ext4: Fix mmap/truncate race when blocksize < pagesize && !nodellaoc
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static int __ext4_journalled_writepage(struct page *page,
51                                        struct writeback_control *wbc,
52                                        unsigned int len);
53
54 static inline int ext4_begin_ordered_truncate(struct inode *inode,
55                                               loff_t new_size)
56 {
57         return jbd2_journal_begin_ordered_truncate(
58                                         EXT4_SB(inode->i_sb)->s_journal,
59                                         &EXT4_I(inode)->jinode,
60                                         new_size);
61 }
62
63 static void ext4_invalidatepage(struct page *page, unsigned long offset);
64
65 /*
66  * Test whether an inode is a fast symlink.
67  */
68 static int ext4_inode_is_fast_symlink(struct inode *inode)
69 {
70         int ea_blocks = EXT4_I(inode)->i_file_acl ?
71                 (inode->i_sb->s_blocksize >> 9) : 0;
72
73         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 }
75
76 /*
77  * The ext4 forget function must perform a revoke if we are freeing data
78  * which has been journaled.  Metadata (eg. indirect blocks) must be
79  * revoked in all cases.
80  *
81  * "bh" may be NULL: a metadata block may have been freed from memory
82  * but there may still be a record of it in the journal, and that record
83  * still needs to be revoked.
84  *
85  * If the handle isn't valid we're not journaling so there's nothing to do.
86  */
87 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
88                 struct buffer_head *bh, ext4_fsblk_t blocknr)
89 {
90         int err;
91
92         if (!ext4_handle_valid(handle))
93                 return 0;
94
95         might_sleep();
96
97         BUFFER_TRACE(bh, "enter");
98
99         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
100                   "data mode %x\n",
101                   bh, is_metadata, inode->i_mode,
102                   test_opt(inode->i_sb, DATA_FLAGS));
103
104         /* Never use the revoke function if we are doing full data
105          * journaling: there is no need to, and a V1 superblock won't
106          * support it.  Otherwise, only skip the revoke on un-journaled
107          * data blocks. */
108
109         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
110             (!is_metadata && !ext4_should_journal_data(inode))) {
111                 if (bh) {
112                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
113                         return ext4_journal_forget(handle, bh);
114                 }
115                 return 0;
116         }
117
118         /*
119          * data!=journal && (is_metadata || should_journal_data(inode))
120          */
121         BUFFER_TRACE(bh, "call ext4_journal_revoke");
122         err = ext4_journal_revoke(handle, blocknr, bh);
123         if (err)
124                 ext4_abort(inode->i_sb, __func__,
125                            "error %d when attempting revoke", err);
126         BUFFER_TRACE(bh, "exit");
127         return err;
128 }
129
130 /*
131  * Work out how many blocks we need to proceed with the next chunk of a
132  * truncate transaction.
133  */
134 static unsigned long blocks_for_truncate(struct inode *inode)
135 {
136         ext4_lblk_t needed;
137
138         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
139
140         /* Give ourselves just enough room to cope with inodes in which
141          * i_blocks is corrupt: we've seen disk corruptions in the past
142          * which resulted in random data in an inode which looked enough
143          * like a regular file for ext4 to try to delete it.  Things
144          * will go a bit crazy if that happens, but at least we should
145          * try not to panic the whole kernel. */
146         if (needed < 2)
147                 needed = 2;
148
149         /* But we need to bound the transaction so we don't overflow the
150          * journal. */
151         if (needed > EXT4_MAX_TRANS_DATA)
152                 needed = EXT4_MAX_TRANS_DATA;
153
154         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
155 }
156
157 /*
158  * Truncate transactions can be complex and absolutely huge.  So we need to
159  * be able to restart the transaction at a conventient checkpoint to make
160  * sure we don't overflow the journal.
161  *
162  * start_transaction gets us a new handle for a truncate transaction,
163  * and extend_transaction tries to extend the existing one a bit.  If
164  * extend fails, we need to propagate the failure up and restart the
165  * transaction in the top-level truncate loop. --sct
166  */
167 static handle_t *start_transaction(struct inode *inode)
168 {
169         handle_t *result;
170
171         result = ext4_journal_start(inode, blocks_for_truncate(inode));
172         if (!IS_ERR(result))
173                 return result;
174
175         ext4_std_error(inode->i_sb, PTR_ERR(result));
176         return result;
177 }
178
179 /*
180  * Try to extend this transaction for the purposes of truncation.
181  *
182  * Returns 0 if we managed to create more room.  If we can't create more
183  * room, and the transaction must be restarted we return 1.
184  */
185 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
186 {
187         if (!ext4_handle_valid(handle))
188                 return 0;
189         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
190                 return 0;
191         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
192                 return 0;
193         return 1;
194 }
195
196 /*
197  * Restart the transaction associated with *handle.  This does a commit,
198  * so before we call here everything must be consistently dirtied against
199  * this transaction.
200  */
201 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
202 {
203         BUG_ON(EXT4_JOURNAL(inode) == NULL);
204         jbd_debug(2, "restarting handle %p\n", handle);
205         return ext4_journal_restart(handle, blocks_for_truncate(inode));
206 }
207
208 /*
209  * Called at the last iput() if i_nlink is zero.
210  */
211 void ext4_delete_inode(struct inode *inode)
212 {
213         handle_t *handle;
214         int err;
215
216         if (ext4_should_order_data(inode))
217                 ext4_begin_ordered_truncate(inode, 0);
218         truncate_inode_pages(&inode->i_data, 0);
219
220         if (is_bad_inode(inode))
221                 goto no_delete;
222
223         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
224         if (IS_ERR(handle)) {
225                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
226                 /*
227                  * If we're going to skip the normal cleanup, we still need to
228                  * make sure that the in-core orphan linked list is properly
229                  * cleaned up.
230                  */
231                 ext4_orphan_del(NULL, inode);
232                 goto no_delete;
233         }
234
235         if (IS_SYNC(inode))
236                 ext4_handle_sync(handle);
237         inode->i_size = 0;
238         err = ext4_mark_inode_dirty(handle, inode);
239         if (err) {
240                 ext4_warning(inode->i_sb, __func__,
241                              "couldn't mark inode dirty (err %d)", err);
242                 goto stop_handle;
243         }
244         if (inode->i_blocks)
245                 ext4_truncate(inode);
246
247         /*
248          * ext4_ext_truncate() doesn't reserve any slop when it
249          * restarts journal transactions; therefore there may not be
250          * enough credits left in the handle to remove the inode from
251          * the orphan list and set the dtime field.
252          */
253         if (!ext4_handle_has_enough_credits(handle, 3)) {
254                 err = ext4_journal_extend(handle, 3);
255                 if (err > 0)
256                         err = ext4_journal_restart(handle, 3);
257                 if (err != 0) {
258                         ext4_warning(inode->i_sb, __func__,
259                                      "couldn't extend journal (err %d)", err);
260                 stop_handle:
261                         ext4_journal_stop(handle);
262                         goto no_delete;
263                 }
264         }
265
266         /*
267          * Kill off the orphan record which ext4_truncate created.
268          * AKPM: I think this can be inside the above `if'.
269          * Note that ext4_orphan_del() has to be able to cope with the
270          * deletion of a non-existent orphan - this is because we don't
271          * know if ext4_truncate() actually created an orphan record.
272          * (Well, we could do this if we need to, but heck - it works)
273          */
274         ext4_orphan_del(handle, inode);
275         EXT4_I(inode)->i_dtime  = get_seconds();
276
277         /*
278          * One subtle ordering requirement: if anything has gone wrong
279          * (transaction abort, IO errors, whatever), then we can still
280          * do these next steps (the fs will already have been marked as
281          * having errors), but we can't free the inode if the mark_dirty
282          * fails.
283          */
284         if (ext4_mark_inode_dirty(handle, inode))
285                 /* If that failed, just do the required in-core inode clear. */
286                 clear_inode(inode);
287         else
288                 ext4_free_inode(handle, inode);
289         ext4_journal_stop(handle);
290         return;
291 no_delete:
292         clear_inode(inode);     /* We must guarantee clearing of inode... */
293 }
294
295 typedef struct {
296         __le32  *p;
297         __le32  key;
298         struct buffer_head *bh;
299 } Indirect;
300
301 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
302 {
303         p->key = *(p->p = v);
304         p->bh = bh;
305 }
306
307 /**
308  *      ext4_block_to_path - parse the block number into array of offsets
309  *      @inode: inode in question (we are only interested in its superblock)
310  *      @i_block: block number to be parsed
311  *      @offsets: array to store the offsets in
312  *      @boundary: set this non-zero if the referred-to block is likely to be
313  *             followed (on disk) by an indirect block.
314  *
315  *      To store the locations of file's data ext4 uses a data structure common
316  *      for UNIX filesystems - tree of pointers anchored in the inode, with
317  *      data blocks at leaves and indirect blocks in intermediate nodes.
318  *      This function translates the block number into path in that tree -
319  *      return value is the path length and @offsets[n] is the offset of
320  *      pointer to (n+1)th node in the nth one. If @block is out of range
321  *      (negative or too large) warning is printed and zero returned.
322  *
323  *      Note: function doesn't find node addresses, so no IO is needed. All
324  *      we need to know is the capacity of indirect blocks (taken from the
325  *      inode->i_sb).
326  */
327
328 /*
329  * Portability note: the last comparison (check that we fit into triple
330  * indirect block) is spelled differently, because otherwise on an
331  * architecture with 32-bit longs and 8Kb pages we might get into trouble
332  * if our filesystem had 8Kb blocks. We might use long long, but that would
333  * kill us on x86. Oh, well, at least the sign propagation does not matter -
334  * i_block would have to be negative in the very beginning, so we would not
335  * get there at all.
336  */
337
338 static int ext4_block_to_path(struct inode *inode,
339                               ext4_lblk_t i_block,
340                               ext4_lblk_t offsets[4], int *boundary)
341 {
342         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
343         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
344         const long direct_blocks = EXT4_NDIR_BLOCKS,
345                 indirect_blocks = ptrs,
346                 double_blocks = (1 << (ptrs_bits * 2));
347         int n = 0;
348         int final = 0;
349
350         if (i_block < 0) {
351                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
352         } else if (i_block < direct_blocks) {
353                 offsets[n++] = i_block;
354                 final = direct_blocks;
355         } else if ((i_block -= direct_blocks) < indirect_blocks) {
356                 offsets[n++] = EXT4_IND_BLOCK;
357                 offsets[n++] = i_block;
358                 final = ptrs;
359         } else if ((i_block -= indirect_blocks) < double_blocks) {
360                 offsets[n++] = EXT4_DIND_BLOCK;
361                 offsets[n++] = i_block >> ptrs_bits;
362                 offsets[n++] = i_block & (ptrs - 1);
363                 final = ptrs;
364         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
365                 offsets[n++] = EXT4_TIND_BLOCK;
366                 offsets[n++] = i_block >> (ptrs_bits * 2);
367                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
368                 offsets[n++] = i_block & (ptrs - 1);
369                 final = ptrs;
370         } else {
371                 ext4_warning(inode->i_sb, "ext4_block_to_path",
372                              "block %lu > max in inode %lu",
373                              i_block + direct_blocks +
374                              indirect_blocks + double_blocks, inode->i_ino);
375         }
376         if (boundary)
377                 *boundary = final - 1 - (i_block & (ptrs - 1));
378         return n;
379 }
380
381 static int __ext4_check_blockref(const char *function, struct inode *inode,
382                                  __le32 *p, unsigned int max)
383 {
384         __le32 *bref = p;
385         unsigned int blk;
386
387         while (bref < p+max) {
388                 blk = le32_to_cpu(*bref++);
389                 if (blk &&
390                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
391                                                     blk, 1))) {
392                         ext4_error(inode->i_sb, function,
393                                    "invalid block reference %u "
394                                    "in inode #%lu", blk, inode->i_ino);
395                         return -EIO;
396                 }
397         }
398         return 0;
399 }
400
401
402 #define ext4_check_indirect_blockref(inode, bh)                         \
403         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
404                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
405
406 #define ext4_check_inode_blockref(inode)                                \
407         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
408                               EXT4_NDIR_BLOCKS)
409
410 /**
411  *      ext4_get_branch - read the chain of indirect blocks leading to data
412  *      @inode: inode in question
413  *      @depth: depth of the chain (1 - direct pointer, etc.)
414  *      @offsets: offsets of pointers in inode/indirect blocks
415  *      @chain: place to store the result
416  *      @err: here we store the error value
417  *
418  *      Function fills the array of triples <key, p, bh> and returns %NULL
419  *      if everything went OK or the pointer to the last filled triple
420  *      (incomplete one) otherwise. Upon the return chain[i].key contains
421  *      the number of (i+1)-th block in the chain (as it is stored in memory,
422  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
423  *      number (it points into struct inode for i==0 and into the bh->b_data
424  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
425  *      block for i>0 and NULL for i==0. In other words, it holds the block
426  *      numbers of the chain, addresses they were taken from (and where we can
427  *      verify that chain did not change) and buffer_heads hosting these
428  *      numbers.
429  *
430  *      Function stops when it stumbles upon zero pointer (absent block)
431  *              (pointer to last triple returned, *@err == 0)
432  *      or when it gets an IO error reading an indirect block
433  *              (ditto, *@err == -EIO)
434  *      or when it reads all @depth-1 indirect blocks successfully and finds
435  *      the whole chain, all way to the data (returns %NULL, *err == 0).
436  *
437  *      Need to be called with
438  *      down_read(&EXT4_I(inode)->i_data_sem)
439  */
440 static Indirect *ext4_get_branch(struct inode *inode, int depth,
441                                  ext4_lblk_t  *offsets,
442                                  Indirect chain[4], int *err)
443 {
444         struct super_block *sb = inode->i_sb;
445         Indirect *p = chain;
446         struct buffer_head *bh;
447
448         *err = 0;
449         /* i_data is not going away, no lock needed */
450         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
451         if (!p->key)
452                 goto no_block;
453         while (--depth) {
454                 bh = sb_getblk(sb, le32_to_cpu(p->key));
455                 if (unlikely(!bh))
456                         goto failure;
457
458                 if (!bh_uptodate_or_lock(bh)) {
459                         if (bh_submit_read(bh) < 0) {
460                                 put_bh(bh);
461                                 goto failure;
462                         }
463                         /* validate block references */
464                         if (ext4_check_indirect_blockref(inode, bh)) {
465                                 put_bh(bh);
466                                 goto failure;
467                         }
468                 }
469
470                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
471                 /* Reader: end */
472                 if (!p->key)
473                         goto no_block;
474         }
475         return NULL;
476
477 failure:
478         *err = -EIO;
479 no_block:
480         return p;
481 }
482
483 /**
484  *      ext4_find_near - find a place for allocation with sufficient locality
485  *      @inode: owner
486  *      @ind: descriptor of indirect block.
487  *
488  *      This function returns the preferred place for block allocation.
489  *      It is used when heuristic for sequential allocation fails.
490  *      Rules are:
491  *        + if there is a block to the left of our position - allocate near it.
492  *        + if pointer will live in indirect block - allocate near that block.
493  *        + if pointer will live in inode - allocate in the same
494  *          cylinder group.
495  *
496  * In the latter case we colour the starting block by the callers PID to
497  * prevent it from clashing with concurrent allocations for a different inode
498  * in the same block group.   The PID is used here so that functionally related
499  * files will be close-by on-disk.
500  *
501  *      Caller must make sure that @ind is valid and will stay that way.
502  */
503 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
504 {
505         struct ext4_inode_info *ei = EXT4_I(inode);
506         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
507         __le32 *p;
508         ext4_fsblk_t bg_start;
509         ext4_fsblk_t last_block;
510         ext4_grpblk_t colour;
511         ext4_group_t block_group;
512         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
513
514         /* Try to find previous block */
515         for (p = ind->p - 1; p >= start; p--) {
516                 if (*p)
517                         return le32_to_cpu(*p);
518         }
519
520         /* No such thing, so let's try location of indirect block */
521         if (ind->bh)
522                 return ind->bh->b_blocknr;
523
524         /*
525          * It is going to be referred to from the inode itself? OK, just put it
526          * into the same cylinder group then.
527          */
528         block_group = ei->i_block_group;
529         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
530                 block_group &= ~(flex_size-1);
531                 if (S_ISREG(inode->i_mode))
532                         block_group++;
533         }
534         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
535         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
536
537         /*
538          * If we are doing delayed allocation, we don't need take
539          * colour into account.
540          */
541         if (test_opt(inode->i_sb, DELALLOC))
542                 return bg_start;
543
544         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
545                 colour = (current->pid % 16) *
546                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
547         else
548                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
549         return bg_start + colour;
550 }
551
552 /**
553  *      ext4_find_goal - find a preferred place for allocation.
554  *      @inode: owner
555  *      @block:  block we want
556  *      @partial: pointer to the last triple within a chain
557  *
558  *      Normally this function find the preferred place for block allocation,
559  *      returns it.
560  */
561 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
562                                    Indirect *partial)
563 {
564         /*
565          * XXX need to get goal block from mballoc's data structures
566          */
567
568         return ext4_find_near(inode, partial);
569 }
570
571 /**
572  *      ext4_blks_to_allocate: Look up the block map and count the number
573  *      of direct blocks need to be allocated for the given branch.
574  *
575  *      @branch: chain of indirect blocks
576  *      @k: number of blocks need for indirect blocks
577  *      @blks: number of data blocks to be mapped.
578  *      @blocks_to_boundary:  the offset in the indirect block
579  *
580  *      return the total number of blocks to be allocate, including the
581  *      direct and indirect blocks.
582  */
583 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
584                                  int blocks_to_boundary)
585 {
586         unsigned int count = 0;
587
588         /*
589          * Simple case, [t,d]Indirect block(s) has not allocated yet
590          * then it's clear blocks on that path have not allocated
591          */
592         if (k > 0) {
593                 /* right now we don't handle cross boundary allocation */
594                 if (blks < blocks_to_boundary + 1)
595                         count += blks;
596                 else
597                         count += blocks_to_boundary + 1;
598                 return count;
599         }
600
601         count++;
602         while (count < blks && count <= blocks_to_boundary &&
603                 le32_to_cpu(*(branch[0].p + count)) == 0) {
604                 count++;
605         }
606         return count;
607 }
608
609 /**
610  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
611  *      @indirect_blks: the number of blocks need to allocate for indirect
612  *                      blocks
613  *
614  *      @new_blocks: on return it will store the new block numbers for
615  *      the indirect blocks(if needed) and the first direct block,
616  *      @blks:  on return it will store the total number of allocated
617  *              direct blocks
618  */
619 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
620                              ext4_lblk_t iblock, ext4_fsblk_t goal,
621                              int indirect_blks, int blks,
622                              ext4_fsblk_t new_blocks[4], int *err)
623 {
624         struct ext4_allocation_request ar;
625         int target, i;
626         unsigned long count = 0, blk_allocated = 0;
627         int index = 0;
628         ext4_fsblk_t current_block = 0;
629         int ret = 0;
630
631         /*
632          * Here we try to allocate the requested multiple blocks at once,
633          * on a best-effort basis.
634          * To build a branch, we should allocate blocks for
635          * the indirect blocks(if not allocated yet), and at least
636          * the first direct block of this branch.  That's the
637          * minimum number of blocks need to allocate(required)
638          */
639         /* first we try to allocate the indirect blocks */
640         target = indirect_blks;
641         while (target > 0) {
642                 count = target;
643                 /* allocating blocks for indirect blocks and direct blocks */
644                 current_block = ext4_new_meta_blocks(handle, inode,
645                                                         goal, &count, err);
646                 if (*err)
647                         goto failed_out;
648
649                 target -= count;
650                 /* allocate blocks for indirect blocks */
651                 while (index < indirect_blks && count) {
652                         new_blocks[index++] = current_block++;
653                         count--;
654                 }
655                 if (count > 0) {
656                         /*
657                          * save the new block number
658                          * for the first direct block
659                          */
660                         new_blocks[index] = current_block;
661                         printk(KERN_INFO "%s returned more blocks than "
662                                                 "requested\n", __func__);
663                         WARN_ON(1);
664                         break;
665                 }
666         }
667
668         target = blks - count ;
669         blk_allocated = count;
670         if (!target)
671                 goto allocated;
672         /* Now allocate data blocks */
673         memset(&ar, 0, sizeof(ar));
674         ar.inode = inode;
675         ar.goal = goal;
676         ar.len = target;
677         ar.logical = iblock;
678         if (S_ISREG(inode->i_mode))
679                 /* enable in-core preallocation only for regular files */
680                 ar.flags = EXT4_MB_HINT_DATA;
681
682         current_block = ext4_mb_new_blocks(handle, &ar, err);
683
684         if (*err && (target == blks)) {
685                 /*
686                  * if the allocation failed and we didn't allocate
687                  * any blocks before
688                  */
689                 goto failed_out;
690         }
691         if (!*err) {
692                 if (target == blks) {
693                         /*
694                          * save the new block number
695                          * for the first direct block
696                          */
697                         new_blocks[index] = current_block;
698                 }
699                 blk_allocated += ar.len;
700         }
701 allocated:
702         /* total number of blocks allocated for direct blocks */
703         ret = blk_allocated;
704         *err = 0;
705         return ret;
706 failed_out:
707         for (i = 0; i < index; i++)
708                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
709         return ret;
710 }
711
712 /**
713  *      ext4_alloc_branch - allocate and set up a chain of blocks.
