p) {
3562                 brelse(partial->bh);
3563                 partial--;
3564         }
3565 no_top:
3566         return partial;
3567 }
3568
3569 /*
3570  * Zero a number of block pointers in either an inode or an indirect block.
3571  * If we restart the transaction we must again get write access to the
3572  * indirect block for further modification.
3573  *
3574  * We release `count' blocks on disk, but (last - first) may be greater
3575  * than `count' because there can be holes in there.
3576  */
3577 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3578                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3579                 unsigned long count, __le32 *first, __le32 *last)
3580 {
3581         __le32 *p;
3582         if (try_to_extend_transaction(handle, inode)) {
3583                 if (bh) {
3584                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3585                         ext4_handle_dirty_metadata(handle, inode, bh);
3586                 }
3587                 ext4_mark_inode_dirty(handle, inode);
3588                 ext4_journal_test_restart(handle, inode);
3589                 if (bh) {
3590                         BUFFER_TRACE(bh, "retaking write access");
3591                         ext4_journal_get_write_access(handle, bh);
3592                 }
3593         }
3594
3595         /*
3596          * Any buffers which are on the journal will be in memory. We find
3597          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3598          * on them.  We've already detached each block from the file, so
3599          * bforget() in jbd2_journal_forget() should be safe.
3600          *
3601          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3602          */
3603         for (p = first; p < last; p++) {
3604                 u32 nr = le32_to_cpu(*p);
3605                 if (nr) {
3606                         struct buffer_head *tbh;
3607
3608                         *p = 0;
3609                         tbh = sb_find_get_block(inode->i_sb, nr);
3610                         ext4_forget(handle, 0, inode, tbh, nr);
3611                 }
3612         }
3613
3614         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3615 }
3616
3617 /**
3618  * ext4_free_data - free a list of data blocks
3619  * @handle:     handle for this transaction
3620  * @inode:      inode we are dealing with
3621  * @this_bh:    indirect buffer_head which contains *@first and *@last
3622  * @first:      array of block numbers
3623  * @last:       points immediately past the end of array
3624  *
3625  * We are freeing all blocks refered from that array (numbers are stored as
3626  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3627  *
3628  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3629  * blocks are contiguous then releasing them at one time will only affect one
3630  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3631  * actually use a lot of journal space.
3632  *
3633  * @this_bh will be %NULL if @first and @last point into the inode's direct
3634  * block pointers.
3635  */
3636 static void ext4_free_data(handle_t *handle, struct inode *inode,
3637                            struct buffer_head *this_bh,
3638                            __le32 *first, __le32 *last)
3639 {
3640         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3641         unsigned long count = 0;            /* Number of blocks in the run */
3642         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3643                                                corresponding to
3644                                                block_to_free */
3645         ext4_fsblk_t nr;                    /* Current block # */
3646         __le32 *p;                          /* Pointer into inode/ind
3647                                                for current block */
3648         int err;
3649
3650         if (this_bh) {                          /* For indirect block */
3651                 BUFFER_TRACE(this_bh, "get_write_access");
3652                 err = ext4_journal_get_write_access(handle, this_bh);
3653                 /* Important: if we can't update the indirect pointers
3654                  * to the blocks, we can't free them. */
3655                 if (err)
3656                         return;
3657         }
3658
3659         for (p = first; p < last; p++) {
3660                 nr = le32_to_cpu(*p);
3661                 if (nr) {
3662                         /* accumulate blocks to free if they're contiguous */
3663                         if (count == 0) {
3664                                 block_to_free = nr;
3665                                 block_to_free_p = p;
3666                                 count = 1;
3667                         } else if (nr == block_to_free + count) {
3668                                 count++;
3669                         } else {
3670                                 ext4_clear_blocks(handle, inode, this_bh,
3671                                                   block_to_free,
3672                                                   count, block_to_free_p, p);
3673                                 block_to_free = nr;
3674                                 block_to_free_p = p;
3675                                 count = 1;
3676                         }
3677                 }
3678         }
3679
3680         if (count > 0)
3681                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3682                                   count, block_to_free_p, p);
3683
3684         if (this_bh) {
3685                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3686
3687                 /*
3688                  * The buffer head should have an attached journal head at this
3689                  * point. However, if the data is corrupted and an indirect
3690                  * block pointed to itself, it would have been detached when
3691                  * the block was cleared. Check for this instead of OOPSing.
3692                  */
3693                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3694                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3695                 else
3696                         ext4_error(inode->i_sb, __func__,
3697                                    "circular indirect block detected, "
3698                                    "inode=%lu, block=%llu",
3699                                    inode->i_ino,
3700                                    (unsigned long long) this_bh->b_blocknr);
3701         }
3702 }
3703
3704 /**
3705  *      ext4_free_branches - free an array of branches
3706  *      @handle: JBD handle for this transaction
3707  *      @inode: inode we are dealing with
3708  *      @parent_bh: the buffer_head which contains *@first and *@last
3709  *      @first: array of block numbers
3710  *      @last:  pointer immediately past the end of array
3711  *      @depth: depth of the branches to free
3712  *
3713  *      We are freeing all blocks refered from these branches (numbers are
3714  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3715  *      appropriately.
3716  */
3717 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3718                                struct buffer_head *parent_bh,
3719                                __le32 *first, __le32 *last, int depth)
3720 {
3721         ext4_fsblk_t nr;
3722         __le32 *p;
3723
3724         if (ext4_handle_is_aborted(handle))
3725                 return;
3726
3727         if (depth--) {
3728                 struct buffer_head *bh;
3729                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3730                 p = last;
3731                 while (--p >= first) {
3732                         nr = le32_to_cpu(*p);
3733                         if (!nr)
3734                                 continue;               /* A hole */
3735
3736                         /* Go read the buffer for the next level down */
3737                         bh = sb_bread(inode->i_sb, nr);
3738
3739                         /*
3740                          * A read failure? Report error and clear slot
3741                          * (should be rare).
3742                          */
3743                         if (!bh) {
3744                                 ext4_error(inode->i_sb, "ext4_free_branches",
3745                                            "Read failure, inode=%lu, block=%llu",
3746                                            inode->i_ino, nr);
3747                                 continue;
3748                         }
3749
3750                         /* This zaps the entire block.  Bottom up. */
3751                         BUFFER_TRACE(bh, "free child branches");
3752                         ext4_free_branches(handle, inode, bh,
3753                                         (__le32 *) bh->b_data,
3754                                         (__le32 *) bh->b_data + addr_per_block,
3755                                         depth);
3756
3757                         /*
3758                          * We've probably journalled the indirect block several
3759                          * times during the truncate.  But it's no longer
3760                          * needed and we now drop it from the transaction via
3761                          * jbd2_journal_revoke().
