ext4: Merge ext4_da_get_block_write() into mpage_da_map_blocks()
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * The ext4_ind_get_blocks() function handles non-extents inodes
896  * (i.e., using the traditional indirect/double-indirect i_blocks
897  * scheme) for ext4_get_blocks().
898  *
899  * Allocation strategy is simple: if we have to allocate something, we will
900  * have to go the whole way to leaf. So let's do it before attaching anything
901  * to tree, set linkage between the newborn blocks, write them if sync is
902  * required, recheck the path, free and repeat if check fails, otherwise
903  * set the last missing link (that will protect us from any truncate-generated
904  * removals - all blocks on the path are immune now) and possibly force the
905  * write on the parent block.
906  * That has a nice additional property: no special recovery from the failed
907  * allocations is needed - we simply release blocks and do not touch anything
908  * reachable from inode.
909  *
910  * `handle' can be NULL if create == 0.
911  *
912  * return > 0, # of blocks mapped or allocated.
913  * return = 0, if plain lookup failed.
914  * return < 0, error case.
915  *
916  * The ext4_ind_get_blocks() function should be called with
917  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920  * blocks.
921  */
922 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923                                   ext4_lblk_t iblock, unsigned int maxblocks,
924                                   struct buffer_head *bh_result,
925                                   int flags)
926 {
927         int err = -EIO;
928         ext4_lblk_t offsets[4];
929         Indirect chain[4];
930         Indirect *partial;
931         ext4_fsblk_t goal;
932         int indirect_blks;
933         int blocks_to_boundary = 0;
934         int depth;
935         struct ext4_inode_info *ei = EXT4_I(inode);
936         int count = 0;
937         ext4_fsblk_t first_block = 0;
938         loff_t disksize;
939
940
941         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
942         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
943         depth = ext4_block_to_path(inode, iblock, offsets,
944                                         &blocks_to_boundary);
945
946         if (depth == 0)
947                 goto out;
948
949         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
950
951         /* Simplest case - block found, no allocation needed */
952         if (!partial) {
953                 first_block = le32_to_cpu(chain[depth - 1].key);
954                 clear_buffer_new(bh_result);
955                 count++;
956                 /*map more blocks*/
957                 while (count < maxblocks && count <= blocks_to_boundary) {
958                         ext4_fsblk_t blk;
959
960                         blk = le32_to_cpu(*(chain[depth-1].p + count));
961
962                         if (blk == first_block + count)
963                                 count++;
964                         else
965                                 break;
966                 }
967                 goto got_it;
968         }
969
970         /* Next simple case - plain lookup or failed read of indirect block */
971         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
972                 goto cleanup;
973
974         /*
975          * Okay, we need to do block allocation.
976         */
977         goal = ext4_find_goal(inode, iblock, partial);
978
979         /* the number of blocks need to allocate for [d,t]indirect blocks */
980         indirect_blks = (chain + depth) - partial - 1;
981
982         /*
983          * Next look up the indirect map to count the totoal number of
984          * direct blocks to allocate for this branch.
985          */
986         count = ext4_blks_to_allocate(partial, indirect_blks,
987                                         maxblocks, blocks_to_boundary);
988         /*
989          * Block out ext4_truncate while we alter the tree
990          */
991         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
992                                         &count, goal,
993                                         offsets + (partial - chain), partial);
994
995         /*
996          * The ext4_splice_branch call will free and forget any buffers
997          * on the new chain if there is a failure, but that risks using
998          * up transaction credits, especially for bitmaps where the
999          * credits cannot be returned.  Can we handle this somehow?  We
1000          * may need to return -EAGAIN upwards in the worst case.  --sct
1001          */
1002         if (!err)
1003                 err = ext4_splice_branch(handle, inode, iblock,
1004                                         partial, indirect_blks, count);
1005         /*
1006          * i_disksize growing is protected by i_data_sem.  Don't forget to
1007          * protect it if you're about to implement concurrent
1008          * ext4_get_block() -bzzz
1009         */
1010         if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
1011                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1012                 if (disksize > i_size_read(inode))
1013                         disksize = i_size_read(inode);
1014                 if (disksize > ei->i_disksize)
1015                         ei->i_disksize = disksize;
1016         }
1017         if (err)
1018                 goto cleanup;
1019
1020         set_buffer_new(bh_result);
1021 got_it:
1022         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1023         if (count > blocks_to_boundary)
1024                 set_buffer_boundary(bh_result);
1025         err = count;
1026         /* Clean up and exit */
1027         partial = chain + depth - 1;    /* the whole chain */
1028 cleanup:
1029         while (partial > chain) {
1030                 BUFFER_TRACE(partial->bh, "call brelse");
1031                 brelse(partial->bh);
1032                 partial--;
1033         }
1034         BUFFER_TRACE(bh_result, "returned");
1035 out:
1036         return err;
1037 }
1038
1039 qsize_t ext4_get_reserved_space(struct inode *inode)
1040 {
1041         unsigned long long total;
1042
1043         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044         total = EXT4_I(inode)->i_reserved_data_blocks +
1045                 EXT4_I(inode)->i_reserved_meta_blocks;
1046         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047
1048         return total;
1049 }
1050 /*
1051  * Calculate the number of metadata blocks need to reserve
1052  * to allocate @blocks for non extent file based file
1053  */
1054 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1055 {
1056         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1057         int ind_blks, dind_blks, tind_blks;
1058
1059         /* number of new indirect blocks needed */
1060         ind_blks = (blocks + icap - 1) / icap;
1061
1062         dind_blks = (ind_blks + icap - 1) / icap;
1063
1064         tind_blks = 1;
1065
1066         return ind_blks + dind_blks + tind_blks;
1067 }
1068
1069 /*
1070  * Calculate the number of metadata blocks need to reserve
1071  * to allocate given number of blocks
1072  */
1073 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1074 {
1075         if (!blocks)
1076                 return 0;
1077
1078         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1079                 return ext4_ext_calc_metadata_amount(inode, blocks);
1080
1081         return ext4_indirect_calc_metadata_amount(inode, blocks);
1082 }
1083
1084 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1085 {
1086         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087         int total, mdb, mdb_free;
1088
1089         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1090         /* recalculate the number of metablocks still need to be reserved */
1091         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1092         mdb = ext4_calc_metadata_amount(inode, total);
1093
1094         /* figure out how many metablocks to release */
1095         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1096         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1097
1098         if (mdb_free) {
1099                 /* Account for allocated meta_blocks */
1100                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1101
1102                 /* update fs dirty blocks counter */
1103                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1104                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1105                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1106         }
1107
1108         /* update per-inode reservations */
1109         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1110         EXT4_I(inode)->i_reserved_data_blocks -= used;
1111         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1112
1113         /*
1114          * free those over-booking quota for metadata blocks
1115          */
1116         if (mdb_free)
1117                 vfs_dq_release_reservation_block(inode, mdb_free);
1118
1119         /*
1120          * If we have done all the pending block allocations and if
1121          * there aren't any writers on the inode, we can discard the
1122          * inode's preallocations.
1123          */
1124         if (!total && (atomic_read(&inode->i_writecount) == 0))
1125                 ext4_discard_preallocations(inode);
1126 }
1127
1128 /*
1129  * The ext4_get_blocks() function tries to look up the requested blocks,
1130  * and returns if the blocks are already mapped.
1131  *
1132  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133  * and store the allocated blocks in the result buffer head and mark it
1134  * mapped.
1135  *
1136  * If file type is extents based, it will call ext4_ext_get_blocks(),
1137  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138  * based files
1139  *
1140  * On success, it returns the number of blocks being mapped or allocate.
1141  * if create==0 and the blocks are pre-allocated and uninitialized block,
1142  * the result buffer head is unmapped. If the create ==1, it will make sure
1143  * the buffer head is mapped.
1144  *
1145  * It returns 0 if plain look up failed (blocks have not been allocated), in
1146  * that casem, buffer head is unmapped
1147  *
1148  * It returns the error in case of allocation failure.
1149  */
1150 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151                     unsigned int max_blocks, struct buffer_head *bh,
1152                     int flags)
1153 {
1154         int retval;
1155
1156         clear_buffer_mapped(bh);
1157         clear_buffer_unwritten(bh);
1158
1159         /*
1160          * Try to see if we can get the block without requesting a new
1161          * file system block.
1162          */
1163         down_read((&EXT4_I(inode)->i_data_sem));
1164         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166                                 bh, 0);
1167         } else {
1168                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169                                              bh, 0);
1170         }
1171         up_read((&EXT4_I(inode)->i_data_sem));
1172
1173         /* If it is only a block(s) look up */
1174         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1175                 return retval;
1176
1177         /*
1178          * Returns if the blocks have already allocated
1179          *
1180          * Note that if blocks have been preallocated
1181          * ext4_ext_get_block() returns th create = 0
1182          * with buffer head unmapped.
1183          */
1184         if (retval > 0 && buffer_mapped(bh))
1185                 return retval;
1186
1187         /*
1188          * When we call get_blocks without the create flag, the
1189          * BH_Unwritten flag could have gotten set if the blocks
1190          * requested were part of a uninitialized extent.  We need to
1191          * clear this flag now that we are committed to convert all or
1192          * part of the uninitialized extent to be an initialized
1193          * extent.  This is because we need to avoid the combination
1194          * of BH_Unwritten and BH_Mapped flags being simultaneously
1195          * set on the buffer_head.
1196          */
1197         clear_buffer_unwritten(bh);
1198
1199         /*
1200          * New blocks allocate and/or writing to uninitialized extent
1201          * will possibly result in updating i_data, so we take
1202          * the write lock of i_data_sem, and call get_blocks()
1203          * with create == 1 flag.
