ext4: Properly initialize the buffer_head state
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * Allocation strategy is simple: if we have to allocate something, we will
896  * have to go the whole way to leaf. So let's do it before attaching anything
897  * to tree, set linkage between the newborn blocks, write them if sync is
898  * required, recheck the path, free and repeat if check fails, otherwise
899  * set the last missing link (that will protect us from any truncate-generated
900  * removals - all blocks on the path are immune now) and possibly force the
901  * write on the parent block.
902  * That has a nice additional property: no special recovery from the failed
903  * allocations is needed - we simply release blocks and do not touch anything
904  * reachable from inode.
905  *
906  * `handle' can be NULL if create == 0.
907  *
908  * return > 0, # of blocks mapped or allocated.
909  * return = 0, if plain lookup failed.
910  * return < 0, error case.
911  *
912  *
913  * Need to be called with
914  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916  */
917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918                                   ext4_lblk_t iblock, unsigned int maxblocks,
919                                   struct buffer_head *bh_result,
920                                   int create, int extend_disksize)
921 {
922         int err = -EIO;
923         ext4_lblk_t offsets[4];
924         Indirect chain[4];
925         Indirect *partial;
926         ext4_fsblk_t goal;
927         int indirect_blks;
928         int blocks_to_boundary = 0;
929         int depth;
930         struct ext4_inode_info *ei = EXT4_I(inode);
931         int count = 0;
932         ext4_fsblk_t first_block = 0;
933         loff_t disksize;
934
935
936         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937         J_ASSERT(handle != NULL || create == 0);
938         depth = ext4_block_to_path(inode, iblock, offsets,
939                                         &blocks_to_boundary);
940
941         if (depth == 0)
942                 goto out;
943
944         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946         /* Simplest case - block found, no allocation needed */
947         if (!partial) {
948                 first_block = le32_to_cpu(chain[depth - 1].key);
949                 clear_buffer_new(bh_result);
950                 count++;
951                 /*map more blocks*/
952                 while (count < maxblocks && count <= blocks_to_boundary) {
953                         ext4_fsblk_t blk;
954
955                         blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957                         if (blk == first_block + count)
958                                 count++;
959                         else
960                                 break;
961                 }
962                 goto got_it;
963         }
964
965         /* Next simple case - plain lookup or failed read of indirect block */
966         if (!create || err == -EIO)
967                 goto cleanup;
968
969         /*
970          * Okay, we need to do block allocation.
971         */
972         goal = ext4_find_goal(inode, iblock, partial);
973
974         /* the number of blocks need to allocate for [d,t]indirect blocks */
975         indirect_blks = (chain + depth) - partial - 1;
976
977         /*
978          * Next look up the indirect map to count the totoal number of
979          * direct blocks to allocate for this branch.
980          */
981         count = ext4_blks_to_allocate(partial, indirect_blks,
982                                         maxblocks, blocks_to_boundary);
983         /*
984          * Block out ext4_truncate while we alter the tree
985          */
986         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987                                         &count, goal,
988                                         offsets + (partial - chain), partial);
989
990         /*
991          * The ext4_splice_branch call will free and forget any buffers
992          * on the new chain if there is a failure, but that risks using
993          * up transaction credits, especially for bitmaps where the
994          * credits cannot be returned.  Can we handle this somehow?  We
995          * may need to return -EAGAIN upwards in the worst case.  --sct
996          */
997         if (!err)
998                 err = ext4_splice_branch(handle, inode, iblock,
999                                         partial, indirect_blks, count);
1000         /*
1001          * i_disksize growing is protected by i_data_sem.  Don't forget to
1002          * protect it if you're about to implement concurrent
1003          * ext4_get_block() -bzzz
1004         */
1005         if (!err && extend_disksize) {
1006                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007                 if (disksize > i_size_read(inode))
1008                         disksize = i_size_read(inode);
1009                 if (disksize > ei->i_disksize)
1010                         ei->i_disksize = disksize;
1011         }
1012         if (err)
1013                 goto cleanup;
1014
1015         set_buffer_new(bh_result);
1016 got_it:
1017         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018         if (count > blocks_to_boundary)
1019                 set_buffer_boundary(bh_result);
1020         err = count;
1021         /* Clean up and exit */
1022         partial = chain + depth - 1;    /* the whole chain */
1023 cleanup:
1024         while (partial > chain) {
1025                 BUFFER_TRACE(partial->bh, "call brelse");
1026                 brelse(partial->bh);
1027                 partial--;
1028         }
1029         BUFFER_TRACE(bh_result, "returned");
1030 out:
1031         return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036         unsigned long long total;
1037
1038         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039         total = EXT4_I(inode)->i_reserved_data_blocks +
1040                 EXT4_I(inode)->i_reserved_meta_blocks;
1041         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043         return total;
1044 }
1045 /*
1046  * Calculate the number of metadata blocks need to reserve
1047  * to allocate @blocks for non extent file based file
1048  */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052         int ind_blks, dind_blks, tind_blks;
1053
1054         /* number of new indirect blocks needed */
1055         ind_blks = (blocks + icap - 1) / icap;
1056
1057         dind_blks = (ind_blks + icap - 1) / icap;
1058
1059         tind_blks = 1;
1060
1061         return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065  * Calculate the number of metadata blocks need to reserve
1066  * to allocate given number of blocks
1067  */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070         if (!blocks)
1071                 return 0;
1072
1073         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074                 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076         return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         int total, mdb, mdb_free;
1083
1084         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085         /* recalculate the number of metablocks still need to be reserved */
1086         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087         mdb = ext4_calc_metadata_amount(inode, total);
1088
1089         /* figure out how many metablocks to release */
1090         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093         if (mdb_free) {
1094                 /* Account for allocated meta_blocks */
1095                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097                 /* update fs dirty blocks counter */
1098                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101         }
1102
1103         /* update per-inode reservations */
1104         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1105         EXT4_I(inode)->i_reserved_data_blocks -= used;
1106         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108         /*
1109          * free those over-booking quota for metadata blocks
1110          */
1111         if (mdb_free)
1112                 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114         /*
1115          * If we have done all the pending block allocations and if
1116          * there aren't any writers on the inode, we can discard the
1117          * inode's preallocations.
1118          */
1119         if (!total && (atomic_read(&inode->i_writecount) == 0))
1120                 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125  * and returns if the blocks are already mapped.
1126  *
1127  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128  * and store the allocated blocks in the result buffer head and mark it
1129  * mapped.
1130  *
1131  * If file type is extents based, it will call ext4_ext_get_blocks(),
1132  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133  * based files
1134  *
1135  * On success, it returns the number of blocks being mapped or allocate.
1136  * if create==0 and the blocks are pre-allocated and uninitialized block,
1137  * the result buffer head is unmapped. If the create ==1, it will make sure
1138  * the buffer head is mapped.
1139  *
1140  * It returns 0 if plain look up failed (blocks have not been allocated), in
1141  * that casem, buffer head is unmapped
1142  *
1143  * It returns the error in case of allocation failure.
1144  */
1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146                         unsigned int max_blocks, struct buffer_head *bh,
1147                         int create, int extend_disksize, int flag)
1148 {
1149         int retval;
1150
1151         clear_buffer_mapped(bh);
1152         clear_buffer_unwritten(bh);
1153
1154         /*
1155          * Try to see if we can get  the block without requesting
1156          * for new file system block.
1157          */
1158         down_read((&EXT4_I(inode)->i_data_sem));
1159         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1160                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161                                 bh, 0, 0);
1162         } else {
1163                 retval = ext4_get_blocks_handle(handle,
1164                                 inode, block, max_blocks, bh, 0, 0);
1165         }
1166         up_read((&EXT4_I(inode)->i_data_sem));
1167
1168         /* If it is only a block(s) look up */
1169         if (!create)
1170                 return retval;
1171
1172         /*
1173          * Returns if the blocks have already allocated
1174          *
1175          * Note that if blocks have been preallocated
1176          * ext4_ext_get_block() returns th create = 0
1177          * with buffer head unmapped.
1178          */
1179         if (retval > 0 && buffer_mapped(bh))
1180                 return retval;
1181
1182         /*
1183          * When we call get_blocks without the create flag, the
1184          * BH_Unwritten flag could have gotten set if the blocks
1185          * requested were part of a uninitialized extent.  We need to
1186          * clear this flag now that we are committed to convert all or
1187          * part of the uninitialized extent to be an initialized
1188          * extent.  This is because we need to avoid the combination
1189          * of BH_Unwritten and BH_Mapped flags being simultaneously
1190          * set on the buffer_head.
1191          */
1192         clear_buffer_unwritten(bh);
1193
1194         /*
1195          * New blocks allocate and/or writing to uninitialized extent
1196          * will possibly result in updating i_data, so we take
1197          * the write lock of i_data_sem, and call get_blocks()
1198          * with create == 1 flag.
1199          */
1200         down_write((&EXT4_I(inode)->i_data_sem));
1201
1202         /*
1203          * if the caller is from delayed allocation writeout path
1204          * we have already reserved fs blocks for allocation
1205          * let the underlying get_block() function know to
1206          * avoid double accounting
1207          */
1208         if (flag)
1209                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1210         /*
1211          * We need to check for EXT4 here because migrate
1212          * could have changed the inode type in between
1213          */
1214         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1215                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216                                 bh, create, extend_disksize);
1217         } else {
1218                 retval = ext4_get_blocks_handle(handle, inode, block,
1219                                 max_blocks, bh, create, extend_disksize);
1220
1221                 if (retval > 0 && buffer_new(bh)) {
1222                         /*
1223                          * We allocated new blocks which will result in
1224                          * i_data's format changing.  Force the migrate
1225                          * to fail by clearing migrate flags
1226                          */
1227                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1228                                                         ~EXT4_EXT_MIGRATE;
1229                 }
1230         }
1231
1232         if (flag) {
1233                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1234                 /*
1235                  * Update reserved blocks/metadata blocks
1236                  * after successful block allocation
1237                  * which were deferred till now
1238                  */
1239                 if ((retval > 0) && buffer_delay(bh))
1240                         ext4_da_update_reserve_space(inode, retval);
1241         }
1242
1243         up_write((&EXT4_I(inode)->i_data_sem));
1244         return retval;
1245 }
1246
1247 /* Maximum number of blocks we map for direct IO at once. */
1248 #define DIO_MAX_BLOCKS 4096
1249
1250 int ext4_get_block(struct inode *inode, sector_t iblock,
1251                    struct buffer_head *bh_result, int create)
1252 {
1253         handle_t *handle = ext4_journal_current_handle();
1254         int ret = 0, started = 0;
1255         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1256         int dio_credits;
1257
1258         if (create && !handle) {
1259                 /* Direct IO write... */
1260                 if (max_blocks > DIO_MAX_BLOCKS)
1261                         max_blocks = DIO_MAX_BLOCKS;
1262                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1263                 handle = ext4_journal_start(inode, dio_credits);
1264                 if (IS_ERR(handle)) {
1265                         ret = PTR_ERR(handle);
1266                         goto out;
1267                 }
1268                 started = 1;
1269         }
1270
1271         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1272                                         max_blocks, bh_result, create, 0, 0);
1273         if (ret > 0) {
1274                 bh_result->b_size = (ret << inode->i_blkbits);
1275                 ret = 0;
1276         }
1277         if (started)
1278                 ext4_journal_stop(handle);
1279 out:
1280         return ret;
1281 }
1282
1283 /*
1284  * `handle' can be NULL if create is zero
1285  */
1286 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1287                                 ext4_lblk_t block, int create, int *errp)
1288 {
1289         struct buffer_head dummy;
1290         int fatal = 0, err;
1291
1292         J_ASSERT(handle != NULL || create == 0);
1293
1294         dummy.b_state = 0;
1295         dummy.b_blocknr = -1000;
1296         buffer_trace_init(&dummy.b_history);
1297         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1298                                         &dummy, create, 1, 0);
1299         /*
1300          * ext4_get_blocks_handle() returns number of blocks
1301          * mapped. 0 in case of a HOLE.
1302          */
1303         if (err > 0) {
1304                 if (err > 1)
1305                         WARN_ON(1);
1306                 err = 0;
1307         }
1308         *errp = err;
1309         if (!err && buffer_mapped(&dummy)) {
1310                 struct buffer_head *bh;
1311                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1312                 if (!bh) {
1313                         *errp = -EIO;
1314                         goto err;
1315                 }
1316                 if (buffer_new(&dummy)) {
1317                         J_ASSERT(create != 0);
1318                         J_ASSERT(handle != NULL);
1319
1320                         /*
1321                          * Now that we do not always journal data, we should
1322                          * keep in mind whether this should always journal the
1323                          * new buffer as metadata.  For now, regular file
1324                          * writes use ext4_get_block instead, so it's not a
1325                          * problem.
1326                          */
1327                         lock_buffer(bh);
1328                         BUFFER_TRACE(bh, "call get_create_access");
1329                         fatal = ext4_journal_get_create_access(handle, bh);
1330                         if (!fatal && !buffer_uptodate(bh)) {
1331                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1332                                 set_buffer_uptodate(bh);
1333                         }
1334                         unlock_buffer(bh);
1335                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1336                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1337                         if (!fatal)
1338                                 fatal = err;
1339                 } else {
1340                         BUFFER_TRACE(bh, "not a new buffer");
1341                 }
1342                 if (fatal) {
1343                         *errp = fatal;
1344                         brelse(bh);
1345                         bh = NULL;
1346                 }
1347                 return bh;
1348         }
1349 err:
1350         return NULL;
1351 }
1352
1353 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1354                                ext4_lblk_t block, int create, int *err)
1355 {
1356         struct buffer_head *bh;
1357
1358         bh = ext4_getblk(handle, inode, block, create, err);
1359         if (!bh)
1360                 return bh;
1361         if (buffer_uptodate(bh))
1362                 return bh;
1363         ll_rw_block(READ_META, 1, &bh);
1364         wait_on_buffer(bh);
1365         if (buffer_uptodate(bh))
1366                 return bh;
1367         put_bh(bh);
1368         *err = -EIO;
1369         return NULL;
1370 }
1371
1372 static int walk_page_buffers(handle_t *handle,
1373                              struct buffer_head *head,
1374                              unsigned from,
1375                              unsigned to,
1376                              int *partial,
1377                              int (*fn)(handle_t *handle,
1378                                        struct buffer_head *bh))
1379 {
1380         struct buffer_head *bh;
1381         unsigned block_start, block_end;
1382         unsigned blocksize = head->b_size;
1383         int err, ret = 0;
1384         struct buffer_head *next;
1385
1386         for (bh = head, block_start = 0;
1387              ret == 0 && (bh != head || !block_start);
1388              block_start = block_end, bh = next)
1389         {
1390                 next = bh->b_this_page;
1391                 block_end = block_start + blocksize;
1392                 if (block_end <= from || block_start >= to) {
1393                         if (partial && !buffer_uptodate(bh))
1394                                 *partial = 1;
1395                         continue;
1396                 }
1397                 err = (*fn)(handle, bh);
1398                 if (!ret)
1399                         ret = err;
1400         }
1401         return ret;
1402 }
1403
1404 /*
1405  * To preserve ordering, it is essential that the hole instantiation and
1406  * the data write be encapsulated in a single transaction.  We cannot
1407  * close off a transaction and start a new one between the ext4_get_block()
1408  * and the commit_write().  So doing the jbd2_journal_start at the start of
1409  * prepare_write() is the right place.
1410  *
1411  * Also, this function can nest inside ext4_writepage() ->
1412  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1413  * has generated enough buffer credits to do the whole page.  So we won't
1414  * block on the journal in that case, which is good, because the caller may
1415  * be PF_MEMALLOC.
1416  *
1417  * By accident, ext4 can be reentered when a transaction is open via
1418  * quota file writes.  If we were to commit the transaction while thus
1419  * reentered, there can be a deadlock - we would be holding a quota
1420  * lock, and the commit would never complete if another thread had a
1421  * transaction open and was blocking on the quota lock - a ranking
1422  * violation.
1423  *
1424  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1425  * will _not_ run commit under these circumstances because handle->h_ref
1426  * is elevated.  We'll still have enough credits for the tiny quotafile
1427  * write.
1428  */
1429 static int do_journal_get_write_access(handle_t *handle,
1430                                         struct buffer_head *bh)
1431 {
1432         if (!buffer_mapped(bh) || buffer_freed(bh))
1433                 return 0;
1434         return ext4_journal_get_write_access(handle, bh);
1435 }
1436
1437 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1438                                 loff_t pos, unsigned len, unsigned flags,
1439                                 struct page **pagep, void **fsdata)
1440 {
1441         struct inode *inode = mapping->host;
1442         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1443         handle_t *handle;
1444         int retries = 0;
1445         struct page *page;
1446         pgoff_t index;
1447         unsigned from, to;
1448
1449         trace_mark(ext4_write_begin,
1450                    "dev %s ino %lu pos %llu len %u flags %u",
1451                    inode->i_sb->s_id, inode->i_ino,
1452                    (unsigned long long) pos, len, flags);
1453         index = pos >> PAGE_CACHE_SHIFT;
1454         from = pos & (PAGE_CACHE_SIZE - 1);
1455         to = from + len;
1456
1457 retry:
1458         handle = ext4_journal_start(inode, needed_blocks);
1459         if (IS_ERR(handle)) {
1460                 ret = PTR_ERR(handle);
1461                 goto out;
1462         }
1463
1464         /* We cannot recurse into the filesystem as the transaction is already
1465          * started */
1466         flags |= AOP_FLAG_NOFS;
1467
1468         page = grab_cache_page_write_begin(mapping, index, flags);
1469         if (!page) {
1470                 ext4_journal_stop(handle);
1471                 ret = -ENOMEM;
1472                 goto out;
1473         }
1474         *pagep = page;
1475
1476         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1477                                 ext4_get_block);
1478
1479         if (!ret && ext4_should_journal_data(inode)) {
1480                 ret = walk_page_buffers(handle, page_buffers(page),
1481                                 from, to, NULL, do_journal_get_write_access);
1482         }
1483
1484         if (ret) {
1485                 unlock_page(page);
1486                 ext4_journal_stop(handle);
1487                 page_cache_release(page);
1488                 /*
1489                  * block_write_begin may have instantiated a few blocks
1490                  * outside i_size.  Trim these off again. Don't need
1491                  * i_size_read because we hold i_mutex.