3762                          *
3763                          * That's easy if it's exclusively part of this
3764                          * transaction.  But if it's part of the committing
3765                          * transaction then jbd2_journal_forget() will simply
3766                          * brelse() it.  That means that if the underlying
3767                          * block is reallocated in ext4_get_block(),
3768                          * unmap_underlying_metadata() will find this block
3769                          * and will try to get rid of it.  damn, damn.
3770                          *
3771                          * If this block has already been committed to the
3772                          * journal, a revoke record will be written.  And
3773                          * revoke records must be emitted *before* clearing
3774                          * this block's bit in the bitmaps.
3775                          */
3776                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3777
3778                         /*
3779                          * Everything below this this pointer has been
3780                          * released.  Now let this top-of-subtree go.
3781                          *
3782                          * We want the freeing of this indirect block to be
3783                          * atomic in the journal with the updating of the
3784                          * bitmap block which owns it.  So make some room in
3785                          * the journal.
3786                          *
3787                          * We zero the parent pointer *after* freeing its
3788                          * pointee in the bitmaps, so if extend_transaction()
3789                          * for some reason fails to put the bitmap changes and
3790                          * the release into the same transaction, recovery
3791                          * will merely complain about releasing a free block,
3792                          * rather than leaking blocks.
3793                          */
3794                         if (ext4_handle_is_aborted(handle))
3795                                 return;
3796                         if (try_to_extend_transaction(handle, inode)) {
3797                                 ext4_mark_inode_dirty(handle, inode);
3798                                 ext4_journal_test_restart(handle, inode);
3799                         }
3800
3801                         ext4_free_blocks(handle, inode, nr, 1, 1);
3802
3803                         if (parent_bh) {
3804                                 /*
3805                                  * The block which we have just freed is
3806                                  * pointed to by an indirect block: journal it
3807                                  */
3808                                 BUFFER_TRACE(parent_bh, "get_write_access");
3809                                 if (!ext4_journal_get_write_access(handle,
3810                                                                    parent_bh)){
3811                                         *p = 0;
3812                                         BUFFER_TRACE(parent_bh,
3813                                         "call ext4_handle_dirty_metadata");
3814                                         ext4_handle_dirty_metadata(handle,
3815                                                                    inode,
3816                                                                    parent_bh);
3817                                 }
3818                         }
3819                 }
3820         } else {
3821                 /* We have reached the bottom of the tree. */
3822                 BUFFER_TRACE(parent_bh, "free data blocks");
3823                 ext4_free_data(handle, inode, parent_bh, first, last);
3824         }
3825 }
3826
3827 int ext4_can_truncate(struct inode *inode)
3828 {
3829         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3830                 return 0;
3831         if (S_ISREG(inode->i_mode))
3832                 return 1;
3833         if (S_ISDIR(inode->i_mode))
3834                 return 1;
3835         if (S_ISLNK(inode->i_mode))
3836                 return !ext4_inode_is_fast_symlink(inode);
3837         return 0;
3838 }
3839
3840 /*
3841  * ext4_truncate()
3842  *
3843  * We block out ext4_get_block() block instantiations across the entire
3844  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3845  * simultaneously on behalf of the same inode.
3846  *
3847  * As we work through the truncate and commmit bits of it to the journal there
3848  * is one core, guiding principle: the file's tree must always be consistent on
3849  * disk.  We must be able to restart the truncate after a crash.
3850  *
3851  * The file's tree may be transiently inconsistent in memory (although it
3852  * probably isn't), but whenever we close off and commit a journal transaction,
3853  * the contents of (the filesystem + the journal) must be consistent and
3854  * restartable.  It's pretty simple, really: bottom up, right to left (although
3855  * left-to-right works OK too).
3856  *
3857  * Note that at recovery time, journal replay occurs *before* the restart of
3858  * truncate against the orphan inode list.
3859  *
3860  * The committed inode has the new, desired i_size (which is the same as
3861  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3862  * that this inode's truncate did not complete and it will again call
3863  * ext4_truncate() to have another go.  So there will be instantiated blocks
3864  * to the right of the truncation point in a crashed ext4 filesystem.  But
3865  * that's fine - as long as they are linked from the inode, the post-crash
3866  * ext4_truncate() run will find them and release them.
3867  */
3868 void ext4_truncate(struct inode *inode)
3869 {
3870         handle_t *handle;
3871         struct ext4_inode_info *ei = EXT4_I(inode);
3872         __le32 *i_data = ei->i_data;
3873         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3874         struct address_space *mapping = inode->i_mapping;
3875         ext4_lblk_t offsets[4];
3876         Indirect chain[4];
3877         Indirect *partial;
3878         __le32 nr = 0;
3879         int n;
3880         ext4_lblk_t last_block;
3881         unsigned blocksize = inode->i_sb->s_blocksize;
3882
3883         if (!ext4_can_truncate(inode))
3884                 return;
3885
3886         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3887                 ext4_ext_truncate(inode);
3888                 return;
3889         }
3890
3891         handle = start_transaction(inode);
3892         if (IS_ERR(handle))
3893                 return;         /* AKPM: return what? */
3894
3895         last_block = (inode->i_size + blocksize-1)
3896                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3897
3898         if (inode->i_size & (blocksize - 1))
3899                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3900                         goto out_stop;
3901
3902         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3903         if (n == 0)
3904                 goto out_stop;  /* error */
3905
3906         /*
3907          * OK.  This truncate is going to happen.  We add the inode to the
3908          * orphan list, so that if this truncate spans multiple transactions,
3909          * and we crash, we will resume the truncate when the filesystem
3910          * recovers.  It also marks the inode dirty, to catch the new size.
3911          *
3912          * Implication: the file must always be in a sane, consistent
3913          * truncatable state while each transaction commits.
3914          */
3915         if (ext4_orphan_add(handle, inode))
3916                 goto out_stop;
3917
3918         /*
3919          * From here we block out all ext4_get_block() callers who want to
3920          * modify the block allocation tree.
3921          */
3922         down_write(&ei->i_data_sem);
3923
3924         ext4_discard_preallocations(inode);
3925
3926         /*
3927          * The orphan list entry will now protect us from any crash which
3928          * occurs before the truncate completes, so it is now safe to propagate
3929          * the new, shorter inode size (held for now in i_size) into the
3930          * on-disk inode. We do this via i_disksize, which is the value which
3931          * ext4 *really* writes onto the disk inode.
3932          */
3933         ei->i_disksize = inode->i_size;
3934
3935         if (n == 1) {           /* direct blocks */
3936                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3937                                i_data + EXT4_NDIR_BLOCKS);
3938                 goto do_indirects;
3939         }
3940
3941         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3942         /* Kill the top of shared branch (not detached) */
3943         if (nr) {
3944                 if (partial == chain) {
3945                         /* Shared branch grows from the inode */
3946                         ext4_free_branches(handle, inode, NULL,
3947                                            &nr, &nr+1, (chain+n-1) - partial);
3948                         *partial->p = 0;
3949                         /*
3950                          * We mark the inode dirty prior to restart,
3951                          * and prior to stop.  No need for it here.