1204          */
1205         down_write((&EXT4_I(inode)->i_data_sem));
1206
1207         /*
1208          * if the caller is from delayed allocation writeout path
1209          * we have already reserved fs blocks for allocation
1210          * let the underlying get_block() function know to
1211          * avoid double accounting
1212          */
1213         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1214                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1215         /*
1216          * We need to check for EXT4 here because migrate
1217          * could have changed the inode type in between
1218          */
1219         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1220                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1221                                               bh, flags);
1222         } else {
1223                 retval = ext4_ind_get_blocks(handle, inode, block,
1224                                              max_blocks, bh, flags);
1225
1226                 if (retval > 0 && buffer_new(bh)) {
1227                         /*
1228                          * We allocated new blocks which will result in
1229                          * i_data's format changing.  Force the migrate
1230                          * to fail by clearing migrate flags
1231                          */
1232                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1233                                                         ~EXT4_EXT_MIGRATE;
1234                 }
1235         }
1236
1237         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
1238                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1239                 /*
1240                  * Update reserved blocks/metadata blocks
1241                  * after successful block allocation
1242                  * which were deferred till now
1243                  */
1244                 if ((retval > 0) && buffer_delay(bh))
1245                         ext4_da_update_reserve_space(inode, retval);
1246         }
1247
1248         up_write((&EXT4_I(inode)->i_data_sem));
1249         return retval;
1250 }
1251
1252 /* Maximum number of blocks we map for direct IO at once. */
1253 #define DIO_MAX_BLOCKS 4096
1254
1255 int ext4_get_block(struct inode *inode, sector_t iblock,
1256                    struct buffer_head *bh_result, int create)
1257 {
1258         handle_t *handle = ext4_journal_current_handle();
1259         int ret = 0, started = 0;
1260         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1261         int dio_credits;
1262
1263         if (create && !handle) {
1264                 /* Direct IO write... */
1265                 if (max_blocks > DIO_MAX_BLOCKS)
1266                         max_blocks = DIO_MAX_BLOCKS;
1267                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1268                 handle = ext4_journal_start(inode, dio_credits);
1269                 if (IS_ERR(handle)) {
1270                         ret = PTR_ERR(handle);
1271                         goto out;
1272                 }
1273                 started = 1;
1274         }
1275
1276         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1277                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1278         if (ret > 0) {
1279                 bh_result->b_size = (ret << inode->i_blkbits);
1280                 ret = 0;
1281         }
1282         if (started)
1283                 ext4_journal_stop(handle);
1284 out:
1285         return ret;
1286 }
1287
1288 /*
1289  * `handle' can be NULL if create is zero
1290  */
1291 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1292                                 ext4_lblk_t block, int create, int *errp)
1293 {
1294         struct buffer_head dummy;
1295         int fatal = 0, err;
1296         int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
1297
1298         J_ASSERT(handle != NULL || create == 0);
1299
1300         dummy.b_state = 0;
1301         dummy.b_blocknr = -1000;
1302         buffer_trace_init(&dummy.b_history);
1303         if (create)
1304                 flags |= EXT4_GET_BLOCKS_CREATE;
1305         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1306         /*
1307          * ext4_get_blocks() returns number of blocks mapped. 0 in
1308          * case of a HOLE.
1309          */
1310         if (err > 0) {
1311                 if (err > 1)
1312                         WARN_ON(1);
1313                 err = 0;
1314         }
1315         *errp = err;
1316         if (!err && buffer_mapped(&dummy)) {
1317                 struct buffer_head *bh;
1318                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1319                 if (!bh) {
1320                         *errp = -EIO;
1321                         goto err;
1322                 }
1323                 if (buffer_new(&dummy)) {
1324                         J_ASSERT(create != 0);
1325                         J_ASSERT(handle != NULL);
1326
1327                         /*
1328                          * Now that we do not always journal data, we should
1329                          * keep in mind whether this should always journal the
1330                          * new buffer as metadata.  For now, regular file
1331                          * writes use ext4_get_block instead, so it's not a
1332                          * problem.
1333                          */
1334                         lock_buffer(bh);
1335                         BUFFER_TRACE(bh, "call get_create_access");
1336                         fatal = ext4_journal_get_create_access(handle, bh);
1337                         if (!fatal && !buffer_uptodate(bh)) {
1338                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1339                                 set_buffer_uptodate(bh);
1340                         }
1341                         unlock_buffer(bh);
1342                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1343                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1344                         if (!fatal)
1345                                 fatal = err;
1346                 } else {
1347                         BUFFER_TRACE(bh, "not a new buffer");
1348                 }
1349                 if (fatal) {
1350                         *errp = fatal;
1351                         brelse(bh);
1352                         bh = NULL;
1353                 }
1354                 return bh;
1355         }
1356 err:
1357         return NULL;
1358 }
1359
1360 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1361                                ext4_lblk_t block, int create, int *err)
1362 {
1363         struct buffer_head *bh;
1364
1365         bh = ext4_getblk(handle, inode, block, create, err);
1366         if (!bh)
1367                 return bh;
1368         if (buffer_uptodate(bh))
1369                 return bh;
1370         ll_rw_block(READ_META, 1, &bh);
1371         wait_on_buffer(bh);
1372         if (buffer_uptodate(bh))
1373                 return bh;
1374         put_bh(bh);
1375         *err = -EIO;
1376         return NULL;
1377 }
1378
1379 static int walk_page_buffers(handle_t *handle,
1380                              struct buffer_head *head,
1381                              unsigned from,
1382                              unsigned to,
1383                              int *partial,
1384                              int (*fn)(handle_t *handle,
1385                                        struct buffer_head *bh))
1386 {
1387         struct buffer_head *bh;
1388         unsigned block_start, block_end;
1389         unsigned blocksize = head->b_size;
1390         int err, ret = 0;
1391         struct buffer_head *next;
1392
1393         for (bh = head, block_start = 0;
1394              ret == 0 && (bh != head || !block_start);
1395              block_start = block_end, bh = next)
1396         {
1397                 next = bh->b_this_page;
1398                 block_end = block_start + blocksize;
1399                 if (block_end <= from || block_start >= to) {
1400                         if (partial && !buffer_uptodate(bh))
1401                                 *partial = 1;
1402                         continue;
1403                 }
1404                 err = (*fn)(handle, bh);
1405                 if (!ret)
1406                         ret = err;
1407         }
1408         return ret;
1409 }
1410
1411 /*
1412  * To preserve ordering, it is essential that the hole instantiation and
1413  * the data write be encapsulated in a single transaction.  We cannot
1414  * close off a transaction and start a new one between the ext4_get_block()
1415  * and the commit_write().  So doing the jbd2_journal_start at the start of
1416  * prepare_write() is the right place.
1417  *
1418  * Also, this function can nest inside ext4_writepage() ->
1419  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1420  * has generated enough buffer credits to do the whole page.  So we won't
1421  * block on the journal in that case, which is good, because the caller may
1422  * be PF_MEMALLOC.
1423  *
1424  * By accident, ext4 can be reentered when a transaction is open via
1425  * quota file writes.  If we were to commit the transaction while thus
1426  * reentered, there can be a deadlock - we would be holding a quota
1427  * lock, and the commit would never complete if another thread had a
1428  * transaction open and was blocking on the quota lock - a ranking
1429  * violation.
1430  *
1431  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1432  * will _not_ run commit under these circumstances because handle->h_ref
1433  * is elevated.  We'll still have enough credits for the tiny quotafile
1434  * write.
1435  */
1436 static int do_journal_get_write_access(handle_t *handle,
1437                                         struct buffer_head *bh)
1438 {
1439         if (!buffer_mapped(bh) || buffer_freed(bh))
1440                 return 0;
1441         return ext4_journal_get_write_access(handle, bh);
1442 }
1443
1444 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1445                                 loff_t pos, unsigned len, unsigned flags,
1446                                 struct page **pagep, void **fsdata)
1447 {
1448         struct inode *inode = mapping->host;
1449         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1450         handle_t *handle;
1451         int retries = 0;
1452         struct page *page;
1453         pgoff_t index;
1454         unsigned from, to;
1455
1456         trace_mark(ext4_write_begin,
1457                    "dev %s ino %lu pos %llu len %u flags %u",
1458                    inode->i_sb->s_id, inode->i_ino,
1459                    (unsigned long long) pos, len, flags);
1460         index = pos >> PAGE_CACHE_SHIFT;
1461         from = pos & (PAGE_CACHE_SIZE - 1);
1462         to = from + len;
1463
1464 retry:
1465         handle = ext4_journal_start(inode, needed_blocks);
1466         if (IS_ERR(handle)) {
1467                 ret = PTR_ERR(handle);
1468                 goto out;
1469         }
1470
1471         /* We cannot recurse into the filesystem as the transaction is already
1472          * started */
1473         flags |= AOP_FLAG_NOFS;
1474
1475         page = grab_cache_page_write_begin(mapping, index, flags);
1476         if (!page) {
1477                 ext4_journal_stop(handle);
1478                 ret = -ENOMEM;
1479                 goto out;
1480         }
1481         *pagep = page;
1482
1483         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1484                                 ext4_get_block);
1485
1486         if (!ret && ext4_should_journal_data(inode)) {
1487                 ret = walk_page_buffers(handle, page_buffers(page),
1488                                 from, to, NULL, do_journal_get_write_access);
1489         }
1490
1491         if (ret) {
1492                 unlock_page(page);
1493                 ext4_journal_stop(handle);
1494                 page_cache_release(page);
1495                 /*
1496                  * block_write_begin may have instantiated a few blocks
1497                  * outside i_size.  Trim these off again. Don't need
1498                  * i_size_read because we hold i_mutex.
1499                  */
1500                 if (pos + len > inode->i_size)
1501                         vmtruncate(inode, inode->i_size);
1502         }
1503
1504         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1505                 goto retry;
1506 out:
1507         return ret;
1508 }
1509
1510 /* For write_end() in data=journal mode */
1511 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1512 {
1513         if (!buffer_mapped(bh) || buffer_freed(bh))
1514                 return 0;
1515         set_buffer_uptodate(bh);
1516         return ext4_handle_dirty_metadata(handle, NULL, bh);
1517 }
1518
1519 /*
1520  * We need to pick up the new inode size which generic_commit_write gave us
1521  * `file' can be NULL - eg, when called from page_symlink().
1522  *
1523  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1524  * buffers are managed internally.