1492                  */
1493                 if (pos + len > inode->i_size)
1494                         vmtruncate(inode, inode->i_size);
1495         }
1496
1497         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1498                 goto retry;
1499 out:
1500         return ret;
1501 }
1502
1503 /* For write_end() in data=journal mode */
1504 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1505 {
1506         if (!buffer_mapped(bh) || buffer_freed(bh))
1507                 return 0;
1508         set_buffer_uptodate(bh);
1509         return ext4_handle_dirty_metadata(handle, NULL, bh);
1510 }
1511
1512 /*
1513  * We need to pick up the new inode size which generic_commit_write gave us
1514  * `file' can be NULL - eg, when called from page_symlink().
1515  *
1516  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1517  * buffers are managed internally.
1518  */
1519 static int ext4_ordered_write_end(struct file *file,
1520                                 struct address_space *mapping,
1521                                 loff_t pos, unsigned len, unsigned copied,
1522                                 struct page *page, void *fsdata)
1523 {
1524         handle_t *handle = ext4_journal_current_handle();
1525         struct inode *inode = mapping->host;
1526         int ret = 0, ret2;
1527
1528         trace_mark(ext4_ordered_write_end,
1529                    "dev %s ino %lu pos %llu len %u copied %u",
1530                    inode->i_sb->s_id, inode->i_ino,
1531                    (unsigned long long) pos, len, copied);
1532         ret = ext4_jbd2_file_inode(handle, inode);
1533
1534         if (ret == 0) {
1535                 loff_t new_i_size;
1536
1537                 new_i_size = pos + copied;
1538                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1539                         ext4_update_i_disksize(inode, new_i_size);
1540                         /* We need to mark inode dirty even if
1541                          * new_i_size is less that inode->i_size
1542                          * bu greater than i_disksize.(hint delalloc)
1543                          */
1544                         ext4_mark_inode_dirty(handle, inode);
1545                 }
1546
1547                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1548                                                         page, fsdata);
1549                 copied = ret2;
1550                 if (ret2 < 0)
1551                         ret = ret2;
1552         }
1553         ret2 = ext4_journal_stop(handle);
1554         if (!ret)
1555                 ret = ret2;
1556
1557         return ret ? ret : copied;
1558 }
1559
1560 static int ext4_writeback_write_end(struct file *file,
1561                                 struct address_space *mapping,
1562                                 loff_t pos, unsigned len, unsigned copied,
1563                                 struct page *page, void *fsdata)
1564 {
1565         handle_t *handle = ext4_journal_current_handle();
1566         struct inode *inode = mapping->host;
1567         int ret = 0, ret2;
1568         loff_t new_i_size;
1569
1570         trace_mark(ext4_writeback_write_end,
1571                    "dev %s ino %lu pos %llu len %u copied %u",
1572                    inode->i_sb->s_id, inode->i_ino,
1573                    (unsigned long long) pos, len, copied);
1574         new_i_size = pos + copied;
1575         if (new_i_size > EXT4_I(inode)->i_disksize) {
1576                 ext4_update_i_disksize(inode, new_i_size);
1577                 /* We need to mark inode dirty even if
1578                  * new_i_size is less that inode->i_size
1579                  * bu greater than i_disksize.(hint delalloc)
1580                  */
1581                 ext4_mark_inode_dirty(handle, inode);
1582         }
1583
1584         ret2 = generic_write_end(file, mapping, pos, len, copied,
1585                                                         page, fsdata);
1586         copied = ret2;
1587         if (ret2 < 0)
1588                 ret = ret2;
1589
1590         ret2 = ext4_journal_stop(handle);
1591         if (!ret)
1592                 ret = ret2;
1593
1594         return ret ? ret : copied;
1595 }
1596
1597 static int ext4_journalled_write_end(struct file *file,
1598                                 struct address_space *mapping,
1599                                 loff_t pos, unsigned len, unsigned copied,
1600                                 struct page *page, void *fsdata)
1601 {
1602         handle_t *handle = ext4_journal_current_handle();
1603         struct inode *inode = mapping->host;
1604         int ret = 0, ret2;
1605         int partial = 0;
1606         unsigned from, to;
1607         loff_t new_i_size;
1608
1609         trace_mark(ext4_journalled_write_end,
1610                    "dev %s ino %lu pos %llu len %u copied %u",
1611                    inode->i_sb->s_id, inode->i_ino,
1612                    (unsigned long long) pos, len, copied);
1613         from = pos & (PAGE_CACHE_SIZE - 1);
1614         to = from + len;
1615
1616         if (copied < len) {
1617                 if (!PageUptodate(page))
1618                         copied = 0;
1619                 page_zero_new_buffers(page, from+copied, to);
1620         }
1621
1622         ret = walk_page_buffers(handle, page_buffers(page), from,
1623                                 to, &partial, write_end_fn);
1624         if (!partial)
1625                 SetPageUptodate(page);
1626         new_i_size = pos + copied;
1627         if (new_i_size > inode->i_size)
1628                 i_size_write(inode, pos+copied);
1629         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1630         if (new_i_size > EXT4_I(inode)->i_disksize) {
1631                 ext4_update_i_disksize(inode, new_i_size);
1632                 ret2 = ext4_mark_inode_dirty(handle, inode);
1633                 if (!ret)
1634                         ret = ret2;
1635         }
1636
1637         unlock_page(page);
1638         ret2 = ext4_journal_stop(handle);
1639         if (!ret)
1640                 ret = ret2;
1641         page_cache_release(page);
1642
1643         return ret ? ret : copied;
1644 }
1645
1646 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1647 {
1648         int retries = 0;
1649         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650         unsigned long md_needed, mdblocks, total = 0;
1651
1652         /*
1653          * recalculate the amount of metadata blocks to reserve
1654          * in order to allocate nrblocks
1655          * worse case is one extent per block
1656          */
1657 repeat:
1658         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1659         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1660         mdblocks = ext4_calc_metadata_amount(inode, total);
1661         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1662
1663         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1664         total = md_needed + nrblocks;
1665
1666         /*
1667          * Make quota reservation here to prevent quota overflow
1668          * later. Real quota accounting is done at pages writeout
1669          * time.
1670          */
1671         if (vfs_dq_reserve_block(inode, total)) {
1672                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1673                 return -EDQUOT;
1674         }
1675
1676         if (ext4_claim_free_blocks(sbi, total)) {
1677                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1678                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1679                         yield();
1680                         goto repeat;
1681                 }
1682                 vfs_dq_release_reservation_block(inode, total);
1683                 return -ENOSPC;
1684         }
1685         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1686         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1687
1688         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1689         return 0;       /* success */
1690 }
1691
1692 static void ext4_da_release_space(struct inode *inode, int to_free)
1693 {
1694         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1695         int total, mdb, mdb_free, release;
1696
1697         if (!to_free)
1698                 return;         /* Nothing to release, exit */
1699
1700         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1701
1702         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1703                 /*
1704                  * if there is no reserved blocks, but we try to free some
1705                  * then the counter is messed up somewhere.
1706                  * but since this function is called from invalidate
1707                  * page, it's harmless to return without any action
1708                  */
1709                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1710                             "blocks for inode %lu, but there is no reserved "
1711                             "data blocks\n", to_free, inode->i_ino);
1712                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1713                 return;
1714         }
1715
1716         /* recalculate the number of metablocks still need to be reserved */
1717         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1718         mdb = ext4_calc_metadata_amount(inode, total);
1719
1720         /* figure out how many metablocks to release */
1721         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1722         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1723
1724         release = to_free + mdb_free;
1725
1726         /* update fs dirty blocks counter for truncate case */
1727         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1728
1729         /* update per-inode reservations */
1730         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1731         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1732
1733         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1734         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1735         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1736
1737         vfs_dq_release_reservation_block(inode, release);
1738 }
1739
1740 static void ext4_da_page_release_reservation(struct page *page,
1741                                                 unsigned long offset)
1742 {
1743         int to_release = 0;
1744         struct buffer_head *head, *bh;
1745         unsigned int curr_off = 0;
1746
1747         head = page_buffers(page);
1748         bh = head;
1749         do {
1750                 unsigned int next_off = curr_off + bh->b_size;
1751
1752                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1753                         to_release++;
1754                         clear_buffer_delay(bh);
1755                 }
1756                 curr_off = next_off;
1757         } while ((bh = bh->b_this_page) != head);
1758         ext4_da_release_space(page->mapping->host, to_release);
1759 }
1760
1761 /*
1762  * Delayed allocation stuff
1763  */
1764
1765 struct mpage_da_data {
1766         struct inode *inode;
1767         sector_t b_blocknr;             /* start block number of extent */
1768         size_t b_size;                  /* size of extent */
1769         unsigned long b_state;          /* state of the extent */
1770         unsigned long first_page, next_page;    /* extent of pages */
1771         struct writeback_control *wbc;
1772         int io_done;
1773         int pages_written;
1774         int retval;
1775 };
1776
1777 /*
1778  * mpage_da_submit_io - walks through extent of pages and try to write
1779  * them with writepage() call back
1780  *
1781  * @mpd->inode: inode
1782  * @mpd->first_page: first page of the extent
1783  * @mpd->next_page: page after the last page of the extent
1784  *
1785  * By the time mpage_da_submit_io() is called we expect all blocks
1786  * to be allocated. this may be wrong if allocation failed.
1787  *
1788  * As pages are already locked by write_cache_pages(), we can't use it
1789  */
1790 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1791 {
1792         long pages_skipped;
1793         struct pagevec pvec;
1794         unsigned long index, end;
1795         int ret = 0, err, nr_pages, i;
1796         struct inode *inode = mpd->inode;
1797         struct address_space *mapping = inode->i_mapping;
1798
1799         BUG_ON(mpd->next_page <= mpd->first_page);
1800         /*
1801          * We need to start from the first_page to the next_page - 1
1802          * to make sure we also write the mapped dirty buffer_heads.
1803          * If we look at mpd->b_blocknr we would only be looking
1804          * at the currently mapped buffer_heads.
1805          */
1806         index = mpd->first_page;
1807         end = mpd->next_page - 1;
1808
1809         pagevec_init(&pvec, 0);
1810         while (index <= end) {
1811                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1812                 if (nr_pages == 0)
1813                         break;
1814                 for (i = 0; i < nr_pages; i++) {
1815                         struct page *page = pvec.pages[i];
1816
1817                         index = page->index;
1818                         if (index > end)
1819                                 break;
1820                         index++;
1821
1822                         BUG_ON(!PageLocked(page));
1823                         BUG_ON(PageWriteback(page));
1824
1825                         pages_skipped = mpd->wbc->pages_skipped;
1826                         err = mapping->a_ops->writepage(page, mpd->wbc);
1827                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1828                                 /*
1829                                  * have successfully written the page
1830                                  * without skipping the same
1831                                  */
1832                                 mpd->pages_written++;
1833                         /*
1834                          * In error case, we have to continue because
1835                          * remaining pages are still locked
1836                          * XXX: unlock and re-dirty them?
1837                          */
1838                         if (ret == 0)
1839                                 ret = err;
1840                 }
1841                 pagevec_release(&pvec);
1842         }
1843         return ret;
1844 }
1845
1846 /*
1847  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1848  *
1849  * @mpd->inode - inode to walk through
1850  * @exbh->b_blocknr - first block on a disk
1851  * @exbh->b_size - amount of space in bytes
1852  * @logical - first logical block to start assignment with
1853  *
1854  * the function goes through all passed space and put actual disk
1855  * block numbers into buffer heads, dropping BH_Delay
1856  */
1857 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1858                                  struct buffer_head *exbh)
1859 {
1860         struct inode *inode = mpd->inode;
1861         struct address_space *mapping = inode->i_mapping;
1862         int blocks = exbh->b_size >> inode->i_blkbits;
1863         sector_t pblock = exbh->b_blocknr, cur_logical;
1864         struct buffer_head *head, *bh;
1865         pgoff_t index, end;
1866         struct pagevec pvec;
1867         int nr_pages, i;
1868
1869         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1871         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1872
1873         pagevec_init(&pvec, 0);
1874
1875         while (index <= end) {
1876                 /* XXX: optimize tail */
1877                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1878                 if (nr_pages == 0)
1879                         break;
1880                 for (i = 0; i < nr_pages; i++) {
1881                         struct page *page = pvec.pages[i];
1882
1883                         index = page->index;
1884                         if (index > end)
1885                                 break;
1886                         index++;
1887
1888                         BUG_ON(!PageLocked(page));
1889                         BUG_ON(PageWriteback(page));
1890                         BUG_ON(!page_has_buffers(page));
1891
1892                         bh = page_buffers(page);
1893                         head = bh;
1894
1895                         /* skip blocks out of the range */
1896                         do {
1897                                 if (cur_logical >= logical)
1898                                         break;
1899                                 cur_logical++;
1900                         } while ((bh = bh->b_this_page) != head);
1901
1902                         do {
1903                                 if (cur_logical >= logical + blocks)
1904                                         break;
1905                                 if (buffer_delay(bh)) {
1906                                         bh->b_blocknr = pblock;
1907                                         clear_buffer_delay(bh);
1908                                         bh->b_bdev = inode->i_sb->s_bdev;
1909                                 } else if (buffer_unwritten(bh)) {
1910                                         bh->b_blocknr = pblock;
1911                                         clear_buffer_unwritten(bh);
1912                                         set_buffer_mapped(bh);
1913                                         set_buffer_new(bh);
1914                                         bh->b_bdev = inode->i_sb->s_bdev;
1915                                 } else if (buffer_mapped(bh))
1916                                         BUG_ON(bh->b_blocknr != pblock);
1917
1918                                 cur_logical++;
1919                                 pblock++;
1920                         } while ((bh = bh->b_this_page) != head);
1921                 }
1922                 pagevec_release(&pvec);
1923         }
1924 }
1925
1926
1927 /*
1928  * __unmap_underlying_blocks - just a helper function to unmap
1929  * set of blocks described by @bh
1930  */
1931 static inline void __unmap_underlying_blocks(struct inode *inode,
1932                                              struct buffer_head *bh)
1933 {
1934         struct block_device *bdev = inode->i_sb->s_bdev;
1935         int blocks, i;
1936
1937         blocks = bh->b_size >> inode->i_blkbits;
1938         for (i = 0; i < blocks; i++)
1939                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1940 }
1941
1942 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1943                                         sector_t logical, long blk_cnt)
1944 {
1945         int nr_pages, i;
1946         pgoff_t index, end;
1947         struct pagevec pvec;
1948         struct inode *inode = mpd->inode;
1949         struct address_space *mapping = inode->i_mapping;
1950
1951         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1952         end   = (logical + blk_cnt - 1) >>
1953                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1954         while (index <= end) {
1955                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1956                 if (nr_pages == 0)
1957                         break;
1958                 for (i = 0; i < nr_pages; i++) {
1959                         struct page *page = pvec.pages[i];
1960                         index = page->index;
1961                         if (index > end)
1962                                 break;
1963                         index++;
1964
1965                         BUG_ON(!PageLocked(page));
1966                         BUG_ON(PageWriteback(page));
1967                         block_invalidatepage(page, 0);
1968                         ClearPageUptodate(page);
1969                         unlock_page(page);
1970                 }
1971         }
1972         return;
1973 }
1974
1975 static void ext4_print_free_blocks(struct inode *inode)
1976 {
1977         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1978         printk(KERN_EMERG "Total free blocks count %lld\n",
1979                         ext4_count_free_blocks(inode->i_sb));
1980         printk(KERN_EMERG "Free/Dirty block details\n");
1981         printk(KERN_EMERG "free_blocks=%lld\n",
1982                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1983         printk(KERN_EMERG "dirty_blocks=%lld\n",
1984                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1985         printk(KERN_EMERG "Block reservation details\n");
1986         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1987                         EXT4_I(inode)->i_reserved_data_blocks);
1988         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1989                         EXT4_I(inode)->i_reserved_meta_blocks);
1990         return;
1991 }
1992
1993 #define         EXT4_DELALLOC_RSVED     1
1994 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1995                                    struct buffer_head *bh_result, int create)
1996 {
1997         int ret;
1998         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1999         loff_t disksize = EXT4_I(inode)->i_disksize;
2000         handle_t *handle = NULL;
2001
2002         handle = ext4_journal_current_handle();
2003         BUG_ON(!handle);
2004         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2005                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2006         if (ret <= 0)
2007                 return ret;
2008
2009         bh_result->b_size = (ret << inode->i_blkbits);
2010
2011         if (ext4_should_order_data(inode)) {
2012                 int retval;
2013                 retval = ext4_jbd2_file_inode(handle, inode);
2014                 if (retval)
2015                         /*
2016                          * Failed to add inode for ordered mode. Don't
2017                          * update file size
2018                          */
2019                         return retval;
2020         }
2021
2022         /*
2023          * Update on-disk size along with block allocation we don't
2024          * use 'extend_disksize' as size may change within already
2025          * allocated block -bzzz
2026          */
2027         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2028         if (disksize > i_size_read(inode))
2029                 disksize = i_size_read(inode);
2030         if (disksize > EXT4_I(inode)->i_disksize) {
2031                 ext4_update_i_disksize(inode, disksize);
2032                 ret = ext4_mark_inode_dirty(handle, inode);
2033                 return ret;
2034         }
2035         return 0;
2036 }
2037
2038 /*
2039  * mpage_da_map_blocks - go through given space
2040  *
2041  * @mpd - bh describing space
2042  *
2043  * The function skips space we know is already mapped to disk blocks.
2044  *
2045  */
2046 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2047 {
2048         int err = 0;
2049         struct buffer_head new;
2050         sector_t next;
2051
2052         /*
2053          * We consider only non-mapped and non-allocated blocks
2054          */
2055         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2056             !(mpd->b_state & (1 << BH_Delay)))
2057                 return 0;
2058         /*
2059          * We need to make sure the BH_Delay flag is passed down to
2060          * ext4_da_get_block_write(), since it calls
2061          * ext4_get_blocks_wrap() with the EXT4_DELALLOC_RSVED flag.
