ext4: More buffer head reference leaks
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51                                               loff_t new_size)
52 {
53         return jbd2_journal_begin_ordered_truncate(
54                                         EXT4_SB(inode->i_sb)->s_journal,
55                                         &EXT4_I(inode)->jinode,
56                                         new_size);
57 }
58
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
61 /*
62  * Test whether an inode is a fast symlink.
63  */
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
65 {
66         int ea_blocks = EXT4_I(inode)->i_file_acl ?
67                 (inode->i_sb->s_blocksize >> 9) : 0;
68
69         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 }
71
72 /*
73  * The ext4 forget function must perform a revoke if we are freeing data
74  * which has been journaled.  Metadata (eg. indirect blocks) must be
75  * revoked in all cases.
76  *
77  * "bh" may be NULL: a metadata block may have been freed from memory
78  * but there may still be a record of it in the journal, and that record
79  * still needs to be revoked.
80  *
81  * If the handle isn't valid we're not journaling, but we still need to
82  * call into ext4_journal_revoke() to put the buffer head.
83  */
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85                 struct buffer_head *bh, ext4_fsblk_t blocknr)
86 {
87         int err;
88
89         might_sleep();
90
91         BUFFER_TRACE(bh, "enter");
92
93         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94                   "data mode %x\n",
95                   bh, is_metadata, inode->i_mode,
96                   test_opt(inode->i_sb, DATA_FLAGS));
97
98         /* Never use the revoke function if we are doing full data
99          * journaling: there is no need to, and a V1 superblock won't
100          * support it.  Otherwise, only skip the revoke on un-journaled
101          * data blocks. */
102
103         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104             (!is_metadata && !ext4_should_journal_data(inode))) {
105                 if (bh) {
106                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
107                         return ext4_journal_forget(handle, bh);
108                 }
109                 return 0;
110         }
111
112         /*
113          * data!=journal && (is_metadata || should_journal_data(inode))
114          */
115         BUFFER_TRACE(bh, "call ext4_journal_revoke");
116         err = ext4_journal_revoke(handle, blocknr, bh);
117         if (err)
118                 ext4_abort(inode->i_sb, __func__,
119                            "error %d when attempting revoke", err);
120         BUFFER_TRACE(bh, "exit");
121         return err;
122 }
123
124 /*
125  * Work out how many blocks we need to proceed with the next chunk of a
126  * truncate transaction.
127  */
128 static unsigned long blocks_for_truncate(struct inode *inode)
129 {
130         ext4_lblk_t needed;
131
132         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133
134         /* Give ourselves just enough room to cope with inodes in which
135          * i_blocks is corrupt: we've seen disk corruptions in the past
136          * which resulted in random data in an inode which looked enough
137          * like a regular file for ext4 to try to delete it.  Things
138          * will go a bit crazy if that happens, but at least we should
139          * try not to panic the whole kernel. */
140         if (needed < 2)
141                 needed = 2;
142
143         /* But we need to bound the transaction so we don't overflow the
144          * journal. */
145         if (needed > EXT4_MAX_TRANS_DATA)
146                 needed = EXT4_MAX_TRANS_DATA;
147
148         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 }
150
151 /*
152  * Truncate transactions can be complex and absolutely huge.  So we need to
153  * be able to restart the transaction at a conventient checkpoint to make
154  * sure we don't overflow the journal.
155  *
156  * start_transaction gets us a new handle for a truncate transaction,
157  * and extend_transaction tries to extend the existing one a bit.  If
158  * extend fails, we need to propagate the failure up and restart the
159  * transaction in the top-level truncate loop. --sct
160  */
161 static handle_t *start_transaction(struct inode *inode)
162 {
163         handle_t *result;
164
165         result = ext4_journal_start(inode, blocks_for_truncate(inode));
166         if (!IS_ERR(result))
167                 return result;
168
169         ext4_std_error(inode->i_sb, PTR_ERR(result));
170         return result;
171 }
172
173 /*
174  * Try to extend this transaction for the purposes of truncation.
175  *
176  * Returns 0 if we managed to create more room.  If we can't create more
177  * room, and the transaction must be restarted we return 1.
178  */
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180 {
181         if (!ext4_handle_valid(handle))
182                 return 0;
183         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184                 return 0;
185         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186                 return 0;
187         return 1;
188 }
189
190 /*
191  * Restart the transaction associated with *handle.  This does a commit,
192  * so before we call here everything must be consistently dirtied against
193  * this transaction.
194  */
195 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196 {
197         BUG_ON(EXT4_JOURNAL(inode) == NULL);
198         jbd_debug(2, "restarting handle %p\n", handle);
199         return ext4_journal_restart(handle, blocks_for_truncate(inode));
200 }
201
202 /*
203  * Called at the last iput() if i_nlink is zero.
204  */
205 void ext4_delete_inode(struct inode *inode)
206 {
207         handle_t *handle;
208         int err;
209
210         if (ext4_should_order_data(inode))
211                 ext4_begin_ordered_truncate(inode, 0);
212         truncate_inode_pages(&inode->i_data, 0);
213
214         if (is_bad_inode(inode))
215                 goto no_delete;
216
217         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218         if (IS_ERR(handle)) {
219                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
220                 /*
221                  * If we're going to skip the normal cleanup, we still need to
222                  * make sure that the in-core orphan linked list is properly
223                  * cleaned up.
224                  */
225                 ext4_orphan_del(NULL, inode);
226                 goto no_delete;
227         }
228
229         if (IS_SYNC(inode))
230                 ext4_handle_sync(handle);
231         inode->i_size = 0;
232         err = ext4_mark_inode_dirty(handle, inode);
233         if (err) {
234                 ext4_warning(inode->i_sb, __func__,
235                              "couldn't mark inode dirty (err %d)", err);
236                 goto stop_handle;
237         }
238         if (inode->i_blocks)
239                 ext4_truncate(inode);
240
241         /*
242          * ext4_ext_truncate() doesn't reserve any slop when it
243          * restarts journal transactions; therefore there may not be
244          * enough credits left in the handle to remove the inode from
245          * the orphan list and set the dtime field.
246          */
247         if (!ext4_handle_has_enough_credits(handle, 3)) {
248                 err = ext4_journal_extend(handle, 3);
249                 if (err > 0)
250                         err = ext4_journal_restart(handle, 3);
251                 if (err != 0) {
252                         ext4_warning(inode->i_sb, __func__,
253                                      "couldn't extend journal (err %d)", err);
254                 stop_handle:
255                         ext4_journal_stop(handle);
256                         goto no_delete;
257                 }
258         }
259
260         /*
261          * Kill off the orphan record which ext4_truncate created.
262          * AKPM: I think this can be inside the above `if'.
263          * Note that ext4_orphan_del() has to be able to cope with the
264          * deletion of a non-existent orphan - this is because we don't
265          * know if ext4_truncate() actually created an orphan record.
266          * (Well, we could do this if we need to, but heck - it works)
267          */
268         ext4_orphan_del(handle, inode);
269         EXT4_I(inode)->i_dtime  = get_seconds();
270
271         /*
272          * One subtle ordering requirement: if anything has gone wrong
273          * (transaction abort, IO errors, whatever), then we can still
274          * do these next steps (the fs will already have been marked as
275          * having errors), but we can't free the inode if the mark_dirty
276          * fails.
277          */
278         if (ext4_mark_inode_dirty(handle, inode))
279                 /* If that failed, just do the required in-core inode clear. */
280                 clear_inode(inode);
281         else
282                 ext4_free_inode(handle, inode);
283         ext4_journal_stop(handle);
284         return;
285 no_delete:
286         clear_inode(inode);     /* We must guarantee clearing of inode... */
287 }
288
289 typedef struct {
290         __le32  *p;
291         __le32  key;
292         struct buffer_head *bh;
293 } Indirect;
294
295 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
296 {
297         p->key = *(p->p = v);
298         p->bh = bh;
299 }
300
301 /**
302  *      ext4_block_to_path - parse the block number into array of offsets
303  *      @inode: inode in question (we are only interested in its superblock)
304  *      @i_block: block number to be parsed
305  *      @offsets: array to store the offsets in
306  *      @boundary: set this non-zero if the referred-to block is likely to be
307  *             followed (on disk) by an indirect block.
308  *
309  *      To store the locations of file's data ext4 uses a data structure common
310  *      for UNIX filesystems - tree of pointers anchored in the inode, with
311  *      data blocks at leaves and indirect blocks in intermediate nodes.
312  *      This function translates the block number into path in that tree -
313  *      return value is the path length and @offsets[n] is the offset of
314  *      pointer to (n+1)th node in the nth one. If @block is out of range
315  *      (negative or too large) warning is printed and zero returned.
316  *
317  *      Note: function doesn't find node addresses, so no IO is needed. All
318  *      we need to know is the capacity of indirect blocks (taken from the
319  *      inode->i_sb).
320  */
321
322 /*
323  * Portability note: the last comparison (check that we fit into triple
324  * indirect block) is spelled differently, because otherwise on an
325  * architecture with 32-bit longs and 8Kb pages we might get into trouble
326  * if our filesystem had 8Kb blocks. We might use long long, but that would
327  * kill us on x86. Oh, well, at least the sign propagation does not matter -
328  * i_block would have to be negative in the very beginning, so we would not
329  * get there at all.
330  */
331
332 static int ext4_block_to_path(struct inode *inode,
333                               ext4_lblk_t i_block,
334                               ext4_lblk_t offsets[4], int *boundary)
335 {
336         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
337         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
338         const long direct_blocks = EXT4_NDIR_BLOCKS,
339                 indirect_blocks = ptrs,
340                 double_blocks = (1 << (ptrs_bits * 2));
341         int n = 0;
342         int final = 0;
343
344         if (i_block < 0) {
345                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
346         } else if (i_block < direct_blocks) {
347                 offsets[n++] = i_block;
348                 final = direct_blocks;
349         } else if ((i_block -= direct_blocks) < indirect_blocks) {
350                 offsets[n++] = EXT4_IND_BLOCK;
351                 offsets[n++] = i_block;
352                 final = ptrs;
353         } else if ((i_block -= indirect_blocks) < double_blocks) {
354                 offsets[n++] = EXT4_DIND_BLOCK;
355                 offsets[n++] = i_block >> ptrs_bits;
356                 offsets[n++] = i_block & (ptrs - 1);
357                 final = ptrs;
358         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
359                 offsets[n++] = EXT4_TIND_BLOCK;
360                 offsets[n++] = i_block >> (ptrs_bits * 2);
361                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
362                 offsets[n++] = i_block & (ptrs - 1);
363                 final = ptrs;
364         } else {
365                 ext4_warning(inode->i_sb, "ext4_block_to_path",
366                              "block %lu > max in inode %lu",
367                              i_block + direct_blocks +
368                              indirect_blocks + double_blocks, inode->i_ino);
369         }
370         if (boundary)
371                 *boundary = final - 1 - (i_block & (ptrs - 1));
372         return n;
373 }
374
375 static int __ext4_check_blockref(const char *function, struct inode *inode,
376                                  __le32 *p, unsigned int max)
377 {
378         __le32 *bref = p;
379         unsigned int blk;
380
381         while (bref < p+max) {
382                 blk = le32_to_cpu(*bref++);
383                 if (blk &&
384                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
385                                                     blk, 1))) {
386                         ext4_error(inode->i_sb, function,
387                                    "invalid block reference %u "
388                                    "in inode #%lu", blk, inode->i_ino);
389                         return -EIO;
390                 }
391         }
392         return 0;
393 }
394
395
396 #define ext4_check_indirect_blockref(inode, bh)                         \
397         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
398                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
399
400 #define ext4_check_inode_blockref(inode)                                \
401         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
402                               EXT4_NDIR_BLOCKS)
403
404 /**
405  *      ext4_get_branch - read the chain of indirect blocks leading to data
406  *      @inode: inode in question
407  *      @depth: depth of the chain (1 - direct pointer, etc.)
408  *      @offsets: offsets of pointers in inode/indirect blocks
409  *      @chain: place to store the result
410  *      @err: here we store the error value
411  *
412  *      Function fills the array of triples <key, p, bh> and returns %NULL
413  *      if everything went OK or the pointer to the last filled triple
414  *      (incomplete one) otherwise. Upon the return chain[i].key contains
415  *      the number of (i+1)-th block in the chain (as it is stored in memory,
416  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
417  *      number (it points into struct inode for i==0 and into the bh->b_data
418  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
419  *      block for i>0 and NULL for i==0. In other words, it holds the block
420  *      numbers of the chain, addresses they were taken from (and where we can
421  *      verify that chain did not change) and buffer_heads hosting these
422  *      numbers.
423  *
424  *      Function stops when it stumbles upon zero pointer (absent block)
425  *              (pointer to last triple returned, *@err == 0)
426  *      or when it gets an IO error reading an indirect block
427  *              (ditto, *@err == -EIO)
428  *      or when it reads all @depth-1 indirect blocks successfully and finds
429  *      the whole chain, all way to the data (returns %NULL, *err == 0).
430  *
431  *      Need to be called with
432  *      down_read(&EXT4_I(inode)->i_data_sem)
433  */
434 static Indirect *ext4_get_branch(struct inode *inode, int depth,
435                                  ext4_lblk_t  *offsets,
436                                  Indirect chain[4], int *err)
437 {
438         struct super_block *sb = inode->i_sb;
439         Indirect *p = chain;
440         struct buffer_head *bh;
441
442         *err = 0;
443         /* i_data is not going away, no lock needed */
444         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
445         if (!p->key)
446                 goto no_block;
447         while (--depth) {
448                 bh = sb_getblk(sb, le32_to_cpu(p->key));
449                 if (unlikely(!bh))
450                         goto failure;
451
452                 if (!bh_uptodate_or_lock(bh)) {
453                         if (bh_submit_read(bh) < 0) {
454                                 put_bh(bh);
455                                 goto failure;
456                         }
457                         /* validate block references */
458                         if (ext4_check_indirect_blockref(inode, bh)) {
459                                 put_bh(bh);
460                                 goto failure;
461                         }
462                 }
463
464                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
465                 /* Reader: end */
466                 if (!p->key)
467                         goto no_block;
468         }
469         return NULL;
470
471 failure:
472         *err = -EIO;
473 no_block:
474         return p;
475 }
476
477 /**
478  *      ext4_find_near - find a place for allocation with sufficient locality
479  *      @inode: owner
480  *      @ind: descriptor of indirect block.
481  *
482  *      This function returns the preferred place for block allocation.
483  *      It is used when heuristic for sequential allocation fails.
484  *      Rules are:
485  *        + if there is a block to the left of our position - allocate near it.
486  *        + if pointer will live in indirect block - allocate near that block.
487  *        + if pointer will live in inode - allocate in the same
488  *          cylinder group.
489  *
490  * In the latter case we colour the starting block by the callers PID to
491  * prevent it from clashing with concurrent allocations for a different inode
492  * in the same block group.   The PID is used here so that functionally related
493  * files will be close-by on-disk.
494  *
495  *      Caller must make sure that @ind is valid and will stay that way.
496  */
497 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
498 {
499         struct ext4_inode_info *ei = EXT4_I(inode);
500         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
501         __le32 *p;
502         ext4_fsblk_t bg_start;
503         ext4_fsblk_t last_block;
504         ext4_grpblk_t colour;
505         ext4_group_t block_group;
506         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
507
508         /* Try to find previous block */
509         for (p = ind->p - 1; p >= start; p--) {
510                 if (*p)
511                         return le32_to_cpu(*p);
512         }
513
514         /* No such thing, so let's try location of indirect block */
515         if (ind->bh)
516                 return ind->bh->b_blocknr;
517
518         /*
519          * It is going to be referred to from the inode itself? OK, just put it
520          * into the same cylinder group then.
521          */
522         block_group = ei->i_block_group;
523         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
524                 block_group &= ~(flex_size-1);
525                 if (S_ISREG(inode->i_mode))
526                         block_group++;
527         }
528         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
529         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
530
531         /*
532          * If we are doing delayed allocation, we don't need take
533          * colour into account.
534          */
535         if (test_opt(inode->i_sb, DELALLOC))
536                 return bg_start;
537
538         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
539                 colour = (current->pid % 16) *
540                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
541         else
542                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
543         return bg_start + colour;
544 }
545
546 /**
547  *      ext4_find_goal - find a preferred place for allocation.
548  *      @inode: owner
549  *      @block:  block we want
550  *      @partial: pointer to the last triple within a chain
551  *
552  *      Normally this function find the preferred place for block allocation,
553  *      returns it.
554  */
555 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
556                                    Indirect *partial)
557 {
558         /*
559          * XXX need to get goal block from mballoc's data structures
560          */
561
562         return ext4_find_near(inode, partial);
563 }
564
565 /**
566  *      ext4_blks_to_allocate: Look up the block map and count the number
567  *      of direct blocks need to be allocated for the given branch.
568  *
569  *      @branch: chain of indirect blocks
570  *      @k: number of blocks need for indirect blocks
571  *      @blks: number of data blocks to be mapped.
572  *      @blocks_to_boundary:  the offset in the indirect block
573  *
574  *      return the total number of blocks to be allocate, including the
575  *      direct and indirect blocks.
576  */
577 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
578                                  int blocks_to_boundary)
579 {
580         unsigned int count = 0;
581
582         /*
583          * Simple case, [t,d]Indirect block(s) has not allocated yet
584          * then it's clear blocks on that path have not allocated
585          */
586         if (k > 0) {
587                 /* right now we don't handle cross boundary allocation */
588                 if (blks < blocks_to_boundary + 1)
589                         count += blks;
590                 else
591                         count += blocks_to_boundary + 1;
592                 return count;
593         }
594
595         count++;
596         while (count < blks && count <= blocks_to_boundary &&
597                 le32_to_cpu(*(branch[0].p + count)) == 0) {
598                 count++;
599         }
600         return count;
601 }
602
603 /**
604  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
605  *      @indirect_blks: the number of blocks need to allocate for indirect
606  *                      blocks
607  *
608  *      @new_blocks: on return it will store the new block numbers for
609  *      the indirect blocks(if needed) and the first direct block,
610  *      @blks:  on return it will store the total number of allocated
611  *              direct blocks
612  */
613 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
614                              ext4_lblk_t iblock, ext4_fsblk_t goal,
615                              int indirect_blks, int blks,
616                              ext4_fsblk_t new_blocks[4], int *err)
617 {
618         struct ext4_allocation_request ar;
619         int target, i;
620         unsigned long count = 0, blk_allocated = 0;
621         int index = 0;
622         ext4_fsblk_t current_block = 0;
623         int ret = 0;
624
625         /*
626          * Here we try to allocate the requested multiple blocks at once,
627          * on a best-effort basis.
628          * To build a branch, we should allocate blocks for
629          * the indirect blocks(if not allocated yet), and at least
630          * the first direct block of this branch.  That's the
631          * minimum number of blocks need to allocate(required)
632          */
633         /* first we try to allocate the indirect blocks */
634         target = indirect_blks;
635         while (target > 0) {
636                 count = target;
637                 /* allocating blocks for indirect blocks and direct blocks */
638                 current_block = ext4_new_meta_blocks(handle, inode,
639                                                         goal, &count, err);
640                 if (*err)
641                         goto failed_out;
642
643                 target -= count;
644                 /* allocate blocks for indirect blocks */
645                 while (index < indirect_blks && count) {
646                         new_blocks[index++] = current_block++;
647                         count--;
648                 }
649                 if (count > 0) {
650                         /*
651                          * save the new block number
652                          * for the first direct block
653                          */
654                         new_blocks[index] = current_block;
655                         printk(KERN_INFO "%s returned more blocks than "
656                                                 "requested\n", __func__);
657                         WARN_ON(1);
658                         break;
659                 }
660         }
661
662         target = blks - count ;
663         blk_allocated = count;
664         if (!target)
665                 goto allocated;
666         /* Now allocate data blocks */
667         memset(&ar, 0, sizeof(ar));
668         ar.inode = inode;
669         ar.goal = goal;
670         ar.len = target;
671         ar.logical = iblock;
672         if (S_ISREG(inode->i_mode))
673                 /* enable in-core preallocation only for regular files */
674                 ar.flags = EXT4_MB_HINT_DATA;
675
676         current_block = ext4_mb_new_blocks(handle, &ar, err);
677
678         if (*err && (target == blks)) {
679                 /*
680                  * if the allocation failed and we didn't allocate
681                  * any blocks before
682                  */
683                 goto failed_out;
684         }
685         if (!*err) {
686                 if (target == blks) {
687                         /*
688                          * save the new block number
689                          * for the first direct block
690                          */
691                         new_blocks[index] = current_block;
692                 }
693                 blk_allocated += ar.len;
694         }
695 allocated:
696         /* total number of blocks allocated for direct blocks */
697         ret = blk_allocated;
698         *err = 0;
699         return ret;
700 failed_out:
701         for (i = 0; i < index; i++)
702                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
703         return ret;
704 }
705
706 /**
707  *      ext4_alloc_branch - allocate and set up a chain of blocks.
708  *      @inode: owner
709  *      @indirect_blks: number of allocated indirect blocks
710  *      @blks: number of allocated direct blocks
711  *      @offsets: offsets (in the blocks) to store the pointers to next.