714  *      @inode: owner
715  *      @indirect_blks: number of allocated indirect blocks
716  *      @blks: number of allocated direct blocks
717  *      @offsets: offsets (in the blocks) to store the pointers to next.
718  *      @branch: place to store the chain in.
719  *
720  *      This function allocates blocks, zeroes out all but the last one,
721  *      links them into chain and (if we are synchronous) writes them to disk.
722  *      In other words, it prepares a branch that can be spliced onto the
723  *      inode. It stores the information about that chain in the branch[], in
724  *      the same format as ext4_get_branch() would do. We are calling it after
725  *      we had read the existing part of chain and partial points to the last
726  *      triple of that (one with zero ->key). Upon the exit we have the same
727  *      picture as after the successful ext4_get_block(), except that in one
728  *      place chain is disconnected - *branch->p is still zero (we did not
729  *      set the last link), but branch->key contains the number that should
730  *      be placed into *branch->p to fill that gap.
731  *
732  *      If allocation fails we free all blocks we've allocated (and forget
733  *      their buffer_heads) and return the error value the from failed
734  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
735  *      as described above and return 0.
736  */
737 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
738                              ext4_lblk_t iblock, int indirect_blks,
739                              int *blks, ext4_fsblk_t goal,
740                              ext4_lblk_t *offsets, Indirect *branch)
741 {
742         int blocksize = inode->i_sb->s_blocksize;
743         int i, n = 0;
744         int err = 0;
745         struct buffer_head *bh;
746         int num;
747         ext4_fsblk_t new_blocks[4];
748         ext4_fsblk_t current_block;
749
750         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
751                                 *blks, new_blocks, &err);
752         if (err)
753                 return err;
754
755         branch[0].key = cpu_to_le32(new_blocks[0]);
756         /*
757          * metadata blocks and data blocks are allocated.
758          */
759         for (n = 1; n <= indirect_blks;  n++) {
760                 /*
761                  * Get buffer_head for parent block, zero it out
762                  * and set the pointer to new one, then send
763                  * parent to disk.
764                  */
765                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
766                 branch[n].bh = bh;
767                 lock_buffer(bh);
768                 BUFFER_TRACE(bh, "call get_create_access");
769                 err = ext4_journal_get_create_access(handle, bh);
770                 if (err) {
771                         unlock_buffer(bh);
772                         brelse(bh);
773                         goto failed;
774                 }
775
776                 memset(bh->b_data, 0, blocksize);
777                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
778                 branch[n].key = cpu_to_le32(new_blocks[n]);
779                 *branch[n].p = branch[n].key;
780                 if (n == indirect_blks) {
781                         current_block = new_blocks[n];
782                         /*
783                          * End of chain, update the last new metablock of
784                          * the chain to point to the new allocated
785                          * data blocks numbers
786                          */
787                         for (i = 1; i < num; i++)
788                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
789                 }
790                 BUFFER_TRACE(bh, "marking uptodate");
791                 set_buffer_uptodate(bh);
792                 unlock_buffer(bh);
793
794                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
795                 err = ext4_handle_dirty_metadata(handle, inode, bh);
796                 if (err)
797                         goto failed;
798         }
799         *blks = num;
800         return err;
801 failed:
802         /* Allocation failed, free what we already allocated */
803         for (i = 1; i <= n ; i++) {
804                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
805                 ext4_journal_forget(handle, branch[i].bh);
806         }
807         for (i = 0; i < indirect_blks; i++)
808                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
809
810         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
811
812         return err;
813 }
814
815 /**
816  * ext4_splice_branch - splice the allocated branch onto inode.
817  * @inode: owner
818  * @block: (logical) number of block we are adding
819  * @chain: chain of indirect blocks (with a missing link - see
820  *      ext4_alloc_branch)
821  * @where: location of missing link
822  * @num:   number of indirect blocks we are adding
823  * @blks:  number of direct blocks we are adding
824  *
825  * This function fills the missing link and does all housekeeping needed in
826  * inode (->i_blocks, etc.). In case of success we end up with the full
827  * chain to new block and return 0.
828  */
829 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
830                               ext4_lblk_t block, Indirect *where, int num,
831                               int blks)
832 {
833         int i;
834         int err = 0;
835         ext4_fsblk_t current_block;
836
837         /*
838          * If we're splicing into a [td]indirect block (as opposed to the
839          * inode) then we need to get write access to the [td]indirect block
840          * before the splice.
841          */
842         if (where->bh) {
843                 BUFFER_TRACE(where->bh, "get_write_access");
844                 err = ext4_journal_get_write_access(handle, where->bh);
845                 if (err)
846                         goto err_out;
847         }
848         /* That's it */
849
850         *where->p = where->key;
851
852         /*
853          * Update the host buffer_head or inode to point to more just allocated
854          * direct blocks blocks
855          */
856         if (num == 0 && blks > 1) {
857                 current_block = le32_to_cpu(where->key) + 1;
858                 for (i = 1; i < blks; i++)
859                         *(where->p + i) = cpu_to_le32(current_block++);
860         }
861
862         /* We are done with atomic stuff, now do the rest of housekeeping */
863         /* had we spliced it onto indirect block? */
864         if (where->bh) {
865                 /*
866                  * If we spliced it onto an indirect block, we haven't
867                  * altered the inode.  Note however that if it is being spliced
868                  * onto an indirect block at the very end of the file (the
869                  * file is growing) then we *will* alter the inode to reflect
870                  * the new i_size.  But that is not done here - it is done in
871                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
872                  */
873                 jbd_debug(5, "splicing indirect only\n");
874                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
875                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
876                 if (err)
877                         goto err_out;
878         } else {
879                 /*
880                  * OK, we spliced it into the inode itself on a direct block.
881                  */
882                 ext4_mark_inode_dirty(handle, inode);
883                 jbd_debug(5, "splicing direct\n");
884         }
885         return err;
886
887 err_out:
888         for (i = 1; i <= num; i++) {
889                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
890                 ext4_journal_forget(handle, where[i].bh);
891                 ext4_free_blocks(handle, inode,
892                                         le32_to_cpu(where[i-1].key), 1, 0);
893         }
894         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
895
896         return err;
897 }
898
899 /*
900  * The ext4_ind_get_blocks() function handles non-extents inodes
901  * (i.e., using the traditional indirect/double-indirect i_blocks
902  * scheme) for ext4_get_blocks().
903  *
904  * Allocation strategy is simple: if we have to allocate something, we will
905  * have to go the whole way to leaf. So let's do it before attaching anything
906  * to tree, set linkage between the newborn blocks, write them if sync is
907  * required, recheck the path, free and repeat if check fails, otherwise
908  * set the last missing link (that will protect us from any truncate-generated
909  * removals - all blocks on the path are immune now) and possibly force the
910  * write on the parent block.
911  * That has a nice additional property: no special recovery from the failed
912  * allocations is needed - we simply release blocks and do not touch anything
913  * reachable from inode.
914  *
915  * `handle' can be NULL if create == 0.
916  *
917  * return > 0, # of blocks mapped or allocated.
918  * return = 0, if plain lookup failed.
919  * return < 0, error case.
920  *
921  * The ext4_ind_get_blocks() function should be called with
922  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
923  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
924  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
925  * blocks.
926  */
927 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
928                                ext4_lblk_t iblock, unsigned int maxblocks,
929                                struct buffer_head *bh_result,
930                                int flags)
931 {
932         int err = -EIO;
933         ext4_lblk_t offsets[4];
934         Indirect chain[4];
935         Indirect *partial;
936         ext4_fsblk_t goal;
937         int indirect_blks;
938         int blocks_to_boundary = 0;
939         int depth;
940         int count = 0;
941         ext4_fsblk_t first_block = 0;
942
943         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
944         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
945         depth = ext4_block_to_path(inode, iblock, offsets,
946                                    &blocks_to_boundary);
947
948         if (depth == 0)
949                 goto out;
950
951         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
952
953         /* Simplest case - block found, no allocation needed */
954         if (!partial) {
955                 first_block = le32_to_cpu(chain[depth - 1].key);
956                 clear_buffer_new(bh_result);
957                 count++;
958                 /*map more blocks*/
959                 while (count < maxblocks && count <= blocks_to_boundary) {
960                         ext4_fsblk_t blk;
961
962                         blk = le32_to_cpu(*(chain[depth-1].p + count));
963
964                         if (blk == first_block + count)
965                                 count++;
966                         else
967                                 break;
968                 }
969                 goto got_it;
970         }
971
972         /* Next simple case - plain lookup or failed read of indirect block */
973         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
974                 goto cleanup;
975
976         /*
977          * Okay, we need to do block allocation.
978         */
979         goal = ext4_find_goal(inode, iblock, partial);
980
981         /* the number of blocks need to allocate for [d,t]indirect blocks */
982         indirect_blks = (chain + depth) - partial - 1;
983
984         /*
985          * Next look up the indirect map to count the totoal number of
986          * direct blocks to allocate for this branch.
987          */
988         count = ext4_blks_to_allocate(partial, indirect_blks,
989                                         maxblocks, blocks_to_boundary);
990         /*
991          * Block out ext4_truncate while we alter the tree
992          */
993         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
994                                 &count, goal,
995                                 offsets + (partial - chain), partial);
996
997         /*
998          * The ext4_splice_branch call will free and forget any buffers
999          * on the new chain if there is a failure, but that risks using
1000          * up transaction credits, especially for bitmaps where the
1001          * credits cannot be returned.  Can we handle this somehow?  We
1002          * may need to return -EAGAIN upwards in the worst case.  --sct
1003          */
1004         if (!err)
1005                 err = ext4_splice_branch(handle, inode, iblock,
1006                                          partial, indirect_blks, count);
1007         else
1008                 goto cleanup;
1009
1010         set_buffer_new(bh_result);
1011 got_it:
1012         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1013         if (count > blocks_to_boundary)
1014                 set_buffer_boundary(bh_result);
1015         err = count;
1016         /* Clean up and exit */
1017         partial = chain + depth - 1;    /* the whole chain */
1018 cleanup:
1019         while (partial > chain) {
1020                 BUFFER_TRACE(partial->bh, "call brelse");
1021                 brelse(partial->bh);
1022                 partial--;
1023         }
1024         BUFFER_TRACE(bh_result, "returned");
1025 out:
1026         return err;
1027 }
1028
1029 qsize_t ext4_get_reserved_space(struct inode *inode)
1030 {
1031         unsigned long long total;
1032
1033         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1034         total = EXT4_I(inode)->i_reserved_data_blocks +
1035                 EXT4_I(inode)->i_reserved_meta_blocks;
1036         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1037
1038         return total;
1039 }
1040 /*
1041  * Calculate the number of metadata blocks need to reserve
1042  * to allocate @blocks for non extent file based file
1043  */
1044 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1045 {
1046         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1047         int ind_blks, dind_blks, tind_blks;
1048
1049         /* number of new indirect blocks needed */
1050         ind_blks = (blocks + icap - 1) / icap;
1051
1052         dind_blks = (ind_blks + icap - 1) / icap;
1053
1054         tind_blks = 1;
1055
1056         return ind_blks + dind_blks + tind_blks;
1057 }
1058
1059 /*
1060  * Calculate the number of metadata blocks need to reserve
1061  * to allocate given number of blocks
1062  */
1063 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1064 {
1065         if (!blocks)
1066                 return 0;
1067
1068         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1069                 return ext4_ext_calc_metadata_amount(inode, blocks);
1070
1071         return ext4_indirect_calc_metadata_amount(inode, blocks);
1072 }
1073
1074 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1075 {
1076         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1077         int total, mdb, mdb_free;
1078
1079         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1080         /* recalculate the number of metablocks still need to be reserved */
1081         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1082         mdb = ext4_calc_metadata_amount(inode, total);
1083
1084         /* figure out how many metablocks to release */
1085         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1086         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1087
1088         if (mdb_free) {
1089                 /* Account for allocated meta_blocks */
1090                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1091
1092                 /* update fs dirty blocks counter */
1093                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1094                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1095                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1096         }
1097
1098         /* update per-inode reservations */
1099         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1100         EXT4_I(inode)->i_reserved_data_blocks -= used;
1101         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1102
1103         /*
1104          * free those over-booking quota for metadata blocks
1105          */
1106         if (mdb_free)
1107                 vfs_dq_release_reservation_block(inode, mdb_free);
1108
1109         /*
1110          * If we have done all the pending block allocations and if
1111          * there aren't any writers on the inode, we can discard the
1112          * inode's preallocations.
1113          */
1114         if (!total && (atomic_read(&inode->i_writecount) == 0))
1115                 ext4_discard_preallocations(inode);
1116 }
1117
1118 static int check_block_validity(struct inode *inode, sector_t logical,
1119                                 sector_t phys, int len)
1120 {
1121         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1122                 ext4_error(inode->i_sb, "check_block_validity",
1123                            "inode #%lu logical block %llu mapped to %llu "
1124                            "(size %d)", inode->i_ino,
1125                            (unsigned long long) logical,
1126                            (unsigned long long) phys, len);
1127                 WARN_ON(1);
1128                 return -EIO;
1129         }
1130         return 0;
1131 }
1132
1133 /*
1134  * The ext4_get_blocks() function tries to look up the requested blocks,
1135  * and returns if the blocks are already mapped.
1136  *
1137  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1138  * and store the allocated blocks in the result buffer head and mark it
1139  * mapped.
1140  *
1141  * If file type is extents based, it will call ext4_ext_get_blocks(),
1142  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1143  * based files
1144  *
1145  * On success, it returns the number of blocks being mapped or allocate.
1146  * if create==0 and the blocks are pre-allocated and uninitialized block,
1147  * the result buffer head is unmapped. If the create ==1, it will make sure
1148  * the buffer head is mapped.
1149  *
1150  * It returns 0 if plain look up failed (blocks have not been allocated), in
1151  * that casem, buffer head is unmapped
1152  *
1153  * It returns the error in case of allocation failure.
1154  */
1155 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1156                     unsigned int max_blocks, struct buffer_head *bh,
1157                     int flags)
1158 {
1159         int retval;
1160
1161         clear_buffer_mapped(bh);
1162         clear_buffer_unwritten(bh);
1163
1164         /*
1165          * Try to see if we can get the block without requesting a new
1166          * file system block.
1167          */
1168         down_read((&EXT4_I(inode)->i_data_sem));
1169         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1170                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1171                                 bh, 0);
1172         } else {
1173                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1174                                              bh, 0);
1175         }
1176         up_read((&EXT4_I(inode)->i_data_sem));
1177
1178         if (retval > 0 && buffer_mapped(bh)) {
1179                 int ret = check_block_validity(inode, block,
1180                                                bh->b_blocknr, retval);
1181                 if (ret != 0)
1182                         return ret;
1183         }
1184
1185         /* If it is only a block(s) look up */
1186         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1187                 return retval;
1188
1189         /*
1190          * Returns if the blocks have already allocated
1191          *
1192          * Note that if blocks have been preallocated
1193          * ext4_ext_get_block() returns th create = 0
1194          * with buffer head unmapped.
1195          */
1196         if (retval > 0 && buffer_mapped(bh))
1197                 return retval;
1198
1199         /*
1200          * When we call get_blocks without the create flag, the
1201          * BH_Unwritten flag could have gotten set if the blocks
1202          * requested were part of a uninitialized extent.  We need to
1203          * clear this flag now that we are committed to convert all or
1204          * part of the uninitialized extent to be an initialized
1205          * extent.  This is because we need to avoid the combination
1206          * of BH_Unwritten and BH_Mapped flags being simultaneously
1207          * set on the buffer_head.
1208          */
1209         clear_buffer_unwritten(bh);
1210
1211         /*
1212          * New blocks allocate and/or writing to uninitialized extent
1213          * will possibly result in updating i_data, so we take
1214          * the write lock of i_data_sem, and call get_blocks()
1215          * with create == 1 flag.
1216          */
1217         down_write((&EXT4_I(inode)->i_data_sem));
1218
1219         /*
1220          * if the caller is from delayed allocation writeout path
1221          * we have already reserved fs blocks for allocation
1222          * let the underlying get_block() function know to
1223          * avoid double accounting
1224          */
1225         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1226                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1227         /*
1228          * We need to check for EXT4 here because migrate
1229          * could have changed the inode type in between
1230          */
1231         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1232                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1233                                               bh, flags);
1234         } else {
1235                 retval = ext4_ind_get_blocks(handle, inode, block,
1236                                              max_blocks, bh, flags);
1237
1238                 if (retval > 0 && buffer_new(bh)) {
1239                         /*
1240                          * We allocated new blocks which will result in
1241                          * i_data's format changing.  Force the migrate
1242                          * to fail by clearing migrate flags
1243                          */
1244                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1245                                                         ~EXT4_EXT_MIGRATE;
1246                 }
1247         }
1248
1249         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1250                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1251
1252         /*
1253          * Update reserved blocks/metadata blocks after successful
1254          * block allocation which had been deferred till now.
1255          */
1256         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1257                 ext4_da_update_reserve_space(inode, retval);
1258
1259         up_write((&EXT4_I(inode)->i_data_sem));
1260         if (retval > 0 && buffer_mapped(bh)) {
1261                 int ret = check_block_validity(inode, block,
1262                                                bh->b_blocknr, retval);
1263                 if (ret != 0)
1264                         return ret;
1265         }
1266         return retval;
1267 }
1268
1269 /* Maximum number of blocks we map for direct IO at once. */
1270 #define DIO_MAX_BLOCKS 4096
1271
1272 int ext4_get_block(struct inode *inode, sector_t iblock,
1273                    struct buffer_head *bh_result, int create)
1274 {
1275         handle_t *handle = ext4_journal_current_handle();
1276         int ret = 0, started = 0;
1277         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1278         int dio_credits;
1279
1280         if (create && !handle) {
1281                 /* Direct IO write... */
1282                 if (max_blocks > DIO_MAX_BLOCKS)
1283                         max_blocks = DIO_MAX_BLOCKS;
1284                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1285                 handle = ext4_journal_start(inode, dio_credits);
1286                 if (IS_ERR(handle)) {
1287                         ret = PTR_ERR(handle);
1288                         goto out;
1289                 }
1290                 started = 1;
1291         }
1292
1293         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1294                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1295         if (ret > 0) {
1296                 bh_result->b_size = (ret << inode->i_blkbits);
1297                 ret = 0;
1298         }
1299         if (started)
1300                 ext4_journal_stop(handle);
1301 out:
1302         return ret;
1303 }
1304
1305 /*
1306  * `handle' can be NULL if create is zero
1307  */
1308 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1309                                 ext4_lblk_t block, int create, int *errp)
1310 {
1311         struct buffer_head dummy;
1312         int fatal = 0, err;
1313         int flags = 0;
1314
1315         J_ASSERT(handle != NULL || create == 0);
1316
1317         dummy.b_state = 0;
1318         dummy.b_blocknr = -1000;
1319         buffer_trace_init(&dummy.b_history);
1320         if (create)
1321                 flags |= EXT4_GET_BLOCKS_CREATE;
1322         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1323         /*
1324          * ext4_get_blocks() returns number of blocks mapped. 0 in
1325          * case of a HOLE.
1326          */
1327         if (err > 0) {
1328                 if (err > 1)
1329                         WARN_ON(1);
1330                 err = 0;
1331         }
1332         *errp = err;
1333         if (!err && buffer_mapped(&dummy)) {
1334                 struct buffer_head *bh;
1335                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1336                 if (!bh) {
1337                         *errp = -EIO;
1338                         goto err;
1339                 }
1340                 if (buffer_new(&dummy)) {
1341                         J_ASSERT(create != 0);
1342                         J_ASSERT(handle != NULL);
1343
1344                         /*
1345                          * Now that we do not always journal data, we should
1346                          * keep in mind whether this should always journal the
1347                          * new buffer as metadata.  For now, regular file
1348                          * writes use ext4_get_block instead, so it's not a
1349                          * problem.
1350                          */
1351                         lock_buffer(bh);
1352                         BUFFER_TRACE(bh, "call get_create_access");
1353                         fatal = ext4_journal_get_create_access(handle, bh);
1354                         if (!fatal && !buffer_uptodate(bh)) {
1355                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1356                                 set_buffer_uptodate(bh);
1357                         }
1358                         unlock_buffer(bh);
1359                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1360                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1361                         if (!fatal)
1362                                 fatal = err;
1363                 } else {
1364                         BUFFER_TRACE(bh, "not a new buffer");
1365                 }
1366                 if (fatal) {
1367                         *errp = fatal;
1368                         brelse(bh);
1369                         bh = NULL;
1370                 }
1371                 return bh;
1372         }
1373 err:
1374         return NULL;
1375 }
1376
1377 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1378                                ext4_lblk_t block, int create, int *err)
1379 {
1380         struct buffer_head *bh;
1381
1382         bh = ext4_getblk(handle, inode, block, create, err);
1383         if (!bh)
1384                 return bh;
1385         if (buffer_uptodate(bh))
1386                 return bh;
1387         ll_rw_block(READ_META, 1, &bh);
1388         wait_on_buffer(bh);
1389         if (buffer_uptodate(bh))
1390                 return bh;
1391         put_bh(bh);
1392         *err = -EIO;
1393         return NULL;
1394 }
1395
1396 static int walk_page_buffers(handle_t *handle,
1397                              struct buffer_head *head,
1398                              unsigned from,
1399                              unsigned to,
1400                              int *partial,
1401                              int (*fn)(handle_t *handle,
1402                                        struct buffer_head *bh))
1403 {
1404         struct buffer_head *bh;
1405         unsigned block_start, block_end;
1406         unsigned blocksize = head->b_size;
1407         int err, ret = 0;
1408         struct buffer_head *next;
1409
1410         for (bh = head, block_start = 0;
1411              ret == 0 && (bh != head || !block_start);
1412              block_start = block_end, bh = next) {
1413                 next = bh->b_this_page;
1414                 block_end = block_start + blocksize;
1415                 if (block_end <= from || block_start >= to) {
1416                         if (partial && !buffer_uptodate(bh))
1417                                 *partial = 1;
1418                         continue;
1419                 }
1420                 err = (*fn)(handle, bh);
1421                 if (!ret)
1422                         ret = err;
1423         }
1424         return ret;
1425 }
1426
1427 /*
1428  * To preserve ordering, it is essential that the hole instantiation and
1429  * the data write be encapsulated in a single transaction.  We cannot
1430  * close off a transaction and start a new one between the ext4_get_block()
1431  * and the commit_write().  So doing the jbd2_journal_start at the start of
1432  * prepare_write() is the right place.
