ext4: Fix the delalloc writepages to allocate blocks at the right offset.
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51                                                    new_size);
52 }
53
54 static void ext4_invalidatepage(struct page *page, unsigned long offset);
55
56 /*
57  * Test whether an inode is a fast symlink.
58  */
59 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 {
61         int ea_blocks = EXT4_I(inode)->i_file_acl ?
62                 (inode->i_sb->s_blocksize >> 9) : 0;
63
64         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 }
66
67 /*
68  * The ext4 forget function must perform a revoke if we are freeing data
69  * which has been journaled.  Metadata (eg. indirect blocks) must be
70  * revoked in all cases.
71  *
72  * "bh" may be NULL: a metadata block may have been freed from memory
73  * but there may still be a record of it in the journal, and that record
74  * still needs to be revoked.
75  */
76 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
77                         struct buffer_head *bh, ext4_fsblk_t blocknr)
78 {
79         int err;
80
81         might_sleep();
82
83         BUFFER_TRACE(bh, "enter");
84
85         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
86                   "data mode %lx\n",
87                   bh, is_metadata, inode->i_mode,
88                   test_opt(inode->i_sb, DATA_FLAGS));
89
90         /* Never use the revoke function if we are doing full data
91          * journaling: there is no need to, and a V1 superblock won't
92          * support it.  Otherwise, only skip the revoke on un-journaled
93          * data blocks. */
94
95         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
96             (!is_metadata && !ext4_should_journal_data(inode))) {
97                 if (bh) {
98                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
99                         return ext4_journal_forget(handle, bh);
100                 }
101                 return 0;
102         }
103
104         /*
105          * data!=journal && (is_metadata || should_journal_data(inode))
106          */
107         BUFFER_TRACE(bh, "call ext4_journal_revoke");
108         err = ext4_journal_revoke(handle, blocknr, bh);
109         if (err)
110                 ext4_abort(inode->i_sb, __func__,
111                            "error %d when attempting revoke", err);
112         BUFFER_TRACE(bh, "exit");
113         return err;
114 }
115
116 /*
117  * Work out how many blocks we need to proceed with the next chunk of a
118  * truncate transaction.
119  */
120 static unsigned long blocks_for_truncate(struct inode *inode)
121 {
122         ext4_lblk_t needed;
123
124         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125
126         /* Give ourselves just enough room to cope with inodes in which
127          * i_blocks is corrupt: we've seen disk corruptions in the past
128          * which resulted in random data in an inode which looked enough
129          * like a regular file for ext4 to try to delete it.  Things
130          * will go a bit crazy if that happens, but at least we should
131          * try not to panic the whole kernel. */
132         if (needed < 2)
133                 needed = 2;
134
135         /* But we need to bound the transaction so we don't overflow the
136          * journal. */
137         if (needed > EXT4_MAX_TRANS_DATA)
138                 needed = EXT4_MAX_TRANS_DATA;
139
140         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 }
142
143 /*
144  * Truncate transactions can be complex and absolutely huge.  So we need to
145  * be able to restart the transaction at a conventient checkpoint to make
146  * sure we don't overflow the journal.
147  *
148  * start_transaction gets us a new handle for a truncate transaction,
149  * and extend_transaction tries to extend the existing one a bit.  If
150  * extend fails, we need to propagate the failure up and restart the
151  * transaction in the top-level truncate loop. --sct
152  */
153 static handle_t *start_transaction(struct inode *inode)
154 {
155         handle_t *result;
156
157         result = ext4_journal_start(inode, blocks_for_truncate(inode));
158         if (!IS_ERR(result))
159                 return result;
160
161         ext4_std_error(inode->i_sb, PTR_ERR(result));
162         return result;
163 }
164
165 /*
166  * Try to extend this transaction for the purposes of truncation.
167  *
168  * Returns 0 if we managed to create more room.  If we can't create more
169  * room, and the transaction must be restarted we return 1.
170  */
171 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172 {
173         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
174                 return 0;
175         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
176                 return 0;
177         return 1;
178 }
179
180 /*
181  * Restart the transaction associated with *handle.  This does a commit,
182  * so before we call here everything must be consistently dirtied against
183  * this transaction.
184  */
185 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 {
187         jbd_debug(2, "restarting handle %p\n", handle);
188         return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 }
190
191 /*
192  * Called at the last iput() if i_nlink is zero.
193  */
194 void ext4_delete_inode(struct inode *inode)
195 {
196         handle_t *handle;
197         int err;
198
199         if (ext4_should_order_data(inode))
200                 ext4_begin_ordered_truncate(inode, 0);
201         truncate_inode_pages(&inode->i_data, 0);
202
203         if (is_bad_inode(inode))
204                 goto no_delete;
205
206         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207         if (IS_ERR(handle)) {
208                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
209                 /*
210                  * If we're going to skip the normal cleanup, we still need to
211                  * make sure that the in-core orphan linked list is properly
212                  * cleaned up.
213                  */
214                 ext4_orphan_del(NULL, inode);
215                 goto no_delete;
216         }
217
218         if (IS_SYNC(inode))
219                 handle->h_sync = 1;
220         inode->i_size = 0;
221         err = ext4_mark_inode_dirty(handle, inode);
222         if (err) {
223                 ext4_warning(inode->i_sb, __func__,
224                              "couldn't mark inode dirty (err %d)", err);
225                 goto stop_handle;
226         }
227         if (inode->i_blocks)
228                 ext4_truncate(inode);
229
230         /*
231          * ext4_ext_truncate() doesn't reserve any slop when it
232          * restarts journal transactions; therefore there may not be
233          * enough credits left in the handle to remove the inode from
234          * the orphan list and set the dtime field.
235          */
236         if (handle->h_buffer_credits < 3) {
237                 err = ext4_journal_extend(handle, 3);
238                 if (err > 0)
239                         err = ext4_journal_restart(handle, 3);
240                 if (err != 0) {
241                         ext4_warning(inode->i_sb, __func__,
242                                      "couldn't extend journal (err %d)", err);
243                 stop_handle:
244                         ext4_journal_stop(handle);
245                         goto no_delete;
246                 }
247         }
248
249         /*
250          * Kill off the orphan record which ext4_truncate created.
251          * AKPM: I think this can be inside the above `if'.
252          * Note that ext4_orphan_del() has to be able to cope with the
253          * deletion of a non-existent orphan - this is because we don't
254          * know if ext4_truncate() actually created an orphan record.
255          * (Well, we could do this if we need to, but heck - it works)
256          */
257         ext4_orphan_del(handle, inode);
258         EXT4_I(inode)->i_dtime  = get_seconds();
259
260         /*
261          * One subtle ordering requirement: if anything has gone wrong
262          * (transaction abort, IO errors, whatever), then we can still
263          * do these next steps (the fs will already have been marked as
264          * having errors), but we can't free the inode if the mark_dirty
265          * fails.
266          */
267         if (ext4_mark_inode_dirty(handle, inode))
268                 /* If that failed, just do the required in-core inode clear. */
269                 clear_inode(inode);
270         else
271                 ext4_free_inode(handle, inode);
272         ext4_journal_stop(handle);
273         return;
274 no_delete:
275         clear_inode(inode);     /* We must guarantee clearing of inode... */
276 }
277
278 typedef struct {
279         __le32  *p;
280         __le32  key;
281         struct buffer_head *bh;
282 } Indirect;
283
284 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285 {
286         p->key = *(p->p = v);
287         p->bh = bh;
288 }
289
290 /**
291  *      ext4_block_to_path - parse the block number into array of offsets
292  *      @inode: inode in question (we are only interested in its superblock)
293  *      @i_block: block number to be parsed
294  *      @offsets: array to store the offsets in
295  *      @boundary: set this non-zero if the referred-to block is likely to be
296  *             followed (on disk) by an indirect block.
297  *
298  *      To store the locations of file's data ext4 uses a data structure common
299  *      for UNIX filesystems - tree of pointers anchored in the inode, with
300  *      data blocks at leaves and indirect blocks in intermediate nodes.
301  *      This function translates the block number into path in that tree -
302  *      return value is the path length and @offsets[n] is the offset of
303  *      pointer to (n+1)th node in the nth one. If @block is out of range
304  *      (negative or too large) warning is printed and zero returned.
305  *
306  *      Note: function doesn't find node addresses, so no IO is needed. All
307  *      we need to know is the capacity of indirect blocks (taken from the
308  *      inode->i_sb).
309  */
310
311 /*
312  * Portability note: the last comparison (check that we fit into triple
313  * indirect block) is spelled differently, because otherwise on an
314  * architecture with 32-bit longs and 8Kb pages we might get into trouble
315  * if our filesystem had 8Kb blocks. We might use long long, but that would
316  * kill us on x86. Oh, well, at least the sign propagation does not matter -
317  * i_block would have to be negative in the very beginning, so we would not
318  * get there at all.
319  */
320
321 static int ext4_block_to_path(struct inode *inode,
322                         ext4_lblk_t i_block,
323                         ext4_lblk_t offsets[4], int *boundary)
324 {
325         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
326         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
327         const long direct_blocks = EXT4_NDIR_BLOCKS,
328                 indirect_blocks = ptrs,
329                 double_blocks = (1 << (ptrs_bits * 2));
330         int n = 0;
331         int final = 0;
332
333         if (i_block < 0) {
334                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
335         } else if (i_block < direct_blocks) {
336                 offsets[n++] = i_block;
337                 final = direct_blocks;
338         } else if ((i_block -= direct_blocks) < indirect_blocks) {
339                 offsets[n++] = EXT4_IND_BLOCK;
340                 offsets[n++] = i_block;
341                 final = ptrs;
342         } else if ((i_block -= indirect_blocks) < double_blocks) {
343                 offsets[n++] = EXT4_DIND_BLOCK;
344                 offsets[n++] = i_block >> ptrs_bits;
345                 offsets[n++] = i_block & (ptrs - 1);
346                 final = ptrs;
347         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348                 offsets[n++] = EXT4_TIND_BLOCK;
349                 offsets[n++] = i_block >> (ptrs_bits * 2);
350                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351                 offsets[n++] = i_block & (ptrs - 1);
352                 final = ptrs;
353         } else {
354                 ext4_warning(inode->i_sb, "ext4_block_to_path",
355                                 "block %lu > max",
356                                 i_block + direct_blocks +
357                                 indirect_blocks + double_blocks);
358         }
359         if (boundary)
360                 *boundary = final - 1 - (i_block & (ptrs - 1));
361         return n;
362 }
363
364 /**
365  *      ext4_get_branch - read the chain of indirect blocks leading to data
366  *      @inode: inode in question
367  *      @depth: depth of the chain (1 - direct pointer, etc.)
368  *      @offsets: offsets of pointers in inode/indirect blocks
369  *      @chain: place to store the result
370  *      @err: here we store the error value
371  *
372  *      Function fills the array of triples <key, p, bh> and returns %NULL
373  *      if everything went OK or the pointer to the last filled triple
374  *      (incomplete one) otherwise. Upon the return chain[i].key contains
375  *      the number of (i+1)-th block in the chain (as it is stored in memory,
376  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
377  *      number (it points into struct inode for i==0 and into the bh->b_data
378  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379  *      block for i>0 and NULL for i==0. In other words, it holds the block
380  *      numbers of the chain, addresses they were taken from (and where we can
381  *      verify that chain did not change) and buffer_heads hosting these
382  *      numbers.
383  *
384  *      Function stops when it stumbles upon zero pointer (absent block)
385  *              (pointer to last triple returned, *@err == 0)
386  *      or when it gets an IO error reading an indirect block
387  *              (ditto, *@err == -EIO)
388  *      or when it reads all @depth-1 indirect blocks successfully and finds
389  *      the whole chain, all way to the data (returns %NULL, *err == 0).
390  *
391  *      Need to be called with
392  *      down_read(&EXT4_I(inode)->i_data_sem)
393  */
394 static Indirect *ext4_get_branch(struct inode *inode, int depth,
395                                  ext4_lblk_t  *offsets,
396                                  Indirect chain[4], int *err)
397 {
398         struct super_block *sb = inode->i_sb;
399         Indirect *p = chain;
400         struct buffer_head *bh;
401
402         *err = 0;
403         /* i_data is not going away, no lock needed */
404         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
405         if (!p->key)
406                 goto no_block;
407         while (--depth) {
408                 bh = sb_bread(sb, le32_to_cpu(p->key));
409                 if (!bh)
410                         goto failure;
411                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
412                 /* Reader: end */
413                 if (!p->key)
414                         goto no_block;
415         }
416         return NULL;
417
418 failure:
419         *err = -EIO;
420 no_block:
421         return p;
422 }
423
424 /**
425  *      ext4_find_near - find a place for allocation with sufficient locality
426  *      @inode: owner
427  *      @ind: descriptor of indirect block.
428  *
429  *      This function returns the preferred place for block allocation.
430  *      It is used when heuristic for sequential allocation fails.
431  *      Rules are:
432  *        + if there is a block to the left of our position - allocate near it.
433  *        + if pointer will live in indirect block - allocate near that block.
434  *        + if pointer will live in inode - allocate in the same
435  *          cylinder group.
436  *
437  * In the latter case we colour the starting block by the callers PID to
438  * prevent it from clashing with concurrent allocations for a different inode
439  * in the same block group.   The PID is used here so that functionally related
440  * files will be close-by on-disk.
441  *
442  *      Caller must make sure that @ind is valid and will stay that way.
443  */
444 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445 {
446         struct ext4_inode_info *ei = EXT4_I(inode);
447         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
448         __le32 *p;
449         ext4_fsblk_t bg_start;
450         ext4_fsblk_t last_block;
451         ext4_grpblk_t colour;
452
453         /* Try to find previous block */
454         for (p = ind->p - 1; p >= start; p--) {
455                 if (*p)
456                         return le32_to_cpu(*p);
457         }
458
459         /* No such thing, so let's try location of indirect block */
460         if (ind->bh)
461                 return ind->bh->b_blocknr;
462
463         /*
464          * It is going to be referred to from the inode itself? OK, just put it
465          * into the same cylinder group then.
466          */
467         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
468         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469
470         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
471                 colour = (current->pid % 16) *
472                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
473         else
474                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
475         return bg_start + colour;
476 }
477
478 /**
479  *      ext4_find_goal - find a preferred place for allocation.
480  *      @inode: owner
481  *      @block:  block we want
482  *      @partial: pointer to the last triple within a chain
483  *
484  *      Normally this function find the preferred place for block allocation,
485  *      returns it.
486  */
487 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
488                 Indirect *partial)
489 {
490         /*
491          * XXX need to get goal block from mballoc's data structures
492          */
493
494         return ext4_find_near(inode, partial);
495 }
496
497 /**
498  *      ext4_blks_to_allocate: Look up the block map and count the number
499  *      of direct blocks need to be allocated for the given branch.
500  *
501  *      @branch: chain of indirect blocks
502  *      @k: number of blocks need for indirect blocks
503  *      @blks: number of data blocks to be mapped.
504  *      @blocks_to_boundary:  the offset in the indirect block
505  *
506  *      return the total number of blocks to be allocate, including the
507  *      direct and indirect blocks.
508  */
509 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
510                 int blocks_to_boundary)
511 {
512         unsigned long count = 0;
513
514         /*
515          * Simple case, [t,d]Indirect block(s) has not allocated yet
516          * then it's clear blocks on that path have not allocated
517          */
518         if (k > 0) {
519                 /* right now we don't handle cross boundary allocation */
520                 if (blks < blocks_to_boundary + 1)
521                         count += blks;
522                 else
523                         count += blocks_to_boundary + 1;
524                 return count;
525         }
526
527         count++;
528         while (count < blks && count <= blocks_to_boundary &&
529                 le32_to_cpu(*(branch[0].p + count)) == 0) {
530                 count++;
531         }
532         return count;
533 }
534
535 /**
536  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
537  *      @indirect_blks: the number of blocks need to allocate for indirect
538  *                      blocks
539  *
540  *      @new_blocks: on return it will store the new block numbers for
541  *      the indirect blocks(if needed) and the first direct block,
542  *      @blks:  on return it will store the total number of allocated
543  *              direct blocks
544  */
545 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
546                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
547                                 int indirect_blks, int blks,
548                                 ext4_fsblk_t new_blocks[4], int *err)
549 {
550         struct ext4_allocation_request ar;
551         int target, i;
552         unsigned long count = 0, blk_allocated = 0;
553         int index = 0;
554         ext4_fsblk_t current_block = 0;
555         int ret = 0;
556
557         /*
558          * Here we try to allocate the requested multiple blocks at once,
559          * on a best-effort basis.
560          * To build a branch, we should allocate blocks for
561          * the indirect blocks(if not allocated yet), and at least
562          * the first direct block of this branch.  That's the
563          * minimum number of blocks need to allocate(required)
564          */
565         /* first we try to allocate the indirect blocks */
566         target = indirect_blks;
567         while (target > 0) {
568                 count = target;
569                 /* allocating blocks for indirect blocks and direct blocks */
570                 current_block = ext4_new_meta_blocks(handle, inode,
571                                                         goal, &count, err);
572                 if (*err)
573                         goto failed_out;
574
575                 target -= count;
576                 /* allocate blocks for indirect blocks */
577                 while (index < indirect_blks && count) {
578                         new_blocks[index++] = current_block++;
579                         count--;
580                 }
581                 if (count > 0) {
582                         /*
583                          * save the new block number
584                          * for the first direct block
585                          */
586                         new_blocks[index] = current_block;
587                         printk(KERN_INFO "%s returned more blocks than "
588                                                 "requested\n", __func__);
589                         WARN_ON(1);
590                         break;
591                 }
592         }
593
594         target = blks - count ;
595         blk_allocated = count;
596         if (!target)
597                 goto allocated;
598         /* Now allocate data blocks */
599         memset(&ar, 0, sizeof(ar));
600         ar.inode = inode;
601         ar.goal = goal;
602         ar.len = target;
603         ar.logical = iblock;
604         if (S_ISREG(inode->i_mode))
605                 /* enable in-core preallocation only for regular files */
606                 ar.flags = EXT4_MB_HINT_DATA;
607
608         current_block = ext4_mb_new_blocks(handle, &ar, err);
609
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += ar.len;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         ext4_fsblk_t current_block;
761
762         /*
763          * If we're splicing into a [td]indirect block (as opposed to the
764          * inode) then we need to get write access to the [td]indirect block
765          * before the splice.
766          */
767         if (where->bh) {
768                 BUFFER_TRACE(where->bh, "get_write_access");
769                 err = ext4_journal_get_write_access(handle, where->bh);
770                 if (err)
771                         goto err_out;
772         }
773         /* That's it */
774
775         *where->p = where->key;
776
777         /*
778          * Update the host buffer_head or inode to point to more just allocated
779          * direct blocks blocks
780          */
781         if (num == 0 && blks > 1) {
782                 current_block = le32_to_cpu(where->key) + 1;
783                 for (i = 1; i < blks; i++)
784                         *(where->p + i) = cpu_to_le32(current_block++);
785         }
786
787         /* We are done with atomic stuff, now do the rest of housekeeping */
788
789         inode->i_ctime = ext4_current_time(inode);
790         ext4_mark_inode_dirty(handle, inode);
791
792         /* had we spliced it onto indirect block? */
793         if (where->bh) {
794                 /*
795                  * If we spliced it onto an indirect block, we haven't
796                  * altered the inode.  Note however that if it is being spliced
797                  * onto an indirect block at the very end of the file (the
798                  * file is growing) then we *will* alter the inode to reflect
799                  * the new i_size.  But that is not done here - it is done in
800                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
801                  */
802                 jbd_debug(5, "splicing indirect only\n");
803                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
804                 err = ext4_journal_dirty_metadata(handle, where->bh);
805                 if (err)
806                         goto err_out;
807         } else {
808                 /*
809                  * OK, we spliced it into the inode itself on a direct block.