712  *      @branch: place to store the chain in.
713  *
714  *      This function allocates blocks, zeroes out all but the last one,
715  *      links them into chain and (if we are synchronous) writes them to disk.
716  *      In other words, it prepares a branch that can be spliced onto the
717  *      inode. It stores the information about that chain in the branch[], in
718  *      the same format as ext4_get_branch() would do. We are calling it after
719  *      we had read the existing part of chain and partial points to the last
720  *      triple of that (one with zero ->key). Upon the exit we have the same
721  *      picture as after the successful ext4_get_block(), except that in one
722  *      place chain is disconnected - *branch->p is still zero (we did not
723  *      set the last link), but branch->key contains the number that should
724  *      be placed into *branch->p to fill that gap.
725  *
726  *      If allocation fails we free all blocks we've allocated (and forget
727  *      their buffer_heads) and return the error value the from failed
728  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
729  *      as described above and return 0.
730  */
731 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
732                              ext4_lblk_t iblock, int indirect_blks,
733                              int *blks, ext4_fsblk_t goal,
734                              ext4_lblk_t *offsets, Indirect *branch)
735 {
736         int blocksize = inode->i_sb->s_blocksize;
737         int i, n = 0;
738         int err = 0;
739         struct buffer_head *bh;
740         int num;
741         ext4_fsblk_t new_blocks[4];
742         ext4_fsblk_t current_block;
743
744         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
745                                 *blks, new_blocks, &err);
746         if (err)
747                 return err;
748
749         branch[0].key = cpu_to_le32(new_blocks[0]);
750         /*
751          * metadata blocks and data blocks are allocated.
752          */
753         for (n = 1; n <= indirect_blks;  n++) {
754                 /*
755                  * Get buffer_head for parent block, zero it out
756                  * and set the pointer to new one, then send
757                  * parent to disk.
758                  */
759                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
760                 branch[n].bh = bh;
761                 lock_buffer(bh);
762                 BUFFER_TRACE(bh, "call get_create_access");
763                 err = ext4_journal_get_create_access(handle, bh);
764                 if (err) {
765                         /* Don't brelse(bh) here; it's done in
766                          * ext4_journal_forget() below */
767                         unlock_buffer(bh);
768                         goto failed;
769                 }
770
771                 memset(bh->b_data, 0, blocksize);
772                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
773                 branch[n].key = cpu_to_le32(new_blocks[n]);
774                 *branch[n].p = branch[n].key;
775                 if (n == indirect_blks) {
776                         current_block = new_blocks[n];
777                         /*
778                          * End of chain, update the last new metablock of
779                          * the chain to point to the new allocated
780                          * data blocks numbers
781                          */
782                         for (i = 1; i < num; i++)
783                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
784                 }
785                 BUFFER_TRACE(bh, "marking uptodate");
786                 set_buffer_uptodate(bh);
787                 unlock_buffer(bh);
788
789                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
790                 err = ext4_handle_dirty_metadata(handle, inode, bh);
791                 if (err)
792                         goto failed;
793         }
794         *blks = num;
795         return err;
796 failed:
797         /* Allocation failed, free what we already allocated */
798         for (i = 1; i <= n ; i++) {
799                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
800                 ext4_journal_forget(handle, branch[i].bh);
801         }
802         for (i = 0; i < indirect_blks; i++)
803                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
804
805         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
806
807         return err;
808 }
809
810 /**
811  * ext4_splice_branch - splice the allocated branch onto inode.
812  * @inode: owner
813  * @block: (logical) number of block we are adding
814  * @chain: chain of indirect blocks (with a missing link - see
815  *      ext4_alloc_branch)
816  * @where: location of missing link
817  * @num:   number of indirect blocks we are adding
818  * @blks:  number of direct blocks we are adding
819  *
820  * This function fills the missing link and does all housekeeping needed in
821  * inode (->i_blocks, etc.). In case of success we end up with the full
822  * chain to new block and return 0.
823  */
824 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
825                               ext4_lblk_t block, Indirect *where, int num,
826                               int blks)
827 {
828         int i;
829         int err = 0;
830         ext4_fsblk_t current_block;
831
832         /*
833          * If we're splicing into a [td]indirect block (as opposed to the
834          * inode) then we need to get write access to the [td]indirect block
835          * before the splice.
836          */
837         if (where->bh) {
838                 BUFFER_TRACE(where->bh, "get_write_access");
839                 err = ext4_journal_get_write_access(handle, where->bh);
840                 if (err)
841                         goto err_out;
842         }
843         /* That's it */
844
845         *where->p = where->key;
846
847         /*
848          * Update the host buffer_head or inode to point to more just allocated
849          * direct blocks blocks
850          */
851         if (num == 0 && blks > 1) {
852                 current_block = le32_to_cpu(where->key) + 1;
853                 for (i = 1; i < blks; i++)
854                         *(where->p + i) = cpu_to_le32(current_block++);
855         }
856
857         /* We are done with atomic stuff, now do the rest of housekeeping */
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  */
877                 ext4_mark_inode_dirty(handle, inode);
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * The ext4_ind_get_blocks() function handles non-extents inodes
896  * (i.e., using the traditional indirect/double-indirect i_blocks
897  * scheme) for ext4_get_blocks().
898  *
899  * Allocation strategy is simple: if we have to allocate something, we will
900  * have to go the whole way to leaf. So let's do it before attaching anything
901  * to tree, set linkage between the newborn blocks, write them if sync is
902  * required, recheck the path, free and repeat if check fails, otherwise
903  * set the last missing link (that will protect us from any truncate-generated
904  * removals - all blocks on the path are immune now) and possibly force the
905  * write on the parent block.
906  * That has a nice additional property: no special recovery from the failed
907  * allocations is needed - we simply release blocks and do not touch anything
908  * reachable from inode.
909  *
910  * `handle' can be NULL if create == 0.
911  *
912  * return > 0, # of blocks mapped or allocated.
913  * return = 0, if plain lookup failed.
914  * return < 0, error case.
915  *
916  * The ext4_ind_get_blocks() function should be called with
917  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920  * blocks.
921  */
922 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923                                ext4_lblk_t iblock, unsigned int maxblocks,
924                                struct buffer_head *bh_result,
925                                int flags)
926 {
927         int err = -EIO;
928         ext4_lblk_t offsets[4];
929         Indirect chain[4];
930         Indirect *partial;
931         ext4_fsblk_t goal;
932         int indirect_blks;
933         int blocks_to_boundary = 0;
934         int depth;
935         int count = 0;
936         ext4_fsblk_t first_block = 0;
937
938         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
939         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
940         depth = ext4_block_to_path(inode, iblock, offsets,
941                                    &blocks_to_boundary);
942
943         if (depth == 0)
944                 goto out;
945
946         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
947
948         /* Simplest case - block found, no allocation needed */
949         if (!partial) {
950                 first_block = le32_to_cpu(chain[depth - 1].key);
951                 clear_buffer_new(bh_result);
952                 count++;
953                 /*map more blocks*/
954                 while (count < maxblocks && count <= blocks_to_boundary) {
955                         ext4_fsblk_t blk;
956
957                         blk = le32_to_cpu(*(chain[depth-1].p + count));
958
959                         if (blk == first_block + count)
960                                 count++;
961                         else
962                                 break;
963                 }
964                 goto got_it;
965         }
966
967         /* Next simple case - plain lookup or failed read of indirect block */
968         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
969                 goto cleanup;
970
971         /*
972          * Okay, we need to do block allocation.
973         */
974         goal = ext4_find_goal(inode, iblock, partial);
975
976         /* the number of blocks need to allocate for [d,t]indirect blocks */
977         indirect_blks = (chain + depth) - partial - 1;
978
979         /*
980          * Next look up the indirect map to count the totoal number of
981          * direct blocks to allocate for this branch.
982          */
983         count = ext4_blks_to_allocate(partial, indirect_blks,
984                                         maxblocks, blocks_to_boundary);
985         /*
986          * Block out ext4_truncate while we alter the tree
987          */
988         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
989                                 &count, goal,
990                                 offsets + (partial - chain), partial);
991
992         /*
993          * The ext4_splice_branch call will free and forget any buffers
994          * on the new chain if there is a failure, but that risks using
995          * up transaction credits, especially for bitmaps where the
996          * credits cannot be returned.  Can we handle this somehow?  We
997          * may need to return -EAGAIN upwards in the worst case.  --sct
998          */
999         if (!err)
1000                 err = ext4_splice_branch(handle, inode, iblock,
1001                                          partial, indirect_blks, count);
1002         else
1003                 goto cleanup;
1004
1005         set_buffer_new(bh_result);
1006 got_it:
1007         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1008         if (count > blocks_to_boundary)
1009                 set_buffer_boundary(bh_result);
1010         err = count;
1011         /* Clean up and exit */
1012         partial = chain + depth - 1;    /* the whole chain */
1013 cleanup:
1014         while (partial > chain) {
1015                 BUFFER_TRACE(partial->bh, "call brelse");
1016                 brelse(partial->bh);
1017                 partial--;
1018         }
1019         BUFFER_TRACE(bh_result, "returned");
1020 out:
1021         return err;
1022 }
1023
1024 qsize_t ext4_get_reserved_space(struct inode *inode)
1025 {
1026         unsigned long long total;
1027
1028         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1029         total = EXT4_I(inode)->i_reserved_data_blocks +
1030                 EXT4_I(inode)->i_reserved_meta_blocks;
1031         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1032
1033         return total;
1034 }
1035 /*
1036  * Calculate the number of metadata blocks need to reserve
1037  * to allocate @blocks for non extent file based file
1038  */
1039 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1040 {
1041         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1042         int ind_blks, dind_blks, tind_blks;
1043
1044         /* number of new indirect blocks needed */
1045         ind_blks = (blocks + icap - 1) / icap;
1046
1047         dind_blks = (ind_blks + icap - 1) / icap;
1048
1049         tind_blks = 1;
1050
1051         return ind_blks + dind_blks + tind_blks;
1052 }
1053
1054 /*
1055  * Calculate the number of metadata blocks need to reserve
1056  * to allocate given number of blocks
1057  */
1058 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1059 {
1060         if (!blocks)
1061                 return 0;
1062
1063         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1064                 return ext4_ext_calc_metadata_amount(inode, blocks);
1065
1066         return ext4_indirect_calc_metadata_amount(inode, blocks);
1067 }
1068
1069 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1070 {
1071         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1072         int total, mdb, mdb_free;
1073
1074         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1075         /* recalculate the number of metablocks still need to be reserved */
1076         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1077         mdb = ext4_calc_metadata_amount(inode, total);
1078
1079         /* figure out how many metablocks to release */
1080         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1081         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1082
1083         if (mdb_free) {
1084                 /* Account for allocated meta_blocks */
1085                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1086
1087                 /* update fs dirty blocks counter */
1088                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1089                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1090                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1091         }
1092
1093         /* update per-inode reservations */
1094         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1095         EXT4_I(inode)->i_reserved_data_blocks -= used;
1096         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1097
1098         /*
1099          * free those over-booking quota for metadata blocks
1100          */
1101         if (mdb_free)
1102                 vfs_dq_release_reservation_block(inode, mdb_free);
1103
1104         /*
1105          * If we have done all the pending block allocations and if
1106          * there aren't any writers on the inode, we can discard the
1107          * inode's preallocations.
1108          */
1109         if (!total && (atomic_read(&inode->i_writecount) == 0))
1110                 ext4_discard_preallocations(inode);
1111 }
1112
1113 static int check_block_validity(struct inode *inode, sector_t logical,
1114                                 sector_t phys, int len)
1115 {
1116         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1117                 ext4_error(inode->i_sb, "check_block_validity",
1118                            "inode #%lu logical block %llu mapped to %llu "
1119                            "(size %d)", inode->i_ino,
1120                            (unsigned long long) logical,
1121                            (unsigned long long) phys, len);
1122                 WARN_ON(1);
1123                 return -EIO;
1124         }
1125         return 0;
1126 }
1127
1128 /*
1129  * The ext4_get_blocks() function tries to look up the requested blocks,
1130  * and returns if the blocks are already mapped.
1131  *
1132  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133  * and store the allocated blocks in the result buffer head and mark it
1134  * mapped.
1135  *
1136  * If file type is extents based, it will call ext4_ext_get_blocks(),
1137  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138  * based files
1139  *
1140  * On success, it returns the number of blocks being mapped or allocate.
1141  * if create==0 and the blocks are pre-allocated and uninitialized block,
1142  * the result buffer head is unmapped. If the create ==1, it will make sure
1143  * the buffer head is mapped.
1144  *
1145  * It returns 0 if plain look up failed (blocks have not been allocated), in
1146  * that casem, buffer head is unmapped
1147  *
1148  * It returns the error in case of allocation failure.
1149  */
1150 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151                     unsigned int max_blocks, struct buffer_head *bh,
1152                     int flags)
1153 {
1154         int retval;
1155
1156         clear_buffer_mapped(bh);
1157         clear_buffer_unwritten(bh);
1158
1159         /*
1160          * Try to see if we can get the block without requesting a new
1161          * file system block.
1162          */
1163         down_read((&EXT4_I(inode)->i_data_sem));
1164         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166                                 bh, 0);
1167         } else {
1168                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169                                              bh, 0);
1170         }
1171         up_read((&EXT4_I(inode)->i_data_sem));
1172
1173         if (retval > 0 && buffer_mapped(bh)) {
1174                 int ret = check_block_validity(inode, block,
1175                                                bh->b_blocknr, retval);
1176                 if (ret != 0)
1177                         return ret;
1178         }
1179
1180         /* If it is only a block(s) look up */
1181         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1182                 return retval;
1183
1184         /*
1185          * Returns if the blocks have already allocated
1186          *
1187          * Note that if blocks have been preallocated
1188          * ext4_ext_get_block() returns th create = 0
1189          * with buffer head unmapped.
1190          */
1191         if (retval > 0 && buffer_mapped(bh))
1192                 return retval;
1193
1194         /*
1195          * When we call get_blocks without the create flag, the
1196          * BH_Unwritten flag could have gotten set if the blocks
1197          * requested were part of a uninitialized extent.  We need to
1198          * clear this flag now that we are committed to convert all or
1199          * part of the uninitialized extent to be an initialized
1200          * extent.  This is because we need to avoid the combination
1201          * of BH_Unwritten and BH_Mapped flags being simultaneously
1202          * set on the buffer_head.
1203          */
1204         clear_buffer_unwritten(bh);
1205
1206         /*
1207          * New blocks allocate and/or writing to uninitialized extent
1208          * will possibly result in updating i_data, so we take
1209          * the write lock of i_data_sem, and call get_blocks()
1210          * with create == 1 flag.
1211          */
1212         down_write((&EXT4_I(inode)->i_data_sem));
1213
1214         /*
1215          * if the caller is from delayed allocation writeout path
1216          * we have already reserved fs blocks for allocation
1217          * let the underlying get_block() function know to
1218          * avoid double accounting
1219          */
1220         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1221                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1222         /*
1223          * We need to check for EXT4 here because migrate
1224          * could have changed the inode type in between
1225          */
1226         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1227                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1228                                               bh, flags);
1229         } else {
1230                 retval = ext4_ind_get_blocks(handle, inode, block,
1231                                              max_blocks, bh, flags);
1232
1233                 if (retval > 0 && buffer_new(bh)) {
1234                         /*
1235                          * We allocated new blocks which will result in
1236                          * i_data's format changing.  Force the migrate
1237                          * to fail by clearing migrate flags
1238                          */
1239                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1240                                                         ~EXT4_EXT_MIGRATE;
1241                 }
1242         }
1243
1244         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1245                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1246
1247         /*
1248          * Update reserved blocks/metadata blocks after successful
1249          * block allocation which had been deferred till now.
1250          */
1251         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1252                 ext4_da_update_reserve_space(inode, retval);
1253
1254         up_write((&EXT4_I(inode)->i_data_sem));
1255         if (retval > 0 && buffer_mapped(bh)) {
1256                 int ret = check_block_validity(inode, block,
1257                                                bh->b_blocknr, retval);
1258                 if (ret != 0)
1259                         return ret;
1260         }
1261         return retval;
1262 }
1263
1264 /* Maximum number of blocks we map for direct IO at once. */
1265 #define DIO_MAX_BLOCKS 4096
1266
1267 int ext4_get_block(struct inode *inode, sector_t iblock,
1268                    struct buffer_head *bh_result, int create)
1269 {
1270         handle_t *handle = ext4_journal_current_handle();
1271         int ret = 0, started = 0;
1272         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1273         int dio_credits;
1274
1275         if (create && !handle) {
1276                 /* Direct IO write... */
1277                 if (max_blocks > DIO_MAX_BLOCKS)
1278                         max_blocks = DIO_MAX_BLOCKS;
1279                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1280                 handle = ext4_journal_start(inode, dio_credits);
1281                 if (IS_ERR(handle)) {
1282                         ret = PTR_ERR(handle);
1283                         goto out;
1284                 }
1285                 started = 1;
1286         }
1287
1288         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1289                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1290         if (ret > 0) {
1291                 bh_result->b_size = (ret << inode->i_blkbits);
1292                 ret = 0;
1293         }
1294         if (started)
1295                 ext4_journal_stop(handle);
1296 out:
1297         return ret;
1298 }
1299
1300 /*
1301  * `handle' can be NULL if create is zero
1302  */
1303 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1304                                 ext4_lblk_t block, int create, int *errp)
1305 {
1306         struct buffer_head dummy;
1307         int fatal = 0, err;
1308         int flags = 0;
1309
1310         J_ASSERT(handle != NULL || create == 0);
1311
1312         dummy.b_state = 0;
1313         dummy.b_blocknr = -1000;
1314         buffer_trace_init(&dummy.b_history);
1315         if (create)
1316                 flags |= EXT4_GET_BLOCKS_CREATE;
1317         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1318         /*
1319          * ext4_get_blocks() returns number of blocks mapped. 0 in
1320          * case of a HOLE.
1321          */
1322         if (err > 0) {
1323                 if (err > 1)
1324                         WARN_ON(1);
1325                 err = 0;
1326         }
1327         *errp = err;
1328         if (!err && buffer_mapped(&dummy)) {
1329                 struct buffer_head *bh;
1330                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1331                 if (!bh) {
1332                         *errp = -EIO;
1333                         goto err;
1334                 }
1335                 if (buffer_new(&dummy)) {
1336                         J_ASSERT(create != 0);
1337                         J_ASSERT(handle != NULL);
1338
1339                         /*
1340                          * Now that we do not always journal data, we should
1341                          * keep in mind whether this should always journal the
1342                          * new buffer as metadata.  For now, regular file
1343                          * writes use ext4_get_block instead, so it's not a
1344                          * problem.
1345                          */
1346                         lock_buffer(bh);
1347                         BUFFER_TRACE(bh, "call get_create_access");
1348                         fatal = ext4_journal_get_create_access(handle, bh);
1349                         if (!fatal && !buffer_uptodate(bh)) {
1350                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1351                                 set_buffer_uptodate(bh);
1352                         }
1353                         unlock_buffer(bh);
1354                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1355                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1356                         if (!fatal)
1357                                 fatal = err;
1358                 } else {
1359                         BUFFER_TRACE(bh, "not a new buffer");
1360                 }
1361                 if (fatal) {
1362                         *errp = fatal;
1363                         brelse(bh);
1364                         bh = NULL;
1365                 }
1366                 return bh;
1367         }
1368 err:
1369         return NULL;
1370 }
1371
1372 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1373                                ext4_lblk_t block, int create, int *err)
1374 {
1375         struct buffer_head *bh;
1376
1377         bh = ext4_getblk(handle, inode, block, create, err);
1378         if (!bh)
1379                 return bh;
1380         if (buffer_uptodate(bh))
1381                 return bh;
1382         ll_rw_block(READ_META, 1, &bh);
1383         wait_on_buffer(bh);
1384         if (buffer_uptodate(bh))
1385                 return bh;
1386         put_bh(bh);
1387         *err = -EIO;
1388         return NULL;
1389 }
1390
1391 static int walk_page_buffers(handle_t *handle,
1392                              struct buffer_head *head,
1393                              unsigned from,
1394                              unsigned to,
1395                              int *partial,
1396                              int (*fn)(handle_t *handle,
1397                                        struct buffer_head *bh))
1398 {
1399         struct buffer_head *bh;
1400         unsigned block_start, block_end;
1401         unsigned blocksize = head->b_size;
1402         int err, ret = 0;
1403         struct buffer_head *next;
1404
1405         for (bh = head, block_start = 0;
1406              ret == 0 && (bh != head || !block_start);
1407              block_start = block_end, bh = next) {
1408                 next = bh->b_this_page;
1409                 block_end = block_start + blocksize;
1410                 if (block_end <= from || block_start >= to) {
1411                         if (partial && !buffer_uptodate(bh))
1412                                 *partial = 1;
1413                         continue;
1414                 }
1415                 err = (*fn)(handle, bh);
1416                 if (!ret)
1417                         ret = err;
1418         }
1419         return ret;
1420 }
1421
1422 /*
1423  * To preserve ordering, it is essential that the hole instantiation and
1424  * the data write be encapsulated in a single transaction.  We cannot
1425  * close off a transaction and start a new one between the ext4_get_block()
1426  * and the commit_write().  So doing the jbd2_journal_start at the start of
1427  * prepare_write() is the right place.
