ext4: Use a fake block number for delayed new buffer_head
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * Allocation strategy is simple: if we have to allocate something, we will
896  * have to go the whole way to leaf. So let's do it before attaching anything
897  * to tree, set linkage between the newborn blocks, write them if sync is
898  * required, recheck the path, free and repeat if check fails, otherwise
899  * set the last missing link (that will protect us from any truncate-generated
900  * removals - all blocks on the path are immune now) and possibly force the
901  * write on the parent block.
902  * That has a nice additional property: no special recovery from the failed
903  * allocations is needed - we simply release blocks and do not touch anything
904  * reachable from inode.
905  *
906  * `handle' can be NULL if create == 0.
907  *
908  * return > 0, # of blocks mapped or allocated.
909  * return = 0, if plain lookup failed.
910  * return < 0, error case.
911  *
912  *
913  * Need to be called with
914  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916  */
917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918                                   ext4_lblk_t iblock, unsigned int maxblocks,
919                                   struct buffer_head *bh_result,
920                                   int create, int extend_disksize)
921 {
922         int err = -EIO;
923         ext4_lblk_t offsets[4];
924         Indirect chain[4];
925         Indirect *partial;
926         ext4_fsblk_t goal;
927         int indirect_blks;
928         int blocks_to_boundary = 0;
929         int depth;
930         struct ext4_inode_info *ei = EXT4_I(inode);
931         int count = 0;
932         ext4_fsblk_t first_block = 0;
933         loff_t disksize;
934
935
936         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937         J_ASSERT(handle != NULL || create == 0);
938         depth = ext4_block_to_path(inode, iblock, offsets,
939                                         &blocks_to_boundary);
940
941         if (depth == 0)
942                 goto out;
943
944         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946         /* Simplest case - block found, no allocation needed */
947         if (!partial) {
948                 first_block = le32_to_cpu(chain[depth - 1].key);
949                 clear_buffer_new(bh_result);
950                 count++;
951                 /*map more blocks*/
952                 while (count < maxblocks && count <= blocks_to_boundary) {
953                         ext4_fsblk_t blk;
954
955                         blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957                         if (blk == first_block + count)
958                                 count++;
959                         else
960                                 break;
961                 }
962                 goto got_it;
963         }
964
965         /* Next simple case - plain lookup or failed read of indirect block */
966         if (!create || err == -EIO)
967                 goto cleanup;
968
969         /*
970          * Okay, we need to do block allocation.
971         */
972         goal = ext4_find_goal(inode, iblock, partial);
973
974         /* the number of blocks need to allocate for [d,t]indirect blocks */
975         indirect_blks = (chain + depth) - partial - 1;
976
977         /*
978          * Next look up the indirect map to count the totoal number of
979          * direct blocks to allocate for this branch.
980          */
981         count = ext4_blks_to_allocate(partial, indirect_blks,
982                                         maxblocks, blocks_to_boundary);
983         /*
984          * Block out ext4_truncate while we alter the tree
985          */
986         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987                                         &count, goal,
988                                         offsets + (partial - chain), partial);
989
990         /*
991          * The ext4_splice_branch call will free and forget any buffers
992          * on the new chain if there is a failure, but that risks using
993          * up transaction credits, especially for bitmaps where the
994          * credits cannot be returned.  Can we handle this somehow?  We
995          * may need to return -EAGAIN upwards in the worst case.  --sct
996          */
997         if (!err)
998                 err = ext4_splice_branch(handle, inode, iblock,
999                                         partial, indirect_blks, count);
1000         /*
1001          * i_disksize growing is protected by i_data_sem.  Don't forget to
1002          * protect it if you're about to implement concurrent
1003          * ext4_get_block() -bzzz
1004         */
1005         if (!err && extend_disksize) {
1006                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007                 if (disksize > i_size_read(inode))
1008                         disksize = i_size_read(inode);
1009                 if (disksize > ei->i_disksize)
1010                         ei->i_disksize = disksize;
1011         }
1012         if (err)
1013                 goto cleanup;
1014
1015         set_buffer_new(bh_result);
1016 got_it:
1017         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018         if (count > blocks_to_boundary)
1019                 set_buffer_boundary(bh_result);
1020         err = count;
1021         /* Clean up and exit */
1022         partial = chain + depth - 1;    /* the whole chain */
1023 cleanup:
1024         while (partial > chain) {
1025                 BUFFER_TRACE(partial->bh, "call brelse");
1026                 brelse(partial->bh);
1027                 partial--;
1028         }
1029         BUFFER_TRACE(bh_result, "returned");
1030 out:
1031         return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036         unsigned long long total;
1037
1038         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039         total = EXT4_I(inode)->i_reserved_data_blocks +
1040                 EXT4_I(inode)->i_reserved_meta_blocks;
1041         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043         return total;
1044 }
1045 /*
1046  * Calculate the number of metadata blocks need to reserve
1047  * to allocate @blocks for non extent file based file
1048  */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052         int ind_blks, dind_blks, tind_blks;
1053
1054         /* number of new indirect blocks needed */
1055         ind_blks = (blocks + icap - 1) / icap;
1056
1057         dind_blks = (ind_blks + icap - 1) / icap;
1058
1059         tind_blks = 1;
1060
1061         return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065  * Calculate the number of metadata blocks need to reserve
1066  * to allocate given number of blocks
1067  */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070         if (!blocks)
1071                 return 0;
1072
1073         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074                 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076         return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         int total, mdb, mdb_free;
1083
1084         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085         /* recalculate the number of metablocks still need to be reserved */
1086         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087         mdb = ext4_calc_metadata_amount(inode, total);
1088
1089         /* figure out how many metablocks to release */
1090         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093         if (mdb_free) {
1094                 /* Account for allocated meta_blocks */
1095                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097                 /* update fs dirty blocks counter */
1098                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101         }
1102
1103         /* update per-inode reservations */
1104         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1105         EXT4_I(inode)->i_reserved_data_blocks -= used;
1106         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108         /*
1109          * free those over-booking quota for metadata blocks
1110          */
1111         if (mdb_free)
1112                 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114         /*
1115          * If we have done all the pending block allocations and if
1116          * there aren't any writers on the inode, we can discard the
1117          * inode's preallocations.
1118          */
1119         if (!total && (atomic_read(&inode->i_writecount) == 0))
1120                 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125  * and returns if the blocks are already mapped.
1126  *
1127  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128  * and store the allocated blocks in the result buffer head and mark it
1129  * mapped.
1130  *
1131  * If file type is extents based, it will call ext4_ext_get_blocks(),
1132  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133  * based files
1134  *
1135  * On success, it returns the number of blocks being mapped or allocate.
1136  * if create==0 and the blocks are pre-allocated and uninitialized block,
1137  * the result buffer head is unmapped. If the create ==1, it will make sure
1138  * the buffer head is mapped.
1139  *
1140  * It returns 0 if plain look up failed (blocks have not been allocated), in
1141  * that casem, buffer head is unmapped
1142  *
1143  * It returns the error in case of allocation failure.
1144  */
1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146                         unsigned int max_blocks, struct buffer_head *bh,
1147                         int create, int extend_disksize, int flag)
1148 {
1149         int retval;
1150
1151         clear_buffer_mapped(bh);
1152
1153         /*
1154          * Try to see if we can get  the block without requesting
1155          * for new file system block.
1156          */
1157         down_read((&EXT4_I(inode)->i_data_sem));
1158         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1159                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1160                                 bh, 0, 0);
1161         } else {
1162                 retval = ext4_get_blocks_handle(handle,
1163                                 inode, block, max_blocks, bh, 0, 0);
1164         }
1165         up_read((&EXT4_I(inode)->i_data_sem));
1166
1167         /* If it is only a block(s) look up */
1168         if (!create)
1169                 return retval;
1170
1171         /*
1172          * Returns if the blocks have already allocated
1173          *
1174          * Note that if blocks have been preallocated
1175          * ext4_ext_get_block() returns th create = 0
1176          * with buffer head unmapped.
1177          */
1178         if (retval > 0 && buffer_mapped(bh))
1179                 return retval;
1180
1181         /*
1182          * New blocks allocate and/or writing to uninitialized extent
1183          * will possibly result in updating i_data, so we take
1184          * the write lock of i_data_sem, and call get_blocks()
1185          * with create == 1 flag.
1186          */
1187         down_write((&EXT4_I(inode)->i_data_sem));
1188
1189         /*
1190          * if the caller is from delayed allocation writeout path
1191          * we have already reserved fs blocks for allocation
1192          * let the underlying get_block() function know to
1193          * avoid double accounting
1194          */
1195         if (flag)
1196                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1197         /*
1198          * We need to check for EXT4 here because migrate
1199          * could have changed the inode type in between
1200          */
1201         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1202                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1203                                 bh, create, extend_disksize);
1204         } else {
1205                 retval = ext4_get_blocks_handle(handle, inode, block,
1206                                 max_blocks, bh, create, extend_disksize);
1207
1208                 if (retval > 0 && buffer_new(bh)) {
1209                         /*
1210                          * We allocated new blocks which will result in
1211                          * i_data's format changing.  Force the migrate
1212                          * to fail by clearing migrate flags
1213                          */
1214                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1215                                                         ~EXT4_EXT_MIGRATE;
1216                 }
1217         }
1218
1219         if (flag) {
1220                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1221                 /*
1222                  * Update reserved blocks/metadata blocks
1223                  * after successful block allocation
1224                  * which were deferred till now
1225                  */
1226                 if ((retval > 0) && buffer_delay(bh))
1227                         ext4_da_update_reserve_space(inode, retval);
1228         }
1229
1230         up_write((&EXT4_I(inode)->i_data_sem));
1231         return retval;
1232 }
1233
1234 /* Maximum number of blocks we map for direct IO at once. */
1235 #define DIO_MAX_BLOCKS 4096
1236
1237 int ext4_get_block(struct inode *inode, sector_t iblock,
1238                    struct buffer_head *bh_result, int create)
1239 {
1240         handle_t *handle = ext4_journal_current_handle();
1241         int ret = 0, started = 0;
1242         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1243         int dio_credits;
1244
1245         if (create && !handle) {
1246                 /* Direct IO write... */
1247                 if (max_blocks > DIO_MAX_BLOCKS)
1248                         max_blocks = DIO_MAX_BLOCKS;
1249                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1250                 handle = ext4_journal_start(inode, dio_credits);
1251                 if (IS_ERR(handle)) {
1252                         ret = PTR_ERR(handle);
1253                         goto out;
1254                 }
1255                 started = 1;
1256         }
1257
1258         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1259                                         max_blocks, bh_result, create, 0, 0);
1260         if (ret > 0) {
1261                 bh_result->b_size = (ret << inode->i_blkbits);
1262                 ret = 0;
1263         }
1264         if (started)
1265                 ext4_journal_stop(handle);
1266 out:
1267         return ret;
1268 }
1269
1270 /*
1271  * `handle' can be NULL if create is zero
1272  */
1273 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1274                                 ext4_lblk_t block, int create, int *errp)
1275 {
1276         struct buffer_head dummy;
1277         int fatal = 0, err;
1278
1279         J_ASSERT(handle != NULL || create == 0);
1280
1281         dummy.b_state = 0;
1282         dummy.b_blocknr = -1000;
1283         buffer_trace_init(&dummy.b_history);
1284         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1285                                         &dummy, create, 1, 0);
1286         /*
1287          * ext4_get_blocks_handle() returns number of blocks
1288          * mapped. 0 in case of a HOLE.
1289          */
1290         if (err > 0) {
1291                 if (err > 1)
1292                         WARN_ON(1);
1293                 err = 0;
1294         }
1295         *errp = err;
1296         if (!err && buffer_mapped(&dummy)) {
1297                 struct buffer_head *bh;
1298                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1299                 if (!bh) {
1300                         *errp = -EIO;
1301                         goto err;
1302                 }
1303                 if (buffer_new(&dummy)) {
1304                         J_ASSERT(create != 0);
1305                         J_ASSERT(handle != NULL);
1306
1307                         /*
1308                          * Now that we do not always journal data, we should
1309                          * keep in mind whether this should always journal the
1310                          * new buffer as metadata.  For now, regular file
1311                          * writes use ext4_get_block instead, so it's not a
1312                          * problem.
1313                          */
1314                         lock_buffer(bh);
1315                         BUFFER_TRACE(bh, "call get_create_access");
1316                         fatal = ext4_journal_get_create_access(handle, bh);
1317                         if (!fatal && !buffer_uptodate(bh)) {
1318                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1319                                 set_buffer_uptodate(bh);
1320                         }
1321                         unlock_buffer(bh);
1322                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1323                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1324                         if (!fatal)
1325                                 fatal = err;
1326                 } else {
1327                         BUFFER_TRACE(bh, "not a new buffer");
1328                 }
1329                 if (fatal) {
1330                         *errp = fatal;
1331                         brelse(bh);
1332                         bh = NULL;
1333                 }
1334                 return bh;
1335         }
1336 err:
1337         return NULL;
1338 }
1339
1340 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1341                                ext4_lblk_t block, int create, int *err)
1342 {
1343         struct buffer_head *bh;
1344
1345         bh = ext4_getblk(handle, inode, block, create, err);
1346         if (!bh)
1347                 return bh;
1348         if (buffer_uptodate(bh))
1349                 return bh;
1350         ll_rw_block(READ_META, 1, &bh);
1351         wait_on_buffer(bh);
1352         if (buffer_uptodate(bh))
1353                 return bh;
1354         put_bh(bh);
1355         *err = -EIO;
1356         return NULL;
1357 }
1358
1359 static int walk_page_buffers(handle_t *handle,
1360                              struct buffer_head *head,
1361                              unsigned from,
1362                              unsigned to,
1363                              int *partial,
1364                              int (*fn)(handle_t *handle,
1365                                        struct buffer_head *bh))
1366 {
1367         struct buffer_head *bh;
1368         unsigned block_start, block_end;
1369         unsigned blocksize = head->b_size;
1370         int err, ret = 0;
1371         struct buffer_head *next;
1372
1373         for (bh = head, block_start = 0;
1374              ret == 0 && (bh != head || !block_start);
1375              block_start = block_end, bh = next)
1376         {
1377                 next = bh->b_this_page;
1378                 block_end = block_start + blocksize;
1379                 if (block_end <= from || block_start >= to) {
1380                         if (partial && !buffer_uptodate(bh))
1381                                 *partial = 1;
1382                         continue;
1383                 }
1384                 err = (*fn)(handle, bh);
1385                 if (!ret)
1386                         ret = err;
1387         }
1388         return ret;
1389 }
1390
1391 /*
1392  * To preserve ordering, it is essential that the hole instantiation and
1393  * the data write be encapsulated in a single transaction.  We cannot
1394  * close off a transaction and start a new one between the ext4_get_block()
1395  * and the commit_write().  So doing the jbd2_journal_start at the start of
1396  * prepare_write() is the right place.
1397  *
1398  * Also, this function can nest inside ext4_writepage() ->
1399  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1400  * has generated enough buffer credits to do the whole page.  So we won't
1401  * block on the journal in that case, which is good, because the caller may
1402  * be PF_MEMALLOC.
1403  *
1404  * By accident, ext4 can be reentered when a transaction is open via
1405  * quota file writes.  If we were to commit the transaction while thus
1406  * reentered, there can be a deadlock - we would be holding a quota
1407  * lock, and the commit would never complete if another thread had a
1408  * transaction open and was blocking on the quota lock - a ranking
1409  * violation.
1410  *
1411  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1412  * will _not_ run commit under these circumstances because handle->h_ref
1413  * is elevated.  We'll still have enough credits for the tiny quotafile
1414  * write.
1415  */
1416 static int do_journal_get_write_access(handle_t *handle,
1417                                         struct buffer_head *bh)
1418 {
1419         if (!buffer_mapped(bh) || buffer_freed(bh))
1420                 return 0;
1421         return ext4_journal_get_write_access(handle, bh);
1422 }
1423
1424 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1425                                 loff_t pos, unsigned len, unsigned flags,
1426                                 struct page **pagep, void **fsdata)
1427 {
1428         struct inode *inode = mapping->host;
1429         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1430         handle_t *handle;
1431         int retries = 0;
1432         struct page *page;
1433         pgoff_t index;
1434         unsigned from, to;
1435
1436         trace_mark(ext4_write_begin,
1437                    "dev %s ino %lu pos %llu len %u flags %u",
1438                    inode->i_sb->s_id, inode->i_ino,
1439                    (unsigned long long) pos, len, flags);
1440         index = pos >> PAGE_CACHE_SHIFT;
1441         from = pos & (PAGE_CACHE_SIZE - 1);
1442         to = from + len;
1443
1444 retry:
1445         handle = ext4_journal_start(inode, needed_blocks);
1446         if (IS_ERR(handle)) {
1447                 ret = PTR_ERR(handle);
1448                 goto out;
1449         }
1450
1451         /* We cannot recurse into the filesystem as the transaction is already
1452          * started */
1453         flags |= AOP_FLAG_NOFS;
1454
1455         page = grab_cache_page_write_begin(mapping, index, flags);
1456         if (!page) {
1457                 ext4_journal_stop(handle);
1458                 ret = -ENOMEM;
1459                 goto out;
1460         }
1461         *pagep = page;
1462
1463         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1464                                 ext4_get_block);
1465
1466         if (!ret && ext4_should_journal_data(inode)) {
1467                 ret = walk_page_buffers(handle, page_buffers(page),
1468                                 from, to, NULL, do_journal_get_write_access);
1469         }
1470
1471         if (ret) {
1472                 unlock_page(page);
1473                 ext4_journal_stop(handle);
1474                 page_cache_release(page);
1475                 /*
1476                  * block_write_begin may have instantiated a few blocks
1477                  * outside i_size.  Trim these off again. Don't need
1478                  * i_size_read because we hold i_mutex.