810                  * Inode was dirtied above.
811                  */
812                 jbd_debug(5, "splicing direct\n");
813         }
814         return err;
815
816 err_out:
817         for (i = 1; i <= num; i++) {
818                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
819                 ext4_journal_forget(handle, where[i].bh);
820                 ext4_free_blocks(handle, inode,
821                                         le32_to_cpu(where[i-1].key), 1, 0);
822         }
823         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
824
825         return err;
826 }
827
828 /*
829  * Allocation strategy is simple: if we have to allocate something, we will
830  * have to go the whole way to leaf. So let's do it before attaching anything
831  * to tree, set linkage between the newborn blocks, write them if sync is
832  * required, recheck the path, free and repeat if check fails, otherwise
833  * set the last missing link (that will protect us from any truncate-generated
834  * removals - all blocks on the path are immune now) and possibly force the
835  * write on the parent block.
836  * That has a nice additional property: no special recovery from the failed
837  * allocations is needed - we simply release blocks and do not touch anything
838  * reachable from inode.
839  *
840  * `handle' can be NULL if create == 0.
841  *
842  * return > 0, # of blocks mapped or allocated.
843  * return = 0, if plain lookup failed.
844  * return < 0, error case.
845  *
846  *
847  * Need to be called with
848  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
849  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
850  */
851 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
852                 ext4_lblk_t iblock, unsigned long maxblocks,
853                 struct buffer_head *bh_result,
854                 int create, int extend_disksize)
855 {
856         int err = -EIO;
857         ext4_lblk_t offsets[4];
858         Indirect chain[4];
859         Indirect *partial;
860         ext4_fsblk_t goal;
861         int indirect_blks;
862         int blocks_to_boundary = 0;
863         int depth;
864         struct ext4_inode_info *ei = EXT4_I(inode);
865         int count = 0;
866         ext4_fsblk_t first_block = 0;
867         loff_t disksize;
868
869
870         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
871         J_ASSERT(handle != NULL || create == 0);
872         depth = ext4_block_to_path(inode, iblock, offsets,
873                                         &blocks_to_boundary);
874
875         if (depth == 0)
876                 goto out;
877
878         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
879
880         /* Simplest case - block found, no allocation needed */
881         if (!partial) {
882                 first_block = le32_to_cpu(chain[depth - 1].key);
883                 clear_buffer_new(bh_result);
884                 count++;
885                 /*map more blocks*/
886                 while (count < maxblocks && count <= blocks_to_boundary) {
887                         ext4_fsblk_t blk;
888
889                         blk = le32_to_cpu(*(chain[depth-1].p + count));
890
891                         if (blk == first_block + count)
892                                 count++;
893                         else
894                                 break;
895                 }
896                 goto got_it;
897         }
898
899         /* Next simple case - plain lookup or failed read of indirect block */
900         if (!create || err == -EIO)
901                 goto cleanup;
902
903         /*
904          * Okay, we need to do block allocation.
905         */
906         goal = ext4_find_goal(inode, iblock, partial);
907
908         /* the number of blocks need to allocate for [d,t]indirect blocks */
909         indirect_blks = (chain + depth) - partial - 1;
910
911         /*
912          * Next look up the indirect map to count the totoal number of
913          * direct blocks to allocate for this branch.
914          */
915         count = ext4_blks_to_allocate(partial, indirect_blks,
916                                         maxblocks, blocks_to_boundary);
917         /*
918          * Block out ext4_truncate while we alter the tree
919          */
920         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
921                                         &count, goal,
922                                         offsets + (partial - chain), partial);
923
924         /*
925          * The ext4_splice_branch call will free and forget any buffers
926          * on the new chain if there is a failure, but that risks using
927          * up transaction credits, especially for bitmaps where the
928          * credits cannot be returned.  Can we handle this somehow?  We
929          * may need to return -EAGAIN upwards in the worst case.  --sct
930          */
931         if (!err)
932                 err = ext4_splice_branch(handle, inode, iblock,
933                                         partial, indirect_blks, count);
934         /*
935          * i_disksize growing is protected by i_data_sem.  Don't forget to
936          * protect it if you're about to implement concurrent
937          * ext4_get_block() -bzzz
938         */
939         if (!err && extend_disksize) {
940                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
941                 if (disksize > i_size_read(inode))
942                         disksize = i_size_read(inode);
943                 if (disksize > ei->i_disksize)
944                         ei->i_disksize = disksize;
945         }
946         if (err)
947                 goto cleanup;
948
949         set_buffer_new(bh_result);
950 got_it:
951         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
952         if (count > blocks_to_boundary)
953                 set_buffer_boundary(bh_result);
954         err = count;
955         /* Clean up and exit */
956         partial = chain + depth - 1;    /* the whole chain */
957 cleanup:
958         while (partial > chain) {
959                 BUFFER_TRACE(partial->bh, "call brelse");
960                 brelse(partial->bh);
961                 partial--;
962         }
963         BUFFER_TRACE(bh_result, "returned");
964 out:
965         return err;
966 }
967
968 /*
969  * Calculate the number of metadata blocks need to reserve
970  * to allocate @blocks for non extent file based file
971  */
972 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
973 {
974         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
975         int ind_blks, dind_blks, tind_blks;
976
977         /* number of new indirect blocks needed */
978         ind_blks = (blocks + icap - 1) / icap;
979
980         dind_blks = (ind_blks + icap - 1) / icap;
981
982         tind_blks = 1;
983
984         return ind_blks + dind_blks + tind_blks;
985 }
986
987 /*
988  * Calculate the number of metadata blocks need to reserve
989  * to allocate given number of blocks
990  */
991 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
992 {
993         if (!blocks)
994                 return 0;
995
996         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
997                 return ext4_ext_calc_metadata_amount(inode, blocks);
998
999         return ext4_indirect_calc_metadata_amount(inode, blocks);
1000 }
1001
1002 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1003 {
1004         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1005         int total, mdb, mdb_free;
1006
1007         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1008         /* recalculate the number of metablocks still need to be reserved */
1009         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1010         mdb = ext4_calc_metadata_amount(inode, total);
1011
1012         /* figure out how many metablocks to release */
1013         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1014         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1015
1016         if (mdb_free) {
1017                 /* Account for allocated meta_blocks */
1018                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1019
1020                 /* update fs dirty blocks counter */
1021                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1022                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1023                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1024         }
1025
1026         /* update per-inode reservations */
1027         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1028         EXT4_I(inode)->i_reserved_data_blocks -= used;
1029
1030         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1031 }
1032
1033 /*
1034  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1035  * and returns if the blocks are already mapped.
1036  *
1037  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1038  * and store the allocated blocks in the result buffer head and mark it
1039  * mapped.
1040  *
1041  * If file type is extents based, it will call ext4_ext_get_blocks(),
1042  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1043  * based files
1044  *
1045  * On success, it returns the number of blocks being mapped or allocate.
1046  * if create==0 and the blocks are pre-allocated and uninitialized block,
1047  * the result buffer head is unmapped. If the create ==1, it will make sure
1048  * the buffer head is mapped.
1049  *
1050  * It returns 0 if plain look up failed (blocks have not been allocated), in
1051  * that casem, buffer head is unmapped
1052  *
1053  * It returns the error in case of allocation failure.
1054  */
1055 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1056                         unsigned long max_blocks, struct buffer_head *bh,
1057                         int create, int extend_disksize, int flag)
1058 {
1059         int retval;
1060
1061         clear_buffer_mapped(bh);
1062
1063         /*
1064          * Try to see if we can get  the block without requesting
1065          * for new file system block.
1066          */
1067         down_read((&EXT4_I(inode)->i_data_sem));
1068         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1069                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1070                                 bh, 0, 0);
1071         } else {
1072                 retval = ext4_get_blocks_handle(handle,
1073                                 inode, block, max_blocks, bh, 0, 0);
1074         }
1075         up_read((&EXT4_I(inode)->i_data_sem));
1076
1077         /* If it is only a block(s) look up */
1078         if (!create)
1079                 return retval;
1080
1081         /*
1082          * Returns if the blocks have already allocated
1083          *
1084          * Note that if blocks have been preallocated
1085          * ext4_ext_get_block() returns th create = 0
1086          * with buffer head unmapped.
1087          */
1088         if (retval > 0 && buffer_mapped(bh))
1089                 return retval;
1090
1091         /*
1092          * New blocks allocate and/or writing to uninitialized extent
1093          * will possibly result in updating i_data, so we take
1094          * the write lock of i_data_sem, and call get_blocks()
1095          * with create == 1 flag.
1096          */
1097         down_write((&EXT4_I(inode)->i_data_sem));
1098
1099         /*
1100          * if the caller is from delayed allocation writeout path
1101          * we have already reserved fs blocks for allocation
1102          * let the underlying get_block() function know to
1103          * avoid double accounting
1104          */
1105         if (flag)
1106                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1107         /*
1108          * We need to check for EXT4 here because migrate
1109          * could have changed the inode type in between
1110          */
1111         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1112                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1113                                 bh, create, extend_disksize);
1114         } else {
1115                 retval = ext4_get_blocks_handle(handle, inode, block,
1116                                 max_blocks, bh, create, extend_disksize);
1117
1118                 if (retval > 0 && buffer_new(bh)) {
1119                         /*
1120                          * We allocated new blocks which will result in
1121                          * i_data's format changing.  Force the migrate
1122                          * to fail by clearing migrate flags
1123                          */
1124                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1125                                                         ~EXT4_EXT_MIGRATE;
1126                 }
1127         }
1128
1129         if (flag) {
1130                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1131                 /*
1132                  * Update reserved blocks/metadata blocks
1133                  * after successful block allocation
1134                  * which were deferred till now
1135                  */
1136                 if ((retval > 0) && buffer_delay(bh))
1137                         ext4_da_update_reserve_space(inode, retval);
1138         }
1139
1140         up_write((&EXT4_I(inode)->i_data_sem));
1141         return retval;
1142 }
1143
1144 /* Maximum number of blocks we map for direct IO at once. */
1145 #define DIO_MAX_BLOCKS 4096
1146
1147 int ext4_get_block(struct inode *inode, sector_t iblock,
1148                    struct buffer_head *bh_result, int create)
1149 {
1150         handle_t *handle = ext4_journal_current_handle();
1151         int ret = 0, started = 0;
1152         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1153         int dio_credits;
1154
1155         if (create && !handle) {
1156                 /* Direct IO write... */
1157                 if (max_blocks > DIO_MAX_BLOCKS)
1158                         max_blocks = DIO_MAX_BLOCKS;
1159                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1160                 handle = ext4_journal_start(inode, dio_credits);
1161                 if (IS_ERR(handle)) {
1162                         ret = PTR_ERR(handle);
1163                         goto out;
1164                 }
1165                 started = 1;
1166         }
1167
1168         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1169                                         max_blocks, bh_result, create, 0, 0);
1170         if (ret > 0) {
1171                 bh_result->b_size = (ret << inode->i_blkbits);
1172                 ret = 0;
1173         }
1174         if (started)
1175                 ext4_journal_stop(handle);
1176 out:
1177         return ret;
1178 }
1179
1180 /*
1181  * `handle' can be NULL if create is zero
1182  */
1183 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1184                                 ext4_lblk_t block, int create, int *errp)
1185 {
1186         struct buffer_head dummy;
1187         int fatal = 0, err;
1188
1189         J_ASSERT(handle != NULL || create == 0);
1190
1191         dummy.b_state = 0;
1192         dummy.b_blocknr = -1000;
1193         buffer_trace_init(&dummy.b_history);
1194         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1195                                         &dummy, create, 1, 0);
1196         /*
1197          * ext4_get_blocks_handle() returns number of blocks
1198          * mapped. 0 in case of a HOLE.
1199          */
1200         if (err > 0) {
1201                 if (err > 1)
1202                         WARN_ON(1);
1203                 err = 0;
1204         }
1205         *errp = err;
1206         if (!err && buffer_mapped(&dummy)) {
1207                 struct buffer_head *bh;
1208                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1209                 if (!bh) {
1210                         *errp = -EIO;
1211                         goto err;
1212                 }
1213                 if (buffer_new(&dummy)) {
1214                         J_ASSERT(create != 0);
1215                         J_ASSERT(handle != NULL);
1216
1217                         /*
1218                          * Now that we do not always journal data, we should
1219                          * keep in mind whether this should always journal the
1220                          * new buffer as metadata.  For now, regular file
1221                          * writes use ext4_get_block instead, so it's not a
1222                          * problem.
1223                          */
1224                         lock_buffer(bh);
1225                         BUFFER_TRACE(bh, "call get_create_access");
1226                         fatal = ext4_journal_get_create_access(handle, bh);
1227                         if (!fatal && !buffer_uptodate(bh)) {
1228                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1229                                 set_buffer_uptodate(bh);
1230                         }
1231                         unlock_buffer(bh);
1232                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1233                         err = ext4_journal_dirty_metadata(handle, bh);
1234                         if (!fatal)
1235                                 fatal = err;
1236                 } else {
1237                         BUFFER_TRACE(bh, "not a new buffer");
1238                 }
1239                 if (fatal) {
1240                         *errp = fatal;
1241                         brelse(bh);
1242                         bh = NULL;
1243                 }
1244                 return bh;
1245         }
1246 err:
1247         return NULL;
1248 }
1249
1250 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1251                                ext4_lblk_t block, int create, int *err)
1252 {
1253         struct buffer_head *bh;
1254
1255         bh = ext4_getblk(handle, inode, block, create, err);
1256         if (!bh)
1257                 return bh;
1258         if (buffer_uptodate(bh))
1259                 return bh;
1260         ll_rw_block(READ_META, 1, &bh);
1261         wait_on_buffer(bh);
1262         if (buffer_uptodate(bh))
1263                 return bh;
1264         put_bh(bh);
1265         *err = -EIO;
1266         return NULL;
1267 }
1268
1269 static int walk_page_buffers(handle_t *handle,
1270                              struct buffer_head *head,
1271                              unsigned from,
1272                              unsigned to,
1273                              int *partial,
1274                              int (*fn)(handle_t *handle,
1275                                        struct buffer_head *bh))
1276 {
1277         struct buffer_head *bh;
1278         unsigned block_start, block_end;
1279         unsigned blocksize = head->b_size;
1280         int err, ret = 0;
1281         struct buffer_head *next;
1282
1283         for (bh = head, block_start = 0;
1284              ret == 0 && (bh != head || !block_start);
1285              block_start = block_end, bh = next)
1286         {
1287                 next = bh->b_this_page;
1288                 block_end = block_start + blocksize;
1289                 if (block_end <= from || block_start >= to) {
1290                         if (partial && !buffer_uptodate(bh))
1291                                 *partial = 1;
1292                         continue;
1293                 }
1294                 err = (*fn)(handle, bh);
1295                 if (!ret)
1296                         ret = err;
1297         }
1298         return ret;
1299 }
1300
1301 /*
1302  * To preserve ordering, it is essential that the hole instantiation and
1303  * the data write be encapsulated in a single transaction.  We cannot
1304  * close off a transaction and start a new one between the ext4_get_block()
1305  * and the commit_write().  So doing the jbd2_journal_start at the start of
1306  * prepare_write() is the right place.
1307  *
1308  * Also, this function can nest inside ext4_writepage() ->
1309  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1310  * has generated enough buffer credits to do the whole page.  So we won't
1311  * block on the journal in that case, which is good, because the caller may
1312  * be PF_MEMALLOC.
1313  *
1314  * By accident, ext4 can be reentered when a transaction is open via
1315  * quota file writes.  If we were to commit the transaction while thus
1316  * reentered, there can be a deadlock - we would be holding a quota
1317  * lock, and the commit would never complete if another thread had a
1318  * transaction open and was blocking on the quota lock - a ranking
1319  * violation.
1320  *
1321  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1322  * will _not_ run commit under these circumstances because handle->h_ref
1323  * is elevated.  We'll still have enough credits for the tiny quotafile
1324  * write.
1325  */
1326 static int do_journal_get_write_access(handle_t *handle,
1327                                         struct buffer_head *bh)
1328 {
1329         if (!buffer_mapped(bh) || buffer_freed(bh))
1330                 return 0;
1331         return ext4_journal_get_write_access(handle, bh);
1332 }
1333
1334 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1335                                 loff_t pos, unsigned len, unsigned flags,
1336                                 struct page **pagep, void **fsdata)
1337 {
1338         struct inode *inode = mapping->host;
1339         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1340         handle_t *handle;
1341         int retries = 0;
1342         struct page *page;
1343         pgoff_t index;
1344         unsigned from, to;
1345
1346         index = pos >> PAGE_CACHE_SHIFT;
1347         from = pos & (PAGE_CACHE_SIZE - 1);
1348         to = from + len;
1349
1350 retry:
1351         handle = ext4_journal_start(inode, needed_blocks);
1352         if (IS_ERR(handle)) {
1353                 ret = PTR_ERR(handle);
1354                 goto out;
1355         }
1356
1357         page = grab_cache_page_write_begin(mapping, index, flags);
1358         if (!page) {
1359                 ext4_journal_stop(handle);
1360                 ret = -ENOMEM;
1361                 goto out;
1362         }
1363         *pagep = page;
1364
1365         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1366                                                         ext4_get_block);
1367
1368         if (!ret && ext4_should_journal_data(inode)) {
1369                 ret = walk_page_buffers(handle, page_buffers(page),
1370                                 from, to, NULL, do_journal_get_write_access);
1371         }
1372
1373         if (ret) {
1374                 unlock_page(page);
1375                 ext4_journal_stop(handle);
1376                 page_cache_release(page);
1377                 /*
1378                  * block_write_begin may have instantiated a few blocks
1379                  * outside i_size.  Trim these off again. Don't need
1380                  * i_size_read because we hold i_mutex.
1381                  */
1382                 if (pos + len > inode->i_size)
1383                         vmtruncate(inode, inode->i_size);
1384         }
1385
1386         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1387                 goto retry;
1388 out:
1389         return ret;
1390 }
1391
1392 /* For write_end() in data=journal mode */
1393 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1394 {
1395         if (!buffer_mapped(bh) || buffer_freed(bh))
1396                 return 0;
1397         set_buffer_uptodate(bh);
1398         return ext4_journal_dirty_metadata(handle, bh);
1399 }
1400
1401 /*
1402  * We need to pick up the new inode size which generic_commit_write gave us
1403  * `file' can be NULL - eg, when called from page_symlink().
1404  *
1405  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1406  * buffers are managed internally.