2062          * This flag causes ext4_get_blocks_wrap() to call
2063          * ext4_da_update_reserve_space() if the passed buffer head
2064          * has the BH_Delay flag set.  In the future, once we clean up
2065          * the interfaces to ext4_get_blocks_wrap(), we should pass in
2066          * a separate flag which requests that the delayed allocation
2067          * statistics should be updated, instead of depending on the
2068          * state information getting passed down via the map_bh's
2069          * state bitmasks plus the magic EXT4_DELALLOC_RSVED flag.
2070          */
2071         new.b_state = mpd->b_state & (1 << BH_Delay);
2072         new.b_blocknr = 0;
2073         new.b_size = mpd->b_size;
2074         next = mpd->b_blocknr;
2075         /*
2076          * If we didn't accumulate anything
2077          * to write simply return
2078          */
2079         if (!new.b_size)
2080                 return 0;
2081
2082         err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2083         if (err) {
2084                 /*
2085                  * If get block returns with error we simply
2086                  * return. Later writepage will redirty the page and
2087                  * writepages will find the dirty page again
2088                  */
2089                 if (err == -EAGAIN)
2090                         return 0;
2091
2092                 if (err == -ENOSPC &&
2093                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2094                         mpd->retval = err;
2095                         return 0;
2096                 }
2097
2098                 /*
2099                  * get block failure will cause us to loop in
2100                  * writepages, because a_ops->writepage won't be able
2101                  * to make progress. The page will be redirtied by
2102                  * writepage and writepages will again try to write
2103                  * the same.
2104                  */
2105                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2106                                   "at logical offset %llu with max blocks "
2107                                   "%zd with error %d\n",
2108                                   __func__, mpd->inode->i_ino,
2109                                   (unsigned long long)next,
2110                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2111                 printk(KERN_EMERG "This should not happen.!! "
2112                                         "Data will be lost\n");
2113                 if (err == -ENOSPC) {
2114                         ext4_print_free_blocks(mpd->inode);
2115                 }
2116                 /* invlaidate all the pages */
2117                 ext4_da_block_invalidatepages(mpd, next,
2118                                 mpd->b_size >> mpd->inode->i_blkbits);
2119                 return err;
2120         }
2121         BUG_ON(new.b_size == 0);
2122
2123         if (buffer_new(&new))
2124                 __unmap_underlying_blocks(mpd->inode, &new);
2125
2126         /*
2127          * If blocks are delayed marked, we need to
2128          * put actual blocknr and drop delayed bit
2129          */
2130         if ((mpd->b_state & (1 << BH_Delay)) ||
2131             (mpd->b_state & (1 << BH_Unwritten)))
2132                 mpage_put_bnr_to_bhs(mpd, next, &new);
2133
2134         return 0;
2135 }
2136
2137 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2138                 (1 << BH_Delay) | (1 << BH_Unwritten))
2139
2140 /*
2141  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2142  *
2143  * @mpd->lbh - extent of blocks
2144  * @logical - logical number of the block in the file
2145  * @bh - bh of the block (used to access block's state)
2146  *
2147  * the function is used to collect contig. blocks in same state
2148  */
2149 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2150                                    sector_t logical, size_t b_size,
2151                                    unsigned long b_state)
2152 {
2153         sector_t next;
2154         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2155
2156         /* check if thereserved journal credits might overflow */
2157         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2158                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2159                         /*
2160                          * With non-extent format we are limited by the journal
2161                          * credit available.  Total credit needed to insert
2162                          * nrblocks contiguous blocks is dependent on the
2163                          * nrblocks.  So limit nrblocks.
2164                          */
2165                         goto flush_it;
2166                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2167                                 EXT4_MAX_TRANS_DATA) {
2168                         /*
2169                          * Adding the new buffer_head would make it cross the
2170                          * allowed limit for which we have journal credit
2171                          * reserved. So limit the new bh->b_size
2172                          */
2173                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2174                                                 mpd->inode->i_blkbits;
2175                         /* we will do mpage_da_submit_io in the next loop */
2176                 }
2177         }
2178         /*
2179          * First block in the extent
2180          */
2181         if (mpd->b_size == 0) {
2182                 mpd->b_blocknr = logical;
2183                 mpd->b_size = b_size;
2184                 mpd->b_state = b_state & BH_FLAGS;
2185                 return;
2186         }
2187
2188         next = mpd->b_blocknr + nrblocks;
2189         /*
2190          * Can we merge the block to our big extent?
2191          */
2192         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2193                 mpd->b_size += b_size;
2194                 return;
2195         }
2196
2197 flush_it:
2198         /*
2199          * We couldn't merge the block to our extent, so we
2200          * need to flush current  extent and start new one
2201          */
2202         if (mpage_da_map_blocks(mpd) == 0)
2203                 mpage_da_submit_io(mpd);
2204         mpd->io_done = 1;
2205         return;
2206 }
2207
2208 /*
2209  * __mpage_da_writepage - finds extent of pages and blocks
2210  *
2211  * @page: page to consider
2212  * @wbc: not used, we just follow rules
2213  * @data: context
2214  *
2215  * The function finds extents of pages and scan them for all blocks.
2216  */
2217 static int __mpage_da_writepage(struct page *page,
2218                                 struct writeback_control *wbc, void *data)
2219 {
2220         struct mpage_da_data *mpd = data;
2221         struct inode *inode = mpd->inode;
2222         struct buffer_head *bh, *head;
2223         sector_t logical;
2224
2225         if (mpd->io_done) {
2226                 /*
2227                  * Rest of the page in the page_vec
2228                  * redirty then and skip then. We will
2229                  * try to to write them again after
2230                  * starting a new transaction
2231                  */
2232                 redirty_page_for_writepage(wbc, page);
2233                 unlock_page(page);
2234                 return MPAGE_DA_EXTENT_TAIL;
2235         }
2236         /*
2237          * Can we merge this page to current extent?
2238          */
2239         if (mpd->next_page != page->index) {
2240                 /*
2241                  * Nope, we can't. So, we map non-allocated blocks
2242                  * and start IO on them using writepage()
2243                  */
2244                 if (mpd->next_page != mpd->first_page) {
2245                         if (mpage_da_map_blocks(mpd) == 0)
2246                                 mpage_da_submit_io(mpd);
2247                         /*
2248                          * skip rest of the page in the page_vec
2249                          */
2250                         mpd->io_done = 1;
2251                         redirty_page_for_writepage(wbc, page);
2252                         unlock_page(page);
2253                         return MPAGE_DA_EXTENT_TAIL;
2254                 }
2255
2256                 /*
2257                  * Start next extent of pages ...
2258                  */
2259                 mpd->first_page = page->index;
2260
2261                 /*
2262                  * ... and blocks
2263                  */
2264                 mpd->b_size = 0;
2265                 mpd->b_state = 0;
2266                 mpd->b_blocknr = 0;
2267         }
2268
2269         mpd->next_page = page->index + 1;
2270         logical = (sector_t) page->index <<
2271                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2272
2273         if (!page_has_buffers(page)) {
2274                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2275                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2276                 if (mpd->io_done)
2277                         return MPAGE_DA_EXTENT_TAIL;
2278         } else {
2279                 /*
2280                  * Page with regular buffer heads, just add all dirty ones
2281                  */
2282                 head = page_buffers(page);
2283                 bh = head;
2284                 do {
2285                         BUG_ON(buffer_locked(bh));
2286                         /*
2287                          * We need to try to allocate
2288                          * unmapped blocks in the same page.
2289                          * Otherwise we won't make progress
2290                          * with the page in ext4_da_writepage
2291                          */
2292                         if (buffer_dirty(bh) &&
2293                             (!buffer_mapped(bh) || buffer_delay(bh))) {
2294                                 mpage_add_bh_to_extent(mpd, logical,
2295                                                        bh->b_size,
2296                                                        bh->b_state);
2297                                 if (mpd->io_done)
2298                                         return MPAGE_DA_EXTENT_TAIL;
2299                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2300                                 /*
2301                                  * mapped dirty buffer. We need to update
2302                                  * the b_state because we look at
2303                                  * b_state in mpage_da_map_blocks. We don't
2304                                  * update b_size because if we find an
2305                                  * unmapped buffer_head later we need to
2306                                  * use the b_state flag of that buffer_head.
2307                                  */
2308                                 if (mpd->b_size == 0)
2309                                         mpd->b_state = bh->b_state & BH_FLAGS;
2310                         }
2311                         logical++;
2312                 } while ((bh = bh->b_this_page) != head);
2313         }
2314
2315         return 0;
2316 }
2317
2318 /*
2319  * this is a special callback for ->write_begin() only
2320  * it's intention is to return mapped block or reserve space
2321  */
2322 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2323                                   struct buffer_head *bh_result, int create)
2324 {
2325         int ret = 0;
2326         sector_t invalid_block = ~((sector_t) 0xffff);
2327
2328         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2329                 invalid_block = ~0;
2330
2331         BUG_ON(create == 0);
2332         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2333
2334         /*
2335          * first, we need to know whether the block is allocated already
2336          * preallocated blocks are unmapped but should treated
2337          * the same as allocated blocks.
2338          */
2339         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2340         if ((ret == 0) && !buffer_delay(bh_result)) {
2341                 /* the block isn't (pre)allocated yet, let's reserve space */
2342                 /*
2343                  * XXX: __block_prepare_write() unmaps passed block,
2344                  * is it OK?
2345                  */
2346                 ret = ext4_da_reserve_space(inode, 1);
2347                 if (ret)
2348                         /* not enough space to reserve */
2349                         return ret;
2350
2351                 map_bh(bh_result, inode->i_sb, invalid_block);
2352                 set_buffer_new(bh_result);
2353                 set_buffer_delay(bh_result);
2354         } else if (ret > 0) {
2355                 bh_result->b_size = (ret << inode->i_blkbits);
2356                 /*
2357                  * With sub-block writes into unwritten extents
2358                  * we also need to mark the buffer as new so that
2359                  * the unwritten parts of the buffer gets correctly zeroed.
2360                  */
2361                 if (buffer_unwritten(bh_result))
2362                         set_buffer_new(bh_result);
2363                 ret = 0;
2364         }
2365
2366         return ret;
2367 }
2368
2369 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2370 {
2371         /*
2372          * unmapped buffer is possible for holes.
2373          * delay buffer is possible with delayed allocation
2374          */
2375         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2376 }
2377
2378 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2379                                    struct buffer_head *bh_result, int create)
2380 {
2381         int ret = 0;
2382         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2383
2384         /*
2385          * we don't want to do block allocation in writepage
2386          * so call get_block_wrap with create = 0
2387          */
2388         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2389                                    bh_result, 0, 0, 0);
2390         if (ret > 0) {
2391                 bh_result->b_size = (ret << inode->i_blkbits);
2392                 ret = 0;
2393         }
2394         return ret;
2395 }
2396
2397 /*
2398  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2399  * get called via journal_submit_inode_data_buffers (no journal handle)
2400  * get called via shrink_page_list via pdflush (no journal handle)
2401  * or grab_page_cache when doing write_begin (have journal handle)
2402  */
2403 static int ext4_da_writepage(struct page *page,
2404                                 struct writeback_control *wbc)
2405 {
2406         int ret = 0;
2407         loff_t size;
2408         unsigned int len;
2409         struct buffer_head *page_bufs;
2410         struct inode *inode = page->mapping->host;
2411
2412         trace_mark(ext4_da_writepage,
2413                    "dev %s ino %lu page_index %lu",
2414                    inode->i_sb->s_id, inode->i_ino, page->index);
2415         size = i_size_read(inode);
2416         if (page->index == size >> PAGE_CACHE_SHIFT)
2417                 len = size & ~PAGE_CACHE_MASK;
2418         else
2419                 len = PAGE_CACHE_SIZE;
2420
2421         if (page_has_buffers(page)) {
2422                 page_bufs = page_buffers(page);
2423                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2424                                         ext4_bh_unmapped_or_delay)) {
2425                         /*
2426                          * We don't want to do  block allocation
2427                          * So redirty the page and return
2428                          * We may reach here when we do a journal commit
2429                          * via journal_submit_inode_data_buffers.
2430                          * If we don't have mapping block we just ignore
2431                          * them. We can also reach here via shrink_page_list
2432                          */
2433                         redirty_page_for_writepage(wbc, page);
2434                         unlock_page(page);
2435                         return 0;
2436                 }
2437         } else {
2438                 /*
2439                  * The test for page_has_buffers() is subtle:
2440                  * We know the page is dirty but it lost buffers. That means
2441                  * that at some moment in time after write_begin()/write_end()
2442                  * has been called all buffers have been clean and thus they
2443                  * must have been written at least once. So they are all
2444                  * mapped and we can happily proceed with mapping them
2445                  * and writing the page.
2446                  *
2447                  * Try to initialize the buffer_heads and check whether
2448                  * all are mapped and non delay. We don't want to
2449                  * do block allocation here.
2450                  */
2451                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2452                                                 ext4_normal_get_block_write);
2453                 if (!ret) {
2454                         page_bufs = page_buffers(page);
2455                         /* check whether all are mapped and non delay */
2456                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2457                                                 ext4_bh_unmapped_or_delay)) {
2458                                 redirty_page_for_writepage(wbc, page);
2459                                 unlock_page(page);
2460                                 return 0;
2461                         }
2462                 } else {
2463                         /*
2464                          * We can't do block allocation here
2465                          * so just redity the page and unlock
2466                          * and return
2467                          */
2468                         redirty_page_for_writepage(wbc, page);
2469                         unlock_page(page);
2470                         return 0;
2471                 }
2472                 /* now mark the buffer_heads as dirty and uptodate */
2473                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2474         }
2475
2476         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2477                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2478         else
2479                 ret = block_write_full_page(page,
2480                                                 ext4_normal_get_block_write,
2481                                                 wbc);
2482
2483         return ret;
2484 }
2485
2486 /*
2487  * This is called via ext4_da_writepages() to
2488  * calulate the total number of credits to reserve to fit
2489  * a single extent allocation into a single transaction,
2490  * ext4_da_writpeages() will loop calling this before
2491  * the block allocation.
2492  */
2493
2494 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2495 {
2496         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2497
2498         /*
2499          * With non-extent format the journal credit needed to
2500          * insert nrblocks contiguous block is dependent on
2501          * number of contiguous block. So we will limit
2502          * number of contiguous block to a sane value
2503          */
2504         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2505             (max_blocks > EXT4_MAX_TRANS_DATA))
2506                 max_blocks = EXT4_MAX_TRANS_DATA;
2507
2508         return ext4_chunk_trans_blocks(inode, max_blocks);
2509 }
2510
2511 static int ext4_da_writepages(struct address_space *mapping,
2512                               struct writeback_control *wbc)
2513 {
2514         pgoff_t index;
2515         int range_whole = 0;
2516         handle_t *handle = NULL;
2517         struct mpage_da_data mpd;
2518         struct inode *inode = mapping->host;
2519         int no_nrwrite_index_update;
2520         int pages_written = 0;
2521         long pages_skipped;
2522         int range_cyclic, cycled = 1, io_done = 0;
2523         int needed_blocks, ret = 0, nr_to_writebump = 0;
2524         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2525
2526         trace_mark(ext4_da_writepages,
2527                    "dev %s ino %lu nr_t_write %ld "
2528                    "pages_skipped %ld range_start %llu "
2529                    "range_end %llu nonblocking %d "
2530                    "for_kupdate %d for_reclaim %d "
2531                    "for_writepages %d range_cyclic %d",
2532                    inode->i_sb->s_id, inode->i_ino,
2533                    wbc->nr_to_write, wbc->pages_skipped,
2534                    (unsigned long long) wbc->range_start,
2535                    (unsigned long long) wbc->range_end,
2536                    wbc->nonblocking, wbc->for_kupdate,
2537                    wbc->for_reclaim, wbc->for_writepages,
2538                    wbc->range_cyclic);
2539
2540         /*
2541          * No pages to write? This is mainly a kludge to avoid starting
2542          * a transaction for special inodes like journal inode on last iput()
2543          * because that could violate lock ordering on umount
2544          */
2545         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2546                 return 0;
2547
2548         /*
2549          * If the filesystem has aborted, it is read-only, so return
2550          * right away instead of dumping stack traces later on that
2551          * will obscure the real source of the problem.  We test
2552          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2553          * the latter could be true if the filesystem is mounted
2554          * read-only, and in that case, ext4_da_writepages should
2555          * *never* be called, so if that ever happens, we would want
2556          * the stack trace.
2557          */
2558         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2559                 return -EROFS;
2560
2561         /*
2562          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2563          * This make sure small files blocks are allocated in
2564          * single attempt. This ensure that small files
2565          * get less fragmented.
2566          */
2567         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2568                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2569                 wbc->nr_to_write = sbi->s_mb_stream_request;
2570         }
2571         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2572                 range_whole = 1;
2573
2574         range_cyclic = wbc->range_cyclic;
2575         if (wbc->range_cyclic) {
2576                 index = mapping->writeback_index;
2577                 if (index)
2578                         cycled = 0;
2579                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2580                 wbc->range_end  = LLONG_MAX;
2581                 wbc->range_cyclic = 0;
2582         } else
2583                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2584
2585         mpd.wbc = wbc;
2586         mpd.inode = mapping->host;
2587
2588         /*
2589          * we don't want write_cache_pages to update
2590          * nr_to_write and writeback_index
2591          */
2592         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2593         wbc->no_nrwrite_index_update = 1;
2594         pages_skipped = wbc->pages_skipped;
2595
2596 retry:
2597         while (!ret && wbc->nr_to_write > 0) {
2598
2599                 /*
2600                  * we  insert one extent at a time. So we need
2601                  * credit needed for single extent allocation.
2602                  * journalled mode is currently not supported
2603                  * by delalloc
2604                  */
2605                 BUG_ON(ext4_should_journal_data(inode));
2606                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2607
2608                 /* start a new transaction*/
2609                 handle = ext4_journal_start(inode, needed_blocks);
2610                 if (IS_ERR(handle)) {
2611                         ret = PTR_ERR(handle);
2612                         printk(KERN_CRIT "%s: jbd2_start: "
2613                                "%ld pages, ino %lu; err %d\n", __func__,
2614                                 wbc->nr_to_write, inode->i_ino, ret);
2615                         dump_stack();
2616                         goto out_writepages;
2617                 }
2618
2619                 /*
2620                  * Now call __mpage_da_writepage to find the next
2621                  * contiguous region of logical blocks that need
2622                  * blocks to be allocated by ext4.  We don't actually
2623                  * submit the blocks for I/O here, even though
2624                  * write_cache_pages thinks it will, and will set the
2625                  * pages as clean for write before calling
2626                  * __mpage_da_writepage().