1525  */
1526 static int ext4_ordered_write_end(struct file *file,
1527                                 struct address_space *mapping,
1528                                 loff_t pos, unsigned len, unsigned copied,
1529                                 struct page *page, void *fsdata)
1530 {
1531         handle_t *handle = ext4_journal_current_handle();
1532         struct inode *inode = mapping->host;
1533         int ret = 0, ret2;
1534
1535         trace_mark(ext4_ordered_write_end,
1536                    "dev %s ino %lu pos %llu len %u copied %u",
1537                    inode->i_sb->s_id, inode->i_ino,
1538                    (unsigned long long) pos, len, copied);
1539         ret = ext4_jbd2_file_inode(handle, inode);
1540
1541         if (ret == 0) {
1542                 loff_t new_i_size;
1543
1544                 new_i_size = pos + copied;
1545                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1546                         ext4_update_i_disksize(inode, new_i_size);
1547                         /* We need to mark inode dirty even if
1548                          * new_i_size is less that inode->i_size
1549                          * bu greater than i_disksize.(hint delalloc)
1550                          */
1551                         ext4_mark_inode_dirty(handle, inode);
1552                 }
1553
1554                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1555                                                         page, fsdata);
1556                 copied = ret2;
1557                 if (ret2 < 0)
1558                         ret = ret2;
1559         }
1560         ret2 = ext4_journal_stop(handle);
1561         if (!ret)
1562                 ret = ret2;
1563
1564         return ret ? ret : copied;
1565 }
1566
1567 static int ext4_writeback_write_end(struct file *file,
1568                                 struct address_space *mapping,
1569                                 loff_t pos, unsigned len, unsigned copied,
1570                                 struct page *page, void *fsdata)
1571 {
1572         handle_t *handle = ext4_journal_current_handle();
1573         struct inode *inode = mapping->host;
1574         int ret = 0, ret2;
1575         loff_t new_i_size;
1576
1577         trace_mark(ext4_writeback_write_end,
1578                    "dev %s ino %lu pos %llu len %u copied %u",
1579                    inode->i_sb->s_id, inode->i_ino,
1580                    (unsigned long long) pos, len, copied);
1581         new_i_size = pos + copied;
1582         if (new_i_size > EXT4_I(inode)->i_disksize) {
1583                 ext4_update_i_disksize(inode, new_i_size);
1584                 /* We need to mark inode dirty even if
1585                  * new_i_size is less that inode->i_size
1586                  * bu greater than i_disksize.(hint delalloc)
1587                  */
1588                 ext4_mark_inode_dirty(handle, inode);
1589         }
1590
1591         ret2 = generic_write_end(file, mapping, pos, len, copied,
1592                                                         page, fsdata);
1593         copied = ret2;
1594         if (ret2 < 0)
1595                 ret = ret2;
1596
1597         ret2 = ext4_journal_stop(handle);
1598         if (!ret)
1599                 ret = ret2;
1600
1601         return ret ? ret : copied;
1602 }
1603
1604 static int ext4_journalled_write_end(struct file *file,
1605                                 struct address_space *mapping,
1606                                 loff_t pos, unsigned len, unsigned copied,
1607                                 struct page *page, void *fsdata)
1608 {
1609         handle_t *handle = ext4_journal_current_handle();
1610         struct inode *inode = mapping->host;
1611         int ret = 0, ret2;
1612         int partial = 0;
1613         unsigned from, to;
1614         loff_t new_i_size;
1615
1616         trace_mark(ext4_journalled_write_end,
1617                    "dev %s ino %lu pos %llu len %u copied %u",
1618                    inode->i_sb->s_id, inode->i_ino,
1619                    (unsigned long long) pos, len, copied);
1620         from = pos & (PAGE_CACHE_SIZE - 1);
1621         to = from + len;
1622
1623         if (copied < len) {
1624                 if (!PageUptodate(page))
1625                         copied = 0;
1626                 page_zero_new_buffers(page, from+copied, to);
1627         }
1628
1629         ret = walk_page_buffers(handle, page_buffers(page), from,
1630                                 to, &partial, write_end_fn);
1631         if (!partial)
1632                 SetPageUptodate(page);
1633         new_i_size = pos + copied;
1634         if (new_i_size > inode->i_size)
1635                 i_size_write(inode, pos+copied);
1636         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1637         if (new_i_size > EXT4_I(inode)->i_disksize) {
1638                 ext4_update_i_disksize(inode, new_i_size);
1639                 ret2 = ext4_mark_inode_dirty(handle, inode);
1640                 if (!ret)
1641                         ret = ret2;
1642         }
1643
1644         unlock_page(page);
1645         ret2 = ext4_journal_stop(handle);
1646         if (!ret)
1647                 ret = ret2;
1648         page_cache_release(page);
1649
1650         return ret ? ret : copied;
1651 }
1652
1653 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1654 {
1655         int retries = 0;
1656         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1657         unsigned long md_needed, mdblocks, total = 0;
1658
1659         /*
1660          * recalculate the amount of metadata blocks to reserve
1661          * in order to allocate nrblocks
1662          * worse case is one extent per block
1663          */
1664 repeat:
1665         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1666         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1667         mdblocks = ext4_calc_metadata_amount(inode, total);
1668         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1669
1670         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1671         total = md_needed + nrblocks;
1672
1673         /*
1674          * Make quota reservation here to prevent quota overflow
1675          * later. Real quota accounting is done at pages writeout
1676          * time.
1677          */
1678         if (vfs_dq_reserve_block(inode, total)) {
1679                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1680                 return -EDQUOT;
1681         }
1682
1683         if (ext4_claim_free_blocks(sbi, total)) {
1684                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1685                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1686                         yield();
1687                         goto repeat;
1688                 }
1689                 vfs_dq_release_reservation_block(inode, total);
1690                 return -ENOSPC;
1691         }
1692         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1693         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1694
1695         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1696         return 0;       /* success */
1697 }
1698
1699 static void ext4_da_release_space(struct inode *inode, int to_free)
1700 {
1701         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1702         int total, mdb, mdb_free, release;
1703
1704         if (!to_free)
1705                 return;         /* Nothing to release, exit */
1706
1707         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1708
1709         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1710                 /*
1711                  * if there is no reserved blocks, but we try to free some
1712                  * then the counter is messed up somewhere.
1713                  * but since this function is called from invalidate
1714                  * page, it's harmless to return without any action
1715                  */
1716                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1717                             "blocks for inode %lu, but there is no reserved "
1718                             "data blocks\n", to_free, inode->i_ino);
1719                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1720                 return;
1721         }
1722
1723         /* recalculate the number of metablocks still need to be reserved */
1724         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1725         mdb = ext4_calc_metadata_amount(inode, total);
1726
1727         /* figure out how many metablocks to release */
1728         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1729         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1730
1731         release = to_free + mdb_free;
1732
1733         /* update fs dirty blocks counter for truncate case */
1734         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1735
1736         /* update per-inode reservations */
1737         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1738         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1739
1740         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1741         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1742         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1743
1744         vfs_dq_release_reservation_block(inode, release);
1745 }
1746
1747 static void ext4_da_page_release_reservation(struct page *page,
1748                                                 unsigned long offset)
1749 {
1750         int to_release = 0;
1751         struct buffer_head *head, *bh;
1752         unsigned int curr_off = 0;
1753
1754         head = page_buffers(page);
1755         bh = head;
1756         do {
1757                 unsigned int next_off = curr_off + bh->b_size;
1758
1759                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1760                         to_release++;
1761                         clear_buffer_delay(bh);
1762                 }
1763                 curr_off = next_off;
1764         } while ((bh = bh->b_this_page) != head);
1765         ext4_da_release_space(page->mapping->host, to_release);
1766 }
1767
1768 /*
1769  * Delayed allocation stuff
1770  */
1771
1772 struct mpage_da_data {
1773         struct inode *inode;
1774         sector_t b_blocknr;             /* start block number of extent */
1775         size_t b_size;                  /* size of extent */
1776         unsigned long b_state;          /* state of the extent */
1777         unsigned long first_page, next_page;    /* extent of pages */
1778         struct writeback_control *wbc;
1779         int io_done;
1780         int pages_written;
1781         int retval;
1782 };
1783
1784 /*
1785  * mpage_da_submit_io - walks through extent of pages and try to write
1786  * them with writepage() call back
1787  *
1788  * @mpd->inode: inode
1789  * @mpd->first_page: first page of the extent
1790  * @mpd->next_page: page after the last page of the extent
1791  *
1792  * By the time mpage_da_submit_io() is called we expect all blocks
1793  * to be allocated. this may be wrong if allocation failed.
1794  *
1795  * As pages are already locked by write_cache_pages(), we can't use it
1796  */
1797 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1798 {
1799         long pages_skipped;
1800         struct pagevec pvec;
1801         unsigned long index, end;
1802         int ret = 0, err, nr_pages, i;
1803         struct inode *inode = mpd->inode;
1804         struct address_space *mapping = inode->i_mapping;
1805
1806         BUG_ON(mpd->next_page <= mpd->first_page);
1807         /*
1808          * We need to start from the first_page to the next_page - 1
1809          * to make sure we also write the mapped dirty buffer_heads.
1810          * If we look at mpd->b_blocknr we would only be looking
1811          * at the currently mapped buffer_heads.
1812          */
1813         index = mpd->first_page;
1814         end = mpd->next_page - 1;
1815
1816         pagevec_init(&pvec, 0);
1817         while (index <= end) {
1818                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1819                 if (nr_pages == 0)
1820                         break;
1821                 for (i = 0; i < nr_pages; i++) {
1822                         struct page *page = pvec.pages[i];
1823
1824                         index = page->index;
1825                         if (index > end)
1826                                 break;
1827                         index++;
1828
1829                         BUG_ON(!PageLocked(page));
1830                         BUG_ON(PageWriteback(page));
1831
1832                         pages_skipped = mpd->wbc->pages_skipped;
1833                         err = mapping->a_ops->writepage(page, mpd->wbc);
1834                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1835                                 /*
1836                                  * have successfully written the page
1837                                  * without skipping the same
1838                                  */
1839                                 mpd->pages_written++;
1840                         /*
1841                          * In error case, we have to continue because
1842                          * remaining pages are still locked
1843                          * XXX: unlock and re-dirty them?
1844                          */
1845                         if (ret == 0)
1846                                 ret = err;
1847                 }
1848                 pagevec_release(&pvec);
1849         }
1850         return ret;
1851 }
1852
1853 /*
1854  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1855  *
1856  * @mpd->inode - inode to walk through
1857  * @exbh->b_blocknr - first block on a disk
1858  * @exbh->b_size - amount of space in bytes
1859  * @logical - first logical block to start assignment with
1860  *
1861  * the function goes through all passed space and put actual disk
1862  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1863  */
1864 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1865                                  struct buffer_head *exbh)
1866 {
1867         struct inode *inode = mpd->inode;
1868         struct address_space *mapping = inode->i_mapping;
1869         int blocks = exbh->b_size >> inode->i_blkbits;
1870         sector_t pblock = exbh->b_blocknr, cur_logical;
1871         struct buffer_head *head, *bh;
1872         pgoff_t index, end;
1873         struct pagevec pvec;
1874         int nr_pages, i;
1875
1876         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1877         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1879
1880         pagevec_init(&pvec, 0);
1881
1882         while (index <= end) {
1883                 /* XXX: optimize tail */
1884                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1885                 if (nr_pages == 0)
1886                         break;
1887                 for (i = 0; i < nr_pages; i++) {
1888                         struct page *page = pvec.pages[i];
1889
1890                         index = page->index;
1891                         if (index > end)
1892                                 break;
1893                         index++;
1894
1895                         BUG_ON(!PageLocked(page));
1896                         BUG_ON(PageWriteback(page));
1897                         BUG_ON(!page_has_buffers(page));
1898
1899                         bh = page_buffers(page);
1900                         head = bh;
1901
1902                         /* skip blocks out of the range */
1903                         do {
1904                                 if (cur_logical >= logical)
1905                                         break;
1906                                 cur_logical++;
1907                         } while ((bh = bh->b_this_page) != head);
1908
1909                         do {
1910                                 if (cur_logical >= logical + blocks)
1911                                         break;
1912
1913                                 if (buffer_delay(bh) ||
1914                                                 buffer_unwritten(bh)) {
1915
1916                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1917
1918                                         if (buffer_delay(bh)) {
1919                                                 clear_buffer_delay(bh);
1920                                                 bh->b_blocknr = pblock;
1921                                         } else {
1922                                                 /*
1923                                                  * unwritten already should have
1924                                                  * blocknr assigned. Verify that
1925                                                  */
1926                                                 clear_buffer_unwritten(bh);
1927                                                 BUG_ON(bh->b_blocknr != pblock);
1928                                         }
1929
1930                                 } else if (buffer_mapped(bh))
1931                                         BUG_ON(bh->b_blocknr != pblock);
1932
1933                                 cur_logical++;
1934                                 pblock++;
1935                         } while ((bh = bh->b_this_page) != head);
1936                 }
1937                 pagevec_release(&pvec);
1938         }
1939 }
1940
1941
1942 /*
1943  * __unmap_underlying_blocks - just a helper function to unmap
1944  * set of blocks described by @bh
1945  */
1946 static inline void __unmap_underlying_blocks(struct inode *inode,
1947                                              struct buffer_head *bh)
1948 {
1949         struct block_device *bdev = inode->i_sb->s_bdev;
1950         int blocks, i;
1951
1952         blocks = bh->b_size >> inode->i_blkbits;
1953         for (i = 0; i < blocks; i++)
1954                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1955 }
1956
1957 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1958                                         sector_t logical, long blk_cnt)
1959 {
1960         int nr_pages, i;
1961         pgoff_t index, end;
1962         struct pagevec pvec;
1963         struct inode *inode = mpd->inode;
1964         struct address_space *mapping = inode->i_mapping;
1965
1966         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1967         end   = (logical + blk_cnt - 1) >>
1968                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1969         while (index <= end) {
1970                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1971                 if (nr_pages == 0)
1972                         break;
1973                 for (i = 0; i < nr_pages; i++) {
1974                         struct page *page = pvec.pages[i];
1975                         index = page->index;
1976                         if (index > end)
1977                                 break;
1978                         index++;
1979
1980                         BUG_ON(!PageLocked(page));
1981                         BUG_ON(PageWriteback(page));
1982                         block_invalidatepage(page, 0);
1983                         ClearPageUptodate(page);
1984                         unlock_page(page);
1985                 }
1986         }
1987         return;
1988 }
1989
1990 static void ext4_print_free_blocks(struct inode *inode)
1991 {
1992         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1993         printk(KERN_EMERG "Total free blocks count %lld\n",
1994                         ext4_count_free_blocks(inode->i_sb));
1995         printk(KERN_EMERG "Free/Dirty block details\n");
1996         printk(KERN_EMERG "free_blocks=%lld\n",
1997                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1998         printk(KERN_EMERG "dirty_blocks=%lld\n",
1999                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2000         printk(KERN_EMERG "Block reservation details\n");
2001         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2002                         EXT4_I(inode)->i_reserved_data_blocks);
2003         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2004                         EXT4_I(inode)->i_reserved_meta_blocks);
2005         return;
2006 }
2007
2008 /*
2009  * mpage_da_map_blocks - go through given space
2010  *
2011  * @mpd - bh describing space
2012  *
2013  * The function skips space we know is already mapped to disk blocks.