1407  */
1408 static int ext4_ordered_write_end(struct file *file,
1409                                 struct address_space *mapping,
1410                                 loff_t pos, unsigned len, unsigned copied,
1411                                 struct page *page, void *fsdata)
1412 {
1413         handle_t *handle = ext4_journal_current_handle();
1414         struct inode *inode = mapping->host;
1415         int ret = 0, ret2;
1416
1417         ret = ext4_jbd2_file_inode(handle, inode);
1418
1419         if (ret == 0) {
1420                 loff_t new_i_size;
1421
1422                 new_i_size = pos + copied;
1423                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1424                         ext4_update_i_disksize(inode, new_i_size);
1425                         /* We need to mark inode dirty even if
1426                          * new_i_size is less that inode->i_size
1427                          * bu greater than i_disksize.(hint delalloc)
1428                          */
1429                         ext4_mark_inode_dirty(handle, inode);
1430                 }
1431
1432                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1433                                                         page, fsdata);
1434                 copied = ret2;
1435                 if (ret2 < 0)
1436                         ret = ret2;
1437         }
1438         ret2 = ext4_journal_stop(handle);
1439         if (!ret)
1440                 ret = ret2;
1441
1442         return ret ? ret : copied;
1443 }
1444
1445 static int ext4_writeback_write_end(struct file *file,
1446                                 struct address_space *mapping,
1447                                 loff_t pos, unsigned len, unsigned copied,
1448                                 struct page *page, void *fsdata)
1449 {
1450         handle_t *handle = ext4_journal_current_handle();
1451         struct inode *inode = mapping->host;
1452         int ret = 0, ret2;
1453         loff_t new_i_size;
1454
1455         new_i_size = pos + copied;
1456         if (new_i_size > EXT4_I(inode)->i_disksize) {
1457                 ext4_update_i_disksize(inode, new_i_size);
1458                 /* We need to mark inode dirty even if
1459                  * new_i_size is less that inode->i_size
1460                  * bu greater than i_disksize.(hint delalloc)
1461                  */
1462                 ext4_mark_inode_dirty(handle, inode);
1463         }
1464
1465         ret2 = generic_write_end(file, mapping, pos, len, copied,
1466                                                         page, fsdata);
1467         copied = ret2;
1468         if (ret2 < 0)
1469                 ret = ret2;
1470
1471         ret2 = ext4_journal_stop(handle);
1472         if (!ret)
1473                 ret = ret2;
1474
1475         return ret ? ret : copied;
1476 }
1477
1478 static int ext4_journalled_write_end(struct file *file,
1479                                 struct address_space *mapping,
1480                                 loff_t pos, unsigned len, unsigned copied,
1481                                 struct page *page, void *fsdata)
1482 {
1483         handle_t *handle = ext4_journal_current_handle();
1484         struct inode *inode = mapping->host;
1485         int ret = 0, ret2;
1486         int partial = 0;
1487         unsigned from, to;
1488         loff_t new_i_size;
1489
1490         from = pos & (PAGE_CACHE_SIZE - 1);
1491         to = from + len;
1492
1493         if (copied < len) {
1494                 if (!PageUptodate(page))
1495                         copied = 0;
1496                 page_zero_new_buffers(page, from+copied, to);
1497         }
1498
1499         ret = walk_page_buffers(handle, page_buffers(page), from,
1500                                 to, &partial, write_end_fn);
1501         if (!partial)
1502                 SetPageUptodate(page);
1503         new_i_size = pos + copied;
1504         if (new_i_size > inode->i_size)
1505                 i_size_write(inode, pos+copied);
1506         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507         if (new_i_size > EXT4_I(inode)->i_disksize) {
1508                 ext4_update_i_disksize(inode, new_i_size);
1509                 ret2 = ext4_mark_inode_dirty(handle, inode);
1510                 if (!ret)
1511                         ret = ret2;
1512         }
1513
1514         unlock_page(page);
1515         ret2 = ext4_journal_stop(handle);
1516         if (!ret)
1517                 ret = ret2;
1518         page_cache_release(page);
1519
1520         return ret ? ret : copied;
1521 }
1522
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 {
1525         int retries = 0;
1526        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527        unsigned long md_needed, mdblocks, total = 0;
1528
1529         /*
1530          * recalculate the amount of metadata blocks to reserve
1531          * in order to allocate nrblocks
1532          * worse case is one extent per block
1533          */
1534 repeat:
1535         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537         mdblocks = ext4_calc_metadata_amount(inode, total);
1538         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541         total = md_needed + nrblocks;
1542
1543         if (ext4_claim_free_blocks(sbi, total)) {
1544                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546                         yield();
1547                         goto repeat;
1548                 }
1549                 return -ENOSPC;
1550         }
1551         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553
1554         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555         return 0;       /* success */
1556 }
1557
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 {
1560         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561         int total, mdb, mdb_free, release;
1562
1563         if (!to_free)
1564                 return;         /* Nothing to release, exit */
1565
1566         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567
1568         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569                 /*
1570                  * if there is no reserved blocks, but we try to free some
1571                  * then the counter is messed up somewhere.
1572                  * but since this function is called from invalidate
1573                  * page, it's harmless to return without any action
1574                  */
1575                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576                             "blocks for inode %lu, but there is no reserved "
1577                             "data blocks\n", to_free, inode->i_ino);
1578                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579                 return;
1580         }
1581
1582         /* recalculate the number of metablocks still need to be reserved */
1583         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584         mdb = ext4_calc_metadata_amount(inode, total);
1585
1586         /* figure out how many metablocks to release */
1587         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589
1590         release = to_free + mdb_free;
1591
1592         /* update fs dirty blocks counter for truncate case */
1593         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594
1595         /* update per-inode reservations */
1596         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598
1599         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602 }
1603
1604 static void ext4_da_page_release_reservation(struct page *page,
1605                                                 unsigned long offset)
1606 {
1607         int to_release = 0;
1608         struct buffer_head *head, *bh;
1609         unsigned int curr_off = 0;
1610
1611         head = page_buffers(page);
1612         bh = head;
1613         do {
1614                 unsigned int next_off = curr_off + bh->b_size;
1615
1616                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617                         to_release++;
1618                         clear_buffer_delay(bh);
1619                 }
1620                 curr_off = next_off;
1621         } while ((bh = bh->b_this_page) != head);
1622         ext4_da_release_space(page->mapping->host, to_release);
1623 }
1624
1625 /*
1626  * Delayed allocation stuff
1627  */
1628
1629 struct mpage_da_data {
1630         struct inode *inode;
1631         struct buffer_head lbh;                 /* extent of blocks */
1632         unsigned long first_page, next_page;    /* extent of pages */
1633         get_block_t *get_block;
1634         struct writeback_control *wbc;
1635         int io_done;
1636         long pages_written;
1637         int retval;
1638 };
1639
1640 /*
1641  * mpage_da_submit_io - walks through extent of pages and try to write
1642  * them with writepage() call back
1643  *
1644  * @mpd->inode: inode
1645  * @mpd->first_page: first page of the extent
1646  * @mpd->next_page: page after the last page of the extent
1647  * @mpd->get_block: the filesystem's block mapper function
1648  *
1649  * By the time mpage_da_submit_io() is called we expect all blocks
1650  * to be allocated. this may be wrong if allocation failed.
1651  *
1652  * As pages are already locked by write_cache_pages(), we can't use it
1653  */
1654 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1655 {
1656         long pages_skipped;
1657         struct pagevec pvec;
1658         unsigned long index, end;
1659         int ret = 0, err, nr_pages, i;
1660         struct inode *inode = mpd->inode;
1661         struct address_space *mapping = inode->i_mapping;
1662
1663         BUG_ON(mpd->next_page <= mpd->first_page);
1664         /*
1665          * We need to start from the first_page to the next_page - 1
1666          * to make sure we also write the mapped dirty buffer_heads.
1667          * If we look at mpd->lbh.b_blocknr we would only be looking
1668          * at the currently mapped buffer_heads.
1669          */
1670         index = mpd->first_page;
1671         end = mpd->next_page - 1;
1672
1673         pagevec_init(&pvec, 0);
1674         while (index <= end) {
1675                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1676                 if (nr_pages == 0)
1677                         break;
1678                 for (i = 0; i < nr_pages; i++) {
1679                         struct page *page = pvec.pages[i];
1680
1681                         index = page->index;
1682                         if (index > end)
1683                                 break;
1684                         index++;
1685
1686                         BUG_ON(!PageLocked(page));
1687                         BUG_ON(PageWriteback(page));
1688
1689                         pages_skipped = mpd->wbc->pages_skipped;
1690                         err = mapping->a_ops->writepage(page, mpd->wbc);
1691                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1692                                 /*
1693                                  * have successfully written the page
1694                                  * without skipping the same
1695                                  */
1696                                 mpd->pages_written++;
1697                         /*
1698                          * In error case, we have to continue because
1699                          * remaining pages are still locked
1700                          * XXX: unlock and re-dirty them?
1701                          */
1702                         if (ret == 0)
1703                                 ret = err;
1704                 }
1705                 pagevec_release(&pvec);
1706         }
1707         return ret;
1708 }
1709
1710 /*
1711  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1712  *
1713  * @mpd->inode - inode to walk through
1714  * @exbh->b_blocknr - first block on a disk
1715  * @exbh->b_size - amount of space in bytes
1716  * @logical - first logical block to start assignment with
1717  *
1718  * the function goes through all passed space and put actual disk
1719  * block numbers into buffer heads, dropping BH_Delay
1720  */
1721 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1722                                  struct buffer_head *exbh)
1723 {
1724         struct inode *inode = mpd->inode;
1725         struct address_space *mapping = inode->i_mapping;
1726         int blocks = exbh->b_size >> inode->i_blkbits;
1727         sector_t pblock = exbh->b_blocknr, cur_logical;
1728         struct buffer_head *head, *bh;
1729         pgoff_t index, end;
1730         struct pagevec pvec;
1731         int nr_pages, i;
1732
1733         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1734         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1735         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1736
1737         pagevec_init(&pvec, 0);
1738
1739         while (index <= end) {
1740                 /* XXX: optimize tail */
1741                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1742                 if (nr_pages == 0)
1743                         break;
1744                 for (i = 0; i < nr_pages; i++) {
1745                         struct page *page = pvec.pages[i];
1746
1747                         index = page->index;
1748                         if (index > end)
1749                                 break;
1750                         index++;
1751
1752                         BUG_ON(!PageLocked(page));
1753                         BUG_ON(PageWriteback(page));
1754                         BUG_ON(!page_has_buffers(page));
1755
1756                         bh = page_buffers(page);
1757                         head = bh;
1758
1759                         /* skip blocks out of the range */
1760                         do {
1761                                 if (cur_logical >= logical)
1762                                         break;
1763                                 cur_logical++;
1764                         } while ((bh = bh->b_this_page) != head);
1765
1766                         do {
1767                                 if (cur_logical >= logical + blocks)
1768                                         break;
1769                                 if (buffer_delay(bh)) {
1770                                         bh->b_blocknr = pblock;
1771                                         clear_buffer_delay(bh);
1772                                         bh->b_bdev = inode->i_sb->s_bdev;
1773                                 } else if (buffer_unwritten(bh)) {
1774                                         bh->b_blocknr = pblock;
1775                                         clear_buffer_unwritten(bh);
1776                                         set_buffer_mapped(bh);
1777                                         set_buffer_new(bh);
1778                                         bh->b_bdev = inode->i_sb->s_bdev;
1779                                 } else if (buffer_mapped(bh))
1780                                         BUG_ON(bh->b_blocknr != pblock);
1781
1782                                 cur_logical++;
1783                                 pblock++;
1784                         } while ((bh = bh->b_this_page) != head);
1785                 }
1786                 pagevec_release(&pvec);
1787         }
1788 }
1789
1790
1791 /*
1792  * __unmap_underlying_blocks - just a helper function to unmap
1793  * set of blocks described by @bh
1794  */
1795 static inline void __unmap_underlying_blocks(struct inode *inode,
1796                                              struct buffer_head *bh)
1797 {
1798         struct block_device *bdev = inode->i_sb->s_bdev;
1799         int blocks, i;
1800
1801         blocks = bh->b_size >> inode->i_blkbits;
1802         for (i = 0; i < blocks; i++)
1803                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1804 }
1805
1806 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1807                                         sector_t logical, long blk_cnt)
1808 {
1809         int nr_pages, i;
1810         pgoff_t index, end;
1811         struct pagevec pvec;
1812         struct inode *inode = mpd->inode;
1813         struct address_space *mapping = inode->i_mapping;
1814
1815         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1816         end   = (logical + blk_cnt - 1) >>
1817                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1818         while (index <= end) {
1819                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1820                 if (nr_pages == 0)
1821                         break;
1822                 for (i = 0; i < nr_pages; i++) {
1823                         struct page *page = pvec.pages[i];
1824                         index = page->index;
1825                         if (index > end)
1826                                 break;
1827                         index++;
1828
1829                         BUG_ON(!PageLocked(page));
1830                         BUG_ON(PageWriteback(page));
1831                         block_invalidatepage(page, 0);
1832                         ClearPageUptodate(page);
1833                         unlock_page(page);
1834                 }
1835         }
1836         return;
1837 }
1838
1839 static void ext4_print_free_blocks(struct inode *inode)
1840 {
1841         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1842         printk(KERN_EMERG "Total free blocks count %lld\n",
1843                         ext4_count_free_blocks(inode->i_sb));
1844         printk(KERN_EMERG "Free/Dirty block details\n");
1845         printk(KERN_EMERG "free_blocks=%lld\n",
1846                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1847         printk(KERN_EMERG "dirty_blocks=%lld\n",
1848                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1849         printk(KERN_EMERG "Block reservation details\n");
1850         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1851                         EXT4_I(inode)->i_reserved_data_blocks);
1852         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1853                         EXT4_I(inode)->i_reserved_meta_blocks);
1854         return;
1855 }
1856
1857 /*
1858  * mpage_da_map_blocks - go through given space
1859  *
1860  * @mpd->lbh - bh describing space
1861  * @mpd->get_block - the filesystem's block mapper function
1862  *
1863  * The function skips space we know is already mapped to disk blocks.
1864  *
1865  */
1866 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1867 {
1868         int err = 0;
1869         struct buffer_head new;
1870         struct buffer_head *lbh = &mpd->lbh;
1871         sector_t next;
1872
1873         /*
1874          * We consider only non-mapped and non-allocated blocks
1875          */
1876         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1877                 return 0;
1878         new.b_state = lbh->b_state;
1879         new.b_blocknr = 0;
1880         new.b_size = lbh->b_size;
1881         next = lbh->b_blocknr;
1882         /*
1883          * If we didn't accumulate anything
1884          * to write simply return
1885          */
1886         if (!new.b_size)
1887                 return 0;
1888         err = mpd->get_block(mpd->inode, next, &new, 1);
1889         if (err) {
1890
1891                 /* If get block returns with error
1892                  * we simply return. Later writepage
1893                  * will redirty the page and writepages
1894                  * will find the dirty page again
1895                  */
1896                 if (err == -EAGAIN)
1897                         return 0;
1898
1899                 if (err == -ENOSPC &&
1900                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1901                         mpd->retval = err;
1902                         return 0;
1903                 }
1904
1905                 /*
1906                  * get block failure will cause us
1907                  * to loop in writepages. Because
1908                  * a_ops->writepage won't be able to
1909                  * make progress. The page will be redirtied
1910                  * by writepage and writepages will again
1911                  * try to write the same.
1912                  */
1913                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1914                                   "at logical offset %llu with max blocks "
1915                                   "%zd with error %d\n",
1916                                   __func__, mpd->inode->i_ino,
1917                                   (unsigned long long)next,
1918                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1919                 printk(KERN_EMERG "This should not happen.!! "
1920                                         "Data will be lost\n");
1921                 if (err == -ENOSPC) {
1922                         ext4_print_free_blocks(mpd->inode);
1923                 }
1924                 /* invlaidate all the pages */
1925                 ext4_da_block_invalidatepages(mpd, next,
1926                                 lbh->b_size >> mpd->inode->i_blkbits);
1927                 return err;
1928         }
1929         BUG_ON(new.b_size == 0);
1930
1931         if (buffer_new(&new))
1932                 __unmap_underlying_blocks(mpd->inode, &new);
1933
1934         /*
1935          * If blocks are delayed marked, we need to
1936          * put actual blocknr and drop delayed bit
1937          */
1938         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1939                 mpage_put_bnr_to_bhs(mpd, next, &new);
1940
1941         return 0;
1942 }
1943
1944 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1945                 (1 << BH_Delay) | (1 << BH_Unwritten))
1946
1947 /*
1948  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1949  *
1950  * @mpd->lbh - extent of blocks
1951  * @logical - logical number of the block in the file
1952  * @bh - bh of the block (used to access block's state)
1953  *
1954  * the function is used to collect contig. blocks in same state
1955  */
1956 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1957                                    sector_t logical, struct buffer_head *bh)
1958 {
1959         sector_t next;
1960         size_t b_size = bh->b_size;
1961         struct buffer_head *lbh = &mpd->lbh;
1962         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1963
1964         /* check if thereserved journal credits might overflow */
1965         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1966                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1967                         /*
1968                          * With non-extent format we are limited by the journal
1969                          * credit available.  Total credit needed to insert
1970                          * nrblocks contiguous blocks is dependent on the
1971                          * nrblocks.  So limit nrblocks.
1972                          */
1973                         goto flush_it;
1974                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1975                                 EXT4_MAX_TRANS_DATA) {
1976                         /*
1977                          * Adding the new buffer_head would make it cross the
1978                          * allowed limit for which we have journal credit
1979                          * reserved. So limit the new bh->b_size
1980                          */
1981                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1982                                                 mpd->inode->i_blkbits;
1983                         /* we will do mpage_da_submit_io in the next loop */
1984                 }
1985         }
1986         /*
1987          * First block in the extent
1988          */
1989         if (lbh->b_size == 0) {
1990                 lbh->b_blocknr = logical;
1991                 lbh->b_size = b_size;
1992                 lbh->b_state = bh->b_state & BH_FLAGS;
1993                 return;
1994         }
1995
1996         next = lbh->b_blocknr + nrblocks;
1997         /*
1998          * Can we merge the block to our big extent?
1999          */
2000         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2001                 lbh->b_size += b_size;
2002                 return;
2003         }
2004
2005 flush_it:
2006         /*
2007          * We couldn't merge the block to our extent, so we
2008          * need to flush current  extent and start new one
2009          */
2010         if (mpage_da_map_blocks(mpd) == 0)
2011                 mpage_da_submit_io(mpd);
2012         mpd->io_done = 1;
2013         return;
2014 }
2015
2016 /*
2017  * __mpage_da_writepage - finds extent of pages and blocks
2018  *
2019  * @page: page to consider
2020  * @wbc: not used, we just follow rules
2021  * @data: context
2022  *
2023  * The function finds extents of pages and scan them for all blocks.
2024  */
2025 static int __mpage_da_writepage(struct page *page,
2026                                 struct writeback_control *wbc, void *data)
2027 {
2028         struct mpage_da_data *mpd = data;
2029         struct inode *inode = mpd->inode;
2030         struct buffer_head *bh, *head, fake;
2031         sector_t logical;
2032
2033         if (mpd->io_done) {
2034                 /*
2035                  * Rest of the page in the page_vec
2036                  * redirty then and skip then. We will
2037                  * try to to write them again after
2038                  * starting a new transaction
2039                  */
2040                 redirty_page_for_writepage(wbc, page);
2041                 unlock_page(page);
2042                 return MPAGE_DA_EXTENT_TAIL;
2043         }
2044         /*
2045          * Can we merge this page to current extent?
2046          */
2047         if (mpd->next_page != page->index) {
2048                 /*
2049                  * Nope, we can't. So, we map non-allocated blocks
2050                  * and start IO on them using writepage()
2051                  */
2052                 if (mpd->next_page != mpd->first_page) {
2053                         if (mpage_da_map_blocks(mpd) == 0)
2054                                 mpage_da_submit_io(mpd);
2055                         /*
2056                          * skip rest of the page in the page_vec
2057                          */
2058                         mpd->io_done = 1;
2059                         redirty_page_for_writepage(wbc, page);
2060                         unlock_page(page);
2061                         return MPAGE_DA_EXTENT_TAIL;
2062                 }
2063
2064                 /*
2065                  * Start next extent of pages ...