2627                  */
2628                 mpd.b_size = 0;
2629                 mpd.b_state = 0;
2630                 mpd.b_blocknr = 0;
2631                 mpd.first_page = 0;
2632                 mpd.next_page = 0;
2633                 mpd.io_done = 0;
2634                 mpd.pages_written = 0;
2635                 mpd.retval = 0;
2636                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2637                                         &mpd);
2638                 /*
2639                  * If we have a contigous extent of pages and we
2640                  * haven't done the I/O yet, map the blocks and submit
2641                  * them for I/O.
2642                  */
2643                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2644                         if (mpage_da_map_blocks(&mpd) == 0)
2645                                 mpage_da_submit_io(&mpd);
2646                         mpd.io_done = 1;
2647                         ret = MPAGE_DA_EXTENT_TAIL;
2648                 }
2649                 wbc->nr_to_write -= mpd.pages_written;
2650
2651                 ext4_journal_stop(handle);
2652
2653                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2654                         /* commit the transaction which would
2655                          * free blocks released in the transaction
2656                          * and try again
2657                          */
2658                         jbd2_journal_force_commit_nested(sbi->s_journal);
2659                         wbc->pages_skipped = pages_skipped;
2660                         ret = 0;
2661                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2662                         /*
2663                          * got one extent now try with
2664                          * rest of the pages
2665                          */
2666                         pages_written += mpd.pages_written;
2667                         wbc->pages_skipped = pages_skipped;
2668                         ret = 0;
2669                         io_done = 1;
2670                 } else if (wbc->nr_to_write)
2671                         /*
2672                          * There is no more writeout needed
2673                          * or we requested for a noblocking writeout
2674                          * and we found the device congested
2675                          */
2676                         break;
2677         }
2678         if (!io_done && !cycled) {
2679                 cycled = 1;
2680                 index = 0;
2681                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2682                 wbc->range_end  = mapping->writeback_index - 1;
2683                 goto retry;
2684         }
2685         if (pages_skipped != wbc->pages_skipped)
2686                 printk(KERN_EMERG "This should not happen leaving %s "
2687                                 "with nr_to_write = %ld ret = %d\n",
2688                                 __func__, wbc->nr_to_write, ret);
2689
2690         /* Update index */
2691         index += pages_written;
2692         wbc->range_cyclic = range_cyclic;
2693         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2694                 /*
2695                  * set the writeback_index so that range_cyclic
2696                  * mode will write it back later
2697                  */
2698                 mapping->writeback_index = index;
2699
2700 out_writepages:
2701         if (!no_nrwrite_index_update)
2702                 wbc->no_nrwrite_index_update = 0;
2703         wbc->nr_to_write -= nr_to_writebump;
2704         trace_mark(ext4_da_writepage_result,
2705                    "dev %s ino %lu ret %d pages_written %d "
2706                    "pages_skipped %ld congestion %d "
2707                    "more_io %d no_nrwrite_index_update %d",
2708                    inode->i_sb->s_id, inode->i_ino, ret,
2709                    pages_written, wbc->pages_skipped,
2710                    wbc->encountered_congestion, wbc->more_io,
2711                    wbc->no_nrwrite_index_update);
2712         return ret;
2713 }
2714
2715 #define FALL_BACK_TO_NONDELALLOC 1
2716 static int ext4_nonda_switch(struct super_block *sb)
2717 {
2718         s64 free_blocks, dirty_blocks;
2719         struct ext4_sb_info *sbi = EXT4_SB(sb);
2720
2721         /*
2722          * switch to non delalloc mode if we are running low
2723          * on free block. The free block accounting via percpu
2724          * counters can get slightly wrong with percpu_counter_batch getting
2725          * accumulated on each CPU without updating global counters
2726          * Delalloc need an accurate free block accounting. So switch
2727          * to non delalloc when we are near to error range.
2728          */
2729         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2730         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2731         if (2 * free_blocks < 3 * dirty_blocks ||
2732                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2733                 /*
2734                  * free block count is less that 150% of dirty blocks
2735                  * or free blocks is less that watermark
2736                  */
2737                 return 1;
2738         }
2739         return 0;
2740 }
2741
2742 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2743                                 loff_t pos, unsigned len, unsigned flags,
2744                                 struct page **pagep, void **fsdata)
2745 {
2746         int ret, retries = 0;
2747         struct page *page;
2748         pgoff_t index;
2749         unsigned from, to;
2750         struct inode *inode = mapping->host;
2751         handle_t *handle;
2752
2753         index = pos >> PAGE_CACHE_SHIFT;
2754         from = pos & (PAGE_CACHE_SIZE - 1);
2755         to = from + len;
2756
2757         if (ext4_nonda_switch(inode->i_sb)) {
2758                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2759                 return ext4_write_begin(file, mapping, pos,
2760                                         len, flags, pagep, fsdata);
2761         }
2762         *fsdata = (void *)0;
2763
2764         trace_mark(ext4_da_write_begin,
2765                    "dev %s ino %lu pos %llu len %u flags %u",
2766                    inode->i_sb->s_id, inode->i_ino,
2767                    (unsigned long long) pos, len, flags);
2768 retry:
2769         /*
2770          * With delayed allocation, we don't log the i_disksize update
2771          * if there is delayed block allocation. But we still need
2772          * to journalling the i_disksize update if writes to the end
2773          * of file which has an already mapped buffer.
2774          */
2775         handle = ext4_journal_start(inode, 1);
2776         if (IS_ERR(handle)) {
2777                 ret = PTR_ERR(handle);
2778                 goto out;
2779         }
2780         /* We cannot recurse into the filesystem as the transaction is already
2781          * started */
2782         flags |= AOP_FLAG_NOFS;
2783
2784         page = grab_cache_page_write_begin(mapping, index, flags);
2785         if (!page) {
2786                 ext4_journal_stop(handle);
2787                 ret = -ENOMEM;
2788                 goto out;
2789         }
2790         *pagep = page;
2791
2792         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2793                                                         ext4_da_get_block_prep);
2794         if (ret < 0) {
2795                 unlock_page(page);
2796                 ext4_journal_stop(handle);
2797                 page_cache_release(page);
2798                 /*
2799                  * block_write_begin may have instantiated a few blocks
2800                  * outside i_size.  Trim these off again. Don't need
2801                  * i_size_read because we hold i_mutex.
2802                  */
2803                 if (pos + len > inode->i_size)
2804                         vmtruncate(inode, inode->i_size);
2805         }
2806
2807         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2808                 goto retry;
2809 out:
2810         return ret;
2811 }
2812
2813 /*
2814  * Check if we should update i_disksize
2815  * when write to the end of file but not require block allocation
2816  */
2817 static int ext4_da_should_update_i_disksize(struct page *page,
2818                                          unsigned long offset)
2819 {
2820         struct buffer_head *bh;
2821         struct inode *inode = page->mapping->host;
2822         unsigned int idx;
2823         int i;
2824
2825         bh = page_buffers(page);
2826         idx = offset >> inode->i_blkbits;
2827
2828         for (i = 0; i < idx; i++)
2829                 bh = bh->b_this_page;
2830
2831         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2832                 return 0;
2833         return 1;
2834 }
2835
2836 static int ext4_da_write_end(struct file *file,
2837                                 struct address_space *mapping,
2838                                 loff_t pos, unsigned len, unsigned copied,
2839                                 struct page *page, void *fsdata)
2840 {
2841         struct inode *inode = mapping->host;
2842         int ret = 0, ret2;
2843         handle_t *handle = ext4_journal_current_handle();
2844         loff_t new_i_size;
2845         unsigned long start, end;
2846         int write_mode = (int)(unsigned long)fsdata;
2847
2848         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2849                 if (ext4_should_order_data(inode)) {
2850                         return ext4_ordered_write_end(file, mapping, pos,
2851                                         len, copied, page, fsdata);
2852                 } else if (ext4_should_writeback_data(inode)) {
2853                         return ext4_writeback_write_end(file, mapping, pos,
2854                                         len, copied, page, fsdata);
2855                 } else {
2856                         BUG();
2857                 }
2858         }
2859
2860         trace_mark(ext4_da_write_end,
2861                    "dev %s ino %lu pos %llu len %u copied %u",
2862                    inode->i_sb->s_id, inode->i_ino,
2863                    (unsigned long long) pos, len, copied);
2864         start = pos & (PAGE_CACHE_SIZE - 1);
2865         end = start + copied - 1;
2866
2867         /*
2868          * generic_write_end() will run mark_inode_dirty() if i_size
2869          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2870          * into that.
2871          */
2872
2873         new_i_size = pos + copied;
2874         if (new_i_size > EXT4_I(inode)->i_disksize) {
2875                 if (ext4_da_should_update_i_disksize(page, end)) {
2876                         down_write(&EXT4_I(inode)->i_data_sem);
2877                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2878                                 /*
2879                                  * Updating i_disksize when extending file
2880                                  * without needing block allocation
2881                                  */
2882                                 if (ext4_should_order_data(inode))
2883                                         ret = ext4_jbd2_file_inode(handle,
2884                                                                    inode);
2885
2886                                 EXT4_I(inode)->i_disksize = new_i_size;
2887                         }
2888                         up_write(&EXT4_I(inode)->i_data_sem);
2889                         /* We need to mark inode dirty even if
2890                          * new_i_size is less that inode->i_size
2891                          * bu greater than i_disksize.(hint delalloc)
2892                          */
2893                         ext4_mark_inode_dirty(handle, inode);
2894                 }
2895         }
2896         ret2 = generic_write_end(file, mapping, pos, len, copied,
2897                                                         page, fsdata);
2898         copied = ret2;
2899         if (ret2 < 0)
2900                 ret = ret2;
2901         ret2 = ext4_journal_stop(handle);
2902         if (!ret)
2903                 ret = ret2;
2904
2905         return ret ? ret : copied;
2906 }
2907
2908 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2909 {
2910         /*
2911          * Drop reserved blocks
2912          */
2913         BUG_ON(!PageLocked(page));
2914         if (!page_has_buffers(page))
2915                 goto out;
2916
2917         ext4_da_page_release_reservation(page, offset);
2918
2919 out:
2920         ext4_invalidatepage(page, offset);
2921
2922         return;
2923 }
2924
2925 /*
2926  * Force all delayed allocation blocks to be allocated for a given inode.
2927  */
2928 int ext4_alloc_da_blocks(struct inode *inode)
2929 {
2930         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2931             !EXT4_I(inode)->i_reserved_meta_blocks)
2932                 return 0;
2933
2934         /*
2935          * We do something simple for now.  The filemap_flush() will
2936          * also start triggering a write of the data blocks, which is
2937          * not strictly speaking necessary (and for users of
2938          * laptop_mode, not even desirable).  However, to do otherwise
2939          * would require replicating code paths in:
2940          * 
2941          * ext4_da_writepages() ->
2942          *    write_cache_pages() ---> (via passed in callback function)
2943          *        __mpage_da_writepage() -->
2944          *           mpage_add_bh_to_extent()
2945          *           mpage_da_map_blocks()
2946          *
2947          * The problem is that write_cache_pages(), located in
2948          * mm/page-writeback.c, marks pages clean in preparation for
2949          * doing I/O, which is not desirable if we're not planning on
2950          * doing I/O at all.
2951          *
2952          * We could call write_cache_pages(), and then redirty all of
2953          * the pages by calling redirty_page_for_writeback() but that
2954          * would be ugly in the extreme.  So instead we would need to
2955          * replicate parts of the code in the above functions,
2956          * simplifying them becuase we wouldn't actually intend to
2957          * write out the pages, but rather only collect contiguous
2958          * logical block extents, call the multi-block allocator, and
2959          * then update the buffer heads with the block allocations.
2960          * 
2961          * For now, though, we'll cheat by calling filemap_flush(),
2962          * which will map the blocks, and start the I/O, but not
2963          * actually wait for the I/O to complete.
2964          */
2965         return filemap_flush(inode->i_mapping);
2966 }
2967
2968 /*
2969  * bmap() is special.  It gets used by applications such as lilo and by
2970  * the swapper to find the on-disk block of a specific piece of data.
2971  *
2972  * Naturally, this is dangerous if the block concerned is still in the
2973  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2974  * filesystem and enables swap, then they may get a nasty shock when the
2975  * data getting swapped to that swapfile suddenly gets overwritten by
2976  * the original zero's written out previously to the journal and
2977  * awaiting writeback in the kernel's buffer cache.
2978  *
2979  * So, if we see any bmap calls here on a modified, data-journaled file,
2980  * take extra steps to flush any blocks which might be in the cache.
2981  */
2982 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2983 {
2984         struct inode *inode = mapping->host;
2985         journal_t *journal;
2986         int err;
2987
2988         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2989                         test_opt(inode->i_sb, DELALLOC)) {
2990                 /*
2991                  * With delalloc we want to sync the file
2992                  * so that we can make sure we allocate
2993                  * blocks for file
2994                  */
2995                 filemap_write_and_wait(mapping);
2996         }
2997
2998         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2999                 /*
3000                  * This is a REALLY heavyweight approach, but the use of
3001                  * bmap on dirty files is expected to be extremely rare:
3002                  * only if we run lilo or swapon on a freshly made file
3003                  * do we expect this to happen.
3004                  *
3005                  * (bmap requires CAP_SYS_RAWIO so this does not
3006                  * represent an unprivileged user DOS attack --- we'd be
3007                  * in trouble if mortal users could trigger this path at
3008                  * will.)
3009                  *
3010                  * NB. EXT4_STATE_JDATA is not set on files other than
3011                  * regular files.  If somebody wants to bmap a directory
3012                  * or symlink and gets confused because the buffer
3013                  * hasn't yet been flushed to disk, they deserve
3014                  * everything they get.
3015                  */
3016
3017                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3018                 journal = EXT4_JOURNAL(inode);
3019                 jbd2_journal_lock_updates(journal);
3020                 err = jbd2_journal_flush(journal);
3021                 jbd2_journal_unlock_updates(journal);
3022
3023                 if (err)
3024                         return 0;
3025         }
3026
3027         return generic_block_bmap(mapping, block, ext4_get_block);
3028 }
3029
3030 static int bget_one(handle_t *handle, struct buffer_head *bh)
3031 {
3032         get_bh(bh);
3033         return 0;
3034 }
3035
3036 static int bput_one(handle_t *handle, struct buffer_head *bh)
3037 {
3038         put_bh(bh);
3039         return 0;
3040 }
3041
3042 /*
3043  * Note that we don't need to start a transaction unless we're journaling data
3044  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3045  * need to file the inode to the transaction's list in ordered mode because if
3046  * we are writing back data added by write(), the inode is already there and if
3047  * we are writing back data modified via mmap(), noone guarantees in which
3048  * transaction the data will hit the disk. In case we are journaling data, we
3049  * cannot start transaction directly because transaction start ranks above page
3050  * lock so we have to do some magic.
3051  *
3052  * In all journaling modes block_write_full_page() will start the I/O.
3053  *
3054  * Problem:
3055  *
3056  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3057  *              ext4_writepage()
3058  *
3059  * Similar for:
3060  *
3061  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3062  *
3063  * Same applies to ext4_get_block().  We will deadlock on various things like
3064  * lock_journal and i_data_sem
3065  *
3066  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3067  * allocations fail.
3068  *
3069  * 16May01: If we're reentered then journal_current_handle() will be
3070  *          non-zero. We simply *return*.
3071  *
3072  * 1 July 2001: @@@ FIXME:
3073  *   In journalled data mode, a data buffer may be metadata against the
3074  *   current transaction.  But the same file is part of a shared mapping
3075  *   and someone does a writepage() on it.
3076  *
3077  *   We will move the buffer onto the async_data list, but *after* it has
3078  *   been dirtied. So there's a small window where we have dirty data on
3079  *   BJ_Metadata.
3080  *
3081  *   Note that this only applies to the last partial page in the file.  The
3082  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3083  *   broken code anyway: it's wrong for msync()).
3084  *
3085  *   It's a rare case: affects the final partial page, for journalled data
3086  *   where the file is subject to bith write() and writepage() in the same
3087  *   transction.  To fix it we'll need a custom block_write_full_page().
3088  *   We'll probably need that anyway for journalling writepage() output.
3089  *
3090  * We don't honour synchronous mounts for writepage().  That would be
3091  * disastrous.  Any write() or metadata operation will sync the fs for
3092  * us.
3093  *
3094  */
3095 static int __ext4_normal_writepage(struct page *page,
3096                                 struct writeback_control *wbc)
3097 {
3098         struct inode *inode = page->mapping->host;
3099
3100         if (test_opt(inode->i_sb, NOBH))
3101                 return nobh_writepage(page,
3102                                         ext4_normal_get_block_write, wbc);
3103         else
3104                 return block_write_full_page(page,
3105                                                 ext4_normal_get_block_write,
3106                                                 wbc);
3107 }
3108
3109 static int ext4_normal_writepage(struct page *page,
3110                                 struct writeback_control *wbc)
3111 {
3112         struct inode *inode = page->mapping->host;
3113         loff_t size = i_size_read(inode);
3114         loff_t len;
3115
3116         trace_mark(ext4_normal_writepage,
3117                    "dev %s ino %lu page_index %lu",
3118                    inode->i_sb->s_id, inode->i_ino, page->index);
3119         J_ASSERT(PageLocked(page));
3120         if (page->index == size >> PAGE_CACHE_SHIFT)
3121                 len = size & ~PAGE_CACHE_MASK;
3122         else
3123                 len = PAGE_CACHE_SIZE;
3124
3125         if (page_has_buffers(page)) {
3126                 /* if page has buffers it should all be mapped
3127                  * and allocated. If there are not buffers attached
3128                  * to the page we know the page is dirty but it lost
3129                  * buffers. That means that at some moment in time
3130                  * after write_begin() / write_end() has been called
3131                  * all buffers have been clean and thus they must have been
3132                  * written at least once. So they are all mapped and we can
3133                  * happily proceed with mapping them and writing the page.