2014  *
2015  */
2016 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2017 {
2018         int err, blks;
2019         struct buffer_head new;
2020         sector_t next = mpd->b_blocknr;
2021         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2022         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2023         handle_t *handle = NULL;
2024
2025         /*
2026          * We consider only non-mapped and non-allocated blocks
2027          */
2028         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2029                 !(mpd->b_state & (1 << BH_Delay)) &&
2030                 !(mpd->b_state & (1 << BH_Unwritten)))
2031                 return 0;
2032
2033         /*
2034          * If we didn't accumulate anything to write simply return
2035          */
2036         if (!mpd->b_size)
2037                 return 0;
2038
2039         handle = ext4_journal_current_handle();
2040         BUG_ON(!handle);
2041
2042         /*
2043          * We need to make sure the BH_Delay flag is passed down to
2044          * ext4_da_get_block_write(), since it calls ext4_get_blocks()
2045          * with the EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.  This flag
2046          * causes ext4_get_blocks() to call
2047          * ext4_da_update_reserve_space() if the passed buffer head
2048          * has the BH_Delay flag set.  In the future, once we clean up
2049          * the interfaces to ext4_get_blocks(), we should pass in a
2050          * separate flag which requests that the delayed allocation
2051          * statistics should be updated, instead of depending on the
2052          * state information getting passed down via the map_bh's
2053          * state bitmasks plus the magic
2054          * EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
2055          */
2056         new.b_state = mpd->b_state & (1 << BH_Delay);
2057         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2058                                &new, EXT4_GET_BLOCKS_CREATE|
2059                                EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2060         if (blks < 0) {
2061                 err = blks;
2062                 /*
2063                  * If get block returns with error we simply
2064                  * return. Later writepage will redirty the page and
2065                  * writepages will find the dirty page again
2066                  */
2067                 if (err == -EAGAIN)
2068                         return 0;
2069
2070                 if (err == -ENOSPC &&
2071                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2072                         mpd->retval = err;
2073                         return 0;
2074                 }
2075
2076                 /*
2077                  * get block failure will cause us to loop in
2078                  * writepages, because a_ops->writepage won't be able
2079                  * to make progress. The page will be redirtied by
2080                  * writepage and writepages will again try to write
2081                  * the same.
2082                  */
2083                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2084                                   "at logical offset %llu with max blocks "
2085                                   "%zd with error %d\n",
2086                                   __func__, mpd->inode->i_ino,
2087                                   (unsigned long long)next,
2088                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2089                 printk(KERN_EMERG "This should not happen.!! "
2090                                         "Data will be lost\n");
2091                 if (err == -ENOSPC) {
2092                         ext4_print_free_blocks(mpd->inode);
2093                 }
2094                 /* invalidate all the pages */
2095                 ext4_da_block_invalidatepages(mpd, next,
2096                                 mpd->b_size >> mpd->inode->i_blkbits);
2097                 return err;
2098         }
2099         BUG_ON(blks == 0);
2100
2101         new.b_size = (blks << mpd->inode->i_blkbits);
2102
2103         if (buffer_new(&new))
2104                 __unmap_underlying_blocks(mpd->inode, &new);
2105
2106         /*
2107          * If blocks are delayed marked, we need to
2108          * put actual blocknr and drop delayed bit
2109          */
2110         if ((mpd->b_state & (1 << BH_Delay)) ||
2111             (mpd->b_state & (1 << BH_Unwritten)))
2112                 mpage_put_bnr_to_bhs(mpd, next, &new);
2113
2114         if (ext4_should_order_data(mpd->inode)) {
2115                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2116                 if (err)
2117                         return err;
2118         }
2119
2120         /*
2121          * Update on-disk size along with block allocation we don't
2122          * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2123          * within already allocated block -bzzz
2124          */
2125         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2126         if (disksize > i_size_read(mpd->inode))
2127                 disksize = i_size_read(mpd->inode);
2128         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2129                 ext4_update_i_disksize(mpd->inode, disksize);
2130                 return ext4_mark_inode_dirty(handle, mpd->inode);
2131         }
2132
2133         return 0;
2134 }
2135
2136 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2137                 (1 << BH_Delay) | (1 << BH_Unwritten))
2138
2139 /*
2140  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2141  *
2142  * @mpd->lbh - extent of blocks
2143  * @logical - logical number of the block in the file
2144  * @bh - bh of the block (used to access block's state)
2145  *
2146  * the function is used to collect contig. blocks in same state
2147  */
2148 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2149                                    sector_t logical, size_t b_size,
2150                                    unsigned long b_state)
2151 {
2152         sector_t next;
2153         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2154
2155         /* check if thereserved journal credits might overflow */
2156         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2157                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2158                         /*
2159                          * With non-extent format we are limited by the journal
2160                          * credit available.  Total credit needed to insert
2161                          * nrblocks contiguous blocks is dependent on the
2162                          * nrblocks.  So limit nrblocks.
2163                          */
2164                         goto flush_it;
2165                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2166                                 EXT4_MAX_TRANS_DATA) {
2167                         /*
2168                          * Adding the new buffer_head would make it cross the
2169                          * allowed limit for which we have journal credit
2170                          * reserved. So limit the new bh->b_size
2171                          */
2172                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2173                                                 mpd->inode->i_blkbits;
2174                         /* we will do mpage_da_submit_io in the next loop */
2175                 }
2176         }
2177         /*
2178          * First block in the extent
2179          */
2180         if (mpd->b_size == 0) {
2181                 mpd->b_blocknr = logical;
2182                 mpd->b_size = b_size;
2183                 mpd->b_state = b_state & BH_FLAGS;
2184                 return;
2185         }
2186
2187         next = mpd->b_blocknr + nrblocks;
2188         /*
2189          * Can we merge the block to our big extent?
2190          */
2191         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2192                 mpd->b_size += b_size;
2193                 return;
2194         }
2195
2196 flush_it:
2197         /*
2198          * We couldn't merge the block to our extent, so we
2199          * need to flush current  extent and start new one
2200          */
2201         if (mpage_da_map_blocks(mpd) == 0)
2202                 mpage_da_submit_io(mpd);
2203         mpd->io_done = 1;
2204         return;
2205 }
2206
2207 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2208 {
2209         /*
2210          * unmapped buffer is possible for holes.
2211          * delay buffer is possible with delayed allocation.
2212          * We also need to consider unwritten buffer as unmapped.
2213          */
2214         return (!buffer_mapped(bh) || buffer_delay(bh) ||
2215                                 buffer_unwritten(bh)) && buffer_dirty(bh);
2216 }
2217
2218 /*
2219  * __mpage_da_writepage - finds extent of pages and blocks
2220  *
2221  * @page: page to consider
2222  * @wbc: not used, we just follow rules
2223  * @data: context
2224  *
2225  * The function finds extents of pages and scan them for all blocks.
2226  */
2227 static int __mpage_da_writepage(struct page *page,
2228                                 struct writeback_control *wbc, void *data)
2229 {
2230         struct mpage_da_data *mpd = data;
2231         struct inode *inode = mpd->inode;
2232         struct buffer_head *bh, *head;
2233         sector_t logical;
2234
2235         if (mpd->io_done) {
2236                 /*
2237                  * Rest of the page in the page_vec
2238                  * redirty then and skip then. We will
2239                  * try to to write them again after
2240                  * starting a new transaction
2241                  */
2242                 redirty_page_for_writepage(wbc, page);
2243                 unlock_page(page);
2244                 return MPAGE_DA_EXTENT_TAIL;
2245         }
2246         /*
2247          * Can we merge this page to current extent?
2248          */
2249         if (mpd->next_page != page->index) {
2250                 /*
2251                  * Nope, we can't. So, we map non-allocated blocks
2252                  * and start IO on them using writepage()
2253                  */
2254                 if (mpd->next_page != mpd->first_page) {
2255                         if (mpage_da_map_blocks(mpd) == 0)
2256                                 mpage_da_submit_io(mpd);
2257                         /*
2258                          * skip rest of the page in the page_vec
2259                          */
2260                         mpd->io_done = 1;
2261                         redirty_page_for_writepage(wbc, page);
2262                         unlock_page(page);
2263                         return MPAGE_DA_EXTENT_TAIL;
2264                 }
2265
2266                 /*
2267                  * Start next extent of pages ...