1433  *
1434  * Also, this function can nest inside ext4_writepage() ->
1435  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1436  * has generated enough buffer credits to do the whole page.  So we won't
1437  * block on the journal in that case, which is good, because the caller may
1438  * be PF_MEMALLOC.
1439  *
1440  * By accident, ext4 can be reentered when a transaction is open via
1441  * quota file writes.  If we were to commit the transaction while thus
1442  * reentered, there can be a deadlock - we would be holding a quota
1443  * lock, and the commit would never complete if another thread had a
1444  * transaction open and was blocking on the quota lock - a ranking
1445  * violation.
1446  *
1447  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1448  * will _not_ run commit under these circumstances because handle->h_ref
1449  * is elevated.  We'll still have enough credits for the tiny quotafile
1450  * write.
1451  */
1452 static int do_journal_get_write_access(handle_t *handle,
1453                                        struct buffer_head *bh)
1454 {
1455         if (!buffer_mapped(bh) || buffer_freed(bh))
1456                 return 0;
1457         return ext4_journal_get_write_access(handle, bh);
1458 }
1459
1460 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1461                             loff_t pos, unsigned len, unsigned flags,
1462                             struct page **pagep, void **fsdata)
1463 {
1464         struct inode *inode = mapping->host;
1465         int ret, needed_blocks;
1466         handle_t *handle;
1467         int retries = 0;
1468         struct page *page;
1469         pgoff_t index;
1470         unsigned from, to;
1471
1472         trace_ext4_write_begin(inode, pos, len, flags);
1473         /*
1474          * Reserve one block more for addition to orphan list in case
1475          * we allocate blocks but write fails for some reason
1476          */
1477         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1478         index = pos >> PAGE_CACHE_SHIFT;
1479         from = pos & (PAGE_CACHE_SIZE - 1);
1480         to = from + len;
1481
1482 retry:
1483         handle = ext4_journal_start(inode, needed_blocks);
1484         if (IS_ERR(handle)) {
1485                 ret = PTR_ERR(handle);
1486                 goto out;
1487         }
1488
1489         /* We cannot recurse into the filesystem as the transaction is already
1490          * started */
1491         flags |= AOP_FLAG_NOFS;
1492
1493         page = grab_cache_page_write_begin(mapping, index, flags);
1494         if (!page) {
1495                 ext4_journal_stop(handle);
1496                 ret = -ENOMEM;
1497                 goto out;
1498         }
1499         *pagep = page;
1500
1501         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1502                                 ext4_get_block);
1503
1504         if (!ret && ext4_should_journal_data(inode)) {
1505                 ret = walk_page_buffers(handle, page_buffers(page),
1506                                 from, to, NULL, do_journal_get_write_access);
1507         }
1508
1509         if (ret) {
1510                 unlock_page(page);
1511                 page_cache_release(page);
1512                 /*
1513                  * block_write_begin may have instantiated a few blocks
1514                  * outside i_size.  Trim these off again. Don't need
1515                  * i_size_read because we hold i_mutex.
1516                  *
1517                  * Add inode to orphan list in case we crash before
1518                  * truncate finishes
1519                  */
1520                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1521                         ext4_orphan_add(handle, inode);
1522
1523                 ext4_journal_stop(handle);
1524                 if (pos + len > inode->i_size) {
1525                         ext4_truncate(inode);
1526                         /*
1527                          * If truncate failed early the inode might
1528                          * still be on the orphan list; we need to
1529                          * make sure the inode is removed from the
1530                          * orphan list in that case.
1531                          */
1532                         if (inode->i_nlink)
1533                                 ext4_orphan_del(NULL, inode);
1534                 }
1535         }
1536
1537         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1538                 goto retry;
1539 out:
1540         return ret;
1541 }
1542
1543 /* For write_end() in data=journal mode */
1544 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1545 {
1546         if (!buffer_mapped(bh) || buffer_freed(bh))
1547                 return 0;
1548         set_buffer_uptodate(bh);
1549         return ext4_handle_dirty_metadata(handle, NULL, bh);
1550 }
1551
1552 static int ext4_generic_write_end(struct file *file,
1553                                   struct address_space *mapping,
1554                                   loff_t pos, unsigned len, unsigned copied,
1555                                   struct page *page, void *fsdata)
1556 {
1557         int i_size_changed = 0;
1558         struct inode *inode = mapping->host;
1559         handle_t *handle = ext4_journal_current_handle();
1560
1561         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1562
1563         /*
1564          * No need to use i_size_read() here, the i_size
1565          * cannot change under us because we hold i_mutex.
1566          *
1567          * But it's important to update i_size while still holding page lock:
1568          * page writeout could otherwise come in and zero beyond i_size.
1569          */
1570         if (pos + copied > inode->i_size) {
1571                 i_size_write(inode, pos + copied);
1572                 i_size_changed = 1;
1573         }
1574
1575         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1576                 /* We need to mark inode dirty even if
1577                  * new_i_size is less that inode->i_size
1578                  * bu greater than i_disksize.(hint delalloc)
1579                  */
1580                 ext4_update_i_disksize(inode, (pos + copied));
1581                 i_size_changed = 1;
1582         }
1583         unlock_page(page);
1584         page_cache_release(page);
1585
1586         /*
1587          * Don't mark the inode dirty under page lock. First, it unnecessarily
1588          * makes the holding time of page lock longer. Second, it forces lock
1589          * ordering of page lock and transaction start for journaling
1590          * filesystems.
1591          */
1592         if (i_size_changed)
1593                 ext4_mark_inode_dirty(handle, inode);
1594
1595         return copied;
1596 }
1597
1598 /*
1599  * We need to pick up the new inode size which generic_commit_write gave us
1600  * `file' can be NULL - eg, when called from page_symlink().
1601  *
1602  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1603  * buffers are managed internally.
1604  */
1605 static int ext4_ordered_write_end(struct file *file,
1606                                   struct address_space *mapping,
1607                                   loff_t pos, unsigned len, unsigned copied,
1608                                   struct page *page, void *fsdata)
1609 {
1610         handle_t *handle = ext4_journal_current_handle();
1611         struct inode *inode = mapping->host;
1612         int ret = 0, ret2;
1613
1614         trace_ext4_ordered_write_end(inode, pos, len, copied);
1615         ret = ext4_jbd2_file_inode(handle, inode);
1616
1617         if (ret == 0) {
1618                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1619                                                         page, fsdata);
1620                 copied = ret2;
1621                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1622                         /* if we have allocated more blocks and copied
1623                          * less. We will have blocks allocated outside
1624                          * inode->i_size. So truncate them
1625                          */
1626                         ext4_orphan_add(handle, inode);
1627                 if (ret2 < 0)
1628                         ret = ret2;
1629         }
1630         ret2 = ext4_journal_stop(handle);
1631         if (!ret)
1632                 ret = ret2;
1633
1634         if (pos + len > inode->i_size) {
1635                 ext4_truncate(inode);
1636                 /*
1637                  * If truncate failed early the inode might still be
1638                  * on the orphan list; we need to make sure the inode
1639                  * is removed from the orphan list in that case.
1640                  */
1641                 if (inode->i_nlink)
1642                         ext4_orphan_del(NULL, inode);
1643         }
1644
1645
1646         return ret ? ret : copied;
1647 }
1648
1649 static int ext4_writeback_write_end(struct file *file,
1650                                     struct address_space *mapping,
1651                                     loff_t pos, unsigned len, unsigned copied,
1652                                     struct page *page, void *fsdata)
1653 {
1654         handle_t *handle = ext4_journal_current_handle();
1655         struct inode *inode = mapping->host;
1656         int ret = 0, ret2;
1657
1658         trace_ext4_writeback_write_end(inode, pos, len, copied);
1659         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1660                                                         page, fsdata);
1661         copied = ret2;
1662         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1663                 /* if we have allocated more blocks and copied
1664                  * less. We will have blocks allocated outside
1665                  * inode->i_size. So truncate them
1666                  */
1667                 ext4_orphan_add(handle, inode);
1668
1669         if (ret2 < 0)
1670                 ret = ret2;
1671
1672         ret2 = ext4_journal_stop(handle);
1673         if (!ret)
1674                 ret = ret2;
1675
1676         if (pos + len > inode->i_size) {
1677                 ext4_truncate(inode);
1678                 /*
1679                  * If truncate failed early the inode might still be
1680                  * on the orphan list; we need to make sure the inode
1681                  * is removed from the orphan list in that case.
1682                  */
1683                 if (inode->i_nlink)
1684                         ext4_orphan_del(NULL, inode);
1685         }
1686
1687         return ret ? ret : copied;
1688 }
1689
1690 static int ext4_journalled_write_end(struct file *file,
1691                                      struct address_space *mapping,
1692                                      loff_t pos, unsigned len, unsigned copied,
1693                                      struct page *page, void *fsdata)
1694 {
1695         handle_t *handle = ext4_journal_current_handle();
1696         struct inode *inode = mapping->host;
1697         int ret = 0, ret2;
1698         int partial = 0;
1699         unsigned from, to;
1700         loff_t new_i_size;
1701
1702         trace_ext4_journalled_write_end(inode, pos, len, copied);
1703         from = pos & (PAGE_CACHE_SIZE - 1);
1704         to = from + len;
1705
1706         if (copied < len) {
1707                 if (!PageUptodate(page))
1708                         copied = 0;
1709                 page_zero_new_buffers(page, from+copied, to);
1710         }
1711
1712         ret = walk_page_buffers(handle, page_buffers(page), from,
1713                                 to, &partial, write_end_fn);
1714         if (!partial)
1715                 SetPageUptodate(page);
1716         new_i_size = pos + copied;
1717         if (new_i_size > inode->i_size)
1718                 i_size_write(inode, pos+copied);
1719         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1720         if (new_i_size > EXT4_I(inode)->i_disksize) {
1721                 ext4_update_i_disksize(inode, new_i_size);
1722                 ret2 = ext4_mark_inode_dirty(handle, inode);
1723                 if (!ret)
1724                         ret = ret2;
1725         }
1726
1727         unlock_page(page);
1728         page_cache_release(page);
1729         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1730                 /* if we have allocated more blocks and copied
1731                  * less. We will have blocks allocated outside
1732                  * inode->i_size. So truncate them
1733                  */
1734                 ext4_orphan_add(handle, inode);
1735
1736         ret2 = ext4_journal_stop(handle);
1737         if (!ret)
1738                 ret = ret2;
1739         if (pos + len > inode->i_size) {
1740                 ext4_truncate(inode);
1741                 /*
1742                  * If truncate failed early the inode might still be
1743                  * on the orphan list; we need to make sure the inode
1744                  * is removed from the orphan list in that case.
1745                  */
1746                 if (inode->i_nlink)
1747                         ext4_orphan_del(NULL, inode);
1748         }
1749
1750         return ret ? ret : copied;
1751 }
1752
1753 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1754 {
1755         int retries = 0;
1756         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757         unsigned long md_needed, mdblocks, total = 0;
1758
1759         /*
1760          * recalculate the amount of metadata blocks to reserve
1761          * in order to allocate nrblocks
1762          * worse case is one extent per block
1763          */
1764 repeat:
1765         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1766         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1767         mdblocks = ext4_calc_metadata_amount(inode, total);
1768         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1769
1770         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1771         total = md_needed + nrblocks;
1772
1773         /*
1774          * Make quota reservation here to prevent quota overflow
1775          * later. Real quota accounting is done at pages writeout
1776          * time.
1777          */
1778         if (vfs_dq_reserve_block(inode, total)) {
1779                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1780                 return -EDQUOT;
1781         }
1782
1783         if (ext4_claim_free_blocks(sbi, total)) {
1784                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1785                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1786                         yield();
1787                         goto repeat;
1788                 }
1789                 vfs_dq_release_reservation_block(inode, total);
1790                 return -ENOSPC;
1791         }
1792         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1793         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1794
1795         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1796         return 0;       /* success */
1797 }
1798
1799 static void ext4_da_release_space(struct inode *inode, int to_free)
1800 {
1801         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1802         int total, mdb, mdb_free, release;
1803
1804         if (!to_free)
1805                 return;         /* Nothing to release, exit */
1806
1807         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1808
1809         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1810                 /*
1811                  * if there is no reserved blocks, but we try to free some
1812                  * then the counter is messed up somewhere.
1813                  * but since this function is called from invalidate
1814                  * page, it's harmless to return without any action
1815                  */
1816                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1817                             "blocks for inode %lu, but there is no reserved "
1818                             "data blocks\n", to_free, inode->i_ino);
1819                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1820                 return;
1821         }
1822
1823         /* recalculate the number of metablocks still need to be reserved */
1824         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1825         mdb = ext4_calc_metadata_amount(inode, total);
1826
1827         /* figure out how many metablocks to release */
1828         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1829         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1830
1831         release = to_free + mdb_free;
1832
1833         /* update fs dirty blocks counter for truncate case */
1834         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1835
1836         /* update per-inode reservations */
1837         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1838         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1839
1840         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1841         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1842         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1843
1844         vfs_dq_release_reservation_block(inode, release);
1845 }
1846
1847 static void ext4_da_page_release_reservation(struct page *page,
1848                                              unsigned long offset)
1849 {
1850         int to_release = 0;
1851         struct buffer_head *head, *bh;
1852         unsigned int curr_off = 0;
1853
1854         head = page_buffers(page);
1855         bh = head;
1856         do {
1857                 unsigned int next_off = curr_off + bh->b_size;
1858
1859                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1860                         to_release++;
1861                         clear_buffer_delay(bh);
1862                 }
1863                 curr_off = next_off;
1864         } while ((bh = bh->b_this_page) != head);
1865         ext4_da_release_space(page->mapping->host, to_release);
1866 }
1867
1868 /*
1869  * Delayed allocation stuff
1870  */
1871
1872 struct mpage_da_data {
1873         struct inode *inode;
1874         sector_t b_blocknr;             /* start block number of extent */
1875         size_t b_size;                  /* size of extent */
1876         unsigned long b_state;          /* state of the extent */
1877         unsigned long first_page, next_page;    /* extent of pages */
1878         struct writeback_control *wbc;
1879         int io_done;
1880         int pages_written;
1881         int retval;
1882 };
1883
1884 /*
1885  * mpage_da_submit_io - walks through extent of pages and try to write
1886  * them with writepage() call back
1887  *
1888  * @mpd->inode: inode
1889  * @mpd->first_page: first page of the extent
1890  * @mpd->next_page: page after the last page of the extent
1891  *
1892  * By the time mpage_da_submit_io() is called we expect all blocks
1893  * to be allocated. this may be wrong if allocation failed.
1894  *
1895  * As pages are already locked by write_cache_pages(), we can't use it
1896  */
1897 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1898 {
1899         long pages_skipped;
1900         struct pagevec pvec;
1901         unsigned long index, end;
1902         int ret = 0, err, nr_pages, i;
1903         struct inode *inode = mpd->inode;
1904         struct address_space *mapping = inode->i_mapping;
1905
1906         BUG_ON(mpd->next_page <= mpd->first_page);
1907         /*
1908          * We need to start from the first_page to the next_page - 1
1909          * to make sure we also write the mapped dirty buffer_heads.
1910          * If we look at mpd->b_blocknr we would only be looking
1911          * at the currently mapped buffer_heads.
1912          */
1913         index = mpd->first_page;
1914         end = mpd->next_page - 1;
1915
1916         pagevec_init(&pvec, 0);
1917         while (index <= end) {
1918                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1919                 if (nr_pages == 0)
1920                         break;
1921                 for (i = 0; i < nr_pages; i++) {
1922                         struct page *page = pvec.pages[i];
1923
1924                         index = page->index;
1925                         if (index > end)
1926                                 break;
1927                         index++;
1928
1929                         BUG_ON(!PageLocked(page));
1930                         BUG_ON(PageWriteback(page));
1931
1932                         pages_skipped = mpd->wbc->pages_skipped;
1933                         err = mapping->a_ops->writepage(page, mpd->wbc);
1934                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1935                                 /*
1936                                  * have successfully written the page
1937                                  * without skipping the same
1938                                  */
1939                                 mpd->pages_written++;
1940                         /*
1941                          * In error case, we have to continue because
1942                          * remaining pages are still locked
1943                          * XXX: unlock and re-dirty them?
1944                          */
1945                         if (ret == 0)
1946                                 ret = err;
1947                 }
1948                 pagevec_release(&pvec);
1949         }
1950         return ret;
1951 }
1952
1953 /*
1954  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1955  *
1956  * @mpd->inode - inode to walk through
1957  * @exbh->b_blocknr - first block on a disk
1958  * @exbh->b_size - amount of space in bytes
1959  * @logical - first logical block to start assignment with
1960  *
1961  * the function goes through all passed space and put actual disk
1962  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1963  */
1964 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1965                                  struct buffer_head *exbh)
1966 {
1967         struct inode *inode = mpd->inode;
1968         struct address_space *mapping = inode->i_mapping;
1969         int blocks = exbh->b_size >> inode->i_blkbits;
1970         sector_t pblock = exbh->b_blocknr, cur_logical;
1971         struct buffer_head *head, *bh;
1972         pgoff_t index, end;
1973         struct pagevec pvec;
1974         int nr_pages, i;
1975
1976         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1977         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1978         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1979
1980         pagevec_init(&pvec, 0);
1981
1982         while (index <= end) {
1983                 /* XXX: optimize tail */
1984                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1985                 if (nr_pages == 0)
1986                         break;
1987                 for (i = 0; i < nr_pages; i++) {
1988                         struct page *page = pvec.pages[i];
1989
1990                         index = page->index;
1991                         if (index > end)
1992                                 break;
1993                         index++;
1994
1995                         BUG_ON(!PageLocked(page));
1996                         BUG_ON(PageWriteback(page));
1997                         BUG_ON(!page_has_buffers(page));
1998
1999                         bh = page_buffers(page);
2000                         head = bh;
2001
2002                         /* skip blocks out of the range */
2003                         do {
2004                                 if (cur_logical >= logical)
2005                                         break;
2006                                 cur_logical++;
2007                         } while ((bh = bh->b_this_page) != head);
2008
2009                         do {
2010                                 if (cur_logical >= logical + blocks)
2011                                         break;
2012
2013                                 if (buffer_delay(bh) ||
2014                                                 buffer_unwritten(bh)) {
2015
2016                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2017
2018                                         if (buffer_delay(bh)) {
2019                                                 clear_buffer_delay(bh);
2020                                                 bh->b_blocknr = pblock;
2021                                         } else {
2022                                                 /*
2023                                                  * unwritten already should have
2024                                                  * blocknr assigned. Verify that
2025                                                  */
2026                                                 clear_buffer_unwritten(bh);
2027                                                 BUG_ON(bh->b_blocknr != pblock);
2028                                         }
2029
2030                                 } else if (buffer_mapped(bh))
2031                                         BUG_ON(bh->b_blocknr != pblock);
2032
2033                                 cur_logical++;
2034                                 pblock++;
2035                         } while ((bh = bh->b_this_page) != head);
2036                 }
2037                 pagevec_release(&pvec);
2038         }
2039 }
2040
2041
2042 /*
2043  * __unmap_underlying_blocks - just a helper function to unmap
2044  * set of blocks described by @bh
2045  */
2046 static inline void __unmap_underlying_blocks(struct inode *inode,
2047                                              struct buffer_head *bh)
2048 {
2049         struct block_device *bdev = inode->i_sb->s_bdev;
2050         int blocks, i;
2051
2052         blocks = bh->b_size >> inode->i_blkbits;
2053         for (i = 0; i < blocks; i++)
2054                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2055 }
2056
2057 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2058                                         sector_t logical, long blk_cnt)
2059 {
2060         int nr_pages, i;
2061         pgoff_t index, end;
2062         struct pagevec pvec;
2063         struct inode *inode = mpd->inode;
2064         struct address_space *mapping = inode->i_mapping;
2065
2066         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067         end   = (logical + blk_cnt - 1) >>
2068                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069         while (index <= end) {
2070                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2071                 if (nr_pages == 0)
2072                         break;
2073                 for (i = 0; i < nr_pages; i++) {
2074                         struct page *page = pvec.pages[i];
2075                         index = page->index;
2076                         if (index > end)
2077                                 break;
2078                         index++;
2079
2080                         BUG_ON(!PageLocked(page));
2081                         BUG_ON(PageWriteback(page));
2082                         block_invalidatepage(page, 0);
2083                         ClearPageUptodate(page);
2084                         unlock_page(page);
2085                 }
2086         }
2087         return;
2088 }
2089
2090 static void ext4_print_free_blocks(struct inode *inode)
2091 {
2092         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2093         printk(KERN_EMERG "Total free blocks count %lld\n",
2094                         ext4_count_free_blocks(inode->i_sb));
2095         printk(KERN_EMERG "Free/Dirty block details\n");
2096         printk(KERN_EMERG "free_blocks=%lld\n",
2097                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2098         printk(KERN_EMERG "dirty_blocks=%lld\n",
2099                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2100         printk(KERN_EMERG "Block reservation details\n");
2101         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2102                         EXT4_I(inode)->i_reserved_data_blocks);
2103         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2104                         EXT4_I(inode)->i_reserved_meta_blocks);
2105         return;
2106 }
2107
2108 /*
2109  * mpage_da_map_blocks - go through given space
2110  *
2111  * @mpd - bh describing space
2112  *
2113  * The function skips space we know is already mapped to disk blocks.