3952                          */
3953                 } else {
3954                         /* Shared branch grows from an indirect block */
3955                         BUFFER_TRACE(partial->bh, "get_write_access");
3956                         ext4_free_branches(handle, inode, partial->bh,
3957                                         partial->p,
3958                                         partial->p+1, (chain+n-1) - partial);
3959                 }
3960         }
3961         /* Clear the ends of indirect blocks on the shared branch */
3962         while (partial > chain) {
3963                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3964                                    (__le32*)partial->bh->b_data+addr_per_block,
3965                                    (chain+n-1) - partial);
3966                 BUFFER_TRACE(partial->bh, "call brelse");
3967                 brelse (partial->bh);
3968                 partial--;
3969         }
3970 do_indirects:
3971         /* Kill the remaining (whole) subtrees */
3972         switch (offsets[0]) {
3973         default:
3974                 nr = i_data[EXT4_IND_BLOCK];
3975                 if (nr) {
3976                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3977                         i_data[EXT4_IND_BLOCK] = 0;
3978                 }
3979         case EXT4_IND_BLOCK:
3980                 nr = i_data[EXT4_DIND_BLOCK];
3981                 if (nr) {
3982                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3983                         i_data[EXT4_DIND_BLOCK] = 0;
3984                 }
3985         case EXT4_DIND_BLOCK:
3986                 nr = i_data[EXT4_TIND_BLOCK];
3987                 if (nr) {
3988                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3989                         i_data[EXT4_TIND_BLOCK] = 0;
3990                 }
3991         case EXT4_TIND_BLOCK:
3992                 ;
3993         }
3994
3995         up_write(&ei->i_data_sem);
3996         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3997         ext4_mark_inode_dirty(handle, inode);
3998
3999         /*
4000          * In a multi-transaction truncate, we only make the final transaction
4001          * synchronous
4002          */
4003         if (IS_SYNC(inode))
4004                 ext4_handle_sync(handle);
4005 out_stop:
4006         /*
4007          * If this was a simple ftruncate(), and the file will remain alive
4008          * then we need to clear up the orphan record which we created above.
4009          * However, if this was a real unlink then we were called by
4010          * ext4_delete_inode(), and we allow that function to clean up the
4011          * orphan info for us.
4012          */
4013         if (inode->i_nlink)
4014                 ext4_orphan_del(handle, inode);
4015
4016         ext4_journal_stop(handle);
4017 }
4018
4019 /*
4020  * ext4_get_inode_loc returns with an extra refcount against the inode's
4021  * underlying buffer_head on success. If 'in_mem' is true, we have all
4022  * data in memory that is needed to recreate the on-disk version of this
4023  * inode.
4024  */
4025 static int __ext4_get_inode_loc(struct inode *inode,
4026                                 struct ext4_iloc *iloc, int in_mem)
4027 {
4028         struct ext4_group_desc  *gdp;
4029         struct buffer_head      *bh;
4030         struct super_block      *sb = inode->i_sb;
4031         ext4_fsblk_t            block;
4032         int                     inodes_per_block, inode_offset;
4033
4034         iloc->bh = NULL;
4035         if (!ext4_valid_inum(sb, inode->i_ino))
4036                 return -EIO;
4037
4038         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4039         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4040         if (!gdp)
4041                 return -EIO;
4042
4043         /*
4044          * Figure out the offset within the block group inode table
4045          */
4046         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4047         inode_offset = ((inode->i_ino - 1) %
4048                         EXT4_INODES_PER_GROUP(sb));
4049         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4050         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4051
4052         bh = sb_getblk(sb, block);
4053         if (!bh) {
4054                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4055                            "inode block - inode=%lu, block=%llu",
4056                            inode->i_ino, block);
4057                 return -EIO;
4058         }
4059         if (!buffer_uptodate(bh)) {
4060                 lock_buffer(bh);
4061
4062                 /*
4063                  * If the buffer has the write error flag, we have failed
4064                  * to write out another inode in the same block.  In this
4065                  * case, we don't have to read the block because we may
4066                  * read the old inode data successfully.
4067                  */
4068                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4069                         set_buffer_uptodate(bh);
4070
4071                 if (buffer_uptodate(bh)) {
4072                         /* someone brought it uptodate while we waited */
4073                         unlock_buffer(bh);
4074                         goto has_buffer;
4075                 }
4076
4077                 /*
4078                  * If we have all information of the inode in memory and this
4079                  * is the only valid inode in the block, we need not read the
4080                  * block.
4081                  */
4082                 if (in_mem) {
4083                         struct buffer_head *bitmap_bh;
4084                         int i, start;
4085
4086                         start = inode_offset & ~(inodes_per_block - 1);
4087
4088                         /* Is the inode bitmap in cache? */
4089                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4090                         if (!bitmap_bh)
4091                                 goto make_io;
4092
4093                         /*
4094                          * If the inode bitmap isn't in cache then the
4095                          * optimisation may end up performing two reads instead
4096                          * of one, so skip it.
4097                          */
4098                         if (!buffer_uptodate(bitmap_bh)) {
4099                                 brelse(bitmap_bh);
4100                                 goto make_io;
4101                         }
4102                         for (i = start; i < start + inodes_per_block; i++) {
4103                                 if (i == inode_offset)
4104                                         continue;
4105                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4106                                         break;
4107                         }
4108                         brelse(bitmap_bh);
4109                         if (i == start + inodes_per_block) {
4110                                 /* all other inodes are free, so skip I/O */
4111                                 memset(bh->b_data, 0, bh->b_size);
4112                                 set_buffer_uptodate(bh);
4113                                 unlock_buffer(bh);
4114                                 goto has_buffer;
4115                         }
4116                 }
4117
4118 make_io:
4119                 /*
4120                  * If we need to do any I/O, try to pre-readahead extra
4121                  * blocks from the inode table.
4122                  */
4123                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4124                         ext4_fsblk_t b, end, table;
4125                         unsigned num;
4126
4127                         table = ext4_inode_table(sb, gdp);
4128                         /* Make sure s_inode_readahead_blks is a power of 2 */
4129                         while (EXT4_SB(sb)->s_inode_readahead_blks &
4130                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
4131                                 EXT4_SB(sb)->s_inode_readahead_blks = 
4132                                    (EXT4_SB(sb)->s_inode_readahead_blks &
4133                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
4134                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4135                         if (table > b)
4136                                 b = table;
4137                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4138                         num = EXT4_INODES_PER_GROUP(sb);
4139                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4140                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4141                                 num -= ext4_itable_unused_count(sb, gdp);
4142                         table += num / inodes_per_block;
4143                         if (end > table)
4144                                 end = table;
4145                         while (b <= end)
4146                                 sb_breadahead(sb, b++);
4147                 }
4148
4149                 /*
4150                  * There are other valid inodes in the buffer, this inode
4151                  * has in-inode xattrs, or we don't have this inode in memory.