1428  *
1429  * Also, this function can nest inside ext4_writepage() ->
1430  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1431  * has generated enough buffer credits to do the whole page.  So we won't
1432  * block on the journal in that case, which is good, because the caller may
1433  * be PF_MEMALLOC.
1434  *
1435  * By accident, ext4 can be reentered when a transaction is open via
1436  * quota file writes.  If we were to commit the transaction while thus
1437  * reentered, there can be a deadlock - we would be holding a quota
1438  * lock, and the commit would never complete if another thread had a
1439  * transaction open and was blocking on the quota lock - a ranking
1440  * violation.
1441  *
1442  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1443  * will _not_ run commit under these circumstances because handle->h_ref
1444  * is elevated.  We'll still have enough credits for the tiny quotafile
1445  * write.
1446  */
1447 static int do_journal_get_write_access(handle_t *handle,
1448                                        struct buffer_head *bh)
1449 {
1450         if (!buffer_mapped(bh) || buffer_freed(bh))
1451                 return 0;
1452         return ext4_journal_get_write_access(handle, bh);
1453 }
1454
1455 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1456                             loff_t pos, unsigned len, unsigned flags,
1457                             struct page **pagep, void **fsdata)
1458 {
1459         struct inode *inode = mapping->host;
1460         int ret, needed_blocks;
1461         handle_t *handle;
1462         int retries = 0;
1463         struct page *page;
1464         pgoff_t index;
1465         unsigned from, to;
1466
1467         trace_ext4_write_begin(inode, pos, len, flags);
1468         /*
1469          * Reserve one block more for addition to orphan list in case
1470          * we allocate blocks but write fails for some reason
1471          */
1472         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1473         index = pos >> PAGE_CACHE_SHIFT;
1474         from = pos & (PAGE_CACHE_SIZE - 1);
1475         to = from + len;
1476
1477 retry:
1478         handle = ext4_journal_start(inode, needed_blocks);
1479         if (IS_ERR(handle)) {
1480                 ret = PTR_ERR(handle);
1481                 goto out;
1482         }
1483
1484         /* We cannot recurse into the filesystem as the transaction is already
1485          * started */
1486         flags |= AOP_FLAG_NOFS;
1487
1488         page = grab_cache_page_write_begin(mapping, index, flags);
1489         if (!page) {
1490                 ext4_journal_stop(handle);
1491                 ret = -ENOMEM;
1492                 goto out;
1493         }
1494         *pagep = page;
1495
1496         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1497                                 ext4_get_block);
1498
1499         if (!ret && ext4_should_journal_data(inode)) {
1500                 ret = walk_page_buffers(handle, page_buffers(page),
1501                                 from, to, NULL, do_journal_get_write_access);
1502         }
1503
1504         if (ret) {
1505                 unlock_page(page);
1506                 page_cache_release(page);
1507                 /*
1508                  * block_write_begin may have instantiated a few blocks
1509                  * outside i_size.  Trim these off again. Don't need
1510                  * i_size_read because we hold i_mutex.
1511                  *
1512                  * Add inode to orphan list in case we crash before
1513                  * truncate finishes
1514                  */
1515                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1516                         ext4_orphan_add(handle, inode);
1517
1518                 ext4_journal_stop(handle);
1519                 if (pos + len > inode->i_size) {
1520                         ext4_truncate(inode);
1521                         /*
1522                          * If truncate failed early the inode might
1523                          * still be on the orphan list; we need to
1524                          * make sure the inode is removed from the
1525                          * orphan list in that case.
1526                          */
1527                         if (inode->i_nlink)
1528                                 ext4_orphan_del(NULL, inode);
1529                 }
1530         }
1531
1532         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1533                 goto retry;
1534 out:
1535         return ret;
1536 }
1537
1538 /* For write_end() in data=journal mode */
1539 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1540 {
1541         if (!buffer_mapped(bh) || buffer_freed(bh))
1542                 return 0;
1543         set_buffer_uptodate(bh);
1544         return ext4_handle_dirty_metadata(handle, NULL, bh);
1545 }
1546
1547 static int ext4_generic_write_end(struct file *file,
1548                                   struct address_space *mapping,
1549                                   loff_t pos, unsigned len, unsigned copied,
1550                                   struct page *page, void *fsdata)
1551 {
1552         int i_size_changed = 0;
1553         struct inode *inode = mapping->host;
1554         handle_t *handle = ext4_journal_current_handle();
1555
1556         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1557
1558         /*
1559          * No need to use i_size_read() here, the i_size
1560          * cannot change under us because we hold i_mutex.
1561          *
1562          * But it's important to update i_size while still holding page lock:
1563          * page writeout could otherwise come in and zero beyond i_size.
1564          */
1565         if (pos + copied > inode->i_size) {
1566                 i_size_write(inode, pos + copied);
1567                 i_size_changed = 1;
1568         }
1569
1570         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1571                 /* We need to mark inode dirty even if
1572                  * new_i_size is less that inode->i_size
1573                  * bu greater than i_disksize.(hint delalloc)
1574                  */
1575                 ext4_update_i_disksize(inode, (pos + copied));
1576                 i_size_changed = 1;
1577         }
1578         unlock_page(page);
1579         page_cache_release(page);
1580
1581         /*
1582          * Don't mark the inode dirty under page lock. First, it unnecessarily
1583          * makes the holding time of page lock longer. Second, it forces lock
1584          * ordering of page lock and transaction start for journaling
1585          * filesystems.
1586          */
1587         if (i_size_changed)
1588                 ext4_mark_inode_dirty(handle, inode);
1589
1590         return copied;
1591 }
1592
1593 /*
1594  * We need to pick up the new inode size which generic_commit_write gave us
1595  * `file' can be NULL - eg, when called from page_symlink().
1596  *
1597  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1598  * buffers are managed internally.
1599  */
1600 static int ext4_ordered_write_end(struct file *file,
1601                                   struct address_space *mapping,
1602                                   loff_t pos, unsigned len, unsigned copied,
1603                                   struct page *page, void *fsdata)
1604 {
1605         handle_t *handle = ext4_journal_current_handle();
1606         struct inode *inode = mapping->host;
1607         int ret = 0, ret2;
1608
1609         trace_ext4_ordered_write_end(inode, pos, len, copied);
1610         ret = ext4_jbd2_file_inode(handle, inode);
1611
1612         if (ret == 0) {
1613                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1614                                                         page, fsdata);
1615                 copied = ret2;
1616                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1617                         /* if we have allocated more blocks and copied
1618                          * less. We will have blocks allocated outside
1619                          * inode->i_size. So truncate them
1620                          */
1621                         ext4_orphan_add(handle, inode);
1622                 if (ret2 < 0)
1623                         ret = ret2;
1624         }
1625         ret2 = ext4_journal_stop(handle);
1626         if (!ret)
1627                 ret = ret2;
1628
1629         if (pos + len > inode->i_size) {
1630                 ext4_truncate(inode);
1631                 /*
1632                  * If truncate failed early the inode might still be
1633                  * on the orphan list; we need to make sure the inode
1634                  * is removed from the orphan list in that case.
1635                  */
1636                 if (inode->i_nlink)
1637                         ext4_orphan_del(NULL, inode);
1638         }
1639
1640
1641         return ret ? ret : copied;
1642 }
1643
1644 static int ext4_writeback_write_end(struct file *file,
1645                                     struct address_space *mapping,
1646                                     loff_t pos, unsigned len, unsigned copied,
1647                                     struct page *page, void *fsdata)
1648 {
1649         handle_t *handle = ext4_journal_current_handle();
1650         struct inode *inode = mapping->host;
1651         int ret = 0, ret2;
1652
1653         trace_ext4_writeback_write_end(inode, pos, len, copied);
1654         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1655                                                         page, fsdata);
1656         copied = ret2;
1657         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1658                 /* if we have allocated more blocks and copied
1659                  * less. We will have blocks allocated outside
1660                  * inode->i_size. So truncate them
1661                  */
1662                 ext4_orphan_add(handle, inode);
1663
1664         if (ret2 < 0)
1665                 ret = ret2;
1666
1667         ret2 = ext4_journal_stop(handle);
1668         if (!ret)
1669                 ret = ret2;
1670
1671         if (pos + len > inode->i_size) {
1672                 ext4_truncate(inode);
1673                 /*
1674                  * If truncate failed early the inode might still be
1675                  * on the orphan list; we need to make sure the inode
1676                  * is removed from the orphan list in that case.
1677                  */
1678                 if (inode->i_nlink)
1679                         ext4_orphan_del(NULL, inode);
1680         }
1681
1682         return ret ? ret : copied;
1683 }
1684
1685 static int ext4_journalled_write_end(struct file *file,
1686                                      struct address_space *mapping,
1687                                      loff_t pos, unsigned len, unsigned copied,
1688                                      struct page *page, void *fsdata)
1689 {
1690         handle_t *handle = ext4_journal_current_handle();
1691         struct inode *inode = mapping->host;
1692         int ret = 0, ret2;
1693         int partial = 0;
1694         unsigned from, to;
1695         loff_t new_i_size;
1696
1697         trace_ext4_journalled_write_end(inode, pos, len, copied);
1698         from = pos & (PAGE_CACHE_SIZE - 1);
1699         to = from + len;
1700
1701         if (copied < len) {
1702                 if (!PageUptodate(page))
1703                         copied = 0;
1704                 page_zero_new_buffers(page, from+copied, to);
1705         }
1706
1707         ret = walk_page_buffers(handle, page_buffers(page), from,
1708                                 to, &partial, write_end_fn);
1709         if (!partial)
1710                 SetPageUptodate(page);
1711         new_i_size = pos + copied;
1712         if (new_i_size > inode->i_size)
1713                 i_size_write(inode, pos+copied);
1714         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1715         if (new_i_size > EXT4_I(inode)->i_disksize) {
1716                 ext4_update_i_disksize(inode, new_i_size);
1717                 ret2 = ext4_mark_inode_dirty(handle, inode);
1718                 if (!ret)
1719                         ret = ret2;
1720         }
1721
1722         unlock_page(page);
1723         page_cache_release(page);
1724         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1725                 /* if we have allocated more blocks and copied
1726                  * less. We will have blocks allocated outside
1727                  * inode->i_size. So truncate them
1728                  */
1729                 ext4_orphan_add(handle, inode);
1730
1731         ret2 = ext4_journal_stop(handle);
1732         if (!ret)
1733                 ret = ret2;
1734         if (pos + len > inode->i_size) {
1735                 ext4_truncate(inode);
1736                 /*
1737                  * If truncate failed early the inode might still be
1738                  * on the orphan list; we need to make sure the inode
1739                  * is removed from the orphan list in that case.
1740                  */
1741                 if (inode->i_nlink)
1742                         ext4_orphan_del(NULL, inode);
1743         }
1744
1745         return ret ? ret : copied;
1746 }
1747
1748 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1749 {
1750         int retries = 0;
1751         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1752         unsigned long md_needed, mdblocks, total = 0;
1753
1754         /*
1755          * recalculate the amount of metadata blocks to reserve
1756          * in order to allocate nrblocks
1757          * worse case is one extent per block
1758          */
1759 repeat:
1760         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1761         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1762         mdblocks = ext4_calc_metadata_amount(inode, total);
1763         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1764
1765         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1766         total = md_needed + nrblocks;
1767
1768         /*
1769          * Make quota reservation here to prevent quota overflow
1770          * later. Real quota accounting is done at pages writeout
1771          * time.
1772          */
1773         if (vfs_dq_reserve_block(inode, total)) {
1774                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1775                 return -EDQUOT;
1776         }
1777
1778         if (ext4_claim_free_blocks(sbi, total)) {
1779                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1780                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1781                         yield();
1782                         goto repeat;
1783                 }
1784                 vfs_dq_release_reservation_block(inode, total);
1785                 return -ENOSPC;
1786         }
1787         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1788         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1789
1790         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1791         return 0;       /* success */
1792 }
1793
1794 static void ext4_da_release_space(struct inode *inode, int to_free)
1795 {
1796         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1797         int total, mdb, mdb_free, release;
1798
1799         if (!to_free)
1800                 return;         /* Nothing to release, exit */
1801
1802         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1803
1804         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1805                 /*
1806                  * if there is no reserved blocks, but we try to free some
1807                  * then the counter is messed up somewhere.
1808                  * but since this function is called from invalidate
1809                  * page, it's harmless to return without any action
1810                  */
1811                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1812                             "blocks for inode %lu, but there is no reserved "
1813                             "data blocks\n", to_free, inode->i_ino);
1814                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1815                 return;
1816         }
1817
1818         /* recalculate the number of metablocks still need to be reserved */
1819         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1820         mdb = ext4_calc_metadata_amount(inode, total);
1821
1822         /* figure out how many metablocks to release */
1823         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1824         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1825
1826         release = to_free + mdb_free;
1827
1828         /* update fs dirty blocks counter for truncate case */
1829         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1830
1831         /* update per-inode reservations */
1832         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1833         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1834
1835         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1836         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1837         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1838
1839         vfs_dq_release_reservation_block(inode, release);
1840 }
1841
1842 static void ext4_da_page_release_reservation(struct page *page,
1843                                              unsigned long offset)
1844 {
1845         int to_release = 0;
1846         struct buffer_head *head, *bh;
1847         unsigned int curr_off = 0;
1848
1849         head = page_buffers(page);
1850         bh = head;
1851         do {
1852                 unsigned int next_off = curr_off + bh->b_size;
1853
1854                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1855                         to_release++;
1856                         clear_buffer_delay(bh);
1857                 }
1858                 curr_off = next_off;
1859         } while ((bh = bh->b_this_page) != head);
1860         ext4_da_release_space(page->mapping->host, to_release);
1861 }
1862
1863 /*
1864  * Delayed allocation stuff
1865  */
1866
1867 struct mpage_da_data {
1868         struct inode *inode;
1869         sector_t b_blocknr;             /* start block number of extent */
1870         size_t b_size;                  /* size of extent */
1871         unsigned long b_state;          /* state of the extent */
1872         unsigned long first_page, next_page;    /* extent of pages */
1873         struct writeback_control *wbc;
1874         int io_done;
1875         int pages_written;
1876         int retval;
1877 };
1878
1879 /*
1880  * mpage_da_submit_io - walks through extent of pages and try to write
1881  * them with writepage() call back
1882  *
1883  * @mpd->inode: inode
1884  * @mpd->first_page: first page of the extent
1885  * @mpd->next_page: page after the last page of the extent
1886  *
1887  * By the time mpage_da_submit_io() is called we expect all blocks
1888  * to be allocated. this may be wrong if allocation failed.
1889  *
1890  * As pages are already locked by write_cache_pages(), we can't use it
1891  */
1892 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1893 {
1894         long pages_skipped;
1895         struct pagevec pvec;
1896         unsigned long index, end;
1897         int ret = 0, err, nr_pages, i;
1898         struct inode *inode = mpd->inode;
1899         struct address_space *mapping = inode->i_mapping;
1900
1901         BUG_ON(mpd->next_page <= mpd->first_page);
1902         /*
1903          * We need to start from the first_page to the next_page - 1
1904          * to make sure we also write the mapped dirty buffer_heads.
1905          * If we look at mpd->b_blocknr we would only be looking
1906          * at the currently mapped buffer_heads.
1907          */
1908         index = mpd->first_page;
1909         end = mpd->next_page - 1;
1910
1911         pagevec_init(&pvec, 0);
1912         while (index <= end) {
1913                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1914                 if (nr_pages == 0)
1915                         break;
1916                 for (i = 0; i < nr_pages; i++) {
1917                         struct page *page = pvec.pages[i];
1918
1919                         index = page->index;
1920                         if (index > end)
1921                                 break;
1922                         index++;
1923
1924                         BUG_ON(!PageLocked(page));
1925                         BUG_ON(PageWriteback(page));
1926
1927                         pages_skipped = mpd->wbc->pages_skipped;
1928                         err = mapping->a_ops->writepage(page, mpd->wbc);
1929                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1930                                 /*
1931                                  * have successfully written the page
1932                                  * without skipping the same
1933                                  */
1934                                 mpd->pages_written++;
1935                         /*
1936                          * In error case, we have to continue because
1937                          * remaining pages are still locked
1938                          * XXX: unlock and re-dirty them?
1939                          */
1940                         if (ret == 0)
1941                                 ret = err;
1942                 }
1943                 pagevec_release(&pvec);
1944         }
1945         return ret;
1946 }
1947
1948 /*
1949  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1950  *
1951  * @mpd->inode - inode to walk through
1952  * @exbh->b_blocknr - first block on a disk
1953  * @exbh->b_size - amount of space in bytes
1954  * @logical - first logical block to start assignment with
1955  *
1956  * the function goes through all passed space and put actual disk
1957  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1958  */
1959 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1960                                  struct buffer_head *exbh)
1961 {
1962         struct inode *inode = mpd->inode;
1963         struct address_space *mapping = inode->i_mapping;
1964         int blocks = exbh->b_size >> inode->i_blkbits;
1965         sector_t pblock = exbh->b_blocknr, cur_logical;
1966         struct buffer_head *head, *bh;
1967         pgoff_t index, end;
1968         struct pagevec pvec;
1969         int nr_pages, i;
1970
1971         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1973         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1974
1975         pagevec_init(&pvec, 0);
1976
1977         while (index <= end) {
1978                 /* XXX: optimize tail */
1979                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1980                 if (nr_pages == 0)
1981                         break;
1982                 for (i = 0; i < nr_pages; i++) {
1983                         struct page *page = pvec.pages[i];
1984
1985                         index = page->index;
1986                         if (index > end)
1987                                 break;
1988                         index++;
1989
1990                         BUG_ON(!PageLocked(page));
1991                         BUG_ON(PageWriteback(page));
1992                         BUG_ON(!page_has_buffers(page));
1993
1994                         bh = page_buffers(page);
1995                         head = bh;
1996
1997                         /* skip blocks out of the range */
1998                         do {
1999                                 if (cur_logical >= logical)
2000                                         break;
2001                                 cur_logical++;
2002                         } while ((bh = bh->b_this_page) != head);
2003
2004                         do {
2005                                 if (cur_logical >= logical + blocks)
2006                                         break;
2007
2008                                 if (buffer_delay(bh) ||
2009                                                 buffer_unwritten(bh)) {
2010
2011                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2012
2013                                         if (buffer_delay(bh)) {
2014                                                 clear_buffer_delay(bh);
2015                                                 bh->b_blocknr = pblock;
2016                                         } else {
2017                                                 /*
2018                                                  * unwritten already should have
2019                                                  * blocknr assigned. Verify that
2020                                                  */
2021                                                 clear_buffer_unwritten(bh);
2022                                                 BUG_ON(bh->b_blocknr != pblock);
2023                                         }
2024
2025                                 } else if (buffer_mapped(bh))
2026                                         BUG_ON(bh->b_blocknr != pblock);
2027
2028                                 cur_logical++;
2029                                 pblock++;
2030                         } while ((bh = bh->b_this_page) != head);
2031                 }
2032                 pagevec_release(&pvec);
2033         }
2034 }
2035
2036
2037 /*
2038  * __unmap_underlying_blocks - just a helper function to unmap
2039  * set of blocks described by @bh
2040  */
2041 static inline void __unmap_underlying_blocks(struct inode *inode,
2042                                              struct buffer_head *bh)
2043 {
2044         struct block_device *bdev = inode->i_sb->s_bdev;
2045         int blocks, i;
2046
2047         blocks = bh->b_size >> inode->i_blkbits;
2048         for (i = 0; i < blocks; i++)
2049                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2050 }
2051
2052 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2053                                         sector_t logical, long blk_cnt)
2054 {
2055         int nr_pages, i;
2056         pgoff_t index, end;
2057         struct pagevec pvec;
2058         struct inode *inode = mpd->inode;
2059         struct address_space *mapping = inode->i_mapping;
2060
2061         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062         end   = (logical + blk_cnt - 1) >>
2063                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2064         while (index <= end) {
2065                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2066                 if (nr_pages == 0)
2067                         break;
2068                 for (i = 0; i < nr_pages; i++) {
2069                         struct page *page = pvec.pages[i];
2070                         index = page->index;
2071                         if (index > end)
2072                                 break;
2073                         index++;
2074
2075                         BUG_ON(!PageLocked(page));
2076                         BUG_ON(PageWriteback(page));
2077                         block_invalidatepage(page, 0);
2078                         ClearPageUptodate(page);
2079                         unlock_page(page);
2080                 }
2081         }
2082         return;
2083 }
2084
2085 static void ext4_print_free_blocks(struct inode *inode)
2086 {
2087         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2088         printk(KERN_EMERG "Total free blocks count %lld\n",
2089                         ext4_count_free_blocks(inode->i_sb));
2090         printk(KERN_EMERG "Free/Dirty block details\n");
2091         printk(KERN_EMERG "free_blocks=%lld\n",
2092                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2093         printk(KERN_EMERG "dirty_blocks=%lld\n",
2094                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2095         printk(KERN_EMERG "Block reservation details\n");
2096         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2097                         EXT4_I(inode)->i_reserved_data_blocks);
2098         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2099                         EXT4_I(inode)->i_reserved_meta_blocks);
2100         return;
2101 }
2102
2103 /*
2104  * mpage_da_map_blocks - go through given space
2105  *
2106  * @mpd - bh describing space
2107  *
2108  * The function skips space we know is already mapped to disk blocks.