2114  *
2115  */
2116 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2117 {
2118         int err, blks, get_blocks_flags;
2119         struct buffer_head new;
2120         sector_t next = mpd->b_blocknr;
2121         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2122         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2123         handle_t *handle = NULL;
2124
2125         /*
2126          * We consider only non-mapped and non-allocated blocks
2127          */
2128         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2129                 !(mpd->b_state & (1 << BH_Delay)) &&
2130                 !(mpd->b_state & (1 << BH_Unwritten)))
2131                 return 0;
2132
2133         /*
2134          * If we didn't accumulate anything to write simply return
2135          */
2136         if (!mpd->b_size)
2137                 return 0;
2138
2139         handle = ext4_journal_current_handle();
2140         BUG_ON(!handle);
2141
2142         /*
2143          * Call ext4_get_blocks() to allocate any delayed allocation
2144          * blocks, or to convert an uninitialized extent to be
2145          * initialized (in the case where we have written into
2146          * one or more preallocated blocks).
2147          *
2148          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2149          * indicate that we are on the delayed allocation path.  This
2150          * affects functions in many different parts of the allocation
2151          * call path.  This flag exists primarily because we don't
2152          * want to change *many* call functions, so ext4_get_blocks()
2153          * will set the magic i_delalloc_reserved_flag once the
2154          * inode's allocation semaphore is taken.
2155          *
2156          * If the blocks in questions were delalloc blocks, set
2157          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2158          * variables are updated after the blocks have been allocated.
2159          */
2160         new.b_state = 0;
2161         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2162                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2163         if (mpd->b_state & (1 << BH_Delay))
2164                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2165         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2166                                &new, get_blocks_flags);
2167         if (blks < 0) {
2168                 err = blks;
2169                 /*
2170                  * If get block returns with error we simply
2171                  * return. Later writepage will redirty the page and
2172                  * writepages will find the dirty page again
2173                  */
2174                 if (err == -EAGAIN)
2175                         return 0;
2176
2177                 if (err == -ENOSPC &&
2178                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2179                         mpd->retval = err;
2180                         return 0;
2181                 }
2182
2183                 /*
2184                  * get block failure will cause us to loop in
2185                  * writepages, because a_ops->writepage won't be able
2186                  * to make progress. The page will be redirtied by
2187                  * writepage and writepages will again try to write
2188                  * the same.
2189                  */
2190                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2191                                   "at logical offset %llu with max blocks "
2192                                   "%zd with error %d\n",
2193                                   __func__, mpd->inode->i_ino,
2194                                   (unsigned long long)next,
2195                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2196                 printk(KERN_EMERG "This should not happen.!! "
2197                                         "Data will be lost\n");
2198                 if (err == -ENOSPC) {
2199                         ext4_print_free_blocks(mpd->inode);
2200                 }
2201                 /* invalidate all the pages */
2202                 ext4_da_block_invalidatepages(mpd, next,
2203                                 mpd->b_size >> mpd->inode->i_blkbits);
2204                 return err;
2205         }
2206         BUG_ON(blks == 0);
2207
2208         new.b_size = (blks << mpd->inode->i_blkbits);
2209
2210         if (buffer_new(&new))
2211                 __unmap_underlying_blocks(mpd->inode, &new);
2212
2213         /*
2214          * If blocks are delayed marked, we need to
2215          * put actual blocknr and drop delayed bit
2216          */
2217         if ((mpd->b_state & (1 << BH_Delay)) ||
2218             (mpd->b_state & (1 << BH_Unwritten)))
2219                 mpage_put_bnr_to_bhs(mpd, next, &new);
2220
2221         if (ext4_should_order_data(mpd->inode)) {
2222                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2223                 if (err)
2224                         return err;
2225         }
2226
2227         /*
2228          * Update on-disk size along with block allocation.
2229          */
2230         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2231         if (disksize > i_size_read(mpd->inode))
2232                 disksize = i_size_read(mpd->inode);
2233         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2234                 ext4_update_i_disksize(mpd->inode, disksize);
2235                 return ext4_mark_inode_dirty(handle, mpd->inode);
2236         }
2237
2238         return 0;
2239 }
2240
2241 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2242                 (1 << BH_Delay) | (1 << BH_Unwritten))
2243
2244 /*
2245  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2246  *
2247  * @mpd->lbh - extent of blocks
2248  * @logical - logical number of the block in the file
2249  * @bh - bh of the block (used to access block's state)
2250  *
2251  * the function is used to collect contig. blocks in same state
2252  */
2253 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2254                                    sector_t logical, size_t b_size,
2255                                    unsigned long b_state)
2256 {
2257         sector_t next;
2258         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2259
2260         /* check if thereserved journal credits might overflow */
2261         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2262                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2263                         /*
2264                          * With non-extent format we are limited by the journal
2265                          * credit available.  Total credit needed to insert
2266                          * nrblocks contiguous blocks is dependent on the
2267                          * nrblocks.  So limit nrblocks.
2268                          */
2269                         goto flush_it;
2270                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2271                                 EXT4_MAX_TRANS_DATA) {
2272                         /*
2273                          * Adding the new buffer_head would make it cross the
2274                          * allowed limit for which we have journal credit
2275                          * reserved. So limit the new bh->b_size
2276                          */
2277                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2278                                                 mpd->inode->i_blkbits;
2279                         /* we will do mpage_da_submit_io in the next loop */
2280                 }
2281         }
2282         /*
2283          * First block in the extent
2284          */
2285         if (mpd->b_size == 0) {
2286                 mpd->b_blocknr = logical;
2287                 mpd->b_size = b_size;
2288                 mpd->b_state = b_state & BH_FLAGS;
2289                 return;
2290         }
2291
2292         next = mpd->b_blocknr + nrblocks;
2293         /*
2294          * Can we merge the block to our big extent?
2295          */
2296         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2297                 mpd->b_size += b_size;
2298                 return;
2299         }
2300
2301 flush_it:
2302         /*
2303          * We couldn't merge the block to our extent, so we
2304          * need to flush current  extent and start new one
2305          */
2306         if (mpage_da_map_blocks(mpd) == 0)
2307                 mpage_da_submit_io(mpd);
2308         mpd->io_done = 1;
2309         return;
2310 }
2311
2312 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2313 {
2314         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2315 }
2316
2317 /*
2318  * __mpage_da_writepage - finds extent of pages and blocks
2319  *
2320  * @page: page to consider
2321  * @wbc: not used, we just follow rules
2322  * @data: context
2323  *
2324  * The function finds extents of pages and scan them for all blocks.
2325  */
2326 static int __mpage_da_writepage(struct page *page,
2327                                 struct writeback_control *wbc, void *data)
2328 {
2329         struct mpage_da_data *mpd = data;
2330         struct inode *inode = mpd->inode;
2331         struct buffer_head *bh, *head;
2332         sector_t logical;
2333
2334         if (mpd->io_done) {
2335                 /*
2336                  * Rest of the page in the page_vec
2337                  * redirty then and skip then. We will
2338                  * try to to write them again after
2339                  * starting a new transaction
2340                  */
2341                 redirty_page_for_writepage(wbc, page);
2342                 unlock_page(page);
2343                 return MPAGE_DA_EXTENT_TAIL;
2344         }
2345         /*
2346          * Can we merge this page to current extent?
2347          */
2348         if (mpd->next_page != page->index) {
2349                 /*
2350                  * Nope, we can't. So, we map non-allocated blocks
2351                  * and start IO on them using writepage()
2352                  */
2353                 if (mpd->next_page != mpd->first_page) {
2354                         if (mpage_da_map_blocks(mpd) == 0)
2355                                 mpage_da_submit_io(mpd);
2356                         /*
2357                          * skip rest of the page in the page_vec
2358                          */
2359                         mpd->io_done = 1;
2360                         redirty_page_for_writepage(wbc, page);
2361                         unlock_page(page);
2362                         return MPAGE_DA_EXTENT_TAIL;
2363                 }
2364
2365                 /*
2366                  * Start next extent of pages ...
2367                  */
2368                 mpd->first_page = page->index;
2369
2370                 /*
2371                  * ... and blocks
2372                  */
2373                 mpd->b_size = 0;
2374                 mpd->b_state = 0;
2375                 mpd->b_blocknr = 0;
2376         }
2377
2378         mpd->next_page = page->index + 1;
2379         logical = (sector_t) page->index <<
2380                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2381
2382         if (!page_has_buffers(page)) {
2383                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2384                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2385                 if (mpd->io_done)
2386                         return MPAGE_DA_EXTENT_TAIL;
2387         } else {
2388                 /*
2389                  * Page with regular buffer heads, just add all dirty ones
2390                  */
2391                 head = page_buffers(page);
2392                 bh = head;
2393                 do {
2394                         BUG_ON(buffer_locked(bh));
2395                         /*
2396                          * We need to try to allocate
2397                          * unmapped blocks in the same page.
2398                          * Otherwise we won't make progress
2399                          * with the page in ext4_writepage
2400                          */
2401                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2402                                 mpage_add_bh_to_extent(mpd, logical,
2403                                                        bh->b_size,
2404                                                        bh->b_state);
2405                                 if (mpd->io_done)
2406                                         return MPAGE_DA_EXTENT_TAIL;
2407                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2408                                 /*
2409                                  * mapped dirty buffer. We need to update
2410                                  * the b_state because we look at
2411                                  * b_state in mpage_da_map_blocks. We don't
2412                                  * update b_size because if we find an
2413                                  * unmapped buffer_head later we need to
2414                                  * use the b_state flag of that buffer_head.
2415                                  */
2416                                 if (mpd->b_size == 0)
2417                                         mpd->b_state = bh->b_state & BH_FLAGS;
2418                         }
2419                         logical++;
2420                 } while ((bh = bh->b_this_page) != head);
2421         }
2422
2423         return 0;
2424 }
2425
2426 /*
2427  * This is a special get_blocks_t callback which is used by
2428  * ext4_da_write_begin().  It will either return mapped block or
2429  * reserve space for a single block.
2430  *
2431  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2432  * We also have b_blocknr = -1 and b_bdev initialized properly
2433  *
2434  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2435  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2436  * initialized properly.
2437  */
2438 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2439                                   struct buffer_head *bh_result, int create)
2440 {
2441         int ret = 0;
2442         sector_t invalid_block = ~((sector_t) 0xffff);
2443
2444         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2445                 invalid_block = ~0;
2446
2447         BUG_ON(create == 0);
2448         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2449
2450         /*
2451          * first, we need to know whether the block is allocated already
2452          * preallocated blocks are unmapped but should treated
2453          * the same as allocated blocks.
2454          */
2455         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2456         if ((ret == 0) && !buffer_delay(bh_result)) {
2457                 /* the block isn't (pre)allocated yet, let's reserve space */
2458                 /*
2459                  * XXX: __block_prepare_write() unmaps passed block,
2460                  * is it OK?
2461                  */
2462                 ret = ext4_da_reserve_space(inode, 1);
2463                 if (ret)
2464                         /* not enough space to reserve */
2465                         return ret;
2466
2467                 map_bh(bh_result, inode->i_sb, invalid_block);
2468                 set_buffer_new(bh_result);
2469                 set_buffer_delay(bh_result);
2470         } else if (ret > 0) {
2471                 bh_result->b_size = (ret << inode->i_blkbits);
2472                 if (buffer_unwritten(bh_result)) {
2473                         /* A delayed write to unwritten bh should
2474                          * be marked new and mapped.  Mapped ensures
2475                          * that we don't do get_block multiple times
2476                          * when we write to the same offset and new
2477                          * ensures that we do proper zero out for
2478                          * partial write.
2479                          */
2480                         set_buffer_new(bh_result);
2481                         set_buffer_mapped(bh_result);
2482                 }
2483                 ret = 0;
2484         }
2485
2486         return ret;
2487 }
2488
2489 /*
2490  * This function is used as a standard get_block_t calback function
2491  * when there is no desire to allocate any blocks.  It is used as a
2492  * callback function for block_prepare_write(), nobh_writepage(), and
2493  * block_write_full_page().  These functions should only try to map a
2494  * single block at a time.
2495  *
2496  * Since this function doesn't do block allocations even if the caller
2497  * requests it by passing in create=1, it is critically important that
2498  * any caller checks to make sure that any buffer heads are returned
2499  * by this function are either all already mapped or marked for
2500  * delayed allocation before calling nobh_writepage() or
2501  * block_write_full_page().  Otherwise, b_blocknr could be left
2502  * unitialized, and the page write functions will be taken by
2503  * surprise.
2504  */
2505 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2506                                    struct buffer_head *bh_result, int create)
2507 {
2508         int ret = 0;
2509         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2510
2511         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2512
2513         /*
2514          * we don't want to do block allocation in writepage
2515          * so call get_block_wrap with create = 0
2516          */
2517         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2518         if (ret > 0) {
2519                 bh_result->b_size = (ret << inode->i_blkbits);
2520                 ret = 0;
2521         }
2522         return ret;
2523 }
2524
2525 /*
2526  * Note that we don't need to start a transaction unless we're journaling data
2527  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2528  * need to file the inode to the transaction's list in ordered mode because if
2529  * we are writing back data added by write(), the inode is already there and if
2530  * we are writing back data modified via mmap(), noone guarantees in which
2531  * transaction the data will hit the disk. In case we are journaling data, we
2532  * cannot start transaction directly because transaction start ranks above page
2533  * lock so we have to do some magic.
2534  *
2535  * This function can get called via...
2536  *   - ext4_da_writepages after taking page lock (have journal handle)
2537  *   - journal_submit_inode_data_buffers (no journal handle)
2538  *   - shrink_page_list via pdflush (no journal handle)
2539  *   - grab_page_cache when doing write_begin (have journal handle)
2540  *
2541  * We don't do any block allocation in this function. If we have page with
2542  * multiple blocks we need to write those buffer_heads that are mapped. This
2543  * is important for mmaped based write. So if we do with blocksize 1K
2544  * truncate(f, 1024);
2545  * a = mmap(f, 0, 4096);
2546  * a[0] = 'a';
2547  * truncate(f, 4096);
2548  * we have in the page first buffer_head mapped via page_mkwrite call back
2549  * but other bufer_heads would be unmapped but dirty(dirty done via the
2550  * do_wp_page). So writepage should write the first block. If we modify
2551  * the mmap area beyond 1024 we will again get a page_fault and the
2552  * page_mkwrite callback will do the block allocation and mark the
2553  * buffer_heads mapped.
2554  *
2555  * We redirty the page if we have any buffer_heads that is either delay or
2556  * unwritten in the page.
2557  *
2558  * We can get recursively called as show below.
2559  *
2560  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2561  *              ext4_writepage()
2562  *
2563  * But since we don't do any block allocation we should not deadlock.
2564  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2565  */
2566 static int ext4_writepage(struct page *page,
2567                              struct writeback_control *wbc)
2568 {
2569         int ret = 0;
2570         loff_t size;
2571         unsigned int len;
2572         struct buffer_head *page_bufs;
2573         struct inode *inode = page->mapping->host;
2574
2575         trace_ext4_writepage(inode, page);
2576         size = i_size_read(inode);
2577         if (page->index == size >> PAGE_CACHE_SHIFT)
2578                 len = size & ~PAGE_CACHE_MASK;
2579         else
2580                 len = PAGE_CACHE_SIZE;
2581
2582         if (page_has_buffers(page)) {
2583                 page_bufs = page_buffers(page);
2584                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2585                                         ext4_bh_delay_or_unwritten)) {
2586                         /*
2587                          * We don't want to do  block allocation
2588                          * So redirty the page and return
2589                          * We may reach here when we do a journal commit
2590                          * via journal_submit_inode_data_buffers.
2591                          * If we don't have mapping block we just ignore
2592                          * them. We can also reach here via shrink_page_list
2593                          */
2594                         redirty_page_for_writepage(wbc, page);
2595                         unlock_page(page);
2596                         return 0;
2597                 }
2598         } else {
2599                 /*
2600                  * The test for page_has_buffers() is subtle:
2601                  * We know the page is dirty but it lost buffers. That means
2602                  * that at some moment in time after write_begin()/write_end()
2603                  * has been called all buffers have been clean and thus they
2604                  * must have been written at least once. So they are all
2605                  * mapped and we can happily proceed with mapping them
2606                  * and writing the page.
2607                  *
2608                  * Try to initialize the buffer_heads and check whether
2609                  * all are mapped and non delay. We don't want to
2610                  * do block allocation here.
2611                  */
2612                 ret = block_prepare_write(page, 0, len,
2613                                           noalloc_get_block_write);
2614                 if (!ret) {
2615                         page_bufs = page_buffers(page);
2616                         /* check whether all are mapped and non delay */
2617                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2618                                                 ext4_bh_delay_or_unwritten)) {
2619                                 redirty_page_for_writepage(wbc, page);
2620                                 unlock_page(page);
2621                                 return 0;
2622                         }
2623                 } else {
2624                         /*
2625                          * We can't do block allocation here
2626                          * so just redity the page and unlock
2627                          * and return
2628                          */
2629                         redirty_page_for_writepage(wbc, page);
2630                         unlock_page(page);
2631                         return 0;
2632                 }
2633                 /* now mark the buffer_heads as dirty and uptodate */
2634                 block_commit_write(page, 0, len);
2635         }
2636
2637         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2638                 /*
2639                  * It's mmapped pagecache.  Add buffers and journal it.  There
2640                  * doesn't seem much point in redirtying the page here.
2641                  */
2642                 ClearPageChecked(page);
2643                 return __ext4_journalled_writepage(page, wbc, len);
2644         }
2645
2646         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2647                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2648         else
2649                 ret = block_write_full_page(page, noalloc_get_block_write,
2650                                             wbc);
2651
2652         return ret;
2653 }
2654
2655 /*
2656  * This is called via ext4_da_writepages() to
2657  * calulate the total number of credits to reserve to fit
2658  * a single extent allocation into a single transaction,
2659  * ext4_da_writpeages() will loop calling this before
2660  * the block allocation.
2661  */
2662
2663 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2664 {
2665         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2666
2667         /*
2668          * With non-extent format the journal credit needed to
2669          * insert nrblocks contiguous block is dependent on
2670          * number of contiguous block. So we will limit
2671          * number of contiguous block to a sane value
2672          */
2673         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2674             (max_blocks > EXT4_MAX_TRANS_DATA))
2675                 max_blocks = EXT4_MAX_TRANS_DATA;
2676
2677         return ext4_chunk_trans_blocks(inode, max_blocks);
2678 }
2679
2680 static int ext4_da_writepages(struct address_space *mapping,
2681                               struct writeback_control *wbc)
2682 {
2683         pgoff_t index;
2684         int range_whole = 0;
2685         handle_t *handle = NULL;
2686         struct mpage_da_data mpd;
2687         struct inode *inode = mapping->host;
2688         int no_nrwrite_index_update;
2689         int pages_written = 0;
2690         long pages_skipped;
2691         int range_cyclic, cycled = 1, io_done = 0;
2692         int needed_blocks, ret = 0, nr_to_writebump = 0;
2693         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2694
2695         trace_ext4_da_writepages(inode, wbc);
2696
2697         /*
2698          * No pages to write? This is mainly a kludge to avoid starting
2699          * a transaction for special inodes like journal inode on last iput()
2700          * because that could violate lock ordering on umount
2701          */
2702         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2703                 return 0;
2704
2705         /*
2706          * If the filesystem has aborted, it is read-only, so return
2707          * right away instead of dumping stack traces later on that
2708          * will obscure the real source of the problem.  We test
2709          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2710          * the latter could be true if the filesystem is mounted
2711          * read-only, and in that case, ext4_da_writepages should
2712          * *never* be called, so if that ever happens, we would want
2713          * the stack trace.
2714          */
2715         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2716                 return -EROFS;
2717
2718         /*
2719          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2720          * This make sure small files blocks are allocated in
2721          * single attempt. This ensure that small files
2722          * get less fragmented.