3134                  */
3135                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3136                                         ext4_bh_unmapped_or_delay));
3137         }
3138
3139         if (!ext4_journal_current_handle())
3140                 return __ext4_normal_writepage(page, wbc);
3141
3142         redirty_page_for_writepage(wbc, page);
3143         unlock_page(page);
3144         return 0;
3145 }
3146
3147 static int __ext4_journalled_writepage(struct page *page,
3148                                 struct writeback_control *wbc)
3149 {
3150         struct address_space *mapping = page->mapping;
3151         struct inode *inode = mapping->host;
3152         struct buffer_head *page_bufs;
3153         handle_t *handle = NULL;
3154         int ret = 0;
3155         int err;
3156
3157         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3158                                         ext4_normal_get_block_write);
3159         if (ret != 0)
3160                 goto out_unlock;
3161
3162         page_bufs = page_buffers(page);
3163         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3164                                                                 bget_one);
3165         /* As soon as we unlock the page, it can go away, but we have
3166          * references to buffers so we are safe */
3167         unlock_page(page);
3168
3169         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3170         if (IS_ERR(handle)) {
3171                 ret = PTR_ERR(handle);
3172                 goto out;
3173         }
3174
3175         ret = walk_page_buffers(handle, page_bufs, 0,
3176                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3177
3178         err = walk_page_buffers(handle, page_bufs, 0,
3179                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3180         if (ret == 0)
3181                 ret = err;
3182         err = ext4_journal_stop(handle);
3183         if (!ret)
3184                 ret = err;
3185
3186         walk_page_buffers(handle, page_bufs, 0,
3187                                 PAGE_CACHE_SIZE, NULL, bput_one);
3188         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3189         goto out;
3190
3191 out_unlock:
3192         unlock_page(page);
3193 out:
3194         return ret;
3195 }
3196
3197 static int ext4_journalled_writepage(struct page *page,
3198                                 struct writeback_control *wbc)
3199 {
3200         struct inode *inode = page->mapping->host;
3201         loff_t size = i_size_read(inode);
3202         loff_t len;
3203
3204         trace_mark(ext4_journalled_writepage,
3205                    "dev %s ino %lu page_index %lu",
3206                    inode->i_sb->s_id, inode->i_ino, page->index);
3207         J_ASSERT(PageLocked(page));
3208         if (page->index == size >> PAGE_CACHE_SHIFT)
3209                 len = size & ~PAGE_CACHE_MASK;
3210         else
3211                 len = PAGE_CACHE_SIZE;
3212
3213         if (page_has_buffers(page)) {
3214                 /* if page has buffers it should all be mapped
3215                  * and allocated. If there are not buffers attached
3216                  * to the page we know the page is dirty but it lost
3217                  * buffers. That means that at some moment in time
3218                  * after write_begin() / write_end() has been called
3219                  * all buffers have been clean and thus they must have been
3220                  * written at least once. So they are all mapped and we can
3221                  * happily proceed with mapping them and writing the page.
3222                  */
3223                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3224                                         ext4_bh_unmapped_or_delay));
3225         }
3226
3227         if (ext4_journal_current_handle())
3228                 goto no_write;
3229
3230         if (PageChecked(page)) {
3231                 /*
3232                  * It's mmapped pagecache.  Add buffers and journal it.  There
3233                  * doesn't seem much point in redirtying the page here.
3234                  */
3235                 ClearPageChecked(page);
3236                 return __ext4_journalled_writepage(page, wbc);
3237         } else {
3238                 /*
3239                  * It may be a page full of checkpoint-mode buffers.  We don't
3240                  * really know unless we go poke around in the buffer_heads.
3241                  * But block_write_full_page will do the right thing.
3242                  */
3243                 return block_write_full_page(page,
3244                                                 ext4_normal_get_block_write,
3245                                                 wbc);
3246         }
3247 no_write:
3248         redirty_page_for_writepage(wbc, page);
3249         unlock_page(page);
3250         return 0;
3251 }
3252
3253 static int ext4_readpage(struct file *file, struct page *page)
3254 {
3255         return mpage_readpage(page, ext4_get_block);
3256 }
3257
3258 static int
3259 ext4_readpages(struct file *file, struct address_space *mapping,
3260                 struct list_head *pages, unsigned nr_pages)
3261 {
3262         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3263 }
3264
3265 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3266 {
3267         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3268
3269         /*
3270          * If it's a full truncate we just forget about the pending dirtying
3271          */
3272         if (offset == 0)
3273                 ClearPageChecked(page);
3274
3275         if (journal)
3276                 jbd2_journal_invalidatepage(journal, page, offset);
3277         else
3278                 block_invalidatepage(page, offset);
3279 }
3280
3281 static int ext4_releasepage(struct page *page, gfp_t wait)
3282 {
3283         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3284
3285         WARN_ON(PageChecked(page));
3286         if (!page_has_buffers(page))
3287                 return 0;
3288         if (journal)
3289                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3290         else
3291                 return try_to_free_buffers(page);
3292 }
3293
3294 /*
3295  * If the O_DIRECT write will extend the file then add this inode to the
3296  * orphan list.  So recovery will truncate it back to the original size
3297  * if the machine crashes during the write.
3298  *
3299  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3300  * crashes then stale disk data _may_ be exposed inside the file. But current
3301  * VFS code falls back into buffered path in that case so we are safe.
3302  */
3303 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3304                         const struct iovec *iov, loff_t offset,
3305                         unsigned long nr_segs)
3306 {
3307         struct file *file = iocb->ki_filp;
3308         struct inode *inode = file->f_mapping->host;
3309         struct ext4_inode_info *ei = EXT4_I(inode);
3310         handle_t *handle;
3311         ssize_t ret;
3312         int orphan = 0;
3313         size_t count = iov_length(iov, nr_segs);
3314
3315         if (rw == WRITE) {
3316                 loff_t final_size = offset + count;
3317
3318                 if (final_size > inode->i_size) {
3319                         /* Credits for sb + inode write */
3320                         handle = ext4_journal_start(inode, 2);
3321                         if (IS_ERR(handle)) {
3322                                 ret = PTR_ERR(handle);
3323                                 goto out;
3324                         }
3325                         ret = ext4_orphan_add(handle, inode);
3326                         if (ret) {
3327                                 ext4_journal_stop(handle);
3328                                 goto out;
3329                         }
3330                         orphan = 1;
3331                         ei->i_disksize = inode->i_size;
3332                         ext4_journal_stop(handle);
3333                 }
3334         }
3335
3336         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3337                                  offset, nr_segs,
3338                                  ext4_get_block, NULL);
3339
3340         if (orphan) {
3341                 int err;
3342
3343                 /* Credits for sb + inode write */
3344                 handle = ext4_journal_start(inode, 2);
3345                 if (IS_ERR(handle)) {
3346                         /* This is really bad luck. We've written the data
3347                          * but cannot extend i_size. Bail out and pretend
3348                          * the write failed... */
3349                         ret = PTR_ERR(handle);
3350                         goto out;
3351                 }
3352                 if (inode->i_nlink)
3353                         ext4_orphan_del(handle, inode);
3354                 if (ret > 0) {
3355                         loff_t end = offset + ret;
3356                         if (end > inode->i_size) {
3357                                 ei->i_disksize = end;
3358                                 i_size_write(inode, end);
3359                                 /*
3360                                  * We're going to return a positive `ret'
3361                                  * here due to non-zero-length I/O, so there's
3362                                  * no way of reporting error returns from
3363                                  * ext4_mark_inode_dirty() to userspace.  So
3364                                  * ignore it.
3365                                  */
3366                                 ext4_mark_inode_dirty(handle, inode);
3367                         }
3368                 }
3369                 err = ext4_journal_stop(handle);
3370                 if (ret == 0)
3371                         ret = err;
3372         }
3373 out:
3374         return ret;
3375 }
3376
3377 /*
3378  * Pages can be marked dirty completely asynchronously from ext4's journalling
3379  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3380  * much here because ->set_page_dirty is called under VFS locks.  The page is
3381  * not necessarily locked.
3382  *
3383  * We cannot just dirty the page and leave attached buffers clean, because the
3384  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3385  * or jbddirty because all the journalling code will explode.
3386  *
3387  * So what we do is to mark the page "pending dirty" and next time writepage
3388  * is called, propagate that into the buffers appropriately.
3389  */
3390 static int ext4_journalled_set_page_dirty(struct page *page)
3391 {
3392         SetPageChecked(page);
3393         return __set_page_dirty_nobuffers(page);
3394 }
3395
3396 static const struct address_space_operations ext4_ordered_aops = {
3397         .readpage               = ext4_readpage,
3398         .readpages              = ext4_readpages,
3399         .writepage              = ext4_normal_writepage,
3400         .sync_page              = block_sync_page,
3401         .write_begin            = ext4_write_begin,
3402         .write_end              = ext4_ordered_write_end,
3403         .bmap                   = ext4_bmap,
3404         .invalidatepage         = ext4_invalidatepage,
3405         .releasepage            = ext4_releasepage,
3406         .direct_IO              = ext4_direct_IO,
3407         .migratepage            = buffer_migrate_page,
3408         .is_partially_uptodate  = block_is_partially_uptodate,
3409 };
3410
3411 static const struct address_space_operations ext4_writeback_aops = {
3412         .readpage               = ext4_readpage,
3413         .readpages              = ext4_readpages,
3414         .writepage              = ext4_normal_writepage,
3415         .sync_page              = block_sync_page,
3416         .write_begin            = ext4_write_begin,
3417         .write_end              = ext4_writeback_write_end,
3418         .bmap                   = ext4_bmap,
3419         .invalidatepage         = ext4_invalidatepage,
3420         .releasepage            = ext4_releasepage,
3421         .direct_IO              = ext4_direct_IO,
3422         .migratepage            = buffer_migrate_page,
3423         .is_partially_uptodate  = block_is_partially_uptodate,
3424 };
3425
3426 static const struct address_space_operations ext4_journalled_aops = {
3427         .readpage               = ext4_readpage,
3428         .readpages              = ext4_readpages,
3429         .writepage              = ext4_journalled_writepage,
3430         .sync_page              = block_sync_page,
3431         .write_begin            = ext4_write_begin,
3432         .write_end              = ext4_journalled_write_end,
3433         .set_page_dirty         = ext4_journalled_set_page_dirty,
3434         .bmap                   = ext4_bmap,
3435         .invalidatepage         = ext4_invalidatepage,
3436         .releasepage            = ext4_releasepage,
3437         .is_partially_uptodate  = block_is_partially_uptodate,
3438 };
3439
3440 static const struct address_space_operations ext4_da_aops = {
3441         .readpage               = ext4_readpage,
3442         .readpages              = ext4_readpages,
3443         .writepage              = ext4_da_writepage,
3444         .writepages             = ext4_da_writepages,
3445         .sync_page              = block_sync_page,
3446         .write_begin            = ext4_da_write_begin,
3447         .write_end              = ext4_da_write_end,
3448         .bmap                   = ext4_bmap,
3449         .invalidatepage         = ext4_da_invalidatepage,
3450         .releasepage            = ext4_releasepage,
3451         .direct_IO              = ext4_direct_IO,
3452         .migratepage            = buffer_migrate_page,
3453         .is_partially_uptodate  = block_is_partially_uptodate,
3454 };
3455
3456 void ext4_set_aops(struct inode *inode)
3457 {
3458         if (ext4_should_order_data(inode) &&
3459                 test_opt(inode->i_sb, DELALLOC))
3460                 inode->i_mapping->a_ops = &ext4_da_aops;
3461         else if (ext4_should_order_data(inode))
3462                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3463         else if (ext4_should_writeback_data(inode) &&
3464                  test_opt(inode->i_sb, DELALLOC))
3465                 inode->i_mapping->a_ops = &ext4_da_aops;
3466         else if (ext4_should_writeback_data(inode))
3467                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3468         else
3469                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3470 }
3471
3472 /*
3473  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3474  * up to the end of the block which corresponds to `from'.
3475  * This required during truncate. We need to physically zero the tail end
3476  * of that block so it doesn't yield old data if the file is later grown.
3477  */
3478 int ext4_block_truncate_page(handle_t *handle,
3479                 struct address_space *mapping, loff_t from)
3480 {
3481         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3482         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3483         unsigned blocksize, length, pos;
3484         ext4_lblk_t iblock;
3485         struct inode *inode = mapping->host;
3486         struct buffer_head *bh;
3487         struct page *page;
3488         int err = 0;
3489
3490         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3491         if (!page)
3492                 return -EINVAL;
3493
3494         blocksize = inode->i_sb->s_blocksize;
3495         length = blocksize - (offset & (blocksize - 1));
3496         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3497
3498         /*
3499          * For "nobh" option,  we can only work if we don't need to
3500          * read-in the page - otherwise we create buffers to do the IO.
3501          */
3502         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3503              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3504                 zero_user(page, offset, length);
3505                 set_page_dirty(page);
3506                 goto unlock;
3507         }
3508
3509         if (!page_has_buffers(page))
3510                 create_empty_buffers(page, blocksize, 0);
3511
3512         /* Find the buffer that contains "offset" */
3513         bh = page_buffers(page);
3514         pos = blocksize;
3515         while (offset >= pos) {
3516                 bh = bh->b_this_page;
3517                 iblock++;
3518                 pos += blocksize;
3519         }
3520
3521         err = 0;
3522         if (buffer_freed(bh)) {
3523                 BUFFER_TRACE(bh, "freed: skip");
3524                 goto unlock;
3525         }
3526
3527         if (!buffer_mapped(bh)) {
3528                 BUFFER_TRACE(bh, "unmapped");
3529                 ext4_get_block(inode, iblock, bh, 0);
3530                 /* unmapped? It's a hole - nothing to do */
3531                 if (!buffer_mapped(bh)) {
3532                         BUFFER_TRACE(bh, "still unmapped");
3533                         goto unlock;
3534                 }
3535         }
3536
3537         /* Ok, it's mapped. Make sure it's up-to-date */
3538         if (PageUptodate(page))
3539                 set_buffer_uptodate(bh);
3540
3541         if (!buffer_uptodate(bh)) {
3542                 err = -EIO;
3543                 ll_rw_block(READ, 1, &bh);
3544                 wait_on_buffer(bh);
3545                 /* Uhhuh. Read error. Complain and punt. */
3546                 if (!buffer_uptodate(bh))
3547                         goto unlock;
3548         }
3549
3550         if (ext4_should_journal_data(inode)) {
3551                 BUFFER_TRACE(bh, "get write access");
3552                 err = ext4_journal_get_write_access(handle, bh);
3553                 if (err)
3554                         goto unlock;
3555         }
3556
3557         zero_user(page, offset, length);
3558
3559         BUFFER_TRACE(bh, "zeroed end of block");
3560
3561         err = 0;
3562         if (ext4_should_journal_data(inode)) {
3563                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3564         } else {
3565                 if (ext4_should_order_data(inode))
3566                         err = ext4_jbd2_file_inode(handle, inode);
3567                 mark_buffer_dirty(bh);
3568         }
3569
3570 unlock:
3571         unlock_page(page);
3572         page_cache_release(page);
3573         return err;
3574 }
3575
3576 /*
3577  * Probably it should be a library function... search for first non-zero word
3578  * or memcmp with zero_page, whatever is better for particular architecture.
3579  * Linus?
3580  */
3581 static inline int all_zeroes(__le32 *p, __le32 *q)
3582 {
3583         while (p < q)
3584                 if (*p++)
3585                         return 0;
3586         return 1;
3587 }
3588
3589 /**
3590  *      ext4_find_shared - find the indirect blocks for partial truncation.
3591  *      @inode:   inode in question
3592  *      @depth:   depth of the affected branch
3593  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3594  *      @chain:   place to store the pointers to partial indirect blocks
3595  *      @top:     place to the (detached) top of branch
3596  *
3597  *      This is a helper function used by ext4_truncate().
3598  *
3599  *      When we do truncate() we may have to clean the ends of several
3600  *      indirect blocks but leave the blocks themselves alive. Block is
3601  *      partially truncated if some data below the new i_size is refered
3602  *      from it (and it is on the path to the first completely truncated
3603  *      data block, indeed).  We have to free the top of that path along
3604  *      with everything to the right of the path. Since no allocation
3605  *      past the truncation point is possible until ext4_truncate()
3606  *      finishes, we may safely do the latter, but top of branch may
3607  *      require special attention - pageout below the truncation point
3608  *      might try to populate it.
3609  *
3610  *      We atomically detach the top of branch from the tree, store the
3611  *      block number of its root in *@top, pointers to buffer_heads of
3612  *      partially truncated blocks - in @chain[].bh and pointers to
3613  *      their last elements that should not be removed - in
3614  *      @chain[].p. Return value is the pointer to last filled element
3615  *      of @chain.
3616  *
3617  *      The work left to caller to do the actual freeing of subtrees:
3618  *              a) free the subtree starting from *@top
3619  *              b) free the subtrees whose roots are stored in
3620  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3621  *              c) free the subtrees growing from the inode past the @chain[0].
3622  *                      (no partially truncated stuff there).  */
3623
3624 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3625                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3626 {
3627         Indirect *partial, *p;
3628         int k, err;
3629
3630         *top = 0;
3631         /* Make k index the deepest non-null offest + 1 */
3632         for (k = depth; k > 1 && !offsets[k-1]; k--)
3633                 ;
3634         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3635         /* Writer: pointers */
3636         if (!partial)
3637                 partial = chain + k-1;
3638         /*
3639          * If the branch acquired continuation since we've looked at it -
3640          * fine, it should all survive and (new) top doesn't belong to us.
3641          */
3642         if (!partial->key && *partial->p)
3643                 /* Writer: end */
3644                 goto no_top;
3645         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3646                 ;
3647         /*
3648          * OK, we've found the last block that must survive. The rest of our
3649          * branch should be detached before unlocking. However, if that rest
3650          * of branch is all ours and does not grow immediately from the inode
3651          * it's easier to cheat and just decrement partial->p.
3652          */
3653         if (p == chain + k - 1 && p > chain) {
3654                 p->p--;
3655         } else {
3656                 *top = *p->p;
3657                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3658 #if 0
3659                 *p->p = 0;
3660 #endif
3661         }
3662         /* Writer: end */
3663
3664         while (partial > p) {
3665                 brelse(partial->bh);
3666                 partial--;
3667         }
3668 no_top:
3669         return partial;
3670 }
3671
3672 /*
3673  * Zero a number of block pointers in either an inode or an indirect block.