2066                  */
2067                 mpd->first_page = page->index;
2068
2069                 /*
2070                  * ... and blocks
2071                  */
2072                 mpd->lbh.b_size = 0;
2073                 mpd->lbh.b_state = 0;
2074                 mpd->lbh.b_blocknr = 0;
2075         }
2076
2077         mpd->next_page = page->index + 1;
2078         logical = (sector_t) page->index <<
2079                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2080
2081         if (!page_has_buffers(page)) {
2082                 /*
2083                  * There is no attached buffer heads yet (mmap?)
2084                  * we treat the page asfull of dirty blocks
2085                  */
2086                 bh = &fake;
2087                 bh->b_size = PAGE_CACHE_SIZE;
2088                 bh->b_state = 0;
2089                 set_buffer_dirty(bh);
2090                 set_buffer_uptodate(bh);
2091                 mpage_add_bh_to_extent(mpd, logical, bh);
2092                 if (mpd->io_done)
2093                         return MPAGE_DA_EXTENT_TAIL;
2094         } else {
2095                 /*
2096                  * Page with regular buffer heads, just add all dirty ones
2097                  */
2098                 head = page_buffers(page);
2099                 bh = head;
2100                 do {
2101                         BUG_ON(buffer_locked(bh));
2102                         /*
2103                          * We need to try to allocate
2104                          * unmapped blocks in the same page.
2105                          * Otherwise we won't make progress
2106                          * with the page in ext4_da_writepage
2107                          */
2108                         if (buffer_dirty(bh) &&
2109                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2110                                 mpage_add_bh_to_extent(mpd, logical, bh);
2111                                 if (mpd->io_done)
2112                                         return MPAGE_DA_EXTENT_TAIL;
2113                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2114                                 /*
2115                                  * mapped dirty buffer. We need to update
2116                                  * the b_state because we look at
2117                                  * b_state in mpage_da_map_blocks. We don't
2118                                  * update b_size because if we find an
2119                                  * unmapped buffer_head later we need to
2120                                  * use the b_state flag of that buffer_head.
2121                                  */
2122                                 if (mpd->lbh.b_size == 0)
2123                                         mpd->lbh.b_state =
2124                                                 bh->b_state & BH_FLAGS;
2125                         }
2126                         logical++;
2127                 } while ((bh = bh->b_this_page) != head);
2128         }
2129
2130         return 0;
2131 }
2132
2133 /*
2134  * mpage_da_writepages - walk the list of dirty pages of the given
2135  * address space, allocates non-allocated blocks, maps newly-allocated
2136  * blocks to existing bhs and issue IO them
2137  *
2138  * @mapping: address space structure to write
2139  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2140  * @get_block: the filesystem's block mapper function.
2141  *
2142  * This is a library function, which implements the writepages()
2143  * address_space_operation.
2144  */
2145 static int mpage_da_writepages(struct address_space *mapping,
2146                                struct writeback_control *wbc,
2147                                struct mpage_da_data *mpd)
2148 {
2149         int ret;
2150
2151         if (!mpd->get_block)
2152                 return generic_writepages(mapping, wbc);
2153
2154         mpd->lbh.b_size = 0;
2155         mpd->lbh.b_state = 0;
2156         mpd->lbh.b_blocknr = 0;
2157         mpd->first_page = 0;
2158         mpd->next_page = 0;
2159         mpd->io_done = 0;
2160         mpd->pages_written = 0;
2161         mpd->retval = 0;
2162
2163         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2164         /*
2165          * Handle last extent of pages
2166          */
2167         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2168                 if (mpage_da_map_blocks(mpd) == 0)
2169                         mpage_da_submit_io(mpd);
2170
2171                 mpd->io_done = 1;
2172                 ret = MPAGE_DA_EXTENT_TAIL;
2173         }
2174         wbc->nr_to_write -= mpd->pages_written;
2175         return ret;
2176 }
2177
2178 /*
2179  * this is a special callback for ->write_begin() only
2180  * it's intention is to return mapped block or reserve space
2181  */
2182 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2183                                   struct buffer_head *bh_result, int create)
2184 {
2185         int ret = 0;
2186
2187         BUG_ON(create == 0);
2188         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2189
2190         /*
2191          * first, we need to know whether the block is allocated already
2192          * preallocated blocks are unmapped but should treated
2193          * the same as allocated blocks.
2194          */
2195         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2196         if ((ret == 0) && !buffer_delay(bh_result)) {
2197                 /* the block isn't (pre)allocated yet, let's reserve space */
2198                 /*
2199                  * XXX: __block_prepare_write() unmaps passed block,
2200                  * is it OK?
2201                  */
2202                 ret = ext4_da_reserve_space(inode, 1);
2203                 if (ret)
2204                         /* not enough space to reserve */
2205                         return ret;
2206
2207                 map_bh(bh_result, inode->i_sb, 0);
2208                 set_buffer_new(bh_result);
2209                 set_buffer_delay(bh_result);
2210         } else if (ret > 0) {
2211                 bh_result->b_size = (ret << inode->i_blkbits);
2212                 ret = 0;
2213         }
2214
2215         return ret;
2216 }
2217 #define         EXT4_DELALLOC_RSVED     1
2218 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2219                                    struct buffer_head *bh_result, int create)
2220 {
2221         int ret;
2222         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2223         loff_t disksize = EXT4_I(inode)->i_disksize;
2224         handle_t *handle = NULL;
2225
2226         handle = ext4_journal_current_handle();
2227         BUG_ON(!handle);
2228         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2229                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2230         if (ret > 0) {
2231
2232                 bh_result->b_size = (ret << inode->i_blkbits);
2233
2234                 if (ext4_should_order_data(inode)) {
2235                         int retval;
2236                         retval = ext4_jbd2_file_inode(handle, inode);
2237                         if (retval)
2238                                 /*
2239                                  * Failed to add inode for ordered
2240                                  * mode. Don't update file size
2241                                  */
2242                                 return retval;
2243                 }
2244
2245                 /*
2246                  * Update on-disk size along with block allocation
2247                  * we don't use 'extend_disksize' as size may change
2248                  * within already allocated block -bzzz
2249                  */
2250                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2251                 if (disksize > i_size_read(inode))
2252                         disksize = i_size_read(inode);
2253                 if (disksize > EXT4_I(inode)->i_disksize) {
2254                         ext4_update_i_disksize(inode, disksize);
2255                         ret = ext4_mark_inode_dirty(handle, inode);
2256                         return ret;
2257                 }
2258                 ret = 0;
2259         }
2260         return ret;
2261 }
2262
2263 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2264 {
2265         /*
2266          * unmapped buffer is possible for holes.
2267          * delay buffer is possible with delayed allocation
2268          */
2269         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2270 }
2271
2272 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2273                                    struct buffer_head *bh_result, int create)
2274 {
2275         int ret = 0;
2276         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2277
2278         /*
2279          * we don't want to do block allocation in writepage
2280          * so call get_block_wrap with create = 0
2281          */
2282         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2283                                    bh_result, 0, 0, 0);
2284         if (ret > 0) {
2285                 bh_result->b_size = (ret << inode->i_blkbits);
2286                 ret = 0;
2287         }
2288         return ret;
2289 }
2290
2291 /*
2292  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2293  * get called via journal_submit_inode_data_buffers (no journal handle)
2294  * get called via shrink_page_list via pdflush (no journal handle)
2295  * or grab_page_cache when doing write_begin (have journal handle)
2296  */
2297 static int ext4_da_writepage(struct page *page,
2298                                 struct writeback_control *wbc)
2299 {
2300         int ret = 0;
2301         loff_t size;
2302         unsigned long len;
2303         struct buffer_head *page_bufs;
2304         struct inode *inode = page->mapping->host;
2305
2306         size = i_size_read(inode);
2307         if (page->index == size >> PAGE_CACHE_SHIFT)
2308                 len = size & ~PAGE_CACHE_MASK;
2309         else
2310                 len = PAGE_CACHE_SIZE;
2311
2312         if (page_has_buffers(page)) {
2313                 page_bufs = page_buffers(page);
2314                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2315                                         ext4_bh_unmapped_or_delay)) {
2316                         /*
2317                          * We don't want to do  block allocation
2318                          * So redirty the page and return
2319                          * We may reach here when we do a journal commit
2320                          * via journal_submit_inode_data_buffers.
2321                          * If we don't have mapping block we just ignore
2322                          * them. We can also reach here via shrink_page_list
2323                          */
2324                         redirty_page_for_writepage(wbc, page);
2325                         unlock_page(page);
2326                         return 0;
2327                 }
2328         } else {
2329                 /*
2330                  * The test for page_has_buffers() is subtle:
2331                  * We know the page is dirty but it lost buffers. That means
2332                  * that at some moment in time after write_begin()/write_end()
2333                  * has been called all buffers have been clean and thus they
2334                  * must have been written at least once. So they are all
2335                  * mapped and we can happily proceed with mapping them
2336                  * and writing the page.
2337                  *
2338                  * Try to initialize the buffer_heads and check whether
2339                  * all are mapped and non delay. We don't want to
2340                  * do block allocation here.
2341                  */
2342                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2343                                                 ext4_normal_get_block_write);
2344                 if (!ret) {
2345                         page_bufs = page_buffers(page);
2346                         /* check whether all are mapped and non delay */
2347                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2348                                                 ext4_bh_unmapped_or_delay)) {
2349                                 redirty_page_for_writepage(wbc, page);
2350                                 unlock_page(page);
2351                                 return 0;
2352                         }
2353                 } else {
2354                         /*
2355                          * We can't do block allocation here
2356                          * so just redity the page and unlock
2357                          * and return
2358                          */
2359                         redirty_page_for_writepage(wbc, page);
2360                         unlock_page(page);
2361                         return 0;
2362                 }
2363                 /* now mark the buffer_heads as dirty and uptodate */
2364                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2365         }
2366
2367         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2368                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2369         else
2370                 ret = block_write_full_page(page,
2371                                                 ext4_normal_get_block_write,
2372                                                 wbc);
2373
2374         return ret;
2375 }
2376
2377 /*
2378  * This is called via ext4_da_writepages() to
2379  * calulate the total number of credits to reserve to fit
2380  * a single extent allocation into a single transaction,
2381  * ext4_da_writpeages() will loop calling this before
2382  * the block allocation.
2383  */
2384
2385 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2386 {
2387         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2388
2389         /*
2390          * With non-extent format the journal credit needed to
2391          * insert nrblocks contiguous block is dependent on
2392          * number of contiguous block. So we will limit
2393          * number of contiguous block to a sane value
2394          */
2395         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2396             (max_blocks > EXT4_MAX_TRANS_DATA))
2397                 max_blocks = EXT4_MAX_TRANS_DATA;
2398
2399         return ext4_chunk_trans_blocks(inode, max_blocks);
2400 }
2401
2402 static int ext4_da_writepages(struct address_space *mapping,
2403                               struct writeback_control *wbc)
2404 {
2405         pgoff_t index;
2406         int range_whole = 0;
2407         handle_t *handle = NULL;
2408         struct mpage_da_data mpd;
2409         struct inode *inode = mapping->host;
2410         int no_nrwrite_index_update;
2411         long pages_written = 0, pages_skipped;
2412         int needed_blocks, ret = 0, nr_to_writebump = 0;
2413         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2414
2415         /*
2416          * No pages to write? This is mainly a kludge to avoid starting
2417          * a transaction for special inodes like journal inode on last iput()
2418          * because that could violate lock ordering on umount
2419          */
2420         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2421                 return 0;
2422
2423         /*
2424          * If the filesystem has aborted, it is read-only, so return
2425          * right away instead of dumping stack traces later on that
2426          * will obscure the real source of the problem.  We test
2427          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2428          * the latter could be true if the filesystem is mounted
2429          * read-only, and in that case, ext4_da_writepages should
2430          * *never* be called, so if that ever happens, we would want
2431          * the stack trace.
2432          */
2433         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2434                 return -EROFS;
2435
2436         /*
2437          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2438          * This make sure small files blocks are allocated in
2439          * single attempt. This ensure that small files
2440          * get less fragmented.
2441          */
2442         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2443                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2444                 wbc->nr_to_write = sbi->s_mb_stream_request;
2445         }
2446         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2447                 range_whole = 1;
2448
2449         if (wbc->range_cyclic)
2450                 index = mapping->writeback_index;
2451         else
2452                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2453
2454         mpd.wbc = wbc;
2455         mpd.inode = mapping->host;
2456
2457         /*
2458          * we don't want write_cache_pages to update
2459          * nr_to_write and writeback_index
2460          */
2461         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2462         wbc->no_nrwrite_index_update = 1;
2463         pages_skipped = wbc->pages_skipped;
2464
2465         while (!ret && wbc->nr_to_write > 0) {
2466
2467                 /*
2468                  * we  insert one extent at a time. So we need
2469                  * credit needed for single extent allocation.
2470                  * journalled mode is currently not supported
2471                  * by delalloc
2472                  */
2473                 BUG_ON(ext4_should_journal_data(inode));
2474                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2475
2476                 /* start a new transaction*/
2477                 handle = ext4_journal_start(inode, needed_blocks);
2478                 if (IS_ERR(handle)) {
2479                         ret = PTR_ERR(handle);
2480                         printk(KERN_CRIT "%s: jbd2_start: "
2481                                "%ld pages, ino %lu; err %d\n", __func__,
2482                                 wbc->nr_to_write, inode->i_ino, ret);
2483                         dump_stack();
2484                         goto out_writepages;
2485                 }
2486                 mpd.get_block = ext4_da_get_block_write;
2487                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2488
2489                 ext4_journal_stop(handle);
2490
2491                 if (mpd.retval == -ENOSPC) {
2492                         /* commit the transaction which would
2493                          * free blocks released in the transaction
2494                          * and try again
2495                          */
2496                         jbd2_journal_force_commit_nested(sbi->s_journal);
2497                         wbc->pages_skipped = pages_skipped;
2498                         ret = 0;
2499                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2500                         /*
2501                          * got one extent now try with
2502                          * rest of the pages
2503                          */
2504                         pages_written += mpd.pages_written;
2505                         wbc->pages_skipped = pages_skipped;
2506                         ret = 0;
2507                 } else if (wbc->nr_to_write)
2508                         /*
2509                          * There is no more writeout needed
2510                          * or we requested for a noblocking writeout
2511                          * and we found the device congested
2512                          */
2513                         break;
2514         }
2515         if (pages_skipped != wbc->pages_skipped)
2516                 printk(KERN_EMERG "This should not happen leaving %s "
2517                                 "with nr_to_write = %ld ret = %d\n",
2518                                 __func__, wbc->nr_to_write, ret);
2519
2520         /* Update index */
2521         index += pages_written;
2522         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2523                 /*
2524                  * set the writeback_index so that range_cyclic
2525                  * mode will write it back later
2526                  */
2527                 mapping->writeback_index = index;
2528
2529 out_writepages:
2530         if (!no_nrwrite_index_update)
2531                 wbc->no_nrwrite_index_update = 0;
2532         wbc->nr_to_write -= nr_to_writebump;
2533         return ret;
2534 }
2535
2536 #define FALL_BACK_TO_NONDELALLOC 1
2537 static int ext4_nonda_switch(struct super_block *sb)
2538 {
2539         s64 free_blocks, dirty_blocks;
2540         struct ext4_sb_info *sbi = EXT4_SB(sb);
2541
2542         /*
2543          * switch to non delalloc mode if we are running low
2544          * on free block. The free block accounting via percpu
2545          * counters can get slightly wrong with FBC_BATCH getting
2546          * accumulated on each CPU without updating global counters
2547          * Delalloc need an accurate free block accounting. So switch
2548          * to non delalloc when we are near to error range.
2549          */
2550         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2551         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2552         if (2 * free_blocks < 3 * dirty_blocks ||
2553                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2554                 /*
2555                  * free block count is less that 150% of dirty blocks
2556                  * or free blocks is less that watermark
2557                  */
2558                 return 1;
2559         }
2560         return 0;
2561 }
2562
2563 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2564                                 loff_t pos, unsigned len, unsigned flags,
2565                                 struct page **pagep, void **fsdata)
2566 {
2567         int ret, retries = 0;
2568         struct page *page;
2569         pgoff_t index;
2570         unsigned from, to;
2571         struct inode *inode = mapping->host;
2572         handle_t *handle;
2573
2574         index = pos >> PAGE_CACHE_SHIFT;
2575         from = pos & (PAGE_CACHE_SIZE - 1);
2576         to = from + len;
2577
2578         if (ext4_nonda_switch(inode->i_sb)) {
2579                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2580                 return ext4_write_begin(file, mapping, pos,
2581                                         len, flags, pagep, fsdata);
2582         }
2583         *fsdata = (void *)0;
2584 retry:
2585         /*
2586          * With delayed allocation, we don't log the i_disksize update
2587          * if there is delayed block allocation. But we still need
2588          * to journalling the i_disksize update if writes to the end
2589          * of file which has an already mapped buffer.
2590          */
2591         handle = ext4_journal_start(inode, 1);
2592         if (IS_ERR(handle)) {
2593                 ret = PTR_ERR(handle);
2594                 goto out;
2595         }
2596
2597         page = grab_cache_page_write_begin(mapping, index, flags);
2598         if (!page) {
2599                 ext4_journal_stop(handle);
2600                 ret = -ENOMEM;
2601                 goto out;
2602         }
2603         *pagep = page;
2604
2605         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2606                                                         ext4_da_get_block_prep);
2607         if (ret < 0) {
2608                 unlock_page(page);
2609                 ext4_journal_stop(handle);
2610                 page_cache_release(page);
2611                 /*
2612                  * block_write_begin may have instantiated a few blocks
2613                  * outside i_size.  Trim these off again. Don't need
2614                  * i_size_read because we hold i_mutex.
2615                  */
2616                 if (pos + len > inode->i_size)
2617                         vmtruncate(inode, inode->i_size);
2618         }
2619
2620         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2621                 goto retry;
2622 out:
2623         return ret;
2624 }
2625
2626 /*
2627  * Check if we should update i_disksize
2628  * when write to the end of file but not require block allocation
2629  */
2630 static int ext4_da_should_update_i_disksize(struct page *page,
2631                                          unsigned long offset)
2632 {
2633         struct buffer_head *bh;
2634         struct inode *inode = page->mapping->host;
2635         unsigned int idx;
2636         int i;
2637
2638         bh = page_buffers(page);
2639         idx = offset >> inode->i_blkbits;
2640
2641         for (i = 0; i < idx; i++)
2642                 bh = bh->b_this_page;
2643
2644         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2645                 return 0;
2646         return 1;
2647 }
2648
2649 static int ext4_da_write_end(struct file *file,
2650                                 struct address_space *mapping,
2651                                 loff_t pos, unsigned len, unsigned copied,
2652                                 struct page *page, void *fsdata)
2653 {
2654         struct inode *inode = mapping->host;
2655         int ret = 0, ret2;
2656         handle_t *handle = ext4_journal_current_handle();
2657         loff_t new_i_size;
2658         unsigned long start, end;
2659         int write_mode = (int)(unsigned long)fsdata;
2660
2661         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2662                 if (ext4_should_order_data(inode)) {
2663                         return ext4_ordered_write_end(file, mapping, pos,
2664                                         len, copied, page, fsdata);
2665                 } else if (ext4_should_writeback_data(inode)) {
2666                         return ext4_writeback_write_end(file, mapping, pos,
2667                                         len, copied, page, fsdata);
2668                 } else {
2669                         BUG();
2670                 }
2671         }
2672
2673         start = pos & (PAGE_CACHE_SIZE - 1);
2674         end = start + copied - 1;
2675
2676         /*
2677          * generic_write_end() will run mark_inode_dirty() if i_size
2678          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2679          * into that.