4152                  * Read the block from disk.
4153                  */
4154                 get_bh(bh);
4155                 bh->b_end_io = end_buffer_read_sync;
4156                 submit_bh(READ_META, bh);
4157                 wait_on_buffer(bh);
4158                 if (!buffer_uptodate(bh)) {
4159                         ext4_error(sb, __func__,
4160                                    "unable to read inode block - inode=%lu, "
4161                                    "block=%llu", inode->i_ino, block);
4162                         brelse(bh);
4163                         return -EIO;
4164                 }
4165         }
4166 has_buffer:
4167         iloc->bh = bh;
4168         return 0;
4169 }
4170
4171 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4172 {
4173         /* We have all inode data except xattrs in memory here. */
4174         return __ext4_get_inode_loc(inode, iloc,
4175                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4176 }
4177
4178 void ext4_set_inode_flags(struct inode *inode)
4179 {
4180         unsigned int flags = EXT4_I(inode)->i_flags;
4181
4182         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4183         if (flags & EXT4_SYNC_FL)
4184                 inode->i_flags |= S_SYNC;
4185         if (flags & EXT4_APPEND_FL)
4186                 inode->i_flags |= S_APPEND;
4187         if (flags & EXT4_IMMUTABLE_FL)
4188                 inode->i_flags |= S_IMMUTABLE;
4189         if (flags & EXT4_NOATIME_FL)
4190                 inode->i_flags |= S_NOATIME;
4191         if (flags & EXT4_DIRSYNC_FL)
4192                 inode->i_flags |= S_DIRSYNC;
4193 }
4194
4195 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4196 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4197 {
4198         unsigned int flags = ei->vfs_inode.i_flags;
4199
4200         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4201                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4202         if (flags & S_SYNC)
4203                 ei->i_flags |= EXT4_SYNC_FL;
4204         if (flags & S_APPEND)
4205                 ei->i_flags |= EXT4_APPEND_FL;
4206         if (flags & S_IMMUTABLE)
4207                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4208         if (flags & S_NOATIME)
4209                 ei->i_flags |= EXT4_NOATIME_FL;
4210         if (flags & S_DIRSYNC)
4211                 ei->i_flags |= EXT4_DIRSYNC_FL;
4212 }
4213 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4214                                         struct ext4_inode_info *ei)
4215 {
4216         blkcnt_t i_blocks ;
4217         struct inode *inode = &(ei->vfs_inode);
4218         struct super_block *sb = inode->i_sb;
4219
4220         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4221                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4222                 /* we are using combined 48 bit field */
4223                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4224                                         le32_to_cpu(raw_inode->i_blocks_lo);
4225                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4226                         /* i_blocks represent file system block size */
4227                         return i_blocks  << (inode->i_blkbits - 9);
4228                 } else {
4229                         return i_blocks;
4230                 }
4231         } else {
4232                 return le32_to_cpu(raw_inode->i_blocks_lo);
4233         }
4234 }
4235
4236 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4237 {
4238         struct ext4_iloc iloc;
4239         struct ext4_inode *raw_inode;
4240         struct ext4_inode_info *ei;
4241         struct buffer_head *bh;
4242         struct inode *inode;
4243         long ret;
4244         int block;
4245
4246         inode = iget_locked(sb, ino);
4247         if (!inode)
4248                 return ERR_PTR(-ENOMEM);
4249         if (!(inode->i_state & I_NEW))
4250                 return inode;
4251
4252         ei = EXT4_I(inode);
4253 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4254         ei->i_acl = EXT4_ACL_NOT_CACHED;
4255         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4256 #endif
4257
4258         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4259         if (ret < 0)
4260                 goto bad_inode;
4261         bh = iloc.bh;
4262         raw_inode = ext4_raw_inode(&iloc);
4263         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4264         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4265         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4266         if (!(test_opt(inode->i_sb, NO_UID32))) {
4267                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4268                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4269         }
4270         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4271
4272         ei->i_state = 0;
4273         ei->i_dir_start_lookup = 0;
4274         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4275         /* We now have enough fields to check if the inode was active or not.
4276          * This is needed because nfsd might try to access dead inodes
4277          * the test is that same one that e2fsck uses
4278          * NeilBrown 1999oct15
4279          */
4280         if (inode->i_nlink == 0) {
4281                 if (inode->i_mode == 0 ||
4282                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4283                         /* this inode is deleted */
4284                         brelse(bh);
4285                         ret = -ESTALE;
4286                         goto bad_inode;
4287                 }
4288                 /* The only unlinked inodes we let through here have
4289                  * valid i_mode and are being read by the orphan
4290                  * recovery code: that's fine, we're about to complete
4291                  * the process of deleting those. */
4292         }
4293         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4294         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4295         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4296         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4297             cpu_to_le32(EXT4_OS_HURD)) {
4298                 ei->i_file_acl |=
4299                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4300         }
4301         inode->i_size = ext4_isize(raw_inode);
4302         ei->i_disksize = inode->i_size;
4303         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4304         ei->i_block_group = iloc.block_group;
4305         ei->i_last_alloc_group = ~0;
4306         /*
4307          * NOTE! The in-memory inode i_data array is in little-endian order
4308          * even on big-endian machines: we do NOT byteswap the block numbers!