3674  * If we restart the transaction we must again get write access to the
3675  * indirect block for further modification.
3676  *
3677  * We release `count' blocks on disk, but (last - first) may be greater
3678  * than `count' because there can be holes in there.
3679  */
3680 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3681                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3682                 unsigned long count, __le32 *first, __le32 *last)
3683 {
3684         __le32 *p;
3685         if (try_to_extend_transaction(handle, inode)) {
3686                 if (bh) {
3687                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3688                         ext4_handle_dirty_metadata(handle, inode, bh);
3689                 }
3690                 ext4_mark_inode_dirty(handle, inode);
3691                 ext4_journal_test_restart(handle, inode);
3692                 if (bh) {
3693                         BUFFER_TRACE(bh, "retaking write access");
3694                         ext4_journal_get_write_access(handle, bh);
3695                 }
3696         }
3697
3698         /*
3699          * Any buffers which are on the journal will be in memory. We find
3700          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3701          * on them.  We've already detached each block from the file, so
3702          * bforget() in jbd2_journal_forget() should be safe.
3703          *
3704          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3705          */
3706         for (p = first; p < last; p++) {
3707                 u32 nr = le32_to_cpu(*p);
3708                 if (nr) {
3709                         struct buffer_head *tbh;
3710
3711                         *p = 0;
3712                         tbh = sb_find_get_block(inode->i_sb, nr);
3713                         ext4_forget(handle, 0, inode, tbh, nr);
3714                 }
3715         }
3716
3717         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3718 }
3719
3720 /**
3721  * ext4_free_data - free a list of data blocks
3722  * @handle:     handle for this transaction
3723  * @inode:      inode we are dealing with
3724  * @this_bh:    indirect buffer_head which contains *@first and *@last
3725  * @first:      array of block numbers
3726  * @last:       points immediately past the end of array
3727  *
3728  * We are freeing all blocks refered from that array (numbers are stored as
3729  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3730  *
3731  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3732  * blocks are contiguous then releasing them at one time will only affect one
3733  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3734  * actually use a lot of journal space.
3735  *
3736  * @this_bh will be %NULL if @first and @last point into the inode's direct
3737  * block pointers.
3738  */
3739 static void ext4_free_data(handle_t *handle, struct inode *inode,
3740                            struct buffer_head *this_bh,
3741                            __le32 *first, __le32 *last)
3742 {
3743         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3744         unsigned long count = 0;            /* Number of blocks in the run */
3745         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3746                                                corresponding to
3747                                                block_to_free */
3748         ext4_fsblk_t nr;                    /* Current block # */
3749         __le32 *p;                          /* Pointer into inode/ind
3750                                                for current block */
3751         int err;
3752
3753         if (this_bh) {                          /* For indirect block */
3754                 BUFFER_TRACE(this_bh, "get_write_access");
3755                 err = ext4_journal_get_write_access(handle, this_bh);
3756                 /* Important: if we can't update the indirect pointers
3757                  * to the blocks, we can't free them. */
3758                 if (err)
3759                         return;
3760         }
3761
3762         for (p = first; p < last; p++) {
3763                 nr = le32_to_cpu(*p);
3764                 if (nr) {
3765                         /* accumulate blocks to free if they're contiguous */
3766                         if (count == 0) {
3767                                 block_to_free = nr;
3768                                 block_to_free_p = p;
3769                                 count = 1;
3770                         } else if (nr == block_to_free + count) {
3771                                 count++;
3772                         } else {
3773                                 ext4_clear_blocks(handle, inode, this_bh,
3774                                                   block_to_free,
3775                                                   count, block_to_free_p, p);
3776                                 block_to_free = nr;
3777                                 block_to_free_p = p;
3778                                 count = 1;
3779                         }
3780                 }
3781         }
3782
3783         if (count > 0)
3784                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3785                                   count, block_to_free_p, p);
3786
3787         if (this_bh) {
3788                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3789
3790                 /*
3791                  * The buffer head should have an attached journal head at this
3792                  * point. However, if the data is corrupted and an indirect
3793                  * block pointed to itself, it would have been detached when
3794                  * the block was cleared. Check for this instead of OOPSing.
3795                  */
3796                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3797                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3798                 else
3799                         ext4_error(inode->i_sb, __func__,
3800                                    "circular indirect block detected, "
3801                                    "inode=%lu, block=%llu",
3802                                    inode->i_ino,
3803                                    (unsigned long long) this_bh->b_blocknr);
3804         }
3805 }
3806
3807 /**
3808  *      ext4_free_branches - free an array of branches
3809  *      @handle: JBD handle for this transaction
3810  *      @inode: inode we are dealing with
3811  *      @parent_bh: the buffer_head which contains *@first and *@last
3812  *      @first: array of block numbers
3813  *      @last:  pointer immediately past the end of array
3814  *      @depth: depth of the branches to free
3815  *
3816  *      We are freeing all blocks refered from these branches (numbers are
3817  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3818  *      appropriately.
3819  */
3820 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3821                                struct buffer_head *parent_bh,
3822                                __le32 *first, __le32 *last, int depth)
3823 {
3824         ext4_fsblk_t nr;
3825         __le32 *p;
3826
3827         if (ext4_handle_is_aborted(handle))
3828                 return;
3829
3830         if (depth--) {
3831                 struct buffer_head *bh;
3832                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3833                 p = last;
3834                 while (--p >= first) {
3835                         nr = le32_to_cpu(*p);
3836                         if (!nr)
3837                                 continue;               /* A hole */
3838
3839                         /* Go read the buffer for the next level down */
3840                         bh = sb_bread(inode->i_sb, nr);
3841
3842                         /*
3843                          * A read failure? Report error and clear slot
3844                          * (should be rare).
3845                          */
3846                         if (!bh) {
3847                                 ext4_error(inode->i_sb, "ext4_free_branches",
3848                                            "Read failure, inode=%lu, block=%llu",
3849                                            inode->i_ino, nr);
3850                                 continue;
3851                         }
3852
3853                         /* This zaps the entire block.  Bottom up. */
3854                         BUFFER_TRACE(bh, "free child branches");
3855                         ext4_free_branches(handle, inode, bh,
3856                                         (__le32 *) bh->b_data,
3857                                         (__le32 *) bh->b_data + addr_per_block,
3858                                         depth);
3859
3860                         /*
3861                          * We've probably journalled the indirect block several
3862                          * times during the truncate.  But it's no longer
3863                          * needed and we now drop it from the transaction via
3864                          * jbd2_journal_revoke().
3865                          *
3866                          * That's easy if it's exclusively part of this
3867                          * transaction.  But if it's part of the committing
3868                          * transaction then jbd2_journal_forget() will simply
3869                          * brelse() it.  That means that if the underlying
3870                          * block is reallocated in ext4_get_block(),
3871                          * unmap_underlying_metadata() will find this block
3872                          * and will try to get rid of it.  damn, damn.
3873                          *
3874                          * If this block has already been committed to the
3875                          * journal, a revoke record will be written.  And
3876                          * revoke records must be emitted *before* clearing
3877                          * this block's bit in the bitmaps.
3878                          */
3879                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3880
3881                         /*
3882                          * Everything below this this pointer has been
3883                          * released.  Now let this top-of-subtree go.
3884                          *
3885                          * We want the freeing of this indirect block to be
3886                          * atomic in the journal with the updating of the
3887                          * bitmap block which owns it.  So make some room in
3888                          * the journal.
3889                          *
3890                          * We zero the parent pointer *after* freeing its
3891                          * pointee in the bitmaps, so if extend_transaction()
3892                          * for some reason fails to put the bitmap changes and
3893                          * the release into the same transaction, recovery
3894                          * will merely complain about releasing a free block,
3895                          * rather than leaking blocks.
3896                          */
3897                         if (ext4_handle_is_aborted(handle))
3898                                 return;
3899                         if (try_to_extend_transaction(handle, inode)) {
3900                                 ext4_mark_inode_dirty(handle, inode);
3901                                 ext4_journal_test_restart(handle, inode);
3902                         }
3903
3904                         ext4_free_blocks(handle, inode, nr, 1, 1);
3905
3906                         if (parent_bh) {
3907                                 /*
3908                                  * The block which we have just freed is
3909                                  * pointed to by an indirect block: journal it
3910                                  */
3911                                 BUFFER_TRACE(parent_bh, "get_write_access");
3912                                 if (!ext4_journal_get_write_access(handle,
3913                                                                    parent_bh)){
3914                                         *p = 0;
3915                                         BUFFER_TRACE(parent_bh,
3916                                         "call ext4_handle_dirty_metadata");
3917                                         ext4_handle_dirty_metadata(handle,
3918                                                                    inode,
3919                                                                    parent_bh);
3920                                 }
3921                         }
3922                 }
3923         } else {
3924                 /* We have reached the bottom of the tree. */
3925                 BUFFER_TRACE(parent_bh, "free data blocks");
3926                 ext4_free_data(handle, inode, parent_bh, first, last);
3927         }
3928 }
3929
3930 int ext4_can_truncate(struct inode *inode)
3931 {
3932         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3933                 return 0;
3934         if (S_ISREG(inode->i_mode))
3935                 return 1;
3936         if (S_ISDIR(inode->i_mode))
3937                 return 1;
3938         if (S_ISLNK(inode->i_mode))
3939                 return !ext4_inode_is_fast_symlink(inode);
3940         return 0;
3941 }
3942
3943 /*
3944  * ext4_truncate()
3945  *
3946  * We block out ext4_get_block() block instantiations across the entire
3947  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3948  * simultaneously on behalf of the same inode.
3949  *
3950  * As we work through the truncate and commmit bits of it to the journal there
3951  * is one core, guiding principle: the file's tree must always be consistent on
3952  * disk.  We must be able to restart the truncate after a crash.
3953  *
3954  * The file's tree may be transiently inconsistent in memory (although it
3955  * probably isn't), but whenever we close off and commit a journal transaction,
3956  * the contents of (the filesystem + the journal) must be consistent and
3957  * restartable.  It's pretty simple, really: bottom up, right to left (although
3958  * left-to-right works OK too).
3959  *
3960  * Note that at recovery time, journal replay occurs *before* the restart of
3961  * truncate against the orphan inode list.
3962  *
3963  * The committed inode has the new, desired i_size (which is the same as
3964  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3965  * that this inode's truncate did not complete and it will again call
3966  * ext4_truncate() to have another go.  So there will be instantiated blocks
3967  * to the right of the truncation point in a crashed ext4 filesystem.  But
3968  * that's fine - as long as they are linked from the inode, the post-crash
3969  * ext4_truncate() run will find them and release them.
3970  */
3971 void ext4_truncate(struct inode *inode)
3972 {
3973         handle_t *handle;
3974         struct ext4_inode_info *ei = EXT4_I(inode);
3975         __le32 *i_data = ei->i_data;
3976         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3977         struct address_space *mapping = inode->i_mapping;
3978         ext4_lblk_t offsets[4];
3979         Indirect chain[4];
3980         Indirect *partial;
3981         __le32 nr = 0;
3982         int n;
3983         ext4_lblk_t last_block;
3984         unsigned blocksize = inode->i_sb->s_blocksize;
3985
3986         if (!ext4_can_truncate(inode))
3987                 return;
3988
3989         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3990                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3991
3992         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3993                 ext4_ext_truncate(inode);
3994                 return;
3995         }
3996
3997         handle = start_transaction(inode);
3998         if (IS_ERR(handle))
3999                 return;         /* AKPM: return what? */
4000
4001         last_block = (inode->i_size + blocksize-1)
4002                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4003
4004         if (inode->i_size & (blocksize - 1))
4005                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4006                         goto out_stop;
4007
4008         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4009         if (n == 0)
4010                 goto out_stop;  /* error */
4011
4012         /*
4013          * OK.  This truncate is going to happen.  We add the inode to the
4014          * orphan list, so that if this truncate spans multiple transactions,
4015          * and we crash, we will resume the truncate when the filesystem
4016          * recovers.  It also marks the inode dirty, to catch the new size.
4017          *
4018          * Implication: the file must always be in a sane, consistent
4019          * truncatable state while each transaction commits.
4020          */
4021         if (ext4_orphan_add(handle, inode))
4022                 goto out_stop;
4023
4024         /*
4025          * From here we block out all ext4_get_block() callers who want to
4026          * modify the block allocation tree.
4027          */
4028         down_write(&ei->i_data_sem);
4029
4030         ext4_discard_preallocations(inode);
4031
4032         /*
4033          * The orphan list entry will now protect us from any crash which
4034          * occurs before the truncate completes, so it is now safe to propagate
4035          * the new, shorter inode size (held for now in i_size) into the
4036          * on-disk inode. We do this via i_disksize, which is the value which
4037          * ext4 *really* writes onto the disk inode.
4038          */
4039         ei->i_disksize = inode->i_size;
4040
4041         if (n == 1) {           /* direct blocks */
4042                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4043                                i_data + EXT4_NDIR_BLOCKS);
4044                 goto do_indirects;
4045         }
4046
4047         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4048         /* Kill the top of shared branch (not detached) */
4049         if (nr) {
4050                 if (partial == chain) {
4051                         /* Shared branch grows from the inode */
4052                         ext4_free_branches(handle, inode, NULL,
4053                                            &nr, &nr+1, (chain+n-1) - partial);
4054                         *partial->p = 0;
4055                         /*
4056                          * We mark the inode dirty prior to restart,
4057                          * and prior to stop.  No need for it here.
4058                          */
4059                 } else {
4060                         /* Shared branch grows from an indirect block */
4061                         BUFFER_TRACE(partial->bh, "get_write_access");
4062                         ext4_free_branches(handle, inode, partial->bh,
4063                                         partial->p,
4064                                         partial->p+1, (chain+n-1) - partial);
4065                 }
4066         }
4067         /* Clear the ends of indirect blocks on the shared branch */
4068         while (partial > chain) {
4069                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4070                                    (__le32*)partial->bh->b_data+addr_per_block,
4071                                    (chain+n-1) - partial);
4072                 BUFFER_TRACE(partial->bh, "call brelse");
4073                 brelse (partial->bh);
4074                 partial--;
4075         }
4076 do_indirects:
4077         /* Kill the remaining (whole) subtrees */
4078         switch (offsets[0]) {
4079         default:
4080                 nr = i_data[EXT4_IND_BLOCK];
4081                 if (nr) {
4082                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4083                         i_data[EXT4_IND_BLOCK] = 0;
4084                 }
4085         case EXT4_IND_BLOCK:
4086                 nr = i_data[EXT4_DIND_BLOCK];
4087                 if (nr) {
4088                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4089                         i_data[EXT4_DIND_BLOCK] = 0;
4090                 }
4091         case EXT4_DIND_BLOCK:
4092                 nr = i_data[EXT4_TIND_BLOCK];
4093                 if (nr) {
4094                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4095                         i_data[EXT4_TIND_BLOCK] = 0;
4096                 }
4097         case EXT4_TIND_BLOCK:
4098                 ;
4099         }
4100
4101         up_write(&ei->i_data_sem);
4102         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4103         ext4_mark_inode_dirty(handle, inode);
4104
4105         /*
4106          * In a multi-transaction truncate, we only make the final transaction
4107          * synchronous
4108          */
4109         if (IS_SYNC(inode))
4110                 ext4_handle_sync(handle);
4111 out_stop:
4112         /*
4113          * If this was a simple ftruncate(), and the file will remain alive
4114          * then we need to clear up the orphan record which we created above.
4115          * However, if this was a real unlink then we were called by
4116          * ext4_delete_inode(), and we allow that function to clean up the
4117          * orphan info for us.
4118          */
4119         if (inode->i_nlink)
4120                 ext4_orphan_del(handle, inode);
4121
4122         ext4_journal_stop(handle);
4123 }
4124
4125 /*
4126  * ext4_get_inode_loc returns with an extra refcount against the inode's
4127  * underlying buffer_head on success. If 'in_mem' is true, we have all
4128  * data in memory that is needed to recreate the on-disk version of this
4129  * inode.
4130  */
4131 static int __ext4_get_inode_loc(struct inode *inode,
4132                                 struct ext4_iloc *iloc, int in_mem)
4133 {
4134         struct ext4_group_desc  *gdp;
4135         struct buffer_head      *bh;
4136         struct super_block      *sb = inode->i_sb;
4137         ext4_fsblk_t            block;
4138         int                     inodes_per_block, inode_offset;
4139
4140         iloc->bh = NULL;
4141         if (!ext4_valid_inum(sb, inode->i_ino))
4142                 return -EIO;
4143
4144         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4145         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4146         if (!gdp)
4147                 return -EIO;
4148
4149         /*
4150          * Figure out the offset within the block group inode table
4151          */
4152         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4153         inode_offset = ((inode->i_ino - 1) %
4154                         EXT4_INODES_PER_GROUP(sb));
4155         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4156         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4157
4158         bh = sb_getblk(sb, block);
4159         if (!bh) {
4160                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4161                            "inode block - inode=%lu, block=%llu",
4162                            inode->i_ino, block);
4163                 return -EIO;
4164         }
4165         if (!buffer_uptodate(bh)) {
4166                 lock_buffer(bh);
4167
4168                 /*
4169                  * If the buffer has the write error flag, we have failed
4170                  * to write out another inode in the same block.  In this
4171                  * case, we don't have to read the block because we may
4172                  * read the old inode data successfully.
4173                  */
4174                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4175                         set_buffer_uptodate(bh);
4176
4177                 if (buffer_uptodate(bh)) {
4178                         /* someone brought it uptodate while we waited */
4179                         unlock_buffer(bh);
4180                         goto has_buffer;
4181                 }
4182
4183                 /*
4184                  * If we have all information of the inode in memory and this
4185                  * is the only valid inode in the block, we need not read the
4186                  * block.
4187                  */
4188                 if (in_mem) {
4189                         struct buffer_head *bitmap_bh;
4190                         int i, start;
4191
4192                         start = inode_offset & ~(inodes_per_block - 1);
4193
4194                         /* Is the inode bitmap in cache? */
4195                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4196                         if (!bitmap_bh)
4197                                 goto make_io;
4198
4199                         /*
4200                          * If the inode bitmap isn't in cache then the
4201                          * optimisation may end up performing two reads instead
4202                          * of one, so skip it.