2268                  */
2269                 mpd->first_page = page->index;
2270
2271                 /*
2272                  * ... and blocks
2273                  */
2274                 mpd->b_size = 0;
2275                 mpd->b_state = 0;
2276                 mpd->b_blocknr = 0;
2277         }
2278
2279         mpd->next_page = page->index + 1;
2280         logical = (sector_t) page->index <<
2281                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2282
2283         if (!page_has_buffers(page)) {
2284                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2285                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2286                 if (mpd->io_done)
2287                         return MPAGE_DA_EXTENT_TAIL;
2288         } else {
2289                 /*
2290                  * Page with regular buffer heads, just add all dirty ones
2291                  */
2292                 head = page_buffers(page);
2293                 bh = head;
2294                 do {
2295                         BUG_ON(buffer_locked(bh));
2296                         /*
2297                          * We need to try to allocate
2298                          * unmapped blocks in the same page.
2299                          * Otherwise we won't make progress
2300                          * with the page in ext4_da_writepage
2301                          */
2302                         if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2303                                 mpage_add_bh_to_extent(mpd, logical,
2304                                                        bh->b_size,
2305                                                        bh->b_state);
2306                                 if (mpd->io_done)
2307                                         return MPAGE_DA_EXTENT_TAIL;
2308                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2309                                 /*
2310                                  * mapped dirty buffer. We need to update
2311                                  * the b_state because we look at
2312                                  * b_state in mpage_da_map_blocks. We don't
2313                                  * update b_size because if we find an
2314                                  * unmapped buffer_head later we need to
2315                                  * use the b_state flag of that buffer_head.
2316                                  */
2317                                 if (mpd->b_size == 0)
2318                                         mpd->b_state = bh->b_state & BH_FLAGS;
2319                         }
2320                         logical++;
2321                 } while ((bh = bh->b_this_page) != head);
2322         }
2323
2324         return 0;
2325 }
2326
2327 /*
2328  * This is a special get_blocks_t callback which is used by
2329  * ext4_da_write_begin().  It will either return mapped block or
2330  * reserve space for a single block.
2331  *
2332  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2333  * We also have b_blocknr = -1 and b_bdev initialized properly
2334  *
2335  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2336  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2337  * initialized properly.
2338  */
2339 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2340                                   struct buffer_head *bh_result, int create)
2341 {
2342         int ret = 0;
2343         sector_t invalid_block = ~((sector_t) 0xffff);
2344
2345         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2346                 invalid_block = ~0;
2347
2348         BUG_ON(create == 0);
2349         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2350
2351         /*
2352          * first, we need to know whether the block is allocated already
2353          * preallocated blocks are unmapped but should treated
2354          * the same as allocated blocks.
2355          */
2356         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2357         if ((ret == 0) && !buffer_delay(bh_result)) {
2358                 /* the block isn't (pre)allocated yet, let's reserve space */
2359                 /*
2360                  * XXX: __block_prepare_write() unmaps passed block,
2361                  * is it OK?
2362                  */
2363                 ret = ext4_da_reserve_space(inode, 1);
2364                 if (ret)
2365                         /* not enough space to reserve */
2366                         return ret;
2367
2368                 map_bh(bh_result, inode->i_sb, invalid_block);
2369                 set_buffer_new(bh_result);
2370                 set_buffer_delay(bh_result);
2371         } else if (ret > 0) {
2372                 bh_result->b_size = (ret << inode->i_blkbits);
2373                 if (buffer_unwritten(bh_result)) {
2374                         /* A delayed write to unwritten bh should
2375                          * be marked new and mapped.  Mapped ensures
2376                          * that we don't do get_block multiple times
2377                          * when we write to the same offset and new
2378                          * ensures that we do proper zero out for
2379                          * partial write.
2380                          */
2381                         set_buffer_new(bh_result);
2382                         set_buffer_mapped(bh_result);
2383                 }
2384                 ret = 0;
2385         }
2386
2387         return ret;
2388 }
2389
2390 /*
2391  * This function is used as a standard get_block_t calback function
2392  * when there is no desire to allocate any blocks.  It is used as a
2393  * callback function for block_prepare_write(), nobh_writepage(), and
2394  * block_write_full_page().  These functions should only try to map a
2395  * single block at a time.
2396  *
2397  * Since this function doesn't do block allocations even if the caller
2398  * requests it by passing in create=1, it is critically important that
2399  * any caller checks to make sure that any buffer heads are returned
2400  * by this function are either all already mapped or marked for
2401  * delayed allocation before calling nobh_writepage() or
2402  * block_write_full_page().  Otherwise, b_blocknr could be left
2403  * unitialized, and the page write functions will be taken by
2404  * surprise.
2405  */
2406 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2407                                    struct buffer_head *bh_result, int create)
2408 {
2409         int ret = 0;
2410         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2411
2412         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2413
2414         /*
2415          * we don't want to do block allocation in writepage
2416          * so call get_block_wrap with create = 0
2417          */
2418         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2419         BUG_ON(create && ret == 0);
2420         if (ret > 0) {
2421                 bh_result->b_size = (ret << inode->i_blkbits);
2422                 ret = 0;
2423         }
2424         return ret;
2425 }
2426
2427 /*
2428  * This function can get called via...
2429  *   - ext4_da_writepages after taking page lock (have journal handle)
2430  *   - journal_submit_inode_data_buffers (no journal handle)
2431  *   - shrink_page_list via pdflush (no journal handle)
2432  *   - grab_page_cache when doing write_begin (have journal handle)
2433  */
2434 static int ext4_da_writepage(struct page *page,
2435                                 struct writeback_control *wbc)
2436 {
2437         int ret = 0;
2438         loff_t size;
2439         unsigned int len;
2440         struct buffer_head *page_bufs;
2441         struct inode *inode = page->mapping->host;
2442
2443         trace_mark(ext4_da_writepage,
2444                    "dev %s ino %lu page_index %lu",
2445                    inode->i_sb->s_id, inode->i_ino, page->index);
2446         size = i_size_read(inode);
2447         if (page->index == size >> PAGE_CACHE_SHIFT)
2448                 len = size & ~PAGE_CACHE_MASK;
2449         else
2450                 len = PAGE_CACHE_SIZE;
2451
2452         if (page_has_buffers(page)) {
2453                 page_bufs = page_buffers(page);
2454                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2455                                         ext4_bh_unmapped_or_delay)) {
2456                         /*
2457                          * We don't want to do  block allocation
2458                          * So redirty the page and return
2459                          * We may reach here when we do a journal commit
2460                          * via journal_submit_inode_data_buffers.
2461                          * If we don't have mapping block we just ignore
2462                          * them. We can also reach here via shrink_page_list
2463                          */
2464                         redirty_page_for_writepage(wbc, page);
2465                         unlock_page(page);
2466                         return 0;
2467                 }
2468         } else {
2469                 /*
2470                  * The test for page_has_buffers() is subtle:
2471                  * We know the page is dirty but it lost buffers. That means
2472                  * that at some moment in time after write_begin()/write_end()
2473                  * has been called all buffers have been clean and thus they
2474                  * must have been written at least once. So they are all
2475                  * mapped and we can happily proceed with mapping them
2476                  * and writing the page.
2477                  *
2478                  * Try to initialize the buffer_heads and check whether
2479                  * all are mapped and non delay. We don't want to
2480                  * do block allocation here.
2481                  */
2482                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2483                                           noalloc_get_block_write);
2484                 if (!ret) {
2485                         page_bufs = page_buffers(page);
2486                         /* check whether all are mapped and non delay */
2487                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2488                                                 ext4_bh_unmapped_or_delay)) {
2489                                 redirty_page_for_writepage(wbc, page);
2490                                 unlock_page(page);
2491                                 return 0;
2492                         }
2493                 } else {
2494                         /*
2495                          * We can't do block allocation here
2496                          * so just redity the page and unlock
2497                          * and return
2498                          */
2499                         redirty_page_for_writepage(wbc, page);
2500                         unlock_page(page);
2501                         return 0;
2502                 }
2503                 /* now mark the buffer_heads as dirty and uptodate */
2504                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2505         }
2506
2507         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2508                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2509         else
2510                 ret = block_write_full_page(page, noalloc_get_block_write,
2511                                             wbc);
2512
2513         return ret;
2514 }
2515
2516 /*
2517  * This is called via ext4_da_writepages() to
2518  * calulate the total number of credits to reserve to fit
2519  * a single extent allocation into a single transaction,
2520  * ext4_da_writpeages() will loop calling this before
2521  * the block allocation.
2522  */
2523
2524 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2525 {
2526         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2527
2528         /*
2529          * With non-extent format the journal credit needed to
2530          * insert nrblocks contiguous block is dependent on
2531          * number of contiguous block. So we will limit
2532          * number of contiguous block to a sane value
2533          */
2534         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2535             (max_blocks > EXT4_MAX_TRANS_DATA))
2536                 max_blocks = EXT4_MAX_TRANS_DATA;
2537
2538         return ext4_chunk_trans_blocks(inode, max_blocks);
2539 }
2540
2541 static int ext4_da_writepages(struct address_space *mapping,
2542                               struct writeback_control *wbc)
2543 {
2544         pgoff_t index;
2545         int range_whole = 0;
2546         handle_t *handle = NULL;
2547         struct mpage_da_data mpd;
2548         struct inode *inode = mapping->host;
2549         int no_nrwrite_index_update;
2550         int pages_written = 0;
2551         long pages_skipped;
2552         int range_cyclic, cycled = 1, io_done = 0;
2553         int needed_blocks, ret = 0, nr_to_writebump = 0;
2554         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2555
2556         trace_mark(ext4_da_writepages,
2557                    "dev %s ino %lu nr_t_write %ld "
2558                    "pages_skipped %ld range_start %llu "
2559                    "range_end %llu nonblocking %d "
2560                    "for_kupdate %d for_reclaim %d "
2561                    "for_writepages %d range_cyclic %d",
2562                    inode->i_sb->s_id, inode->i_ino,
2563                    wbc->nr_to_write, wbc->pages_skipped,
2564                    (unsigned long long) wbc->range_start,
2565                    (unsigned long long) wbc->range_end,
2566                    wbc->nonblocking, wbc->for_kupdate,
2567                    wbc->for_reclaim, wbc->for_writepages,
2568                    wbc->range_cyclic);
2569
2570         /*
2571          * No pages to write? This is mainly a kludge to avoid starting
2572          * a transaction for special inodes like journal inode on last iput()
2573          * because that could violate lock ordering on umount
2574          */
2575         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2576                 return 0;
2577
2578         /*
2579          * If the filesystem has aborted, it is read-only, so return
2580          * right away instead of dumping stack traces later on that
2581          * will obscure the real source of the problem.  We test
2582          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2583          * the latter could be true if the filesystem is mounted
2584          * read-only, and in that case, ext4_da_writepages should
2585          * *never* be called, so if that ever happens, we would want
2586          * the stack trace.
2587          */
2588         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2589                 return -EROFS;
2590
2591         /*
2592          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2593          * This make sure small files blocks are allocated in
2594          * single attempt. This ensure that small files
2595          * get less fragmented.