2723          */
2724         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2725                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2726                 wbc->nr_to_write = sbi->s_mb_stream_request;
2727         }
2728         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2729                 range_whole = 1;
2730
2731         range_cyclic = wbc->range_cyclic;
2732         if (wbc->range_cyclic) {
2733                 index = mapping->writeback_index;
2734                 if (index)
2735                         cycled = 0;
2736                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2737                 wbc->range_end  = LLONG_MAX;
2738                 wbc->range_cyclic = 0;
2739         } else
2740                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2741
2742         mpd.wbc = wbc;
2743         mpd.inode = mapping->host;
2744
2745         /*
2746          * we don't want write_cache_pages to update
2747          * nr_to_write and writeback_index
2748          */
2749         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2750         wbc->no_nrwrite_index_update = 1;
2751         pages_skipped = wbc->pages_skipped;
2752
2753 retry:
2754         while (!ret && wbc->nr_to_write > 0) {
2755
2756                 /*
2757                  * we  insert one extent at a time. So we need
2758                  * credit needed for single extent allocation.
2759                  * journalled mode is currently not supported
2760                  * by delalloc
2761                  */
2762                 BUG_ON(ext4_should_journal_data(inode));
2763                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2764
2765                 /* start a new transaction*/
2766                 handle = ext4_journal_start(inode, needed_blocks);
2767                 if (IS_ERR(handle)) {
2768                         ret = PTR_ERR(handle);
2769                         printk(KERN_CRIT "%s: jbd2_start: "
2770                                "%ld pages, ino %lu; err %d\n", __func__,
2771                                 wbc->nr_to_write, inode->i_ino, ret);
2772                         dump_stack();
2773                         goto out_writepages;
2774                 }
2775
2776                 /*
2777                  * Now call __mpage_da_writepage to find the next
2778                  * contiguous region of logical blocks that need
2779                  * blocks to be allocated by ext4.  We don't actually
2780                  * submit the blocks for I/O here, even though
2781                  * write_cache_pages thinks it will, and will set the
2782                  * pages as clean for write before calling
2783                  * __mpage_da_writepage().
2784                  */
2785                 mpd.b_size = 0;
2786                 mpd.b_state = 0;
2787                 mpd.b_blocknr = 0;
2788                 mpd.first_page = 0;
2789                 mpd.next_page = 0;
2790                 mpd.io_done = 0;
2791                 mpd.pages_written = 0;
2792                 mpd.retval = 0;
2793                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2794                                         &mpd);
2795                 /*
2796                  * If we have a contigous extent of pages and we
2797                  * haven't done the I/O yet, map the blocks and submit
2798                  * them for I/O.
2799                  */
2800                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2801                         if (mpage_da_map_blocks(&mpd) == 0)
2802                                 mpage_da_submit_io(&mpd);
2803                         mpd.io_done = 1;
2804                         ret = MPAGE_DA_EXTENT_TAIL;
2805                 }
2806                 wbc->nr_to_write -= mpd.pages_written;
2807
2808                 ext4_journal_stop(handle);
2809
2810                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2811                         /* commit the transaction which would
2812                          * free blocks released in the transaction
2813                          * and try again
2814                          */
2815                         jbd2_journal_force_commit_nested(sbi->s_journal);
2816                         wbc->pages_skipped = pages_skipped;
2817                         ret = 0;
2818                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2819                         /*
2820                          * got one extent now try with
2821                          * rest of the pages
2822                          */
2823                         pages_written += mpd.pages_written;
2824                         wbc->pages_skipped = pages_skipped;
2825                         ret = 0;
2826                         io_done = 1;
2827                 } else if (wbc->nr_to_write)
2828                         /*
2829                          * There is no more writeout needed
2830                          * or we requested for a noblocking writeout
2831                          * and we found the device congested
2832                          */
2833                         break;
2834         }
2835         if (!io_done && !cycled) {
2836                 cycled = 1;
2837                 index = 0;
2838                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2839                 wbc->range_end  = mapping->writeback_index - 1;
2840                 goto retry;
2841         }
2842         if (pages_skipped != wbc->pages_skipped)
2843                 printk(KERN_EMERG "This should not happen leaving %s "
2844                                 "with nr_to_write = %ld ret = %d\n",
2845                                 __func__, wbc->nr_to_write, ret);
2846
2847         /* Update index */
2848         index += pages_written;
2849         wbc->range_cyclic = range_cyclic;
2850         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2851                 /*
2852                  * set the writeback_index so that range_cyclic
2853                  * mode will write it back later
2854                  */
2855                 mapping->writeback_index = index;
2856
2857 out_writepages:
2858         if (!no_nrwrite_index_update)
2859                 wbc->no_nrwrite_index_update = 0;
2860         wbc->nr_to_write -= nr_to_writebump;
2861         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2862         return ret;
2863 }
2864
2865 #define FALL_BACK_TO_NONDELALLOC 1
2866 static int ext4_nonda_switch(struct super_block *sb)
2867 {
2868         s64 free_blocks, dirty_blocks;
2869         struct ext4_sb_info *sbi = EXT4_SB(sb);
2870
2871         /*
2872          * switch to non delalloc mode if we are running low
2873          * on free block. The free block accounting via percpu
2874          * counters can get slightly wrong with percpu_counter_batch getting
2875          * accumulated on each CPU without updating global counters
2876          * Delalloc need an accurate free block accounting. So switch
2877          * to non delalloc when we are near to error range.
2878          */
2879         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2880         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2881         if (2 * free_blocks < 3 * dirty_blocks ||
2882                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2883                 /*
2884                  * free block count is less that 150% of dirty blocks
2885                  * or free blocks is less that watermark
2886                  */
2887                 return 1;
2888         }
2889         return 0;
2890 }
2891
2892 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2893                                loff_t pos, unsigned len, unsigned flags,
2894                                struct page **pagep, void **fsdata)
2895 {
2896         int ret, retries = 0;
2897         struct page *page;
2898         pgoff_t index;
2899         unsigned from, to;
2900         struct inode *inode = mapping->host;
2901         handle_t *handle;
2902
2903         index = pos >> PAGE_CACHE_SHIFT;
2904         from = pos & (PAGE_CACHE_SIZE - 1);
2905         to = from + len;
2906
2907         if (ext4_nonda_switch(inode->i_sb)) {
2908                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2909                 return ext4_write_begin(file, mapping, pos,
2910                                         len, flags, pagep, fsdata);
2911         }
2912         *fsdata = (void *)0;
2913         trace_ext4_da_write_begin(inode, pos, len, flags);
2914 retry:
2915         /*
2916          * With delayed allocation, we don't log the i_disksize update
2917          * if there is delayed block allocation. But we still need
2918          * to journalling the i_disksize update if writes to the end
2919          * of file which has an already mapped buffer.
2920          */
2921         handle = ext4_journal_start(inode, 1);
2922         if (IS_ERR(handle)) {
2923                 ret = PTR_ERR(handle);
2924                 goto out;
2925         }
2926         /* We cannot recurse into the filesystem as the transaction is already
2927          * started */
2928         flags |= AOP_FLAG_NOFS;
2929
2930         page = grab_cache_page_write_begin(mapping, index, flags);
2931         if (!page) {
2932                 ext4_journal_stop(handle);
2933                 ret = -ENOMEM;
2934                 goto out;
2935         }
2936         *pagep = page;
2937
2938         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2939                                 ext4_da_get_block_prep);
2940         if (ret < 0) {
2941                 unlock_page(page);
2942                 ext4_journal_stop(handle);
2943                 page_cache_release(page);
2944                 /*
2945                  * block_write_begin may have instantiated a few blocks
2946                  * outside i_size.  Trim these off again. Don't need
2947                  * i_size_read because we hold i_mutex.
2948                  */
2949                 if (pos + len > inode->i_size)
2950                         ext4_truncate(inode);
2951         }
2952
2953         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2954                 goto retry;
2955 out:
2956         return ret;
2957 }
2958
2959 /*
2960  * Check if we should update i_disksize
2961  * when write to the end of file but not require block allocation
2962  */
2963 static int ext4_da_should_update_i_disksize(struct page *page,
2964                                             unsigned long offset)
2965 {
2966         struct buffer_head *bh;
2967         struct inode *inode = page->mapping->host;
2968         unsigned int idx;
2969         int i;
2970
2971         bh = page_buffers(page);
2972         idx = offset >> inode->i_blkbits;
2973
2974         for (i = 0; i < idx; i++)
2975                 bh = bh->b_this_page;
2976
2977         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2978                 return 0;
2979         return 1;
2980 }
2981
2982 static int ext4_da_write_end(struct file *file,
2983                              struct address_space *mapping,
2984                              loff_t pos, unsigned len, unsigned copied,
2985                              struct page *page, void *fsdata)
2986 {
2987         struct inode *inode = mapping->host;
2988         int ret = 0, ret2;
2989         handle_t *handle = ext4_journal_current_handle();
2990         loff_t new_i_size;
2991         unsigned long start, end;
2992         int write_mode = (int)(unsigned long)fsdata;
2993
2994         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2995                 if (ext4_should_order_data(inode)) {
2996                         return ext4_ordered_write_end(file, mapping, pos,
2997                                         len, copied, page, fsdata);
2998                 } else if (ext4_should_writeback_data(inode)) {
2999                         return ext4_writeback_write_end(file, mapping, pos,
3000                                         len, copied, page, fsdata);
3001                 } else {
3002                         BUG();
3003                 }
3004         }
3005
3006         trace_ext4_da_write_end(inode, pos, len, copied);
3007         start = pos & (PAGE_CACHE_SIZE - 1);
3008         end = start + copied - 1;
3009
3010         /*
3011          * generic_write_end() will run mark_inode_dirty() if i_size
3012          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3013          * into that.
3014          */
3015
3016         new_i_size = pos + copied;
3017         if (new_i_size > EXT4_I(inode)->i_disksize) {
3018                 if (ext4_da_should_update_i_disksize(page, end)) {
3019                         down_write(&EXT4_I(inode)->i_data_sem);
3020                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3021                                 /*
3022                                  * Updating i_disksize when extending file
3023                                  * without needing block allocation
3024                                  */
3025                                 if (ext4_should_order_data(inode))
3026                                         ret = ext4_jbd2_file_inode(handle,
3027                                                                    inode);
3028
3029                                 EXT4_I(inode)->i_disksize = new_i_size;
3030                         }
3031                         up_write(&EXT4_I(inode)->i_data_sem);
3032                         /* We need to mark inode dirty even if
3033                          * new_i_size is less that inode->i_size
3034                          * bu greater than i_disksize.(hint delalloc)
3035                          */
3036                         ext4_mark_inode_dirty(handle, inode);
3037                 }
3038         }
3039         ret2 = generic_write_end(file, mapping, pos, len, copied,
3040                                                         page, fsdata);
3041         copied = ret2;
3042         if (ret2 < 0)
3043                 ret = ret2;
3044         ret2 = ext4_journal_stop(handle);
3045         if (!ret)
3046                 ret = ret2;
3047
3048         return ret ? ret : copied;
3049 }
3050
3051 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3052 {
3053         /*
3054          * Drop reserved blocks
3055          */
3056         BUG_ON(!PageLocked(page));
3057         if (!page_has_buffers(page))
3058                 goto out;
3059
3060         ext4_da_page_release_reservation(page, offset);
3061
3062 out:
3063         ext4_invalidatepage(page, offset);
3064
3065         return;
3066 }
3067
3068 /*
3069  * Force all delayed allocation blocks to be allocated for a given inode.
3070  */
3071 int ext4_alloc_da_blocks(struct inode *inode)
3072 {
3073         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3074             !EXT4_I(inode)->i_reserved_meta_blocks)
3075                 return 0;
3076
3077         /*
3078          * We do something simple for now.  The filemap_flush() will
3079          * also start triggering a write of the data blocks, which is
3080          * not strictly speaking necessary (and for users of
3081          * laptop_mode, not even desirable).  However, to do otherwise
3082          * would require replicating code paths in:
3083          *
3084          * ext4_da_writepages() ->
3085          *    write_cache_pages() ---> (via passed in callback function)
3086          *        __mpage_da_writepage() -->
3087          *           mpage_add_bh_to_extent()
3088          *           mpage_da_map_blocks()
3089          *
3090          * The problem is that write_cache_pages(), located in
3091          * mm/page-writeback.c, marks pages clean in preparation for
3092          * doing I/O, which is not desirable if we're not planning on
3093          * doing I/O at all.
3094          *
3095          * We could call write_cache_pages(), and then redirty all of
3096          * the pages by calling redirty_page_for_writeback() but that
3097          * would be ugly in the extreme.  So instead we would need to
3098          * replicate parts of the code in the above functions,
3099          * simplifying them becuase we wouldn't actually intend to
3100          * write out the pages, but rather only collect contiguous
3101          * logical block extents, call the multi-block allocator, and
3102          * then update the buffer heads with the block allocations.
3103          *
3104          * For now, though, we'll cheat by calling filemap_flush(),
3105          * which will map the blocks, and start the I/O, but not
3106          * actually wait for the I/O to complete.
3107          */
3108         return filemap_flush(inode->i_mapping);
3109 }
3110
3111 /*
3112  * bmap() is special.  It gets used by applications such as lilo and by
3113  * the swapper to find the on-disk block of a specific piece of data.
3114  *
3115  * Naturally, this is dangerous if the block concerned is still in the
3116  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3117  * filesystem and enables swap, then they may get a nasty shock when the
3118  * data getting swapped to that swapfile suddenly gets overwritten by
3119  * the original zero's written out previously to the journal and
3120  * awaiting writeback in the kernel's buffer cache.
3121  *
3122  * So, if we see any bmap calls here on a modified, data-journaled file,
3123  * take extra steps to flush any blocks which might be in the cache.
3124  */
3125 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3126 {
3127         struct inode *inode = mapping->host;
3128         journal_t *journal;
3129         int err;
3130
3131         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3132                         test_opt(inode->i_sb, DELALLOC)) {
3133                 /*
3134                  * With delalloc we want to sync the file
3135                  * so that we can make sure we allocate
3136                  * blocks for file
3137                  */
3138                 filemap_write_and_wait(mapping);
3139         }
3140
3141         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3142                 /*
3143                  * This is a REALLY heavyweight approach, but the use of
3144                  * bmap on dirty files is expected to be extremely rare:
3145                  * only if we run lilo or swapon on a freshly made file
3146                  * do we expect this to happen.
3147                  *
3148                  * (bmap requires CAP_SYS_RAWIO so this does not
3149                  * represent an unprivileged user DOS attack --- we'd be
3150                  * in trouble if mortal users could trigger this path at
3151                  * will.)
3152                  *
3153                  * NB. EXT4_STATE_JDATA is not set on files other than
3154                  * regular files.  If somebody wants to bmap a directory
3155                  * or symlink and gets confused because the buffer
3156                  * hasn't yet been flushed to disk, they deserve
3157                  * everything they get.
3158                  */
3159
3160                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3161                 journal = EXT4_JOURNAL(inode);
3162                 jbd2_journal_lock_updates(journal);
3163                 err = jbd2_journal_flush(journal);
3164                 jbd2_journal_unlock_updates(journal);
3165
3166                 if (err)
3167                         return 0;
3168         }
3169
3170         return generic_block_bmap(mapping, block, ext4_get_block);
3171 }
3172
3173 static int bget_one(handle_t *handle, struct buffer_head *bh)
3174 {
3175         get_bh(bh);
3176         return 0;
3177 }
3178
3179 static int bput_one(handle_t *handle, struct buffer_head *bh)
3180 {
3181         put_bh(bh);
3182         return 0;
3183 }
3184
3185 static int __ext4_journalled_writepage(struct page *page,
3186                                        struct writeback_control *wbc,
3187                                        unsigned int len)
3188 {
3189         struct address_space *mapping = page->mapping;
3190         struct inode *inode = mapping->host;
3191         struct buffer_head *page_bufs;
3192         handle_t *handle = NULL;
3193         int ret = 0;
3194         int err;
3195
3196         page_bufs = page_buffers(page);
3197         BUG_ON(!page_bufs);
3198         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
3199         /* As soon as we unlock the page, it can go away, but we have
3200          * references to buffers so we are safe */
3201         unlock_page(page);
3202
3203         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3204         if (IS_ERR(handle)) {
3205                 ret = PTR_ERR(handle);
3206                 goto out;
3207         }
3208
3209         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
3210                                 do_journal_get_write_access);
3211
3212         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
3213                                 write_end_fn);
3214         if (ret == 0)
3215                 ret = err;
3216         err = ext4_journal_stop(handle);
3217         if (!ret)
3218                 ret = err;
3219
3220         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
3221         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3222 out:
3223         return ret;
3224 }
3225
3226 static int ext4_readpage(struct file *file, struct page *page)
3227 {
3228         return mpage_readpage(page, ext4_get_block);
3229 }
3230
3231 static int
3232 ext4_readpages(struct file *file, struct address_space *mapping,
3233                 struct list_head *pages, unsigned nr_pages)
3234 {
3235         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3236 }
3237
3238 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3239 {
3240         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3241
3242         /*
3243          * If it's a full truncate we just forget about the pending dirtying
3244          */
3245         if (offset == 0)
3246                 ClearPageChecked(page);
3247
3248         if (journal)
3249                 jbd2_journal_invalidatepage(journal, page, offset);
3250         else
3251                 block_invalidatepage(page, offset);
3252 }
3253
3254 static int ext4_releasepage(struct page *page, gfp_t wait)
3255 {
3256         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3257
3258         WARN_ON(PageChecked(page));
3259         if (!page_has_buffers(page))
3260                 return 0;
3261         if (journal)
3262                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3263         else
3264                 return try_to_free_buffers(page);
3265 }
3266
3267 /*
3268  * If the O_DIRECT write will extend the file then add this inode to the
3269  * orphan list.  So recovery will truncate it back to the original size
3270  * if the machine crashes during the write.
3271  *
3272  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3273  * crashes then stale disk data _may_ be exposed inside the file. But current
3274  * VFS code falls back into buffered path in that case so we are safe.
3275  */
3276 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3277                               const struct iovec *iov, loff_t offset,
3278                               unsigned long nr_segs)
3279 {
3280         struct file *file = iocb->ki_filp;
3281         struct inode *inode = file->f_mapping->host;
3282         struct ext4_inode_info *ei = EXT4_I(inode);
3283         handle_t *handle;
3284         ssize_t ret;
3285         int orphan = 0;
3286         size_t count = iov_length(iov, nr_segs);
3287
3288         if (rw == WRITE) {
3289                 loff_t final_size = offset + count;
3290
3291                 if (final_size > inode->i_size) {
3292                         /* Credits for sb + inode write */
3293                         handle = ext4_journal_start(inode, 2);
3294                         if (IS_ERR(handle)) {
3295                                 ret = PTR_ERR(handle);
3296                                 goto out;
3297                         }
3298                         ret = ext4_orphan_add(handle, inode);
3299                         if (ret) {
3300                                 ext4_journal_stop(handle);
3301                                 goto out;
3302                         }
3303                         orphan = 1;
3304                         ei->i_disksize = inode->i_size;
3305                         ext4_journal_stop(handle);
3306                 }
3307         }
3308
3309         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3310                                  offset, nr_segs,
3311                                  ext4_get_block, NULL);
3312
3313         if (orphan) {
3314                 int err;
3315
3316                 /* Credits for sb + inode write */
3317                 handle = ext4_journal_start(inode, 2);
3318                 if (IS_ERR(handle)) {
3319                         /* This is really bad luck. We've written the data
3320                          * but cannot extend i_size. Bail out and pretend
3321                          * the write failed... */
3322                         ret = PTR_ERR(handle);
3323                         goto out;
3324                 }
3325                 if (inode->i_nlink)
3326                         ext4_orphan_del(handle, inode);
3327                 if (ret > 0) {
3328                         loff_t end = offset + ret;
3329                         if (end > inode->i_size) {
3330                                 ei->i_disksize = end;
3331                                 i_size_write(inode, end);
3332                                 /*
3333                                  * We're going to return a positive `ret'
3334                                  * here due to non-zero-length I/O, so there's
3335                                  * no way of reporting error returns from
3336                                  * ext4_mark_inode_dirty() to userspace.  So
3337                                  * ignore it.
3338                                  */
3339                                 ext4_mark_inode_dirty(handle, inode);
3340                         }
3341                 }
3342                 err = ext4_journal_stop(handle);
3343                 if (ret == 0)
3344                         ret = err;
3345         }
3346 out:
3347         return ret;
3348 }
3349
3350 /*
3351  * Pages can be marked dirty completely asynchronously from ext4's journalling
3352  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3353  * much here because ->set_page_dirty is called under VFS locks.  The page is
3354  * not necessarily locked.
3355  *
3356  * We cannot just dirty the page and leave attached buffers clean, because the
3357  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3358  * or jbddirty because all the journalling code will explode.
3359  *
3360  * So what we do is to mark the page "pending dirty" and next time writepage
3361  * is called, propagate that into the buffers appropriately.