1479                  */
1480                 if (pos + len > inode->i_size)
1481                         vmtruncate(inode, inode->i_size);
1482         }
1483
1484         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1485                 goto retry;
1486 out:
1487         return ret;
1488 }
1489
1490 /* For write_end() in data=journal mode */
1491 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1492 {
1493         if (!buffer_mapped(bh) || buffer_freed(bh))
1494                 return 0;
1495         set_buffer_uptodate(bh);
1496         return ext4_handle_dirty_metadata(handle, NULL, bh);
1497 }
1498
1499 /*
1500  * We need to pick up the new inode size which generic_commit_write gave us
1501  * `file' can be NULL - eg, when called from page_symlink().
1502  *
1503  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1504  * buffers are managed internally.
1505  */
1506 static int ext4_ordered_write_end(struct file *file,
1507                                 struct address_space *mapping,
1508                                 loff_t pos, unsigned len, unsigned copied,
1509                                 struct page *page, void *fsdata)
1510 {
1511         handle_t *handle = ext4_journal_current_handle();
1512         struct inode *inode = mapping->host;
1513         int ret = 0, ret2;
1514
1515         trace_mark(ext4_ordered_write_end,
1516                    "dev %s ino %lu pos %llu len %u copied %u",
1517                    inode->i_sb->s_id, inode->i_ino,
1518                    (unsigned long long) pos, len, copied);
1519         ret = ext4_jbd2_file_inode(handle, inode);
1520
1521         if (ret == 0) {
1522                 loff_t new_i_size;
1523
1524                 new_i_size = pos + copied;
1525                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1526                         ext4_update_i_disksize(inode, new_i_size);
1527                         /* We need to mark inode dirty even if
1528                          * new_i_size is less that inode->i_size
1529                          * bu greater than i_disksize.(hint delalloc)
1530                          */
1531                         ext4_mark_inode_dirty(handle, inode);
1532                 }
1533
1534                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1535                                                         page, fsdata);
1536                 copied = ret2;
1537                 if (ret2 < 0)
1538                         ret = ret2;
1539         }
1540         ret2 = ext4_journal_stop(handle);
1541         if (!ret)
1542                 ret = ret2;
1543
1544         return ret ? ret : copied;
1545 }
1546
1547 static int ext4_writeback_write_end(struct file *file,
1548                                 struct address_space *mapping,
1549                                 loff_t pos, unsigned len, unsigned copied,
1550                                 struct page *page, void *fsdata)
1551 {
1552         handle_t *handle = ext4_journal_current_handle();
1553         struct inode *inode = mapping->host;
1554         int ret = 0, ret2;
1555         loff_t new_i_size;
1556
1557         trace_mark(ext4_writeback_write_end,
1558                    "dev %s ino %lu pos %llu len %u copied %u",
1559                    inode->i_sb->s_id, inode->i_ino,
1560                    (unsigned long long) pos, len, copied);
1561         new_i_size = pos + copied;
1562         if (new_i_size > EXT4_I(inode)->i_disksize) {
1563                 ext4_update_i_disksize(inode, new_i_size);
1564                 /* We need to mark inode dirty even if
1565                  * new_i_size is less that inode->i_size
1566                  * bu greater than i_disksize.(hint delalloc)
1567                  */
1568                 ext4_mark_inode_dirty(handle, inode);
1569         }
1570
1571         ret2 = generic_write_end(file, mapping, pos, len, copied,
1572                                                         page, fsdata);
1573         copied = ret2;
1574         if (ret2 < 0)
1575                 ret = ret2;
1576
1577         ret2 = ext4_journal_stop(handle);
1578         if (!ret)
1579                 ret = ret2;
1580
1581         return ret ? ret : copied;
1582 }
1583
1584 static int ext4_journalled_write_end(struct file *file,
1585                                 struct address_space *mapping,
1586                                 loff_t pos, unsigned len, unsigned copied,
1587                                 struct page *page, void *fsdata)
1588 {
1589         handle_t *handle = ext4_journal_current_handle();
1590         struct inode *inode = mapping->host;
1591         int ret = 0, ret2;
1592         int partial = 0;
1593         unsigned from, to;
1594         loff_t new_i_size;
1595
1596         trace_mark(ext4_journalled_write_end,
1597                    "dev %s ino %lu pos %llu len %u copied %u",
1598                    inode->i_sb->s_id, inode->i_ino,
1599                    (unsigned long long) pos, len, copied);
1600         from = pos & (PAGE_CACHE_SIZE - 1);
1601         to = from + len;
1602
1603         if (copied < len) {
1604                 if (!PageUptodate(page))
1605                         copied = 0;
1606                 page_zero_new_buffers(page, from+copied, to);
1607         }
1608
1609         ret = walk_page_buffers(handle, page_buffers(page), from,
1610                                 to, &partial, write_end_fn);
1611         if (!partial)
1612                 SetPageUptodate(page);
1613         new_i_size = pos + copied;
1614         if (new_i_size > inode->i_size)
1615                 i_size_write(inode, pos+copied);
1616         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1617         if (new_i_size > EXT4_I(inode)->i_disksize) {
1618                 ext4_update_i_disksize(inode, new_i_size);
1619                 ret2 = ext4_mark_inode_dirty(handle, inode);
1620                 if (!ret)
1621                         ret = ret2;
1622         }
1623
1624         unlock_page(page);
1625         ret2 = ext4_journal_stop(handle);
1626         if (!ret)
1627                 ret = ret2;
1628         page_cache_release(page);
1629
1630         return ret ? ret : copied;
1631 }
1632
1633 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1634 {
1635         int retries = 0;
1636         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637         unsigned long md_needed, mdblocks, total = 0;
1638
1639         /*
1640          * recalculate the amount of metadata blocks to reserve
1641          * in order to allocate nrblocks
1642          * worse case is one extent per block
1643          */
1644 repeat:
1645         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1646         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1647         mdblocks = ext4_calc_metadata_amount(inode, total);
1648         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1649
1650         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1651         total = md_needed + nrblocks;
1652
1653         /*
1654          * Make quota reservation here to prevent quota overflow
1655          * later. Real quota accounting is done at pages writeout
1656          * time.
1657          */
1658         if (vfs_dq_reserve_block(inode, total)) {
1659                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1660                 return -EDQUOT;
1661         }
1662
1663         if (ext4_claim_free_blocks(sbi, total)) {
1664                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1665                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1666                         yield();
1667                         goto repeat;
1668                 }
1669                 vfs_dq_release_reservation_block(inode, total);
1670                 return -ENOSPC;
1671         }
1672         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1673         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1674
1675         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1676         return 0;       /* success */
1677 }
1678
1679 static void ext4_da_release_space(struct inode *inode, int to_free)
1680 {
1681         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1682         int total, mdb, mdb_free, release;
1683
1684         if (!to_free)
1685                 return;         /* Nothing to release, exit */
1686
1687         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1688
1689         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1690                 /*
1691                  * if there is no reserved blocks, but we try to free some
1692                  * then the counter is messed up somewhere.
1693                  * but since this function is called from invalidate
1694                  * page, it's harmless to return without any action
1695                  */
1696                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1697                             "blocks for inode %lu, but there is no reserved "
1698                             "data blocks\n", to_free, inode->i_ino);
1699                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1700                 return;
1701         }
1702
1703         /* recalculate the number of metablocks still need to be reserved */
1704         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1705         mdb = ext4_calc_metadata_amount(inode, total);
1706
1707         /* figure out how many metablocks to release */
1708         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1709         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1710
1711         release = to_free + mdb_free;
1712
1713         /* update fs dirty blocks counter for truncate case */
1714         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1715
1716         /* update per-inode reservations */
1717         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1718         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1719
1720         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1721         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1722         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1723
1724         vfs_dq_release_reservation_block(inode, release);
1725 }
1726
1727 static void ext4_da_page_release_reservation(struct page *page,
1728                                                 unsigned long offset)
1729 {
1730         int to_release = 0;
1731         struct buffer_head *head, *bh;
1732         unsigned int curr_off = 0;
1733
1734         head = page_buffers(page);
1735         bh = head;
1736         do {
1737                 unsigned int next_off = curr_off + bh->b_size;
1738
1739                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1740                         to_release++;
1741                         clear_buffer_delay(bh);
1742                 }
1743                 curr_off = next_off;
1744         } while ((bh = bh->b_this_page) != head);
1745         ext4_da_release_space(page->mapping->host, to_release);
1746 }
1747
1748 /*
1749  * Delayed allocation stuff
1750  */
1751
1752 struct mpage_da_data {
1753         struct inode *inode;
1754         sector_t b_blocknr;             /* start block number of extent */
1755         size_t b_size;                  /* size of extent */
1756         unsigned long b_state;          /* state of the extent */
1757         unsigned long first_page, next_page;    /* extent of pages */
1758         struct writeback_control *wbc;
1759         int io_done;
1760         int pages_written;
1761         int retval;
1762 };
1763
1764 /*
1765  * mpage_da_submit_io - walks through extent of pages and try to write
1766  * them with writepage() call back
1767  *
1768  * @mpd->inode: inode
1769  * @mpd->first_page: first page of the extent
1770  * @mpd->next_page: page after the last page of the extent
1771  *
1772  * By the time mpage_da_submit_io() is called we expect all blocks
1773  * to be allocated. this may be wrong if allocation failed.
1774  *
1775  * As pages are already locked by write_cache_pages(), we can't use it
1776  */
1777 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1778 {
1779         long pages_skipped;
1780         struct pagevec pvec;
1781         unsigned long index, end;
1782         int ret = 0, err, nr_pages, i;
1783         struct inode *inode = mpd->inode;
1784         struct address_space *mapping = inode->i_mapping;
1785
1786         BUG_ON(mpd->next_page <= mpd->first_page);
1787         /*
1788          * We need to start from the first_page to the next_page - 1
1789          * to make sure we also write the mapped dirty buffer_heads.
1790          * If we look at mpd->b_blocknr we would only be looking
1791          * at the currently mapped buffer_heads.
1792          */
1793         index = mpd->first_page;
1794         end = mpd->next_page - 1;
1795
1796         pagevec_init(&pvec, 0);
1797         while (index <= end) {
1798                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1799                 if (nr_pages == 0)
1800                         break;
1801                 for (i = 0; i < nr_pages; i++) {
1802                         struct page *page = pvec.pages[i];
1803
1804                         index = page->index;
1805                         if (index > end)
1806                                 break;
1807                         index++;
1808
1809                         BUG_ON(!PageLocked(page));
1810                         BUG_ON(PageWriteback(page));
1811
1812                         pages_skipped = mpd->wbc->pages_skipped;
1813                         err = mapping->a_ops->writepage(page, mpd->wbc);
1814                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1815                                 /*
1816                                  * have successfully written the page
1817                                  * without skipping the same
1818                                  */
1819                                 mpd->pages_written++;
1820                         /*
1821                          * In error case, we have to continue because
1822                          * remaining pages are still locked
1823                          * XXX: unlock and re-dirty them?
1824                          */
1825                         if (ret == 0)
1826                                 ret = err;
1827                 }
1828                 pagevec_release(&pvec);
1829         }
1830         return ret;
1831 }
1832
1833 /*
1834  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1835  *
1836  * @mpd->inode - inode to walk through
1837  * @exbh->b_blocknr - first block on a disk
1838  * @exbh->b_size - amount of space in bytes
1839  * @logical - first logical block to start assignment with
1840  *
1841  * the function goes through all passed space and put actual disk
1842  * block numbers into buffer heads, dropping BH_Delay
1843  */
1844 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1845                                  struct buffer_head *exbh)
1846 {
1847         struct inode *inode = mpd->inode;
1848         struct address_space *mapping = inode->i_mapping;
1849         int blocks = exbh->b_size >> inode->i_blkbits;
1850         sector_t pblock = exbh->b_blocknr, cur_logical;
1851         struct buffer_head *head, *bh;
1852         pgoff_t index, end;
1853         struct pagevec pvec;
1854         int nr_pages, i;
1855
1856         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1857         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1858         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1859
1860         pagevec_init(&pvec, 0);
1861
1862         while (index <= end) {
1863                 /* XXX: optimize tail */
1864                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1865                 if (nr_pages == 0)
1866                         break;
1867                 for (i = 0; i < nr_pages; i++) {
1868                         struct page *page = pvec.pages[i];
1869
1870                         index = page->index;
1871                         if (index > end)
1872                                 break;
1873                         index++;
1874
1875                         BUG_ON(!PageLocked(page));
1876                         BUG_ON(PageWriteback(page));
1877                         BUG_ON(!page_has_buffers(page));
1878
1879                         bh = page_buffers(page);
1880                         head = bh;
1881
1882                         /* skip blocks out of the range */
1883                         do {
1884                                 if (cur_logical >= logical)
1885                                         break;
1886                                 cur_logical++;
1887                         } while ((bh = bh->b_this_page) != head);
1888
1889                         do {
1890                                 if (cur_logical >= logical + blocks)
1891                                         break;
1892                                 if (buffer_delay(bh)) {
1893                                         bh->b_blocknr = pblock;
1894                                         clear_buffer_delay(bh);
1895                                         bh->b_bdev = inode->i_sb->s_bdev;
1896                                 } else if (buffer_unwritten(bh)) {
1897                                         bh->b_blocknr = pblock;
1898                                         clear_buffer_unwritten(bh);
1899                                         set_buffer_mapped(bh);
1900                                         set_buffer_new(bh);
1901                                         bh->b_bdev = inode->i_sb->s_bdev;
1902                                 } else if (buffer_mapped(bh))
1903                                         BUG_ON(bh->b_blocknr != pblock);
1904
1905                                 cur_logical++;
1906                                 pblock++;
1907                         } while ((bh = bh->b_this_page) != head);
1908                 }
1909                 pagevec_release(&pvec);
1910         }
1911 }
1912
1913
1914 /*
1915  * __unmap_underlying_blocks - just a helper function to unmap
1916  * set of blocks described by @bh
1917  */
1918 static inline void __unmap_underlying_blocks(struct inode *inode,
1919                                              struct buffer_head *bh)
1920 {
1921         struct block_device *bdev = inode->i_sb->s_bdev;
1922         int blocks, i;
1923
1924         blocks = bh->b_size >> inode->i_blkbits;
1925         for (i = 0; i < blocks; i++)
1926                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1927 }
1928
1929 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1930                                         sector_t logical, long blk_cnt)
1931 {
1932         int nr_pages, i;
1933         pgoff_t index, end;
1934         struct pagevec pvec;
1935         struct inode *inode = mpd->inode;
1936         struct address_space *mapping = inode->i_mapping;
1937
1938         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1939         end   = (logical + blk_cnt - 1) >>
1940                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1941         while (index <= end) {
1942                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1943                 if (nr_pages == 0)
1944                         break;
1945                 for (i = 0; i < nr_pages; i++) {
1946                         struct page *page = pvec.pages[i];
1947                         index = page->index;
1948                         if (index > end)
1949                                 break;
1950                         index++;
1951
1952                         BUG_ON(!PageLocked(page));
1953                         BUG_ON(PageWriteback(page));
1954                         block_invalidatepage(page, 0);
1955                         ClearPageUptodate(page);
1956                         unlock_page(page);
1957                 }
1958         }
1959         return;
1960 }
1961
1962 static void ext4_print_free_blocks(struct inode *inode)
1963 {
1964         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1965         printk(KERN_EMERG "Total free blocks count %lld\n",
1966                         ext4_count_free_blocks(inode->i_sb));
1967         printk(KERN_EMERG "Free/Dirty block details\n");
1968         printk(KERN_EMERG "free_blocks=%lld\n",
1969                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1970         printk(KERN_EMERG "dirty_blocks=%lld\n",
1971                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1972         printk(KERN_EMERG "Block reservation details\n");
1973         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1974                         EXT4_I(inode)->i_reserved_data_blocks);
1975         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1976                         EXT4_I(inode)->i_reserved_meta_blocks);
1977         return;
1978 }
1979
1980 #define         EXT4_DELALLOC_RSVED     1
1981 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1982                                    struct buffer_head *bh_result, int create)
1983 {
1984         int ret;
1985         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1986         loff_t disksize = EXT4_I(inode)->i_disksize;
1987         handle_t *handle = NULL;
1988
1989         handle = ext4_journal_current_handle();
1990         BUG_ON(!handle);
1991         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
1992                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
1993         if (ret <= 0)
1994                 return ret;
1995
1996         bh_result->b_size = (ret << inode->i_blkbits);
1997
1998         if (ext4_should_order_data(inode)) {
1999                 int retval;
2000                 retval = ext4_jbd2_file_inode(handle, inode);
2001                 if (retval)
2002                         /*
2003                          * Failed to add inode for ordered mode. Don't
2004                          * update file size
2005                          */
2006                         return retval;
2007         }
2008
2009         /*
2010          * Update on-disk size along with block allocation we don't
2011          * use 'extend_disksize' as size may change within already
2012          * allocated block -bzzz
2013          */
2014         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2015         if (disksize > i_size_read(inode))
2016                 disksize = i_size_read(inode);
2017         if (disksize > EXT4_I(inode)->i_disksize) {
2018                 ext4_update_i_disksize(inode, disksize);
2019                 ret = ext4_mark_inode_dirty(handle, inode);
2020                 return ret;
2021         }
2022         return 0;
2023 }
2024
2025 /*
2026  * mpage_da_map_blocks - go through given space
2027  *
2028  * @mpd - bh describing space
2029  *
2030  * The function skips space we know is already mapped to disk blocks.
2031  *
2032  */
2033 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2034 {
2035         int err = 0;
2036         struct buffer_head new;
2037         sector_t next;
2038
2039         /*
2040          * We consider only non-mapped and non-allocated blocks
2041          */
2042         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2043             !(mpd->b_state & (1 << BH_Delay)))
2044                 return 0;
2045         new.b_state = mpd->b_state;
2046         new.b_blocknr = 0;
2047         new.b_size = mpd->b_size;
2048         next = mpd->b_blocknr;
2049         /*
2050          * If we didn't accumulate anything
2051          * to write simply return
2052          */
2053         if (!new.b_size)
2054                 return 0;
2055
2056         err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2057         if (err) {
2058                 /*
2059                  * If get block returns with error we simply
2060                  * return. Later writepage will redirty the page and
2061                  * writepages will find the dirty page again
2062                  */
2063                 if (err == -EAGAIN)
2064                         return 0;
2065
2066                 if (err == -ENOSPC &&
2067                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2068                         mpd->retval = err;
2069                         return 0;
2070                 }
2071
2072                 /*
2073                  * get block failure will cause us to loop in
2074                  * writepages, because a_ops->writepage won't be able
2075                  * to make progress. The page will be redirtied by
2076                  * writepage and writepages will again try to write
2077                  * the same.