2109  *
2110  */
2111 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2112 {
2113         int err, blks, get_blocks_flags;
2114         struct buffer_head new;
2115         sector_t next = mpd->b_blocknr;
2116         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2117         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2118         handle_t *handle = NULL;
2119
2120         /*
2121          * We consider only non-mapped and non-allocated blocks
2122          */
2123         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2124                 !(mpd->b_state & (1 << BH_Delay)) &&
2125                 !(mpd->b_state & (1 << BH_Unwritten)))
2126                 return 0;
2127
2128         /*
2129          * If we didn't accumulate anything to write simply return
2130          */
2131         if (!mpd->b_size)
2132                 return 0;
2133
2134         handle = ext4_journal_current_handle();
2135         BUG_ON(!handle);
2136
2137         /*
2138          * Call ext4_get_blocks() to allocate any delayed allocation
2139          * blocks, or to convert an uninitialized extent to be
2140          * initialized (in the case where we have written into
2141          * one or more preallocated blocks).
2142          *
2143          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2144          * indicate that we are on the delayed allocation path.  This
2145          * affects functions in many different parts of the allocation
2146          * call path.  This flag exists primarily because we don't
2147          * want to change *many* call functions, so ext4_get_blocks()
2148          * will set the magic i_delalloc_reserved_flag once the
2149          * inode's allocation semaphore is taken.
2150          *
2151          * If the blocks in questions were delalloc blocks, set
2152          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2153          * variables are updated after the blocks have been allocated.
2154          */
2155         new.b_state = 0;
2156         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2157                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2158         if (mpd->b_state & (1 << BH_Delay))
2159                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2160         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2161                                &new, get_blocks_flags);
2162         if (blks < 0) {
2163                 err = blks;
2164                 /*
2165                  * If get block returns with error we simply
2166                  * return. Later writepage will redirty the page and
2167                  * writepages will find the dirty page again
2168                  */
2169                 if (err == -EAGAIN)
2170                         return 0;
2171
2172                 if (err == -ENOSPC &&
2173                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2174                         mpd->retval = err;
2175                         return 0;
2176                 }
2177
2178                 /*
2179                  * get block failure will cause us to loop in
2180                  * writepages, because a_ops->writepage won't be able
2181                  * to make progress. The page will be redirtied by
2182                  * writepage and writepages will again try to write
2183                  * the same.
2184                  */
2185                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2186                                   "at logical offset %llu with max blocks "
2187                                   "%zd with error %d\n",
2188                                   __func__, mpd->inode->i_ino,
2189                                   (unsigned long long)next,
2190                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2191                 printk(KERN_EMERG "This should not happen.!! "
2192                                         "Data will be lost\n");
2193                 if (err == -ENOSPC) {
2194                         ext4_print_free_blocks(mpd->inode);
2195                 }
2196                 /* invalidate all the pages */
2197                 ext4_da_block_invalidatepages(mpd, next,
2198                                 mpd->b_size >> mpd->inode->i_blkbits);
2199                 return err;
2200         }
2201         BUG_ON(blks == 0);
2202
2203         new.b_size = (blks << mpd->inode->i_blkbits);
2204
2205         if (buffer_new(&new))
2206                 __unmap_underlying_blocks(mpd->inode, &new);
2207
2208         /*
2209          * If blocks are delayed marked, we need to
2210          * put actual blocknr and drop delayed bit
2211          */
2212         if ((mpd->b_state & (1 << BH_Delay)) ||
2213             (mpd->b_state & (1 << BH_Unwritten)))
2214                 mpage_put_bnr_to_bhs(mpd, next, &new);
2215
2216         if (ext4_should_order_data(mpd->inode)) {
2217                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2218                 if (err)
2219                         return err;
2220         }
2221
2222         /*
2223          * Update on-disk size along with block allocation.
2224          */
2225         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2226         if (disksize > i_size_read(mpd->inode))
2227                 disksize = i_size_read(mpd->inode);
2228         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2229                 ext4_update_i_disksize(mpd->inode, disksize);
2230                 return ext4_mark_inode_dirty(handle, mpd->inode);
2231         }
2232
2233         return 0;
2234 }
2235
2236 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2237                 (1 << BH_Delay) | (1 << BH_Unwritten))
2238
2239 /*
2240  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2241  *
2242  * @mpd->lbh - extent of blocks
2243  * @logical - logical number of the block in the file
2244  * @bh - bh of the block (used to access block's state)
2245  *
2246  * the function is used to collect contig. blocks in same state
2247  */
2248 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2249                                    sector_t logical, size_t b_size,
2250                                    unsigned long b_state)
2251 {
2252         sector_t next;
2253         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2254
2255         /* check if thereserved journal credits might overflow */
2256         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2257                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2258                         /*
2259                          * With non-extent format we are limited by the journal
2260                          * credit available.  Total credit needed to insert
2261                          * nrblocks contiguous blocks is dependent on the
2262                          * nrblocks.  So limit nrblocks.
2263                          */
2264                         goto flush_it;
2265                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2266                                 EXT4_MAX_TRANS_DATA) {
2267                         /*
2268                          * Adding the new buffer_head would make it cross the
2269                          * allowed limit for which we have journal credit
2270                          * reserved. So limit the new bh->b_size
2271                          */
2272                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2273                                                 mpd->inode->i_blkbits;
2274                         /* we will do mpage_da_submit_io in the next loop */
2275                 }
2276         }
2277         /*
2278          * First block in the extent
2279          */
2280         if (mpd->b_size == 0) {
2281                 mpd->b_blocknr = logical;
2282                 mpd->b_size = b_size;
2283                 mpd->b_state = b_state & BH_FLAGS;
2284                 return;
2285         }
2286
2287         next = mpd->b_blocknr + nrblocks;
2288         /*
2289          * Can we merge the block to our big extent?
2290          */
2291         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2292                 mpd->b_size += b_size;
2293                 return;
2294         }
2295
2296 flush_it:
2297         /*
2298          * We couldn't merge the block to our extent, so we
2299          * need to flush current  extent and start new one
2300          */
2301         if (mpage_da_map_blocks(mpd) == 0)
2302                 mpage_da_submit_io(mpd);
2303         mpd->io_done = 1;
2304         return;
2305 }
2306
2307 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2308 {
2309         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2310 }
2311
2312 /*
2313  * __mpage_da_writepage - finds extent of pages and blocks
2314  *
2315  * @page: page to consider
2316  * @wbc: not used, we just follow rules
2317  * @data: context
2318  *
2319  * The function finds extents of pages and scan them for all blocks.
2320  */
2321 static int __mpage_da_writepage(struct page *page,
2322                                 struct writeback_control *wbc, void *data)
2323 {
2324         struct mpage_da_data *mpd = data;
2325         struct inode *inode = mpd->inode;
2326         struct buffer_head *bh, *head;
2327         sector_t logical;
2328
2329         if (mpd->io_done) {
2330                 /*
2331                  * Rest of the page in the page_vec
2332                  * redirty then and skip then. We will
2333                  * try to to write them again after
2334                  * starting a new transaction
2335                  */
2336                 redirty_page_for_writepage(wbc, page);
2337                 unlock_page(page);
2338                 return MPAGE_DA_EXTENT_TAIL;
2339         }
2340         /*
2341          * Can we merge this page to current extent?
2342          */
2343         if (mpd->next_page != page->index) {
2344                 /*
2345                  * Nope, we can't. So, we map non-allocated blocks
2346                  * and start IO on them using writepage()
2347                  */
2348                 if (mpd->next_page != mpd->first_page) {
2349                         if (mpage_da_map_blocks(mpd) == 0)
2350                                 mpage_da_submit_io(mpd);
2351                         /*
2352                          * skip rest of the page in the page_vec
2353                          */
2354                         mpd->io_done = 1;
2355                         redirty_page_for_writepage(wbc, page);
2356                         unlock_page(page);
2357                         return MPAGE_DA_EXTENT_TAIL;
2358                 }
2359
2360                 /*
2361                  * Start next extent of pages ...
2362                  */
2363                 mpd->first_page = page->index;
2364
2365                 /*
2366                  * ... and blocks
2367                  */
2368                 mpd->b_size = 0;
2369                 mpd->b_state = 0;
2370                 mpd->b_blocknr = 0;
2371         }
2372
2373         mpd->next_page = page->index + 1;
2374         logical = (sector_t) page->index <<
2375                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2376
2377         if (!page_has_buffers(page)) {
2378                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2379                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2380                 if (mpd->io_done)
2381                         return MPAGE_DA_EXTENT_TAIL;
2382         } else {
2383                 /*
2384                  * Page with regular buffer heads, just add all dirty ones
2385                  */
2386                 head = page_buffers(page);
2387                 bh = head;
2388                 do {
2389                         BUG_ON(buffer_locked(bh));
2390                         /*
2391                          * We need to try to allocate
2392                          * unmapped blocks in the same page.
2393                          * Otherwise we won't make progress
2394                          * with the page in ext4_writepage
2395                          */
2396                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2397                                 mpage_add_bh_to_extent(mpd, logical,
2398                                                        bh->b_size,
2399                                                        bh->b_state);
2400                                 if (mpd->io_done)
2401                                         return MPAGE_DA_EXTENT_TAIL;
2402                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2403                                 /*
2404                                  * mapped dirty buffer. We need to update
2405                                  * the b_state because we look at
2406                                  * b_state in mpage_da_map_blocks. We don't
2407                                  * update b_size because if we find an
2408                                  * unmapped buffer_head later we need to
2409                                  * use the b_state flag of that buffer_head.
2410                                  */
2411                                 if (mpd->b_size == 0)
2412                                         mpd->b_state = bh->b_state & BH_FLAGS;
2413                         }
2414                         logical++;
2415                 } while ((bh = bh->b_this_page) != head);
2416         }
2417
2418         return 0;
2419 }
2420
2421 /*
2422  * This is a special get_blocks_t callback which is used by
2423  * ext4_da_write_begin().  It will either return mapped block or
2424  * reserve space for a single block.
2425  *
2426  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2427  * We also have b_blocknr = -1 and b_bdev initialized properly
2428  *
2429  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2430  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2431  * initialized properly.
2432  */
2433 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2434                                   struct buffer_head *bh_result, int create)
2435 {
2436         int ret = 0;
2437         sector_t invalid_block = ~((sector_t) 0xffff);
2438
2439         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2440                 invalid_block = ~0;
2441
2442         BUG_ON(create == 0);
2443         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2444
2445         /*
2446          * first, we need to know whether the block is allocated already
2447          * preallocated blocks are unmapped but should treated
2448          * the same as allocated blocks.
2449          */
2450         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2451         if ((ret == 0) && !buffer_delay(bh_result)) {
2452                 /* the block isn't (pre)allocated yet, let's reserve space */
2453                 /*
2454                  * XXX: __block_prepare_write() unmaps passed block,
2455                  * is it OK?
2456                  */
2457                 ret = ext4_da_reserve_space(inode, 1);
2458                 if (ret)
2459                         /* not enough space to reserve */
2460                         return ret;
2461
2462                 map_bh(bh_result, inode->i_sb, invalid_block);
2463                 set_buffer_new(bh_result);
2464                 set_buffer_delay(bh_result);
2465         } else if (ret > 0) {
2466                 bh_result->b_size = (ret << inode->i_blkbits);
2467                 if (buffer_unwritten(bh_result)) {
2468                         /* A delayed write to unwritten bh should
2469                          * be marked new and mapped.  Mapped ensures
2470                          * that we don't do get_block multiple times
2471                          * when we write to the same offset and new
2472                          * ensures that we do proper zero out for
2473                          * partial write.
2474                          */
2475                         set_buffer_new(bh_result);
2476                         set_buffer_mapped(bh_result);
2477                 }
2478                 ret = 0;
2479         }
2480
2481         return ret;
2482 }
2483
2484 /*
2485  * This function is used as a standard get_block_t calback function
2486  * when there is no desire to allocate any blocks.  It is used as a
2487  * callback function for block_prepare_write(), nobh_writepage(), and
2488  * block_write_full_page().  These functions should only try to map a
2489  * single block at a time.
2490  *
2491  * Since this function doesn't do block allocations even if the caller
2492  * requests it by passing in create=1, it is critically important that
2493  * any caller checks to make sure that any buffer heads are returned
2494  * by this function are either all already mapped or marked for
2495  * delayed allocation before calling nobh_writepage() or
2496  * block_write_full_page().  Otherwise, b_blocknr could be left
2497  * unitialized, and the page write functions will be taken by
2498  * surprise.
2499  */
2500 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2501                                    struct buffer_head *bh_result, int create)
2502 {
2503         int ret = 0;
2504         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2505
2506         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2507
2508         /*
2509          * we don't want to do block allocation in writepage
2510          * so call get_block_wrap with create = 0
2511          */
2512         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2513         if (ret > 0) {
2514                 bh_result->b_size = (ret << inode->i_blkbits);
2515                 ret = 0;
2516         }
2517         return ret;
2518 }
2519
2520 static int bget_one(handle_t *handle, struct buffer_head *bh)
2521 {
2522         get_bh(bh);
2523         return 0;
2524 }
2525
2526 static int bput_one(handle_t *handle, struct buffer_head *bh)
2527 {
2528         put_bh(bh);
2529         return 0;
2530 }
2531
2532 static int __ext4_journalled_writepage(struct page *page,
2533                                        struct writeback_control *wbc,
2534                                        unsigned int len)
2535 {
2536         struct address_space *mapping = page->mapping;
2537         struct inode *inode = mapping->host;
2538         struct buffer_head *page_bufs;
2539         handle_t *handle = NULL;
2540         int ret = 0;
2541         int err;
2542
2543         page_bufs = page_buffers(page);
2544         BUG_ON(!page_bufs);
2545         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2546         /* As soon as we unlock the page, it can go away, but we have
2547          * references to buffers so we are safe */
2548         unlock_page(page);
2549
2550         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2551         if (IS_ERR(handle)) {
2552                 ret = PTR_ERR(handle);
2553                 goto out;
2554         }
2555
2556         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2557                                 do_journal_get_write_access);
2558
2559         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2560                                 write_end_fn);
2561         if (ret == 0)
2562                 ret = err;
2563         err = ext4_journal_stop(handle);
2564         if (!ret)
2565                 ret = err;
2566
2567         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2568         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2569 out:
2570         return ret;
2571 }
2572
2573 /*
2574  * Note that we don't need to start a transaction unless we're journaling data
2575  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2576  * need to file the inode to the transaction's list in ordered mode because if
2577  * we are writing back data added by write(), the inode is already there and if
2578  * we are writing back data modified via mmap(), noone guarantees in which
2579  * transaction the data will hit the disk. In case we are journaling data, we
2580  * cannot start transaction directly because transaction start ranks above page
2581  * lock so we have to do some magic.
2582  *
2583  * This function can get called via...
2584  *   - ext4_da_writepages after taking page lock (have journal handle)
2585  *   - journal_submit_inode_data_buffers (no journal handle)
2586  *   - shrink_page_list via pdflush (no journal handle)
2587  *   - grab_page_cache when doing write_begin (have journal handle)
2588  *
2589  * We don't do any block allocation in this function. If we have page with
2590  * multiple blocks we need to write those buffer_heads that are mapped. This
2591  * is important for mmaped based write. So if we do with blocksize 1K
2592  * truncate(f, 1024);
2593  * a = mmap(f, 0, 4096);
2594  * a[0] = 'a';
2595  * truncate(f, 4096);
2596  * we have in the page first buffer_head mapped via page_mkwrite call back
2597  * but other bufer_heads would be unmapped but dirty(dirty done via the
2598  * do_wp_page). So writepage should write the first block. If we modify
2599  * the mmap area beyond 1024 we will again get a page_fault and the
2600  * page_mkwrite callback will do the block allocation and mark the
2601  * buffer_heads mapped.
2602  *
2603  * We redirty the page if we have any buffer_heads that is either delay or
2604  * unwritten in the page.
2605  *
2606  * We can get recursively called as show below.
2607  *
2608  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2609  *              ext4_writepage()
2610  *
2611  * But since we don't do any block allocation we should not deadlock.
2612  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2613  */
2614 static int ext4_writepage(struct page *page,
2615                           struct writeback_control *wbc)
2616 {
2617         int ret = 0;
2618         loff_t size;
2619         unsigned int len;
2620         struct buffer_head *page_bufs;
2621         struct inode *inode = page->mapping->host;
2622
2623         trace_ext4_writepage(inode, page);
2624         size = i_size_read(inode);
2625         if (page->index == size >> PAGE_CACHE_SHIFT)
2626                 len = size & ~PAGE_CACHE_MASK;
2627         else
2628                 len = PAGE_CACHE_SIZE;
2629
2630         if (page_has_buffers(page)) {
2631                 page_bufs = page_buffers(page);
2632                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2633                                         ext4_bh_delay_or_unwritten)) {
2634                         /*
2635                          * We don't want to do  block allocation
2636                          * So redirty the page and return
2637                          * We may reach here when we do a journal commit
2638                          * via journal_submit_inode_data_buffers.
2639                          * If we don't have mapping block we just ignore
2640                          * them. We can also reach here via shrink_page_list
2641                          */
2642                         redirty_page_for_writepage(wbc, page);
2643                         unlock_page(page);
2644                         return 0;
2645                 }
2646         } else {
2647                 /*
2648                  * The test for page_has_buffers() is subtle:
2649                  * We know the page is dirty but it lost buffers. That means
2650                  * that at some moment in time after write_begin()/write_end()
2651                  * has been called all buffers have been clean and thus they
2652                  * must have been written at least once. So they are all
2653                  * mapped and we can happily proceed with mapping them
2654                  * and writing the page.
2655                  *
2656                  * Try to initialize the buffer_heads and check whether
2657                  * all are mapped and non delay. We don't want to
2658                  * do block allocation here.
2659                  */
2660                 ret = block_prepare_write(page, 0, len,
2661                                           noalloc_get_block_write);
2662                 if (!ret) {
2663                         page_bufs = page_buffers(page);
2664                         /* check whether all are mapped and non delay */
2665                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2666                                                 ext4_bh_delay_or_unwritten)) {
2667                                 redirty_page_for_writepage(wbc, page);
2668                                 unlock_page(page);
2669                                 return 0;
2670                         }
2671                 } else {
2672                         /*
2673                          * We can't do block allocation here
2674                          * so just redity the page and unlock
2675                          * and return
2676                          */
2677                         redirty_page_for_writepage(wbc, page);
2678                         unlock_page(page);
2679                         return 0;
2680                 }
2681                 /* now mark the buffer_heads as dirty and uptodate */
2682                 block_commit_write(page, 0, len);
2683         }
2684
2685         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2686                 /*
2687                  * It's mmapped pagecache.  Add buffers and journal it.  There
2688                  * doesn't seem much point in redirtying the page here.
2689                  */
2690                 ClearPageChecked(page);
2691                 return __ext4_journalled_writepage(page, wbc, len);
2692         }
2693
2694         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2695                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2696         else
2697                 ret = block_write_full_page(page, noalloc_get_block_write,
2698                                             wbc);
2699
2700         return ret;
2701 }
2702
2703 /*
2704  * This is called via ext4_da_writepages() to
2705  * calulate the total number of credits to reserve to fit
2706  * a single extent allocation into a single transaction,
2707  * ext4_da_writpeages() will loop calling this before
2708  * the block allocation.
2709  */
2710
2711 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2712 {
2713         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2714
2715         /*
2716          * With non-extent format the journal credit needed to
2717          * insert nrblocks contiguous block is dependent on
2718          * number of contiguous block. So we will limit
2719          * number of contiguous block to a sane value
2720          */
2721         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2722             (max_blocks > EXT4_MAX_TRANS_DATA))
2723                 max_blocks = EXT4_MAX_TRANS_DATA;
2724
2725         return ext4_chunk_trans_blocks(inode, max_blocks);
2726 }
2727
2728 static int ext4_da_writepages(struct address_space *mapping,
2729                               struct writeback_control *wbc)
2730 {
2731         pgoff_t index;
2732         int range_whole = 0;
2733         handle_t *handle = NULL;
2734         struct mpage_da_data mpd;
2735         struct inode *inode = mapping->host;
2736         int no_nrwrite_index_update;
2737         int pages_written = 0;
2738         long pages_skipped;
2739         int range_cyclic, cycled = 1, io_done = 0;
2740         int needed_blocks, ret = 0, nr_to_writebump = 0;
2741         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2742
2743         trace_ext4_da_writepages(inode, wbc);
2744
2745         /*
2746          * No pages to write? This is mainly a kludge to avoid starting
2747          * a transaction for special inodes like journal inode on last iput()
2748          * because that could violate lock ordering on umount
2749          */
2750         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2751                 return 0;
2752
2753         /*
2754          * If the filesystem has aborted, it is read-only, so return
2755          * right away instead of dumping stack traces later on that
2756          * will obscure the real source of the problem.  We test
2757          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2758          * the latter could be true if the filesystem is mounted
2759          * read-only, and in that case, ext4_da_writepages should
2760          * *never* be called, so if that ever happens, we would want
2761          * the stack trace.