3362  */
3363 static int ext4_journalled_set_page_dirty(struct page *page)
3364 {
3365         SetPageChecked(page);
3366         return __set_page_dirty_nobuffers(page);
3367 }
3368
3369 static const struct address_space_operations ext4_ordered_aops = {
3370         .readpage               = ext4_readpage,
3371         .readpages              = ext4_readpages,
3372         .writepage              = ext4_writepage,
3373         .sync_page              = block_sync_page,
3374         .write_begin            = ext4_write_begin,
3375         .write_end              = ext4_ordered_write_end,
3376         .bmap                   = ext4_bmap,
3377         .invalidatepage         = ext4_invalidatepage,
3378         .releasepage            = ext4_releasepage,
3379         .direct_IO              = ext4_direct_IO,
3380         .migratepage            = buffer_migrate_page,
3381         .is_partially_uptodate  = block_is_partially_uptodate,
3382 };
3383
3384 static const struct address_space_operations ext4_writeback_aops = {
3385         .readpage               = ext4_readpage,
3386         .readpages              = ext4_readpages,
3387         .writepage              = ext4_writepage,
3388         .sync_page              = block_sync_page,
3389         .write_begin            = ext4_write_begin,
3390         .write_end              = ext4_writeback_write_end,
3391         .bmap                   = ext4_bmap,
3392         .invalidatepage         = ext4_invalidatepage,
3393         .releasepage            = ext4_releasepage,
3394         .direct_IO              = ext4_direct_IO,
3395         .migratepage            = buffer_migrate_page,
3396         .is_partially_uptodate  = block_is_partially_uptodate,
3397 };
3398
3399 static const struct address_space_operations ext4_journalled_aops = {
3400         .readpage               = ext4_readpage,
3401         .readpages              = ext4_readpages,
3402         .writepage              = ext4_writepage,
3403         .sync_page              = block_sync_page,
3404         .write_begin            = ext4_write_begin,
3405         .write_end              = ext4_journalled_write_end,
3406         .set_page_dirty         = ext4_journalled_set_page_dirty,
3407         .bmap                   = ext4_bmap,
3408         .invalidatepage         = ext4_invalidatepage,
3409         .releasepage            = ext4_releasepage,
3410         .is_partially_uptodate  = block_is_partially_uptodate,
3411 };
3412
3413 static const struct address_space_operations ext4_da_aops = {
3414         .readpage               = ext4_readpage,
3415         .readpages              = ext4_readpages,
3416         .writepage              = ext4_writepage,
3417         .writepages             = ext4_da_writepages,
3418         .sync_page              = block_sync_page,
3419         .write_begin            = ext4_da_write_begin,
3420         .write_end              = ext4_da_write_end,
3421         .bmap                   = ext4_bmap,
3422         .invalidatepage         = ext4_da_invalidatepage,
3423         .releasepage            = ext4_releasepage,
3424         .direct_IO              = ext4_direct_IO,
3425         .migratepage            = buffer_migrate_page,
3426         .is_partially_uptodate  = block_is_partially_uptodate,
3427 };
3428
3429 void ext4_set_aops(struct inode *inode)
3430 {
3431         if (ext4_should_order_data(inode) &&
3432                 test_opt(inode->i_sb, DELALLOC))
3433                 inode->i_mapping->a_ops = &ext4_da_aops;
3434         else if (ext4_should_order_data(inode))
3435                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3436         else if (ext4_should_writeback_data(inode) &&
3437                  test_opt(inode->i_sb, DELALLOC))
3438                 inode->i_mapping->a_ops = &ext4_da_aops;
3439         else if (ext4_should_writeback_data(inode))
3440                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3441         else
3442                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3443 }
3444
3445 /*
3446  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3447  * up to the end of the block which corresponds to `from'.
3448  * This required during truncate. We need to physically zero the tail end
3449  * of that block so it doesn't yield old data if the file is later grown.
3450  */
3451 int ext4_block_truncate_page(handle_t *handle,
3452                 struct address_space *mapping, loff_t from)
3453 {
3454         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3455         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3456         unsigned blocksize, length, pos;
3457         ext4_lblk_t iblock;
3458         struct inode *inode = mapping->host;
3459         struct buffer_head *bh;
3460         struct page *page;
3461         int err = 0;
3462
3463         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3464                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3465         if (!page)
3466                 return -EINVAL;
3467
3468         blocksize = inode->i_sb->s_blocksize;
3469         length = blocksize - (offset & (blocksize - 1));
3470         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3471
3472         /*
3473          * For "nobh" option,  we can only work if we don't need to
3474          * read-in the page - otherwise we create buffers to do the IO.
3475          */
3476         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3477              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3478                 zero_user(page, offset, length);
3479                 set_page_dirty(page);
3480                 goto unlock;
3481         }
3482
3483         if (!page_has_buffers(page))
3484                 create_empty_buffers(page, blocksize, 0);
3485
3486         /* Find the buffer that contains "offset" */
3487         bh = page_buffers(page);
3488         pos = blocksize;
3489         while (offset >= pos) {
3490                 bh = bh->b_this_page;
3491                 iblock++;
3492                 pos += blocksize;
3493         }
3494
3495         err = 0;
3496         if (buffer_freed(bh)) {
3497                 BUFFER_TRACE(bh, "freed: skip");
3498                 goto unlock;
3499         }
3500
3501         if (!buffer_mapped(bh)) {
3502                 BUFFER_TRACE(bh, "unmapped");
3503                 ext4_get_block(inode, iblock, bh, 0);
3504                 /* unmapped? It's a hole - nothing to do */
3505                 if (!buffer_mapped(bh)) {
3506                         BUFFER_TRACE(bh, "still unmapped");
3507                         goto unlock;
3508                 }
3509         }
3510
3511         /* Ok, it's mapped. Make sure it's up-to-date */
3512         if (PageUptodate(page))
3513                 set_buffer_uptodate(bh);
3514
3515         if (!buffer_uptodate(bh)) {
3516                 err = -EIO;
3517                 ll_rw_block(READ, 1, &bh);
3518                 wait_on_buffer(bh);
3519                 /* Uhhuh. Read error. Complain and punt. */
3520                 if (!buffer_uptodate(bh))
3521                         goto unlock;
3522         }
3523
3524         if (ext4_should_journal_data(inode)) {
3525                 BUFFER_TRACE(bh, "get write access");
3526                 err = ext4_journal_get_write_access(handle, bh);
3527                 if (err)
3528                         goto unlock;
3529         }
3530
3531         zero_user(page, offset, length);
3532
3533         BUFFER_TRACE(bh, "zeroed end of block");
3534
3535         err = 0;
3536         if (ext4_should_journal_data(inode)) {
3537                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3538         } else {
3539                 if (ext4_should_order_data(inode))
3540                         err = ext4_jbd2_file_inode(handle, inode);
3541                 mark_buffer_dirty(bh);
3542         }
3543
3544 unlock:
3545         unlock_page(page);
3546         page_cache_release(page);
3547         return err;
3548 }
3549
3550 /*
3551  * Probably it should be a library function... search for first non-zero word
3552  * or memcmp with zero_page, whatever is better for particular architecture.
3553  * Linus?
3554  */
3555 static inline int all_zeroes(__le32 *p, __le32 *q)
3556 {
3557         while (p < q)
3558                 if (*p++)
3559                         return 0;
3560         return 1;
3561 }
3562
3563 /**
3564  *      ext4_find_shared - find the indirect blocks for partial truncation.
3565  *      @inode:   inode in question
3566  *      @depth:   depth of the affected branch
3567  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3568  *      @chain:   place to store the pointers to partial indirect blocks
3569  *      @top:     place to the (detached) top of branch
3570  *
3571  *      This is a helper function used by ext4_truncate().
3572  *
3573  *      When we do truncate() we may have to clean the ends of several
3574  *      indirect blocks but leave the blocks themselves alive. Block is
3575  *      partially truncated if some data below the new i_size is refered
3576  *      from it (and it is on the path to the first completely truncated
3577  *      data block, indeed).  We have to free the top of that path along
3578  *      with everything to the right of the path. Since no allocation
3579  *      past the truncation point is possible until ext4_truncate()
3580  *      finishes, we may safely do the latter, but top of branch may
3581  *      require special attention - pageout below the truncation point
3582  *      might try to populate it.
3583  *
3584  *      We atomically detach the top of branch from the tree, store the
3585  *      block number of its root in *@top, pointers to buffer_heads of
3586  *      partially truncated blocks - in @chain[].bh and pointers to
3587  *      their last elements that should not be removed - in
3588  *      @chain[].p. Return value is the pointer to last filled element
3589  *      of @chain.
3590  *
3591  *      The work left to caller to do the actual freeing of subtrees:
3592  *              a) free the subtree starting from *@top
3593  *              b) free the subtrees whose roots are stored in
3594  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3595  *              c) free the subtrees growing from the inode past the @chain[0].
3596  *                      (no partially truncated stuff there).  */
3597
3598 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3599                                   ext4_lblk_t offsets[4], Indirect chain[4],
3600                                   __le32 *top)
3601 {
3602         Indirect *partial, *p;
3603         int k, err;
3604
3605         *top = 0;
3606         /* Make k index the deepest non-null offest + 1 */
3607         for (k = depth; k > 1 && !offsets[k-1]; k--)
3608                 ;
3609         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3610         /* Writer: pointers */
3611         if (!partial)
3612                 partial = chain + k-1;
3613         /*
3614          * If the branch acquired continuation since we've looked at it -
3615          * fine, it should all survive and (new) top doesn't belong to us.
3616          */
3617         if (!partial->key && *partial->p)
3618                 /* Writer: end */
3619                 goto no_top;
3620         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3621                 ;
3622         /*
3623          * OK, we've found the last block that must survive. The rest of our
3624          * branch should be detached before unlocking. However, if that rest
3625          * of branch is all ours and does not grow immediately from the inode
3626          * it's easier to cheat and just decrement partial->p.
3627          */
3628         if (p == chain + k - 1 && p > chain) {
3629                 p->p--;
3630         } else {
3631                 *top = *p->p;
3632                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3633 #if 0
3634                 *p->p = 0;
3635 #endif
3636         }
3637         /* Writer: end */
3638
3639         while (partial > p) {
3640                 brelse(partial->bh);
3641                 partial--;
3642         }
3643 no_top:
3644         return partial;
3645 }
3646
3647 /*
3648  * Zero a number of block pointers in either an inode or an indirect block.
3649  * If we restart the transaction we must again get write access to the
3650  * indirect block for further modification.
3651  *
3652  * We release `count' blocks on disk, but (last - first) may be greater
3653  * than `count' because there can be holes in there.
3654  */
3655 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3656                               struct buffer_head *bh,
3657                               ext4_fsblk_t block_to_free,
3658                               unsigned long count, __le32 *first,
3659                               __le32 *last)
3660 {
3661         __le32 *p;
3662         if (try_to_extend_transaction(handle, inode)) {
3663                 if (bh) {
3664                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3665                         ext4_handle_dirty_metadata(handle, inode, bh);
3666                 }
3667                 ext4_mark_inode_dirty(handle, inode);
3668                 ext4_journal_test_restart(handle, inode);
3669                 if (bh) {
3670                         BUFFER_TRACE(bh, "retaking write access");
3671                         ext4_journal_get_write_access(handle, bh);
3672                 }
3673         }
3674
3675         /*
3676          * Any buffers which are on the journal will be in memory. We
3677          * find them on the hash table so jbd2_journal_revoke() will
3678          * run jbd2_journal_forget() on them.  We've already detached
3679          * each block from the file, so bforget() in
3680          * jbd2_journal_forget() should be safe.
3681          *
3682          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3683          */
3684         for (p = first; p < last; p++) {
3685                 u32 nr = le32_to_cpu(*p);
3686                 if (nr) {
3687                         struct buffer_head *tbh;
3688
3689                         *p = 0;
3690                         tbh = sb_find_get_block(inode->i_sb, nr);
3691                         ext4_forget(handle, 0, inode, tbh, nr);
3692                 }
3693         }
3694
3695         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3696 }
3697
3698 /**
3699  * ext4_free_data - free a list of data blocks
3700  * @handle:     handle for this transaction
3701  * @inode:      inode we are dealing with
3702  * @this_bh:    indirect buffer_head which contains *@first and *@last
3703  * @first:      array of block numbers
3704  * @last:       points immediately past the end of array
3705  *
3706  * We are freeing all blocks refered from that array (numbers are stored as
3707  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3708  *
3709  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3710  * blocks are contiguous then releasing them at one time will only affect one
3711  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3712  * actually use a lot of journal space.
3713  *
3714  * @this_bh will be %NULL if @first and @last point into the inode's direct
3715  * block pointers.
3716  */
3717 static void ext4_free_data(handle_t *handle, struct inode *inode,
3718                            struct buffer_head *this_bh,
3719                            __le32 *first, __le32 *last)
3720 {
3721         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3722         unsigned long count = 0;            /* Number of blocks in the run */
3723         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3724                                                corresponding to
3725                                                block_to_free */
3726         ext4_fsblk_t nr;                    /* Current block # */
3727         __le32 *p;                          /* Pointer into inode/ind
3728                                                for current block */
3729         int err;
3730
3731         if (this_bh) {                          /* For indirect block */
3732                 BUFFER_TRACE(this_bh, "get_write_access");
3733                 err = ext4_journal_get_write_access(handle, this_bh);
3734                 /* Important: if we can't update the indirect pointers
3735                  * to the blocks, we can't free them. */
3736                 if (err)
3737                         return;
3738         }
3739
3740         for (p = first; p < last; p++) {
3741                 nr = le32_to_cpu(*p);
3742                 if (nr) {
3743                         /* accumulate blocks to free if they're contiguous */
3744                         if (count == 0) {
3745                                 block_to_free = nr;
3746                                 block_to_free_p = p;
3747                                 count = 1;
3748                         } else if (nr == block_to_free + count) {
3749                                 count++;
3750                         } else {
3751                                 ext4_clear_blocks(handle, inode, this_bh,
3752                                                   block_to_free,
3753                                                   count, block_to_free_p, p);
3754                                 block_to_free = nr;
3755                                 block_to_free_p = p;
3756                                 count = 1;
3757                         }
3758                 }
3759         }
3760
3761         if (count > 0)
3762                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3763                                   count, block_to_free_p, p);
3764
3765         if (this_bh) {
3766                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3767
3768                 /*
3769                  * The buffer head should have an attached journal head at this
3770                  * point. However, if the data is corrupted and an indirect
3771                  * block pointed to itself, it would have been detached when
3772                  * the block was cleared. Check for this instead of OOPSing.
3773                  */
3774                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3775                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3776                 else
3777                         ext4_error(inode->i_sb, __func__,
3778                                    "circular indirect block detected, "
3779                                    "inode=%lu, block=%llu",
3780                                    inode->i_ino,
3781                                    (unsigned long long) this_bh->b_blocknr);
3782         }
3783 }
3784
3785 /**
3786  *      ext4_free_branches - free an array of branches
3787  *      @handle: JBD handle for this transaction
3788  *      @inode: inode we are dealing with
3789  *      @parent_bh: the buffer_head which contains *@first and *@last
3790  *      @first: array of block numbers
3791  *      @last:  pointer immediately past the end of array
3792  *      @depth: depth of the branches to free
3793  *
3794  *      We are freeing all blocks refered from these branches (numbers are
3795  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3796  *      appropriately.
3797  */
3798 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3799                                struct buffer_head *parent_bh,
3800                                __le32 *first, __le32 *last, int depth)
3801 {
3802         ext4_fsblk_t nr;
3803         __le32 *p;
3804
3805         if (ext4_handle_is_aborted(handle))
3806                 return;
3807
3808         if (depth--) {
3809                 struct buffer_head *bh;
3810                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3811                 p = last;
3812                 while (--p >= first) {
3813                         nr = le32_to_cpu(*p);
3814                         if (!nr)
3815                                 continue;               /* A hole */
3816
3817                         /* Go read the buffer for the next level down */
3818                         bh = sb_bread(inode->i_sb, nr);
3819
3820                         /*
3821                          * A read failure? Report error and clear slot
3822                          * (should be rare).
3823                          */
3824                         if (!bh) {
3825                                 ext4_error(inode->i_sb, "ext4_free_branches",
3826                                            "Read failure, inode=%lu, block=%llu",
3827                                            inode->i_ino, nr);
3828                                 continue;
3829                         }
3830
3831                         /* This zaps the entire block.  Bottom up. */
3832                         BUFFER_TRACE(bh, "free child branches");
3833                         ext4_free_branches(handle, inode, bh,
3834                                         (__le32 *) bh->b_data,
3835                                         (__le32 *) bh->b_data + addr_per_block,
3836                                         depth);
3837
3838                         /*
3839                          * We've probably journalled the indirect block several
3840                          * times during the truncate.  But it's no longer
3841                          * needed and we now drop it from the transaction via
3842                          * jbd2_journal_revoke().
3843                          *
3844                          * That's easy if it's exclusively part of this
3845                          * transaction.  But if it's part of the committing
3846                          * transaction then jbd2_journal_forget() will simply
3847                          * brelse() it.  That means that if the underlying
3848                          * block is reallocated in ext4_get_block(),
3849                          * unmap_underlying_metadata() will find this block
3850                          * and will try to get rid of it.  damn, damn.
3851                          *
3852                          * If this block has already been committed to the
3853                          * journal, a revoke record will be written.  And
3854                          * revoke records must be emitted *before* clearing
3855                          * this block's bit in the bitmaps.
3856                          */
3857                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3858
3859                         /*
3860                          * Everything below this this pointer has been
3861                          * released.  Now let this top-of-subtree go.
3862                          *
3863                          * We want the freeing of this indirect block to be
3864                          * atomic in the journal with the updating of the
3865                          * bitmap block which owns it.  So make some room in
3866                          * the journal.
3867                          *
3868                          * We zero the parent pointer *after* freeing its
3869                          * pointee in the bitmaps, so if extend_transaction()
3870                          * for some reason fails to put the bitmap changes and
3871                          * the release into the same transaction, recovery
3872                          * will merely complain about releasing a free block,
3873                          * rather than leaking blocks.
3874                          */
3875                         if (ext4_handle_is_aborted(handle))
3876                                 return;
3877                         if (try_to_extend_transaction(handle, inode)) {
3878                                 ext4_mark_inode_dirty(handle, inode);
3879                                 ext4_journal_test_restart(handle, inode);
3880                         }
3881
3882                         ext4_free_blocks(handle, inode, nr, 1, 1);
3883
3884                         if (parent_bh) {
3885                                 /*
3886                                  * The block which we have just freed is
3887                                  * pointed to by an indirect block: journal it
3888                                  */
3889                                 BUFFER_TRACE(parent_bh, "get_write_access");
3890                                 if (!ext4_journal_get_write_access(handle,
3891                                                                    parent_bh)){
3892                                         *p = 0;
3893                                         BUFFER_TRACE(parent_bh,
3894                                         "call ext4_handle_dirty_metadata");
3895                                         ext4_handle_dirty_metadata(handle,
3896                                                                    inode,
3897                                                                    parent_bh);
3898                                 }
3899                         }
3900                 }
3901         } else {
3902                 /* We have reached the bottom of the tree. */
3903                 BUFFER_TRACE(parent_bh, "free data blocks");
3904                 ext4_free_data(handle, inode, parent_bh, first, last);
3905         }
3906 }
3907
3908 int ext4_can_truncate(struct inode *inode)
3909 {
3910         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3911                 return 0;
3912         if (S_ISREG(inode->i_mode))
3913                 return 1;
3914         if (S_ISDIR(inode->i_mode))
3915                 return 1;
3916         if (S_ISLNK(inode->i_mode))
3917                 return !ext4_inode_is_fast_symlink(inode);
3918         return 0;
3919 }
3920
3921 /*
3922  * ext4_truncate()
3923  *
3924  * We block out ext4_get_block() block instantiations across the entire
3925  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3926  * simultaneously on behalf of the same inode.
3927  *
3928  * As we work through the truncate and commmit bits of it to the journal there
3929  * is one core, guiding principle: the file's tree must always be consistent on
3930  * disk.  We must be able to restart the truncate after a crash.
3931  *
3932  * The file's tree may be transiently inconsistent in memory (although it
3933  * probably isn't), but whenever we close off and commit a journal transaction,
3934  * the contents of (the filesystem + the journal) must be consistent and
3935  * restartable.  It's pretty simple, really: bottom up, right to left (although
3936  * left-to-right works OK too).
3937  *
3938  * Note that at recovery time, journal replay occurs *before* the restart of
3939  * truncate against the orphan inode list.
3940  *
3941  * The committed inode has the new, desired i_size (which is the same as
3942  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3943  * that this inode's truncate did not complete and it will again call
3944  * ext4_truncate() to have another go.  So there will be instantiated blocks
3945  * to the right of the truncation point in a crashed ext4 filesystem.  But
3946  * that's fine - as long as they are linked from the inode, the post-crash
3947  * ext4_truncate() run will find them and release them.
3948  */
3949 void ext4_truncate(struct inode *inode)
3950 {
3951         handle_t *handle;
3952         struct ext4_inode_info *ei = EXT4_I(inode);
3953         __le32 *i_data = ei->i_data;
3954         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3955         struct address_space *mapping = inode->i_mapping;
3956         ext4_lblk_t offsets[4];
3957         Indirect chain[4];
3958         Indirect *partial;
3959         __le32 nr = 0;
3960         int n;
3961         ext4_lblk_t last_block;
3962         unsigned blocksize = inode->i_sb->s_blocksize;
3963
3964         if (!ext4_can_truncate(inode))
3965                 return;
3966
3967         if (ei->i_disksize && inode->i_size == 0 &&
3968             !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3969                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3970
3971         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3972                 ext4_ext_truncate(inode);
3973                 return;
3974         }
3975
3976         handle = start_transaction(inode);
3977         if (IS_ERR(handle))
3978                 return;         /* AKPM: return what? */
3979
3980         last_block = (inode->i_size + blocksize-1)
3981                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3982
3983         if (inode->i_size & (blocksize - 1))
3984                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3985                         goto out_stop;
3986
3987         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3988         if (n == 0)
3989                 goto out_stop;  /* error */
3990
3991         /*
3992          * OK.  This truncate is going to happen.  We add the inode to the
3993          * orphan list, so that if this truncate spans multiple transactions,
3994          * and we crash, we will resume the truncate when the filesystem
3995          * recovers.  It also marks the inode dirty, to catch the new size.