2680          */
2681
2682         new_i_size = pos + copied;
2683         if (new_i_size > EXT4_I(inode)->i_disksize) {
2684                 if (ext4_da_should_update_i_disksize(page, end)) {
2685                         down_write(&EXT4_I(inode)->i_data_sem);
2686                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2687                                 /*
2688                                  * Updating i_disksize when extending file
2689                                  * without needing block allocation
2690                                  */
2691                                 if (ext4_should_order_data(inode))
2692                                         ret = ext4_jbd2_file_inode(handle,
2693                                                                    inode);
2694
2695                                 EXT4_I(inode)->i_disksize = new_i_size;
2696                         }
2697                         up_write(&EXT4_I(inode)->i_data_sem);
2698                         /* We need to mark inode dirty even if
2699                          * new_i_size is less that inode->i_size
2700                          * bu greater than i_disksize.(hint delalloc)
2701                          */
2702                         ext4_mark_inode_dirty(handle, inode);
2703                 }
2704         }
2705         ret2 = generic_write_end(file, mapping, pos, len, copied,
2706                                                         page, fsdata);
2707         copied = ret2;
2708         if (ret2 < 0)
2709                 ret = ret2;
2710         ret2 = ext4_journal_stop(handle);
2711         if (!ret)
2712                 ret = ret2;
2713
2714         return ret ? ret : copied;
2715 }
2716
2717 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2718 {
2719         /*
2720          * Drop reserved blocks
2721          */
2722         BUG_ON(!PageLocked(page));
2723         if (!page_has_buffers(page))
2724                 goto out;
2725
2726         ext4_da_page_release_reservation(page, offset);
2727
2728 out:
2729         ext4_invalidatepage(page, offset);
2730
2731         return;
2732 }
2733
2734
2735 /*
2736  * bmap() is special.  It gets used by applications such as lilo and by
2737  * the swapper to find the on-disk block of a specific piece of data.
2738  *
2739  * Naturally, this is dangerous if the block concerned is still in the
2740  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2741  * filesystem and enables swap, then they may get a nasty shock when the
2742  * data getting swapped to that swapfile suddenly gets overwritten by
2743  * the original zero's written out previously to the journal and
2744  * awaiting writeback in the kernel's buffer cache.
2745  *
2746  * So, if we see any bmap calls here on a modified, data-journaled file,
2747  * take extra steps to flush any blocks which might be in the cache.
2748  */
2749 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2750 {
2751         struct inode *inode = mapping->host;
2752         journal_t *journal;
2753         int err;
2754
2755         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2756                         test_opt(inode->i_sb, DELALLOC)) {
2757                 /*
2758                  * With delalloc we want to sync the file
2759                  * so that we can make sure we allocate
2760                  * blocks for file
2761                  */
2762                 filemap_write_and_wait(mapping);
2763         }
2764
2765         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2766                 /*
2767                  * This is a REALLY heavyweight approach, but the use of
2768                  * bmap on dirty files is expected to be extremely rare:
2769                  * only if we run lilo or swapon on a freshly made file
2770                  * do we expect this to happen.
2771                  *
2772                  * (bmap requires CAP_SYS_RAWIO so this does not
2773                  * represent an unprivileged user DOS attack --- we'd be
2774                  * in trouble if mortal users could trigger this path at
2775                  * will.)
2776                  *
2777                  * NB. EXT4_STATE_JDATA is not set on files other than
2778                  * regular files.  If somebody wants to bmap a directory
2779                  * or symlink and gets confused because the buffer
2780                  * hasn't yet been flushed to disk, they deserve
2781                  * everything they get.
2782                  */
2783
2784                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2785                 journal = EXT4_JOURNAL(inode);
2786                 jbd2_journal_lock_updates(journal);
2787                 err = jbd2_journal_flush(journal);
2788                 jbd2_journal_unlock_updates(journal);
2789
2790                 if (err)
2791                         return 0;
2792         }
2793
2794         return generic_block_bmap(mapping, block, ext4_get_block);
2795 }
2796
2797 static int bget_one(handle_t *handle, struct buffer_head *bh)
2798 {
2799         get_bh(bh);
2800         return 0;
2801 }
2802
2803 static int bput_one(handle_t *handle, struct buffer_head *bh)
2804 {
2805         put_bh(bh);
2806         return 0;
2807 }
2808
2809 /*
2810  * Note that we don't need to start a transaction unless we're journaling data
2811  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2812  * need to file the inode to the transaction's list in ordered mode because if
2813  * we are writing back data added by write(), the inode is already there and if
2814  * we are writing back data modified via mmap(), noone guarantees in which
2815  * transaction the data will hit the disk. In case we are journaling data, we
2816  * cannot start transaction directly because transaction start ranks above page
2817  * lock so we have to do some magic.
2818  *
2819  * In all journaling modes block_write_full_page() will start the I/O.
2820  *
2821  * Problem:
2822  *
2823  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2824  *              ext4_writepage()
2825  *
2826  * Similar for:
2827  *
2828  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2829  *
2830  * Same applies to ext4_get_block().  We will deadlock on various things like
2831  * lock_journal and i_data_sem
2832  *
2833  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2834  * allocations fail.
2835  *
2836  * 16May01: If we're reentered then journal_current_handle() will be
2837  *          non-zero. We simply *return*.
2838  *
2839  * 1 July 2001: @@@ FIXME:
2840  *   In journalled data mode, a data buffer may be metadata against the
2841  *   current transaction.  But the same file is part of a shared mapping
2842  *   and someone does a writepage() on it.
2843  *
2844  *   We will move the buffer onto the async_data list, but *after* it has
2845  *   been dirtied. So there's a small window where we have dirty data on
2846  *   BJ_Metadata.
2847  *
2848  *   Note that this only applies to the last partial page in the file.  The
2849  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2850  *   broken code anyway: it's wrong for msync()).
2851  *
2852  *   It's a rare case: affects the final partial page, for journalled data
2853  *   where the file is subject to bith write() and writepage() in the same
2854  *   transction.  To fix it we'll need a custom block_write_full_page().
2855  *   We'll probably need that anyway for journalling writepage() output.
2856  *
2857  * We don't honour synchronous mounts for writepage().  That would be
2858  * disastrous.  Any write() or metadata operation will sync the fs for
2859  * us.
2860  *
2861  */
2862 static int __ext4_normal_writepage(struct page *page,
2863                                 struct writeback_control *wbc)
2864 {
2865         struct inode *inode = page->mapping->host;
2866
2867         if (test_opt(inode->i_sb, NOBH))
2868                 return nobh_writepage(page,
2869                                         ext4_normal_get_block_write, wbc);
2870         else
2871                 return block_write_full_page(page,
2872                                                 ext4_normal_get_block_write,
2873                                                 wbc);
2874 }
2875
2876 static int ext4_normal_writepage(struct page *page,
2877                                 struct writeback_control *wbc)
2878 {
2879         struct inode *inode = page->mapping->host;
2880         loff_t size = i_size_read(inode);
2881         loff_t len;
2882
2883         J_ASSERT(PageLocked(page));
2884         if (page->index == size >> PAGE_CACHE_SHIFT)
2885                 len = size & ~PAGE_CACHE_MASK;
2886         else
2887                 len = PAGE_CACHE_SIZE;
2888
2889         if (page_has_buffers(page)) {
2890                 /* if page has buffers it should all be mapped
2891                  * and allocated. If there are not buffers attached
2892                  * to the page we know the page is dirty but it lost
2893                  * buffers. That means that at some moment in time
2894                  * after write_begin() / write_end() has been called
2895                  * all buffers have been clean and thus they must have been
2896                  * written at least once. So they are all mapped and we can
2897                  * happily proceed with mapping them and writing the page.
2898                  */
2899                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2900                                         ext4_bh_unmapped_or_delay));
2901         }
2902
2903         if (!ext4_journal_current_handle())
2904                 return __ext4_normal_writepage(page, wbc);
2905
2906         redirty_page_for_writepage(wbc, page);
2907         unlock_page(page);
2908         return 0;
2909 }
2910
2911 static int __ext4_journalled_writepage(struct page *page,
2912                                 struct writeback_control *wbc)
2913 {
2914         struct address_space *mapping = page->mapping;
2915         struct inode *inode = mapping->host;
2916         struct buffer_head *page_bufs;
2917         handle_t *handle = NULL;
2918         int ret = 0;
2919         int err;
2920
2921         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2922                                         ext4_normal_get_block_write);
2923         if (ret != 0)
2924                 goto out_unlock;
2925
2926         page_bufs = page_buffers(page);
2927         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2928                                                                 bget_one);
2929         /* As soon as we unlock the page, it can go away, but we have
2930          * references to buffers so we are safe */
2931         unlock_page(page);
2932
2933         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2934         if (IS_ERR(handle)) {
2935                 ret = PTR_ERR(handle);
2936                 goto out;
2937         }
2938
2939         ret = walk_page_buffers(handle, page_bufs, 0,
2940                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2941
2942         err = walk_page_buffers(handle, page_bufs, 0,
2943                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2944         if (ret == 0)
2945                 ret = err;
2946         err = ext4_journal_stop(handle);
2947         if (!ret)
2948                 ret = err;
2949
2950         walk_page_buffers(handle, page_bufs, 0,
2951                                 PAGE_CACHE_SIZE, NULL, bput_one);
2952         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2953         goto out;
2954
2955 out_unlock:
2956         unlock_page(page);
2957 out:
2958         return ret;
2959 }
2960
2961 static int ext4_journalled_writepage(struct page *page,
2962                                 struct writeback_control *wbc)
2963 {
2964         struct inode *inode = page->mapping->host;
2965         loff_t size = i_size_read(inode);
2966         loff_t len;
2967
2968         J_ASSERT(PageLocked(page));
2969         if (page->index == size >> PAGE_CACHE_SHIFT)
2970                 len = size & ~PAGE_CACHE_MASK;
2971         else
2972                 len = PAGE_CACHE_SIZE;
2973
2974         if (page_has_buffers(page)) {
2975                 /* if page has buffers it should all be mapped
2976                  * and allocated. If there are not buffers attached
2977                  * to the page we know the page is dirty but it lost
2978                  * buffers. That means that at some moment in time
2979                  * after write_begin() / write_end() has been called
2980                  * all buffers have been clean and thus they must have been
2981                  * written at least once. So they are all mapped and we can
2982                  * happily proceed with mapping them and writing the page.
2983                  */
2984                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2985                                         ext4_bh_unmapped_or_delay));
2986         }
2987
2988         if (ext4_journal_current_handle())
2989                 goto no_write;
2990
2991         if (PageChecked(page)) {
2992                 /*
2993                  * It's mmapped pagecache.  Add buffers and journal it.  There
2994                  * doesn't seem much point in redirtying the page here.
2995                  */
2996                 ClearPageChecked(page);
2997                 return __ext4_journalled_writepage(page, wbc);
2998         } else {
2999                 /*
3000                  * It may be a page full of checkpoint-mode buffers.  We don't
3001                  * really know unless we go poke around in the buffer_heads.
3002                  * But block_write_full_page will do the right thing.
3003                  */
3004                 return block_write_full_page(page,
3005                                                 ext4_normal_get_block_write,
3006                                                 wbc);
3007         }
3008 no_write:
3009         redirty_page_for_writepage(wbc, page);
3010         unlock_page(page);
3011         return 0;
3012 }
3013
3014 static int ext4_readpage(struct file *file, struct page *page)
3015 {
3016         return mpage_readpage(page, ext4_get_block);
3017 }
3018
3019 static int
3020 ext4_readpages(struct file *file, struct address_space *mapping,
3021                 struct list_head *pages, unsigned nr_pages)
3022 {
3023         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3024 }
3025
3026 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3027 {
3028         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3029
3030         /*
3031          * If it's a full truncate we just forget about the pending dirtying
3032          */
3033         if (offset == 0)
3034                 ClearPageChecked(page);
3035
3036         jbd2_journal_invalidatepage(journal, page, offset);
3037 }
3038
3039 static int ext4_releasepage(struct page *page, gfp_t wait)
3040 {
3041         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3042
3043         WARN_ON(PageChecked(page));
3044         if (!page_has_buffers(page))
3045                 return 0;
3046         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3047 }
3048
3049 /*
3050  * If the O_DIRECT write will extend the file then add this inode to the
3051  * orphan list.  So recovery will truncate it back to the original size
3052  * if the machine crashes during the write.
3053  *
3054  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3055  * crashes then stale disk data _may_ be exposed inside the file. But current
3056  * VFS code falls back into buffered path in that case so we are safe.
3057  */
3058 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3059                         const struct iovec *iov, loff_t offset,
3060                         unsigned long nr_segs)
3061 {
3062         struct file *file = iocb->ki_filp;
3063         struct inode *inode = file->f_mapping->host;
3064         struct ext4_inode_info *ei = EXT4_I(inode);
3065         handle_t *handle;
3066         ssize_t ret;
3067         int orphan = 0;
3068         size_t count = iov_length(iov, nr_segs);
3069
3070         if (rw == WRITE) {
3071                 loff_t final_size = offset + count;
3072
3073                 if (final_size > inode->i_size) {
3074                         /* Credits for sb + inode write */
3075                         handle = ext4_journal_start(inode, 2);
3076                         if (IS_ERR(handle)) {
3077                                 ret = PTR_ERR(handle);
3078                                 goto out;
3079                         }
3080                         ret = ext4_orphan_add(handle, inode);
3081                         if (ret) {
3082                                 ext4_journal_stop(handle);
3083                                 goto out;
3084                         }
3085                         orphan = 1;
3086                         ei->i_disksize = inode->i_size;
3087                         ext4_journal_stop(handle);
3088                 }
3089         }
3090
3091         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3092                                  offset, nr_segs,
3093                                  ext4_get_block, NULL);
3094
3095         if (orphan) {
3096                 int err;
3097
3098                 /* Credits for sb + inode write */
3099                 handle = ext4_journal_start(inode, 2);
3100                 if (IS_ERR(handle)) {
3101                         /* This is really bad luck. We've written the data
3102                          * but cannot extend i_size. Bail out and pretend
3103                          * the write failed... */
3104                         ret = PTR_ERR(handle);
3105                         goto out;
3106                 }
3107                 if (inode->i_nlink)
3108                         ext4_orphan_del(handle, inode);
3109                 if (ret > 0) {
3110                         loff_t end = offset + ret;
3111                         if (end > inode->i_size) {
3112                                 ei->i_disksize = end;
3113                                 i_size_write(inode, end);
3114                                 /*
3115                                  * We're going to return a positive `ret'
3116                                  * here due to non-zero-length I/O, so there's
3117                                  * no way of reporting error returns from
3118                                  * ext4_mark_inode_dirty() to userspace.  So
3119                                  * ignore it.
3120                                  */
3121                                 ext4_mark_inode_dirty(handle, inode);
3122                         }
3123                 }
3124                 err = ext4_journal_stop(handle);
3125                 if (ret == 0)
3126                         ret = err;
3127         }
3128 out:
3129         return ret;
3130 }
3131
3132 /*
3133  * Pages can be marked dirty completely asynchronously from ext4's journalling
3134  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3135  * much here because ->set_page_dirty is called under VFS locks.  The page is
3136  * not necessarily locked.
3137  *
3138  * We cannot just dirty the page and leave attached buffers clean, because the
3139  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3140  * or jbddirty because all the journalling code will explode.
3141  *
3142  * So what we do is to mark the page "pending dirty" and next time writepage
3143  * is called, propagate that into the buffers appropriately.
3144  */
3145 static int ext4_journalled_set_page_dirty(struct page *page)
3146 {
3147         SetPageChecked(page);
3148         return __set_page_dirty_nobuffers(page);
3149 }
3150
3151 static const struct address_space_operations ext4_ordered_aops = {
3152         .readpage               = ext4_readpage,
3153         .readpages              = ext4_readpages,
3154         .writepage              = ext4_normal_writepage,
3155         .sync_page              = block_sync_page,
3156         .write_begin            = ext4_write_begin,
3157         .write_end              = ext4_ordered_write_end,
3158         .bmap                   = ext4_bmap,
3159         .invalidatepage         = ext4_invalidatepage,
3160         .releasepage            = ext4_releasepage,
3161         .direct_IO              = ext4_direct_IO,
3162         .migratepage            = buffer_migrate_page,
3163         .is_partially_uptodate  = block_is_partially_uptodate,
3164 };
3165
3166 static const struct address_space_operations ext4_writeback_aops = {
3167         .readpage               = ext4_readpage,
3168         .readpages              = ext4_readpages,
3169         .writepage              = ext4_normal_writepage,
3170         .sync_page              = block_sync_page,
3171         .write_begin            = ext4_write_begin,
3172         .write_end              = ext4_writeback_write_end,
3173         .bmap                   = ext4_bmap,
3174         .invalidatepage         = ext4_invalidatepage,
3175         .releasepage            = ext4_releasepage,
3176         .direct_IO              = ext4_direct_IO,
3177         .migratepage            = buffer_migrate_page,
3178         .is_partially_uptodate  = block_is_partially_uptodate,
3179 };
3180
3181 static const struct address_space_operations ext4_journalled_aops = {
3182         .readpage               = ext4_readpage,
3183         .readpages              = ext4_readpages,
3184         .writepage              = ext4_journalled_writepage,
3185         .sync_page              = block_sync_page,
3186         .write_begin            = ext4_write_begin,
3187         .write_end              = ext4_journalled_write_end,
3188         .set_page_dirty         = ext4_journalled_set_page_dirty,
3189         .bmap                   = ext4_bmap,
3190         .invalidatepage         = ext4_invalidatepage,
3191         .releasepage            = ext4_releasepage,
3192         .is_partially_uptodate  = block_is_partially_uptodate,
3193 };
3194
3195 static const struct address_space_operations ext4_da_aops = {
3196         .readpage               = ext4_readpage,
3197         .readpages              = ext4_readpages,
3198         .writepage              = ext4_da_writepage,
3199         .writepages             = ext4_da_writepages,
3200         .sync_page              = block_sync_page,
3201         .write_begin            = ext4_da_write_begin,
3202         .write_end              = ext4_da_write_end,
3203         .bmap                   = ext4_bmap,
3204         .invalidatepage         = ext4_da_invalidatepage,
3205         .releasepage            = ext4_releasepage,
3206         .direct_IO              = ext4_direct_IO,
3207         .migratepage            = buffer_migrate_page,
3208         .is_partially_uptodate  = block_is_partially_uptodate,
3209 };
3210
3211 void ext4_set_aops(struct inode *inode)
3212 {
3213         if (ext4_should_order_data(inode) &&
3214                 test_opt(inode->i_sb, DELALLOC))
3215                 inode->i_mapping->a_ops = &ext4_da_aops;
3216         else if (ext4_should_order_data(inode))
3217                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3218         else if (ext4_should_writeback_data(inode) &&
3219                  test_opt(inode->i_sb, DELALLOC))
3220                 inode->i_mapping->a_ops = &ext4_da_aops;
3221         else if (ext4_should_writeback_data(inode))
3222                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3223         else
3224                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3225 }
3226
3227 /*
3228  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3229  * up to the end of the block which corresponds to `from'.
3230  * This required during truncate. We need to physically zero the tail end
3231  * of that block so it doesn't yield old data if the file is later grown.
3232  */
3233 int ext4_block_truncate_page(handle_t *handle,
3234                 struct address_space *mapping, loff_t from)
3235 {
3236         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3237         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3238         unsigned blocksize, length, pos;
3239         ext4_lblk_t iblock;
3240         struct inode *inode = mapping->host;
3241         struct buffer_head *bh;
3242         struct page *page;
3243         int err = 0;
3244
3245         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3246         if (!page)
3247                 return -EINVAL;
3248
3249         blocksize = inode->i_sb->s_blocksize;
3250         length = blocksize - (offset & (blocksize - 1));
3251         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3252
3253         /*
3254          * For "nobh" option,  we can only work if we don't need to
3255          * read-in the page - otherwise we create buffers to do the IO.