2762          */
2763         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2764                 return -EROFS;
2765
2766         /*
2767          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2768          * This make sure small files blocks are allocated in
2769          * single attempt. This ensure that small files
2770          * get less fragmented.
2771          */
2772         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2773                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2774                 wbc->nr_to_write = sbi->s_mb_stream_request;
2775         }
2776         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2777                 range_whole = 1;
2778
2779         range_cyclic = wbc->range_cyclic;
2780         if (wbc->range_cyclic) {
2781                 index = mapping->writeback_index;
2782                 if (index)
2783                         cycled = 0;
2784                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2785                 wbc->range_end  = LLONG_MAX;
2786                 wbc->range_cyclic = 0;
2787         } else
2788                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2789
2790         mpd.wbc = wbc;
2791         mpd.inode = mapping->host;
2792
2793         /*
2794          * we don't want write_cache_pages to update
2795          * nr_to_write and writeback_index
2796          */
2797         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2798         wbc->no_nrwrite_index_update = 1;
2799         pages_skipped = wbc->pages_skipped;
2800
2801 retry:
2802         while (!ret && wbc->nr_to_write > 0) {
2803
2804                 /*
2805                  * we  insert one extent at a time. So we need
2806                  * credit needed for single extent allocation.
2807                  * journalled mode is currently not supported
2808                  * by delalloc
2809                  */
2810                 BUG_ON(ext4_should_journal_data(inode));
2811                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2812
2813                 /* start a new transaction*/
2814                 handle = ext4_journal_start(inode, needed_blocks);
2815                 if (IS_ERR(handle)) {
2816                         ret = PTR_ERR(handle);
2817                         printk(KERN_CRIT "%s: jbd2_start: "
2818                                "%ld pages, ino %lu; err %d\n", __func__,
2819                                 wbc->nr_to_write, inode->i_ino, ret);
2820                         dump_stack();
2821                         goto out_writepages;
2822                 }
2823
2824                 /*
2825                  * Now call __mpage_da_writepage to find the next
2826                  * contiguous region of logical blocks that need
2827                  * blocks to be allocated by ext4.  We don't actually
2828                  * submit the blocks for I/O here, even though
2829                  * write_cache_pages thinks it will, and will set the
2830                  * pages as clean for write before calling
2831                  * __mpage_da_writepage().
2832                  */
2833                 mpd.b_size = 0;
2834                 mpd.b_state = 0;
2835                 mpd.b_blocknr = 0;
2836                 mpd.first_page = 0;
2837                 mpd.next_page = 0;
2838                 mpd.io_done = 0;
2839                 mpd.pages_written = 0;
2840                 mpd.retval = 0;
2841                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2842                                         &mpd);
2843                 /*
2844                  * If we have a contigous extent of pages and we
2845                  * haven't done the I/O yet, map the blocks and submit
2846                  * them for I/O.
2847                  */
2848                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2849                         if (mpage_da_map_blocks(&mpd) == 0)
2850                                 mpage_da_submit_io(&mpd);
2851                         mpd.io_done = 1;
2852                         ret = MPAGE_DA_EXTENT_TAIL;
2853                 }
2854                 wbc->nr_to_write -= mpd.pages_written;
2855
2856                 ext4_journal_stop(handle);
2857
2858                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2859                         /* commit the transaction which would
2860                          * free blocks released in the transaction
2861                          * and try again
2862                          */
2863                         jbd2_journal_force_commit_nested(sbi->s_journal);
2864                         wbc->pages_skipped = pages_skipped;
2865                         ret = 0;
2866                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2867                         /*
2868                          * got one extent now try with
2869                          * rest of the pages
2870                          */
2871                         pages_written += mpd.pages_written;
2872                         wbc->pages_skipped = pages_skipped;
2873                         ret = 0;
2874                         io_done = 1;
2875                 } else if (wbc->nr_to_write)
2876                         /*
2877                          * There is no more writeout needed
2878                          * or we requested for a noblocking writeout
2879                          * and we found the device congested
2880                          */
2881                         break;
2882         }
2883         if (!io_done && !cycled) {
2884                 cycled = 1;
2885                 index = 0;
2886                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2887                 wbc->range_end  = mapping->writeback_index - 1;
2888                 goto retry;
2889         }
2890         if (pages_skipped != wbc->pages_skipped)
2891                 printk(KERN_EMERG "This should not happen leaving %s "
2892                                 "with nr_to_write = %ld ret = %d\n",
2893                                 __func__, wbc->nr_to_write, ret);
2894
2895         /* Update index */
2896         index += pages_written;
2897         wbc->range_cyclic = range_cyclic;
2898         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2899                 /*
2900                  * set the writeback_index so that range_cyclic
2901                  * mode will write it back later
2902                  */
2903                 mapping->writeback_index = index;
2904
2905 out_writepages:
2906         if (!no_nrwrite_index_update)
2907                 wbc->no_nrwrite_index_update = 0;
2908         wbc->nr_to_write -= nr_to_writebump;
2909         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2910         return ret;
2911 }
2912
2913 #define FALL_BACK_TO_NONDELALLOC 1
2914 static int ext4_nonda_switch(struct super_block *sb)
2915 {
2916         s64 free_blocks, dirty_blocks;
2917         struct ext4_sb_info *sbi = EXT4_SB(sb);
2918
2919         /*
2920          * switch to non delalloc mode if we are running low
2921          * on free block. The free block accounting via percpu
2922          * counters can get slightly wrong with percpu_counter_batch getting
2923          * accumulated on each CPU without updating global counters
2924          * Delalloc need an accurate free block accounting. So switch
2925          * to non delalloc when we are near to error range.
2926          */
2927         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2928         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2929         if (2 * free_blocks < 3 * dirty_blocks ||
2930                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2931                 /*
2932                  * free block count is less that 150% of dirty blocks
2933                  * or free blocks is less that watermark
2934                  */
2935                 return 1;
2936         }
2937         return 0;
2938 }
2939
2940 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2941                                loff_t pos, unsigned len, unsigned flags,
2942                                struct page **pagep, void **fsdata)
2943 {
2944         int ret, retries = 0;
2945         struct page *page;
2946         pgoff_t index;
2947         unsigned from, to;
2948         struct inode *inode = mapping->host;
2949         handle_t *handle;
2950
2951         index = pos >> PAGE_CACHE_SHIFT;
2952         from = pos & (PAGE_CACHE_SIZE - 1);
2953         to = from + len;
2954
2955         if (ext4_nonda_switch(inode->i_sb)) {
2956                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2957                 return ext4_write_begin(file, mapping, pos,
2958                                         len, flags, pagep, fsdata);
2959         }
2960         *fsdata = (void *)0;
2961         trace_ext4_da_write_begin(inode, pos, len, flags);
2962 retry:
2963         /*
2964          * With delayed allocation, we don't log the i_disksize update
2965          * if there is delayed block allocation. But we still need
2966          * to journalling the i_disksize update if writes to the end
2967          * of file which has an already mapped buffer.
2968          */
2969         handle = ext4_journal_start(inode, 1);
2970         if (IS_ERR(handle)) {
2971                 ret = PTR_ERR(handle);
2972                 goto out;
2973         }
2974         /* We cannot recurse into the filesystem as the transaction is already
2975          * started */
2976         flags |= AOP_FLAG_NOFS;
2977
2978         page = grab_cache_page_write_begin(mapping, index, flags);
2979         if (!page) {
2980                 ext4_journal_stop(handle);
2981                 ret = -ENOMEM;
2982                 goto out;
2983         }
2984         *pagep = page;
2985
2986         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2987                                 ext4_da_get_block_prep);
2988         if (ret < 0) {
2989                 unlock_page(page);
2990                 ext4_journal_stop(handle);
2991                 page_cache_release(page);
2992                 /*
2993                  * block_write_begin may have instantiated a few blocks
2994                  * outside i_size.  Trim these off again. Don't need
2995                  * i_size_read because we hold i_mutex.
2996                  */
2997                 if (pos + len > inode->i_size)
2998                         ext4_truncate(inode);
2999         }
3000
3001         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3002                 goto retry;
3003 out:
3004         return ret;
3005 }
3006
3007 /*
3008  * Check if we should update i_disksize
3009  * when write to the end of file but not require block allocation
3010  */
3011 static int ext4_da_should_update_i_disksize(struct page *page,
3012                                             unsigned long offset)
3013 {
3014         struct buffer_head *bh;
3015         struct inode *inode = page->mapping->host;
3016         unsigned int idx;
3017         int i;
3018
3019         bh = page_buffers(page);
3020         idx = offset >> inode->i_blkbits;
3021
3022         for (i = 0; i < idx; i++)
3023                 bh = bh->b_this_page;
3024
3025         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3026                 return 0;
3027         return 1;
3028 }
3029
3030 static int ext4_da_write_end(struct file *file,
3031                              struct address_space *mapping,
3032                              loff_t pos, unsigned len, unsigned copied,
3033                              struct page *page, void *fsdata)
3034 {
3035         struct inode *inode = mapping->host;
3036         int ret = 0, ret2;
3037         handle_t *handle = ext4_journal_current_handle();
3038         loff_t new_i_size;
3039         unsigned long start, end;
3040         int write_mode = (int)(unsigned long)fsdata;
3041
3042         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3043                 if (ext4_should_order_data(inode)) {
3044                         return ext4_ordered_write_end(file, mapping, pos,
3045                                         len, copied, page, fsdata);
3046                 } else if (ext4_should_writeback_data(inode)) {
3047                         return ext4_writeback_write_end(file, mapping, pos,
3048                                         len, copied, page, fsdata);
3049                 } else {
3050                         BUG();
3051                 }
3052         }
3053
3054         trace_ext4_da_write_end(inode, pos, len, copied);
3055         start = pos & (PAGE_CACHE_SIZE - 1);
3056         end = start + copied - 1;
3057
3058         /*
3059          * generic_write_end() will run mark_inode_dirty() if i_size
3060          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3061          * into that.
3062          */
3063
3064         new_i_size = pos + copied;
3065         if (new_i_size > EXT4_I(inode)->i_disksize) {
3066                 if (ext4_da_should_update_i_disksize(page, end)) {
3067                         down_write(&EXT4_I(inode)->i_data_sem);
3068                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3069                                 /*
3070                                  * Updating i_disksize when extending file
3071                                  * without needing block allocation
3072                                  */
3073                                 if (ext4_should_order_data(inode))
3074                                         ret = ext4_jbd2_file_inode(handle,
3075                                                                    inode);
3076
3077                                 EXT4_I(inode)->i_disksize = new_i_size;
3078                         }
3079                         up_write(&EXT4_I(inode)->i_data_sem);
3080                         /* We need to mark inode dirty even if
3081                          * new_i_size is less that inode->i_size
3082                          * bu greater than i_disksize.(hint delalloc)
3083                          */
3084                         ext4_mark_inode_dirty(handle, inode);
3085                 }
3086         }
3087         ret2 = generic_write_end(file, mapping, pos, len, copied,
3088                                                         page, fsdata);
3089         copied = ret2;
3090         if (ret2 < 0)
3091                 ret = ret2;
3092         ret2 = ext4_journal_stop(handle);
3093         if (!ret)
3094                 ret = ret2;
3095
3096         return ret ? ret : copied;
3097 }
3098
3099 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3100 {
3101         /*
3102          * Drop reserved blocks
3103          */
3104         BUG_ON(!PageLocked(page));
3105         if (!page_has_buffers(page))
3106                 goto out;
3107
3108         ext4_da_page_release_reservation(page, offset);
3109
3110 out:
3111         ext4_invalidatepage(page, offset);
3112
3113         return;
3114 }
3115
3116 /*
3117  * Force all delayed allocation blocks to be allocated for a given inode.
3118  */
3119 int ext4_alloc_da_blocks(struct inode *inode)
3120 {
3121         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3122             !EXT4_I(inode)->i_reserved_meta_blocks)
3123                 return 0;
3124
3125         /*
3126          * We do something simple for now.  The filemap_flush() will
3127          * also start triggering a write of the data blocks, which is
3128          * not strictly speaking necessary (and for users of
3129          * laptop_mode, not even desirable).  However, to do otherwise
3130          * would require replicating code paths in:
3131          *
3132          * ext4_da_writepages() ->
3133          *    write_cache_pages() ---> (via passed in callback function)
3134          *        __mpage_da_writepage() -->
3135          *           mpage_add_bh_to_extent()
3136          *           mpage_da_map_blocks()
3137          *
3138          * The problem is that write_cache_pages(), located in
3139          * mm/page-writeback.c, marks pages clean in preparation for
3140          * doing I/O, which is not desirable if we're not planning on
3141          * doing I/O at all.
3142          *
3143          * We could call write_cache_pages(), and then redirty all of
3144          * the pages by calling redirty_page_for_writeback() but that
3145          * would be ugly in the extreme.  So instead we would need to
3146          * replicate parts of the code in the above functions,
3147          * simplifying them becuase we wouldn't actually intend to
3148          * write out the pages, but rather only collect contiguous
3149          * logical block extents, call the multi-block allocator, and
3150          * then update the buffer heads with the block allocations.
3151          *
3152          * For now, though, we'll cheat by calling filemap_flush(),
3153          * which will map the blocks, and start the I/O, but not
3154          * actually wait for the I/O to complete.
3155          */
3156         return filemap_flush(inode->i_mapping);
3157 }
3158
3159 /*
3160  * bmap() is special.  It gets used by applications such as lilo and by
3161  * the swapper to find the on-disk block of a specific piece of data.
3162  *
3163  * Naturally, this is dangerous if the block concerned is still in the
3164  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3165  * filesystem and enables swap, then they may get a nasty shock when the
3166  * data getting swapped to that swapfile suddenly gets overwritten by
3167  * the original zero's written out previously to the journal and
3168  * awaiting writeback in the kernel's buffer cache.
3169  *
3170  * So, if we see any bmap calls here on a modified, data-journaled file,
3171  * take extra steps to flush any blocks which might be in the cache.
3172  */
3173 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3174 {
3175         struct inode *inode = mapping->host;
3176         journal_t *journal;
3177         int err;
3178
3179         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3180                         test_opt(inode->i_sb, DELALLOC)) {
3181                 /*
3182                  * With delalloc we want to sync the file
3183                  * so that we can make sure we allocate
3184                  * blocks for file
3185                  */
3186                 filemap_write_and_wait(mapping);
3187         }
3188
3189         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3190                 /*
3191                  * This is a REALLY heavyweight approach, but the use of
3192                  * bmap on dirty files is expected to be extremely rare:
3193                  * only if we run lilo or swapon on a freshly made file
3194                  * do we expect this to happen.
3195                  *
3196                  * (bmap requires CAP_SYS_RAWIO so this does not
3197                  * represent an unprivileged user DOS attack --- we'd be
3198                  * in trouble if mortal users could trigger this path at
3199                  * will.)
3200                  *
3201                  * NB. EXT4_STATE_JDATA is not set on files other than
3202                  * regular files.  If somebody wants to bmap a directory
3203                  * or symlink and gets confused because the buffer
3204                  * hasn't yet been flushed to disk, they deserve
3205                  * everything they get.
3206                  */
3207
3208                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3209                 journal = EXT4_JOURNAL(inode);
3210                 jbd2_journal_lock_updates(journal);
3211                 err = jbd2_journal_flush(journal);
3212                 jbd2_journal_unlock_updates(journal);
3213
3214                 if (err)
3215                         return 0;
3216         }
3217
3218         return generic_block_bmap(mapping, block, ext4_get_block);
3219 }
3220
3221 static int ext4_readpage(struct file *file, struct page *page)
3222 {
3223         return mpage_readpage(page, ext4_get_block);
3224 }
3225
3226 static int
3227 ext4_readpages(struct file *file, struct address_space *mapping,
3228                 struct list_head *pages, unsigned nr_pages)
3229 {
3230         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3231 }
3232
3233 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3234 {
3235         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3236
3237         /*
3238          * If it's a full truncate we just forget about the pending dirtying
3239          */
3240         if (offset == 0)
3241                 ClearPageChecked(page);
3242
3243         if (journal)
3244                 jbd2_journal_invalidatepage(journal, page, offset);
3245         else
3246                 block_invalidatepage(page, offset);
3247 }
3248
3249 static int ext4_releasepage(struct page *page, gfp_t wait)
3250 {
3251         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3252
3253         WARN_ON(PageChecked(page));
3254         if (!page_has_buffers(page))
3255                 return 0;
3256         if (journal)
3257                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3258         else
3259                 return try_to_free_buffers(page);
3260 }
3261
3262 /*
3263  * If the O_DIRECT write will extend the file then add this inode to the
3264  * orphan list.  So recovery will truncate it back to the original size
3265  * if the machine crashes during the write.
3266  *
3267  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3268  * crashes then stale disk data _may_ be exposed inside the file. But current
3269  * VFS code falls back into buffered path in that case so we are safe.
3270  */
3271 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3272                               const struct iovec *iov, loff_t offset,
3273                               unsigned long nr_segs)
3274 {
3275         struct file *file = iocb->ki_filp;
3276         struct inode *inode = file->f_mapping->host;
3277         struct ext4_inode_info *ei = EXT4_I(inode);
3278         handle_t *handle;
3279         ssize_t ret;
3280         int orphan = 0;
3281         size_t count = iov_length(iov, nr_segs);
3282
3283         if (rw == WRITE) {
3284                 loff_t final_size = offset + count;
3285
3286                 if (final_size > inode->i_size) {
3287                         /* Credits for sb + inode write */
3288                         handle = ext4_journal_start(inode, 2);
3289                         if (IS_ERR(handle)) {
3290                                 ret = PTR_ERR(handle);
3291                                 goto out;
3292                         }
3293                         ret = ext4_orphan_add(handle, inode);
3294                         if (ret) {
3295                                 ext4_journal_stop(handle);
3296                                 goto out;
3297                         }
3298                         orphan = 1;
3299                         ei->i_disksize = inode->i_size;
3300                         ext4_journal_stop(handle);
3301                 }
3302         }
3303
3304         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3305                                  offset, nr_segs,
3306                                  ext4_get_block, NULL);
3307
3308         if (orphan) {
3309                 int err;
3310
3311                 /* Credits for sb + inode write */
3312                 handle = ext4_journal_start(inode, 2);
3313                 if (IS_ERR(handle)) {
3314                         /* This is really bad luck. We've written the data
3315                          * but cannot extend i_size. Bail out and pretend
3316                          * the write failed... */
3317                         ret = PTR_ERR(handle);
3318                         goto out;
3319                 }
3320                 if (inode->i_nlink)
3321                         ext4_orphan_del(handle, inode);
3322                 if (ret > 0) {
3323                         loff_t end = offset + ret;
3324                         if (end > inode->i_size) {
3325                                 ei->i_disksize = end;
3326                                 i_size_write(inode, end);
3327                                 /*
3328                                  * We're going to return a positive `ret'
3329                                  * here due to non-zero-length I/O, so there's
3330                                  * no way of reporting error returns from
3331                                  * ext4_mark_inode_dirty() to userspace.  So
3332                                  * ignore it.
3333                                  */
3334                                 ext4_mark_inode_dirty(handle, inode);
3335                         }
3336                 }
3337                 err = ext4_journal_stop(handle);
3338                 if (ret == 0)
3339                         ret = err;
3340         }
3341 out:
3342         return ret;
3343 }
3344
3345 /*
3346  * Pages can be marked dirty completely asynchronously from ext4's journalling
3347  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3348  * much here because ->set_page_dirty is called under VFS locks.  The page is
3349  * not necessarily locked.
3350  *
3351  * We cannot just dirty the page and leave attached buffers clean, because the
3352  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3353  * or jbddirty because all the journalling code will explode.
3354  *
3355  * So what we do is to mark the page "pending dirty" and next time writepage
3356  * is called, propagate that into the buffers appropriately.