3996          *
3997          * Implication: the file must always be in a sane, consistent
3998          * truncatable state while each transaction commits.
3999          */
4000         if (ext4_orphan_add(handle, inode))
4001                 goto out_stop;
4002
4003         /*
4004          * From here we block out all ext4_get_block() callers who want to
4005          * modify the block allocation tree.
4006          */
4007         down_write(&ei->i_data_sem);
4008
4009         ext4_discard_preallocations(inode);
4010
4011         /*
4012          * The orphan list entry will now protect us from any crash which
4013          * occurs before the truncate completes, so it is now safe to propagate
4014          * the new, shorter inode size (held for now in i_size) into the
4015          * on-disk inode. We do this via i_disksize, which is the value which
4016          * ext4 *really* writes onto the disk inode.
4017          */
4018         ei->i_disksize = inode->i_size;
4019
4020         if (n == 1) {           /* direct blocks */
4021                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4022                                i_data + EXT4_NDIR_BLOCKS);
4023                 goto do_indirects;
4024         }
4025
4026         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4027         /* Kill the top of shared branch (not detached) */
4028         if (nr) {
4029                 if (partial == chain) {
4030                         /* Shared branch grows from the inode */
4031                         ext4_free_branches(handle, inode, NULL,
4032                                            &nr, &nr+1, (chain+n-1) - partial);
4033                         *partial->p = 0;
4034                         /*
4035                          * We mark the inode dirty prior to restart,
4036                          * and prior to stop.  No need for it here.
4037                          */
4038                 } else {
4039                         /* Shared branch grows from an indirect block */
4040                         BUFFER_TRACE(partial->bh, "get_write_access");
4041                         ext4_free_branches(handle, inode, partial->bh,
4042                                         partial->p,
4043                                         partial->p+1, (chain+n-1) - partial);
4044                 }
4045         }
4046         /* Clear the ends of indirect blocks on the shared branch */
4047         while (partial > chain) {
4048                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4049                                    (__le32*)partial->bh->b_data+addr_per_block,
4050                                    (chain+n-1) - partial);
4051                 BUFFER_TRACE(partial->bh, "call brelse");
4052                 brelse(partial->bh);
4053                 partial--;
4054         }
4055 do_indirects:
4056         /* Kill the remaining (whole) subtrees */
4057         switch (offsets[0]) {
4058         default:
4059                 nr = i_data[EXT4_IND_BLOCK];
4060                 if (nr) {
4061                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4062                         i_data[EXT4_IND_BLOCK] = 0;
4063                 }
4064         case EXT4_IND_BLOCK:
4065                 nr = i_data[EXT4_DIND_BLOCK];
4066                 if (nr) {
4067                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4068                         i_data[EXT4_DIND_BLOCK] = 0;
4069                 }
4070         case EXT4_DIND_BLOCK:
4071                 nr = i_data[EXT4_TIND_BLOCK];
4072                 if (nr) {
4073                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4074                         i_data[EXT4_TIND_BLOCK] = 0;
4075                 }
4076         case EXT4_TIND_BLOCK:
4077                 ;
4078         }
4079
4080         up_write(&ei->i_data_sem);
4081         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4082         ext4_mark_inode_dirty(handle, inode);
4083
4084         /*
4085          * In a multi-transaction truncate, we only make the final transaction
4086          * synchronous
4087          */
4088         if (IS_SYNC(inode))
4089                 ext4_handle_sync(handle);
4090 out_stop:
4091         /*
4092          * If this was a simple ftruncate(), and the file will remain alive
4093          * then we need to clear up the orphan record which we created above.
4094          * However, if this was a real unlink then we were called by
4095          * ext4_delete_inode(), and we allow that function to clean up the
4096          * orphan info for us.
4097          */
4098         if (inode->i_nlink)
4099                 ext4_orphan_del(handle, inode);
4100
4101         ext4_journal_stop(handle);
4102 }
4103
4104 /*
4105  * ext4_get_inode_loc returns with an extra refcount against the inode's
4106  * underlying buffer_head on success. If 'in_mem' is true, we have all
4107  * data in memory that is needed to recreate the on-disk version of this
4108  * inode.
4109  */
4110 static int __ext4_get_inode_loc(struct inode *inode,
4111                                 struct ext4_iloc *iloc, int in_mem)
4112 {
4113         struct ext4_group_desc  *gdp;
4114         struct buffer_head      *bh;
4115         struct super_block      *sb = inode->i_sb;
4116         ext4_fsblk_t            block;
4117         int                     inodes_per_block, inode_offset;
4118
4119         iloc->bh = NULL;
4120         if (!ext4_valid_inum(sb, inode->i_ino))
4121                 return -EIO;
4122
4123         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4124         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4125         if (!gdp)
4126                 return -EIO;
4127
4128         /*
4129          * Figure out the offset within the block group inode table
4130          */
4131         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4132         inode_offset = ((inode->i_ino - 1) %
4133                         EXT4_INODES_PER_GROUP(sb));
4134         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4135         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4136
4137         bh = sb_getblk(sb, block);
4138         if (!bh) {
4139                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4140                            "inode block - inode=%lu, block=%llu",
4141                            inode->i_ino, block);
4142                 return -EIO;
4143         }
4144         if (!buffer_uptodate(bh)) {
4145                 lock_buffer(bh);
4146
4147                 /*
4148                  * If the buffer has the write error flag, we have failed
4149                  * to write out another inode in the same block.  In this
4150                  * case, we don't have to read the block because we may
4151                  * read the old inode data successfully.
4152                  */
4153                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4154                         set_buffer_uptodate(bh);
4155
4156                 if (buffer_uptodate(bh)) {
4157                         /* someone brought it uptodate while we waited */
4158                         unlock_buffer(bh);
4159                         goto has_buffer;
4160                 }
4161
4162                 /*
4163                  * If we have all information of the inode in memory and this
4164                  * is the only valid inode in the block, we need not read the
4165                  * block.
4166                  */
4167                 if (in_mem) {
4168                         struct buffer_head *bitmap_bh;
4169                         int i, start;
4170
4171                         start = inode_offset & ~(inodes_per_block - 1);
4172
4173                         /* Is the inode bitmap in cache? */
4174                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4175                         if (!bitmap_bh)
4176                                 goto make_io;
4177
4178                         /*
4179                          * If the inode bitmap isn't in cache then the
4180                          * optimisation may end up performing two reads instead
4181                          * of one, so skip it.
4182                          */
4183                         if (!buffer_uptodate(bitmap_bh)) {
4184                                 brelse(bitmap_bh);
4185                                 goto make_io;
4186                         }
4187                         for (i = start; i < start + inodes_per_block; i++) {
4188                                 if (i == inode_offset)
4189                                         continue;
4190                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4191                                         break;
4192                         }
4193                         brelse(bitmap_bh);
4194                         if (i == start + inodes_per_block) {
4195                                 /* all other inodes are free, so skip I/O */
4196                                 memset(bh->b_data, 0, bh->b_size);
4197                                 set_buffer_uptodate(bh);
4198                                 unlock_buffer(bh);
4199                                 goto has_buffer;
4200                         }
4201                 }
4202
4203 make_io:
4204                 /*
4205                  * If we need to do any I/O, try to pre-readahead extra
4206                  * blocks from the inode table.
4207                  */
4208                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4209                         ext4_fsblk_t b, end, table;
4210                         unsigned num;
4211
4212                         table = ext4_inode_table(sb, gdp);
4213                         /* s_inode_readahead_blks is always a power of 2 */
4214                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4215                         if (table > b)
4216                                 b = table;
4217                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4218                         num = EXT4_INODES_PER_GROUP(sb);
4219                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4220                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4221                                 num -= ext4_itable_unused_count(sb, gdp);
4222                         table += num / inodes_per_block;
4223                         if (end > table)
4224                                 end = table;
4225                         while (b <= end)
4226                                 sb_breadahead(sb, b++);
4227                 }
4228
4229                 /*
4230                  * There are other valid inodes in the buffer, this inode
4231                  * has in-inode xattrs, or we don't have this inode in memory.
4232                  * Read the block from disk.
4233                  */
4234                 get_bh(bh);
4235                 bh->b_end_io = end_buffer_read_sync;
4236                 submit_bh(READ_META, bh);
4237                 wait_on_buffer(bh);
4238                 if (!buffer_uptodate(bh)) {
4239                         ext4_error(sb, __func__,
4240                                    "unable to read inode block - inode=%lu, "
4241                                    "block=%llu", inode->i_ino, block);
4242                         brelse(bh);
4243                         return -EIO;
4244                 }
4245         }
4246 has_buffer:
4247         iloc->bh = bh;
4248         return 0;
4249 }
4250
4251 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4252 {
4253         /* We have all inode data except xattrs in memory here. */
4254         return __ext4_get_inode_loc(inode, iloc,
4255                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4256 }
4257
4258 void ext4_set_inode_flags(struct inode *inode)
4259 {
4260         unsigned int flags = EXT4_I(inode)->i_flags;
4261
4262         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4263         if (flags & EXT4_SYNC_FL)
4264                 inode->i_flags |= S_SYNC;
4265         if (flags & EXT4_APPEND_FL)
4266                 inode->i_flags |= S_APPEND;
4267         if (flags & EXT4_IMMUTABLE_FL)
4268                 inode->i_flags |= S_IMMUTABLE;
4269         if (flags & EXT4_NOATIME_FL)
4270                 inode->i_flags |= S_NOATIME;
4271         if (flags & EXT4_DIRSYNC_FL)
4272                 inode->i_flags |= S_DIRSYNC;
4273 }
4274
4275 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4276 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4277 {
4278         unsigned int flags = ei->vfs_inode.i_flags;
4279
4280         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4281                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4282         if (flags & S_SYNC)
4283                 ei->i_flags |= EXT4_SYNC_FL;
4284         if (flags & S_APPEND)
4285                 ei->i_flags |= EXT4_APPEND_FL;
4286         if (flags & S_IMMUTABLE)
4287                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4288         if (flags & S_NOATIME)
4289                 ei->i_flags |= EXT4_NOATIME_FL;
4290         if (flags & S_DIRSYNC)
4291                 ei->i_flags |= EXT4_DIRSYNC_FL;
4292 }
4293
4294 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4295                                   struct ext4_inode_info *ei)
4296 {
4297         blkcnt_t i_blocks ;
4298         struct inode *inode = &(ei->vfs_inode);
4299         struct super_block *sb = inode->i_sb;
4300
4301         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4302                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4303                 /* we are using combined 48 bit field */
4304                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4305                                         le32_to_cpu(raw_inode->i_blocks_lo);
4306                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4307                         /* i_blocks represent file system block size */
4308                         return i_blocks  << (inode->i_blkbits - 9);
4309                 } else {
4310                         return i_blocks;
4311                 }
4312         } else {
4313                 return le32_to_cpu(raw_inode->i_blocks_lo);
4314         }
4315 }
4316
4317 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4318 {
4319         struct ext4_iloc iloc;
4320         struct ext4_inode *raw_inode;
4321         struct ext4_inode_info *ei;
4322         struct buffer_head *bh;
4323         struct inode *inode;
4324         long ret;
4325         int block;
4326
4327         inode = iget_locked(sb, ino);
4328         if (!inode)
4329                 return ERR_PTR(-ENOMEM);
4330         if (!(inode->i_state & I_NEW))
4331                 return inode;
4332
4333         ei = EXT4_I(inode);
4334
4335         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4336         if (ret < 0)
4337                 goto bad_inode;
4338         bh = iloc.bh;
4339         raw_inode = ext4_raw_inode(&iloc);
4340         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4341         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4342         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4343         if (!(test_opt(inode->i_sb, NO_UID32))) {
4344                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4345                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4346         }
4347         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4348
4349         ei->i_state = 0;
4350         ei->i_dir_start_lookup = 0;
4351         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4352         /* We now have enough fields to check if the inode was active or not.
4353          * This is needed because nfsd might try to access dead inodes
4354          * the test is that same one that e2fsck uses
4355          * NeilBrown 1999oct15
4356          */
4357         if (inode->i_nlink == 0) {
4358                 if (inode->i_mode == 0 ||
4359                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4360                         /* this inode is deleted */
4361                         brelse(bh);
4362                         ret = -ESTALE;
4363                         goto bad_inode;
4364                 }
4365                 /* The only unlinked inodes we let through here have
4366                  * valid i_mode and are being read by the orphan
4367                  * recovery code: that's fine, we're about to complete
4368                  * the process of deleting those. */
4369         }
4370         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4371         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4372         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4373         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4374                 ei->i_file_acl |=
4375                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4376         inode->i_size = ext4_isize(raw_inode);
4377         ei->i_disksize = inode->i_size;
4378         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4379         ei->i_block_group = iloc.block_group;
4380         ei->i_last_alloc_group = ~0;
4381         /*
4382          * NOTE! The in-memory inode i_data array is in little-endian order
4383          * even on big-endian machines: we do NOT byteswap the block numbers!
4384          */
4385         for (block = 0; block < EXT4_N_BLOCKS; block++)
4386                 ei->i_data[block] = raw_inode->i_block[block];
4387         INIT_LIST_HEAD(&ei->i_orphan);
4388
4389         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4390                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4391                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4392                     EXT4_INODE_SIZE(inode->i_sb)) {
4393                         brelse(bh);
4394                         ret = -EIO;
4395                         goto bad_inode;
4396                 }
4397                 if (ei->i_extra_isize == 0) {
4398                         /* The extra space is currently unused. Use it. */
4399                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4400                                             EXT4_GOOD_OLD_INODE_SIZE;
4401                 } else {
4402                         __le32 *magic = (void *)raw_inode +
4403                                         EXT4_GOOD_OLD_INODE_SIZE +
4404                                         ei->i_extra_isize;
4405                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4406                                 ei->i_state |= EXT4_STATE_XATTR;
4407                 }
4408         } else
4409                 ei->i_extra_isize = 0;
4410
4411         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4412         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4413         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4414         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4415
4416         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4417         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4418                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4419                         inode->i_version |=
4420                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4421         }
4422
4423         ret = 0;
4424         if (ei->i_file_acl &&
4425             ((ei->i_file_acl <
4426               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4427                EXT4_SB(sb)->s_gdb_count)) ||
4428              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4429                 ext4_error(sb, __func__,
4430                            "bad extended attribute block %llu in inode #%lu",
4431                            ei->i_file_acl, inode->i_ino);
4432                 ret = -EIO;
4433                 goto bad_inode;
4434         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4435                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4436                     (S_ISLNK(inode->i_mode) &&
4437                      !ext4_inode_is_fast_symlink(inode)))
4438                         /* Validate extent which is part of inode */
4439                         ret = ext4_ext_check_inode(inode);
4440         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4441                    (S_ISLNK(inode->i_mode) &&
4442                     !ext4_inode_is_fast_symlink(inode))) {
4443                 /* Validate block references which are part of inode */
4444                 ret = ext4_check_inode_blockref(inode);
4445         }
4446         if (ret) {
4447                 brelse(bh);
4448                 goto bad_inode;
4449         }
4450
4451         if (S_ISREG(inode->i_mode)) {
4452                 inode->i_op = &ext4_file_inode_operations;
4453                 inode->i_fop = &ext4_file_operations;
4454                 ext4_set_aops(inode);
4455         } else if (S_ISDIR(inode->i_mode)) {
4456                 inode->i_op = &ext4_dir_inode_operations;
4457                 inode->i_fop = &ext4_dir_operations;
4458         } else if (S_ISLNK(inode->i_mode)) {
4459                 if (ext4_inode_is_fast_symlink(inode)) {
4460                         inode->i_op = &ext4_fast_symlink_inode_operations;
4461                         nd_terminate_link(ei->i_data, inode->i_size,
4462                                 sizeof(ei->i_data) - 1);
4463                 } else {
4464                         inode->i_op = &ext4_symlink_inode_operations;
4465                         ext4_set_aops(inode);
4466                 }
4467         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4468               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4469                 inode->i_op = &ext4_special_inode_operations;
4470                 if (raw_inode->i_block[0])
4471                         init_special_inode(inode, inode->i_mode,
4472                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4473                 else
4474                         init_special_inode(inode, inode->i_mode,
4475                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4476         } else {
4477                 brelse(bh);
4478                 ret = -EIO;
4479                 ext4_error(inode->i_sb, __func__,
4480                            "bogus i_mode (%o) for inode=%lu",
4481                            inode->i_mode, inode->i_ino);
4482                 goto bad_inode;
4483         }
4484         brelse(iloc.bh);
4485         ext4_set_inode_flags(inode);
4486         unlock_new_inode(inode);
4487         return inode;
4488
4489 bad_inode:
4490         iget_failed(inode);
4491         return ERR_PTR(ret);
4492 }
4493
4494 static int ext4_inode_blocks_set(handle_t *handle,
4495                                 struct ext4_inode *raw_inode,
4496                                 struct ext4_inode_info *ei)
4497 {
4498         struct inode *inode = &(ei->vfs_inode);
4499         u64 i_blocks = inode->i_blocks;
4500         struct super_block *sb = inode->i_sb;
4501
4502         if (i_blocks <= ~0U) {
4503                 /*
4504                  * i_blocks can be represnted in a 32 bit variable
4505                  * as multiple of 512 bytes
4506                  */
4507                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4508                 raw_inode->i_blocks_high = 0;
4509                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4510                 return 0;
4511         }
4512         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4513                 return -EFBIG;
4514
4515         if (i_blocks <= 0xffffffffffffULL) {
4516                 /*
4517                  * i_blocks can be represented in a 48 bit variable
4518                  * as multiple of 512 bytes
4519                  */
4520                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4521                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4522                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4523         } else {
4524                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4525                 /* i_block is stored in file system block size */
4526                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4527                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4528                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4529         }
4530         return 0;
4531 }
4532
4533 /*
4534  * Post the struct inode info into an on-disk inode location in the
4535  * buffer-cache.  This gobbles the caller's reference to the
4536  * buffer_head in the inode location struct.
4537  *
4538  * The caller must have write access to iloc->bh.
4539  */
4540 static int ext4_do_update_inode(handle_t *handle,
4541                                 struct inode *inode,
4542                                 struct ext4_iloc *iloc)
4543 {
4544         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4545         struct ext4_inode_info *ei = EXT4_I(inode);
4546         struct buffer_head *bh = iloc->bh;
4547         int err = 0, rc, block;
4548
4549         /* For fields not not tracking in the in-memory inode,
4550          * initialise them to zero for new inodes. */
4551         if (ei->i_state & EXT4_STATE_NEW)
4552                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4553
4554         ext4_get_inode_flags(ei);
4555         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4556         if (!(test_opt(inode->i_sb, NO_UID32))) {
4557                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4558                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4559 /*
4560  * Fix up interoperability with old kernels. Otherwise, old inodes get
4561  * re-used with the upper 16 bits of the uid/gid intact
4562  */
4563                 if (!ei->i_dtime) {
4564                         raw_inode->i_uid_high =
4565                                 cpu_to_le16(high_16_bits(inode->i_uid));
4566                         raw_inode->i_gid_high =
4567                                 cpu_to_le16(high_16_bits(inode->i_gid));
4568                 } else {
4569                         raw_inode->i_uid_high = 0;
4570                         raw_inode->i_gid_high = 0;
4571                 }
4572         } else {
4573                 raw_inode->i_uid_low =
4574                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4575                 raw_inode->i_gid_low =
4576                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4577                 raw_inode->i_uid_high = 0;
4578                 raw_inode->i_gid_high = 0;
4579         }
4580         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4581
4582         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4583         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4584         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4585         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4586
4587         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4588                 goto out_brelse;
4589         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4590         /* clear the migrate flag in the raw_inode */
4591         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4592         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4593             cpu_to_le32(EXT4_OS_HURD))
4594                 raw_inode->i_file_acl_high =
4595                         cpu_to_le16(ei->i_file_acl >> 32);
4596         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4597         ext4_isize_set(raw_inode, ei->i_disksize);
4598         if (ei->i_disksize > 0x7fffffffULL) {
4599                 struct super_block *sb = inode->i_sb;
4600                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4601                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4602                                 EXT4_SB(sb)->s_es->s_rev_level ==
4603                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4604                         /* If this is the first large file
4605                          * created, add a flag to the superblock.