3256          */
3257         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3258              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3259                 zero_user(page, offset, length);
3260                 set_page_dirty(page);
3261                 goto unlock;
3262         }
3263
3264         if (!page_has_buffers(page))
3265                 create_empty_buffers(page, blocksize, 0);
3266
3267         /* Find the buffer that contains "offset" */
3268         bh = page_buffers(page);
3269         pos = blocksize;
3270         while (offset >= pos) {
3271                 bh = bh->b_this_page;
3272                 iblock++;
3273                 pos += blocksize;
3274         }
3275
3276         err = 0;
3277         if (buffer_freed(bh)) {
3278                 BUFFER_TRACE(bh, "freed: skip");
3279                 goto unlock;
3280         }
3281
3282         if (!buffer_mapped(bh)) {
3283                 BUFFER_TRACE(bh, "unmapped");
3284                 ext4_get_block(inode, iblock, bh, 0);
3285                 /* unmapped? It's a hole - nothing to do */
3286                 if (!buffer_mapped(bh)) {
3287                         BUFFER_TRACE(bh, "still unmapped");
3288                         goto unlock;
3289                 }
3290         }
3291
3292         /* Ok, it's mapped. Make sure it's up-to-date */
3293         if (PageUptodate(page))
3294                 set_buffer_uptodate(bh);
3295
3296         if (!buffer_uptodate(bh)) {
3297                 err = -EIO;
3298                 ll_rw_block(READ, 1, &bh);
3299                 wait_on_buffer(bh);
3300                 /* Uhhuh. Read error. Complain and punt. */
3301                 if (!buffer_uptodate(bh))
3302                         goto unlock;
3303         }
3304
3305         if (ext4_should_journal_data(inode)) {
3306                 BUFFER_TRACE(bh, "get write access");
3307                 err = ext4_journal_get_write_access(handle, bh);
3308                 if (err)
3309                         goto unlock;
3310         }
3311
3312         zero_user(page, offset, length);
3313
3314         BUFFER_TRACE(bh, "zeroed end of block");
3315
3316         err = 0;
3317         if (ext4_should_journal_data(inode)) {
3318                 err = ext4_journal_dirty_metadata(handle, bh);
3319         } else {
3320                 if (ext4_should_order_data(inode))
3321                         err = ext4_jbd2_file_inode(handle, inode);
3322                 mark_buffer_dirty(bh);
3323         }
3324
3325 unlock:
3326         unlock_page(page);
3327         page_cache_release(page);
3328         return err;
3329 }
3330
3331 /*
3332  * Probably it should be a library function... search for first non-zero word
3333  * or memcmp with zero_page, whatever is better for particular architecture.
3334  * Linus?
3335  */
3336 static inline int all_zeroes(__le32 *p, __le32 *q)
3337 {
3338         while (p < q)
3339                 if (*p++)
3340                         return 0;
3341         return 1;
3342 }
3343
3344 /**
3345  *      ext4_find_shared - find the indirect blocks for partial truncation.
3346  *      @inode:   inode in question
3347  *      @depth:   depth of the affected branch
3348  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3349  *      @chain:   place to store the pointers to partial indirect blocks
3350  *      @top:     place to the (detached) top of branch
3351  *
3352  *      This is a helper function used by ext4_truncate().
3353  *
3354  *      When we do truncate() we may have to clean the ends of several
3355  *      indirect blocks but leave the blocks themselves alive. Block is
3356  *      partially truncated if some data below the new i_size is refered
3357  *      from it (and it is on the path to the first completely truncated
3358  *      data block, indeed).  We have to free the top of that path along
3359  *      with everything to the right of the path. Since no allocation
3360  *      past the truncation point is possible until ext4_truncate()
3361  *      finishes, we may safely do the latter, but top of branch may
3362  *      require special attention - pageout below the truncation point
3363  *      might try to populate it.
3364  *
3365  *      We atomically detach the top of branch from the tree, store the
3366  *      block number of its root in *@top, pointers to buffer_heads of
3367  *      partially truncated blocks - in @chain[].bh and pointers to
3368  *      their last elements that should not be removed - in
3369  *      @chain[].p. Return value is the pointer to last filled element
3370  *      of @chain.
3371  *
3372  *      The work left to caller to do the actual freeing of subtrees:
3373  *              a) free the subtree starting from *@top
3374  *              b) free the subtrees whose roots are stored in
3375  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3376  *              c) free the subtrees growing from the inode past the @chain[0].
3377  *                      (no partially truncated stuff there).  */
3378
3379 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3380                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3381 {
3382         Indirect *partial, *p;
3383         int k, err;
3384
3385         *top = 0;
3386         /* Make k index the deepest non-null offest + 1 */
3387         for (k = depth; k > 1 && !offsets[k-1]; k--)
3388                 ;
3389         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3390         /* Writer: pointers */
3391         if (!partial)
3392                 partial = chain + k-1;
3393         /*
3394          * If the branch acquired continuation since we've looked at it -
3395          * fine, it should all survive and (new) top doesn't belong to us.
3396          */
3397         if (!partial->key && *partial->p)
3398                 /* Writer: end */
3399                 goto no_top;
3400         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3401                 ;
3402         /*
3403          * OK, we've found the last block that must survive. The rest of our
3404          * branch should be detached before unlocking. However, if that rest
3405          * of branch is all ours and does not grow immediately from the inode
3406          * it's easier to cheat and just decrement partial->p.
3407          */
3408         if (p == chain + k - 1 && p > chain) {
3409                 p->p--;
3410         } else {
3411                 *top = *p->p;
3412                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3413 #if 0
3414                 *p->p = 0;
3415 #endif
3416         }
3417         /* Writer: end */
3418
3419         while (partial > p) {
3420                 brelse(partial->bh);
3421                 partial--;
3422         }
3423 no_top:
3424         return partial;
3425 }
3426
3427 /*
3428  * Zero a number of block pointers in either an inode or an indirect block.
3429  * If we restart the transaction we must again get write access to the
3430  * indirect block for further modification.
3431  *
3432  * We release `count' blocks on disk, but (last - first) may be greater
3433  * than `count' because there can be holes in there.
3434  */
3435 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3436                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3437                 unsigned long count, __le32 *first, __le32 *last)
3438 {
3439         __le32 *p;
3440         if (try_to_extend_transaction(handle, inode)) {
3441                 if (bh) {
3442                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3443                         ext4_journal_dirty_metadata(handle, bh);
3444                 }
3445                 ext4_mark_inode_dirty(handle, inode);
3446                 ext4_journal_test_restart(handle, inode);
3447                 if (bh) {
3448                         BUFFER_TRACE(bh, "retaking write access");
3449                         ext4_journal_get_write_access(handle, bh);
3450                 }
3451         }
3452
3453         /*
3454          * Any buffers which are on the journal will be in memory. We find
3455          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3456          * on them.  We've already detached each block from the file, so
3457          * bforget() in jbd2_journal_forget() should be safe.
3458          *
3459          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3460          */
3461         for (p = first; p < last; p++) {
3462                 u32 nr = le32_to_cpu(*p);
3463                 if (nr) {
3464                         struct buffer_head *tbh;
3465
3466                         *p = 0;
3467                         tbh = sb_find_get_block(inode->i_sb, nr);
3468                         ext4_forget(handle, 0, inode, tbh, nr);
3469                 }
3470         }
3471
3472         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3473 }
3474
3475 /**
3476  * ext4_free_data - free a list of data blocks
3477  * @handle:     handle for this transaction
3478  * @inode:      inode we are dealing with
3479  * @this_bh:    indirect buffer_head which contains *@first and *@last
3480  * @first:      array of block numbers
3481  * @last:       points immediately past the end of array
3482  *
3483  * We are freeing all blocks refered from that array (numbers are stored as
3484  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3485  *
3486  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3487  * blocks are contiguous then releasing them at one time will only affect one
3488  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3489  * actually use a lot of journal space.
3490  *
3491  * @this_bh will be %NULL if @first and @last point into the inode's direct
3492  * block pointers.
3493  */
3494 static void ext4_free_data(handle_t *handle, struct inode *inode,
3495                            struct buffer_head *this_bh,
3496                            __le32 *first, __le32 *last)
3497 {
3498         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3499         unsigned long count = 0;            /* Number of blocks in the run */
3500         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3501                                                corresponding to
3502                                                block_to_free */
3503         ext4_fsblk_t nr;                    /* Current block # */
3504         __le32 *p;                          /* Pointer into inode/ind
3505                                                for current block */
3506         int err;
3507
3508         if (this_bh) {                          /* For indirect block */
3509                 BUFFER_TRACE(this_bh, "get_write_access");
3510                 err = ext4_journal_get_write_access(handle, this_bh);
3511                 /* Important: if we can't update the indirect pointers
3512                  * to the blocks, we can't free them. */
3513                 if (err)
3514                         return;
3515         }
3516
3517         for (p = first; p < last; p++) {
3518                 nr = le32_to_cpu(*p);
3519                 if (nr) {
3520                         /* accumulate blocks to free if they're contiguous */
3521                         if (count == 0) {
3522                                 block_to_free = nr;
3523                                 block_to_free_p = p;
3524                                 count = 1;
3525                         } else if (nr == block_to_free + count) {
3526                                 count++;
3527                         } else {
3528                                 ext4_clear_blocks(handle, inode, this_bh,
3529                                                   block_to_free,
3530                                                   count, block_to_free_p, p);
3531                                 block_to_free = nr;
3532                                 block_to_free_p = p;
3533                                 count = 1;
3534                         }
3535                 }
3536         }
3537
3538         if (count > 0)
3539                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3540                                   count, block_to_free_p, p);
3541
3542         if (this_bh) {
3543                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3544
3545                 /*
3546                  * The buffer head should have an attached journal head at this
3547                  * point. However, if the data is corrupted and an indirect
3548                  * block pointed to itself, it would have been detached when
3549                  * the block was cleared. Check for this instead of OOPSing.
3550                  */
3551                 if (bh2jh(this_bh))
3552                         ext4_journal_dirty_metadata(handle, this_bh);
3553                 else
3554                         ext4_error(inode->i_sb, __func__,
3555                                    "circular indirect block detected, "
3556                                    "inode=%lu, block=%llu",
3557                                    inode->i_ino,
3558                                    (unsigned long long) this_bh->b_blocknr);
3559         }
3560 }
3561
3562 /**
3563  *      ext4_free_branches - free an array of branches
3564  *      @handle: JBD handle for this transaction
3565  *      @inode: inode we are dealing with
3566  *      @parent_bh: the buffer_head which contains *@first and *@last
3567  *      @first: array of block numbers
3568  *      @last:  pointer immediately past the end of array
3569  *      @depth: depth of the branches to free
3570  *
3571  *      We are freeing all blocks refered from these branches (numbers are
3572  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3573  *      appropriately.
3574  */
3575 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3576                                struct buffer_head *parent_bh,
3577                                __le32 *first, __le32 *last, int depth)
3578 {
3579         ext4_fsblk_t nr;
3580         __le32 *p;
3581
3582         if (is_handle_aborted(handle))
3583                 return;
3584
3585         if (depth--) {
3586                 struct buffer_head *bh;
3587                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3588                 p = last;
3589                 while (--p >= first) {
3590                         nr = le32_to_cpu(*p);
3591                         if (!nr)
3592                                 continue;               /* A hole */
3593
3594                         /* Go read the buffer for the next level down */
3595                         bh = sb_bread(inode->i_sb, nr);
3596
3597                         /*
3598                          * A read failure? Report error and clear slot
3599                          * (should be rare).
3600                          */
3601                         if (!bh) {
3602                                 ext4_error(inode->i_sb, "ext4_free_branches",
3603                                            "Read failure, inode=%lu, block=%llu",
3604                                            inode->i_ino, nr);
3605                                 continue;
3606                         }
3607
3608                         /* This zaps the entire block.  Bottom up. */
3609                         BUFFER_TRACE(bh, "free child branches");
3610                         ext4_free_branches(handle, inode, bh,
3611                                         (__le32 *) bh->b_data,
3612                                         (__le32 *) bh->b_data + addr_per_block,
3613                                         depth);
3614
3615                         /*
3616                          * We've probably journalled the indirect block several
3617                          * times during the truncate.  But it's no longer
3618                          * needed and we now drop it from the transaction via
3619                          * jbd2_journal_revoke().
3620                          *
3621                          * That's easy if it's exclusively part of this
3622                          * transaction.  But if it's part of the committing
3623                          * transaction then jbd2_journal_forget() will simply
3624                          * brelse() it.  That means that if the underlying
3625                          * block is reallocated in ext4_get_block(),
3626                          * unmap_underlying_metadata() will find this block
3627                          * and will try to get rid of it.  damn, damn.
3628                          *
3629                          * If this block has already been committed to the
3630                          * journal, a revoke record will be written.  And
3631                          * revoke records must be emitted *before* clearing
3632                          * this block's bit in the bitmaps.
3633                          */
3634                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3635
3636                         /*
3637                          * Everything below this this pointer has been
3638                          * released.  Now let this top-of-subtree go.
3639                          *
3640                          * We want the freeing of this indirect block to be
3641                          * atomic in the journal with the updating of the
3642                          * bitmap block which owns it.  So make some room in
3643                          * the journal.
3644                          *
3645                          * We zero the parent pointer *after* freeing its
3646                          * pointee in the bitmaps, so if extend_transaction()
3647                          * for some reason fails to put the bitmap changes and
3648                          * the release into the same transaction, recovery
3649                          * will merely complain about releasing a free block,
3650                          * rather than leaking blocks.
3651                          */
3652                         if (is_handle_aborted(handle))
3653                                 return;
3654                         if (try_to_extend_transaction(handle, inode)) {
3655                                 ext4_mark_inode_dirty(handle, inode);
3656                                 ext4_journal_test_restart(handle, inode);
3657                         }
3658
3659                         ext4_free_blocks(handle, inode, nr, 1, 1);
3660
3661                         if (parent_bh) {
3662                                 /*
3663                                  * The block which we have just freed is
3664                                  * pointed to by an indirect block: journal it
3665                                  */
3666                                 BUFFER_TRACE(parent_bh, "get_write_access");
3667                                 if (!ext4_journal_get_write_access(handle,
3668                                                                    parent_bh)){
3669                                         *p = 0;
3670                                         BUFFER_TRACE(parent_bh,
3671                                         "call ext4_journal_dirty_metadata");
3672                                         ext4_journal_dirty_metadata(handle,
3673                                                                     parent_bh);
3674                                 }
3675                         }
3676                 }
3677         } else {
3678                 /* We have reached the bottom of the tree. */
3679                 BUFFER_TRACE(parent_bh, "free data blocks");
3680                 ext4_free_data(handle, inode, parent_bh, first, last);
3681         }
3682 }
3683
3684 int ext4_can_truncate(struct inode *inode)
3685 {
3686         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3687                 return 0;
3688         if (S_ISREG(inode->i_mode))
3689                 return 1;
3690         if (S_ISDIR(inode->i_mode))
3691                 return 1;
3692         if (S_ISLNK(inode->i_mode))
3693                 return !ext4_inode_is_fast_symlink(inode);
3694         return 0;
3695 }
3696
3697 /*
3698  * ext4_truncate()
3699  *
3700  * We block out ext4_get_block() block instantiations across the entire
3701  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3702  * simultaneously on behalf of the same inode.
3703  *
3704  * As we work through the truncate and commmit bits of it to the journal there
3705  * is one core, guiding principle: the file's tree must always be consistent on
3706  * disk.  We must be able to restart the truncate after a crash.
3707  *
3708  * The file's tree may be transiently inconsistent in memory (although it
3709  * probably isn't), but whenever we close off and commit a journal transaction,
3710  * the contents of (the filesystem + the journal) must be consistent and
3711  * restartable.  It's pretty simple, really: bottom up, right to left (although
3712  * left-to-right works OK too).
3713  *
3714  * Note that at recovery time, journal replay occurs *before* the restart of
3715  * truncate against the orphan inode list.
3716  *
3717  * The committed inode has the new, desired i_size (which is the same as
3718  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3719  * that this inode's truncate did not complete and it will again call
3720  * ext4_truncate() to have another go.  So there will be instantiated blocks
3721  * to the right of the truncation point in a crashed ext4 filesystem.  But
3722  * that's fine - as long as they are linked from the inode, the post-crash
3723  * ext4_truncate() run will find them and release them.
3724  */
3725 void ext4_truncate(struct inode *inode)
3726 {
3727         handle_t *handle;
3728         struct ext4_inode_info *ei = EXT4_I(inode);
3729         __le32 *i_data = ei->i_data;
3730         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3731         struct address_space *mapping = inode->i_mapping;
3732         ext4_lblk_t offsets[4];
3733         Indirect chain[4];
3734         Indirect *partial;
3735         __le32 nr = 0;
3736         int n;
3737         ext4_lblk_t last_block;
3738         unsigned blocksize = inode->i_sb->s_blocksize;
3739
3740         if (!ext4_can_truncate(inode))
3741                 return;
3742
3743         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3744                 ext4_ext_truncate(inode);
3745                 return;
3746         }
3747
3748         handle = start_transaction(inode);
3749         if (IS_ERR(handle))
3750                 return;         /* AKPM: return what? */
3751
3752         last_block = (inode->i_size + blocksize-1)
3753                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3754
3755         if (inode->i_size & (blocksize - 1))
3756                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3757                         goto out_stop;
3758
3759         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3760         if (n == 0)
3761                 goto out_stop;  /* error */
3762
3763         /*
3764          * OK.  This truncate is going to happen.  We add the inode to the
3765          * orphan list, so that if this truncate spans multiple transactions,
3766          * and we crash, we will resume the truncate when the filesystem
3767          * recovers.  It also marks the inode dirty, to catch the new size.
3768          *
3769          * Implication: the file must always be in a sane, consistent
3770          * truncatable state while each transaction commits.
3771          */
3772         if (ext4_orphan_add(handle, inode))
3773                 goto out_stop;
3774
3775         /*
3776          * From here we block out all ext4_get_block() callers who want to
3777          * modify the block allocation tree.
3778          */
3779         down_write(&ei->i_data_sem);
3780
3781         ext4_discard_preallocations(inode);
3782
3783         /*
3784          * The orphan list entry will now protect us from any crash which
3785          * occurs before the truncate completes, so it is now safe to propagate
3786          * the new, shorter inode size (held for now in i_size) into the
3787          * on-disk inode. We do this via i_disksize, which is the value which
3788          * ext4 *really* writes onto the disk inode.
3789          */
3790         ei->i_disksize = inode->i_size;
3791
3792         if (n == 1) {           /* direct blocks */
3793                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3794                                i_data + EXT4_NDIR_BLOCKS);
3795                 goto do_indirects;
3796         }
3797
3798         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3799         /* Kill the top of shared branch (not detached) */
3800         if (nr) {
3801                 if (partial == chain) {
3802                         /* Shared branch grows from the inode */
3803                         ext4_free_branches(handle, inode, NULL,
3804                                            &nr, &nr+1, (chain+n-1) - partial);
3805                         *partial->p = 0;
3806                         /*
3807                          * We mark the inode dirty prior to restart,
3808                          * and prior to stop.  No need for it here.