4309          */
4310         for (block = 0; block < EXT4_N_BLOCKS; block++)
4311                 ei->i_data[block] = raw_inode->i_block[block];
4312         INIT_LIST_HEAD(&ei->i_orphan);
4313
4314         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4315                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4316                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4317                     EXT4_INODE_SIZE(inode->i_sb)) {
4318                         brelse(bh);
4319                         ret = -EIO;
4320                         goto bad_inode;
4321                 }
4322                 if (ei->i_extra_isize == 0) {
4323                         /* The extra space is currently unused. Use it. */
4324                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4325                                             EXT4_GOOD_OLD_INODE_SIZE;
4326                 } else {
4327                         __le32 *magic = (void *)raw_inode +
4328                                         EXT4_GOOD_OLD_INODE_SIZE +
4329                                         ei->i_extra_isize;
4330                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4331                                  ei->i_state |= EXT4_STATE_XATTR;
4332                 }
4333         } else
4334                 ei->i_extra_isize = 0;
4335
4336         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4337         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4338         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4339         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4340
4341         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4342         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4343                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4344                         inode->i_version |=
4345                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4346         }
4347
4348         if (ei->i_flags & EXT4_EXTENTS_FL) {
4349                 /* Validate extent which is part of inode */
4350                 ret = ext4_ext_check_inode(inode);
4351                 if (ret) {
4352                         brelse(bh);
4353                         goto bad_inode;
4354                 }
4355
4356         }
4357
4358         if (S_ISREG(inode->i_mode)) {
4359                 inode->i_op = &ext4_file_inode_operations;
4360                 inode->i_fop = &ext4_file_operations;
4361                 ext4_set_aops(inode);
4362         } else if (S_ISDIR(inode->i_mode)) {
4363                 inode->i_op = &ext4_dir_inode_operations;
4364                 inode->i_fop = &ext4_dir_operations;
4365         } else if (S_ISLNK(inode->i_mode)) {
4366                 if (ext4_inode_is_fast_symlink(inode)) {
4367                         inode->i_op = &ext4_fast_symlink_inode_operations;
4368                         nd_terminate_link(ei->i_data, inode->i_size,
4369                                 sizeof(ei->i_data) - 1);
4370                 } else {
4371                         inode->i_op = &ext4_symlink_inode_operations;
4372                         ext4_set_aops(inode);
4373                 }
4374         } else {
4375                 inode->i_op = &ext4_special_inode_operations;
4376                 if (raw_inode->i_block[0])
4377                         init_special_inode(inode, inode->i_mode,
4378                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4379                 else
4380                         init_special_inode(inode, inode->i_mode,
4381                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4382         }
4383         brelse(iloc.bh);
4384         ext4_set_inode_flags(inode);
4385         unlock_new_inode(inode);
4386         return inode;
4387
4388 bad_inode:
4389         iget_failed(inode);
4390         return ERR_PTR(ret);
4391 }
4392
4393 static int ext4_inode_blocks_set(handle_t *handle,
4394                                 struct ext4_inode *raw_inode,
4395                                 struct ext4_inode_info *ei)
4396 {
4397         struct inode *inode = &(ei->vfs_inode);
4398         u64 i_blocks = inode->i_blocks;
4399         struct super_block *sb = inode->i_sb;
4400
4401         if (i_blocks <= ~0U) {
4402                 /*
4403                  * i_blocks can be represnted in a 32 bit variable
4404                  * as multiple of 512 bytes
4405                  */
4406                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4407                 raw_inode->i_blocks_high = 0;
4408                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4409                 return 0;
4410         }
4411         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4412                 return -EFBIG;
4413
4414         if (i_blocks <= 0xffffffffffffULL) {
4415                 /*
4416                  * i_blocks can be represented in a 48 bit variable
4417                  * as multiple of 512 bytes
4418                  */
4419                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4420                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4421                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4422         } else {
4423                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4424                 /* i_block is stored in file system block size */
4425                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4426                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4427                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4428         }
4429         return 0;
4430 }
4431
4432 /*
4433  * Post the struct inode info into an on-disk inode location in the
4434  * buffer-cache.  This gobbles the caller's reference to the
4435  * buffer_head in the inode location struct.
4436  *
4437  * The caller must have write access to iloc->bh.
4438  */
4439 static int ext4_do_update_inode(handle_t *handle,
4440                                 struct inode *inode,
4441                                 struct ext4_iloc *iloc)
4442 {
4443         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4444         struct ext4_inode_info *ei = EXT4_I(inode);
4445         struct buffer_head *bh = iloc->bh;
4446         int err = 0, rc, block;
4447
4448         /* For fields not not tracking in the in-memory inode,
4449          * initialise them to zero for new inodes. */
4450         if (ei->i_state & EXT4_STATE_NEW)
4451                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4452
4453         ext4_get_inode_flags(ei);
4454         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4455         if (!(test_opt(inode->i_sb, NO_UID32))) {
4456                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4457                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4458 /*
4459  * Fix up interoperability with old kernels. Otherwise, old inodes get
4460  * re-used with the upper 16 bits of the uid/gid intact
4461  */
4462                 if (!ei->i_dtime) {
4463                         raw_inode->i_uid_high =
4464                                 cpu_to_le16(high_16_bits(inode->i_uid));
4465                         raw_inode->i_gid_high =
4466                                 cpu_to_le16(high_16_bits(inode->i_gid));
4467                 } else {
4468                         raw_inode->i_uid_high = 0;
4469                         raw_inode->i_gid_high = 0;
4470                 }
4471         } else {
4472                 raw_inode->i_uid_low =
4473                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4474                 raw_inode->i_gid_low =
4475                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4476                 raw_inode->i_uid_high = 0;
4477                 raw_inode->i_gid_high = 0;
4478         }
4479         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4480
4481         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4482         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4483         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4484         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4485
4486         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4487                 goto out_brelse;
4488         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4489         /* clear the migrate flag in the raw_inode */
4490         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4491         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4492             cpu_to_le32(EXT4_OS_HURD))
4493                 raw_inode->i_file_acl_high =
4494                         cpu_to_le16(ei->i_file_acl >> 32);
4495         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4496         ext4_isize_set(raw_inode, ei->i_disksize);
4497         if (ei->i_disksize > 0x7fffffffULL) {
4498                 struct super_block *sb = inode->i_sb;
4499                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4500                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4501                                 EXT4_SB(sb)->s_es->s_rev_level ==
4502                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4503                         /* If this is the first large file
4504                          * created, add a flag to the superblock.
4505                          */
4506                         err = ext4_journal_get_write_access(handle,
4507                                         EXT4_SB(sb)->s_sbh);
4508                         if (err)
4509                                 goto out_brelse;
4510                         ext4_update_dynamic_rev(sb);
4511                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4512                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4513                         sb->s_dirt = 1;
4514                         ext4_handle_sync(handle);
4515                         err = ext4_handle_dirty_metadata(handle, inode,
4516                                         EXT4_SB(sb)->s_sbh);
4517                 }
4518         }
4519         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4520         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4521                 if (old_valid_dev(inode->i_rdev)) {
4522                         raw_inode->i_block[0] =
4523                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4524                         raw_inode->i_block[1] = 0;
4525                 } else {
4526                         raw_inode->i_block[0] = 0;
4527                         raw_inode->i_block[1] =
4528                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4529                         raw_inode->i_block[2] = 0;
4530                 }
4531         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4532                 raw_inode->i_block[block] = ei->i_data[block];
4533
4534         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4535         if (ei->i_extra_isize) {
4536                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4537                         raw_inode->i_version_hi =
4538                         cpu_to_le32(inode->i_version >> 32);
4539                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4540         }
4541
4542         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4543         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4544         if (!err)
4545                 err = rc;
4546         ei->i_state &= ~EXT4_STATE_NEW;
4547
4548 out_brelse:
4549         brelse(bh);
4550         ext4_std_error(inode->i_sb, err);
4551         return err;
4552 }
4553
4554 /*
4555  * ext4_write_inode()
4556  *
4557  * We are called from a few places:
4558  *
4559  * - Within generic_file_write() for O_SYNC files.
4560  *   Here, there will be no transaction running. We wait for any running
4561  *   trasnaction to commit.
4562  *
4563  * - Within sys_sync(), kupdate and such.
4564  *   We wait on commit, if tol to.
4565  *
4566  * - Within prune_icache() (PF_MEMALLOC == true)
4567  *   Here we simply return.  We can't afford to block kswapd on the
4568  *   journal commit.