2596          */
2597         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2598                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2599                 wbc->nr_to_write = sbi->s_mb_stream_request;
2600         }
2601         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2602                 range_whole = 1;
2603
2604         range_cyclic = wbc->range_cyclic;
2605         if (wbc->range_cyclic) {
2606                 index = mapping->writeback_index;
2607                 if (index)
2608                         cycled = 0;
2609                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2610                 wbc->range_end  = LLONG_MAX;
2611                 wbc->range_cyclic = 0;
2612         } else
2613                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2614
2615         mpd.wbc = wbc;
2616         mpd.inode = mapping->host;
2617
2618         /*
2619          * we don't want write_cache_pages to update
2620          * nr_to_write and writeback_index
2621          */
2622         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2623         wbc->no_nrwrite_index_update = 1;
2624         pages_skipped = wbc->pages_skipped;
2625
2626 retry:
2627         while (!ret && wbc->nr_to_write > 0) {
2628
2629                 /*
2630                  * we  insert one extent at a time. So we need
2631                  * credit needed for single extent allocation.
2632                  * journalled mode is currently not supported
2633                  * by delalloc
2634                  */
2635                 BUG_ON(ext4_should_journal_data(inode));
2636                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2637
2638                 /* start a new transaction*/
2639                 handle = ext4_journal_start(inode, needed_blocks);
2640                 if (IS_ERR(handle)) {
2641                         ret = PTR_ERR(handle);
2642                         printk(KERN_CRIT "%s: jbd2_start: "
2643                                "%ld pages, ino %lu; err %d\n", __func__,
2644                                 wbc->nr_to_write, inode->i_ino, ret);
2645                         dump_stack();
2646                         goto out_writepages;
2647                 }
2648
2649                 /*
2650                  * Now call __mpage_da_writepage to find the next
2651                  * contiguous region of logical blocks that need
2652                  * blocks to be allocated by ext4.  We don't actually
2653                  * submit the blocks for I/O here, even though
2654                  * write_cache_pages thinks it will, and will set the
2655                  * pages as clean for write before calling
2656                  * __mpage_da_writepage().
2657                  */
2658                 mpd.b_size = 0;
2659                 mpd.b_state = 0;
2660                 mpd.b_blocknr = 0;
2661                 mpd.first_page = 0;
2662                 mpd.next_page = 0;
2663                 mpd.io_done = 0;
2664                 mpd.pages_written = 0;
2665                 mpd.retval = 0;
2666                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2667                                         &mpd);
2668                 /*
2669                  * If we have a contigous extent of pages and we
2670                  * haven't done the I/O yet, map the blocks and submit
2671                  * them for I/O.
2672                  */
2673                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2674                         if (mpage_da_map_blocks(&mpd) == 0)
2675                                 mpage_da_submit_io(&mpd);
2676                         mpd.io_done = 1;
2677                         ret = MPAGE_DA_EXTENT_TAIL;
2678                 }
2679                 wbc->nr_to_write -= mpd.pages_written;
2680
2681                 ext4_journal_stop(handle);
2682
2683                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2684                         /* commit the transaction which would
2685                          * free blocks released in the transaction
2686                          * and try again
2687                          */
2688                         jbd2_journal_force_commit_nested(sbi->s_journal);
2689                         wbc->pages_skipped = pages_skipped;
2690                         ret = 0;
2691                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2692                         /*
2693                          * got one extent now try with
2694                          * rest of the pages
2695                          */
2696                         pages_written += mpd.pages_written;
2697                         wbc->pages_skipped = pages_skipped;
2698                         ret = 0;
2699                         io_done = 1;
2700                 } else if (wbc->nr_to_write)
2701                         /*
2702                          * There is no more writeout needed
2703                          * or we requested for a noblocking writeout
2704                          * and we found the device congested
2705                          */
2706                         break;
2707         }
2708         if (!io_done && !cycled) {
2709                 cycled = 1;
2710                 index = 0;
2711                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2712                 wbc->range_end  = mapping->writeback_index - 1;
2713                 goto retry;
2714         }
2715         if (pages_skipped != wbc->pages_skipped)
2716                 printk(KERN_EMERG "This should not happen leaving %s "
2717                                 "with nr_to_write = %ld ret = %d\n",
2718                                 __func__, wbc->nr_to_write, ret);
2719
2720         /* Update index */
2721         index += pages_written;
2722         wbc->range_cyclic = range_cyclic;
2723         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2724                 /*
2725                  * set the writeback_index so that range_cyclic
2726                  * mode will write it back later
2727                  */
2728                 mapping->writeback_index = index;
2729
2730 out_writepages:
2731         if (!no_nrwrite_index_update)
2732                 wbc->no_nrwrite_index_update = 0;
2733         wbc->nr_to_write -= nr_to_writebump;
2734         trace_mark(ext4_da_writepage_result,
2735                    "dev %s ino %lu ret %d pages_written %d "
2736                    "pages_skipped %ld congestion %d "
2737                    "more_io %d no_nrwrite_index_update %d",
2738                    inode->i_sb->s_id, inode->i_ino, ret,
2739                    pages_written, wbc->pages_skipped,
2740                    wbc->encountered_congestion, wbc->more_io,
2741                    wbc->no_nrwrite_index_update);
2742         return ret;
2743 }
2744
2745 #define FALL_BACK_TO_NONDELALLOC 1
2746 static int ext4_nonda_switch(struct super_block *sb)
2747 {
2748         s64 free_blocks, dirty_blocks;
2749         struct ext4_sb_info *sbi = EXT4_SB(sb);
2750
2751         /*
2752          * switch to non delalloc mode if we are running low
2753          * on free block. The free block accounting via percpu
2754          * counters can get slightly wrong with percpu_counter_batch getting
2755          * accumulated on each CPU without updating global counters
2756          * Delalloc need an accurate free block accounting. So switch
2757          * to non delalloc when we are near to error range.
2758          */
2759         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2760         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2761         if (2 * free_blocks < 3 * dirty_blocks ||
2762                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2763                 /*
2764                  * free block count is less that 150% of dirty blocks
2765                  * or free blocks is less that watermark
2766                  */
2767                 return 1;
2768         }
2769         return 0;
2770 }
2771
2772 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2773                                 loff_t pos, unsigned len, unsigned flags,
2774                                 struct page **pagep, void **fsdata)
2775 {
2776         int ret, retries = 0;
2777         struct page *page;
2778         pgoff_t index;
2779         unsigned from, to;
2780         struct inode *inode = mapping->host;
2781         handle_t *handle;
2782
2783         index = pos >> PAGE_CACHE_SHIFT;
2784         from = pos & (PAGE_CACHE_SIZE - 1);
2785         to = from + len;
2786
2787         if (ext4_nonda_switch(inode->i_sb)) {
2788                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2789                 return ext4_write_begin(file, mapping, pos,
2790                                         len, flags, pagep, fsdata);
2791         }
2792         *fsdata = (void *)0;
2793
2794         trace_mark(ext4_da_write_begin,
2795                    "dev %s ino %lu pos %llu len %u flags %u",
2796                    inode->i_sb->s_id, inode->i_ino,
2797                    (unsigned long long) pos, len, flags);
2798 retry:
2799         /*
2800          * With delayed allocation, we don't log the i_disksize update
2801          * if there is delayed block allocation. But we still need
2802          * to journalling the i_disksize update if writes to the end
2803          * of file which has an already mapped buffer.
2804          */
2805         handle = ext4_journal_start(inode, 1);
2806         if (IS_ERR(handle)) {
2807                 ret = PTR_ERR(handle);
2808                 goto out;
2809         }
2810         /* We cannot recurse into the filesystem as the transaction is already
2811          * started */
2812         flags |= AOP_FLAG_NOFS;
2813
2814         page = grab_cache_page_write_begin(mapping, index, flags);
2815         if (!page) {
2816                 ext4_journal_stop(handle);
2817                 ret = -ENOMEM;
2818                 goto out;
2819         }
2820         *pagep = page;
2821
2822         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2823                                 ext4_da_get_block_prep);
2824         if (ret < 0) {
2825                 unlock_page(page);
2826                 ext4_journal_stop(handle);
2827                 page_cache_release(page);
2828                 /*
2829                  * block_write_begin may have instantiated a few blocks
2830                  * outside i_size.  Trim these off again. Don't need
2831                  * i_size_read because we hold i_mutex.
2832                  */
2833                 if (pos + len > inode->i_size)
2834                         vmtruncate(inode, inode->i_size);
2835         }
2836
2837         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2838                 goto retry;
2839 out:
2840         return ret;
2841 }
2842
2843 /*
2844  * Check if we should update i_disksize
2845  * when write to the end of file but not require block allocation
2846  */
2847 static int ext4_da_should_update_i_disksize(struct page *page,
2848                                          unsigned long offset)
2849 {
2850         struct buffer_head *bh;
2851         struct inode *inode = page->mapping->host;
2852         unsigned int idx;
2853         int i;
2854
2855         bh = page_buffers(page);
2856         idx = offset >> inode->i_blkbits;
2857
2858         for (i = 0; i < idx; i++)
2859                 bh = bh->b_this_page;
2860
2861         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2862                 return 0;
2863         return 1;
2864 }
2865
2866 static int ext4_da_write_end(struct file *file,
2867                                 struct address_space *mapping,
2868                                 loff_t pos, unsigned len, unsigned copied,
2869                                 struct page *page, void *fsdata)
2870 {
2871         struct inode *inode = mapping->host;
2872         int ret = 0, ret2;
2873         handle_t *handle = ext4_journal_current_handle();
2874         loff_t new_i_size;
2875         unsigned long start, end;
2876         int write_mode = (int)(unsigned long)fsdata;
2877
2878         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2879                 if (ext4_should_order_data(inode)) {
2880                         return ext4_ordered_write_end(file, mapping, pos,
2881                                         len, copied, page, fsdata);
2882                 } else if (ext4_should_writeback_data(inode)) {
2883                         return ext4_writeback_write_end(file, mapping, pos,
2884                                         len, copied, page, fsdata);
2885                 } else {
2886                         BUG();
2887                 }
2888         }
2889
2890         trace_mark(ext4_da_write_end,
2891                    "dev %s ino %lu pos %llu len %u copied %u",
2892                    inode->i_sb->s_id, inode->i_ino,
2893                    (unsigned long long) pos, len, copied);
2894         start = pos & (PAGE_CACHE_SIZE - 1);
2895         end = start + copied - 1;
2896
2897         /*
2898          * generic_write_end() will run mark_inode_dirty() if i_size
2899          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2900          * into that.