2078                  */
2079                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2080                                   "at logical offset %llu with max blocks "
2081                                   "%zd with error %d\n",
2082                                   __func__, mpd->inode->i_ino,
2083                                   (unsigned long long)next,
2084                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2085                 printk(KERN_EMERG "This should not happen.!! "
2086                                         "Data will be lost\n");
2087                 if (err == -ENOSPC) {
2088                         ext4_print_free_blocks(mpd->inode);
2089                 }
2090                 /* invlaidate all the pages */
2091                 ext4_da_block_invalidatepages(mpd, next,
2092                                 mpd->b_size >> mpd->inode->i_blkbits);
2093                 return err;
2094         }
2095         BUG_ON(new.b_size == 0);
2096
2097         if (buffer_new(&new))
2098                 __unmap_underlying_blocks(mpd->inode, &new);
2099
2100         /*
2101          * If blocks are delayed marked, we need to
2102          * put actual blocknr and drop delayed bit
2103          */
2104         if ((mpd->b_state & (1 << BH_Delay)) ||
2105             (mpd->b_state & (1 << BH_Unwritten)))
2106                 mpage_put_bnr_to_bhs(mpd, next, &new);
2107
2108         return 0;
2109 }
2110
2111 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2112                 (1 << BH_Delay) | (1 << BH_Unwritten))
2113
2114 /*
2115  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2116  *
2117  * @mpd->lbh - extent of blocks
2118  * @logical - logical number of the block in the file
2119  * @bh - bh of the block (used to access block's state)
2120  *
2121  * the function is used to collect contig. blocks in same state
2122  */
2123 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2124                                    sector_t logical, size_t b_size,
2125                                    unsigned long b_state)
2126 {
2127         sector_t next;
2128         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2129
2130         /* check if thereserved journal credits might overflow */
2131         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2132                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2133                         /*
2134                          * With non-extent format we are limited by the journal
2135                          * credit available.  Total credit needed to insert
2136                          * nrblocks contiguous blocks is dependent on the
2137                          * nrblocks.  So limit nrblocks.
2138                          */
2139                         goto flush_it;
2140                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2141                                 EXT4_MAX_TRANS_DATA) {
2142                         /*
2143                          * Adding the new buffer_head would make it cross the
2144                          * allowed limit for which we have journal credit
2145                          * reserved. So limit the new bh->b_size
2146                          */
2147                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2148                                                 mpd->inode->i_blkbits;
2149                         /* we will do mpage_da_submit_io in the next loop */
2150                 }
2151         }
2152         /*
2153          * First block in the extent
2154          */
2155         if (mpd->b_size == 0) {
2156                 mpd->b_blocknr = logical;
2157                 mpd->b_size = b_size;
2158                 mpd->b_state = b_state & BH_FLAGS;
2159                 return;
2160         }
2161
2162         next = mpd->b_blocknr + nrblocks;
2163         /*
2164          * Can we merge the block to our big extent?
2165          */
2166         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2167                 mpd->b_size += b_size;
2168                 return;
2169         }
2170
2171 flush_it:
2172         /*
2173          * We couldn't merge the block to our extent, so we
2174          * need to flush current  extent and start new one
2175          */
2176         if (mpage_da_map_blocks(mpd) == 0)
2177                 mpage_da_submit_io(mpd);
2178         mpd->io_done = 1;
2179         return;
2180 }
2181
2182 /*
2183  * __mpage_da_writepage - finds extent of pages and blocks
2184  *
2185  * @page: page to consider
2186  * @wbc: not used, we just follow rules
2187  * @data: context
2188  *
2189  * The function finds extents of pages and scan them for all blocks.
2190  */
2191 static int __mpage_da_writepage(struct page *page,
2192                                 struct writeback_control *wbc, void *data)
2193 {
2194         struct mpage_da_data *mpd = data;
2195         struct inode *inode = mpd->inode;
2196         struct buffer_head *bh, *head;
2197         sector_t logical;
2198
2199         if (mpd->io_done) {
2200                 /*
2201                  * Rest of the page in the page_vec
2202                  * redirty then and skip then. We will
2203                  * try to to write them again after
2204                  * starting a new transaction
2205                  */
2206                 redirty_page_for_writepage(wbc, page);
2207                 unlock_page(page);
2208                 return MPAGE_DA_EXTENT_TAIL;
2209         }
2210         /*
2211          * Can we merge this page to current extent?
2212          */
2213         if (mpd->next_page != page->index) {
2214                 /*
2215                  * Nope, we can't. So, we map non-allocated blocks
2216                  * and start IO on them using writepage()
2217                  */
2218                 if (mpd->next_page != mpd->first_page) {
2219                         if (mpage_da_map_blocks(mpd) == 0)
2220                                 mpage_da_submit_io(mpd);
2221                         /*
2222                          * skip rest of the page in the page_vec
2223                          */
2224                         mpd->io_done = 1;
2225                         redirty_page_for_writepage(wbc, page);
2226                         unlock_page(page);
2227                         return MPAGE_DA_EXTENT_TAIL;
2228                 }
2229
2230                 /*
2231                  * Start next extent of pages ...
2232                  */
2233                 mpd->first_page = page->index;
2234
2235                 /*
2236                  * ... and blocks
2237                  */
2238                 mpd->b_size = 0;
2239                 mpd->b_state = 0;
2240                 mpd->b_blocknr = 0;
2241         }
2242
2243         mpd->next_page = page->index + 1;
2244         logical = (sector_t) page->index <<
2245                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2246
2247         if (!page_has_buffers(page)) {
2248                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2249                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2250                 if (mpd->io_done)
2251                         return MPAGE_DA_EXTENT_TAIL;
2252         } else {
2253                 /*
2254                  * Page with regular buffer heads, just add all dirty ones
2255                  */
2256                 head = page_buffers(page);
2257                 bh = head;
2258                 do {
2259                         BUG_ON(buffer_locked(bh));
2260                         /*
2261                          * We need to try to allocate
2262                          * unmapped blocks in the same page.
2263                          * Otherwise we won't make progress
2264                          * with the page in ext4_da_writepage
2265                          */
2266                         if (buffer_dirty(bh) &&
2267                             (!buffer_mapped(bh) || buffer_delay(bh))) {
2268                                 mpage_add_bh_to_extent(mpd, logical,
2269                                                        bh->b_size,
2270                                                        bh->b_state);
2271                                 if (mpd->io_done)
2272                                         return MPAGE_DA_EXTENT_TAIL;
2273                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2274                                 /*
2275                                  * mapped dirty buffer. We need to update
2276                                  * the b_state because we look at
2277                                  * b_state in mpage_da_map_blocks. We don't
2278                                  * update b_size because if we find an
2279                                  * unmapped buffer_head later we need to
2280                                  * use the b_state flag of that buffer_head.
2281                                  */
2282                                 if (mpd->b_size == 0)
2283                                         mpd->b_state = bh->b_state & BH_FLAGS;
2284                         }
2285                         logical++;
2286                 } while ((bh = bh->b_this_page) != head);
2287         }
2288
2289         return 0;
2290 }
2291
2292 /*
2293  * this is a special callback for ->write_begin() only
2294  * it's intention is to return mapped block or reserve space
2295  */
2296 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2297                                   struct buffer_head *bh_result, int create)
2298 {
2299         int ret = 0;
2300         sector_t invalid_block = ~((sector_t) 0xffff);
2301
2302         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2303                 invalid_block = ~0;
2304
2305         BUG_ON(create == 0);
2306         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2307
2308         /*
2309          * first, we need to know whether the block is allocated already
2310          * preallocated blocks are unmapped but should treated
2311          * the same as allocated blocks.
2312          */
2313         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2314         if ((ret == 0) && !buffer_delay(bh_result)) {
2315                 /* the block isn't (pre)allocated yet, let's reserve space */
2316                 /*
2317                  * XXX: __block_prepare_write() unmaps passed block,
2318                  * is it OK?
2319                  */
2320                 ret = ext4_da_reserve_space(inode, 1);
2321                 if (ret)
2322                         /* not enough space to reserve */
2323                         return ret;
2324
2325                 map_bh(bh_result, inode->i_sb, invalid_block);
2326                 set_buffer_new(bh_result);
2327                 set_buffer_delay(bh_result);
2328         } else if (ret > 0) {
2329                 bh_result->b_size = (ret << inode->i_blkbits);
2330                 /*
2331                  * With sub-block writes into unwritten extents
2332                  * we also need to mark the buffer as new so that
2333                  * the unwritten parts of the buffer gets correctly zeroed.
2334                  */
2335                 if (buffer_unwritten(bh_result))
2336                         set_buffer_new(bh_result);
2337                 ret = 0;
2338         }
2339
2340         return ret;
2341 }
2342
2343 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2344 {
2345         /*
2346          * unmapped buffer is possible for holes.
2347          * delay buffer is possible with delayed allocation
2348          */
2349         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2350 }
2351
2352 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2353                                    struct buffer_head *bh_result, int create)
2354 {
2355         int ret = 0;
2356         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2357
2358         /*
2359          * we don't want to do block allocation in writepage
2360          * so call get_block_wrap with create = 0
2361          */
2362         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2363                                    bh_result, 0, 0, 0);
2364         if (ret > 0) {
2365                 bh_result->b_size = (ret << inode->i_blkbits);
2366                 ret = 0;
2367         }
2368         return ret;
2369 }
2370
2371 /*
2372  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2373  * get called via journal_submit_inode_data_buffers (no journal handle)
2374  * get called via shrink_page_list via pdflush (no journal handle)
2375  * or grab_page_cache when doing write_begin (have journal handle)
2376  */
2377 static int ext4_da_writepage(struct page *page,
2378                                 struct writeback_control *wbc)
2379 {
2380         int ret = 0;
2381         loff_t size;
2382         unsigned int len;
2383         struct buffer_head *page_bufs;
2384         struct inode *inode = page->mapping->host;
2385
2386         trace_mark(ext4_da_writepage,
2387                    "dev %s ino %lu page_index %lu",
2388                    inode->i_sb->s_id, inode->i_ino, page->index);
2389         size = i_size_read(inode);
2390         if (page->index == size >> PAGE_CACHE_SHIFT)
2391                 len = size & ~PAGE_CACHE_MASK;
2392         else
2393                 len = PAGE_CACHE_SIZE;
2394
2395         if (page_has_buffers(page)) {
2396                 page_bufs = page_buffers(page);
2397                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2398                                         ext4_bh_unmapped_or_delay)) {
2399                         /*
2400                          * We don't want to do  block allocation
2401                          * So redirty the page and return
2402                          * We may reach here when we do a journal commit
2403                          * via journal_submit_inode_data_buffers.
2404                          * If we don't have mapping block we just ignore
2405                          * them. We can also reach here via shrink_page_list
2406                          */
2407                         redirty_page_for_writepage(wbc, page);
2408                         unlock_page(page);
2409                         return 0;
2410                 }
2411         } else {
2412                 /*
2413                  * The test for page_has_buffers() is subtle:
2414                  * We know the page is dirty but it lost buffers. That means
2415                  * that at some moment in time after write_begin()/write_end()
2416                  * has been called all buffers have been clean and thus they
2417                  * must have been written at least once. So they are all
2418                  * mapped and we can happily proceed with mapping them
2419                  * and writing the page.
2420                  *
2421                  * Try to initialize the buffer_heads and check whether
2422                  * all are mapped and non delay. We don't want to
2423                  * do block allocation here.
2424                  */
2425                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2426                                                 ext4_normal_get_block_write);
2427                 if (!ret) {
2428                         page_bufs = page_buffers(page);
2429                         /* check whether all are mapped and non delay */
2430                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2431                                                 ext4_bh_unmapped_or_delay)) {
2432                                 redirty_page_for_writepage(wbc, page);
2433                                 unlock_page(page);
2434                                 return 0;
2435                         }
2436                 } else {
2437                         /*
2438                          * We can't do block allocation here
2439                          * so just redity the page and unlock
2440                          * and return
2441                          */
2442                         redirty_page_for_writepage(wbc, page);
2443                         unlock_page(page);
2444                         return 0;
2445                 }
2446                 /* now mark the buffer_heads as dirty and uptodate */
2447                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2448         }
2449
2450         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2451                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2452         else
2453                 ret = block_write_full_page(page,
2454                                                 ext4_normal_get_block_write,
2455                                                 wbc);
2456
2457         return ret;
2458 }
2459
2460 /*
2461  * This is called via ext4_da_writepages() to
2462  * calulate the total number of credits to reserve to fit
2463  * a single extent allocation into a single transaction,
2464  * ext4_da_writpeages() will loop calling this before
2465  * the block allocation.
2466  */
2467
2468 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2469 {
2470         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2471
2472         /*
2473          * With non-extent format the journal credit needed to
2474          * insert nrblocks contiguous block is dependent on
2475          * number of contiguous block. So we will limit
2476          * number of contiguous block to a sane value
2477          */
2478         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2479             (max_blocks > EXT4_MAX_TRANS_DATA))
2480                 max_blocks = EXT4_MAX_TRANS_DATA;
2481
2482         return ext4_chunk_trans_blocks(inode, max_blocks);
2483 }
2484
2485 static int ext4_da_writepages(struct address_space *mapping,
2486                               struct writeback_control *wbc)
2487 {
2488         pgoff_t index;
2489         int range_whole = 0;
2490         handle_t *handle = NULL;
2491         struct mpage_da_data mpd;
2492         struct inode *inode = mapping->host;
2493         int no_nrwrite_index_update;
2494         int pages_written = 0;
2495         long pages_skipped;
2496         int range_cyclic, cycled = 1, io_done = 0;
2497         int needed_blocks, ret = 0, nr_to_writebump = 0;
2498         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2499
2500         trace_mark(ext4_da_writepages,
2501                    "dev %s ino %lu nr_t_write %ld "
2502                    "pages_skipped %ld range_start %llu "
2503                    "range_end %llu nonblocking %d "
2504                    "for_kupdate %d for_reclaim %d "
2505                    "for_writepages %d range_cyclic %d",
2506                    inode->i_sb->s_id, inode->i_ino,
2507                    wbc->nr_to_write, wbc->pages_skipped,
2508                    (unsigned long long) wbc->range_start,
2509                    (unsigned long long) wbc->range_end,
2510                    wbc->nonblocking, wbc->for_kupdate,
2511                    wbc->for_reclaim, wbc->for_writepages,
2512                    wbc->range_cyclic);
2513
2514         /*
2515          * No pages to write? This is mainly a kludge to avoid starting
2516          * a transaction for special inodes like journal inode on last iput()
2517          * because that could violate lock ordering on umount
2518          */
2519         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2520                 return 0;
2521
2522         /*
2523          * If the filesystem has aborted, it is read-only, so return
2524          * right away instead of dumping stack traces later on that
2525          * will obscure the real source of the problem.  We test
2526          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2527          * the latter could be true if the filesystem is mounted
2528          * read-only, and in that case, ext4_da_writepages should
2529          * *never* be called, so if that ever happens, we would want
2530          * the stack trace.
2531          */
2532         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2533                 return -EROFS;
2534
2535         /*
2536          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2537          * This make sure small files blocks are allocated in
2538          * single attempt. This ensure that small files
2539          * get less fragmented.
2540          */
2541         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2542                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2543                 wbc->nr_to_write = sbi->s_mb_stream_request;
2544         }
2545         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2546                 range_whole = 1;
2547
2548         range_cyclic = wbc->range_cyclic;
2549         if (wbc->range_cyclic) {
2550                 index = mapping->writeback_index;
2551                 if (index)
2552                         cycled = 0;
2553                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2554                 wbc->range_end  = LLONG_MAX;
2555                 wbc->range_cyclic = 0;
2556         } else
2557                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2558
2559         mpd.wbc = wbc;
2560         mpd.inode = mapping->host;
2561
2562         /*
2563          * we don't want write_cache_pages to update
2564          * nr_to_write and writeback_index
2565          */
2566         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2567         wbc->no_nrwrite_index_update = 1;
2568         pages_skipped = wbc->pages_skipped;
2569
2570 retry:
2571         while (!ret && wbc->nr_to_write > 0) {
2572
2573                 /*
2574                  * we  insert one extent at a time. So we need
2575                  * credit needed for single extent allocation.
2576                  * journalled mode is currently not supported
2577                  * by delalloc
2578                  */
2579                 BUG_ON(ext4_should_journal_data(inode));
2580                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2581
2582                 /* start a new transaction*/
2583                 handle = ext4_journal_start(inode, needed_blocks);
2584                 if (IS_ERR(handle)) {
2585                         ret = PTR_ERR(handle);
2586                         printk(KERN_CRIT "%s: jbd2_start: "
2587                                "%ld pages, ino %lu; err %d\n", __func__,
2588                                 wbc->nr_to_write, inode->i_ino, ret);
2589                         dump_stack();
2590                         goto out_writepages;
2591                 }
2592
2593                 /*
2594                  * Now call __mpage_da_writepage to find the next
2595                  * contiguous region of logical blocks that need
2596                  * blocks to be allocated by ext4.  We don't actually
2597                  * submit the blocks for I/O here, even though
2598                  * write_cache_pages thinks it will, and will set the
2599                  * pages as clean for write before calling
2600                  * __mpage_da_writepage().
2601                  */
2602                 mpd.b_size = 0;
2603                 mpd.b_state = 0;
2604                 mpd.b_blocknr = 0;
2605                 mpd.first_page = 0;
2606                 mpd.next_page = 0;
2607                 mpd.io_done = 0;
2608                 mpd.pages_written = 0;
2609                 mpd.retval = 0;
2610                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2611                                         &mpd);
2612                 /*
2613                  * If we have a contigous extent of pages and we
2614                  * haven't done the I/O yet, map the blocks and submit
2615                  * them for I/O.