3809                          */
3810                 } else {
3811                         /* Shared branch grows from an indirect block */
3812                         BUFFER_TRACE(partial->bh, "get_write_access");
3813                         ext4_free_branches(handle, inode, partial->bh,
3814                                         partial->p,
3815                                         partial->p+1, (chain+n-1) - partial);
3816                 }
3817         }
3818         /* Clear the ends of indirect blocks on the shared branch */
3819         while (partial > chain) {
3820                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3821                                    (__le32*)partial->bh->b_data+addr_per_block,
3822                                    (chain+n-1) - partial);
3823                 BUFFER_TRACE(partial->bh, "call brelse");
3824                 brelse (partial->bh);
3825                 partial--;
3826         }
3827 do_indirects:
3828         /* Kill the remaining (whole) subtrees */
3829         switch (offsets[0]) {
3830         default:
3831                 nr = i_data[EXT4_IND_BLOCK];
3832                 if (nr) {
3833                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3834                         i_data[EXT4_IND_BLOCK] = 0;
3835                 }
3836         case EXT4_IND_BLOCK:
3837                 nr = i_data[EXT4_DIND_BLOCK];
3838                 if (nr) {
3839                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3840                         i_data[EXT4_DIND_BLOCK] = 0;
3841                 }
3842         case EXT4_DIND_BLOCK:
3843                 nr = i_data[EXT4_TIND_BLOCK];
3844                 if (nr) {
3845                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3846                         i_data[EXT4_TIND_BLOCK] = 0;
3847                 }
3848         case EXT4_TIND_BLOCK:
3849                 ;
3850         }
3851
3852         up_write(&ei->i_data_sem);
3853         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3854         ext4_mark_inode_dirty(handle, inode);
3855
3856         /*
3857          * In a multi-transaction truncate, we only make the final transaction
3858          * synchronous
3859          */
3860         if (IS_SYNC(inode))
3861                 handle->h_sync = 1;
3862 out_stop:
3863         /*
3864          * If this was a simple ftruncate(), and the file will remain alive
3865          * then we need to clear up the orphan record which we created above.
3866          * However, if this was a real unlink then we were called by
3867          * ext4_delete_inode(), and we allow that function to clean up the
3868          * orphan info for us.
3869          */
3870         if (inode->i_nlink)
3871                 ext4_orphan_del(handle, inode);
3872
3873         ext4_journal_stop(handle);
3874 }
3875
3876 /*
3877  * ext4_get_inode_loc returns with an extra refcount against the inode's
3878  * underlying buffer_head on success. If 'in_mem' is true, we have all
3879  * data in memory that is needed to recreate the on-disk version of this
3880  * inode.
3881  */
3882 static int __ext4_get_inode_loc(struct inode *inode,
3883                                 struct ext4_iloc *iloc, int in_mem)
3884 {
3885         struct ext4_group_desc  *gdp;
3886         struct buffer_head      *bh;
3887         struct super_block      *sb = inode->i_sb;
3888         ext4_fsblk_t            block;
3889         int                     inodes_per_block, inode_offset;
3890
3891         iloc->bh = 0;
3892         if (!ext4_valid_inum(sb, inode->i_ino))
3893                 return -EIO;
3894
3895         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3896         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3897         if (!gdp)
3898                 return -EIO;
3899
3900         /*
3901          * Figure out the offset within the block group inode table
3902          */
3903         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3904         inode_offset = ((inode->i_ino - 1) %
3905                         EXT4_INODES_PER_GROUP(sb));
3906         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3907         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3908
3909         bh = sb_getblk(sb, block);
3910         if (!bh) {
3911                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3912                            "inode block - inode=%lu, block=%llu",
3913                            inode->i_ino, block);
3914                 return -EIO;
3915         }
3916         if (!buffer_uptodate(bh)) {
3917                 lock_buffer(bh);
3918
3919                 /*
3920                  * If the buffer has the write error flag, we have failed
3921                  * to write out another inode in the same block.  In this
3922                  * case, we don't have to read the block because we may
3923                  * read the old inode data successfully.
3924                  */
3925                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3926                         set_buffer_uptodate(bh);
3927
3928                 if (buffer_uptodate(bh)) {
3929                         /* someone brought it uptodate while we waited */
3930                         unlock_buffer(bh);
3931                         goto has_buffer;
3932                 }
3933
3934                 /*
3935                  * If we have all information of the inode in memory and this
3936                  * is the only valid inode in the block, we need not read the
3937                  * block.
3938                  */
3939                 if (in_mem) {
3940                         struct buffer_head *bitmap_bh;
3941                         int i, start;
3942
3943                         start = inode_offset & ~(inodes_per_block - 1);
3944
3945                         /* Is the inode bitmap in cache? */
3946                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3947                         if (!bitmap_bh)
3948                                 goto make_io;
3949
3950                         /*
3951                          * If the inode bitmap isn't in cache then the
3952                          * optimisation may end up performing two reads instead
3953                          * of one, so skip it.
3954                          */
3955                         if (!buffer_uptodate(bitmap_bh)) {
3956                                 brelse(bitmap_bh);
3957                                 goto make_io;
3958                         }
3959                         for (i = start; i < start + inodes_per_block; i++) {
3960                                 if (i == inode_offset)
3961                                         continue;
3962                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3963                                         break;
3964                         }
3965                         brelse(bitmap_bh);
3966                         if (i == start + inodes_per_block) {
3967                                 /* all other inodes are free, so skip I/O */
3968                                 memset(bh->b_data, 0, bh->b_size);
3969                                 set_buffer_uptodate(bh);
3970                                 unlock_buffer(bh);
3971                                 goto has_buffer;
3972                         }
3973                 }
3974
3975 make_io:
3976                 /*
3977                  * If we need to do any I/O, try to pre-readahead extra
3978                  * blocks from the inode table.
3979                  */
3980                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3981                         ext4_fsblk_t b, end, table;
3982                         unsigned num;
3983
3984                         table = ext4_inode_table(sb, gdp);
3985                         /* Make sure s_inode_readahead_blks is a power of 2 */
3986                         while (EXT4_SB(sb)->s_inode_readahead_blks &
3987                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
3988                                 EXT4_SB(sb)->s_inode_readahead_blks = 
3989                                    (EXT4_SB(sb)->s_inode_readahead_blks &
3990                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
3991                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3992                         if (table > b)
3993                                 b = table;
3994                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3995                         num = EXT4_INODES_PER_GROUP(sb);
3996                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3998                                 num -= le16_to_cpu(gdp->bg_itable_unused);
3999                         table += num / inodes_per_block;
4000                         if (end > table)
4001                                 end = table;
4002                         while (b <= end)
4003                                 sb_breadahead(sb, b++);
4004                 }
4005
4006                 /*
4007                  * There are other valid inodes in the buffer, this inode
4008                  * has in-inode xattrs, or we don't have this inode in memory.
4009                  * Read the block from disk.
4010                  */
4011                 get_bh(bh);
4012                 bh->b_end_io = end_buffer_read_sync;
4013                 submit_bh(READ_META, bh);
4014                 wait_on_buffer(bh);
4015                 if (!buffer_uptodate(bh)) {
4016                         ext4_error(sb, __func__,
4017                                    "unable to read inode block - inode=%lu, "
4018                                    "block=%llu", inode->i_ino, block);
4019                         brelse(bh);
4020                         return -EIO;
4021                 }
4022         }
4023 has_buffer:
4024         iloc->bh = bh;
4025         return 0;
4026 }
4027
4028 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4029 {
4030         /* We have all inode data except xattrs in memory here. */
4031         return __ext4_get_inode_loc(inode, iloc,
4032                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4033 }
4034
4035 void ext4_set_inode_flags(struct inode *inode)
4036 {
4037         unsigned int flags = EXT4_I(inode)->i_flags;
4038
4039         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4040         if (flags & EXT4_SYNC_FL)
4041                 inode->i_flags |= S_SYNC;
4042         if (flags & EXT4_APPEND_FL)
4043                 inode->i_flags |= S_APPEND;
4044         if (flags & EXT4_IMMUTABLE_FL)
4045                 inode->i_flags |= S_IMMUTABLE;
4046         if (flags & EXT4_NOATIME_FL)
4047                 inode->i_flags |= S_NOATIME;
4048         if (flags & EXT4_DIRSYNC_FL)
4049                 inode->i_flags |= S_DIRSYNC;
4050 }
4051
4052 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4053 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4054 {
4055         unsigned int flags = ei->vfs_inode.i_flags;
4056
4057         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4058                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4059         if (flags & S_SYNC)
4060                 ei->i_flags |= EXT4_SYNC_FL;
4061         if (flags & S_APPEND)
4062                 ei->i_flags |= EXT4_APPEND_FL;
4063         if (flags & S_IMMUTABLE)
4064                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4065         if (flags & S_NOATIME)
4066                 ei->i_flags |= EXT4_NOATIME_FL;
4067         if (flags & S_DIRSYNC)
4068                 ei->i_flags |= EXT4_DIRSYNC_FL;
4069 }
4070 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4071                                         struct ext4_inode_info *ei)
4072 {
4073         blkcnt_t i_blocks ;
4074         struct inode *inode = &(ei->vfs_inode);
4075         struct super_block *sb = inode->i_sb;
4076
4077         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4078                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4079                 /* we are using combined 48 bit field */
4080                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4081                                         le32_to_cpu(raw_inode->i_blocks_lo);
4082                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4083                         /* i_blocks represent file system block size */
4084                         return i_blocks  << (inode->i_blkbits - 9);
4085                 } else {
4086                         return i_blocks;
4087                 }
4088         } else {
4089                 return le32_to_cpu(raw_inode->i_blocks_lo);
4090         }
4091 }
4092
4093 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4094 {
4095         struct ext4_iloc iloc;
4096         struct ext4_inode *raw_inode;
4097         struct ext4_inode_info *ei;
4098         struct buffer_head *bh;
4099         struct inode *inode;
4100         long ret;
4101         int block;
4102
4103         inode = iget_locked(sb, ino);
4104         if (!inode)
4105                 return ERR_PTR(-ENOMEM);
4106         if (!(inode->i_state & I_NEW))
4107                 return inode;
4108
4109         ei = EXT4_I(inode);
4110 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4111         ei->i_acl = EXT4_ACL_NOT_CACHED;
4112         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4113 #endif
4114
4115         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4116         if (ret < 0)
4117                 goto bad_inode;
4118         bh = iloc.bh;
4119         raw_inode = ext4_raw_inode(&iloc);
4120         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4121         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4122         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4123         if (!(test_opt(inode->i_sb, NO_UID32))) {
4124                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4125                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4126         }
4127         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4128
4129         ei->i_state = 0;
4130         ei->i_dir_start_lookup = 0;
4131         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4132         /* We now have enough fields to check if the inode was active or not.
4133          * This is needed because nfsd might try to access dead inodes
4134          * the test is that same one that e2fsck uses
4135          * NeilBrown 1999oct15
4136          */
4137         if (inode->i_nlink == 0) {
4138                 if (inode->i_mode == 0 ||
4139                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4140                         /* this inode is deleted */
4141                         brelse(bh);
4142                         ret = -ESTALE;
4143                         goto bad_inode;
4144                 }
4145                 /* The only unlinked inodes we let through here have
4146                  * valid i_mode and are being read by the orphan
4147                  * recovery code: that's fine, we're about to complete
4148                  * the process of deleting those. */
4149         }
4150         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4151         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4152         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4153         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4154             cpu_to_le32(EXT4_OS_HURD)) {
4155                 ei->i_file_acl |=
4156                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4157         }
4158         inode->i_size = ext4_isize(raw_inode);
4159         ei->i_disksize = inode->i_size;
4160         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4161         ei->i_block_group = iloc.block_group;
4162         /*
4163          * NOTE! The in-memory inode i_data array is in little-endian order
4164          * even on big-endian machines: we do NOT byteswap the block numbers!
4165          */
4166         for (block = 0; block < EXT4_N_BLOCKS; block++)
4167                 ei->i_data[block] = raw_inode->i_block[block];
4168         INIT_LIST_HEAD(&ei->i_orphan);
4169
4170         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4171                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4172                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4173                     EXT4_INODE_SIZE(inode->i_sb)) {
4174                         brelse(bh);
4175                         ret = -EIO;
4176                         goto bad_inode;
4177                 }
4178                 if (ei->i_extra_isize == 0) {
4179                         /* The extra space is currently unused. Use it. */
4180                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4181                                             EXT4_GOOD_OLD_INODE_SIZE;
4182                 } else {
4183                         __le32 *magic = (void *)raw_inode +
4184                                         EXT4_GOOD_OLD_INODE_SIZE +
4185                                         ei->i_extra_isize;
4186                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4187                                  ei->i_state |= EXT4_STATE_XATTR;
4188                 }
4189         } else
4190                 ei->i_extra_isize = 0;
4191
4192         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4193         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4194         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4195         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4196
4197         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4198         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4199                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4200                         inode->i_version |=
4201                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4202         }
4203
4204         if (S_ISREG(inode->i_mode)) {
4205                 inode->i_op = &ext4_file_inode_operations;
4206                 inode->i_fop = &ext4_file_operations;
4207                 ext4_set_aops(inode);
4208         } else if (S_ISDIR(inode->i_mode)) {
4209                 inode->i_op = &ext4_dir_inode_operations;
4210                 inode->i_fop = &ext4_dir_operations;
4211         } else if (S_ISLNK(inode->i_mode)) {
4212                 if (ext4_inode_is_fast_symlink(inode)) {
4213                         inode->i_op = &ext4_fast_symlink_inode_operations;
4214                         nd_terminate_link(ei->i_data, inode->i_size,
4215                                 sizeof(ei->i_data) - 1);
4216                 } else {
4217                         inode->i_op = &ext4_symlink_inode_operations;
4218                         ext4_set_aops(inode);
4219                 }
4220         } else {
4221                 inode->i_op = &ext4_special_inode_operations;
4222                 if (raw_inode->i_block[0])
4223                         init_special_inode(inode, inode->i_mode,
4224                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4225                 else
4226                         init_special_inode(inode, inode->i_mode,
4227                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4228         }
4229         brelse(iloc.bh);
4230         ext4_set_inode_flags(inode);
4231         unlock_new_inode(inode);
4232         return inode;
4233
4234 bad_inode:
4235         iget_failed(inode);
4236         return ERR_PTR(ret);
4237 }
4238
4239 static int ext4_inode_blocks_set(handle_t *handle,
4240                                 struct ext4_inode *raw_inode,
4241                                 struct ext4_inode_info *ei)
4242 {
4243         struct inode *inode = &(ei->vfs_inode);
4244         u64 i_blocks = inode->i_blocks;
4245         struct super_block *sb = inode->i_sb;
4246
4247         if (i_blocks <= ~0U) {
4248                 /*
4249                  * i_blocks can be represnted in a 32 bit variable
4250                  * as multiple of 512 bytes
4251                  */
4252                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4253                 raw_inode->i_blocks_high = 0;
4254                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4255                 return 0;
4256         }
4257         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4258                 return -EFBIG;
4259
4260         if (i_blocks <= 0xffffffffffffULL) {
4261                 /*
4262                  * i_blocks can be represented in a 48 bit variable
4263                  * as multiple of 512 bytes
4264                  */
4265                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4266                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4267                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4268         } else {
4269                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4270                 /* i_block is stored in file system block size */
4271                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4272                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4273                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4274         }
4275         return 0;
4276 }
4277
4278 /*
4279  * Post the struct inode info into an on-disk inode location in the
4280  * buffer-cache.  This gobbles the caller's reference to the
4281  * buffer_head in the inode location struct.
4282  *
4283  * The caller must have write access to iloc->bh.
4284  */
4285 static int ext4_do_update_inode(handle_t *handle,
4286                                 struct inode *inode,
4287                                 struct ext4_iloc *iloc)
4288 {
4289         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4290         struct ext4_inode_info *ei = EXT4_I(inode);
4291         struct buffer_head *bh = iloc->bh;
4292         int err = 0, rc, block;
4293
4294         /* For fields not not tracking in the in-memory inode,
4295          * initialise them to zero for new inodes. */
4296         if (ei->i_state & EXT4_STATE_NEW)
4297                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4298
4299         ext4_get_inode_flags(ei);
4300         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4301         if (!(test_opt(inode->i_sb, NO_UID32))) {
4302                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4303                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4304 /*
4305  * Fix up interoperability with old kernels. Otherwise, old inodes get
4306  * re-used with the upper 16 bits of the uid/gid intact
4307  */
4308                 if (!ei->i_dtime) {
4309                         raw_inode->i_uid_high =
4310                                 cpu_to_le16(high_16_bits(inode->i_uid));
4311                         raw_inode->i_gid_high =
4312                                 cpu_to_le16(high_16_bits(inode->i_gid));
4313                 } else {
4314                         raw_inode->i_uid_high = 0;
4315                         raw_inode->i_gid_high = 0;
4316                 }
4317         } else {
4318                 raw_inode->i_uid_low =
4319                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4320                 raw_inode->i_gid_low =
4321                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4322                 raw_inode->i_uid_high = 0;
4323                 raw_inode->i_gid_high = 0;
4324         }
4325         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4326
4327         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4328         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4329         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4330         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4331
4332         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4333                 goto out_brelse;
4334         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4335         /* clear the migrate flag in the raw_inode */
4336         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4337         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4338             cpu_to_le32(EXT4_OS_HURD))
4339                 raw_inode->i_file_acl_high =
4340                         cpu_to_le16(ei->i_file_acl >> 32);
4341         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4342         ext4_isize_set(raw_inode, ei->i_disksize);
4343         if (ei->i_disksize > 0x7fffffffULL) {
4344                 struct super_block *sb = inode->i_sb;
4345                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4346                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4347                                 EXT4_SB(sb)->s_es->s_rev_level ==
4348                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4349                         /* If this is the first large file
4350                          * created, add a flag to the superblock.
4351                          */
4352                         err = ext4_journal_get_write_access(handle,
4353                                         EXT4_SB(sb)->s_sbh);
4354                         if (err)
4355                                 goto out_brelse;
4356                         ext4_update_dynamic_rev(sb);
4357                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4358                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4359                         sb->s_dirt = 1;
4360                         handle->h_sync = 1;
4361                         err = ext4_journal_dirty_metadata(handle,
4362                                         EXT4_SB(sb)->s_sbh);
4363                 }
4364         }
4365         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4366         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4367                 if (old_valid_dev(inode->i_rdev)) {
4368                         raw_inode->i_block[0] =
4369                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4370                         raw_inode->i_block[1] = 0;
4371                 } else {
4372                         raw_inode->i_block[0] = 0;
4373                         raw_inode->i_block[1] =
4374                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4375                         raw_inode->i_block[2] = 0;
4376                 }
4377         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4378                 raw_inode->i_block[block] = ei->i_data[block];
4379
4380         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4381         if (ei->i_extra_isize) {
4382                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4383                         raw_inode->i_version_hi =
4384                         cpu_to_le32(inode->i_version >> 32);
4385                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4386         }
4387
4388
4389         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4390         rc = ext4_journal_dirty_metadata(handle, bh);
4391         if (!err)
4392                 err = rc;
4393         ei->i_state &= ~EXT4_STATE_NEW;
4394
4395 out_brelse:
4396         brelse(bh);
4397         ext4_std_error(inode->i_sb, err);
4398         return err;
4399 }
4400
4401 /*
4402  * ext4_write_inode()
4403  *
4404  * We are called from a few places:
4405  *
4406  * - Within generic_file_write() for O_SYNC files.
4407  *   Here, there will be no transaction running. We wait for any running
4408  *   trasnaction to commit.
4409  *
4410  * - Within sys_sync(), kupdate and such.
4411  *   We wait on commit, if tol to.
4412  *
4413  * - Within prune_icache() (PF_MEMALLOC == true)
4414  *   Here we simply return.  We can't afford to block kswapd on the
4415  *   journal commit.