2901          */
2902
2903         new_i_size = pos + copied;
2904         if (new_i_size > EXT4_I(inode)->i_disksize) {
2905                 if (ext4_da_should_update_i_disksize(page, end)) {
2906                         down_write(&EXT4_I(inode)->i_data_sem);
2907                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2908                                 /*
2909                                  * Updating i_disksize when extending file
2910                                  * without needing block allocation
2911                                  */
2912                                 if (ext4_should_order_data(inode))
2913                                         ret = ext4_jbd2_file_inode(handle,
2914                                                                    inode);
2915
2916                                 EXT4_I(inode)->i_disksize = new_i_size;
2917                         }
2918                         up_write(&EXT4_I(inode)->i_data_sem);
2919                         /* We need to mark inode dirty even if
2920                          * new_i_size is less that inode->i_size
2921                          * bu greater than i_disksize.(hint delalloc)
2922                          */
2923                         ext4_mark_inode_dirty(handle, inode);
2924                 }
2925         }
2926         ret2 = generic_write_end(file, mapping, pos, len, copied,
2927                                                         page, fsdata);
2928         copied = ret2;
2929         if (ret2 < 0)
2930                 ret = ret2;
2931         ret2 = ext4_journal_stop(handle);
2932         if (!ret)
2933                 ret = ret2;
2934
2935         return ret ? ret : copied;
2936 }
2937
2938 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2939 {
2940         /*
2941          * Drop reserved blocks
2942          */
2943         BUG_ON(!PageLocked(page));
2944         if (!page_has_buffers(page))
2945                 goto out;
2946
2947         ext4_da_page_release_reservation(page, offset);
2948
2949 out:
2950         ext4_invalidatepage(page, offset);
2951
2952         return;
2953 }
2954
2955 /*
2956  * Force all delayed allocation blocks to be allocated for a given inode.
2957  */
2958 int ext4_alloc_da_blocks(struct inode *inode)
2959 {
2960         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2961             !EXT4_I(inode)->i_reserved_meta_blocks)
2962                 return 0;
2963
2964         /*
2965          * We do something simple for now.  The filemap_flush() will
2966          * also start triggering a write of the data blocks, which is
2967          * not strictly speaking necessary (and for users of
2968          * laptop_mode, not even desirable).  However, to do otherwise
2969          * would require replicating code paths in:
2970          * 
2971          * ext4_da_writepages() ->
2972          *    write_cache_pages() ---> (via passed in callback function)
2973          *        __mpage_da_writepage() -->
2974          *           mpage_add_bh_to_extent()
2975          *           mpage_da_map_blocks()
2976          *
2977          * The problem is that write_cache_pages(), located in
2978          * mm/page-writeback.c, marks pages clean in preparation for
2979          * doing I/O, which is not desirable if we're not planning on
2980          * doing I/O at all.
2981          *
2982          * We could call write_cache_pages(), and then redirty all of
2983          * the pages by calling redirty_page_for_writeback() but that
2984          * would be ugly in the extreme.  So instead we would need to
2985          * replicate parts of the code in the above functions,
2986          * simplifying them becuase we wouldn't actually intend to
2987          * write out the pages, but rather only collect contiguous
2988          * logical block extents, call the multi-block allocator, and
2989          * then update the buffer heads with the block allocations.
2990          * 
2991          * For now, though, we'll cheat by calling filemap_flush(),
2992          * which will map the blocks, and start the I/O, but not
2993          * actually wait for the I/O to complete.
2994          */
2995         return filemap_flush(inode->i_mapping);
2996 }
2997
2998 /*
2999  * bmap() is special.  It gets used by applications such as lilo and by
3000  * the swapper to find the on-disk block of a specific piece of data.
3001  *
3002  * Naturally, this is dangerous if the block concerned is still in the
3003  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3004  * filesystem and enables swap, then they may get a nasty shock when the
3005  * data getting swapped to that swapfile suddenly gets overwritten by
3006  * the original zero's written out previously to the journal and
3007  * awaiting writeback in the kernel's buffer cache.
3008  *
3009  * So, if we see any bmap calls here on a modified, data-journaled file,
3010  * take extra steps to flush any blocks which might be in the cache.
3011  */
3012 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3013 {
3014         struct inode *inode = mapping->host;
3015         journal_t *journal;
3016         int err;
3017
3018         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3019                         test_opt(inode->i_sb, DELALLOC)) {
3020                 /*
3021                  * With delalloc we want to sync the file
3022                  * so that we can make sure we allocate
3023                  * blocks for file
3024                  */
3025                 filemap_write_and_wait(mapping);
3026         }
3027
3028         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3029                 /*
3030                  * This is a REALLY heavyweight approach, but the use of
3031                  * bmap on dirty files is expected to be extremely rare:
3032                  * only if we run lilo or swapon on a freshly made file
3033                  * do we expect this to happen.
3034                  *
3035                  * (bmap requires CAP_SYS_RAWIO so this does not
3036                  * represent an unprivileged user DOS attack --- we'd be
3037                  * in trouble if mortal users could trigger this path at
3038                  * will.)
3039                  *
3040                  * NB. EXT4_STATE_JDATA is not set on files other than
3041                  * regular files.  If somebody wants to bmap a directory
3042                  * or symlink and gets confused because the buffer
3043                  * hasn't yet been flushed to disk, they deserve
3044                  * everything they get.
3045                  */
3046
3047                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3048                 journal = EXT4_JOURNAL(inode);
3049                 jbd2_journal_lock_updates(journal);
3050                 err = jbd2_journal_flush(journal);
3051                 jbd2_journal_unlock_updates(journal);
3052
3053                 if (err)
3054                         return 0;
3055         }
3056
3057         return generic_block_bmap(mapping, block, ext4_get_block);
3058 }
3059
3060 static int bget_one(handle_t *handle, struct buffer_head *bh)
3061 {
3062         get_bh(bh);
3063         return 0;
3064 }
3065
3066 static int bput_one(handle_t *handle, struct buffer_head *bh)
3067 {
3068         put_bh(bh);
3069         return 0;
3070 }
3071
3072 /*
3073  * Note that we don't need to start a transaction unless we're journaling data
3074  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3075  * need to file the inode to the transaction's list in ordered mode because if
3076  * we are writing back data added by write(), the inode is already there and if
3077  * we are writing back data modified via mmap(), noone guarantees in which
3078  * transaction the data will hit the disk. In case we are journaling data, we
3079  * cannot start transaction directly because transaction start ranks above page
3080  * lock so we have to do some magic.
3081  *
3082  * In all journaling modes block_write_full_page() will start the I/O.
3083  *
3084  * Problem:
3085  *
3086  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3087  *              ext4_writepage()
3088  *
3089  * Similar for:
3090  *
3091  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3092  *
3093  * Same applies to ext4_get_block().  We will deadlock on various things like
3094  * lock_journal and i_data_sem
3095  *
3096  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3097  * allocations fail.
3098  *
3099  * 16May01: If we're reentered then journal_current_handle() will be
3100  *          non-zero. We simply *return*.
3101  *
3102  * 1 July 2001: @@@ FIXME:
3103  *   In journalled data mode, a data buffer may be metadata against the
3104  *   current transaction.  But the same file is part of a shared mapping
3105  *   and someone does a writepage() on it.
3106  *
3107  *   We will move the buffer onto the async_data list, but *after* it has
3108  *   been dirtied. So there's a small window where we have dirty data on
3109  *   BJ_Metadata.
3110  *
3111  *   Note that this only applies to the last partial page in the file.  The
3112  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3113  *   broken code anyway: it's wrong for msync()).
3114  *
3115  *   It's a rare case: affects the final partial page, for journalled data
3116  *   where the file is subject to bith write() and writepage() in the same
3117  *   transction.  To fix it we'll need a custom block_write_full_page().
3118  *   We'll probably need that anyway for journalling writepage() output.
3119  *
3120  * We don't honour synchronous mounts for writepage().  That would be
3121  * disastrous.  Any write() or metadata operation will sync the fs for
3122  * us.
3123  *
3124  */
3125 static int __ext4_normal_writepage(struct page *page,
3126                                 struct writeback_control *wbc)
3127 {
3128         struct inode *inode = page->mapping->host;
3129
3130         if (test_opt(inode->i_sb, NOBH))
3131                 return nobh_writepage(page, noalloc_get_block_write, wbc);
3132         else
3133                 return block_write_full_page(page, noalloc_get_block_write,
3134                                              wbc);
3135 }
3136
3137 static int ext4_normal_writepage(struct page *page,
3138                                 struct writeback_control *wbc)
3139 {
3140         struct inode *inode = page->mapping->host;
3141         loff_t size = i_size_read(inode);
3142         loff_t len;
3143
3144         trace_mark(ext4_normal_writepage,
3145                    "dev %s ino %lu page_index %lu",
3146                    inode->i_sb->s_id, inode->i_ino, page->index);
3147         J_ASSERT(PageLocked(page));
3148         if (page->index == size >> PAGE_CACHE_SHIFT)
3149                 len = size & ~PAGE_CACHE_MASK;
3150         else
3151                 len = PAGE_CACHE_SIZE;
3152
3153         if (page_has_buffers(page)) {
3154                 /* if page has buffers it should all be mapped
3155                  * and allocated. If there are not buffers attached
3156                  * to the page we know the page is dirty but it lost
3157                  * buffers. That means that at some moment in time
3158                  * after write_begin() / write_end() has been called
3159                  * all buffers have been clean and thus they must have been
3160                  * written at least once. So they are all mapped and we can
3161                  * happily proceed with mapping them and writing the page.
3162                  */
3163                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3164                                         ext4_bh_unmapped_or_delay));
3165         }
3166
3167         if (!ext4_journal_current_handle())
3168                 return __ext4_normal_writepage(page, wbc);
3169
3170         redirty_page_for_writepage(wbc, page);
3171         unlock_page(page);
3172         return 0;
3173 }
3174
3175 static int __ext4_journalled_writepage(struct page *page,
3176                                 struct writeback_control *wbc)
3177 {
3178         struct address_space *mapping = page->mapping;
3179         struct inode *inode = mapping->host;
3180         struct buffer_head *page_bufs;
3181         handle_t *handle = NULL;
3182         int ret = 0;
3183         int err;
3184
3185         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3186                                   noalloc_get_block_write);
3187         if (ret != 0)
3188                 goto out_unlock;
3189
3190         page_bufs = page_buffers(page);
3191         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3192                                                                 bget_one);
3193         /* As soon as we unlock the page, it can go away, but we have
3194          * references to buffers so we are safe */
3195         unlock_page(page);
3196
3197         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3198         if (IS_ERR(handle)) {
3199                 ret = PTR_ERR(handle);
3200                 goto out;
3201         }
3202
3203         ret = walk_page_buffers(handle, page_bufs, 0,
3204                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3205
3206         err = walk_page_buffers(handle, page_bufs, 0,
3207                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3208         if (ret == 0)
3209                 ret = err;
3210         err = ext4_journal_stop(handle);
3211         if (!ret)
3212                 ret = err;
3213
3214         walk_page_buffers(handle, page_bufs, 0,
3215                                 PAGE_CACHE_SIZE, NULL, bput_one);
3216         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3217         goto out;
3218
3219 out_unlock:
3220         unlock_page(page);
3221 out:
3222         return ret;
3223 }
3224
3225 static int ext4_journalled_writepage(struct page *page,
3226                                 struct writeback_control *wbc)
3227 {
3228         struct inode *inode = page->mapping->host;
3229         loff_t size = i_size_read(inode);
3230         loff_t len;
3231
3232         trace_mark(ext4_journalled_writepage,
3233                    "dev %s ino %lu page_index %lu",
3234                    inode->i_sb->s_id, inode->i_ino, page->index);
3235         J_ASSERT(PageLocked(page));
3236         if (page->index == size >> PAGE_CACHE_SHIFT)
3237                 len = size & ~PAGE_CACHE_MASK;
3238         else
3239                 len = PAGE_CACHE_SIZE;
3240
3241         if (page_has_buffers(page)) {
3242                 /* if page has buffers it should all be mapped
3243                  * and allocated. If there are not buffers attached
3244                  * to the page we know the page is dirty but it lost
3245                  * buffers. That means that at some moment in time
3246                  * after write_begin() / write_end() has been called
3247                  * all buffers have been clean and thus they must have been
3248                  * written at least once. So they are all mapped and we can
3249                  * happily proceed with mapping them and writing the page.