2616                  */
2617                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2618                         if (mpage_da_map_blocks(&mpd) == 0)
2619                                 mpage_da_submit_io(&mpd);
2620                         mpd.io_done = 1;
2621                         ret = MPAGE_DA_EXTENT_TAIL;
2622                 }
2623                 wbc->nr_to_write -= mpd.pages_written;
2624
2625                 ext4_journal_stop(handle);
2626
2627                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2628                         /* commit the transaction which would
2629                          * free blocks released in the transaction
2630                          * and try again
2631                          */
2632                         jbd2_journal_force_commit_nested(sbi->s_journal);
2633                         wbc->pages_skipped = pages_skipped;
2634                         ret = 0;
2635                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2636                         /*
2637                          * got one extent now try with
2638                          * rest of the pages
2639                          */
2640                         pages_written += mpd.pages_written;
2641                         wbc->pages_skipped = pages_skipped;
2642                         ret = 0;
2643                         io_done = 1;
2644                 } else if (wbc->nr_to_write)
2645                         /*
2646                          * There is no more writeout needed
2647                          * or we requested for a noblocking writeout
2648                          * and we found the device congested
2649                          */
2650                         break;
2651         }
2652         if (!io_done && !cycled) {
2653                 cycled = 1;
2654                 index = 0;
2655                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2656                 wbc->range_end  = mapping->writeback_index - 1;
2657                 goto retry;
2658         }
2659         if (pages_skipped != wbc->pages_skipped)
2660                 printk(KERN_EMERG "This should not happen leaving %s "
2661                                 "with nr_to_write = %ld ret = %d\n",
2662                                 __func__, wbc->nr_to_write, ret);
2663
2664         /* Update index */
2665         index += pages_written;
2666         wbc->range_cyclic = range_cyclic;
2667         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2668                 /*
2669                  * set the writeback_index so that range_cyclic
2670                  * mode will write it back later
2671                  */
2672                 mapping->writeback_index = index;
2673
2674 out_writepages:
2675         if (!no_nrwrite_index_update)
2676                 wbc->no_nrwrite_index_update = 0;
2677         wbc->nr_to_write -= nr_to_writebump;
2678         trace_mark(ext4_da_writepage_result,
2679                    "dev %s ino %lu ret %d pages_written %d "
2680                    "pages_skipped %ld congestion %d "
2681                    "more_io %d no_nrwrite_index_update %d",
2682                    inode->i_sb->s_id, inode->i_ino, ret,
2683                    pages_written, wbc->pages_skipped,
2684                    wbc->encountered_congestion, wbc->more_io,
2685                    wbc->no_nrwrite_index_update);
2686         return ret;
2687 }
2688
2689 #define FALL_BACK_TO_NONDELALLOC 1
2690 static int ext4_nonda_switch(struct super_block *sb)
2691 {
2692         s64 free_blocks, dirty_blocks;
2693         struct ext4_sb_info *sbi = EXT4_SB(sb);
2694
2695         /*
2696          * switch to non delalloc mode if we are running low
2697          * on free block. The free block accounting via percpu
2698          * counters can get slightly wrong with percpu_counter_batch getting
2699          * accumulated on each CPU without updating global counters
2700          * Delalloc need an accurate free block accounting. So switch
2701          * to non delalloc when we are near to error range.
2702          */
2703         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2704         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2705         if (2 * free_blocks < 3 * dirty_blocks ||
2706                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2707                 /*
2708                  * free block count is less that 150% of dirty blocks
2709                  * or free blocks is less that watermark
2710                  */
2711                 return 1;
2712         }
2713         return 0;
2714 }
2715
2716 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2717                                 loff_t pos, unsigned len, unsigned flags,
2718                                 struct page **pagep, void **fsdata)
2719 {
2720         int ret, retries = 0;
2721         struct page *page;
2722         pgoff_t index;
2723         unsigned from, to;
2724         struct inode *inode = mapping->host;
2725         handle_t *handle;
2726
2727         index = pos >> PAGE_CACHE_SHIFT;
2728         from = pos & (PAGE_CACHE_SIZE - 1);
2729         to = from + len;
2730
2731         if (ext4_nonda_switch(inode->i_sb)) {
2732                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2733                 return ext4_write_begin(file, mapping, pos,
2734                                         len, flags, pagep, fsdata);
2735         }
2736         *fsdata = (void *)0;
2737
2738         trace_mark(ext4_da_write_begin,
2739                    "dev %s ino %lu pos %llu len %u flags %u",
2740                    inode->i_sb->s_id, inode->i_ino,
2741                    (unsigned long long) pos, len, flags);
2742 retry:
2743         /*
2744          * With delayed allocation, we don't log the i_disksize update
2745          * if there is delayed block allocation. But we still need
2746          * to journalling the i_disksize update if writes to the end
2747          * of file which has an already mapped buffer.
2748          */
2749         handle = ext4_journal_start(inode, 1);
2750         if (IS_ERR(handle)) {
2751                 ret = PTR_ERR(handle);
2752                 goto out;
2753         }
2754         /* We cannot recurse into the filesystem as the transaction is already
2755          * started */
2756         flags |= AOP_FLAG_NOFS;
2757
2758         page = grab_cache_page_write_begin(mapping, index, flags);
2759         if (!page) {
2760                 ext4_journal_stop(handle);
2761                 ret = -ENOMEM;
2762                 goto out;
2763         }
2764         *pagep = page;
2765
2766         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2767                                                         ext4_da_get_block_prep);
2768         if (ret < 0) {
2769                 unlock_page(page);
2770                 ext4_journal_stop(handle);
2771                 page_cache_release(page);
2772                 /*
2773                  * block_write_begin may have instantiated a few blocks
2774                  * outside i_size.  Trim these off again. Don't need
2775                  * i_size_read because we hold i_mutex.
2776                  */
2777                 if (pos + len > inode->i_size)
2778                         vmtruncate(inode, inode->i_size);
2779         }
2780
2781         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2782                 goto retry;
2783 out:
2784         return ret;
2785 }
2786
2787 /*
2788  * Check if we should update i_disksize
2789  * when write to the end of file but not require block allocation
2790  */
2791 static int ext4_da_should_update_i_disksize(struct page *page,
2792                                          unsigned long offset)
2793 {
2794         struct buffer_head *bh;
2795         struct inode *inode = page->mapping->host;
2796         unsigned int idx;
2797         int i;
2798
2799         bh = page_buffers(page);
2800         idx = offset >> inode->i_blkbits;
2801
2802         for (i = 0; i < idx; i++)
2803                 bh = bh->b_this_page;
2804
2805         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2806                 return 0;
2807         return 1;
2808 }
2809
2810 static int ext4_da_write_end(struct file *file,
2811                                 struct address_space *mapping,
2812                                 loff_t pos, unsigned len, unsigned copied,
2813                                 struct page *page, void *fsdata)
2814 {
2815         struct inode *inode = mapping->host;
2816         int ret = 0, ret2;
2817         handle_t *handle = ext4_journal_current_handle();
2818         loff_t new_i_size;
2819         unsigned long start, end;
2820         int write_mode = (int)(unsigned long)fsdata;
2821
2822         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2823                 if (ext4_should_order_data(inode)) {
2824                         return ext4_ordered_write_end(file, mapping, pos,
2825                                         len, copied, page, fsdata);
2826                 } else if (ext4_should_writeback_data(inode)) {
2827                         return ext4_writeback_write_end(file, mapping, pos,
2828                                         len, copied, page, fsdata);
2829                 } else {
2830                         BUG();
2831                 }
2832         }
2833
2834         trace_mark(ext4_da_write_end,
2835                    "dev %s ino %lu pos %llu len %u copied %u",
2836                    inode->i_sb->s_id, inode->i_ino,
2837                    (unsigned long long) pos, len, copied);
2838         start = pos & (PAGE_CACHE_SIZE - 1);
2839         end = start + copied - 1;
2840
2841         /*
2842          * generic_write_end() will run mark_inode_dirty() if i_size
2843          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2844          * into that.
2845          */
2846
2847         new_i_size = pos + copied;
2848         if (new_i_size > EXT4_I(inode)->i_disksize) {
2849                 if (ext4_da_should_update_i_disksize(page, end)) {
2850                         down_write(&EXT4_I(inode)->i_data_sem);
2851                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2852                                 /*
2853                                  * Updating i_disksize when extending file
2854                                  * without needing block allocation
2855                                  */
2856                                 if (ext4_should_order_data(inode))
2857                                         ret = ext4_jbd2_file_inode(handle,
2858                                                                    inode);
2859
2860                                 EXT4_I(inode)->i_disksize = new_i_size;
2861                         }
2862                         up_write(&EXT4_I(inode)->i_data_sem);
2863                         /* We need to mark inode dirty even if
2864                          * new_i_size is less that inode->i_size
2865                          * bu greater than i_disksize.(hint delalloc)
2866                          */
2867                         ext4_mark_inode_dirty(handle, inode);
2868                 }
2869         }
2870         ret2 = generic_write_end(file, mapping, pos, len, copied,
2871                                                         page, fsdata);
2872         copied = ret2;
2873         if (ret2 < 0)
2874                 ret = ret2;
2875         ret2 = ext4_journal_stop(handle);
2876         if (!ret)
2877                 ret = ret2;
2878
2879         return ret ? ret : copied;
2880 }
2881
2882 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2883 {
2884         /*
2885          * Drop reserved blocks
2886          */
2887         BUG_ON(!PageLocked(page));
2888         if (!page_has_buffers(page))
2889                 goto out;
2890
2891         ext4_da_page_release_reservation(page, offset);
2892
2893 out:
2894         ext4_invalidatepage(page, offset);
2895
2896         return;
2897 }
2898
2899 /*
2900  * Force all delayed allocation blocks to be allocated for a given inode.
2901  */
2902 int ext4_alloc_da_blocks(struct inode *inode)
2903 {
2904         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2905             !EXT4_I(inode)->i_reserved_meta_blocks)
2906                 return 0;
2907
2908         /*
2909          * We do something simple for now.  The filemap_flush() will
2910          * also start triggering a write of the data blocks, which is
2911          * not strictly speaking necessary (and for users of
2912          * laptop_mode, not even desirable).  However, to do otherwise
2913          * would require replicating code paths in:
2914          * 
2915          * ext4_da_writepages() ->
2916          *    write_cache_pages() ---> (via passed in callback function)
2917          *        __mpage_da_writepage() -->
2918          *           mpage_add_bh_to_extent()
2919          *           mpage_da_map_blocks()
2920          *
2921          * The problem is that write_cache_pages(), located in
2922          * mm/page-writeback.c, marks pages clean in preparation for
2923          * doing I/O, which is not desirable if we're not planning on
2924          * doing I/O at all.
2925          *
2926          * We could call write_cache_pages(), and then redirty all of
2927          * the pages by calling redirty_page_for_writeback() but that
2928          * would be ugly in the extreme.  So instead we would need to
2929          * replicate parts of the code in the above functions,
2930          * simplifying them becuase we wouldn't actually intend to
2931          * write out the pages, but rather only collect contiguous
2932          * logical block extents, call the multi-block allocator, and
2933          * then update the buffer heads with the block allocations.
2934          * 
2935          * For now, though, we'll cheat by calling filemap_flush(),
2936          * which will map the blocks, and start the I/O, but not
2937          * actually wait for the I/O to complete.
2938          */
2939         return filemap_flush(inode->i_mapping);
2940 }
2941
2942 /*
2943  * bmap() is special.  It gets used by applications such as lilo and by
2944  * the swapper to find the on-disk block of a specific piece of data.
2945  *
2946  * Naturally, this is dangerous if the block concerned is still in the
2947  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2948  * filesystem and enables swap, then they may get a nasty shock when the
2949  * data getting swapped to that swapfile suddenly gets overwritten by
2950  * the original zero's written out previously to the journal and
2951  * awaiting writeback in the kernel's buffer cache.
2952  *
2953  * So, if we see any bmap calls here on a modified, data-journaled file,
2954  * take extra steps to flush any blocks which might be in the cache.
2955  */
2956 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2957 {
2958         struct inode *inode = mapping->host;
2959         journal_t *journal;
2960         int err;
2961
2962         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2963                         test_opt(inode->i_sb, DELALLOC)) {
2964                 /*
2965                  * With delalloc we want to sync the file
2966                  * so that we can make sure we allocate
2967                  * blocks for file
2968                  */
2969                 filemap_write_and_wait(mapping);
2970         }
2971
2972         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2973                 /*
2974                  * This is a REALLY heavyweight approach, but the use of
2975                  * bmap on dirty files is expected to be extremely rare:
2976                  * only if we run lilo or swapon on a freshly made file
2977                  * do we expect this to happen.
2978                  *
2979                  * (bmap requires CAP_SYS_RAWIO so this does not
2980                  * represent an unprivileged user DOS attack --- we'd be
2981                  * in trouble if mortal users could trigger this path at
2982                  * will.)
2983                  *
2984                  * NB. EXT4_STATE_JDATA is not set on files other than
2985                  * regular files.  If somebody wants to bmap a directory
2986                  * or symlink and gets confused because the buffer
2987                  * hasn't yet been flushed to disk, they deserve
2988                  * everything they get.
2989                  */
2990
2991                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2992                 journal = EXT4_JOURNAL(inode);
2993                 jbd2_journal_lock_updates(journal);
2994                 err = jbd2_journal_flush(journal);
2995                 jbd2_journal_unlock_updates(journal);
2996
2997                 if (err)
2998                         return 0;
2999         }
3000
3001         return generic_block_bmap(mapping, block, ext4_get_block);
3002 }
3003
3004 static int bget_one(handle_t *handle, struct buffer_head *bh)
3005 {
3006         get_bh(bh);
3007         return 0;
3008 }
3009
3010 static int bput_one(handle_t *handle, struct buffer_head *bh)
3011 {
3012         put_bh(bh);
3013         return 0;
3014 }
3015
3016 /*
3017  * Note that we don't need to start a transaction unless we're journaling data
3018  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3019  * need to file the inode to the transaction's list in ordered mode because if
3020  * we are writing back data added by write(), the inode is already there and if
3021  * we are writing back data modified via mmap(), noone guarantees in which
3022  * transaction the data will hit the disk. In case we are journaling data, we
3023  * cannot start transaction directly because transaction start ranks above page
3024  * lock so we have to do some magic.
3025  *
3026  * In all journaling modes block_write_full_page() will start the I/O.
3027  *
3028  * Problem:
3029  *
3030  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3031  *              ext4_writepage()
3032  *
3033  * Similar for:
3034  *
3035  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3036  *
3037  * Same applies to ext4_get_block().  We will deadlock on various things like
3038  * lock_journal and i_data_sem
3039  *
3040  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3041  * allocations fail.
3042  *
3043  * 16May01: If we're reentered then journal_current_handle() will be
3044  *          non-zero. We simply *return*.
3045  *
3046  * 1 July 2001: @@@ FIXME:
3047  *   In journalled data mode, a data buffer may be metadata against the
3048  *   current transaction.  But the same file is part of a shared mapping
3049  *   and someone does a writepage() on it.
3050  *
3051  *   We will move the buffer onto the async_data list, but *after* it has
3052  *   been dirtied. So there's a small window where we have dirty data on
3053  *   BJ_Metadata.
3054  *
3055  *   Note that this only applies to the last partial page in the file.  The
3056  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3057  *   broken code anyway: it's wrong for msync()).
3058  *
3059  *   It's a rare case: affects the final partial page, for journalled data
3060  *   where the file is subject to bith write() and writepage() in the same
3061  *   transction.  To fix it we'll need a custom block_write_full_page().
3062  *   We'll probably need that anyway for journalling writepage() output.
3063  *
3064  * We don't honour synchronous mounts for writepage().  That would be
3065  * disastrous.  Any write() or metadata operation will sync the fs for
3066  * us.
3067  *
3068  */
3069 static int __ext4_normal_writepage(struct page *page,
3070                                 struct writeback_control *wbc)
3071 {
3072         struct inode *inode = page->mapping->host;
3073
3074         if (test_opt(inode->i_sb, NOBH))
3075                 return nobh_writepage(page,
3076                                         ext4_normal_get_block_write, wbc);
3077         else
3078                 return block_write_full_page(page,
3079                                                 ext4_normal_get_block_write,
3080                                                 wbc);
3081 }
3082
3083 static int ext4_normal_writepage(struct page *page,
3084                                 struct writeback_control *wbc)
3085 {
3086         struct inode *inode = page->mapping->host;
3087         loff_t size = i_size_read(inode);
3088         loff_t len;
3089
3090         trace_mark(ext4_normal_writepage,
3091                    "dev %s ino %lu page_index %lu",
3092                    inode->i_sb->s_id, inode->i_ino, page->index);
3093         J_ASSERT(PageLocked(page));
3094         if (page->index == size >> PAGE_CACHE_SHIFT)
3095                 len = size & ~PAGE_CACHE_MASK;
3096         else
3097                 len = PAGE_CACHE_SIZE;
3098
3099         if (page_has_buffers(page)) {
3100                 /* if page has buffers it should all be mapped
3101                  * and allocated. If there are not buffers attached
3102                  * to the page we know the page is dirty but it lost
3103                  * buffers. That means that at some moment in time
3104                  * after write_begin() / write_end() has been called
3105                  * all buffers have been clean and thus they must have been
3106                  * written at least once. So they are all mapped and we can
3107                  * happily proceed with mapping them and writing the page.