3357  */
3358 static int ext4_journalled_set_page_dirty(struct page *page)
3359 {
3360         SetPageChecked(page);
3361         return __set_page_dirty_nobuffers(page);
3362 }
3363
3364 static const struct address_space_operations ext4_ordered_aops = {
3365         .readpage               = ext4_readpage,
3366         .readpages              = ext4_readpages,
3367         .writepage              = ext4_writepage,
3368         .sync_page              = block_sync_page,
3369         .write_begin            = ext4_write_begin,
3370         .write_end              = ext4_ordered_write_end,
3371         .bmap                   = ext4_bmap,
3372         .invalidatepage         = ext4_invalidatepage,
3373         .releasepage            = ext4_releasepage,
3374         .direct_IO              = ext4_direct_IO,
3375         .migratepage            = buffer_migrate_page,
3376         .is_partially_uptodate  = block_is_partially_uptodate,
3377 };
3378
3379 static const struct address_space_operations ext4_writeback_aops = {
3380         .readpage               = ext4_readpage,
3381         .readpages              = ext4_readpages,
3382         .writepage              = ext4_writepage,
3383         .sync_page              = block_sync_page,
3384         .write_begin            = ext4_write_begin,
3385         .write_end              = ext4_writeback_write_end,
3386         .bmap                   = ext4_bmap,
3387         .invalidatepage         = ext4_invalidatepage,
3388         .releasepage            = ext4_releasepage,
3389         .direct_IO              = ext4_direct_IO,
3390         .migratepage            = buffer_migrate_page,
3391         .is_partially_uptodate  = block_is_partially_uptodate,
3392 };
3393
3394 static const struct address_space_operations ext4_journalled_aops = {
3395         .readpage               = ext4_readpage,
3396         .readpages              = ext4_readpages,
3397         .writepage              = ext4_writepage,
3398         .sync_page              = block_sync_page,
3399         .write_begin            = ext4_write_begin,
3400         .write_end              = ext4_journalled_write_end,
3401         .set_page_dirty         = ext4_journalled_set_page_dirty,
3402         .bmap                   = ext4_bmap,
3403         .invalidatepage         = ext4_invalidatepage,
3404         .releasepage            = ext4_releasepage,
3405         .is_partially_uptodate  = block_is_partially_uptodate,
3406 };
3407
3408 static const struct address_space_operations ext4_da_aops = {
3409         .readpage               = ext4_readpage,
3410         .readpages              = ext4_readpages,
3411         .writepage              = ext4_writepage,
3412         .writepages             = ext4_da_writepages,
3413         .sync_page              = block_sync_page,
3414         .write_begin            = ext4_da_write_begin,
3415         .write_end              = ext4_da_write_end,
3416         .bmap                   = ext4_bmap,
3417         .invalidatepage         = ext4_da_invalidatepage,
3418         .releasepage            = ext4_releasepage,
3419         .direct_IO              = ext4_direct_IO,
3420         .migratepage            = buffer_migrate_page,
3421         .is_partially_uptodate  = block_is_partially_uptodate,
3422 };
3423
3424 void ext4_set_aops(struct inode *inode)
3425 {
3426         if (ext4_should_order_data(inode) &&
3427                 test_opt(inode->i_sb, DELALLOC))
3428                 inode->i_mapping->a_ops = &ext4_da_aops;
3429         else if (ext4_should_order_data(inode))
3430                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3431         else if (ext4_should_writeback_data(inode) &&
3432                  test_opt(inode->i_sb, DELALLOC))
3433                 inode->i_mapping->a_ops = &ext4_da_aops;
3434         else if (ext4_should_writeback_data(inode))
3435                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3436         else
3437                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3438 }
3439
3440 /*
3441  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3442  * up to the end of the block which corresponds to `from'.
3443  * This required during truncate. We need to physically zero the tail end
3444  * of that block so it doesn't yield old data if the file is later grown.
3445  */
3446 int ext4_block_truncate_page(handle_t *handle,
3447                 struct address_space *mapping, loff_t from)
3448 {
3449         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3450         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3451         unsigned blocksize, length, pos;
3452         ext4_lblk_t iblock;
3453         struct inode *inode = mapping->host;
3454         struct buffer_head *bh;
3455         struct page *page;
3456         int err = 0;
3457
3458         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3459                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3460         if (!page)
3461                 return -EINVAL;
3462
3463         blocksize = inode->i_sb->s_blocksize;
3464         length = blocksize - (offset & (blocksize - 1));
3465         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3466
3467         /*
3468          * For "nobh" option,  we can only work if we don't need to
3469          * read-in the page - otherwise we create buffers to do the IO.
3470          */
3471         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3472              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3473                 zero_user(page, offset, length);
3474                 set_page_dirty(page);
3475                 goto unlock;
3476         }
3477
3478         if (!page_has_buffers(page))
3479                 create_empty_buffers(page, blocksize, 0);
3480
3481         /* Find the buffer that contains "offset" */
3482         bh = page_buffers(page);
3483         pos = blocksize;
3484         while (offset >= pos) {
3485                 bh = bh->b_this_page;
3486                 iblock++;
3487                 pos += blocksize;
3488         }
3489
3490         err = 0;
3491         if (buffer_freed(bh)) {
3492                 BUFFER_TRACE(bh, "freed: skip");
3493                 goto unlock;
3494         }
3495
3496         if (!buffer_mapped(bh)) {
3497                 BUFFER_TRACE(bh, "unmapped");
3498                 ext4_get_block(inode, iblock, bh, 0);
3499                 /* unmapped? It's a hole - nothing to do */
3500                 if (!buffer_mapped(bh)) {
3501                         BUFFER_TRACE(bh, "still unmapped");
3502                         goto unlock;
3503                 }
3504         }
3505
3506         /* Ok, it's mapped. Make sure it's up-to-date */
3507         if (PageUptodate(page))
3508                 set_buffer_uptodate(bh);
3509
3510         if (!buffer_uptodate(bh)) {
3511                 err = -EIO;
3512                 ll_rw_block(READ, 1, &bh);
3513                 wait_on_buffer(bh);
3514                 /* Uhhuh. Read error. Complain and punt. */
3515                 if (!buffer_uptodate(bh))
3516                         goto unlock;
3517         }
3518
3519         if (ext4_should_journal_data(inode)) {
3520                 BUFFER_TRACE(bh, "get write access");
3521                 err = ext4_journal_get_write_access(handle, bh);
3522                 if (err)
3523                         goto unlock;
3524         }
3525
3526         zero_user(page, offset, length);
3527
3528         BUFFER_TRACE(bh, "zeroed end of block");
3529
3530         err = 0;
3531         if (ext4_should_journal_data(inode)) {
3532                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3533         } else {
3534                 if (ext4_should_order_data(inode))
3535                         err = ext4_jbd2_file_inode(handle, inode);
3536                 mark_buffer_dirty(bh);
3537         }
3538
3539 unlock:
3540         unlock_page(page);
3541         page_cache_release(page);
3542         return err;
3543 }
3544
3545 /*
3546  * Probably it should be a library function... search for first non-zero word
3547  * or memcmp with zero_page, whatever is better for particular architecture.
3548  * Linus?
3549  */
3550 static inline int all_zeroes(__le32 *p, __le32 *q)
3551 {
3552         while (p < q)
3553                 if (*p++)
3554                         return 0;
3555         return 1;
3556 }
3557
3558 /**
3559  *      ext4_find_shared - find the indirect blocks for partial truncation.
3560  *      @inode:   inode in question
3561  *      @depth:   depth of the affected branch
3562  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3563  *      @chain:   place to store the pointers to partial indirect blocks
3564  *      @top:     place to the (detached) top of branch
3565  *
3566  *      This is a helper function used by ext4_truncate().
3567  *
3568  *      When we do truncate() we may have to clean the ends of several
3569  *      indirect blocks but leave the blocks themselves alive. Block is
3570  *      partially truncated if some data below the new i_size is refered
3571  *      from it (and it is on the path to the first completely truncated
3572  *      data block, indeed).  We have to free the top of that path along
3573  *      with everything to the right of the path. Since no allocation
3574  *      past the truncation point is possible until ext4_truncate()
3575  *      finishes, we may safely do the latter, but top of branch may
3576  *      require special attention - pageout below the truncation point
3577  *      might try to populate it.
3578  *
3579  *      We atomically detach the top of branch from the tree, store the
3580  *      block number of its root in *@top, pointers to buffer_heads of
3581  *      partially truncated blocks - in @chain[].bh and pointers to
3582  *      their last elements that should not be removed - in
3583  *      @chain[].p. Return value is the pointer to last filled element
3584  *      of @chain.
3585  *
3586  *      The work left to caller to do the actual freeing of subtrees:
3587  *              a) free the subtree starting from *@top
3588  *              b) free the subtrees whose roots are stored in
3589  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3590  *              c) free the subtrees growing from the inode past the @chain[0].
3591  *                      (no partially truncated stuff there).  */
3592
3593 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3594                                   ext4_lblk_t offsets[4], Indirect chain[4],
3595                                   __le32 *top)
3596 {
3597         Indirect *partial, *p;
3598         int k, err;
3599
3600         *top = 0;
3601         /* Make k index the deepest non-null offest + 1 */
3602         for (k = depth; k > 1 && !offsets[k-1]; k--)
3603                 ;
3604         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3605         /* Writer: pointers */
3606         if (!partial)
3607                 partial = chain + k-1;
3608         /*
3609          * If the branch acquired continuation since we've looked at it -
3610          * fine, it should all survive and (new) top doesn't belong to us.
3611          */
3612         if (!partial->key && *partial->p)
3613                 /* Writer: end */
3614                 goto no_top;
3615         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3616                 ;
3617         /*
3618          * OK, we've found the last block that must survive. The rest of our
3619          * branch should be detached before unlocking. However, if that rest
3620          * of branch is all ours and does not grow immediately from the inode
3621          * it's easier to cheat and just decrement partial->p.
3622          */
3623         if (p == chain + k - 1 && p > chain) {
3624                 p->p--;
3625         } else {
3626                 *top = *p->p;
3627                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3628 #if 0
3629                 *p->p = 0;
3630 #endif
3631         }
3632         /* Writer: end */
3633
3634         while (partial > p) {
3635                 brelse(partial->bh);
3636                 partial--;
3637         }
3638 no_top:
3639         return partial;
3640 }
3641
3642 /*
3643  * Zero a number of block pointers in either an inode or an indirect block.
3644  * If we restart the transaction we must again get write access to the
3645  * indirect block for further modification.
3646  *
3647  * We release `count' blocks on disk, but (last - first) may be greater
3648  * than `count' because there can be holes in there.
3649  */
3650 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3651                               struct buffer_head *bh,
3652                               ext4_fsblk_t block_to_free,
3653                               unsigned long count, __le32 *first,
3654                               __le32 *last)
3655 {
3656         __le32 *p;
3657         if (try_to_extend_transaction(handle, inode)) {
3658                 if (bh) {
3659                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3660                         ext4_handle_dirty_metadata(handle, inode, bh);
3661                 }
3662                 ext4_mark_inode_dirty(handle, inode);
3663                 ext4_journal_test_restart(handle, inode);
3664                 if (bh) {
3665                         BUFFER_TRACE(bh, "retaking write access");
3666                         ext4_journal_get_write_access(handle, bh);
3667                 }
3668         }
3669
3670         /*
3671          * Any buffers which are on the journal will be in memory. We
3672          * find them on the hash table so jbd2_journal_revoke() will
3673          * run jbd2_journal_forget() on them.  We've already detached
3674          * each block from the file, so bforget() in
3675          * jbd2_journal_forget() should be safe.
3676          *
3677          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3678          */
3679         for (p = first; p < last; p++) {
3680                 u32 nr = le32_to_cpu(*p);
3681                 if (nr) {
3682                         struct buffer_head *tbh;
3683
3684                         *p = 0;
3685                         tbh = sb_find_get_block(inode->i_sb, nr);
3686                         ext4_forget(handle, 0, inode, tbh, nr);
3687                 }
3688         }
3689
3690         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3691 }
3692
3693 /**
3694  * ext4_free_data - free a list of data blocks
3695  * @handle:     handle for this transaction
3696  * @inode:      inode we are dealing with
3697  * @this_bh:    indirect buffer_head which contains *@first and *@last
3698  * @first:      array of block numbers
3699  * @last:       points immediately past the end of array
3700  *
3701  * We are freeing all blocks refered from that array (numbers are stored as
3702  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3703  *
3704  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3705  * blocks are contiguous then releasing them at one time will only affect one
3706  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3707  * actually use a lot of journal space.
3708  *
3709  * @this_bh will be %NULL if @first and @last point into the inode's direct
3710  * block pointers.
3711  */
3712 static void ext4_free_data(handle_t *handle, struct inode *inode,
3713                            struct buffer_head *this_bh,
3714                            __le32 *first, __le32 *last)
3715 {
3716         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3717         unsigned long count = 0;            /* Number of blocks in the run */
3718         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3719                                                corresponding to
3720                                                block_to_free */
3721         ext4_fsblk_t nr;                    /* Current block # */
3722         __le32 *p;                          /* Pointer into inode/ind
3723                                                for current block */
3724         int err;
3725
3726         if (this_bh) {                          /* For indirect block */
3727                 BUFFER_TRACE(this_bh, "get_write_access");
3728                 err = ext4_journal_get_write_access(handle, this_bh);
3729                 /* Important: if we can't update the indirect pointers
3730                  * to the blocks, we can't free them. */
3731                 if (err)
3732                         return;
3733         }
3734
3735         for (p = first; p < last; p++) {
3736                 nr = le32_to_cpu(*p);
3737                 if (nr) {
3738                         /* accumulate blocks to free if they're contiguous */
3739                         if (count == 0) {
3740                                 block_to_free = nr;
3741                                 block_to_free_p = p;
3742                                 count = 1;
3743                         } else if (nr == block_to_free + count) {
3744                                 count++;
3745                         } else {
3746                                 ext4_clear_blocks(handle, inode, this_bh,
3747                                                   block_to_free,
3748                                                   count, block_to_free_p, p);
3749                                 block_to_free = nr;
3750                                 block_to_free_p = p;
3751                                 count = 1;
3752                         }
3753                 }
3754         }
3755
3756         if (count > 0)
3757                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3758                                   count, block_to_free_p, p);
3759
3760         if (this_bh) {
3761                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3762
3763                 /*
3764                  * The buffer head should have an attached journal head at this
3765                  * point. However, if the data is corrupted and an indirect
3766                  * block pointed to itself, it would have been detached when
3767                  * the block was cleared. Check for this instead of OOPSing.
3768                  */
3769                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3770                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3771                 else
3772                         ext4_error(inode->i_sb, __func__,
3773                                    "circular indirect block detected, "
3774                                    "inode=%lu, block=%llu",
3775                                    inode->i_ino,
3776                                    (unsigned long long) this_bh->b_blocknr);
3777         }
3778 }
3779
3780 /**
3781  *      ext4_free_branches - free an array of branches
3782  *      @handle: JBD handle for this transaction
3783  *      @inode: inode we are dealing with
3784  *      @parent_bh: the buffer_head which contains *@first and *@last
3785  *      @first: array of block numbers
3786  *      @last:  pointer immediately past the end of array
3787  *      @depth: depth of the branches to free
3788  *
3789  *      We are freeing all blocks refered from these branches (numbers are
3790  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3791  *      appropriately.
3792  */
3793 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3794                                struct buffer_head *parent_bh,
3795                                __le32 *first, __le32 *last, int depth)
3796 {
3797         ext4_fsblk_t nr;
3798         __le32 *p;
3799
3800         if (ext4_handle_is_aborted(handle))
3801                 return;
3802
3803         if (depth--) {
3804                 struct buffer_head *bh;
3805                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3806                 p = last;
3807                 while (--p >= first) {
3808                         nr = le32_to_cpu(*p);
3809                         if (!nr)
3810                                 continue;               /* A hole */
3811
3812                         /* Go read the buffer for the next level down */
3813                         bh = sb_bread(inode->i_sb, nr);
3814
3815                         /*
3816                          * A read failure? Report error and clear slot
3817                          * (should be rare).
3818                          */
3819                         if (!bh) {
3820                                 ext4_error(inode->i_sb, "ext4_free_branches",
3821                                            "Read failure, inode=%lu, block=%llu",
3822                                            inode->i_ino, nr);
3823                                 continue;
3824                         }
3825
3826                         /* This zaps the entire block.  Bottom up. */
3827                         BUFFER_TRACE(bh, "free child branches");
3828                         ext4_free_branches(handle, inode, bh,
3829                                         (__le32 *) bh->b_data,
3830                                         (__le32 *) bh->b_data + addr_per_block,
3831                                         depth);
3832
3833                         /*
3834                          * We've probably journalled the indirect block several
3835                          * times during the truncate.  But it's no longer
3836                          * needed and we now drop it from the transaction via
3837                          * jbd2_journal_revoke().
3838                          *
3839                          * That's easy if it's exclusively part of this
3840                          * transaction.  But if it's part of the committing
3841                          * transaction then jbd2_journal_forget() will simply
3842                          * brelse() it.  That means that if the underlying
3843                          * block is reallocated in ext4_get_block(),
3844                          * unmap_underlying_metadata() will find this block
3845                          * and will try to get rid of it.  damn, damn.
3846                          *
3847                          * If this block has already been committed to the
3848                          * journal, a revoke record will be written.  And
3849                          * revoke records must be emitted *before* clearing
3850                          * this block's bit in the bitmaps.
3851                          */
3852                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3853
3854                         /*
3855                          * Everything below this this pointer has been
3856                          * released.  Now let this top-of-subtree go.
3857                          *
3858                          * We want the freeing of this indirect block to be
3859                          * atomic in the journal with the updating of the
3860                          * bitmap block which owns it.  So make some room in
3861                          * the journal.
3862                          *
3863                          * We zero the parent pointer *after* freeing its
3864                          * pointee in the bitmaps, so if extend_transaction()
3865                          * for some reason fails to put the bitmap changes and
3866                          * the release into the same transaction, recovery
3867                          * will merely complain about releasing a free block,
3868                          * rather than leaking blocks.
3869                          */
3870                         if (ext4_handle_is_aborted(handle))
3871                                 return;
3872                         if (try_to_extend_transaction(handle, inode)) {
3873                                 ext4_mark_inode_dirty(handle, inode);
3874                                 ext4_journal_test_restart(handle, inode);
3875                         }
3876
3877                         ext4_free_blocks(handle, inode, nr, 1, 1);
3878
3879                         if (parent_bh) {
3880                                 /*
3881                                  * The block which we have just freed is
3882                                  * pointed to by an indirect block: journal it
3883                                  */
3884                                 BUFFER_TRACE(parent_bh, "get_write_access");
3885                                 if (!ext4_journal_get_write_access(handle,
3886                                                                    parent_bh)){
3887                                         *p = 0;
3888                                         BUFFER_TRACE(parent_bh,
3889                                         "call ext4_handle_dirty_metadata");
3890                                         ext4_handle_dirty_metadata(handle,
3891                                                                    inode,
3892                                                                    parent_bh);
3893                                 }
3894                         }
3895                 }
3896         } else {
3897                 /* We have reached the bottom of the tree. */
3898                 BUFFER_TRACE(parent_bh, "free data blocks");
3899                 ext4_free_data(handle, inode, parent_bh, first, last);
3900         }
3901 }
3902
3903 int ext4_can_truncate(struct inode *inode)
3904 {
3905         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3906                 return 0;
3907         if (S_ISREG(inode->i_mode))
3908                 return 1;
3909         if (S_ISDIR(inode->i_mode))
3910                 return 1;
3911         if (S_ISLNK(inode->i_mode))
3912                 return !ext4_inode_is_fast_symlink(inode);
3913         return 0;
3914 }
3915
3916 /*
3917  * ext4_truncate()
3918  *
3919  * We block out ext4_get_block() block instantiations across the entire
3920  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3921  * simultaneously on behalf of the same inode.
3922  *
3923  * As we work through the truncate and commmit bits of it to the journal there
3924  * is one core, guiding principle: the file's tree must always be consistent on
3925  * disk.  We must be able to restart the truncate after a crash.
3926  *
3927  * The file's tree may be transiently inconsistent in memory (although it
3928  * probably isn't), but whenever we close off and commit a journal transaction,
3929  * the contents of (the filesystem + the journal) must be consistent and
3930  * restartable.  It's pretty simple, really: bottom up, right to left (although
3931  * left-to-right works OK too).
3932  *
3933  * Note that at recovery time, journal replay occurs *before* the restart of
3934  * truncate against the orphan inode list.
3935  *
3936  * The committed inode has the new, desired i_size (which is the same as
3937  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3938  * that this inode's truncate did not complete and it will again call
3939  * ext4_truncate() to have another go.  So there will be instantiated blocks
3940  * to the right of the truncation point in a crashed ext4 filesystem.  But
3941  * that's fine - as long as they are linked from the inode, the post-crash
3942  * ext4_truncate() run will find them and release them.
3943  */
3944 void ext4_truncate(struct inode *inode)
3945 {
3946         handle_t *handle;
3947         struct ext4_inode_info *ei = EXT4_I(inode);
3948         __le32 *i_data = ei->i_data;
3949         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3950         struct address_space *mapping = inode->i_mapping;
3951         ext4_lblk_t offsets[4];
3952         Indirect chain[4];
3953         Indirect *partial;
3954         __le32 nr = 0;
3955         int n;
3956         ext4_lblk_t last_block;
3957         unsigned blocksize = inode->i_sb->s_blocksize;
3958
3959         if (!ext4_can_truncate(inode))
3960                 return;
3961
3962         if (ei->i_disksize && inode->i_size == 0 &&
3963             !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3964                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3965
3966         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3967                 ext4_ext_truncate(inode);
3968                 return;
3969         }
3970
3971         handle = start_transaction(inode);
3972         if (IS_ERR(handle))
3973                 return;         /* AKPM: return what? */
3974
3975         last_block = (inode->i_size + blocksize-1)
3976                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3977
3978         if (inode->i_size & (blocksize - 1))
3979                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3980                         goto out_stop;
3981
3982         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3983         if (n == 0)
3984                 goto out_stop;  /* error */
3985
3986         /*
3987          * OK.  This truncate is going to happen.  We add the inode to the
3988          * orphan list, so that if this truncate spans multiple transactions,
3989          * and we crash, we will resume the truncate when the filesystem
3990          * recovers.  It also marks the inode dirty, to catch the new size.