4203                          */
4204                         if (!buffer_uptodate(bitmap_bh)) {
4205                                 brelse(bitmap_bh);
4206                                 goto make_io;
4207                         }
4208                         for (i = start; i < start + inodes_per_block; i++) {
4209                                 if (i == inode_offset)
4210                                         continue;
4211                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4212                                         break;
4213                         }
4214                         brelse(bitmap_bh);
4215                         if (i == start + inodes_per_block) {
4216                                 /* all other inodes are free, so skip I/O */
4217                                 memset(bh->b_data, 0, bh->b_size);
4218                                 set_buffer_uptodate(bh);
4219                                 unlock_buffer(bh);
4220                                 goto has_buffer;
4221                         }
4222                 }
4223
4224 make_io:
4225                 /*
4226                  * If we need to do any I/O, try to pre-readahead extra
4227                  * blocks from the inode table.
4228                  */
4229                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4230                         ext4_fsblk_t b, end, table;
4231                         unsigned num;
4232
4233                         table = ext4_inode_table(sb, gdp);
4234                         /* s_inode_readahead_blks is always a power of 2 */
4235                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4236                         if (table > b)
4237                                 b = table;
4238                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4239                         num = EXT4_INODES_PER_GROUP(sb);
4240                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4241                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4242                                 num -= ext4_itable_unused_count(sb, gdp);
4243                         table += num / inodes_per_block;
4244                         if (end > table)
4245                                 end = table;
4246                         while (b <= end)
4247                                 sb_breadahead(sb, b++);
4248                 }
4249
4250                 /*
4251                  * There are other valid inodes in the buffer, this inode
4252                  * has in-inode xattrs, or we don't have this inode in memory.
4253                  * Read the block from disk.
4254                  */
4255                 get_bh(bh);
4256                 bh->b_end_io = end_buffer_read_sync;
4257                 submit_bh(READ_META, bh);
4258                 wait_on_buffer(bh);
4259                 if (!buffer_uptodate(bh)) {
4260                         ext4_error(sb, __func__,
4261                                    "unable to read inode block - inode=%lu, "
4262                                    "block=%llu", inode->i_ino, block);
4263                         brelse(bh);
4264                         return -EIO;
4265                 }
4266         }
4267 has_buffer:
4268         iloc->bh = bh;
4269         return 0;
4270 }
4271
4272 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4273 {
4274         /* We have all inode data except xattrs in memory here. */
4275         return __ext4_get_inode_loc(inode, iloc,
4276                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4277 }
4278
4279 void ext4_set_inode_flags(struct inode *inode)
4280 {
4281         unsigned int flags = EXT4_I(inode)->i_flags;
4282
4283         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4284         if (flags & EXT4_SYNC_FL)
4285                 inode->i_flags |= S_SYNC;
4286         if (flags & EXT4_APPEND_FL)
4287                 inode->i_flags |= S_APPEND;
4288         if (flags & EXT4_IMMUTABLE_FL)
4289                 inode->i_flags |= S_IMMUTABLE;
4290         if (flags & EXT4_NOATIME_FL)
4291                 inode->i_flags |= S_NOATIME;
4292         if (flags & EXT4_DIRSYNC_FL)
4293                 inode->i_flags |= S_DIRSYNC;
4294 }
4295
4296 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4297 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4298 {
4299         unsigned int flags = ei->vfs_inode.i_flags;
4300
4301         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4302                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4303         if (flags & S_SYNC)
4304                 ei->i_flags |= EXT4_SYNC_FL;
4305         if (flags & S_APPEND)
4306                 ei->i_flags |= EXT4_APPEND_FL;
4307         if (flags & S_IMMUTABLE)
4308                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4309         if (flags & S_NOATIME)
4310                 ei->i_flags |= EXT4_NOATIME_FL;
4311         if (flags & S_DIRSYNC)
4312                 ei->i_flags |= EXT4_DIRSYNC_FL;
4313 }
4314 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4315                                         struct ext4_inode_info *ei)
4316 {
4317         blkcnt_t i_blocks ;
4318         struct inode *inode = &(ei->vfs_inode);
4319         struct super_block *sb = inode->i_sb;
4320
4321         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4322                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4323                 /* we are using combined 48 bit field */
4324                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4325                                         le32_to_cpu(raw_inode->i_blocks_lo);
4326                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4327                         /* i_blocks represent file system block size */
4328                         return i_blocks  << (inode->i_blkbits - 9);
4329                 } else {
4330                         return i_blocks;
4331                 }
4332         } else {
4333                 return le32_to_cpu(raw_inode->i_blocks_lo);
4334         }
4335 }
4336
4337 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4338 {
4339         struct ext4_iloc iloc;
4340         struct ext4_inode *raw_inode;
4341         struct ext4_inode_info *ei;
4342         struct buffer_head *bh;
4343         struct inode *inode;
4344         long ret;
4345         int block;
4346
4347         inode = iget_locked(sb, ino);
4348         if (!inode)
4349                 return ERR_PTR(-ENOMEM);
4350         if (!(inode->i_state & I_NEW))
4351                 return inode;
4352
4353         ei = EXT4_I(inode);
4354 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4355         ei->i_acl = EXT4_ACL_NOT_CACHED;
4356         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4357 #endif
4358
4359         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4360         if (ret < 0)
4361                 goto bad_inode;
4362         bh = iloc.bh;
4363         raw_inode = ext4_raw_inode(&iloc);
4364         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4365         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4366         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4367         if (!(test_opt(inode->i_sb, NO_UID32))) {
4368                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4370         }
4371         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4372
4373         ei->i_state = 0;
4374         ei->i_dir_start_lookup = 0;
4375         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4376         /* We now have enough fields to check if the inode was active or not.
4377          * This is needed because nfsd might try to access dead inodes
4378          * the test is that same one that e2fsck uses
4379          * NeilBrown 1999oct15
4380          */
4381         if (inode->i_nlink == 0) {
4382                 if (inode->i_mode == 0 ||
4383                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4384                         /* this inode is deleted */
4385                         brelse(bh);
4386                         ret = -ESTALE;
4387                         goto bad_inode;
4388                 }
4389                 /* The only unlinked inodes we let through here have
4390                  * valid i_mode and are being read by the orphan
4391                  * recovery code: that's fine, we're about to complete
4392                  * the process of deleting those. */
4393         }
4394         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4395         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4396         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4397         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4398                 ei->i_file_acl |=
4399                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4400         inode->i_size = ext4_isize(raw_inode);
4401         ei->i_disksize = inode->i_size;
4402         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4403         ei->i_block_group = iloc.block_group;
4404         ei->i_last_alloc_group = ~0;
4405         /*
4406          * NOTE! The in-memory inode i_data array is in little-endian order
4407          * even on big-endian machines: we do NOT byteswap the block numbers!
4408          */
4409         for (block = 0; block < EXT4_N_BLOCKS; block++)
4410                 ei->i_data[block] = raw_inode->i_block[block];
4411         INIT_LIST_HEAD(&ei->i_orphan);
4412
4413         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4414                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4415                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4416                     EXT4_INODE_SIZE(inode->i_sb)) {
4417                         brelse(bh);
4418                         ret = -EIO;
4419                         goto bad_inode;
4420                 }
4421                 if (ei->i_extra_isize == 0) {
4422                         /* The extra space is currently unused. Use it. */
4423                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4424                                             EXT4_GOOD_OLD_INODE_SIZE;
4425                 } else {
4426                         __le32 *magic = (void *)raw_inode +
4427                                         EXT4_GOOD_OLD_INODE_SIZE +
4428                                         ei->i_extra_isize;
4429                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4430                                  ei->i_state |= EXT4_STATE_XATTR;
4431                 }
4432         } else
4433                 ei->i_extra_isize = 0;
4434
4435         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4436         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4437         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4438         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4439
4440         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4441         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4442                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4443                         inode->i_version |=
4444                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4445         }
4446
4447         ret = 0;
4448         if (ei->i_file_acl &&
4449             ((ei->i_file_acl < 
4450               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4451                EXT4_SB(sb)->s_gdb_count)) ||
4452              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4453                 ext4_error(sb, __func__,
4454                            "bad extended attribute block %llu in inode #%lu",
4455                            ei->i_file_acl, inode->i_ino);
4456                 ret = -EIO;
4457                 goto bad_inode;
4458         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4459                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4460                     (S_ISLNK(inode->i_mode) &&
4461                      !ext4_inode_is_fast_symlink(inode)))
4462                         /* Validate extent which is part of inode */
4463                         ret = ext4_ext_check_inode(inode);
4464         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4465                    (S_ISLNK(inode->i_mode) &&
4466                     !ext4_inode_is_fast_symlink(inode))) {
4467                 /* Validate block references which are part of inode */
4468                 ret = ext4_check_inode_blockref(inode);
4469         }
4470         if (ret) {
4471                 brelse(bh);
4472                 goto bad_inode;
4473         }
4474
4475         if (S_ISREG(inode->i_mode)) {
4476                 inode->i_op = &ext4_file_inode_operations;
4477                 inode->i_fop = &ext4_file_operations;
4478                 ext4_set_aops(inode);
4479         } else if (S_ISDIR(inode->i_mode)) {
4480                 inode->i_op = &ext4_dir_inode_operations;
4481                 inode->i_fop = &ext4_dir_operations;
4482         } else if (S_ISLNK(inode->i_mode)) {
4483                 if (ext4_inode_is_fast_symlink(inode)) {
4484                         inode->i_op = &ext4_fast_symlink_inode_operations;
4485                         nd_terminate_link(ei->i_data, inode->i_size,
4486                                 sizeof(ei->i_data) - 1);
4487                 } else {
4488                         inode->i_op = &ext4_symlink_inode_operations;
4489                         ext4_set_aops(inode);
4490                 }
4491         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4492               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4493                 inode->i_op = &ext4_special_inode_operations;
4494                 if (raw_inode->i_block[0])
4495                         init_special_inode(inode, inode->i_mode,
4496                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4497                 else
4498                         init_special_inode(inode, inode->i_mode,
4499                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4500         } else {
4501                 brelse(bh);
4502                 ret = -EIO;
4503                 ext4_error(inode->i_sb, __func__, 
4504                            "bogus i_mode (%o) for inode=%lu",
4505                            inode->i_mode, inode->i_ino);
4506                 goto bad_inode;
4507         }
4508         brelse(iloc.bh);
4509         ext4_set_inode_flags(inode);
4510         unlock_new_inode(inode);
4511         return inode;
4512
4513 bad_inode:
4514         iget_failed(inode);
4515         return ERR_PTR(ret);
4516 }
4517
4518 static int ext4_inode_blocks_set(handle_t *handle,
4519                                 struct ext4_inode *raw_inode,
4520                                 struct ext4_inode_info *ei)
4521 {
4522         struct inode *inode = &(ei->vfs_inode);
4523         u64 i_blocks = inode->i_blocks;
4524         struct super_block *sb = inode->i_sb;
4525
4526         if (i_blocks <= ~0U) {
4527                 /*
4528                  * i_blocks can be represnted in a 32 bit variable
4529                  * as multiple of 512 bytes
4530                  */
4531                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4532                 raw_inode->i_blocks_high = 0;
4533                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4534                 return 0;
4535         }
4536         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4537                 return -EFBIG;
4538
4539         if (i_blocks <= 0xffffffffffffULL) {
4540                 /*
4541                  * i_blocks can be represented in a 48 bit variable
4542                  * as multiple of 512 bytes
4543                  */
4544                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4545                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4546                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4547         } else {
4548                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4549                 /* i_block is stored in file system block size */
4550                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4551                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4552                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4553         }
4554         return 0;
4555 }
4556
4557 /*
4558  * Post the struct inode info into an on-disk inode location in the
4559  * buffer-cache.  This gobbles the caller's reference to the
4560  * buffer_head in the inode location struct.
4561  *
4562  * The caller must have write access to iloc->bh.
4563  */
4564 static int ext4_do_update_inode(handle_t *handle,
4565                                 struct inode *inode,
4566                                 struct ext4_iloc *iloc)
4567 {
4568         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4569         struct ext4_inode_info *ei = EXT4_I(inode);
4570         struct buffer_head *bh = iloc->bh;
4571         int err = 0, rc, block;
4572
4573         /* For fields not not tracking in the in-memory inode,
4574          * initialise them to zero for new inodes. */
4575         if (ei->i_state & EXT4_STATE_NEW)
4576                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4577
4578         ext4_get_inode_flags(ei);
4579         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4580         if (!(test_opt(inode->i_sb, NO_UID32))) {
4581                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4582                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4583 /*
4584  * Fix up interoperability with old kernels. Otherwise, old inodes get
4585  * re-used with the upper 16 bits of the uid/gid intact
4586  */
4587                 if (!ei->i_dtime) {
4588                         raw_inode->i_uid_high =
4589                                 cpu_to_le16(high_16_bits(inode->i_uid));
4590                         raw_inode->i_gid_high =
4591                                 cpu_to_le16(high_16_bits(inode->i_gid));
4592                 } else {
4593                         raw_inode->i_uid_high = 0;
4594                         raw_inode->i_gid_high = 0;
4595                 }
4596         } else {
4597                 raw_inode->i_uid_low =
4598                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4599                 raw_inode->i_gid_low =
4600                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4601                 raw_inode->i_uid_high = 0;
4602                 raw_inode->i_gid_high = 0;
4603         }
4604         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4605
4606         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4607         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4608         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4609         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4610
4611         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4612                 goto out_brelse;
4613         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4614         /* clear the migrate flag in the raw_inode */
4615         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4616         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4617             cpu_to_le32(EXT4_OS_HURD))
4618                 raw_inode->i_file_acl_high =
4619                         cpu_to_le16(ei->i_file_acl >> 32);
4620         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4621         ext4_isize_set(raw_inode, ei->i_disksize);
4622         if (ei->i_disksize > 0x7fffffffULL) {
4623                 struct super_block *sb = inode->i_sb;
4624                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4625                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4626                                 EXT4_SB(sb)->s_es->s_rev_level ==
4627                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4628                         /* If this is the first large file
4629                          * created, add a flag to the superblock.
4630                          */
4631                         err = ext4_journal_get_write_access(handle,
4632                                         EXT4_SB(sb)->s_sbh);
4633                         if (err)
4634                                 goto out_brelse;
4635                         ext4_update_dynamic_rev(sb);
4636                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4637                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4638                         sb->s_dirt = 1;
4639                         ext4_handle_sync(handle);
4640                         err = ext4_handle_dirty_metadata(handle, inode,
4641                                         EXT4_SB(sb)->s_sbh);
4642                 }
4643         }
4644         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4645         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4646                 if (old_valid_dev(inode->i_rdev)) {
4647                         raw_inode->i_block[0] =
4648                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4649                         raw_inode->i_block[1] = 0;
4650                 } else {
4651                         raw_inode->i_block[0] = 0;
4652                         raw_inode->i_block[1] =
4653                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4654                         raw_inode->i_block[2] = 0;
4655                 }
4656         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4657                 raw_inode->i_block[block] = ei->i_data[block];
4658
4659         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4660         if (ei->i_extra_isize) {
4661                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4662                         raw_inode->i_version_hi =
4663                         cpu_to_le32(inode->i_version >> 32);
4664                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4665         }
4666
4667         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4668         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4669         if (!err)
4670                 err = rc;
4671         ei->i_state &= ~EXT4_STATE_NEW;
4672
4673 out_brelse:
4674         brelse(bh);
4675         ext4_std_error(inode->i_sb, err);
4676         return err;
4677 }
4678
4679 /*
4680  * ext4_write_inode()
4681  *
4682  * We are called from a few places:
4683  *
4684  * - Within generic_file_write() for O_SYNC files.
4685  *   Here, there will be no transaction running. We wait for any running
4686  *   trasnaction to commit.
4687  *
4688  * - Within sys_sync(), kupdate and such.
4689  *   We wait on commit, if tol to.
4690  *
4691  * - Within prune_icache() (PF_MEMALLOC == true)
4692  *   Here we simply return.  We can't afford to block kswapd on the
4693  *   journal commit.
4694  *
4695  * In all cases it is actually safe for us to return without doing anything,
4696  * because the inode has been copied into a raw inode buffer in
4697  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4698  * knfsd.
4699  *
4700  * Note that we are absolutely dependent upon all inode dirtiers doing the
4701  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4702  * which we are interested.
4703  *
4704  * It would be a bug for them to not do this.  The code:
4705  *
4706  *      mark_inode_dirty(inode)
4707  *      stuff();
4708  *      inode->i_size = expr;
4709  *
4710  * is in error because a kswapd-driven write_inode() could occur while
4711  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4712  * will no longer be on the superblock's dirty inode list.
4713  */
4714 int ext4_write_inode(struct inode *inode, int wait)
4715 {
4716         if (current->flags & PF_MEMALLOC)
4717                 return 0;
4718
4719         if (ext4_journal_current_handle()) {
4720                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4721                 dump_stack();
4722                 return -EIO;
4723         }
4724
4725         if (!wait)
4726                 return 0;
4727
4728         return ext4_force_commit(inode->i_sb);
4729 }
4730
4731 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4732 {
4733         int err = 0;
4734
4735         mark_buffer_dirty(bh);
4736         if (inode && inode_needs_sync(inode)) {
4737                 sync_dirty_buffer(bh);
4738                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4739                         ext4_error(inode->i_sb, __func__,
4740                                    "IO error syncing inode, "
4741                                    "inode=%lu, block=%llu",
4742                                    inode->i_ino,
4743                                    (unsigned long long)bh->b_blocknr);
4744                         err = -EIO;
4745                 }
4746         }
4747         return err;
4748 }
4749
4750 /*
4751  * ext4_setattr()
4752  *
4753  * Called from notify_change.
4754  *
4755  * We want to trap VFS attempts to truncate the file as soon as
4756  * possible.  In particular, we want to make sure that when the VFS
4757  * shrinks i_size, we put the inode on the orphan list and modify
4758  * i_disksize immediately, so that during the subsequent flushing of
4759  * dirty pages and freeing of disk blocks, we can guarantee that any
4760  * commit will leave the blocks being flushed in an unused state on
4761  * disk.  (On recovery, the inode will get truncated and the blocks will
4762  * be freed, so we have a strong guarantee that no future commit will
4763  * leave these blocks visible to the user.)