3108                  */
3109                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3110                                         ext4_bh_unmapped_or_delay));
3111         }
3112
3113         if (!ext4_journal_current_handle())
3114                 return __ext4_normal_writepage(page, wbc);
3115
3116         redirty_page_for_writepage(wbc, page);
3117         unlock_page(page);
3118         return 0;
3119 }
3120
3121 static int __ext4_journalled_writepage(struct page *page,
3122                                 struct writeback_control *wbc)
3123 {
3124         struct address_space *mapping = page->mapping;
3125         struct inode *inode = mapping->host;
3126         struct buffer_head *page_bufs;
3127         handle_t *handle = NULL;
3128         int ret = 0;
3129         int err;
3130
3131         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3132                                         ext4_normal_get_block_write);
3133         if (ret != 0)
3134                 goto out_unlock;
3135
3136         page_bufs = page_buffers(page);
3137         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3138                                                                 bget_one);
3139         /* As soon as we unlock the page, it can go away, but we have
3140          * references to buffers so we are safe */
3141         unlock_page(page);
3142
3143         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3144         if (IS_ERR(handle)) {
3145                 ret = PTR_ERR(handle);
3146                 goto out;
3147         }
3148
3149         ret = walk_page_buffers(handle, page_bufs, 0,
3150                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3151
3152         err = walk_page_buffers(handle, page_bufs, 0,
3153                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3154         if (ret == 0)
3155                 ret = err;
3156         err = ext4_journal_stop(handle);
3157         if (!ret)
3158                 ret = err;
3159
3160         walk_page_buffers(handle, page_bufs, 0,
3161                                 PAGE_CACHE_SIZE, NULL, bput_one);
3162         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3163         goto out;
3164
3165 out_unlock:
3166         unlock_page(page);
3167 out:
3168         return ret;
3169 }
3170
3171 static int ext4_journalled_writepage(struct page *page,
3172                                 struct writeback_control *wbc)
3173 {
3174         struct inode *inode = page->mapping->host;
3175         loff_t size = i_size_read(inode);
3176         loff_t len;
3177
3178         trace_mark(ext4_journalled_writepage,
3179                    "dev %s ino %lu page_index %lu",
3180                    inode->i_sb->s_id, inode->i_ino, page->index);
3181         J_ASSERT(PageLocked(page));
3182         if (page->index == size >> PAGE_CACHE_SHIFT)
3183                 len = size & ~PAGE_CACHE_MASK;
3184         else
3185                 len = PAGE_CACHE_SIZE;
3186
3187         if (page_has_buffers(page)) {
3188                 /* if page has buffers it should all be mapped
3189                  * and allocated. If there are not buffers attached
3190                  * to the page we know the page is dirty but it lost
3191                  * buffers. That means that at some moment in time
3192                  * after write_begin() / write_end() has been called
3193                  * all buffers have been clean and thus they must have been
3194                  * written at least once. So they are all mapped and we can
3195                  * happily proceed with mapping them and writing the page.
3196                  */
3197                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3198                                         ext4_bh_unmapped_or_delay));
3199         }
3200
3201         if (ext4_journal_current_handle())
3202                 goto no_write;
3203
3204         if (PageChecked(page)) {
3205                 /*
3206                  * It's mmapped pagecache.  Add buffers and journal it.  There
3207                  * doesn't seem much point in redirtying the page here.
3208                  */
3209                 ClearPageChecked(page);
3210                 return __ext4_journalled_writepage(page, wbc);
3211         } else {
3212                 /*
3213                  * It may be a page full of checkpoint-mode buffers.  We don't
3214                  * really know unless we go poke around in the buffer_heads.
3215                  * But block_write_full_page will do the right thing.
3216                  */
3217                 return block_write_full_page(page,
3218                                                 ext4_normal_get_block_write,
3219                                                 wbc);
3220         }
3221 no_write:
3222         redirty_page_for_writepage(wbc, page);
3223         unlock_page(page);
3224         return 0;
3225 }
3226
3227 static int ext4_readpage(struct file *file, struct page *page)
3228 {
3229         return mpage_readpage(page, ext4_get_block);
3230 }
3231
3232 static int
3233 ext4_readpages(struct file *file, struct address_space *mapping,
3234                 struct list_head *pages, unsigned nr_pages)
3235 {
3236         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3237 }
3238
3239 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3240 {
3241         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3242
3243         /*
3244          * If it's a full truncate we just forget about the pending dirtying
3245          */
3246         if (offset == 0)
3247                 ClearPageChecked(page);
3248
3249         if (journal)
3250                 jbd2_journal_invalidatepage(journal, page, offset);
3251         else
3252                 block_invalidatepage(page, offset);
3253 }
3254
3255 static int ext4_releasepage(struct page *page, gfp_t wait)
3256 {
3257         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3258
3259         WARN_ON(PageChecked(page));
3260         if (!page_has_buffers(page))
3261                 return 0;
3262         if (journal)
3263                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3264         else
3265                 return try_to_free_buffers(page);
3266 }
3267
3268 /*
3269  * If the O_DIRECT write will extend the file then add this inode to the
3270  * orphan list.  So recovery will truncate it back to the original size
3271  * if the machine crashes during the write.
3272  *
3273  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3274  * crashes then stale disk data _may_ be exposed inside the file. But current
3275  * VFS code falls back into buffered path in that case so we are safe.
3276  */
3277 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3278                         const struct iovec *iov, loff_t offset,
3279                         unsigned long nr_segs)
3280 {
3281         struct file *file = iocb->ki_filp;
3282         struct inode *inode = file->f_mapping->host;
3283         struct ext4_inode_info *ei = EXT4_I(inode);
3284         handle_t *handle;
3285         ssize_t ret;
3286         int orphan = 0;
3287         size_t count = iov_length(iov, nr_segs);
3288
3289         if (rw == WRITE) {
3290                 loff_t final_size = offset + count;
3291
3292                 if (final_size > inode->i_size) {
3293                         /* Credits for sb + inode write */
3294                         handle = ext4_journal_start(inode, 2);
3295                         if (IS_ERR(handle)) {
3296                                 ret = PTR_ERR(handle);
3297                                 goto out;
3298                         }
3299                         ret = ext4_orphan_add(handle, inode);
3300                         if (ret) {
3301                                 ext4_journal_stop(handle);
3302                                 goto out;
3303                         }
3304                         orphan = 1;
3305                         ei->i_disksize = inode->i_size;
3306                         ext4_journal_stop(handle);
3307                 }
3308         }
3309
3310         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3311                                  offset, nr_segs,
3312                                  ext4_get_block, NULL);
3313
3314         if (orphan) {
3315                 int err;
3316
3317                 /* Credits for sb + inode write */
3318                 handle = ext4_journal_start(inode, 2);
3319                 if (IS_ERR(handle)) {
3320                         /* This is really bad luck. We've written the data
3321                          * but cannot extend i_size. Bail out and pretend
3322                          * the write failed... */
3323                         ret = PTR_ERR(handle);
3324                         goto out;
3325                 }
3326                 if (inode->i_nlink)
3327                         ext4_orphan_del(handle, inode);
3328                 if (ret > 0) {
3329                         loff_t end = offset + ret;
3330                         if (end > inode->i_size) {
3331                                 ei->i_disksize = end;
3332                                 i_size_write(inode, end);
3333                                 /*
3334                                  * We're going to return a positive `ret'
3335                                  * here due to non-zero-length I/O, so there's
3336                                  * no way of reporting error returns from
3337                                  * ext4_mark_inode_dirty() to userspace.  So
3338                                  * ignore it.
3339                                  */
3340                                 ext4_mark_inode_dirty(handle, inode);
3341                         }
3342                 }
3343                 err = ext4_journal_stop(handle);
3344                 if (ret == 0)
3345                         ret = err;
3346         }
3347 out:
3348         return ret;
3349 }
3350
3351 /*
3352  * Pages can be marked dirty completely asynchronously from ext4's journalling
3353  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3354  * much here because ->set_page_dirty is called under VFS locks.  The page is
3355  * not necessarily locked.
3356  *
3357  * We cannot just dirty the page and leave attached buffers clean, because the
3358  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3359  * or jbddirty because all the journalling code will explode.
3360  *
3361  * So what we do is to mark the page "pending dirty" and next time writepage
3362  * is called, propagate that into the buffers appropriately.
3363  */
3364 static int ext4_journalled_set_page_dirty(struct page *page)
3365 {
3366         SetPageChecked(page);
3367         return __set_page_dirty_nobuffers(page);
3368 }
3369
3370 static const struct address_space_operations ext4_ordered_aops = {
3371         .readpage               = ext4_readpage,
3372         .readpages              = ext4_readpages,
3373         .writepage              = ext4_normal_writepage,
3374         .sync_page              = block_sync_page,
3375         .write_begin            = ext4_write_begin,
3376         .write_end              = ext4_ordered_write_end,
3377         .bmap                   = ext4_bmap,
3378         .invalidatepage         = ext4_invalidatepage,
3379         .releasepage            = ext4_releasepage,
3380         .direct_IO              = ext4_direct_IO,
3381         .migratepage            = buffer_migrate_page,
3382         .is_partially_uptodate  = block_is_partially_uptodate,
3383 };
3384
3385 static const struct address_space_operations ext4_writeback_aops = {
3386         .readpage               = ext4_readpage,
3387         .readpages              = ext4_readpages,
3388         .writepage              = ext4_normal_writepage,
3389         .sync_page              = block_sync_page,
3390         .write_begin            = ext4_write_begin,
3391         .write_end              = ext4_writeback_write_end,
3392         .bmap                   = ext4_bmap,
3393         .invalidatepage         = ext4_invalidatepage,
3394         .releasepage            = ext4_releasepage,
3395         .direct_IO              = ext4_direct_IO,
3396         .migratepage            = buffer_migrate_page,
3397         .is_partially_uptodate  = block_is_partially_uptodate,
3398 };
3399
3400 static const struct address_space_operations ext4_journalled_aops = {
3401         .readpage               = ext4_readpage,
3402         .readpages              = ext4_readpages,
3403         .writepage              = ext4_journalled_writepage,
3404         .sync_page              = block_sync_page,
3405         .write_begin            = ext4_write_begin,
3406         .write_end              = ext4_journalled_write_end,
3407         .set_page_dirty         = ext4_journalled_set_page_dirty,
3408         .bmap                   = ext4_bmap,
3409         .invalidatepage         = ext4_invalidatepage,
3410         .releasepage            = ext4_releasepage,
3411         .is_partially_uptodate  = block_is_partially_uptodate,
3412 };
3413
3414 static const struct address_space_operations ext4_da_aops = {
3415         .readpage               = ext4_readpage,
3416         .readpages              = ext4_readpages,
3417         .writepage              = ext4_da_writepage,
3418         .writepages             = ext4_da_writepages,
3419         .sync_page              = block_sync_page,
3420         .write_begin            = ext4_da_write_begin,
3421         .write_end              = ext4_da_write_end,
3422         .bmap                   = ext4_bmap,
3423         .invalidatepage         = ext4_da_invalidatepage,
3424         .releasepage            = ext4_releasepage,
3425         .direct_IO              = ext4_direct_IO,
3426         .migratepage            = buffer_migrate_page,
3427         .is_partially_uptodate  = block_is_partially_uptodate,
3428 };
3429
3430 void ext4_set_aops(struct inode *inode)
3431 {
3432         if (ext4_should_order_data(inode) &&
3433                 test_opt(inode->i_sb, DELALLOC))
3434                 inode->i_mapping->a_ops = &ext4_da_aops;
3435         else if (ext4_should_order_data(inode))
3436                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3437         else if (ext4_should_writeback_data(inode) &&
3438                  test_opt(inode->i_sb, DELALLOC))
3439                 inode->i_mapping->a_ops = &ext4_da_aops;
3440         else if (ext4_should_writeback_data(inode))
3441                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3442         else
3443                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3444 }
3445
3446 /*
3447  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3448  * up to the end of the block which corresponds to `from'.
3449  * This required during truncate. We need to physically zero the tail end
3450  * of that block so it doesn't yield old data if the file is later grown.
3451  */
3452 int ext4_block_truncate_page(handle_t *handle,
3453                 struct address_space *mapping, loff_t from)
3454 {
3455         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3456         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3457         unsigned blocksize, length, pos;
3458         ext4_lblk_t iblock;
3459         struct inode *inode = mapping->host;
3460         struct buffer_head *bh;
3461         struct page *page;
3462         int err = 0;
3463
3464         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3465         if (!page)
3466                 return -EINVAL;
3467
3468         blocksize = inode->i_sb->s_blocksize;
3469         length = blocksize - (offset & (blocksize - 1));
3470         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3471
3472         /*
3473          * For "nobh" option,  we can only work if we don't need to
3474          * read-in the page - otherwise we create buffers to do the IO.
3475          */
3476         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3477              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3478                 zero_user(page, offset, length);
3479                 set_page_dirty(page);
3480                 goto unlock;
3481         }
3482
3483         if (!page_has_buffers(page))
3484                 create_empty_buffers(page, blocksize, 0);
3485
3486         /* Find the buffer that contains "offset" */
3487         bh = page_buffers(page);
3488         pos = blocksize;
3489         while (offset >= pos) {
3490                 bh = bh->b_this_page;
3491                 iblock++;
3492                 pos += blocksize;
3493         }
3494
3495         err = 0;
3496         if (buffer_freed(bh)) {
3497                 BUFFER_TRACE(bh, "freed: skip");
3498                 goto unlock;
3499         }
3500
3501         if (!buffer_mapped(bh)) {
3502                 BUFFER_TRACE(bh, "unmapped");
3503                 ext4_get_block(inode, iblock, bh, 0);
3504                 /* unmapped? It's a hole - nothing to do */
3505                 if (!buffer_mapped(bh)) {
3506                         BUFFER_TRACE(bh, "still unmapped");
3507                         goto unlock;
3508                 }
3509         }
3510
3511         /* Ok, it's mapped. Make sure it's up-to-date */
3512         if (PageUptodate(page))
3513                 set_buffer_uptodate(bh);
3514
3515         if (!buffer_uptodate(bh)) {
3516                 err = -EIO;
3517                 ll_rw_block(READ, 1, &bh);
3518                 wait_on_buffer(bh);
3519                 /* Uhhuh. Read error. Complain and punt. */
3520                 if (!buffer_uptodate(bh))
3521                         goto unlock;
3522         }
3523
3524         if (ext4_should_journal_data(inode)) {
3525                 BUFFER_TRACE(bh, "get write access");
3526                 err = ext4_journal_get_write_access(handle, bh);
3527                 if (err)
3528                         goto unlock;
3529         }
3530
3531         zero_user(page, offset, length);
3532
3533         BUFFER_TRACE(bh, "zeroed end of block");
3534
3535         err = 0;
3536         if (ext4_should_journal_data(inode)) {
3537                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3538         } else {
3539                 if (ext4_should_order_data(inode))
3540                         err = ext4_jbd2_file_inode(handle, inode);
3541                 mark_buffer_dirty(bh);
3542         }
3543
3544 unlock:
3545         unlock_page(page);
3546         page_cache_release(page);
3547         return err;
3548 }
3549
3550 /*
3551  * Probably it should be a library function... search for first non-zero word
3552  * or memcmp with zero_page, whatever is better for particular architecture.
3553  * Linus?
3554  */
3555 static inline int all_zeroes(__le32 *p, __le32 *q)
3556 {
3557         while (p < q)
3558                 if (*p++)
3559                         return 0;
3560         return 1;
3561 }
3562
3563 /**
3564  *      ext4_find_shared - find the indirect blocks for partial truncation.
3565  *      @inode:   inode in question
3566  *      @depth:   depth of the affected branch
3567  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3568  *      @chain:   place to store the pointers to partial indirect blocks
3569  *      @top:     place to the (detached) top of branch
3570  *
3571  *      This is a helper function used by ext4_truncate().
3572  *
3573  *      When we do truncate() we may have to clean the ends of several
3574  *      indirect blocks but leave the blocks themselves alive. Block is
3575  *      partially truncated if some data below the new i_size is refered
3576  *      from it (and it is on the path to the first completely truncated
3577  *      data block, indeed).  We have to free the top of that path along
3578  *      with everything to the right of the path. Since no allocation
3579  *      past the truncation point is possible until ext4_truncate()
3580  *      finishes, we may safely do the latter, but top of branch may
3581  *      require special attention - pageout below the truncation point
3582  *      might try to populate it.
3583  *
3584  *      We atomically detach the top of branch from the tree, store the
3585  *      block number of its root in *@top, pointers to buffer_heads of
3586  *      partially truncated blocks - in @chain[].bh and pointers to
3587  *      their last elements that should not be removed - in
3588  *      @chain[].p. Return value is the pointer to last filled element
3589  *      of @chain.
3590  *
3591  *      The work left to caller to do the actual freeing of subtrees:
3592  *              a) free the subtree starting from *@top
3593  *              b) free the subtrees whose roots are stored in
3594  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3595  *              c) free the subtrees growing from the inode past the @chain[0].
3596  *                      (no partially truncated stuff there).  */
3597
3598 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3599                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3600 {
3601         Indirect *partial, *p;
3602         int k, err;
3603
3604         *top = 0;
3605         /* Make k index the deepest non-null offest + 1 */
3606         for (k = depth; k > 1 && !offsets[k-1]; k--)
3607                 ;
3608         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3609         /* Writer: pointers */
3610         if (!partial)
3611                 partial = chain + k-1;
3612         /*
3613          * If the branch acquired continuation since we've looked at it -
3614          * fine, it should all survive and (new) top doesn't belong to us.
3615          */
3616         if (!partial->key && *partial->p)
3617                 /* Writer: end */
3618                 goto no_top;
3619         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3620                 ;
3621         /*
3622          * OK, we've found the last block that must survive. The rest of our
3623          * branch should be detached before unlocking. However, if that rest
3624          * of branch is all ours and does not grow immediately from the inode
3625          * it's easier to cheat and just decrement partial->p.
3626          */
3627         if (p == chain + k - 1 && p > chain) {
3628                 p->p--;
3629         } else {
3630                 *top = *p->p;
3631                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3632 #if 0
3633                 *p->p = 0;
3634 #endif
3635         }
3636         /* Writer: end */
3637
3638         while (partial > p) {
3639                 brelse(partial->bh);
3640                 partial--;
3641         }
3642 no_top:
3643         return partial;
3644 }
3645
3646 /*
3647  * Zero a number of block pointers in either an inode or an indirect block.
3648  * If we restart the transaction we must again get write access to the
3649  * indirect block for further modification.
3650  *
3651  * We release `count' blocks on disk, but (last - first) may be greater
3652  * than `count' because there can be holes in there.