4569  *
4570  * In all cases it is actually safe for us to return without doing anything,
4571  * because the inode has been copied into a raw inode buffer in
4572  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4573  * knfsd.
4574  *
4575  * Note that we are absolutely dependent upon all inode dirtiers doing the
4576  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4577  * which we are interested.
4578  *
4579  * It would be a bug for them to not do this.  The code:
4580  *
4581  *      mark_inode_dirty(inode)
4582  *      stuff();
4583  *      inode->i_size = expr;
4584  *
4585  * is in error because a kswapd-driven write_inode() could occur while
4586  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4587  * will no longer be on the superblock's dirty inode list.
4588  */
4589 int ext4_write_inode(struct inode *inode, int wait)
4590 {
4591         if (current->flags & PF_MEMALLOC)
4592                 return 0;
4593
4594         if (ext4_journal_current_handle()) {
4595                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4596                 dump_stack();
4597                 return -EIO;
4598         }
4599
4600         if (!wait)
4601                 return 0;
4602
4603         return ext4_force_commit(inode->i_sb);
4604 }
4605
4606 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4607 {
4608         int err = 0;
4609
4610         mark_buffer_dirty(bh);
4611         if (inode && inode_needs_sync(inode)) {
4612                 sync_dirty_buffer(bh);
4613                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4614                         ext4_error(inode->i_sb, __func__,
4615                                    "IO error syncing inode, "
4616                                    "inode=%lu, block=%llu",
4617                                    inode->i_ino,
4618                                    (unsigned long long)bh->b_blocknr);
4619                         err = -EIO;
4620                 }
4621         }
4622         return err;
4623 }
4624
4625 /*
4626  * ext4_setattr()
4627  *
4628  * Called from notify_change.
4629  *
4630  * We want to trap VFS attempts to truncate the file as soon as
4631  * possible.  In particular, we want to make sure that when the VFS
4632  * shrinks i_size, we put the inode on the orphan list and modify
4633  * i_disksize immediately, so that during the subsequent flushing of
4634  * dirty pages and freeing of disk blocks, we can guarantee that any
4635  * commit will leave the blocks being flushed in an unused state on
4636  * disk.  (On recovery, the inode will get truncated and the blocks will
4637  * be freed, so we have a strong guarantee that no future commit will
4638  * leave these blocks visible to the user.)
4639  *
4640  * Another thing we have to assure is that if we are in ordered mode
4641  * and inode is still attached to the committing transaction, we must
4642  * we start writeout of all the dirty pages which are being truncated.
4643  * This way we are sure that all the data written in the previous
4644  * transaction are already on disk (truncate waits for pages under
4645  * writeback).
4646  *
4647  * Called with inode->i_mutex down.
4648  */
4649 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4650 {
4651         struct inode *inode = dentry->d_inode;
4652         int error, rc = 0;
4653         const unsigned int ia_valid = attr->ia_valid;
4654
4655         error = inode_change_ok(inode, attr);
4656         if (error)
4657                 return error;
4658
4659         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4660                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4661                 handle_t *handle;
4662
4663                 /* (user+group)*(old+new) structure, inode write (sb,
4664                  * inode block, ? - but truncate inode update has it) */
4665                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4666                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4667                 if (IS_ERR(handle)) {
4668                         error = PTR_ERR(handle);
4669                         goto err_out;
4670                 }
4671                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4672                 if (error) {
4673                         ext4_journal_stop(handle);
4674                         return error;
4675                 }
4676                 /* Update corresponding info in inode so that everything is in
4677                  * one transaction */
4678                 if (attr->ia_valid & ATTR_UID)
4679                         inode->i_uid = attr->ia_uid;
4680                 if (attr->ia_valid & ATTR_GID)
4681                         inode->i_gid = attr->ia_gid;
4682                 error = ext4_mark_inode_dirty(handle, inode);
4683                 ext4_journal_stop(handle);
4684         }
4685
4686         if (attr->ia_valid & ATTR_SIZE) {
4687                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4688                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4689
4690                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4691                                 error = -EFBIG;
4692                                 goto err_out;
4693                         }
4694                 }
4695         }
4696
4697         if (S_ISREG(inode->i_mode) &&
4698             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4699                 handle_t *handle;
4700
4701                 handle = ext4_journal_start(inode, 3);
4702                 if (IS_ERR(handle)) {
4703                         error = PTR_ERR(handle);
4704                         goto err_out;
4705                 }
4706
4707                 error = ext4_orphan_add(handle, inode);
4708                 EXT4_I(inode)->i_disksize = attr->ia_size;
4709                 rc = ext4_mark_inode_dirty(handle, inode);
4710                 if (!error)
4711                         error = rc;
4712                 ext4_journal_stop(handle);
4713
4714                 if (ext4_should_order_data(inode)) {
4715                         error = ext4_begin_ordered_truncate(inode,
4716                                                             attr->ia_size);
4717                         if (error) {
4718                                 /* Do as much error cleanup as possible */
4719                                 handle = ext4_journal_start(inode, 3);
4720                                 if (IS_ERR(handle)) {
4721                                         ext4_orphan_del(NULL, inode);
4722                                         goto err_out;
4723                                 }
4724                                 ext4_orphan_del(handle, inode);
4725                                 ext4_journal_stop(handle);
4726                                 goto err_out;
4727                         }
4728                 }
4729         }
4730
4731         rc = inode_setattr(inode, attr);
4732
4733         /* If inode_setattr's call to ext4_truncate failed to get a
4734          * transaction handle at all, we need to clean up the in-core
4735          * orphan list manually. */
4736         if (inode->i_nlink)
4737                 ext4_orphan_del(NULL, inode);
4738
4739         if (!rc && (ia_valid & ATTR_MODE))
4740                 rc = ext4_acl_chmod(inode);
4741
4742 err_out:
4743         ext4_std_error(inode->i_sb, error);
4744         if (!error)
4745                 error = rc;
4746         return error;
4747 }
4748
4749 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4750                  struct kstat *stat)
4751 {
4752         struct inode *inode;
4753         unsigned long delalloc_blocks;
4754
4755         inode = dentry->d_inode;
4756         generic_fillattr(inode, stat);
4757
4758         /*
4759          * We can't update i_blocks if the block allocation is delayed
4760          * otherwise in the case of system crash before the real block
4761          * allocation is done, we will have i_blocks inconsistent with
4762          * on-disk file blocks.
4763          * We always keep i_blocks updated together with real
4764          * allocation. But to not confuse with user, stat
4765          * will return the blocks that include the delayed allocation
4766          * blocks for this file.