4416  *
4417  * In all cases it is actually safe for us to return without doing anything,
4418  * because the inode has been copied into a raw inode buffer in
4419  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4420  * knfsd.
4421  *
4422  * Note that we are absolutely dependent upon all inode dirtiers doing the
4423  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4424  * which we are interested.
4425  *
4426  * It would be a bug for them to not do this.  The code:
4427  *
4428  *      mark_inode_dirty(inode)
4429  *      stuff();
4430  *      inode->i_size = expr;
4431  *
4432  * is in error because a kswapd-driven write_inode() could occur while
4433  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4434  * will no longer be on the superblock's dirty inode list.
4435  */
4436 int ext4_write_inode(struct inode *inode, int wait)
4437 {
4438         if (current->flags & PF_MEMALLOC)
4439                 return 0;
4440
4441         if (ext4_journal_current_handle()) {
4442                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4443                 dump_stack();
4444                 return -EIO;
4445         }
4446
4447         if (!wait)
4448                 return 0;
4449
4450         return ext4_force_commit(inode->i_sb);
4451 }
4452
4453 /*
4454  * ext4_setattr()
4455  *
4456  * Called from notify_change.
4457  *
4458  * We want to trap VFS attempts to truncate the file as soon as
4459  * possible.  In particular, we want to make sure that when the VFS
4460  * shrinks i_size, we put the inode on the orphan list and modify
4461  * i_disksize immediately, so that during the subsequent flushing of
4462  * dirty pages and freeing of disk blocks, we can guarantee that any
4463  * commit will leave the blocks being flushed in an unused state on
4464  * disk.  (On recovery, the inode will get truncated and the blocks will
4465  * be freed, so we have a strong guarantee that no future commit will
4466  * leave these blocks visible to the user.)
4467  *
4468  * Another thing we have to assure is that if we are in ordered mode
4469  * and inode is still attached to the committing transaction, we must
4470  * we start writeout of all the dirty pages which are being truncated.
4471  * This way we are sure that all the data written in the previous
4472  * transaction are already on disk (truncate waits for pages under
4473  * writeback).
4474  *
4475  * Called with inode->i_mutex down.
4476  */
4477 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4478 {
4479         struct inode *inode = dentry->d_inode;
4480         int error, rc = 0;
4481         const unsigned int ia_valid = attr->ia_valid;
4482
4483         error = inode_change_ok(inode, attr);
4484         if (error)
4485                 return error;
4486
4487         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4488                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4489                 handle_t *handle;
4490
4491                 /* (user+group)*(old+new) structure, inode write (sb,
4492                  * inode block, ? - but truncate inode update has it) */
4493                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4494                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4495                 if (IS_ERR(handle)) {
4496                         error = PTR_ERR(handle);
4497                         goto err_out;
4498                 }
4499                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4500                 if (error) {
4501                         ext4_journal_stop(handle);
4502                         return error;
4503                 }
4504                 /* Update corresponding info in inode so that everything is in
4505                  * one transaction */
4506                 if (attr->ia_valid & ATTR_UID)
4507                         inode->i_uid = attr->ia_uid;
4508                 if (attr->ia_valid & ATTR_GID)
4509                         inode->i_gid = attr->ia_gid;
4510                 error = ext4_mark_inode_dirty(handle, inode);
4511                 ext4_journal_stop(handle);
4512         }
4513
4514         if (attr->ia_valid & ATTR_SIZE) {
4515                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4516                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4517
4518                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4519                                 error = -EFBIG;
4520                                 goto err_out;
4521                         }
4522                 }
4523         }
4524
4525         if (S_ISREG(inode->i_mode) &&
4526             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4527                 handle_t *handle;
4528
4529                 handle = ext4_journal_start(inode, 3);
4530                 if (IS_ERR(handle)) {
4531                         error = PTR_ERR(handle);
4532                         goto err_out;
4533                 }
4534
4535                 error = ext4_orphan_add(handle, inode);
4536                 EXT4_I(inode)->i_disksize = attr->ia_size;
4537                 rc = ext4_mark_inode_dirty(handle, inode);
4538                 if (!error)
4539                         error = rc;
4540                 ext4_journal_stop(handle);
4541
4542                 if (ext4_should_order_data(inode)) {
4543                         error = ext4_begin_ordered_truncate(inode,
4544                                                             attr->ia_size);
4545                         if (error) {
4546                                 /* Do as much error cleanup as possible */
4547                                 handle = ext4_journal_start(inode, 3);
4548                                 if (IS_ERR(handle)) {
4549                                         ext4_orphan_del(NULL, inode);
4550                                         goto err_out;
4551                                 }
4552                                 ext4_orphan_del(handle, inode);
4553                                 ext4_journal_stop(handle);
4554                                 goto err_out;
4555                         }
4556                 }
4557         }
4558
4559         rc = inode_setattr(inode, attr);
4560
4561         /* If inode_setattr's call to ext4_truncate failed to get a
4562          * transaction handle at all, we need to clean up the in-core
4563          * orphan list manually. */
4564         if (inode->i_nlink)
4565                 ext4_orphan_del(NULL, inode);
4566
4567         if (!rc && (ia_valid & ATTR_MODE))
4568                 rc = ext4_acl_chmod(inode);
4569
4570 err_out:
4571         ext4_std_error(inode->i_sb, error);
4572         if (!error)
4573                 error = rc;
4574         return error;
4575 }
4576
4577 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4578                  struct kstat *stat)
4579 {
4580         struct inode *inode;
4581         unsigned long delalloc_blocks;
4582
4583         inode = dentry->d_inode;
4584         generic_fillattr(inode, stat);
4585
4586         /*
4587          * We can't update i_blocks if the block allocation is delayed
4588          * otherwise in the case of system crash before the real block
4589          * allocation is done, we will have i_blocks inconsistent with
4590          * on-disk file blocks.
4591          * We always keep i_blocks updated together with real
4592          * allocation. But to not confuse with user, stat
4593          * will return the blocks that include the delayed allocation
4594          * blocks for this file.
4595          */
4596         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4597         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4598         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4599
4600         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4601         return 0;
4602 }
4603
4604 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4605                                       int chunk)
4606 {
4607         int indirects;
4608
4609         /* if nrblocks are contiguous */
4610         if (chunk) {
4611                 /*
4612                  * With N contiguous data blocks, it need at most
4613                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4614                  * 2 dindirect blocks
4615                  * 1 tindirect block
4616                  */
4617                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4618                 return indirects + 3;
4619         }
4620         /*
4621          * if nrblocks are not contiguous, worse case, each block touch
4622          * a indirect block, and each indirect block touch a double indirect
4623          * block, plus a triple indirect block
4624          */
4625         indirects = nrblocks * 2 + 1;
4626         return indirects;
4627 }
4628
4629 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4630 {
4631         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4632                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4633         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4634 }
4635
4636 /*
4637  * Account for index blocks, block groups bitmaps and block group
4638  * descriptor blocks if modify datablocks and index blocks
4639  * worse case, the indexs blocks spread over different block groups
4640  *
4641  * If datablocks are discontiguous, they are possible to spread over
4642  * different block groups too. If they are contiugous, with flexbg,
4643  * they could still across block group boundary.
4644  *
4645  * Also account for superblock, inode, quota and xattr blocks
4646  */
4647 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4648 {
4649         int groups, gdpblocks;
4650         int idxblocks;
4651         int ret = 0;
4652
4653         /*
4654          * How many index blocks need to touch to modify nrblocks?
4655          * The "Chunk" flag indicating whether the nrblocks is
4656          * physically contiguous on disk
4657          *
4658          * For Direct IO and fallocate, they calls get_block to allocate
4659          * one single extent at a time, so they could set the "Chunk" flag
4660          */
4661         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4662
4663         ret = idxblocks;
4664
4665         /*
4666          * Now let's see how many group bitmaps and group descriptors need
4667          * to account
4668          */
4669         groups = idxblocks;
4670         if (chunk)
4671                 groups += 1;
4672         else
4673                 groups += nrblocks;
4674
4675         gdpblocks = groups;
4676         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4677                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4678         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4679                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4680
4681         /* bitmaps and block group descriptor blocks */
4682         ret += groups + gdpblocks;
4683
4684         /* Blocks for super block, inode, quota and xattr blocks */
4685         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4686
4687         return ret;
4688 }
4689
4690 /*
4691  * Calulate the total number of credits to reserve to fit
4692  * the modification of a single pages into a single transaction,
4693  * which may include multiple chunks of block allocations.
4694  *
4695  * This could be called via ext4_write_begin()
4696  *
4697  * We need to consider the worse case, when
4698  * one new block per extent.
4699  */
4700 int ext4_writepage_trans_blocks(struct inode *inode)
4701 {
4702         int bpp = ext4_journal_blocks_per_page(inode);
4703         int ret;
4704
4705         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4706
4707         /* Account for data blocks for journalled mode */
4708         if (ext4_should_journal_data(inode))
4709                 ret += bpp;
4710         return ret;
4711 }
4712
4713 /*
4714  * Calculate the journal credits for a chunk of data modification.
4715  *
4716  * This is called from DIO, fallocate or whoever calling
4717  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4718  *
4719  * journal buffers for data blocks are not included here, as DIO
4720  * and fallocate do no need to journal data buffers.
4721  */
4722 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4723 {
4724         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4725 }
4726
4727 /*
4728  * The caller must have previously called ext4_reserve_inode_write().
4729  * Give this, we know that the caller already has write access to iloc->bh.
4730  */
4731 int ext4_mark_iloc_dirty(handle_t *handle,
4732                 struct inode *inode, struct ext4_iloc *iloc)
4733 {
4734         int err = 0;
4735
4736         if (test_opt(inode->i_sb, I_VERSION))
4737                 inode_inc_iversion(inode);
4738
4739         /* the do_update_inode consumes one bh->b_count */
4740         get_bh(iloc->bh);
4741
4742         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4743         err = ext4_do_update_inode(handle, inode, iloc);
4744         put_bh(iloc->bh);
4745         return err;
4746 }
4747
4748 /*
4749  * On success, We end up with an outstanding reference count against
4750  * iloc->bh.  This _must_ be cleaned up later.
4751  */
4752
4753 int
4754 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4755                          struct ext4_iloc *iloc)
4756 {
4757         int err = 0;
4758         if (handle) {
4759                 err = ext4_get_inode_loc(inode, iloc);
4760                 if (!err) {
4761                         BUFFER_TRACE(iloc->bh, "get_write_access");
4762                         err = ext4_journal_get_write_access(handle, iloc->bh);
4763                         if (err) {
4764                                 brelse(iloc->bh);
4765                                 iloc->bh = NULL;
4766                         }
4767                 }
4768         }
4769         ext4_std_error(inode->i_sb, err);
4770         return err;
4771 }
4772
4773 /*
4774  * Expand an inode by new_extra_isize bytes.
4775  * Returns 0 on success or negative error number on failure.
4776  */
4777 static int ext4_expand_extra_isize(struct inode *inode,
4778                                    unsigned int new_extra_isize,
4779                                    struct ext4_iloc iloc,
4780                                    handle_t *handle)
4781 {
4782         struct ext4_inode *raw_inode;
4783         struct ext4_xattr_ibody_header *header;
4784         struct ext4_xattr_entry *entry;
4785
4786         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4787                 return 0;
4788
4789         raw_inode = ext4_raw_inode(&iloc);
4790
4791         header = IHDR(inode, raw_inode);
4792         entry = IFIRST(header);
4793
4794         /* No extended attributes present */
4795         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4796                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4797                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4798                         new_extra_isize);
4799                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4800                 return 0;
4801         }
4802
4803         /* try to expand with EAs present */
4804         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4805                                           raw_inode, handle);
4806 }
4807
4808 /*
4809  * What we do here is to mark the in-core inode as clean with respect to inode
4810  * dirtiness (it may still be data-dirty).
4811  * This means that the in-core inode may be reaped by prune_icache
4812  * without having to perform any I/O.  This is a very good thing,
4813  * because *any* task may call prune_icache - even ones which
4814  * have a transaction open against a different journal.
4815  *
4816  * Is this cheating?  Not really.  Sure, we haven't written the
4817  * inode out, but prune_icache isn't a user-visible syncing function.
4818  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4819  * we start and wait on commits.
4820  *
4821  * Is this efficient/effective?  Well, we're being nice to the system
4822  * by cleaning up our inodes proactively so they can be reaped
4823  * without I/O.  But we are potentially leaving up to five seconds'
4824  * worth of inodes floating about which prune_icache wants us to
4825  * write out.  One way to fix that would be to get prune_icache()
4826  * to do a write_super() to free up some memory.  It has the desired
4827  * effect.
4828  */
4829 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4830 {
4831         struct ext4_iloc iloc;
4832         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4833         static unsigned int mnt_count;
4834         int err, ret;
4835
4836         might_sleep();
4837         err = ext4_reserve_inode_write(handle, inode, &iloc);
4838         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4839             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4840                 /*
4841                  * We need extra buffer credits since we may write into EA block
4842                  * with this same handle. If journal_extend fails, then it will
4843                  * only result in a minor loss of functionality for that inode.
4844                  * If this is felt to be critical, then e2fsck should be run to
4845                  * force a large enough s_min_extra_isize.
4846                  */
4847                 if ((jbd2_journal_extend(handle,
4848                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4849                         ret = ext4_expand_extra_isize(inode,
4850                                                       sbi->s_want_extra_isize,
4851                                                       iloc, handle);
4852                         if (ret) {
4853                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4854                                 if (mnt_count !=
4855                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4856                                         ext4_warning(inode->i_sb, __func__,
4857                                         "Unable to expand inode %lu. Delete"
4858                                         " some EAs or run e2fsck.",
4859                                         inode->i_ino);
4860                                         mnt_count =
4861                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4862                                 }
4863                         }
4864                 }
4865         }
4866         if (!err)
4867                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4868         return err;
4869 }
4870
4871 /*
4872  * ext4_dirty_inode() is called from __mark_inode_dirty()
4873  *
4874  * We're really interested in the case where a file is being extended.
4875  * i_size has been changed by generic_commit_write() and we thus need
4876  * to include the updated inode in the current transaction.
4877  *
4878  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4879  * are allocated to the file.
4880  *
4881  * If the inode is marked synchronous, we don't honour that here - doing
4882  * so would cause a commit on atime updates, which we don't bother doing.
4883  * We handle synchronous inodes at the highest possible level.
4884  */
4885 void ext4_dirty_inode(struct inode *inode)
4886 {
4887         handle_t *current_handle = ext4_journal_current_handle();
4888         handle_t *handle;
4889
4890         handle = ext4_journal_start(inode, 2);
4891         if (IS_ERR(handle))
4892                 goto out;
4893         if (current_handle &&
4894                 current_handle->h_transaction != handle->h_transaction) {
4895                 /* This task has a transaction open against a different fs */
4896                 printk(KERN_EMERG "%s: transactions do not match!\n",
4897                        __func__);
4898         } else {
4899                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4900                                 current_handle);
4901                 ext4_mark_inode_dirty(handle, inode);
4902         }
4903         ext4_journal_stop(handle);
4904 out:
4905         return;
4906 }
4907
4908 #if 0
4909 /*
4910  * Bind an inode's backing buffer_head into this transaction, to prevent
4911  * it from being flushed to disk early.  Unlike
4912  * ext4_reserve_inode_write, this leaves behind no bh reference and
4913  * returns no iloc structure, so the caller needs to repeat the iloc
4914  * lookup to mark the inode dirty later.
4915  */
4916 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4917 {
4918         struct ext4_iloc iloc;
4919
4920         int err = 0;
4921         if (handle) {
4922                 err = ext4_get_inode_loc(inode, &iloc);
4923                 if (!err) {
4924                         BUFFER_TRACE(iloc.bh, "get_write_access");
4925                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4926                         if (!err)
4927                                 err = ext4_journal_dirty_metadata(handle,
4928                                                                   iloc.bh);
4929                         brelse(iloc.bh);
4930                 }
4931         }
4932         ext4_std_error(inode->i_sb, err);
4933         return err;
4934 }
4935 #endif
4936
4937 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4938 {
4939         journal_t *journal;
4940         handle_t *handle;
4941         int err;
4942
4943         /*
4944          * We have to be very careful here: changing a data block's
4945          * journaling status dynamically is dangerous.  If we write a
4946          * data block to the journal, change the status and then delete
4947          * that block, we risk forgetting to revoke the old log record
4948          * from the journal and so a subsequent replay can corrupt data.
4949          * So, first we make sure that the journal is empty and that
4950          * nobody is changing anything.
4951          */
4952
4953         journal = EXT4_JOURNAL(inode);
4954         if (is_journal_aborted(journal))
4955                 return -EROFS;
4956
4957         jbd2_journal_lock_updates(journal);
4958         jbd2_journal_flush(journal);
4959
4960         /*
4961          * OK, there are no updates running now, and all cached data is
4962          * synced to disk.  We are now in a completely consistent state
4963          * which doesn't have anything in the journal, and we know that
4964          * no filesystem updates are running, so it is safe to modify
4965          * the inode's in-core data-journaling state flag now.
4966          */
4967
4968         if (val)
4969                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4970         else
4971                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4972         ext4_set_aops(inode);
4973
4974         jbd2_journal_unlock_updates(journal);
4975
4976         /* Finally we can mark the inode as dirty. */
4977
4978         handle = ext4_journal_start(inode, 1);
4979         if (IS_ERR(handle))
4980                 return PTR_ERR(handle);
4981
4982         err = ext4_mark_inode_dirty(handle, inode);
4983         handle->h_sync = 1;
4984         ext4_journal_stop(handle);
4985         ext4_std_error(inode->i_sb, err);
4986
4987         return err;
4988 }
4989
4990 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4991 {
4992         return !buffer_mapped(bh);
4993 }
4994
4995 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4996 {
4997         loff_t size;
4998         unsigned long len;
4999         int ret = -EINVAL;
5000         void *fsdata;
5001         struct file *file = vma->vm_file;
5002         struct inode *inode = file->f_path.dentry->d_inode;
5003         struct address_space *mapping = inode->i_mapping;
5004
5005         /*
5006          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5007          * get i_mutex because we are already holding mmap_sem.
5008          */
5009         down_read(&inode->i_alloc_sem);
5010         size = i_size_read(inode);
5011         if (page->mapping != mapping || size <= page_offset(page)
5012             || !PageUptodate(page)) {
5013                 /* page got truncated from under us? */
5014                 goto out_unlock;
5015         }
5016         ret = 0;
5017         if (PageMappedToDisk(page))
5018                 goto out_unlock;
5019
5020         if (page->index == size >> PAGE_CACHE_SHIFT)
5021                 len = size & ~PAGE_CACHE_MASK;
5022         else
5023                 len = PAGE_CACHE_SIZE;
5024
5025         if (page_has_buffers(page)) {
5026                 /* return if we have all the buffers mapped */
5027                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5028                                        ext4_bh_unmapped))
5029                         goto out_unlock;
5030         }
5031         /*
5032          * OK, we need to fill the hole... Do write_begin write_end
5033          * to do block allocation/reservation.We are not holding
5034          * inode.i__mutex here. That allow * parallel write_begin,
5035          * write_end call. lock_page prevent this from happening
5036          * on the same page though
5037          */
5038         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5039                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5040         if (ret < 0)
5041                 goto out_unlock;
5042         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5043                         len, len, page, fsdata);
5044         if (ret < 0)
5045                 goto out_unlock;
5046         ret = 0;
5047 out_unlock:
5048         up_read(&inode->i_alloc_sem);
5049         return ret;
5050 }