3991          *
3992          * Implication: the file must always be in a sane, consistent
3993          * truncatable state while each transaction commits.
3994          */
3995         if (ext4_orphan_add(handle, inode))
3996                 goto out_stop;
3997
3998         /*
3999          * From here we block out all ext4_get_block() callers who want to
4000          * modify the block allocation tree.
4001          */
4002         down_write(&ei->i_data_sem);
4003
4004         ext4_discard_preallocations(inode);
4005
4006         /*
4007          * The orphan list entry will now protect us from any crash which
4008          * occurs before the truncate completes, so it is now safe to propagate
4009          * the new, shorter inode size (held for now in i_size) into the
4010          * on-disk inode. We do this via i_disksize, which is the value which
4011          * ext4 *really* writes onto the disk inode.
4012          */
4013         ei->i_disksize = inode->i_size;
4014
4015         if (n == 1) {           /* direct blocks */
4016                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4017                                i_data + EXT4_NDIR_BLOCKS);
4018                 goto do_indirects;
4019         }
4020
4021         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4022         /* Kill the top of shared branch (not detached) */
4023         if (nr) {
4024                 if (partial == chain) {
4025                         /* Shared branch grows from the inode */
4026                         ext4_free_branches(handle, inode, NULL,
4027                                            &nr, &nr+1, (chain+n-1) - partial);
4028                         *partial->p = 0;
4029                         /*
4030                          * We mark the inode dirty prior to restart,
4031                          * and prior to stop.  No need for it here.
4032                          */
4033                 } else {
4034                         /* Shared branch grows from an indirect block */
4035                         BUFFER_TRACE(partial->bh, "get_write_access");
4036                         ext4_free_branches(handle, inode, partial->bh,
4037                                         partial->p,
4038                                         partial->p+1, (chain+n-1) - partial);
4039                 }
4040         }
4041         /* Clear the ends of indirect blocks on the shared branch */
4042         while (partial > chain) {
4043                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4044                                    (__le32*)partial->bh->b_data+addr_per_block,
4045                                    (chain+n-1) - partial);
4046                 BUFFER_TRACE(partial->bh, "call brelse");
4047                 brelse(partial->bh);
4048                 partial--;
4049         }
4050 do_indirects:
4051         /* Kill the remaining (whole) subtrees */
4052         switch (offsets[0]) {
4053         default:
4054                 nr = i_data[EXT4_IND_BLOCK];
4055                 if (nr) {
4056                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4057                         i_data[EXT4_IND_BLOCK] = 0;
4058                 }
4059         case EXT4_IND_BLOCK:
4060                 nr = i_data[EXT4_DIND_BLOCK];
4061                 if (nr) {
4062                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4063                         i_data[EXT4_DIND_BLOCK] = 0;
4064                 }
4065         case EXT4_DIND_BLOCK:
4066                 nr = i_data[EXT4_TIND_BLOCK];
4067                 if (nr) {
4068                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4069                         i_data[EXT4_TIND_BLOCK] = 0;
4070                 }
4071         case EXT4_TIND_BLOCK:
4072                 ;
4073         }
4074
4075         up_write(&ei->i_data_sem);
4076         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4077         ext4_mark_inode_dirty(handle, inode);
4078
4079         /*
4080          * In a multi-transaction truncate, we only make the final transaction
4081          * synchronous
4082          */
4083         if (IS_SYNC(inode))
4084                 ext4_handle_sync(handle);
4085 out_stop:
4086         /*
4087          * If this was a simple ftruncate(), and the file will remain alive
4088          * then we need to clear up the orphan record which we created above.
4089          * However, if this was a real unlink then we were called by
4090          * ext4_delete_inode(), and we allow that function to clean up the
4091          * orphan info for us.
4092          */
4093         if (inode->i_nlink)
4094                 ext4_orphan_del(handle, inode);
4095
4096         ext4_journal_stop(handle);
4097 }
4098
4099 /*
4100  * ext4_get_inode_loc returns with an extra refcount against the inode's
4101  * underlying buffer_head on success. If 'in_mem' is true, we have all
4102  * data in memory that is needed to recreate the on-disk version of this
4103  * inode.
4104  */
4105 static int __ext4_get_inode_loc(struct inode *inode,
4106                                 struct ext4_iloc *iloc, int in_mem)
4107 {
4108         struct ext4_group_desc  *gdp;
4109         struct buffer_head      *bh;
4110         struct super_block      *sb = inode->i_sb;
4111         ext4_fsblk_t            block;
4112         int                     inodes_per_block, inode_offset;
4113
4114         iloc->bh = NULL;
4115         if (!ext4_valid_inum(sb, inode->i_ino))
4116                 return -EIO;
4117
4118         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4119         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4120         if (!gdp)
4121                 return -EIO;
4122
4123         /*
4124          * Figure out the offset within the block group inode table
4125          */
4126         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4127         inode_offset = ((inode->i_ino - 1) %
4128                         EXT4_INODES_PER_GROUP(sb));
4129         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4130         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4131
4132         bh = sb_getblk(sb, block);
4133         if (!bh) {
4134                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4135                            "inode block - inode=%lu, block=%llu",
4136                            inode->i_ino, block);
4137                 return -EIO;
4138         }
4139         if (!buffer_uptodate(bh)) {
4140                 lock_buffer(bh);
4141
4142                 /*
4143                  * If the buffer has the write error flag, we have failed
4144                  * to write out another inode in the same block.  In this
4145                  * case, we don't have to read the block because we may
4146                  * read the old inode data successfully.
4147                  */
4148                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4149                         set_buffer_uptodate(bh);
4150
4151                 if (buffer_uptodate(bh)) {
4152                         /* someone brought it uptodate while we waited */
4153                         unlock_buffer(bh);
4154                         goto has_buffer;
4155                 }
4156
4157                 /*
4158                  * If we have all information of the inode in memory and this
4159                  * is the only valid inode in the block, we need not read the
4160                  * block.
4161                  */
4162                 if (in_mem) {
4163                         struct buffer_head *bitmap_bh;
4164                         int i, start;
4165
4166                         start = inode_offset & ~(inodes_per_block - 1);
4167
4168                         /* Is the inode bitmap in cache? */
4169                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4170                         if (!bitmap_bh)
4171                                 goto make_io;
4172
4173                         /*
4174                          * If the inode bitmap isn't in cache then the
4175                          * optimisation may end up performing two reads instead
4176                          * of one, so skip it.
4177                          */
4178                         if (!buffer_uptodate(bitmap_bh)) {
4179                                 brelse(bitmap_bh);
4180                                 goto make_io;
4181                         }
4182                         for (i = start; i < start + inodes_per_block; i++) {
4183                                 if (i == inode_offset)
4184                                         continue;
4185                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4186                                         break;
4187                         }
4188                         brelse(bitmap_bh);
4189                         if (i == start + inodes_per_block) {
4190                                 /* all other inodes are free, so skip I/O */
4191                                 memset(bh->b_data, 0, bh->b_size);
4192                                 set_buffer_uptodate(bh);
4193                                 unlock_buffer(bh);
4194                                 goto has_buffer;
4195                         }
4196                 }
4197
4198 make_io:
4199                 /*
4200                  * If we need to do any I/O, try to pre-readahead extra
4201                  * blocks from the inode table.
4202                  */
4203                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4204                         ext4_fsblk_t b, end, table;
4205                         unsigned num;
4206
4207                         table = ext4_inode_table(sb, gdp);
4208                         /* s_inode_readahead_blks is always a power of 2 */
4209                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4210                         if (table > b)
4211                                 b = table;
4212                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4213                         num = EXT4_INODES_PER_GROUP(sb);
4214                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4215                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4216                                 num -= ext4_itable_unused_count(sb, gdp);
4217                         table += num / inodes_per_block;
4218                         if (end > table)
4219                                 end = table;
4220                         while (b <= end)
4221                                 sb_breadahead(sb, b++);
4222                 }
4223
4224                 /*
4225                  * There are other valid inodes in the buffer, this inode
4226                  * has in-inode xattrs, or we don't have this inode in memory.
4227                  * Read the block from disk.
4228                  */
4229                 get_bh(bh);
4230                 bh->b_end_io = end_buffer_read_sync;
4231                 submit_bh(READ_META, bh);
4232                 wait_on_buffer(bh);
4233                 if (!buffer_uptodate(bh)) {
4234                         ext4_error(sb, __func__,
4235                                    "unable to read inode block - inode=%lu, "
4236                                    "block=%llu", inode->i_ino, block);
4237                         brelse(bh);
4238                         return -EIO;
4239                 }
4240         }
4241 has_buffer:
4242         iloc->bh = bh;
4243         return 0;
4244 }
4245
4246 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4247 {
4248         /* We have all inode data except xattrs in memory here. */
4249         return __ext4_get_inode_loc(inode, iloc,
4250                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4251 }
4252
4253 void ext4_set_inode_flags(struct inode *inode)
4254 {
4255         unsigned int flags = EXT4_I(inode)->i_flags;
4256
4257         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4258         if (flags & EXT4_SYNC_FL)
4259                 inode->i_flags |= S_SYNC;
4260         if (flags & EXT4_APPEND_FL)
4261                 inode->i_flags |= S_APPEND;
4262         if (flags & EXT4_IMMUTABLE_FL)
4263                 inode->i_flags |= S_IMMUTABLE;
4264         if (flags & EXT4_NOATIME_FL)
4265                 inode->i_flags |= S_NOATIME;
4266         if (flags & EXT4_DIRSYNC_FL)
4267                 inode->i_flags |= S_DIRSYNC;
4268 }
4269
4270 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4271 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4272 {
4273         unsigned int flags = ei->vfs_inode.i_flags;
4274
4275         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4276                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4277         if (flags & S_SYNC)
4278                 ei->i_flags |= EXT4_SYNC_FL;
4279         if (flags & S_APPEND)
4280                 ei->i_flags |= EXT4_APPEND_FL;
4281         if (flags & S_IMMUTABLE)
4282                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4283         if (flags & S_NOATIME)
4284                 ei->i_flags |= EXT4_NOATIME_FL;
4285         if (flags & S_DIRSYNC)
4286                 ei->i_flags |= EXT4_DIRSYNC_FL;
4287 }
4288
4289 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4290                                   struct ext4_inode_info *ei)
4291 {
4292         blkcnt_t i_blocks ;
4293         struct inode *inode = &(ei->vfs_inode);
4294         struct super_block *sb = inode->i_sb;
4295
4296         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4297                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4298                 /* we are using combined 48 bit field */
4299                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4300                                         le32_to_cpu(raw_inode->i_blocks_lo);
4301                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4302                         /* i_blocks represent file system block size */
4303                         return i_blocks  << (inode->i_blkbits - 9);
4304                 } else {
4305                         return i_blocks;
4306                 }
4307         } else {
4308                 return le32_to_cpu(raw_inode->i_blocks_lo);
4309         }
4310 }
4311
4312 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4313 {
4314         struct ext4_iloc iloc;
4315         struct ext4_inode *raw_inode;
4316         struct ext4_inode_info *ei;
4317         struct buffer_head *bh;
4318         struct inode *inode;
4319         long ret;
4320         int block;
4321
4322         inode = iget_locked(sb, ino);
4323         if (!inode)
4324                 return ERR_PTR(-ENOMEM);
4325         if (!(inode->i_state & I_NEW))
4326                 return inode;
4327
4328         ei = EXT4_I(inode);
4329
4330         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4331         if (ret < 0)
4332                 goto bad_inode;
4333         bh = iloc.bh;
4334         raw_inode = ext4_raw_inode(&iloc);
4335         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4336         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4337         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4338         if (!(test_opt(inode->i_sb, NO_UID32))) {
4339                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4340                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4341         }
4342         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4343
4344         ei->i_state = 0;
4345         ei->i_dir_start_lookup = 0;
4346         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4347         /* We now have enough fields to check if the inode was active or not.
4348          * This is needed because nfsd might try to access dead inodes
4349          * the test is that same one that e2fsck uses
4350          * NeilBrown 1999oct15
4351          */
4352         if (inode->i_nlink == 0) {
4353                 if (inode->i_mode == 0 ||
4354                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4355                         /* this inode is deleted */
4356                         brelse(bh);
4357                         ret = -ESTALE;
4358                         goto bad_inode;
4359                 }
4360                 /* The only unlinked inodes we let through here have
4361                  * valid i_mode and are being read by the orphan
4362                  * recovery code: that's fine, we're about to complete
4363                  * the process of deleting those. */
4364         }
4365         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4366         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4367         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4368         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4369                 ei->i_file_acl |=
4370                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4371         inode->i_size = ext4_isize(raw_inode);
4372         ei->i_disksize = inode->i_size;
4373         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4374         ei->i_block_group = iloc.block_group;
4375         ei->i_last_alloc_group = ~0;
4376         /*
4377          * NOTE! The in-memory inode i_data array is in little-endian order
4378          * even on big-endian machines: we do NOT byteswap the block numbers!
4379          */
4380         for (block = 0; block < EXT4_N_BLOCKS; block++)
4381                 ei->i_data[block] = raw_inode->i_block[block];
4382         INIT_LIST_HEAD(&ei->i_orphan);
4383
4384         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4385                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4386                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4387                     EXT4_INODE_SIZE(inode->i_sb)) {
4388                         brelse(bh);
4389                         ret = -EIO;
4390                         goto bad_inode;
4391                 }
4392                 if (ei->i_extra_isize == 0) {
4393                         /* The extra space is currently unused. Use it. */
4394                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4395                                             EXT4_GOOD_OLD_INODE_SIZE;
4396                 } else {
4397                         __le32 *magic = (void *)raw_inode +
4398                                         EXT4_GOOD_OLD_INODE_SIZE +
4399                                         ei->i_extra_isize;
4400                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4401                                 ei->i_state |= EXT4_STATE_XATTR;
4402                 }
4403         } else
4404                 ei->i_extra_isize = 0;
4405
4406         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4407         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4408         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4409         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4410
4411         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4412         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4413                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4414                         inode->i_version |=
4415                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4416         }
4417
4418         ret = 0;
4419         if (ei->i_file_acl &&
4420             ((ei->i_file_acl <
4421               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4422                EXT4_SB(sb)->s_gdb_count)) ||
4423              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4424                 ext4_error(sb, __func__,
4425                            "bad extended attribute block %llu in inode #%lu",
4426                            ei->i_file_acl, inode->i_ino);
4427                 ret = -EIO;
4428                 goto bad_inode;
4429         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4430                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4431                     (S_ISLNK(inode->i_mode) &&
4432                      !ext4_inode_is_fast_symlink(inode)))
4433                         /* Validate extent which is part of inode */
4434                         ret = ext4_ext_check_inode(inode);
4435         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4436                    (S_ISLNK(inode->i_mode) &&
4437                     !ext4_inode_is_fast_symlink(inode))) {
4438                 /* Validate block references which are part of inode */
4439                 ret = ext4_check_inode_blockref(inode);
4440         }
4441         if (ret) {
4442                 brelse(bh);
4443                 goto bad_inode;
4444         }
4445
4446         if (S_ISREG(inode->i_mode)) {
4447                 inode->i_op = &ext4_file_inode_operations;
4448                 inode->i_fop = &ext4_file_operations;
4449                 ext4_set_aops(inode);
4450         } else if (S_ISDIR(inode->i_mode)) {
4451                 inode->i_op = &ext4_dir_inode_operations;
4452                 inode->i_fop = &ext4_dir_operations;
4453         } else if (S_ISLNK(inode->i_mode)) {
4454                 if (ext4_inode_is_fast_symlink(inode)) {
4455                         inode->i_op = &ext4_fast_symlink_inode_operations;
4456                         nd_terminate_link(ei->i_data, inode->i_size,
4457                                 sizeof(ei->i_data) - 1);
4458                 } else {
4459                         inode->i_op = &ext4_symlink_inode_operations;
4460                         ext4_set_aops(inode);
4461                 }
4462         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4463               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4464                 inode->i_op = &ext4_special_inode_operations;
4465                 if (raw_inode->i_block[0])
4466                         init_special_inode(inode, inode->i_mode,
4467                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4468                 else
4469                         init_special_inode(inode, inode->i_mode,
4470                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4471         } else {
4472                 brelse(bh);
4473                 ret = -EIO;
4474                 ext4_error(inode->i_sb, __func__,
4475                            "bogus i_mode (%o) for inode=%lu",
4476                            inode->i_mode, inode->i_ino);
4477                 goto bad_inode;
4478         }
4479         brelse(iloc.bh);
4480         ext4_set_inode_flags(inode);
4481         unlock_new_inode(inode);
4482         return inode;
4483
4484 bad_inode:
4485         iget_failed(inode);
4486         return ERR_PTR(ret);
4487 }
4488
4489 static int ext4_inode_blocks_set(handle_t *handle,
4490                                 struct ext4_inode *raw_inode,
4491                                 struct ext4_inode_info *ei)
4492 {
4493         struct inode *inode = &(ei->vfs_inode);
4494         u64 i_blocks = inode->i_blocks;
4495         struct super_block *sb = inode->i_sb;
4496
4497         if (i_blocks <= ~0U) {
4498                 /*
4499                  * i_blocks can be represnted in a 32 bit variable
4500                  * as multiple of 512 bytes
4501                  */
4502                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4503                 raw_inode->i_blocks_high = 0;
4504                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4505                 return 0;
4506         }
4507         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4508                 return -EFBIG;
4509
4510         if (i_blocks <= 0xffffffffffffULL) {
4511                 /*
4512                  * i_blocks can be represented in a 48 bit variable
4513                  * as multiple of 512 bytes
4514                  */
4515                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4516                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4517                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4518         } else {
4519                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4520                 /* i_block is stored in file system block size */
4521                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4522                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4523                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4524         }
4525         return 0;
4526 }
4527
4528 /*
4529  * Post the struct inode info into an on-disk inode location in the
4530  * buffer-cache.  This gobbles the caller's reference to the
4531  * buffer_head in the inode location struct.
4532  *
4533  * The caller must have write access to iloc->bh.
4534  */
4535 static int ext4_do_update_inode(handle_t *handle,
4536                                 struct inode *inode,
4537                                 struct ext4_iloc *iloc)
4538 {
4539         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4540         struct ext4_inode_info *ei = EXT4_I(inode);
4541         struct buffer_head *bh = iloc->bh;
4542         int err = 0, rc, block;
4543
4544         /* For fields not not tracking in the in-memory inode,
4545          * initialise them to zero for new inodes. */
4546         if (ei->i_state & EXT4_STATE_NEW)
4547                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4548
4549         ext4_get_inode_flags(ei);
4550         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4551         if (!(test_opt(inode->i_sb, NO_UID32))) {
4552                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4553                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4554 /*
4555  * Fix up interoperability with old kernels. Otherwise, old inodes get
4556  * re-used with the upper 16 bits of the uid/gid intact
4557  */
4558                 if (!ei->i_dtime) {
4559                         raw_inode->i_uid_high =
4560                                 cpu_to_le16(high_16_bits(inode->i_uid));
4561                         raw_inode->i_gid_high =
4562                                 cpu_to_le16(high_16_bits(inode->i_gid));
4563                 } else {
4564                         raw_inode->i_uid_high = 0;
4565                         raw_inode->i_gid_high = 0;
4566                 }
4567         } else {
4568                 raw_inode->i_uid_low =
4569                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4570                 raw_inode->i_gid_low =
4571                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4572                 raw_inode->i_uid_high = 0;
4573                 raw_inode->i_gid_high = 0;
4574         }
4575         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4576
4577         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4578         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4579         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4580         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4581
4582         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4583                 goto out_brelse;
4584         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4585         /* clear the migrate flag in the raw_inode */
4586         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4587         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4588             cpu_to_le32(EXT4_OS_HURD))
4589                 raw_inode->i_file_acl_high =
4590                         cpu_to_le16(ei->i_file_acl >> 32);
4591         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4592         ext4_isize_set(raw_inode, ei->i_disksize);
4593         if (ei->i_disksize > 0x7fffffffULL) {
4594                 struct super_block *sb = inode->i_sb;
4595                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4596                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4597                                 EXT4_SB(sb)->s_es->s_rev_level ==
4598                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4599                         /* If this is the first large file
4600                          * created, add a flag to the superblock.