3653  */
3654 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3655                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3656                 unsigned long count, __le32 *first, __le32 *last)
3657 {
3658         __le32 *p;
3659         if (try_to_extend_transaction(handle, inode)) {
3660                 if (bh) {
3661                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3662                         ext4_handle_dirty_metadata(handle, inode, bh);
3663                 }
3664                 ext4_mark_inode_dirty(handle, inode);
3665                 ext4_journal_test_restart(handle, inode);
3666                 if (bh) {
3667                         BUFFER_TRACE(bh, "retaking write access");
3668                         ext4_journal_get_write_access(handle, bh);
3669                 }
3670         }
3671
3672         /*
3673          * Any buffers which are on the journal will be in memory. We find
3674          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3675          * on them.  We've already detached each block from the file, so
3676          * bforget() in jbd2_journal_forget() should be safe.
3677          *
3678          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3679          */
3680         for (p = first; p < last; p++) {
3681                 u32 nr = le32_to_cpu(*p);
3682                 if (nr) {
3683                         struct buffer_head *tbh;
3684
3685                         *p = 0;
3686                         tbh = sb_find_get_block(inode->i_sb, nr);
3687                         ext4_forget(handle, 0, inode, tbh, nr);
3688                 }
3689         }
3690
3691         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3692 }
3693
3694 /**
3695  * ext4_free_data - free a list of data blocks
3696  * @handle:     handle for this transaction
3697  * @inode:      inode we are dealing with
3698  * @this_bh:    indirect buffer_head which contains *@first and *@last
3699  * @first:      array of block numbers
3700  * @last:       points immediately past the end of array
3701  *
3702  * We are freeing all blocks refered from that array (numbers are stored as
3703  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3704  *
3705  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3706  * blocks are contiguous then releasing them at one time will only affect one
3707  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3708  * actually use a lot of journal space.
3709  *
3710  * @this_bh will be %NULL if @first and @last point into the inode's direct
3711  * block pointers.
3712  */
3713 static void ext4_free_data(handle_t *handle, struct inode *inode,
3714                            struct buffer_head *this_bh,
3715                            __le32 *first, __le32 *last)
3716 {
3717         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3718         unsigned long count = 0;            /* Number of blocks in the run */
3719         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3720                                                corresponding to
3721                                                block_to_free */
3722         ext4_fsblk_t nr;                    /* Current block # */
3723         __le32 *p;                          /* Pointer into inode/ind
3724                                                for current block */
3725         int err;
3726
3727         if (this_bh) {                          /* For indirect block */
3728                 BUFFER_TRACE(this_bh, "get_write_access");
3729                 err = ext4_journal_get_write_access(handle, this_bh);
3730                 /* Important: if we can't update the indirect pointers
3731                  * to the blocks, we can't free them. */
3732                 if (err)
3733                         return;
3734         }
3735
3736         for (p = first; p < last; p++) {
3737                 nr = le32_to_cpu(*p);
3738                 if (nr) {
3739                         /* accumulate blocks to free if they're contiguous */
3740                         if (count == 0) {
3741                                 block_to_free = nr;
3742                                 block_to_free_p = p;
3743                                 count = 1;
3744                         } else if (nr == block_to_free + count) {
3745                                 count++;
3746                         } else {
3747                                 ext4_clear_blocks(handle, inode, this_bh,
3748                                                   block_to_free,
3749                                                   count, block_to_free_p, p);
3750                                 block_to_free = nr;
3751                                 block_to_free_p = p;
3752                                 count = 1;
3753                         }
3754                 }
3755         }
3756
3757         if (count > 0)
3758                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3759                                   count, block_to_free_p, p);
3760
3761         if (this_bh) {
3762                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3763
3764                 /*
3765                  * The buffer head should have an attached journal head at this
3766                  * point. However, if the data is corrupted and an indirect
3767                  * block pointed to itself, it would have been detached when
3768                  * the block was cleared. Check for this instead of OOPSing.
3769                  */
3770                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3771                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3772                 else
3773                         ext4_error(inode->i_sb, __func__,
3774                                    "circular indirect block detected, "
3775                                    "inode=%lu, block=%llu",
3776                                    inode->i_ino,
3777                                    (unsigned long long) this_bh->b_blocknr);
3778         }
3779 }
3780
3781 /**
3782  *      ext4_free_branches - free an array of branches
3783  *      @handle: JBD handle for this transaction
3784  *      @inode: inode we are dealing with
3785  *      @parent_bh: the buffer_head which contains *@first and *@last
3786  *      @first: array of block numbers
3787  *      @last:  pointer immediately past the end of array
3788  *      @depth: depth of the branches to free
3789  *
3790  *      We are freeing all blocks refered from these branches (numbers are
3791  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3792  *      appropriately.
3793  */
3794 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3795                                struct buffer_head *parent_bh,
3796                                __le32 *first, __le32 *last, int depth)
3797 {
3798         ext4_fsblk_t nr;
3799         __le32 *p;
3800
3801         if (ext4_handle_is_aborted(handle))
3802                 return;
3803
3804         if (depth--) {
3805                 struct buffer_head *bh;
3806                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3807                 p = last;
3808                 while (--p >= first) {
3809                         nr = le32_to_cpu(*p);
3810                         if (!nr)
3811                                 continue;               /* A hole */
3812
3813                         /* Go read the buffer for the next level down */
3814                         bh = sb_bread(inode->i_sb, nr);
3815
3816                         /*
3817                          * A read failure? Report error and clear slot
3818                          * (should be rare).
3819                          */
3820                         if (!bh) {
3821                                 ext4_error(inode->i_sb, "ext4_free_branches",
3822                                            "Read failure, inode=%lu, block=%llu",
3823                                            inode->i_ino, nr);
3824                                 continue;
3825                         }
3826
3827                         /* This zaps the entire block.  Bottom up. */
3828                         BUFFER_TRACE(bh, "free child branches");
3829                         ext4_free_branches(handle, inode, bh,
3830                                         (__le32 *) bh->b_data,
3831                                         (__le32 *) bh->b_data + addr_per_block,
3832                                         depth);
3833
3834                         /*
3835                          * We've probably journalled the indirect block several
3836                          * times during the truncate.  But it's no longer
3837                          * needed and we now drop it from the transaction via
3838                          * jbd2_journal_revoke().
3839                          *
3840                          * That's easy if it's exclusively part of this
3841                          * transaction.  But if it's part of the committing
3842                          * transaction then jbd2_journal_forget() will simply
3843                          * brelse() it.  That means that if the underlying
3844                          * block is reallocated in ext4_get_block(),
3845                          * unmap_underlying_metadata() will find this block
3846                          * and will try to get rid of it.  damn, damn.
3847                          *
3848                          * If this block has already been committed to the
3849                          * journal, a revoke record will be written.  And
3850                          * revoke records must be emitted *before* clearing
3851                          * this block's bit in the bitmaps.
3852                          */
3853                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3854
3855                         /*
3856                          * Everything below this this pointer has been
3857                          * released.  Now let this top-of-subtree go.
3858                          *
3859                          * We want the freeing of this indirect block to be
3860                          * atomic in the journal with the updating of the
3861                          * bitmap block which owns it.  So make some room in
3862                          * the journal.
3863                          *
3864                          * We zero the parent pointer *after* freeing its
3865                          * pointee in the bitmaps, so if extend_transaction()
3866                          * for some reason fails to put the bitmap changes and
3867                          * the release into the same transaction, recovery
3868                          * will merely complain about releasing a free block,
3869                          * rather than leaking blocks.
3870                          */
3871                         if (ext4_handle_is_aborted(handle))
3872                                 return;
3873                         if (try_to_extend_transaction(handle, inode)) {
3874                                 ext4_mark_inode_dirty(handle, inode);
3875                                 ext4_journal_test_restart(handle, inode);
3876                         }
3877
3878                         ext4_free_blocks(handle, inode, nr, 1, 1);
3879
3880                         if (parent_bh) {
3881                                 /*
3882                                  * The block which we have just freed is
3883                                  * pointed to by an indirect block: journal it
3884                                  */
3885                                 BUFFER_TRACE(parent_bh, "get_write_access");
3886                                 if (!ext4_journal_get_write_access(handle,
3887                                                                    parent_bh)){
3888                                         *p = 0;
3889                                         BUFFER_TRACE(parent_bh,
3890                                         "call ext4_handle_dirty_metadata");
3891                                         ext4_handle_dirty_metadata(handle,
3892                                                                    inode,
3893                                                                    parent_bh);
3894                                 }
3895                         }
3896                 }
3897         } else {
3898                 /* We have reached the bottom of the tree. */
3899                 BUFFER_TRACE(parent_bh, "free data blocks");
3900                 ext4_free_data(handle, inode, parent_bh, first, last);
3901         }
3902 }
3903
3904 int ext4_can_truncate(struct inode *inode)
3905 {
3906         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3907                 return 0;
3908         if (S_ISREG(inode->i_mode))
3909                 return 1;
3910         if (S_ISDIR(inode->i_mode))
3911                 return 1;
3912         if (S_ISLNK(inode->i_mode))
3913                 return !ext4_inode_is_fast_symlink(inode);
3914         return 0;
3915 }
3916
3917 /*
3918  * ext4_truncate()
3919  *
3920  * We block out ext4_get_block() block instantiations across the entire
3921  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3922  * simultaneously on behalf of the same inode.
3923  *
3924  * As we work through the truncate and commmit bits of it to the journal there
3925  * is one core, guiding principle: the file's tree must always be consistent on
3926  * disk.  We must be able to restart the truncate after a crash.
3927  *
3928  * The file's tree may be transiently inconsistent in memory (although it
3929  * probably isn't), but whenever we close off and commit a journal transaction,
3930  * the contents of (the filesystem + the journal) must be consistent and
3931  * restartable.  It's pretty simple, really: bottom up, right to left (although
3932  * left-to-right works OK too).
3933  *
3934  * Note that at recovery time, journal replay occurs *before* the restart of
3935  * truncate against the orphan inode list.
3936  *
3937  * The committed inode has the new, desired i_size (which is the same as
3938  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3939  * that this inode's truncate did not complete and it will again call
3940  * ext4_truncate() to have another go.  So there will be instantiated blocks
3941  * to the right of the truncation point in a crashed ext4 filesystem.  But
3942  * that's fine - as long as they are linked from the inode, the post-crash
3943  * ext4_truncate() run will find them and release them.
3944  */
3945 void ext4_truncate(struct inode *inode)
3946 {
3947         handle_t *handle;
3948         struct ext4_inode_info *ei = EXT4_I(inode);
3949         __le32 *i_data = ei->i_data;
3950         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3951         struct address_space *mapping = inode->i_mapping;
3952         ext4_lblk_t offsets[4];
3953         Indirect chain[4];
3954         Indirect *partial;
3955         __le32 nr = 0;
3956         int n;
3957         ext4_lblk_t last_block;
3958         unsigned blocksize = inode->i_sb->s_blocksize;
3959
3960         if (!ext4_can_truncate(inode))
3961                 return;
3962
3963         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3964                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3965
3966         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3967                 ext4_ext_truncate(inode);
3968                 return;
3969         }
3970
3971         handle = start_transaction(inode);
3972         if (IS_ERR(handle))
3973                 return;         /* AKPM: return what? */
3974
3975         last_block = (inode->i_size + blocksize-1)
3976                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3977
3978         if (inode->i_size & (blocksize - 1))
3979                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3980                         goto out_stop;
3981
3982         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3983         if (n == 0)
3984                 goto out_stop;  /* error */
3985
3986         /*
3987          * OK.  This truncate is going to happen.  We add the inode to the
3988          * orphan list, so that if this truncate spans multiple transactions,
3989          * and we crash, we will resume the truncate when the filesystem
3990          * recovers.  It also marks the inode dirty, to catch the new size.
3991          *
3992          * Implication: the file must always be in a sane, consistent
3993          * truncatable state while each transaction commits.
3994          */
3995         if (ext4_orphan_add(handle, inode))
3996                 goto out_stop;
3997
3998         /*
3999          * From here we block out all ext4_get_block() callers who want to
4000          * modify the block allocation tree.
4001          */
4002         down_write(&ei->i_data_sem);
4003
4004         ext4_discard_preallocations(inode);
4005
4006         /*
4007          * The orphan list entry will now protect us from any crash which
4008          * occurs before the truncate completes, so it is now safe to propagate
4009          * the new, shorter inode size (held for now in i_size) into the
4010          * on-disk inode. We do this via i_disksize, which is the value which
4011          * ext4 *really* writes onto the disk inode.
4012          */
4013         ei->i_disksize = inode->i_size;
4014
4015         if (n == 1) {           /* direct blocks */
4016                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4017                                i_data + EXT4_NDIR_BLOCKS);
4018                 goto do_indirects;
4019         }
4020
4021         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4022         /* Kill the top of shared branch (not detached) */
4023         if (nr) {
4024                 if (partial == chain) {
4025                         /* Shared branch grows from the inode */
4026                         ext4_free_branches(handle, inode, NULL,
4027                                            &nr, &nr+1, (chain+n-1) - partial);
4028                         *partial->p = 0;
4029                         /*
4030                          * We mark the inode dirty prior to restart,
4031                          * and prior to stop.  No need for it here.
4032                          */
4033                 } else {
4034                         /* Shared branch grows from an indirect block */
4035                         BUFFER_TRACE(partial->bh, "get_write_access");
4036                         ext4_free_branches(handle, inode, partial->bh,
4037                                         partial->p,
4038                                         partial->p+1, (chain+n-1) - partial);
4039                 }
4040         }
4041         /* Clear the ends of indirect blocks on the shared branch */
4042         while (partial > chain) {
4043                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4044                                    (__le32*)partial->bh->b_data+addr_per_block,
4045                                    (chain+n-1) - partial);
4046                 BUFFER_TRACE(partial->bh, "call brelse");
4047                 brelse (partial->bh);
4048                 partial--;
4049         }
4050 do_indirects:
4051         /* Kill the remaining (whole) subtrees */
4052         switch (offsets[0]) {
4053         default:
4054                 nr = i_data[EXT4_IND_BLOCK];
4055                 if (nr) {
4056                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4057                         i_data[EXT4_IND_BLOCK] = 0;
4058                 }
4059         case EXT4_IND_BLOCK:
4060                 nr = i_data[EXT4_DIND_BLOCK];
4061                 if (nr) {
4062                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4063                         i_data[EXT4_DIND_BLOCK] = 0;
4064                 }
4065         case EXT4_DIND_BLOCK:
4066                 nr = i_data[EXT4_TIND_BLOCK];
4067                 if (nr) {
4068                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4069                         i_data[EXT4_TIND_BLOCK] = 0;
4070                 }
4071         case EXT4_TIND_BLOCK:
4072                 ;
4073         }
4074
4075         up_write(&ei->i_data_sem);
4076         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4077         ext4_mark_inode_dirty(handle, inode);
4078
4079         /*
4080          * In a multi-transaction truncate, we only make the final transaction
4081          * synchronous
4082          */
4083         if (IS_SYNC(inode))
4084                 ext4_handle_sync(handle);
4085 out_stop:
4086         /*
4087          * If this was a simple ftruncate(), and the file will remain alive
4088          * then we need to clear up the orphan record which we created above.
4089          * However, if this was a real unlink then we were called by
4090          * ext4_delete_inode(), and we allow that function to clean up the
4091          * orphan info for us.
4092          */
4093         if (inode->i_nlink)
4094                 ext4_orphan_del(handle, inode);
4095
4096         ext4_journal_stop(handle);
4097 }
4098
4099 /*
4100  * ext4_get_inode_loc returns with an extra refcount against the inode's
4101  * underlying buffer_head on success. If 'in_mem' is true, we have all
4102  * data in memory that is needed to recreate the on-disk version of this
4103  * inode.
4104  */
4105 static int __ext4_get_inode_loc(struct inode *inode,
4106                                 struct ext4_iloc *iloc, int in_mem)
4107 {
4108         struct ext4_group_desc  *gdp;
4109         struct buffer_head      *bh;
4110         struct super_block      *sb = inode->i_sb;
4111         ext4_fsblk_t            block;
4112         int                     inodes_per_block, inode_offset;
4113
4114         iloc->bh = NULL;
4115         if (!ext4_valid_inum(sb, inode->i_ino))
4116                 return -EIO;
4117
4118         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4119         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4120         if (!gdp)
4121                 return -EIO;
4122
4123         /*
4124          * Figure out the offset within the block group inode table
4125          */
4126         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4127         inode_offset = ((inode->i_ino - 1) %
4128                         EXT4_INODES_PER_GROUP(sb));
4129         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4130         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4131
4132         bh = sb_getblk(sb, block);
4133         if (!bh) {
4134                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4135                            "inode block - inode=%lu, block=%llu",
4136                            inode->i_ino, block);
4137                 return -EIO;
4138         }
4139         if (!buffer_uptodate(bh)) {
4140                 lock_buffer(bh);
4141
4142                 /*
4143                  * If the buffer has the write error flag, we have failed
4144                  * to write out another inode in the same block.  In this
4145                  * case, we don't have to read the block because we may
4146                  * read the old inode data successfully.
4147                  */
4148                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4149                         set_buffer_uptodate(bh);
4150
4151                 if (buffer_uptodate(bh)) {
4152                         /* someone brought it uptodate while we waited */
4153                         unlock_buffer(bh);
4154                         goto has_buffer;
4155                 }
4156
4157                 /*
4158                  * If we have all information of the inode in memory and this
4159                  * is the only valid inode in the block, we need not read the
4160                  * block.
4161                  */
4162                 if (in_mem) {
4163                         struct buffer_head *bitmap_bh;
4164                         int i, start;
4165
4166                         start = inode_offset & ~(inodes_per_block - 1);
4167
4168                         /* Is the inode bitmap in cache? */
4169                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4170                         if (!bitmap_bh)
4171                                 goto make_io;
4172
4173                         /*
4174                          * If the inode bitmap isn't in cache then the
4175                          * optimisation may end up performing two reads instead
4176                          * of one, so skip it.