4767          */
4768         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4769         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4770         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4771
4772         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4773         return 0;
4774 }
4775
4776 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4777                                       int chunk)
4778 {
4779         int indirects;
4780
4781         /* if nrblocks are contiguous */
4782         if (chunk) {
4783                 /*
4784                  * With N contiguous data blocks, it need at most
4785                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4786                  * 2 dindirect blocks
4787                  * 1 tindirect block
4788                  */
4789                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4790                 return indirects + 3;
4791         }
4792         /*
4793          * if nrblocks are not contiguous, worse case, each block touch
4794          * a indirect block, and each indirect block touch a double indirect
4795          * block, plus a triple indirect block
4796          */
4797         indirects = nrblocks * 2 + 1;
4798         return indirects;
4799 }
4800
4801 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4802 {
4803         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4804                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4805         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4806 }
4807
4808 /*
4809  * Account for index blocks, block groups bitmaps and block group
4810  * descriptor blocks if modify datablocks and index blocks
4811  * worse case, the indexs blocks spread over different block groups
4812  *
4813  * If datablocks are discontiguous, they are possible to spread over
4814  * different block groups too. If they are contiugous, with flexbg,
4815  * they could still across block group boundary.
4816  *
4817  * Also account for superblock, inode, quota and xattr blocks
4818  */
4819 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4820 {
4821         int groups, gdpblocks;
4822         int idxblocks;
4823         int ret = 0;
4824
4825         /*
4826          * How many index blocks need to touch to modify nrblocks?
4827          * The "Chunk" flag indicating whether the nrblocks is
4828          * physically contiguous on disk
4829          *
4830          * For Direct IO and fallocate, they calls get_block to allocate
4831          * one single extent at a time, so they could set the "Chunk" flag
4832          */
4833         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4834
4835         ret = idxblocks;
4836
4837         /*
4838          * Now let's see how many group bitmaps and group descriptors need
4839          * to account
4840          */
4841         groups = idxblocks;
4842         if (chunk)
4843                 groups += 1;
4844         else
4845                 groups += nrblocks;
4846
4847         gdpblocks = groups;
4848         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4849                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4850         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4851                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4852
4853         /* bitmaps and block group descriptor blocks */
4854         ret += groups + gdpblocks;
4855
4856         /* Blocks for super block, inode, quota and xattr blocks */
4857         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4858
4859         return ret;
4860 }
4861
4862 /*
4863  * Calulate the total number of credits to reserve to fit
4864  * the modification of a single pages into a single transaction,
4865  * which may include multiple chunks of block allocations.
4866  *
4867  * This could be called via ext4_write_begin()
4868  *
4869  * We need to consider the worse case, when
4870  * one new block per extent.
4871  */
4872 int ext4_writepage_trans_blocks(struct inode *inode)
4873 {
4874         int bpp = ext4_journal_blocks_per_page(inode);
4875         int ret;
4876
4877         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4878
4879         /* Account for data blocks for journalled mode */
4880         if (ext4_should_journal_data(inode))
4881                 ret += bpp;
4882         return ret;
4883 }
4884
4885 /*
4886  * Calculate the journal credits for a chunk of data modification.
4887  *
4888  * This is called from DIO, fallocate or whoever calling
4889  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4890  *
4891  * journal buffers for data blocks are not included here, as DIO
4892  * and fallocate do no need to journal data buffers.
4893  */
4894 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4895 {
4896         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4897 }
4898
4899 /*
4900  * The caller must have previously called ext4_reserve_inode_write().
4901  * Give this, we know that the caller already has write access to iloc->bh.
4902  */
4903 int ext4_mark_iloc_dirty(handle_t *handle,
4904                 struct inode *inode, struct ext4_iloc *iloc)
4905 {
4906         int err = 0;
4907
4908         if (test_opt(inode->i_sb, I_VERSION))
4909                 inode_inc_iversion(inode);
4910
4911         /* the do_update_inode consumes one bh->b_count */
4912         get_bh(iloc->bh);
4913
4914         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4915         err = ext4_do_update_inode(handle, inode, iloc);
4916         put_bh(iloc->bh);
4917         return err;
4918 }
4919
4920 /*
4921  * On success, We end up with an outstanding reference count against
4922  * iloc->bh.  This _must_ be cleaned up later.
4923  */
4924
4925 int
4926 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4927                          struct ext4_iloc *iloc)
4928 {
4929         int err;
4930
4931         err = ext4_get_inode_loc(inode, iloc);
4932         if (!err) {
4933                 BUFFER_TRACE(iloc->bh, "get_write_access");
4934                 err = ext4_journal_get_write_access(handle, iloc->bh);
4935                 if (err) {
4936                         brelse(iloc->bh);
4937                         iloc->bh = NULL;
4938                 }
4939         }
4940         ext4_std_error(inode->i_sb, err);
4941         return err;
4942 }
4943
4944 /*
4945  * Expand an inode by new_extra_isize bytes.
4946  * Returns 0 on success or negative error number on failure.
4947  */
4948 static int ext4_expand_extra_isize(struct inode *inode,
4949                                    unsigned int new_extra_isize,
4950                                    struct ext4_iloc iloc,
4951                                    handle_t *handle)
4952 {
4953         struct ext4_inode *raw_inode;
4954         struct ext4_xattr_ibody_header *header;
4955         struct ext4_xattr_entry *entry;
4956
4957         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4958                 return 0;
4959
4960         raw_inode = ext4_raw_inode(&iloc);
4961
4962         header = IHDR(inode, raw_inode);
4963         entry = IFIRST(header);
4964
4965         /* No extended attributes present */
4966         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4967                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4968                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4969                         new_extra_isize);
4970                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4971                 return 0;
4972         }
4973
4974         /* try to expand with EAs present */
4975         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4976                                           raw_inode, handle);
4977 }
4978
4979 /*
4980  * What we do here is to mark the in-core inode as clean with respect to inode
4981  * dirtiness (it may still be data-dirty).
4982  * This means that the in-core inode may be reaped by prune_icache
4983  * without having to perform any I/O.  This is a very good thing,
4984  * because *any* task may call prune_icache - even ones which
4985  * have a transaction open against a different journal.
4986  *
4987  * Is this cheating?  Not really.  Sure, we haven't written the
4988  * inode out, but prune_icache isn't a user-visible syncing function.
4989  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4990  * we start and wait on commits.
4991  *
4992  * Is this efficient/effective?  Well, we're being nice to the system
4993  * by cleaning up our inodes proactively so they can be reaped
4994  * without I/O.  But we are potentially leaving up to five seconds'
4995  * worth of inodes floating about which prune_icache wants us to
4996  * write out.  One way to fix that would be to get prune_icache()
4997  * to do a write_super() to free up some memory.  It has the desired
4998  * effect.
4999  */
5000 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5001 {
5002         struct ext4_iloc iloc;
5003         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5004         static unsigned int mnt_count;
5005         int err, ret;
5006
5007         might_sleep();
5008         err = ext4_reserve_inode_write(handle, inode, &iloc);
5009         if (ext4_handle_valid(handle) &&
5010             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5011             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5012                 /*
5013                  * We need extra buffer credits since we may write into EA block
5014                  * with this same handle. If journal_extend fails, then it will
5015                  * only result in a minor loss of functionality for that inode.