4601                          */
4602                         err = ext4_journal_get_write_access(handle,
4603                                         EXT4_SB(sb)->s_sbh);
4604                         if (err)
4605                                 goto out_brelse;
4606                         ext4_update_dynamic_rev(sb);
4607                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4608                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4609                         sb->s_dirt = 1;
4610                         ext4_handle_sync(handle);
4611                         err = ext4_handle_dirty_metadata(handle, inode,
4612                                         EXT4_SB(sb)->s_sbh);
4613                 }
4614         }
4615         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4616         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4617                 if (old_valid_dev(inode->i_rdev)) {
4618                         raw_inode->i_block[0] =
4619                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4620                         raw_inode->i_block[1] = 0;
4621                 } else {
4622                         raw_inode->i_block[0] = 0;
4623                         raw_inode->i_block[1] =
4624                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4625                         raw_inode->i_block[2] = 0;
4626                 }
4627         } else
4628                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4629                         raw_inode->i_block[block] = ei->i_data[block];
4630
4631         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4632         if (ei->i_extra_isize) {
4633                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4634                         raw_inode->i_version_hi =
4635                         cpu_to_le32(inode->i_version >> 32);
4636                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4637         }
4638
4639         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4640         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4641         if (!err)
4642                 err = rc;
4643         ei->i_state &= ~EXT4_STATE_NEW;
4644
4645 out_brelse:
4646         brelse(bh);
4647         ext4_std_error(inode->i_sb, err);
4648         return err;
4649 }
4650
4651 /*
4652  * ext4_write_inode()
4653  *
4654  * We are called from a few places:
4655  *
4656  * - Within generic_file_write() for O_SYNC files.
4657  *   Here, there will be no transaction running. We wait for any running
4658  *   trasnaction to commit.
4659  *
4660  * - Within sys_sync(), kupdate and such.
4661  *   We wait on commit, if tol to.
4662  *
4663  * - Within prune_icache() (PF_MEMALLOC == true)
4664  *   Here we simply return.  We can't afford to block kswapd on the
4665  *   journal commit.
4666  *
4667  * In all cases it is actually safe for us to return without doing anything,
4668  * because the inode has been copied into a raw inode buffer in
4669  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4670  * knfsd.
4671  *
4672  * Note that we are absolutely dependent upon all inode dirtiers doing the
4673  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4674  * which we are interested.
4675  *
4676  * It would be a bug for them to not do this.  The code:
4677  *
4678  *      mark_inode_dirty(inode)
4679  *      stuff();
4680  *      inode->i_size = expr;
4681  *
4682  * is in error because a kswapd-driven write_inode() could occur while
4683  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4684  * will no longer be on the superblock's dirty inode list.
4685  */
4686 int ext4_write_inode(struct inode *inode, int wait)
4687 {
4688         if (current->flags & PF_MEMALLOC)
4689                 return 0;
4690
4691         if (ext4_journal_current_handle()) {
4692                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4693                 dump_stack();
4694                 return -EIO;
4695         }
4696
4697         if (!wait)
4698                 return 0;
4699
4700         return ext4_force_commit(inode->i_sb);
4701 }
4702
4703 /*
4704  * ext4_setattr()
4705  *
4706  * Called from notify_change.
4707  *
4708  * We want to trap VFS attempts to truncate the file as soon as
4709  * possible.  In particular, we want to make sure that when the VFS
4710  * shrinks i_size, we put the inode on the orphan list and modify
4711  * i_disksize immediately, so that during the subsequent flushing of
4712  * dirty pages and freeing of disk blocks, we can guarantee that any
4713  * commit will leave the blocks being flushed in an unused state on
4714  * disk.  (On recovery, the inode will get truncated and the blocks will
4715  * be freed, so we have a strong guarantee that no future commit will
4716  * leave these blocks visible to the user.)
4717  *
4718  * Another thing we have to assure is that if we are in ordered mode
4719  * and inode is still attached to the committing transaction, we must
4720  * we start writeout of all the dirty pages which are being truncated.
4721  * This way we are sure that all the data written in the previous
4722  * transaction are already on disk (truncate waits for pages under
4723  * writeback).
4724  *
4725  * Called with inode->i_mutex down.
4726  */
4727 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4728 {
4729         struct inode *inode = dentry->d_inode;
4730         int error, rc = 0;
4731         const unsigned int ia_valid = attr->ia_valid;
4732
4733         error = inode_change_ok(inode, attr);
4734         if (error)
4735                 return error;
4736
4737         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4738                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4739                 handle_t *handle;
4740
4741                 /* (user+group)*(old+new) structure, inode write (sb,
4742                  * inode block, ? - but truncate inode update has it) */
4743                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4744                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4745                 if (IS_ERR(handle)) {
4746                         error = PTR_ERR(handle);
4747                         goto err_out;
4748                 }
4749                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4750                 if (error) {
4751                         ext4_journal_stop(handle);
4752                         return error;
4753                 }
4754                 /* Update corresponding info in inode so that everything is in
4755                  * one transaction */
4756                 if (attr->ia_valid & ATTR_UID)
4757                         inode->i_uid = attr->ia_uid;
4758                 if (attr->ia_valid & ATTR_GID)
4759                         inode->i_gid = attr->ia_gid;
4760                 error = ext4_mark_inode_dirty(handle, inode);
4761                 ext4_journal_stop(handle);
4762         }
4763
4764         if (attr->ia_valid & ATTR_SIZE) {
4765                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4766                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4767
4768                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4769                                 error = -EFBIG;
4770                                 goto err_out;
4771                         }
4772                 }
4773         }
4774
4775         if (S_ISREG(inode->i_mode) &&
4776             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4777                 handle_t *handle;
4778
4779                 handle = ext4_journal_start(inode, 3);
4780                 if (IS_ERR(handle)) {
4781                         error = PTR_ERR(handle);
4782                         goto err_out;
4783                 }
4784
4785                 error = ext4_orphan_add(handle, inode);
4786                 EXT4_I(inode)->i_disksize = attr->ia_size;
4787                 rc = ext4_mark_inode_dirty(handle, inode);
4788                 if (!error)
4789                         error = rc;
4790                 ext4_journal_stop(handle);
4791
4792                 if (ext4_should_order_data(inode)) {
4793                         error = ext4_begin_ordered_truncate(inode,
4794                                                             attr->ia_size);
4795                         if (error) {
4796                                 /* Do as much error cleanup as possible */
4797                                 handle = ext4_journal_start(inode, 3);
4798                                 if (IS_ERR(handle)) {
4799                                         ext4_orphan_del(NULL, inode);
4800                                         goto err_out;
4801                                 }
4802                                 ext4_orphan_del(handle, inode);
4803                                 ext4_journal_stop(handle);
4804                                 goto err_out;
4805                         }
4806                 }
4807         }
4808
4809         rc = inode_setattr(inode, attr);
4810
4811         /* If inode_setattr's call to ext4_truncate failed to get a
4812          * transaction handle at all, we need to clean up the in-core
4813          * orphan list manually. */
4814         if (inode->i_nlink)
4815                 ext4_orphan_del(NULL, inode);
4816
4817         if (!rc && (ia_valid & ATTR_MODE))
4818                 rc = ext4_acl_chmod(inode);
4819
4820 err_out:
4821         ext4_std_error(inode->i_sb, error);
4822         if (!error)
4823                 error = rc;
4824         return error;
4825 }
4826
4827 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4828                  struct kstat *stat)
4829 {
4830         struct inode *inode;
4831         unsigned long delalloc_blocks;
4832
4833         inode = dentry->d_inode;
4834         generic_fillattr(inode, stat);
4835
4836         /*
4837          * We can't update i_blocks if the block allocation is delayed
4838          * otherwise in the case of system crash before the real block
4839          * allocation is done, we will have i_blocks inconsistent with
4840          * on-disk file blocks.
4841          * We always keep i_blocks updated together with real
4842          * allocation. But to not confuse with user, stat
4843          * will return the blocks that include the delayed allocation
4844          * blocks for this file.
4845          */
4846         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4847         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4848         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4849
4850         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4851         return 0;
4852 }
4853
4854 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4855                                       int chunk)
4856 {
4857         int indirects;
4858
4859         /* if nrblocks are contiguous */
4860         if (chunk) {
4861                 /*
4862                  * With N contiguous data blocks, it need at most
4863                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4864                  * 2 dindirect blocks
4865                  * 1 tindirect block
4866                  */
4867                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4868                 return indirects + 3;
4869         }
4870         /*
4871          * if nrblocks are not contiguous, worse case, each block touch
4872          * a indirect block, and each indirect block touch a double indirect
4873          * block, plus a triple indirect block
4874          */
4875         indirects = nrblocks * 2 + 1;
4876         return indirects;
4877 }
4878
4879 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4880 {
4881         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4882                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4883         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4884 }
4885
4886 /*
4887  * Account for index blocks, block groups bitmaps and block group
4888  * descriptor blocks if modify datablocks and index blocks
4889  * worse case, the indexs blocks spread over different block groups
4890  *
4891  * If datablocks are discontiguous, they are possible to spread over
4892  * different block groups too. If they are contiugous, with flexbg,
4893  * they could still across block group boundary.
4894  *
4895  * Also account for superblock, inode, quota and xattr blocks
4896  */
4897 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4898 {
4899         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4900         int gdpblocks;
4901         int idxblocks;
4902         int ret = 0;
4903
4904         /*
4905          * How many index blocks need to touch to modify nrblocks?
4906          * The "Chunk" flag indicating whether the nrblocks is
4907          * physically contiguous on disk
4908          *
4909          * For Direct IO and fallocate, they calls get_block to allocate
4910          * one single extent at a time, so they could set the "Chunk" flag
4911          */
4912         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4913
4914         ret = idxblocks;
4915
4916         /*
4917          * Now let's see how many group bitmaps and group descriptors need
4918          * to account
4919          */
4920         groups = idxblocks;
4921         if (chunk)
4922                 groups += 1;
4923         else
4924                 groups += nrblocks;
4925
4926         gdpblocks = groups;
4927         if (groups > ngroups)
4928                 groups = ngroups;
4929         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4930                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4931
4932         /* bitmaps and block group descriptor blocks */
4933         ret += groups + gdpblocks;
4934
4935         /* Blocks for super block, inode, quota and xattr blocks */
4936         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4937
4938         return ret;
4939 }
4940
4941 /*
4942  * Calulate the total number of credits to reserve to fit
4943  * the modification of a single pages into a single transaction,
4944  * which may include multiple chunks of block allocations.
4945  *
4946  * This could be called via ext4_write_begin()
4947  *
4948  * We need to consider the worse case, when
4949  * one new block per extent.
4950  */
4951 int ext4_writepage_trans_blocks(struct inode *inode)
4952 {
4953         int bpp = ext4_journal_blocks_per_page(inode);
4954         int ret;
4955
4956         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4957
4958         /* Account for data blocks for journalled mode */
4959         if (ext4_should_journal_data(inode))
4960                 ret += bpp;
4961         return ret;
4962 }
4963
4964 /*
4965  * Calculate the journal credits for a chunk of data modification.
4966  *
4967  * This is called from DIO, fallocate or whoever calling
4968  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4969  *
4970  * journal buffers for data blocks are not included here, as DIO
4971  * and fallocate do no need to journal data buffers.
4972  */
4973 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4974 {
4975         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4976 }
4977
4978 /*
4979  * The caller must have previously called ext4_reserve_inode_write().
4980  * Give this, we know that the caller already has write access to iloc->bh.
4981  */
4982 int ext4_mark_iloc_dirty(handle_t *handle,
4983                          struct inode *inode, struct ext4_iloc *iloc)
4984 {
4985         int err = 0;
4986
4987         if (test_opt(inode->i_sb, I_VERSION))
4988                 inode_inc_iversion(inode);
4989
4990         /* the do_update_inode consumes one bh->b_count */
4991         get_bh(iloc->bh);
4992
4993         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4994         err = ext4_do_update_inode(handle, inode, iloc);
4995         put_bh(iloc->bh);
4996         return err;
4997 }
4998
4999 /*
5000  * On success, We end up with an outstanding reference count against
5001  * iloc->bh.  This _must_ be cleaned up later.
5002  */
5003
5004 int
5005 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5006                          struct ext4_iloc *iloc)
5007 {
5008         int err;
5009
5010         err = ext4_get_inode_loc(inode, iloc);
5011         if (!err) {
5012                 BUFFER_TRACE(iloc->bh, "get_write_access");
5013                 err = ext4_journal_get_write_access(handle, iloc->bh);
5014                 if (err) {
5015                         brelse(iloc->bh);
5016                         iloc->bh = NULL;
5017                 }
5018         }
5019         ext4_std_error(inode->i_sb, err);
5020         return err;
5021 }
5022
5023 /*
5024  * Expand an inode by new_extra_isize bytes.
5025  * Returns 0 on success or negative error number on failure.
5026  */
5027 static int ext4_expand_extra_isize(struct inode *inode,
5028                                    unsigned int new_extra_isize,
5029                                    struct ext4_iloc iloc,
5030                                    handle_t *handle)
5031 {
5032         struct ext4_inode *raw_inode;
5033         struct ext4_xattr_ibody_header *header;
5034         struct ext4_xattr_entry *entry;
5035
5036         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5037                 return 0;
5038
5039         raw_inode = ext4_raw_inode(&iloc);
5040
5041         header = IHDR(inode, raw_inode);
5042         entry = IFIRST(header);
5043
5044         /* No extended attributes present */
5045         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5046                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5047                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5048                         new_extra_isize);
5049                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5050                 return 0;
5051         }
5052
5053         /* try to expand with EAs present */
5054         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5055                                           raw_inode, handle);
5056 }
5057
5058 /*
5059  * What we do here is to mark the in-core inode as clean with respect to inode
5060  * dirtiness (it may still be data-dirty).
5061  * This means that the in-core inode may be reaped by prune_icache
5062  * without having to perform any I/O.  This is a very good thing,
5063  * because *any* task may call prune_icache - even ones which
5064  * have a transaction open against a different journal.
5065  *
5066  * Is this cheating?  Not really.  Sure, we haven't written the
5067  * inode out, but prune_icache isn't a user-visible syncing function.
5068  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5069  * we start and wait on commits.
5070  *
5071  * Is this efficient/effective?  Well, we're being nice to the system
5072  * by cleaning up our inodes proactively so they can be reaped
5073  * without I/O.  But we are potentially leaving up to five seconds'
5074  * worth of inodes floating about which prune_icache wants us to
5075  * write out.  One way to fix that would be to get prune_icache()
5076  * to do a write_super() to free up some memory.  It has the desired
5077  * effect.
5078  */
5079 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5080 {
5081         struct ext4_iloc iloc;
5082         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5083         static unsigned int mnt_count;
5084         int err, ret;
5085
5086         might_sleep();
5087         err = ext4_reserve_inode_write(handle, inode, &iloc);
5088         if (ext4_handle_valid(handle) &&
5089             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5090             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5091                 /*
5092                  * We need extra buffer credits since we may write into EA block
5093                  * with this same handle. If journal_extend fails, then it will
5094                  * only result in a minor loss of functionality for that inode.
5095                  * If this is felt to be critical, then e2fsck should be run to
5096                  * force a large enough s_min_extra_isize.
5097                  */
5098                 if ((jbd2_journal_extend(handle,
5099                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5100                         ret = ext4_expand_extra_isize(inode,
5101                                                       sbi->s_want_extra_isize,
5102                                                       iloc, handle);
5103                         if (ret) {
5104                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5105                                 if (mnt_count !=
5106                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5107                                         ext4_warning(inode->i_sb, __func__,
5108                                         "Unable to expand inode %lu. Delete"
5109                                         " some EAs or run e2fsck.",
5110                                         inode->i_ino);
5111                                         mnt_count =
5112                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5113                                 }
5114                         }
5115                 }
5116         }
5117         if (!err)
5118                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5119         return err;
5120 }
5121
5122 /*
5123  * ext4_dirty_inode() is called from __mark_inode_dirty()
5124  *
5125  * We're really interested in the case where a file is being extended.
5126  * i_size has been changed by generic_commit_write() and we thus need
5127  * to include the updated inode in the current transaction.
5128  *
5129  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5130  * are allocated to the file.
5131  *
5132  * If the inode is marked synchronous, we don't honour that here - doing
5133  * so would cause a commit on atime updates, which we don't bother doing.
5134  * We handle synchronous inodes at the highest possible level.
5135  */
5136 void ext4_dirty_inode(struct inode *inode)
5137 {
5138         handle_t *current_handle = ext4_journal_current_handle();
5139         handle_t *handle;
5140
5141         if (!ext4_handle_valid(current_handle)) {
5142                 ext4_mark_inode_dirty(current_handle, inode);
5143                 return;
5144         }
5145
5146         handle = ext4_journal_start(inode, 2);
5147         if (IS_ERR(handle))
5148                 goto out;
5149         if (current_handle &&
5150                 current_handle->h_transaction != handle->h_transaction) {
5151                 /* This task has a transaction open against a different fs */
5152                 printk(KERN_EMERG "%s: transactions do not match!\n",
5153                        __func__);
5154         } else {
5155                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5156                                 current_handle);
5157                 ext4_mark_inode_dirty(handle, inode);
5158         }
5159         ext4_journal_stop(handle);
5160 out:
5161         return;
5162 }
5163
5164 #if 0
5165 /*
5166  * Bind an inode's backing buffer_head into this transaction, to prevent
5167  * it from being flushed to disk early.  Unlike
5168  * ext4_reserve_inode_write, this leaves behind no bh reference and
5169  * returns no iloc structure, so the caller needs to repeat the iloc
5170  * lookup to mark the inode dirty later.
5171  */
5172 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5173 {
5174         struct ext4_iloc iloc;
5175
5176         int err = 0;
5177         if (handle) {
5178                 err = ext4_get_inode_loc(inode, &iloc);
5179                 if (!err) {
5180                         BUFFER_TRACE(iloc.bh, "get_write_access");
5181                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5182                         if (!err)
5183                                 err = ext4_handle_dirty_metadata(handle,
5184                                                                  inode,
5185                                                                  iloc.bh);
5186                         brelse(iloc.bh);
5187                 }
5188         }
5189         ext4_std_error(inode->i_sb, err);
5190         return err;
5191 }
5192 #endif
5193
5194 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5195 {
5196         journal_t *journal;
5197         handle_t *handle;
5198         int err;
5199
5200         /*
5201          * We have to be very careful here: changing a data block's
5202          * journaling status dynamically is dangerous.  If we write a
5203          * data block to the journal, change the status and then delete
5204          * that block, we risk forgetting to revoke the old log record
5205          * from the journal and so a subsequent replay can corrupt data.
5206          * So, first we make sure that the journal is empty and that
5207          * nobody is changing anything.
5208          */
5209
5210         journal = EXT4_JOURNAL(inode);
5211         if (!journal)
5212                 return 0;
5213         if (is_journal_aborted(journal))
5214                 return -EROFS;
5215
5216         jbd2_journal_lock_updates(journal);
5217         jbd2_journal_flush(journal);
5218
5219         /*
5220          * OK, there are no updates running now, and all cached data is
5221          * synced to disk.  We are now in a completely consistent state
5222          * which doesn't have anything in the journal, and we know that
5223          * no filesystem updates are running, so it is safe to modify
5224          * the inode's in-core data-journaling state flag now.
5225          */
5226
5227         if (val)
5228                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5229         else
5230                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5231         ext4_set_aops(inode);
5232
5233         jbd2_journal_unlock_updates(journal);
5234
5235         /* Finally we can mark the inode as dirty. */
5236
5237         handle = ext4_journal_start(inode, 1);
5238         if (IS_ERR(handle))
5239                 return PTR_ERR(handle);
5240
5241         err = ext4_mark_inode_dirty(handle, inode);
5242         ext4_handle_sync(handle);
5243         ext4_journal_stop(handle);
5244         ext4_std_error(inode->i_sb, err);
5245
5246         return err;
5247 }
5248
5249 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5250 {
5251         return !buffer_mapped(bh);
5252 }
5253
5254 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5255 {
5256         struct page *page = vmf->page;
5257         loff_t size;
5258         unsigned long len;
5259         int ret = -EINVAL;
5260         void *fsdata;
5261         struct file *file = vma->vm_file;
5262         struct inode *inode = file->f_path.dentry->d_inode;
5263         struct address_space *mapping = inode->i_mapping;
5264
5265         /*
5266          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5267          * get i_mutex because we are already holding mmap_sem.
5268          */
5269         down_read(&inode->i_alloc_sem);
5270         size = i_size_read(inode);
5271         if (page->mapping != mapping || size <= page_offset(page)
5272             || !PageUptodate(page)) {
5273                 /* page got truncated from under us? */
5274                 goto out_unlock;
5275         }
5276         ret = 0;
5277         if (PageMappedToDisk(page))
5278                 goto out_unlock;
5279
5280         if (page->index == size >> PAGE_CACHE_SHIFT)
5281                 len = size & ~PAGE_CACHE_MASK;
5282         else
5283                 len = PAGE_CACHE_SIZE;
5284
5285         if (page_has_buffers(page)) {
5286                 /* return if we have all the buffers mapped */
5287                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5288                                        ext4_bh_unmapped))
5289                         goto out_unlock;
5290         }
5291         /*
5292          * OK, we need to fill the hole... Do write_begin write_end
5293          * to do block allocation/reservation.We are not holding
5294          * inode.i__mutex here. That allow * parallel write_begin,
5295          * write_end call. lock_page prevent this from happening
5296          * on the same page though
5297          */
5298         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5299                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5300         if (ret < 0)
5301                 goto out_unlock;
5302         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5303                         len, len, page, fsdata);
5304         if (ret < 0)
5305                 goto out_unlock;
5306         ret = 0;
5307 out_unlock:
5308         if (ret)
5309                 ret = VM_FAULT_SIGBUS;
5310         up_read(&inode->i_alloc_sem);
5311         return ret;
5312 }