4177                          */
4178                         if (!buffer_uptodate(bitmap_bh)) {
4179                                 brelse(bitmap_bh);
4180                                 goto make_io;
4181                         }
4182                         for (i = start; i < start + inodes_per_block; i++) {
4183                                 if (i == inode_offset)
4184                                         continue;
4185                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4186                                         break;
4187                         }
4188                         brelse(bitmap_bh);
4189                         if (i == start + inodes_per_block) {
4190                                 /* all other inodes are free, so skip I/O */
4191                                 memset(bh->b_data, 0, bh->b_size);
4192                                 set_buffer_uptodate(bh);
4193                                 unlock_buffer(bh);
4194                                 goto has_buffer;
4195                         }
4196                 }
4197
4198 make_io:
4199                 /*
4200                  * If we need to do any I/O, try to pre-readahead extra
4201                  * blocks from the inode table.
4202                  */
4203                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4204                         ext4_fsblk_t b, end, table;
4205                         unsigned num;
4206
4207                         table = ext4_inode_table(sb, gdp);
4208                         /* s_inode_readahead_blks is always a power of 2 */
4209                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4210                         if (table > b)
4211                                 b = table;
4212                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4213                         num = EXT4_INODES_PER_GROUP(sb);
4214                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4215                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4216                                 num -= ext4_itable_unused_count(sb, gdp);
4217                         table += num / inodes_per_block;
4218                         if (end > table)
4219                                 end = table;
4220                         while (b <= end)
4221                                 sb_breadahead(sb, b++);
4222                 }
4223
4224                 /*
4225                  * There are other valid inodes in the buffer, this inode
4226                  * has in-inode xattrs, or we don't have this inode in memory.
4227                  * Read the block from disk.
4228                  */
4229                 get_bh(bh);
4230                 bh->b_end_io = end_buffer_read_sync;
4231                 submit_bh(READ_META, bh);
4232                 wait_on_buffer(bh);
4233                 if (!buffer_uptodate(bh)) {
4234                         ext4_error(sb, __func__,
4235                                    "unable to read inode block - inode=%lu, "
4236                                    "block=%llu", inode->i_ino, block);
4237                         brelse(bh);
4238                         return -EIO;
4239                 }
4240         }
4241 has_buffer:
4242         iloc->bh = bh;
4243         return 0;
4244 }
4245
4246 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4247 {
4248         /* We have all inode data except xattrs in memory here. */
4249         return __ext4_get_inode_loc(inode, iloc,
4250                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4251 }
4252
4253 void ext4_set_inode_flags(struct inode *inode)
4254 {
4255         unsigned int flags = EXT4_I(inode)->i_flags;
4256
4257         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4258         if (flags & EXT4_SYNC_FL)
4259                 inode->i_flags |= S_SYNC;
4260         if (flags & EXT4_APPEND_FL)
4261                 inode->i_flags |= S_APPEND;
4262         if (flags & EXT4_IMMUTABLE_FL)
4263                 inode->i_flags |= S_IMMUTABLE;
4264         if (flags & EXT4_NOATIME_FL)
4265                 inode->i_flags |= S_NOATIME;
4266         if (flags & EXT4_DIRSYNC_FL)
4267                 inode->i_flags |= S_DIRSYNC;
4268 }
4269
4270 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4271 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4272 {
4273         unsigned int flags = ei->vfs_inode.i_flags;
4274
4275         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4276                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4277         if (flags & S_SYNC)
4278                 ei->i_flags |= EXT4_SYNC_FL;
4279         if (flags & S_APPEND)
4280                 ei->i_flags |= EXT4_APPEND_FL;
4281         if (flags & S_IMMUTABLE)
4282                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4283         if (flags & S_NOATIME)
4284                 ei->i_flags |= EXT4_NOATIME_FL;
4285         if (flags & S_DIRSYNC)
4286                 ei->i_flags |= EXT4_DIRSYNC_FL;
4287 }
4288 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4289                                         struct ext4_inode_info *ei)
4290 {
4291         blkcnt_t i_blocks ;
4292         struct inode *inode = &(ei->vfs_inode);
4293         struct super_block *sb = inode->i_sb;
4294
4295         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4296                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4297                 /* we are using combined 48 bit field */
4298                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4299                                         le32_to_cpu(raw_inode->i_blocks_lo);
4300                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4301                         /* i_blocks represent file system block size */
4302                         return i_blocks  << (inode->i_blkbits - 9);
4303                 } else {
4304                         return i_blocks;
4305                 }
4306         } else {
4307                 return le32_to_cpu(raw_inode->i_blocks_lo);
4308         }
4309 }
4310
4311 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4312 {
4313         struct ext4_iloc iloc;
4314         struct ext4_inode *raw_inode;
4315         struct ext4_inode_info *ei;
4316         struct buffer_head *bh;
4317         struct inode *inode;
4318         long ret;
4319         int block;
4320
4321         inode = iget_locked(sb, ino);
4322         if (!inode)
4323                 return ERR_PTR(-ENOMEM);
4324         if (!(inode->i_state & I_NEW))
4325                 return inode;
4326
4327         ei = EXT4_I(inode);
4328 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4329         ei->i_acl = EXT4_ACL_NOT_CACHED;
4330         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4331 #endif
4332
4333         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4334         if (ret < 0)
4335                 goto bad_inode;
4336         bh = iloc.bh;
4337         raw_inode = ext4_raw_inode(&iloc);
4338         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4339         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4340         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4341         if (!(test_opt(inode->i_sb, NO_UID32))) {
4342                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4343                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4344         }
4345         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4346
4347         ei->i_state = 0;
4348         ei->i_dir_start_lookup = 0;
4349         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4350         /* We now have enough fields to check if the inode was active or not.
4351          * This is needed because nfsd might try to access dead inodes
4352          * the test is that same one that e2fsck uses
4353          * NeilBrown 1999oct15
4354          */
4355         if (inode->i_nlink == 0) {
4356                 if (inode->i_mode == 0 ||
4357                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4358                         /* this inode is deleted */
4359                         brelse(bh);
4360                         ret = -ESTALE;
4361                         goto bad_inode;
4362                 }
4363                 /* The only unlinked inodes we let through here have
4364                  * valid i_mode and are being read by the orphan
4365                  * recovery code: that's fine, we're about to complete
4366                  * the process of deleting those. */
4367         }
4368         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4369         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4370         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4371         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4372                 ei->i_file_acl |=
4373                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4374         inode->i_size = ext4_isize(raw_inode);
4375         ei->i_disksize = inode->i_size;
4376         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4377         ei->i_block_group = iloc.block_group;
4378         ei->i_last_alloc_group = ~0;
4379         /*
4380          * NOTE! The in-memory inode i_data array is in little-endian order
4381          * even on big-endian machines: we do NOT byteswap the block numbers!
4382          */
4383         for (block = 0; block < EXT4_N_BLOCKS; block++)
4384                 ei->i_data[block] = raw_inode->i_block[block];
4385         INIT_LIST_HEAD(&ei->i_orphan);
4386
4387         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4388                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4389                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4390                     EXT4_INODE_SIZE(inode->i_sb)) {
4391                         brelse(bh);
4392                         ret = -EIO;
4393                         goto bad_inode;
4394                 }
4395                 if (ei->i_extra_isize == 0) {
4396                         /* The extra space is currently unused. Use it. */
4397                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4398                                             EXT4_GOOD_OLD_INODE_SIZE;
4399                 } else {
4400                         __le32 *magic = (void *)raw_inode +
4401                                         EXT4_GOOD_OLD_INODE_SIZE +
4402                                         ei->i_extra_isize;
4403                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4404                                  ei->i_state |= EXT4_STATE_XATTR;
4405                 }
4406         } else
4407                 ei->i_extra_isize = 0;
4408
4409         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4410         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4411         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4412         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4413
4414         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4415         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4416                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4417                         inode->i_version |=
4418                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4419         }
4420
4421         ret = 0;
4422         if (ei->i_file_acl &&
4423             ((ei->i_file_acl < 
4424               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4425                EXT4_SB(sb)->s_gdb_count)) ||
4426              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4427                 ext4_error(sb, __func__,
4428                            "bad extended attribute block %llu in inode #%lu",
4429                            ei->i_file_acl, inode->i_ino);
4430                 ret = -EIO;
4431                 goto bad_inode;
4432         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4433                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4434                     (S_ISLNK(inode->i_mode) &&
4435                      !ext4_inode_is_fast_symlink(inode)))
4436                         /* Validate extent which is part of inode */
4437                         ret = ext4_ext_check_inode(inode);
4438         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4439                    (S_ISLNK(inode->i_mode) &&
4440                     !ext4_inode_is_fast_symlink(inode))) {
4441                 /* Validate block references which are part of inode */
4442                 ret = ext4_check_inode_blockref(inode);
4443         }
4444         if (ret) {
4445                 brelse(bh);
4446                 goto bad_inode;
4447         }
4448
4449         if (S_ISREG(inode->i_mode)) {
4450                 inode->i_op = &ext4_file_inode_operations;
4451                 inode->i_fop = &ext4_file_operations;
4452                 ext4_set_aops(inode);
4453         } else if (S_ISDIR(inode->i_mode)) {
4454                 inode->i_op = &ext4_dir_inode_operations;
4455                 inode->i_fop = &ext4_dir_operations;
4456         } else if (S_ISLNK(inode->i_mode)) {
4457                 if (ext4_inode_is_fast_symlink(inode)) {
4458                         inode->i_op = &ext4_fast_symlink_inode_operations;
4459                         nd_terminate_link(ei->i_data, inode->i_size,
4460                                 sizeof(ei->i_data) - 1);
4461                 } else {
4462                         inode->i_op = &ext4_symlink_inode_operations;
4463                         ext4_set_aops(inode);
4464                 }
4465         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4466               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4467                 inode->i_op = &ext4_special_inode_operations;
4468                 if (raw_inode->i_block[0])
4469                         init_special_inode(inode, inode->i_mode,
4470                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4471                 else
4472                         init_special_inode(inode, inode->i_mode,
4473                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4474         } else {
4475                 brelse(bh);
4476                 ret = -EIO;
4477                 ext4_error(inode->i_sb, __func__, 
4478                            "bogus i_mode (%o) for inode=%lu",
4479                            inode->i_mode, inode->i_ino);
4480                 goto bad_inode;
4481         }
4482         brelse(iloc.bh);
4483         ext4_set_inode_flags(inode);
4484         unlock_new_inode(inode);
4485         return inode;
4486
4487 bad_inode:
4488         iget_failed(inode);
4489         return ERR_PTR(ret);
4490 }
4491
4492 static int ext4_inode_blocks_set(handle_t *handle,
4493                                 struct ext4_inode *raw_inode,
4494                                 struct ext4_inode_info *ei)
4495 {
4496         struct inode *inode = &(ei->vfs_inode);
4497         u64 i_blocks = inode->i_blocks;
4498         struct super_block *sb = inode->i_sb;
4499
4500         if (i_blocks <= ~0U) {
4501                 /*
4502                  * i_blocks can be represnted in a 32 bit variable
4503                  * as multiple of 512 bytes
4504                  */
4505                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4506                 raw_inode->i_blocks_high = 0;
4507                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4508                 return 0;
4509         }
4510         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4511                 return -EFBIG;
4512
4513         if (i_blocks <= 0xffffffffffffULL) {
4514                 /*
4515                  * i_blocks can be represented in a 48 bit variable
4516                  * as multiple of 512 bytes
4517                  */
4518                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4519                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4520                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4521         } else {
4522                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4523                 /* i_block is stored in file system block size */
4524                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4525                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4526                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4527         }
4528         return 0;
4529 }
4530
4531 /*
4532  * Post the struct inode info into an on-disk inode location in the
4533  * buffer-cache.  This gobbles the caller's reference to the
4534  * buffer_head in the inode location struct.
4535  *
4536  * The caller must have write access to iloc->bh.
4537  */
4538 static int ext4_do_update_inode(handle_t *handle,
4539                                 struct inode *inode,
4540                                 struct ext4_iloc *iloc)
4541 {
4542         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4543         struct ext4_inode_info *ei = EXT4_I(inode);
4544         struct buffer_head *bh = iloc->bh;
4545         int err = 0, rc, block;
4546
4547         /* For fields not not tracking in the in-memory inode,
4548          * initialise them to zero for new inodes. */
4549         if (ei->i_state & EXT4_STATE_NEW)
4550                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4551
4552         ext4_get_inode_flags(ei);
4553         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4554         if (!(test_opt(inode->i_sb, NO_UID32))) {
4555                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4556                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4557 /*
4558  * Fix up interoperability with old kernels. Otherwise, old inodes get
4559  * re-used with the upper 16 bits of the uid/gid intact
4560  */
4561                 if (!ei->i_dtime) {
4562                         raw_inode->i_uid_high =
4563                                 cpu_to_le16(high_16_bits(inode->i_uid));
4564                         raw_inode->i_gid_high =
4565                                 cpu_to_le16(high_16_bits(inode->i_gid));
4566                 } else {
4567                         raw_inode->i_uid_high = 0;
4568                         raw_inode->i_gid_high = 0;
4569                 }
4570         } else {
4571                 raw_inode->i_uid_low =
4572                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4573                 raw_inode->i_gid_low =
4574                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4575                 raw_inode->i_uid_high = 0;
4576                 raw_inode->i_gid_high = 0;
4577         }
4578         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4579
4580         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4581         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4582         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4583         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4584
4585         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4586                 goto out_brelse;
4587         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4588         /* clear the migrate flag in the raw_inode */
4589         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4590         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4591             cpu_to_le32(EXT4_OS_HURD))
4592                 raw_inode->i_file_acl_high =
4593                         cpu_to_le16(ei->i_file_acl >> 32);
4594         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4595         ext4_isize_set(raw_inode, ei->i_disksize);
4596         if (ei->i_disksize > 0x7fffffffULL) {
4597                 struct super_block *sb = inode->i_sb;
4598                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4599                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4600                                 EXT4_SB(sb)->s_es->s_rev_level ==
4601                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4602                         /* If this is the first large file
4603                          * created, add a flag to the superblock.
4604                          */
4605                         err = ext4_journal_get_write_access(handle,
4606                                         EXT4_SB(sb)->s_sbh);
4607                         if (err)
4608                                 goto out_brelse;
4609                         ext4_update_dynamic_rev(sb);
4610                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4611                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4612                         sb->s_dirt = 1;
4613                         ext4_handle_sync(handle);
4614                         err = ext4_handle_dirty_metadata(handle, inode,
4615                                         EXT4_SB(sb)->s_sbh);
4616                 }
4617         }
4618         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4619         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4620                 if (old_valid_dev(inode->i_rdev)) {
4621                         raw_inode->i_block[0] =
4622                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4623                         raw_inode->i_block[1] = 0;
4624                 } else {
4625                         raw_inode->i_block[0] = 0;
4626                         raw_inode->i_block[1] =
4627                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4628                         raw_inode->i_block[2] = 0;
4629                 }
4630         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4631                 raw_inode->i_block[block] = ei->i_data[block];
4632
4633         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4634         if (ei->i_extra_isize) {
4635                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4636                         raw_inode->i_version_hi =
4637                         cpu_to_le32(inode->i_version >> 32);
4638                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4639         }
4640
4641         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4642         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4643         if (!err)
4644                 err = rc;
4645         ei->i_state &= ~EXT4_STATE_NEW;
4646
4647 out_brelse:
4648         brelse(bh);
4649         ext4_std_error(inode->i_sb, err);
4650         return err;
4651 }
4652
4653 /*
4654  * ext4_write_inode()
4655  *
4656  * We are called from a few places:
4657  *
4658  * - Within generic_file_write() for O_SYNC files.
4659  *   Here, there will be no transaction running. We wait for any running
4660  *   trasnaction to commit.
4661  *
4662  * - Within sys_sync(), kupdate and such.
4663  *   We wait on commit, if tol to.
4664  *
4665  * - Within prune_icache() (PF_MEMALLOC == true)
4666  *   Here we simply return.  We can't afford to block kswapd on the
4667  *   journal commit.
4668  *
4669  * In all cases it is actually safe for us to return without doing anything,
4670  * because the inode has been copied into a raw inode buffer in
4671  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4672  * knfsd.
4673  *
4674  * Note that we are absolutely dependent upon all inode dirtiers doing the
4675  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4676  * which we are interested.
4677  *
4678  * It would be a bug for them to not do this.  The code:
4679  *
4680  *      mark_inode_dirty(inode)
4681  *      stuff();
4682  *      inode->i_size = expr;
4683  *
4684  * is in error because a kswapd-driven write_inode() could occur while
4685  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4686  * will no longer be on the superblock's dirty inode list.
4687  */
4688 int ext4_write_inode(struct inode *inode, int wait)
4689 {
4690         if (current->flags & PF_MEMALLOC)
4691                 return 0;
4692
4693         if (ext4_journal_current_handle()) {
4694                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4695                 dump_stack();
4696                 return -EIO;
4697         }
4698
4699         if (!wait)
4700                 return 0;
4701
4702         return ext4_force_commit(inode->i_sb);
4703 }
4704
4705 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4706 {
4707         int err = 0;
4708
4709         mark_buffer_dirty(bh);
4710         if (inode && inode_needs_sync(inode)) {
4711                 sync_dirty_buffer(bh);
4712                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4713                         ext4_error(inode->i_sb, __func__,
4714                                    "IO error syncing inode, "
4715                                    "inode=%lu, block=%llu",
4716                                    inode->i_ino,
4717                                    (unsigned long long)bh->b_blocknr);
4718                         err = -EIO;
4719                 }
4720         }
4721         return err;
4722 }
4723
4724 /*
4725  * ext4_setattr()
4726  *
4727  * Called from notify_change.
4728  *
4729  * We want to trap VFS attempts to truncate the file as soon as
4730  * possible.  In particular, we want to make sure that when the VFS
4731  * shrinks i_size, we put the inode on the orphan list and modify
4732  * i_disksize immediately, so that during the subsequent flushing of
4733  * dirty pages and freeing of disk blocks, we can guarantee that any
4734  * commit will leave the blocks being flushed in an unused state on
4735  * disk.  (On recovery, the inode will get truncated and the blocks will
4736  * be freed, so we have a strong guarantee that no future commit will
4737  * leave these blocks visible to the user.)
4738  *
4739  * Another thing we have to assure is that if we are in ordered mode
4740  * and inode is still attached to the committing transaction, we must
4741  * we start writeout of all the dirty pages which are being truncated.