4764  *
4765  * Another thing we have to assure is that if we are in ordered mode
4766  * and inode is still attached to the committing transaction, we must
4767  * we start writeout of all the dirty pages which are being truncated.
4768  * This way we are sure that all the data written in the previous
4769  * transaction are already on disk (truncate waits for pages under
4770  * writeback).
4771  *
4772  * Called with inode->i_mutex down.
4773  */
4774 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4775 {
4776         struct inode *inode = dentry->d_inode;
4777         int error, rc = 0;
4778         const unsigned int ia_valid = attr->ia_valid;
4779
4780         error = inode_change_ok(inode, attr);
4781         if (error)
4782                 return error;
4783
4784         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4785                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4786                 handle_t *handle;
4787
4788                 /* (user+group)*(old+new) structure, inode write (sb,
4789                  * inode block, ? - but truncate inode update has it) */
4790                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4791                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4792                 if (IS_ERR(handle)) {
4793                         error = PTR_ERR(handle);
4794                         goto err_out;
4795                 }
4796                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4797                 if (error) {
4798                         ext4_journal_stop(handle);
4799                         return error;
4800                 }
4801                 /* Update corresponding info in inode so that everything is in
4802                  * one transaction */
4803                 if (attr->ia_valid & ATTR_UID)
4804                         inode->i_uid = attr->ia_uid;
4805                 if (attr->ia_valid & ATTR_GID)
4806                         inode->i_gid = attr->ia_gid;
4807                 error = ext4_mark_inode_dirty(handle, inode);
4808                 ext4_journal_stop(handle);
4809         }
4810
4811         if (attr->ia_valid & ATTR_SIZE) {
4812                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4813                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4814
4815                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4816                                 error = -EFBIG;
4817                                 goto err_out;
4818                         }
4819                 }
4820         }
4821
4822         if (S_ISREG(inode->i_mode) &&
4823             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4824                 handle_t *handle;
4825
4826                 handle = ext4_journal_start(inode, 3);
4827                 if (IS_ERR(handle)) {
4828                         error = PTR_ERR(handle);
4829                         goto err_out;
4830                 }
4831
4832                 error = ext4_orphan_add(handle, inode);
4833                 EXT4_I(inode)->i_disksize = attr->ia_size;
4834                 rc = ext4_mark_inode_dirty(handle, inode);
4835                 if (!error)
4836                         error = rc;
4837                 ext4_journal_stop(handle);
4838
4839                 if (ext4_should_order_data(inode)) {
4840                         error = ext4_begin_ordered_truncate(inode,
4841                                                             attr->ia_size);
4842                         if (error) {
4843                                 /* Do as much error cleanup as possible */
4844                                 handle = ext4_journal_start(inode, 3);
4845                                 if (IS_ERR(handle)) {
4846                                         ext4_orphan_del(NULL, inode);
4847                                         goto err_out;
4848                                 }
4849                                 ext4_orphan_del(handle, inode);
4850                                 ext4_journal_stop(handle);
4851                                 goto err_out;
4852                         }
4853                 }
4854         }
4855
4856         rc = inode_setattr(inode, attr);
4857
4858         /* If inode_setattr's call to ext4_truncate failed to get a
4859          * transaction handle at all, we need to clean up the in-core
4860          * orphan list manually. */
4861         if (inode->i_nlink)
4862                 ext4_orphan_del(NULL, inode);
4863
4864         if (!rc && (ia_valid & ATTR_MODE))
4865                 rc = ext4_acl_chmod(inode);
4866
4867 err_out:
4868         ext4_std_error(inode->i_sb, error);
4869         if (!error)
4870                 error = rc;
4871         return error;
4872 }
4873
4874 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4875                  struct kstat *stat)
4876 {
4877         struct inode *inode;
4878         unsigned long delalloc_blocks;
4879
4880         inode = dentry->d_inode;
4881         generic_fillattr(inode, stat);
4882
4883         /*
4884          * We can't update i_blocks if the block allocation is delayed
4885          * otherwise in the case of system crash before the real block
4886          * allocation is done, we will have i_blocks inconsistent with
4887          * on-disk file blocks.
4888          * We always keep i_blocks updated together with real
4889          * allocation. But to not confuse with user, stat
4890          * will return the blocks that include the delayed allocation
4891          * blocks for this file.
4892          */
4893         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4894         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4895         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4896
4897         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4898         return 0;
4899 }
4900
4901 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4902                                       int chunk)
4903 {
4904         int indirects;
4905
4906         /* if nrblocks are contiguous */
4907         if (chunk) {
4908                 /*
4909                  * With N contiguous data blocks, it need at most
4910                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4911                  * 2 dindirect blocks
4912                  * 1 tindirect block
4913                  */
4914                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4915                 return indirects + 3;
4916         }
4917         /*
4918          * if nrblocks are not contiguous, worse case, each block touch
4919          * a indirect block, and each indirect block touch a double indirect
4920          * block, plus a triple indirect block
4921          */
4922         indirects = nrblocks * 2 + 1;
4923         return indirects;
4924 }
4925
4926 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4927 {
4928         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4929                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4930         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4931 }
4932
4933 /*
4934  * Account for index blocks, block groups bitmaps and block group
4935  * descriptor blocks if modify datablocks and index blocks
4936  * worse case, the indexs blocks spread over different block groups
4937  *
4938  * If datablocks are discontiguous, they are possible to spread over
4939  * different block groups too. If they are contiugous, with flexbg,
4940  * they could still across block group boundary.
4941  *
4942  * Also account for superblock, inode, quota and xattr blocks
4943  */
4944 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4945 {
4946         int groups, gdpblocks;
4947         int idxblocks;
4948         int ret = 0;
4949
4950         /*
4951          * How many index blocks need to touch to modify nrblocks?
4952          * The "Chunk" flag indicating whether the nrblocks is
4953          * physically contiguous on disk
4954          *
4955          * For Direct IO and fallocate, they calls get_block to allocate
4956          * one single extent at a time, so they could set the "Chunk" flag
4957          */
4958         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4959
4960         ret = idxblocks;
4961
4962         /*
4963          * Now let's see how many group bitmaps and group descriptors need
4964          * to account
4965          */
4966         groups = idxblocks;
4967         if (chunk)
4968                 groups += 1;
4969         else
4970                 groups += nrblocks;
4971
4972         gdpblocks = groups;
4973         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4974                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4975         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4976                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4977
4978         /* bitmaps and block group descriptor blocks */
4979         ret += groups + gdpblocks;
4980
4981         /* Blocks for super block, inode, quota and xattr blocks */
4982         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4983
4984         return ret;
4985 }
4986
4987 /*
4988  * Calulate the total number of credits to reserve to fit
4989  * the modification of a single pages into a single transaction,
4990  * which may include multiple chunks of block allocations.
4991  *
4992  * This could be called via ext4_write_begin()
4993  *
4994  * We need to consider the worse case, when
4995  * one new block per extent.
4996  */
4997 int ext4_writepage_trans_blocks(struct inode *inode)
4998 {
4999         int bpp = ext4_journal_blocks_per_page(inode);
5000         int ret;
5001
5002         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5003
5004         /* Account for data blocks for journalled mode */
5005         if (ext4_should_journal_data(inode))
5006                 ret += bpp;
5007         return ret;
5008 }
5009
5010 /*
5011  * Calculate the journal credits for a chunk of data modification.
5012  *
5013  * This is called from DIO, fallocate or whoever calling
5014  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
5015  *
5016  * journal buffers for data blocks are not included here, as DIO
5017  * and fallocate do no need to journal data buffers.
5018  */
5019 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5020 {
5021         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5022 }
5023
5024 /*
5025  * The caller must have previously called ext4_reserve_inode_write().
5026  * Give this, we know that the caller already has write access to iloc->bh.
5027  */
5028 int ext4_mark_iloc_dirty(handle_t *handle,
5029                 struct inode *inode, struct ext4_iloc *iloc)
5030 {
5031         int err = 0;
5032
5033         if (test_opt(inode->i_sb, I_VERSION))
5034                 inode_inc_iversion(inode);
5035
5036         /* the do_update_inode consumes one bh->b_count */
5037         get_bh(iloc->bh);
5038
5039         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5040         err = ext4_do_update_inode(handle, inode, iloc);
5041         put_bh(iloc->bh);
5042         return err;
5043 }
5044
5045 /*
5046  * On success, We end up with an outstanding reference count against
5047  * iloc->bh.  This _must_ be cleaned up later.
5048  */
5049
5050 int
5051 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5052                          struct ext4_iloc *iloc)
5053 {
5054         int err;
5055
5056         err = ext4_get_inode_loc(inode, iloc);
5057         if (!err) {
5058                 BUFFER_TRACE(iloc->bh, "get_write_access");
5059                 err = ext4_journal_get_write_access(handle, iloc->bh);
5060                 if (err) {
5061                         brelse(iloc->bh);
5062                         iloc->bh = NULL;
5063                 }
5064         }
5065         ext4_std_error(inode->i_sb, err);
5066         return err;
5067 }
5068
5069 /*
5070  * Expand an inode by new_extra_isize bytes.
5071  * Returns 0 on success or negative error number on failure.
5072  */
5073 static int ext4_expand_extra_isize(struct inode *inode,
5074                                    unsigned int new_extra_isize,
5075                                    struct ext4_iloc iloc,
5076                                    handle_t *handle)
5077 {
5078         struct ext4_inode *raw_inode;
5079         struct ext4_xattr_ibody_header *header;
5080         struct ext4_xattr_entry *entry;
5081
5082         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5083                 return 0;
5084
5085         raw_inode = ext4_raw_inode(&iloc);
5086
5087         header = IHDR(inode, raw_inode);
5088         entry = IFIRST(header);
5089
5090         /* No extended attributes present */
5091         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5092                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5093                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5094                         new_extra_isize);
5095                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5096                 return 0;
5097         }
5098
5099         /* try to expand with EAs present */
5100         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5101                                           raw_inode, handle);
5102 }
5103
5104 /*
5105  * What we do here is to mark the in-core inode as clean with respect to inode
5106  * dirtiness (it may still be data-dirty).
5107  * This means that the in-core inode may be reaped by prune_icache
5108  * without having to perform any I/O.  This is a very good thing,
5109  * because *any* task may call prune_icache - even ones which
5110  * have a transaction open against a different journal.
5111  *
5112  * Is this cheating?  Not really.  Sure, we haven't written the
5113  * inode out, but prune_icache isn't a user-visible syncing function.
5114  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5115  * we start and wait on commits.
5116  *
5117  * Is this efficient/effective?  Well, we're being nice to the system
5118  * by cleaning up our inodes proactively so they can be reaped
5119  * without I/O.  But we are potentially leaving up to five seconds'
5120  * worth of inodes floating about which prune_icache wants us to
5121  * write out.  One way to fix that would be to get prune_icache()
5122  * to do a write_super() to free up some memory.  It has the desired
5123  * effect.
5124  */
5125 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5126 {
5127         struct ext4_iloc iloc;
5128         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5129         static unsigned int mnt_count;
5130         int err, ret;
5131
5132         might_sleep();
5133         err = ext4_reserve_inode_write(handle, inode, &iloc);
5134         if (ext4_handle_valid(handle) &&
5135             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5136             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5137                 /*
5138                  * We need extra buffer credits since we may write into EA block
5139                  * with this same handle. If journal_extend fails, then it will
5140                  * only result in a minor loss of functionality for that inode.
5141                  * If this is felt to be critical, then e2fsck should be run to
5142                  * force a large enough s_min_extra_isize.
5143                  */
5144                 if ((jbd2_journal_extend(handle,
5145                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5146                         ret = ext4_expand_extra_isize(inode,
5147                                                       sbi->s_want_extra_isize,
5148                                                       iloc, handle);
5149                         if (ret) {
5150                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5151                                 if (mnt_count !=
5152                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5153                                         ext4_warning(inode->i_sb, __func__,
5154                                         "Unable to expand inode %lu. Delete"
5155                                         " some EAs or run e2fsck.",
5156                                         inode->i_ino);
5157                                         mnt_count =
5158                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5159                                 }
5160                         }
5161                 }
5162         }
5163         if (!err)
5164                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5165         return err;
5166 }
5167
5168 /*
5169  * ext4_dirty_inode() is called from __mark_inode_dirty()
5170  *
5171  * We're really interested in the case where a file is being extended.
5172  * i_size has been changed by generic_commit_write() and we thus need
5173  * to include the updated inode in the current transaction.
5174  *
5175  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5176  * are allocated to the file.
5177  *
5178  * If the inode is marked synchronous, we don't honour that here - doing
5179  * so would cause a commit on atime updates, which we don't bother doing.
5180  * We handle synchronous inodes at the highest possible level.
5181  */
5182 void ext4_dirty_inode(struct inode *inode)
5183 {
5184         handle_t *current_handle = ext4_journal_current_handle();
5185         handle_t *handle;
5186
5187         if (!ext4_handle_valid(current_handle)) {
5188                 ext4_mark_inode_dirty(current_handle, inode);
5189                 return;
5190         }
5191
5192         handle = ext4_journal_start(inode, 2);
5193         if (IS_ERR(handle))
5194                 goto out;
5195         if (current_handle &&
5196                 current_handle->h_transaction != handle->h_transaction) {
5197                 /* This task has a transaction open against a different fs */
5198                 printk(KERN_EMERG "%s: transactions do not match!\n",
5199                        __func__);
5200         } else {
5201                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5202                                 current_handle);
5203                 ext4_mark_inode_dirty(handle, inode);
5204         }
5205         ext4_journal_stop(handle);
5206 out:
5207         return;
5208 }
5209
5210 #if 0
5211 /*
5212  * Bind an inode's backing buffer_head into this transaction, to prevent
5213  * it from being flushed to disk early.  Unlike
5214  * ext4_reserve_inode_write, this leaves behind no bh reference and
5215  * returns no iloc structure, so the caller needs to repeat the iloc
5216  * lookup to mark the inode dirty later.
5217  */
5218 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5219 {
5220         struct ext4_iloc iloc;
5221
5222         int err = 0;
5223         if (handle) {
5224                 err = ext4_get_inode_loc(inode, &iloc);
5225                 if (!err) {
5226                         BUFFER_TRACE(iloc.bh, "get_write_access");
5227                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5228                         if (!err)
5229                                 err = ext4_handle_dirty_metadata(handle,
5230                                                                  inode,
5231                                                                  iloc.bh);
5232                         brelse(iloc.bh);
5233                 }
5234         }
5235         ext4_std_error(inode->i_sb, err);
5236         return err;
5237 }
5238 #endif
5239
5240 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5241 {
5242         journal_t *journal;
5243         handle_t *handle;
5244         int err;
5245
5246         /*
5247          * We have to be very careful here: changing a data block's
5248          * journaling status dynamically is dangerous.  If we write a
5249          * data block to the journal, change the status and then delete
5250          * that block, we risk forgetting to revoke the old log record
5251          * from the journal and so a subsequent replay can corrupt data.
5252          * So, first we make sure that the journal is empty and that
5253          * nobody is changing anything.
5254          */
5255
5256         journal = EXT4_JOURNAL(inode);
5257         if (!journal)
5258                 return 0;
5259         if (is_journal_aborted(journal))
5260                 return -EROFS;
5261
5262         jbd2_journal_lock_updates(journal);
5263         jbd2_journal_flush(journal);
5264
5265         /*
5266          * OK, there are no updates running now, and all cached data is
5267          * synced to disk.  We are now in a completely consistent state
5268          * which doesn't have anything in the journal, and we know that
5269          * no filesystem updates are running, so it is safe to modify
5270          * the inode's in-core data-journaling state flag now.
5271          */
5272
5273         if (val)
5274                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5275         else
5276                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5277         ext4_set_aops(inode);
5278
5279         jbd2_journal_unlock_updates(journal);
5280
5281         /* Finally we can mark the inode as dirty. */
5282
5283         handle = ext4_journal_start(inode, 1);
5284         if (IS_ERR(handle))
5285                 return PTR_ERR(handle);
5286
5287         err = ext4_mark_inode_dirty(handle, inode);
5288         ext4_handle_sync(handle);
5289         ext4_journal_stop(handle);
5290         ext4_std_error(inode->i_sb, err);
5291
5292         return err;
5293 }
5294
5295 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5296 {
5297         return !buffer_mapped(bh);
5298 }
5299
5300 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5301 {
5302         struct page *page = vmf->page;
5303         loff_t size;
5304         unsigned long len;
5305         int ret = -EINVAL;
5306         void *fsdata;
5307         struct file *file = vma->vm_file;
5308         struct inode *inode = file->f_path.dentry->d_inode;
5309         struct address_space *mapping = inode->i_mapping;
5310
5311         /*
5312          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5313          * get i_mutex because we are already holding mmap_sem.
5314          */
5315         down_read(&inode->i_alloc_sem);
5316         size = i_size_read(inode);
5317         if (page->mapping != mapping || size <= page_offset(page)
5318             || !PageUptodate(page)) {
5319                 /* page got truncated from under us? */
5320                 goto out_unlock;
5321         }
5322         ret = 0;
5323         if (PageMappedToDisk(page))
5324                 goto out_unlock;
5325
5326         if (page->index == size >> PAGE_CACHE_SHIFT)
5327                 len = size & ~PAGE_CACHE_MASK;
5328         else
5329                 len = PAGE_CACHE_SIZE;
5330
5331         if (page_has_buffers(page)) {
5332                 /* return if we have all the buffers mapped */
5333                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5334                                        ext4_bh_unmapped))
5335                         goto out_unlock;
5336         }
5337         /*
5338          * OK, we need to fill the hole... Do write_begin write_end
5339          * to do block allocation/reservation.We are not holding
5340          * inode.i__mutex here. That allow * parallel write_begin,
5341          * write_end call. lock_page prevent this from happening
5342          * on the same page though
5343          */
5344         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5345                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5346         if (ret < 0)
5347                 goto out_unlock;
5348         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5349                         len, len, page, fsdata);
5350         if (ret < 0)
5351                 goto out_unlock;
5352         ret = 0;
5353 out_unlock:
5354         if (ret)
5355                 ret = VM_FAULT_SIGBUS;
5356         up_read(&inode->i_alloc_sem);
5357         return ret;
5358 }