5016                  * If this is felt to be critical, then e2fsck should be run to
5017                  * force a large enough s_min_extra_isize.
5018                  */
5019                 if ((jbd2_journal_extend(handle,
5020                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5021                         ret = ext4_expand_extra_isize(inode,
5022                                                       sbi->s_want_extra_isize,
5023                                                       iloc, handle);
5024                         if (ret) {
5025                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5026                                 if (mnt_count !=
5027                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5028                                         ext4_warning(inode->i_sb, __func__,
5029                                         "Unable to expand inode %lu. Delete"
5030                                         " some EAs or run e2fsck.",
5031                                         inode->i_ino);
5032                                         mnt_count =
5033                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5034                                 }
5035                         }
5036                 }
5037         }
5038         if (!err)
5039                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5040         return err;
5041 }
5042
5043 /*
5044  * ext4_dirty_inode() is called from __mark_inode_dirty()
5045  *
5046  * We're really interested in the case where a file is being extended.
5047  * i_size has been changed by generic_commit_write() and we thus need
5048  * to include the updated inode in the current transaction.
5049  *
5050  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5051  * are allocated to the file.
5052  *
5053  * If the inode is marked synchronous, we don't honour that here - doing
5054  * so would cause a commit on atime updates, which we don't bother doing.
5055  * We handle synchronous inodes at the highest possible level.
5056  */
5057 void ext4_dirty_inode(struct inode *inode)
5058 {
5059         handle_t *current_handle = ext4_journal_current_handle();
5060         handle_t *handle;
5061
5062         if (!ext4_handle_valid(current_handle)) {
5063                 ext4_mark_inode_dirty(current_handle, inode);
5064                 return;
5065         }
5066
5067         handle = ext4_journal_start(inode, 2);
5068         if (IS_ERR(handle))
5069                 goto out;
5070         if (current_handle &&
5071                 current_handle->h_transaction != handle->h_transaction) {
5072                 /* This task has a transaction open against a different fs */
5073                 printk(KERN_EMERG "%s: transactions do not match!\n",
5074                        __func__);
5075         } else {
5076                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5077                                 current_handle);
5078                 ext4_mark_inode_dirty(handle, inode);
5079         }
5080         ext4_journal_stop(handle);
5081 out:
5082         return;
5083 }
5084
5085 #if 0
5086 /*
5087  * Bind an inode's backing buffer_head into this transaction, to prevent
5088  * it from being flushed to disk early.  Unlike
5089  * ext4_reserve_inode_write, this leaves behind no bh reference and
5090  * returns no iloc structure, so the caller needs to repeat the iloc
5091  * lookup to mark the inode dirty later.
5092  */
5093 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5094 {
5095         struct ext4_iloc iloc;
5096
5097         int err = 0;
5098         if (handle) {
5099                 err = ext4_get_inode_loc(inode, &iloc);
5100                 if (!err) {
5101                         BUFFER_TRACE(iloc.bh, "get_write_access");
5102                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5103                         if (!err)
5104                                 err = ext4_handle_dirty_metadata(handle,
5105                                                                  inode,
5106                                                                  iloc.bh);
5107                         brelse(iloc.bh);
5108                 }
5109         }
5110         ext4_std_error(inode->i_sb, err);
5111         return err;
5112 }
5113 #endif
5114
5115 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5116 {
5117         journal_t *journal;
5118         handle_t *handle;
5119         int err;
5120
5121         /*
5122          * We have to be very careful here: changing a data block's
5123          * journaling status dynamically is dangerous.  If we write a
5124          * data block to the journal, change the status and then delete
5125          * that block, we risk forgetting to revoke the old log record
5126          * from the journal and so a subsequent replay can corrupt data.
5127          * So, first we make sure that the journal is empty and that
5128          * nobody is changing anything.
5129          */
5130
5131         journal = EXT4_JOURNAL(inode);
5132         if (!journal)
5133                 return 0;
5134         if (is_journal_aborted(journal))
5135                 return -EROFS;
5136
5137         jbd2_journal_lock_updates(journal);
5138         jbd2_journal_flush(journal);
5139
5140         /*
5141          * OK, there are no updates running now, and all cached data is
5142          * synced to disk.  We are now in a completely consistent state
5143          * which doesn't have anything in the journal, and we know that
5144          * no filesystem updates are running, so it is safe to modify
5145          * the inode's in-core data-journaling state flag now.
5146          */
5147
5148         if (val)
5149                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5150         else
5151                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5152         ext4_set_aops(inode);
5153
5154         jbd2_journal_unlock_updates(journal);
5155
5156         /* Finally we can mark the inode as dirty. */
5157
5158         handle = ext4_journal_start(inode, 1);
5159         if (IS_ERR(handle))
5160                 return PTR_ERR(handle);
5161
5162         err = ext4_mark_inode_dirty(handle, inode);
5163         ext4_handle_sync(handle);
5164         ext4_journal_stop(handle);
5165         ext4_std_error(inode->i_sb, err);
5166
5167         return err;
5168 }
5169
5170 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5171 {
5172         return !buffer_mapped(bh);
5173 }
5174
5175 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5176 {
5177         loff_t size;
5178         unsigned long len;
5179         int ret = -EINVAL;
5180         void *fsdata;
5181         struct file *file = vma->vm_file;
5182         struct inode *inode = file->f_path.dentry->d_inode;
5183         struct address_space *mapping = inode->i_mapping;
5184
5185         /*
5186          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5187          * get i_mutex because we are already holding mmap_sem.
5188          */
5189         down_read(&inode->i_alloc_sem);
5190         size = i_size_read(inode);
5191         if (page->mapping != mapping || size <= page_offset(page)
5192             || !PageUptodate(page)) {
5193                 /* page got truncated from under us? */
5194                 goto out_unlock;
5195         }
5196         ret = 0;
5197         if (PageMappedToDisk(page))
5198                 goto out_unlock;
5199
5200         if (page->index == size >> PAGE_CACHE_SHIFT)
5201                 len = size & ~PAGE_CACHE_MASK;
5202         else
5203                 len = PAGE_CACHE_SIZE;
5204
5205         if (page_has_buffers(page)) {
5206                 /* return if we have all the buffers mapped */
5207                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5208                                        ext4_bh_unmapped))
5209                         goto out_unlock;
5210         }
5211         /*
5212          * OK, we need to fill the hole... Do write_begin write_end
5213          * to do block allocation/reservation.We are not holding
5214          * inode.i__mutex here. That allow * parallel write_begin,
5215          * write_end call. lock_page prevent this from happening
5216          * on the same page though
5217          */
5218         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5219                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5220         if (ret < 0)
5221                 goto out_unlock;
5222         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5223                         len, len, page, fsdata);
5224         if (ret < 0)
5225                 goto out_unlock;
5226         ret = 0;
5227 out_unlock:
5228         up_read(&inode->i_alloc_sem);
5229         return ret;
5230 }