4742  * This way we are sure that all the data written in the previous
4743  * transaction are already on disk (truncate waits for pages under
4744  * writeback).
4745  *
4746  * Called with inode->i_mutex down.
4747  */
4748 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4749 {
4750         struct inode *inode = dentry->d_inode;
4751         int error, rc = 0;
4752         const unsigned int ia_valid = attr->ia_valid;
4753
4754         error = inode_change_ok(inode, attr);
4755         if (error)
4756                 return error;
4757
4758         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4759                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4760                 handle_t *handle;
4761
4762                 /* (user+group)*(old+new) structure, inode write (sb,
4763                  * inode block, ? - but truncate inode update has it) */
4764                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4765                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4766                 if (IS_ERR(handle)) {
4767                         error = PTR_ERR(handle);
4768                         goto err_out;
4769                 }
4770                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4771                 if (error) {
4772                         ext4_journal_stop(handle);
4773                         return error;
4774                 }
4775                 /* Update corresponding info in inode so that everything is in
4776                  * one transaction */
4777                 if (attr->ia_valid & ATTR_UID)
4778                         inode->i_uid = attr->ia_uid;
4779                 if (attr->ia_valid & ATTR_GID)
4780                         inode->i_gid = attr->ia_gid;
4781                 error = ext4_mark_inode_dirty(handle, inode);
4782                 ext4_journal_stop(handle);
4783         }
4784
4785         if (attr->ia_valid & ATTR_SIZE) {
4786                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4787                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4788
4789                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4790                                 error = -EFBIG;
4791                                 goto err_out;
4792                         }
4793                 }
4794         }
4795
4796         if (S_ISREG(inode->i_mode) &&
4797             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4798                 handle_t *handle;
4799
4800                 handle = ext4_journal_start(inode, 3);
4801                 if (IS_ERR(handle)) {
4802                         error = PTR_ERR(handle);
4803                         goto err_out;
4804                 }
4805
4806                 error = ext4_orphan_add(handle, inode);
4807                 EXT4_I(inode)->i_disksize = attr->ia_size;
4808                 rc = ext4_mark_inode_dirty(handle, inode);
4809                 if (!error)
4810                         error = rc;
4811                 ext4_journal_stop(handle);
4812
4813                 if (ext4_should_order_data(inode)) {
4814                         error = ext4_begin_ordered_truncate(inode,
4815                                                             attr->ia_size);
4816                         if (error) {
4817                                 /* Do as much error cleanup as possible */
4818                                 handle = ext4_journal_start(inode, 3);
4819                                 if (IS_ERR(handle)) {
4820                                         ext4_orphan_del(NULL, inode);
4821                                         goto err_out;
4822                                 }
4823                                 ext4_orphan_del(handle, inode);
4824                                 ext4_journal_stop(handle);
4825                                 goto err_out;
4826                         }
4827                 }
4828         }
4829
4830         rc = inode_setattr(inode, attr);
4831
4832         /* If inode_setattr's call to ext4_truncate failed to get a
4833          * transaction handle at all, we need to clean up the in-core
4834          * orphan list manually. */
4835         if (inode->i_nlink)
4836                 ext4_orphan_del(NULL, inode);
4837
4838         if (!rc && (ia_valid & ATTR_MODE))
4839                 rc = ext4_acl_chmod(inode);
4840
4841 err_out:
4842         ext4_std_error(inode->i_sb, error);
4843         if (!error)
4844                 error = rc;
4845         return error;
4846 }
4847
4848 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4849                  struct kstat *stat)
4850 {
4851         struct inode *inode;
4852         unsigned long delalloc_blocks;
4853
4854         inode = dentry->d_inode;
4855         generic_fillattr(inode, stat);
4856
4857         /*
4858          * We can't update i_blocks if the block allocation is delayed
4859          * otherwise in the case of system crash before the real block
4860          * allocation is done, we will have i_blocks inconsistent with
4861          * on-disk file blocks.
4862          * We always keep i_blocks updated together with real
4863          * allocation. But to not confuse with user, stat
4864          * will return the blocks that include the delayed allocation
4865          * blocks for this file.
4866          */
4867         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4868         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4869         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4870
4871         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4872         return 0;
4873 }
4874
4875 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4876                                       int chunk)
4877 {
4878         int indirects;
4879
4880         /* if nrblocks are contiguous */
4881         if (chunk) {
4882                 /*
4883                  * With N contiguous data blocks, it need at most
4884                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4885                  * 2 dindirect blocks
4886                  * 1 tindirect block
4887                  */
4888                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4889                 return indirects + 3;
4890         }
4891         /*
4892          * if nrblocks are not contiguous, worse case, each block touch
4893          * a indirect block, and each indirect block touch a double indirect
4894          * block, plus a triple indirect block
4895          */
4896         indirects = nrblocks * 2 + 1;
4897         return indirects;
4898 }
4899
4900 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4901 {
4902         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4903                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4904         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4905 }
4906
4907 /*
4908  * Account for index blocks, block groups bitmaps and block group
4909  * descriptor blocks if modify datablocks and index blocks
4910  * worse case, the indexs blocks spread over different block groups
4911  *
4912  * If datablocks are discontiguous, they are possible to spread over
4913  * different block groups too. If they are contiugous, with flexbg,
4914  * they could still across block group boundary.
4915  *
4916  * Also account for superblock, inode, quota and xattr blocks
4917  */
4918 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4919 {
4920         int groups, gdpblocks;
4921         int idxblocks;
4922         int ret = 0;
4923
4924         /*
4925          * How many index blocks need to touch to modify nrblocks?
4926          * The "Chunk" flag indicating whether the nrblocks is
4927          * physically contiguous on disk
4928          *
4929          * For Direct IO and fallocate, they calls get_block to allocate
4930          * one single extent at a time, so they could set the "Chunk" flag
4931          */
4932         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4933
4934         ret = idxblocks;
4935
4936         /*
4937          * Now let's see how many group bitmaps and group descriptors need
4938          * to account
4939          */
4940         groups = idxblocks;
4941         if (chunk)
4942                 groups += 1;
4943         else
4944                 groups += nrblocks;
4945
4946         gdpblocks = groups;
4947         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4948                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4949         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4950                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4951
4952         /* bitmaps and block group descriptor blocks */
4953         ret += groups + gdpblocks;
4954
4955         /* Blocks for super block, inode, quota and xattr blocks */
4956         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4957
4958         return ret;
4959 }
4960
4961 /*
4962  * Calulate the total number of credits to reserve to fit
4963  * the modification of a single pages into a single transaction,
4964  * which may include multiple chunks of block allocations.
4965  *
4966  * This could be called via ext4_write_begin()
4967  *
4968  * We need to consider the worse case, when
4969  * one new block per extent.
4970  */
4971 int ext4_writepage_trans_blocks(struct inode *inode)
4972 {
4973         int bpp = ext4_journal_blocks_per_page(inode);
4974         int ret;
4975
4976         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4977
4978         /* Account for data blocks for journalled mode */
4979         if (ext4_should_journal_data(inode))
4980                 ret += bpp;
4981         return ret;
4982 }
4983
4984 /*
4985  * Calculate the journal credits for a chunk of data modification.
4986  *
4987  * This is called from DIO, fallocate or whoever calling
4988  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4989  *
4990  * journal buffers for data blocks are not included here, as DIO
4991  * and fallocate do no need to journal data buffers.
4992  */
4993 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4994 {
4995         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4996 }
4997
4998 /*
4999  * The caller must have previously called ext4_reserve_inode_write().
5000  * Give this, we know that the caller already has write access to iloc->bh.
5001  */
5002 int ext4_mark_iloc_dirty(handle_t *handle,
5003                 struct inode *inode, struct ext4_iloc *iloc)
5004 {
5005         int err = 0;
5006
5007         if (test_opt(inode->i_sb, I_VERSION))
5008                 inode_inc_iversion(inode);
5009
5010         /* the do_update_inode consumes one bh->b_count */
5011         get_bh(iloc->bh);
5012
5013         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5014         err = ext4_do_update_inode(handle, inode, iloc);
5015         put_bh(iloc->bh);
5016         return err;
5017 }
5018
5019 /*
5020  * On success, We end up with an outstanding reference count against
5021  * iloc->bh.  This _must_ be cleaned up later.
5022  */
5023
5024 int
5025 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5026                          struct ext4_iloc *iloc)
5027 {
5028         int err;
5029
5030         err = ext4_get_inode_loc(inode, iloc);
5031         if (!err) {
5032                 BUFFER_TRACE(iloc->bh, "get_write_access");
5033                 err = ext4_journal_get_write_access(handle, iloc->bh);
5034                 if (err) {
5035                         brelse(iloc->bh);
5036                         iloc->bh = NULL;
5037                 }
5038         }
5039         ext4_std_error(inode->i_sb, err);
5040         return err;
5041 }
5042
5043 /*
5044  * Expand an inode by new_extra_isize bytes.
5045  * Returns 0 on success or negative error number on failure.
5046  */
5047 static int ext4_expand_extra_isize(struct inode *inode,
5048                                    unsigned int new_extra_isize,
5049                                    struct ext4_iloc iloc,
5050                                    handle_t *handle)
5051 {
5052         struct ext4_inode *raw_inode;
5053         struct ext4_xattr_ibody_header *header;
5054         struct ext4_xattr_entry *entry;
5055
5056         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5057                 return 0;
5058
5059         raw_inode = ext4_raw_inode(&iloc);
5060
5061         header = IHDR(inode, raw_inode);
5062         entry = IFIRST(header);
5063
5064         /* No extended attributes present */
5065         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5066                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5067                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5068                         new_extra_isize);
5069                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5070                 return 0;
5071         }
5072
5073         /* try to expand with EAs present */
5074         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5075                                           raw_inode, handle);
5076 }
5077
5078 /*
5079  * What we do here is to mark the in-core inode as clean with respect to inode
5080  * dirtiness (it may still be data-dirty).
5081  * This means that the in-core inode may be reaped by prune_icache
5082  * without having to perform any I/O.  This is a very good thing,
5083  * because *any* task may call prune_icache - even ones which
5084  * have a transaction open against a different journal.
5085  *
5086  * Is this cheating?  Not really.  Sure, we haven't written the
5087  * inode out, but prune_icache isn't a user-visible syncing function.
5088  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5089  * we start and wait on commits.
5090  *
5091  * Is this efficient/effective?  Well, we're being nice to the system
5092  * by cleaning up our inodes proactively so they can be reaped
5093  * without I/O.  But we are potentially leaving up to five seconds'
5094  * worth of inodes floating about which prune_icache wants us to
5095  * write out.  One way to fix that would be to get prune_icache()
5096  * to do a write_super() to free up some memory.  It has the desired
5097  * effect.
5098  */
5099 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5100 {
5101         struct ext4_iloc iloc;
5102         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5103         static unsigned int mnt_count;
5104         int err, ret;
5105
5106         might_sleep();
5107         err = ext4_reserve_inode_write(handle, inode, &iloc);
5108         if (ext4_handle_valid(handle) &&
5109             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5110             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5111                 /*
5112                  * We need extra buffer credits since we may write into EA block
5113                  * with this same handle. If journal_extend fails, then it will
5114                  * only result in a minor loss of functionality for that inode.
5115                  * If this is felt to be critical, then e2fsck should be run to
5116                  * force a large enough s_min_extra_isize.
5117                  */
5118                 if ((jbd2_journal_extend(handle,
5119                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5120                         ret = ext4_expand_extra_isize(inode,
5121                                                       sbi->s_want_extra_isize,
5122                                                       iloc, handle);
5123                         if (ret) {
5124                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5125                                 if (mnt_count !=
5126                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5127                                         ext4_warning(inode->i_sb, __func__,
5128                                         "Unable to expand inode %lu. Delete"
5129                                         " some EAs or run e2fsck.",
5130                                         inode->i_ino);
5131                                         mnt_count =
5132                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5133                                 }
5134                         }
5135                 }
5136         }
5137         if (!err)
5138                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5139         return err;
5140 }
5141
5142 /*
5143  * ext4_dirty_inode() is called from __mark_inode_dirty()
5144  *
5145  * We're really interested in the case where a file is being extended.
5146  * i_size has been changed by generic_commit_write() and we thus need
5147  * to include the updated inode in the current transaction.
5148  *
5149  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5150  * are allocated to the file.
5151  *
5152  * If the inode is marked synchronous, we don't honour that here - doing
5153  * so would cause a commit on atime updates, which we don't bother doing.
5154  * We handle synchronous inodes at the highest possible level.
5155  */
5156 void ext4_dirty_inode(struct inode *inode)
5157 {
5158         handle_t *current_handle = ext4_journal_current_handle();
5159         handle_t *handle;
5160
5161         if (!ext4_handle_valid(current_handle)) {
5162                 ext4_mark_inode_dirty(current_handle, inode);
5163                 return;
5164         }
5165
5166         handle = ext4_journal_start(inode, 2);
5167         if (IS_ERR(handle))
5168                 goto out;
5169         if (current_handle &&
5170                 current_handle->h_transaction != handle->h_transaction) {
5171                 /* This task has a transaction open against a different fs */
5172                 printk(KERN_EMERG "%s: transactions do not match!\n",
5173                        __func__);
5174         } else {
5175                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5176                                 current_handle);
5177                 ext4_mark_inode_dirty(handle, inode);
5178         }
5179         ext4_journal_stop(handle);
5180 out:
5181         return;
5182 }
5183
5184 #if 0
5185 /*
5186  * Bind an inode's backing buffer_head into this transaction, to prevent
5187  * it from being flushed to disk early.  Unlike
5188  * ext4_reserve_inode_write, this leaves behind no bh reference and
5189  * returns no iloc structure, so the caller needs to repeat the iloc
5190  * lookup to mark the inode dirty later.
5191  */
5192 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5193 {
5194         struct ext4_iloc iloc;
5195
5196         int err = 0;
5197         if (handle) {
5198                 err = ext4_get_inode_loc(inode, &iloc);
5199                 if (!err) {
5200                         BUFFER_TRACE(iloc.bh, "get_write_access");
5201                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5202                         if (!err)
5203                                 err = ext4_handle_dirty_metadata(handle,
5204                                                                  inode,
5205                                                                  iloc.bh);
5206                         brelse(iloc.bh);
5207                 }
5208         }
5209         ext4_std_error(inode->i_sb, err);
5210         return err;
5211 }
5212 #endif
5213
5214 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5215 {
5216         journal_t *journal;
5217         handle_t *handle;
5218         int err;
5219
5220         /*
5221          * We have to be very careful here: changing a data block's
5222          * journaling status dynamically is dangerous.  If we write a
5223          * data block to the journal, change the status and then delete
5224          * that block, we risk forgetting to revoke the old log record
5225          * from the journal and so a subsequent replay can corrupt data.
5226          * So, first we make sure that the journal is empty and that
5227          * nobody is changing anything.
5228          */
5229
5230         journal = EXT4_JOURNAL(inode);
5231         if (!journal)
5232                 return 0;
5233         if (is_journal_aborted(journal))
5234                 return -EROFS;
5235
5236         jbd2_journal_lock_updates(journal);
5237         jbd2_journal_flush(journal);
5238
5239         /*
5240          * OK, there are no updates running now, and all cached data is
5241          * synced to disk.  We are now in a completely consistent state
5242          * which doesn't have anything in the journal, and we know that
5243          * no filesystem updates are running, so it is safe to modify
5244          * the inode's in-core data-journaling state flag now.
5245          */
5246
5247         if (val)
5248                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5249         else
5250                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5251         ext4_set_aops(inode);
5252
5253         jbd2_journal_unlock_updates(journal);
5254
5255         /* Finally we can mark the inode as dirty. */
5256
5257         handle = ext4_journal_start(inode, 1);
5258         if (IS_ERR(handle))
5259                 return PTR_ERR(handle);
5260
5261         err = ext4_mark_inode_dirty(handle, inode);
5262         ext4_handle_sync(handle);
5263         ext4_journal_stop(handle);
5264         ext4_std_error(inode->i_sb, err);
5265
5266         return err;
5267 }
5268
5269 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5270 {
5271         return !buffer_mapped(bh);
5272 }
5273
5274 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5275 {
5276         struct page *page = vmf->page;
5277         loff_t size;
5278         unsigned long len;
5279         int ret = -EINVAL;
5280         void *fsdata;
5281         struct file *file = vma->vm_file;
5282         struct inode *inode = file->f_path.dentry->d_inode;
5283         struct address_space *mapping = inode->i_mapping;
5284
5285         /*
5286          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5287          * get i_mutex because we are already holding mmap_sem.
5288          */
5289         down_read(&inode->i_alloc_sem);
5290         size = i_size_read(inode);
5291         if (page->mapping != mapping || size <= page_offset(page)
5292             || !PageUptodate(page)) {
5293                 /* page got truncated from under us? */
5294                 goto out_unlock;
5295         }
5296         ret = 0;
5297         if (PageMappedToDisk(page))
5298                 goto out_unlock;
5299
5300         if (page->index == size >> PAGE_CACHE_SHIFT)
5301                 len = size & ~PAGE_CACHE_MASK;
5302         else
5303                 len = PAGE_CACHE_SIZE;
5304
5305         if (page_has_buffers(page)) {
5306                 /* return if we have all the buffers mapped */
5307                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5308                                        ext4_bh_unmapped))
5309                         goto out_unlock;
5310         }
5311         /*
5312          * OK, we need to fill the hole... Do write_begin write_end
5313          * to do block allocation/reservation.We are not holding
5314          * inode.i__mutex here. That allow * parallel write_begin,
5315          * write_end call. lock_page prevent this from happening
5316          * on the same page though
5317          */
5318         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5319                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5320         if (ret < 0)
5321                 goto out_unlock;
5322         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5323                         len, len, page, fsdata);
5324         if (ret < 0)
5325                 goto out_unlock;
5326         ret = 0;
5327 out_unlock:
5328         if (ret)
5329                 ret = VM_FAULT_SIGBUS;
5330         up_read(&inode->i_alloc_sem);
5331         return ret;
5332 }