4606                          */
4607                         err = ext4_journal_get_write_access(handle,
4608                                         EXT4_SB(sb)->s_sbh);
4609                         if (err)
4610                                 goto out_brelse;
4611                         ext4_update_dynamic_rev(sb);
4612                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4613                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4614                         sb->s_dirt = 1;
4615                         ext4_handle_sync(handle);
4616                         err = ext4_handle_dirty_metadata(handle, inode,
4617                                         EXT4_SB(sb)->s_sbh);
4618                 }
4619         }
4620         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4621         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4622                 if (old_valid_dev(inode->i_rdev)) {
4623                         raw_inode->i_block[0] =
4624                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4625                         raw_inode->i_block[1] = 0;
4626                 } else {
4627                         raw_inode->i_block[0] = 0;
4628                         raw_inode->i_block[1] =
4629                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4630                         raw_inode->i_block[2] = 0;
4631                 }
4632         } else
4633                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4634                         raw_inode->i_block[block] = ei->i_data[block];
4635
4636         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4637         if (ei->i_extra_isize) {
4638                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4639                         raw_inode->i_version_hi =
4640                         cpu_to_le32(inode->i_version >> 32);
4641                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4642         }
4643
4644         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4645         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4646         if (!err)
4647                 err = rc;
4648         ei->i_state &= ~EXT4_STATE_NEW;
4649
4650 out_brelse:
4651         brelse(bh);
4652         ext4_std_error(inode->i_sb, err);
4653         return err;
4654 }
4655
4656 /*
4657  * ext4_write_inode()
4658  *
4659  * We are called from a few places:
4660  *
4661  * - Within generic_file_write() for O_SYNC files.
4662  *   Here, there will be no transaction running. We wait for any running
4663  *   trasnaction to commit.
4664  *
4665  * - Within sys_sync(), kupdate and such.
4666  *   We wait on commit, if tol to.
4667  *
4668  * - Within prune_icache() (PF_MEMALLOC == true)
4669  *   Here we simply return.  We can't afford to block kswapd on the
4670  *   journal commit.
4671  *
4672  * In all cases it is actually safe for us to return without doing anything,
4673  * because the inode has been copied into a raw inode buffer in
4674  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4675  * knfsd.
4676  *
4677  * Note that we are absolutely dependent upon all inode dirtiers doing the
4678  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4679  * which we are interested.
4680  *
4681  * It would be a bug for them to not do this.  The code:
4682  *
4683  *      mark_inode_dirty(inode)
4684  *      stuff();
4685  *      inode->i_size = expr;
4686  *
4687  * is in error because a kswapd-driven write_inode() could occur while
4688  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4689  * will no longer be on the superblock's dirty inode list.
4690  */
4691 int ext4_write_inode(struct inode *inode, int wait)
4692 {
4693         if (current->flags & PF_MEMALLOC)
4694                 return 0;
4695
4696         if (ext4_journal_current_handle()) {
4697                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4698                 dump_stack();
4699                 return -EIO;
4700         }
4701
4702         if (!wait)
4703                 return 0;
4704
4705         return ext4_force_commit(inode->i_sb);
4706 }
4707
4708 /*
4709  * ext4_setattr()
4710  *
4711  * Called from notify_change.
4712  *
4713  * We want to trap VFS attempts to truncate the file as soon as
4714  * possible.  In particular, we want to make sure that when the VFS
4715  * shrinks i_size, we put the inode on the orphan list and modify
4716  * i_disksize immediately, so that during the subsequent flushing of
4717  * dirty pages and freeing of disk blocks, we can guarantee that any
4718  * commit will leave the blocks being flushed in an unused state on
4719  * disk.  (On recovery, the inode will get truncated and the blocks will
4720  * be freed, so we have a strong guarantee that no future commit will
4721  * leave these blocks visible to the user.)
4722  *
4723  * Another thing we have to assure is that if we are in ordered mode
4724  * and inode is still attached to the committing transaction, we must
4725  * we start writeout of all the dirty pages which are being truncated.
4726  * This way we are sure that all the data written in the previous
4727  * transaction are already on disk (truncate waits for pages under
4728  * writeback).
4729  *
4730  * Called with inode->i_mutex down.
4731  */
4732 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4733 {
4734         struct inode *inode = dentry->d_inode;
4735         int error, rc = 0;
4736         const unsigned int ia_valid = attr->ia_valid;
4737
4738         error = inode_change_ok(inode, attr);
4739         if (error)
4740                 return error;
4741
4742         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4743                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4744                 handle_t *handle;
4745
4746                 /* (user+group)*(old+new) structure, inode write (sb,
4747                  * inode block, ? - but truncate inode update has it) */
4748                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4749                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4750                 if (IS_ERR(handle)) {
4751                         error = PTR_ERR(handle);
4752                         goto err_out;
4753                 }
4754                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4755                 if (error) {
4756                         ext4_journal_stop(handle);
4757                         return error;
4758                 }
4759                 /* Update corresponding info in inode so that everything is in
4760                  * one transaction */
4761                 if (attr->ia_valid & ATTR_UID)
4762                         inode->i_uid = attr->ia_uid;
4763                 if (attr->ia_valid & ATTR_GID)
4764                         inode->i_gid = attr->ia_gid;
4765                 error = ext4_mark_inode_dirty(handle, inode);
4766                 ext4_journal_stop(handle);
4767         }
4768
4769         if (attr->ia_valid & ATTR_SIZE) {
4770                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4771                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4772
4773                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4774                                 error = -EFBIG;
4775                                 goto err_out;
4776                         }
4777                 }
4778         }
4779
4780         if (S_ISREG(inode->i_mode) &&
4781             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4782                 handle_t *handle;
4783
4784                 handle = ext4_journal_start(inode, 3);
4785                 if (IS_ERR(handle)) {
4786                         error = PTR_ERR(handle);
4787                         goto err_out;
4788                 }
4789
4790                 error = ext4_orphan_add(handle, inode);
4791                 EXT4_I(inode)->i_disksize = attr->ia_size;
4792                 rc = ext4_mark_inode_dirty(handle, inode);
4793                 if (!error)
4794                         error = rc;
4795                 ext4_journal_stop(handle);
4796
4797                 if (ext4_should_order_data(inode)) {
4798                         error = ext4_begin_ordered_truncate(inode,
4799                                                             attr->ia_size);
4800                         if (error) {
4801                                 /* Do as much error cleanup as possible */
4802                                 handle = ext4_journal_start(inode, 3);
4803                                 if (IS_ERR(handle)) {
4804                                         ext4_orphan_del(NULL, inode);
4805                                         goto err_out;
4806                                 }
4807                                 ext4_orphan_del(handle, inode);
4808                                 ext4_journal_stop(handle);
4809                                 goto err_out;
4810                         }
4811                 }
4812         }
4813
4814         rc = inode_setattr(inode, attr);
4815
4816         /* If inode_setattr's call to ext4_truncate failed to get a
4817          * transaction handle at all, we need to clean up the in-core
4818          * orphan list manually. */
4819         if (inode->i_nlink)
4820                 ext4_orphan_del(NULL, inode);
4821
4822         if (!rc && (ia_valid & ATTR_MODE))
4823                 rc = ext4_acl_chmod(inode);
4824
4825 err_out:
4826         ext4_std_error(inode->i_sb, error);
4827         if (!error)
4828                 error = rc;
4829         return error;
4830 }
4831
4832 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4833                  struct kstat *stat)
4834 {
4835         struct inode *inode;
4836         unsigned long delalloc_blocks;
4837
4838         inode = dentry->d_inode;
4839         generic_fillattr(inode, stat);
4840
4841         /*
4842          * We can't update i_blocks if the block allocation is delayed
4843          * otherwise in the case of system crash before the real block
4844          * allocation is done, we will have i_blocks inconsistent with
4845          * on-disk file blocks.
4846          * We always keep i_blocks updated together with real
4847          * allocation. But to not confuse with user, stat
4848          * will return the blocks that include the delayed allocation
4849          * blocks for this file.
4850          */
4851         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4852         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4853         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4854
4855         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4856         return 0;
4857 }
4858
4859 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4860                                       int chunk)
4861 {
4862         int indirects;
4863
4864         /* if nrblocks are contiguous */
4865         if (chunk) {
4866                 /*
4867                  * With N contiguous data blocks, it need at most
4868                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4869                  * 2 dindirect blocks
4870                  * 1 tindirect block
4871                  */
4872                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4873                 return indirects + 3;
4874         }
4875         /*
4876          * if nrblocks are not contiguous, worse case, each block touch
4877          * a indirect block, and each indirect block touch a double indirect
4878          * block, plus a triple indirect block
4879          */
4880         indirects = nrblocks * 2 + 1;
4881         return indirects;
4882 }
4883
4884 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4885 {
4886         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4887                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4888         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4889 }
4890
4891 /*
4892  * Account for index blocks, block groups bitmaps and block group
4893  * descriptor blocks if modify datablocks and index blocks
4894  * worse case, the indexs blocks spread over different block groups
4895  *
4896  * If datablocks are discontiguous, they are possible to spread over
4897  * different block groups too. If they are contiugous, with flexbg,
4898  * they could still across block group boundary.
4899  *
4900  * Also account for superblock, inode, quota and xattr blocks
4901  */
4902 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4903 {
4904         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4905         int gdpblocks;
4906         int idxblocks;
4907         int ret = 0;
4908
4909         /*
4910          * How many index blocks need to touch to modify nrblocks?
4911          * The "Chunk" flag indicating whether the nrblocks is
4912          * physically contiguous on disk
4913          *
4914          * For Direct IO and fallocate, they calls get_block to allocate
4915          * one single extent at a time, so they could set the "Chunk" flag
4916          */
4917         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4918
4919         ret = idxblocks;
4920
4921         /*
4922          * Now let's see how many group bitmaps and group descriptors need
4923          * to account
4924          */
4925         groups = idxblocks;
4926         if (chunk)
4927                 groups += 1;
4928         else
4929                 groups += nrblocks;
4930
4931         gdpblocks = groups;
4932         if (groups > ngroups)
4933                 groups = ngroups;
4934         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4935                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4936
4937         /* bitmaps and block group descriptor blocks */
4938         ret += groups + gdpblocks;
4939
4940         /* Blocks for super block, inode, quota and xattr blocks */
4941         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4942
4943         return ret;
4944 }
4945
4946 /*
4947  * Calulate the total number of credits to reserve to fit
4948  * the modification of a single pages into a single transaction,
4949  * which may include multiple chunks of block allocations.
4950  *
4951  * This could be called via ext4_write_begin()
4952  *
4953  * We need to consider the worse case, when
4954  * one new block per extent.
4955  */
4956 int ext4_writepage_trans_blocks(struct inode *inode)
4957 {
4958         int bpp = ext4_journal_blocks_per_page(inode);
4959         int ret;
4960
4961         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4962
4963         /* Account for data blocks for journalled mode */
4964         if (ext4_should_journal_data(inode))
4965                 ret += bpp;
4966         return ret;
4967 }
4968
4969 /*
4970  * Calculate the journal credits for a chunk of data modification.
4971  *
4972  * This is called from DIO, fallocate or whoever calling
4973  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4974  *
4975  * journal buffers for data blocks are not included here, as DIO
4976  * and fallocate do no need to journal data buffers.
4977  */
4978 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4979 {
4980         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4981 }
4982
4983 /*
4984  * The caller must have previously called ext4_reserve_inode_write().
4985  * Give this, we know that the caller already has write access to iloc->bh.
4986  */
4987 int ext4_mark_iloc_dirty(handle_t *handle,
4988                          struct inode *inode, struct ext4_iloc *iloc)
4989 {
4990         int err = 0;
4991
4992         if (test_opt(inode->i_sb, I_VERSION))
4993                 inode_inc_iversion(inode);
4994
4995         /* the do_update_inode consumes one bh->b_count */
4996         get_bh(iloc->bh);
4997
4998         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4999         err = ext4_do_update_inode(handle, inode, iloc);
5000         put_bh(iloc->bh);
5001         return err;
5002 }
5003
5004 /*
5005  * On success, We end up with an outstanding reference count against
5006  * iloc->bh.  This _must_ be cleaned up later.
5007  */
5008
5009 int
5010 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5011                          struct ext4_iloc *iloc)
5012 {
5013         int err;
5014
5015         err = ext4_get_inode_loc(inode, iloc);
5016         if (!err) {
5017                 BUFFER_TRACE(iloc->bh, "get_write_access");
5018                 err = ext4_journal_get_write_access(handle, iloc->bh);
5019                 if (err) {
5020                         brelse(iloc->bh);
5021                         iloc->bh = NULL;
5022                 }
5023         }
5024         ext4_std_error(inode->i_sb, err);
5025         return err;
5026 }
5027
5028 /*
5029  * Expand an inode by new_extra_isize bytes.
5030  * Returns 0 on success or negative error number on failure.
5031  */
5032 static int ext4_expand_extra_isize(struct inode *inode,
5033                                    unsigned int new_extra_isize,
5034                                    struct ext4_iloc iloc,
5035                                    handle_t *handle)
5036 {
5037         struct ext4_inode *raw_inode;
5038         struct ext4_xattr_ibody_header *header;
5039         struct ext4_xattr_entry *entry;
5040
5041         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5042                 return 0;
5043
5044         raw_inode = ext4_raw_inode(&iloc);
5045
5046         header = IHDR(inode, raw_inode);
5047         entry = IFIRST(header);
5048
5049         /* No extended attributes present */
5050         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5051                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5052                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5053                         new_extra_isize);
5054                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5055                 return 0;
5056         }
5057
5058         /* try to expand with EAs present */
5059         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5060                                           raw_inode, handle);
5061 }
5062
5063 /*
5064  * What we do here is to mark the in-core inode as clean with respect to inode
5065  * dirtiness (it may still be data-dirty).
5066  * This means that the in-core inode may be reaped by prune_icache
5067  * without having to perform any I/O.  This is a very good thing,
5068  * because *any* task may call prune_icache - even ones which
5069  * have a transaction open against a different journal.
5070  *
5071  * Is this cheating?  Not really.  Sure, we haven't written the
5072  * inode out, but prune_icache isn't a user-visible syncing function.
5073  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5074  * we start and wait on commits.
5075  *
5076  * Is this efficient/effective?  Well, we're being nice to the system
5077  * by cleaning up our inodes proactively so they can be reaped
5078  * without I/O.  But we are potentially leaving up to five seconds'
5079  * worth of inodes floating about which prune_icache wants us to
5080  * write out.  One way to fix that would be to get prune_icache()
5081  * to do a write_super() to free up some memory.  It has the desired
5082  * effect.
5083  */
5084 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5085 {
5086         struct ext4_iloc iloc;
5087         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5088         static unsigned int mnt_count;
5089         int err, ret;
5090
5091         might_sleep();
5092         err = ext4_reserve_inode_write(handle, inode, &iloc);
5093         if (ext4_handle_valid(handle) &&
5094             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5095             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5096                 /*
5097                  * We need extra buffer credits since we may write into EA block
5098                  * with this same handle. If journal_extend fails, then it will
5099                  * only result in a minor loss of functionality for that inode.
5100                  * If this is felt to be critical, then e2fsck should be run to
5101                  * force a large enough s_min_extra_isize.
5102                  */
5103                 if ((jbd2_journal_extend(handle,
5104                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5105                         ret = ext4_expand_extra_isize(inode,
5106                                                       sbi->s_want_extra_isize,
5107                                                       iloc, handle);
5108                         if (ret) {
5109                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5110                                 if (mnt_count !=
5111                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5112                                         ext4_warning(inode->i_sb, __func__,
5113                                         "Unable to expand inode %lu. Delete"
5114                                         " some EAs or run e2fsck.",
5115                                         inode->i_ino);
5116                                         mnt_count =
5117                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5118                                 }
5119                         }
5120                 }
5121         }
5122         if (!err)
5123                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5124         return err;
5125 }
5126
5127 /*
5128  * ext4_dirty_inode() is called from __mark_inode_dirty()
5129  *
5130  * We're really interested in the case where a file is being extended.
5131  * i_size has been changed by generic_commit_write() and we thus need
5132  * to include the updated inode in the current transaction.
5133  *
5134  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5135  * are allocated to the file.
5136  *
5137  * If the inode is marked synchronous, we don't honour that here - doing
5138  * so would cause a commit on atime updates, which we don't bother doing.
5139  * We handle synchronous inodes at the highest possible level.
5140  */
5141 void ext4_dirty_inode(struct inode *inode)
5142 {
5143         handle_t *current_handle = ext4_journal_current_handle();
5144         handle_t *handle;
5145
5146         if (!ext4_handle_valid(current_handle)) {
5147                 ext4_mark_inode_dirty(current_handle, inode);
5148                 return;
5149         }
5150
5151         handle = ext4_journal_start(inode, 2);
5152         if (IS_ERR(handle))
5153                 goto out;
5154         if (current_handle &&
5155                 current_handle->h_transaction != handle->h_transaction) {
5156                 /* This task has a transaction open against a different fs */
5157                 printk(KERN_EMERG "%s: transactions do not match!\n",
5158                        __func__);
5159         } else {
5160                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5161                                 current_handle);
5162                 ext4_mark_inode_dirty(handle, inode);
5163         }
5164         ext4_journal_stop(handle);
5165 out:
5166         return;
5167 }
5168
5169 #if 0
5170 /*
5171  * Bind an inode's backing buffer_head into this transaction, to prevent
5172  * it from being flushed to disk early.  Unlike
5173  * ext4_reserve_inode_write, this leaves behind no bh reference and
5174  * returns no iloc structure, so the caller needs to repeat the iloc
5175  * lookup to mark the inode dirty later.
5176  */
5177 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5178 {
5179         struct ext4_iloc iloc;
5180
5181         int err = 0;
5182         if (handle) {
5183                 err = ext4_get_inode_loc(inode, &iloc);
5184                 if (!err) {
5185                         BUFFER_TRACE(iloc.bh, "get_write_access");
5186                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5187                         if (!err)
5188                                 err = ext4_handle_dirty_metadata(handle,
5189                                                                  inode,
5190                                                                  iloc.bh);
5191                         brelse(iloc.bh);
5192                 }
5193         }
5194         ext4_std_error(inode->i_sb, err);
5195         return err;
5196 }
5197 #endif
5198
5199 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5200 {
5201         journal_t *journal;
5202         handle_t *handle;
5203         int err;
5204
5205         /*
5206          * We have to be very careful here: changing a data block's
5207          * journaling status dynamically is dangerous.  If we write a
5208          * data block to the journal, change the status and then delete
5209          * that block, we risk forgetting to revoke the old log record
5210          * from the journal and so a subsequent replay can corrupt data.
5211          * So, first we make sure that the journal is empty and that
5212          * nobody is changing anything.
5213          */
5214
5215         journal = EXT4_JOURNAL(inode);
5216         if (!journal)
5217                 return 0;
5218         if (is_journal_aborted(journal))
5219                 return -EROFS;
5220
5221         jbd2_journal_lock_updates(journal);
5222         jbd2_journal_flush(journal);
5223
5224         /*
5225          * OK, there are no updates running now, and all cached data is
5226          * synced to disk.  We are now in a completely consistent state
5227          * which doesn't have anything in the journal, and we know that
5228          * no filesystem updates are running, so it is safe to modify
5229          * the inode's in-core data-journaling state flag now.
5230          */
5231
5232         if (val)
5233                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5234         else
5235                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5236         ext4_set_aops(inode);
5237
5238         jbd2_journal_unlock_updates(journal);
5239
5240         /* Finally we can mark the inode as dirty. */
5241
5242         handle = ext4_journal_start(inode, 1);
5243         if (IS_ERR(handle))
5244                 return PTR_ERR(handle);
5245
5246         err = ext4_mark_inode_dirty(handle, inode);
5247         ext4_handle_sync(handle);
5248         ext4_journal_stop(handle);
5249         ext4_std_error(inode->i_sb, err);
5250
5251         return err;
5252 }
5253
5254 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5255 {
5256         return !buffer_mapped(bh);
5257 }
5258
5259 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5260 {
5261         struct page *page = vmf->page;
5262         loff_t size;
5263         unsigned long len;
5264         int ret = -EINVAL;
5265         void *fsdata;
5266         struct file *file = vma->vm_file;
5267         struct inode *inode = file->f_path.dentry->d_inode;
5268         struct address_space *mapping = inode->i_mapping;
5269
5270         /*
5271          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5272          * get i_mutex because we are already holding mmap_sem.
5273          */
5274         down_read(&inode->i_alloc_sem);
5275         size = i_size_read(inode);
5276         if (page->mapping != mapping || size <= page_offset(page)
5277             || !PageUptodate(page)) {
5278                 /* page got truncated from under us? */
5279                 goto out_unlock;
5280         }
5281         ret = 0;
5282         if (PageMappedToDisk(page))
5283                 goto out_unlock;
5284
5285         if (page->index == size >> PAGE_CACHE_SHIFT)
5286                 len = size & ~PAGE_CACHE_MASK;
5287         else
5288                 len = PAGE_CACHE_SIZE;
5289
5290         if (page_has_buffers(page)) {
5291                 /* return if we have all the buffers mapped */
5292                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5293                                        ext4_bh_unmapped))
5294                         goto out_unlock;
5295         }
5296         /*
5297          * OK, we need to fill the hole... Do write_begin write_end
5298          * to do block allocation/reservation.We are not holding
5299          * inode.i__mutex here. That allow * parallel write_begin,
5300          * write_end call. lock_page prevent this from happening
5301          * on the same page though
5302          */
5303         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5304                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5305         if (ret < 0)
5306                 goto out_unlock;
5307         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5308                         len, len, page, fsdata);
5309         if (ret < 0)
5310                 goto out_unlock;
5311         ret = 0;
5312 out_unlock:
5313         if (ret)
5314                 ret = VM_FAULT_SIGBUS;
5315         up_read(&inode->i_alloc_sem);
5316         return ret;
5317 }