3250                  */
3251                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3252                                         ext4_bh_unmapped_or_delay));
3253         }
3254
3255         if (ext4_journal_current_handle())
3256                 goto no_write;
3257
3258         if (PageChecked(page)) {
3259                 /*
3260                  * It's mmapped pagecache.  Add buffers and journal it.  There
3261                  * doesn't seem much point in redirtying the page here.
3262                  */
3263                 ClearPageChecked(page);
3264                 return __ext4_journalled_writepage(page, wbc);
3265         } else {
3266                 /*
3267                  * It may be a page full of checkpoint-mode buffers.  We don't
3268                  * really know unless we go poke around in the buffer_heads.
3269                  * But block_write_full_page will do the right thing.
3270                  */
3271                 return block_write_full_page(page, noalloc_get_block_write,
3272                                              wbc);
3273         }
3274 no_write:
3275         redirty_page_for_writepage(wbc, page);
3276         unlock_page(page);
3277         return 0;
3278 }
3279
3280 static int ext4_readpage(struct file *file, struct page *page)
3281 {
3282         return mpage_readpage(page, ext4_get_block);
3283 }
3284
3285 static int
3286 ext4_readpages(struct file *file, struct address_space *mapping,
3287                 struct list_head *pages, unsigned nr_pages)
3288 {
3289         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3290 }
3291
3292 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3293 {
3294         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3295
3296         /*
3297          * If it's a full truncate we just forget about the pending dirtying
3298          */
3299         if (offset == 0)
3300                 ClearPageChecked(page);
3301
3302         if (journal)
3303                 jbd2_journal_invalidatepage(journal, page, offset);
3304         else
3305                 block_invalidatepage(page, offset);
3306 }
3307
3308 static int ext4_releasepage(struct page *page, gfp_t wait)
3309 {
3310         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3311
3312         WARN_ON(PageChecked(page));
3313         if (!page_has_buffers(page))
3314                 return 0;
3315         if (journal)
3316                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3317         else
3318                 return try_to_free_buffers(page);
3319 }
3320
3321 /*
3322  * If the O_DIRECT write will extend the file then add this inode to the
3323  * orphan list.  So recovery will truncate it back to the original size
3324  * if the machine crashes during the write.
3325  *
3326  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3327  * crashes then stale disk data _may_ be exposed inside the file. But current
3328  * VFS code falls back into buffered path in that case so we are safe.
3329  */
3330 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3331                         const struct iovec *iov, loff_t offset,
3332                         unsigned long nr_segs)
3333 {
3334         struct file *file = iocb->ki_filp;
3335         struct inode *inode = file->f_mapping->host;
3336         struct ext4_inode_info *ei = EXT4_I(inode);
3337         handle_t *handle;
3338         ssize_t ret;
3339         int orphan = 0;
3340         size_t count = iov_length(iov, nr_segs);
3341
3342         if (rw == WRITE) {
3343                 loff_t final_size = offset + count;
3344
3345                 if (final_size > inode->i_size) {
3346                         /* Credits for sb + inode write */
3347                         handle = ext4_journal_start(inode, 2);
3348                         if (IS_ERR(handle)) {
3349                                 ret = PTR_ERR(handle);
3350                                 goto out;
3351                         }
3352                         ret = ext4_orphan_add(handle, inode);
3353                         if (ret) {
3354                                 ext4_journal_stop(handle);
3355                                 goto out;
3356                         }
3357                         orphan = 1;
3358                         ei->i_disksize = inode->i_size;
3359                         ext4_journal_stop(handle);
3360                 }
3361         }
3362
3363         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3364                                  offset, nr_segs,
3365                                  ext4_get_block, NULL);
3366
3367         if (orphan) {
3368                 int err;
3369
3370                 /* Credits for sb + inode write */
3371                 handle = ext4_journal_start(inode, 2);
3372                 if (IS_ERR(handle)) {
3373                         /* This is really bad luck. We've written the data
3374                          * but cannot extend i_size. Bail out and pretend
3375                          * the write failed... */
3376                         ret = PTR_ERR(handle);
3377                         goto out;
3378                 }
3379                 if (inode->i_nlink)
3380                         ext4_orphan_del(handle, inode);
3381                 if (ret > 0) {
3382                         loff_t end = offset + ret;
3383                         if (end > inode->i_size) {
3384                                 ei->i_disksize = end;
3385                                 i_size_write(inode, end);
3386                                 /*
3387                                  * We're going to return a positive `ret'
3388                                  * here due to non-zero-length I/O, so there's
3389                                  * no way of reporting error returns from
3390                                  * ext4_mark_inode_dirty() to userspace.  So
3391                                  * ignore it.
3392                                  */
3393                                 ext4_mark_inode_dirty(handle, inode);
3394                         }
3395                 }
3396                 err = ext4_journal_stop(handle);
3397                 if (ret == 0)
3398                         ret = err;
3399         }
3400 out:
3401         return ret;
3402 }
3403
3404 /*
3405  * Pages can be marked dirty completely asynchronously from ext4's journalling
3406  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3407  * much here because ->set_page_dirty is called under VFS locks.  The page is
3408  * not necessarily locked.
3409  *
3410  * We cannot just dirty the page and leave attached buffers clean, because the
3411  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3412  * or jbddirty because all the journalling code will explode.
3413  *
3414  * So what we do is to mark the page "pending dirty" and next time writepage
3415  * is called, propagate that into the buffers appropriately.
3416  */
3417 static int ext4_journalled_set_page_dirty(struct page *page)
3418 {
3419         SetPageChecked(page);
3420         return __set_page_dirty_nobuffers(page);
3421 }
3422
3423 static const struct address_space_operations ext4_ordered_aops = {
3424         .readpage               = ext4_readpage,
3425         .readpages              = ext4_readpages,
3426         .writepage              = ext4_normal_writepage,
3427         .sync_page              = block_sync_page,
3428         .write_begin            = ext4_write_begin,
3429         .write_end              = ext4_ordered_write_end,
3430         .bmap                   = ext4_bmap,
3431         .invalidatepage         = ext4_invalidatepage,
3432         .releasepage            = ext4_releasepage,
3433         .direct_IO              = ext4_direct_IO,
3434         .migratepage            = buffer_migrate_page,
3435         .is_partially_uptodate  = block_is_partially_uptodate,
3436 };
3437
3438 static const struct address_space_operations ext4_writeback_aops = {
3439         .readpage               = ext4_readpage,
3440         .readpages              = ext4_readpages,
3441         .writepage              = ext4_normal_writepage,
3442         .sync_page              = block_sync_page,
3443         .write_begin            = ext4_write_begin,
3444         .write_end              = ext4_writeback_write_end,
3445         .bmap                   = ext4_bmap,
3446         .invalidatepage         = ext4_invalidatepage,
3447         .releasepage            = ext4_releasepage,
3448         .direct_IO              = ext4_direct_IO,
3449         .migratepage            = buffer_migrate_page,
3450         .is_partially_uptodate  = block_is_partially_uptodate,
3451 };
3452
3453 static const struct address_space_operations ext4_journalled_aops = {
3454         .readpage               = ext4_readpage,
3455         .readpages              = ext4_readpages,
3456         .writepage              = ext4_journalled_writepage,
3457         .sync_page              = block_sync_page,
3458         .write_begin            = ext4_write_begin,
3459         .write_end              = ext4_journalled_write_end,
3460         .set_page_dirty         = ext4_journalled_set_page_dirty,
3461         .bmap                   = ext4_bmap,
3462         .invalidatepage         = ext4_invalidatepage,
3463         .releasepage            = ext4_releasepage,
3464         .is_partially_uptodate  = block_is_partially_uptodate,
3465 };
3466
3467 static const struct address_space_operations ext4_da_aops = {
3468         .readpage               = ext4_readpage,
3469         .readpages              = ext4_readpages,
3470         .writepage              = ext4_da_writepage,
3471         .writepages             = ext4_da_writepages,
3472         .sync_page              = block_sync_page,
3473         .write_begin            = ext4_da_write_begin,
3474         .write_end              = ext4_da_write_end,
3475         .bmap                   = ext4_bmap,
3476         .invalidatepage         = ext4_da_invalidatepage,
3477         .releasepage            = ext4_releasepage,
3478         .direct_IO              = ext4_direct_IO,
3479         .migratepage            = buffer_migrate_page,
3480         .is_partially_uptodate  = block_is_partially_uptodate,
3481 };
3482
3483 void ext4_set_aops(struct inode *inode)
3484 {
3485         if (ext4_should_order_data(inode) &&
3486                 test_opt(inode->i_sb, DELALLOC))
3487                 inode->i_mapping->a_ops = &ext4_da_aops;
3488         else if (ext4_should_order_data(inode))
3489                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3490         else if (ext4_should_writeback_data(inode) &&
3491                  test_opt(inode->i_sb, DELALLOC))
3492                 inode->i_mapping->a_ops = &ext4_da_aops;
3493         else if (ext4_should_writeback_data(inode))
3494                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3495         else
3496                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3497 }
3498
3499 /*
3500  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3501  * up to the end of the block which corresponds to `from'.
3502  * This required during truncate. We need to physically zero the tail end
3503  * of that block so it doesn't yield old data if the file is later grown.
3504  */
3505 int ext4_block_truncate_page(handle_t *handle,
3506                 struct address_space *mapping, loff_t from)
3507 {
3508         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3509         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3510         unsigned blocksize, length, pos;
3511         ext4_lblk_t iblock;
3512         struct inode *inode = mapping->host;
3513         struct buffer_head *bh;
3514         struct page *page;
3515         int err = 0;
3516
3517         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3518         if (!page)
3519                 return -EINVAL;
3520
3521         blocksize = inode->i_sb->s_blocksize;
3522         length = blocksize - (offset & (blocksize - 1));
3523         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3524
3525         /*
3526          * For "nobh" option,  we can only work if we don't need to
3527          * read-in the page - otherwise we create buffers to do the IO.
3528          */
3529         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3530              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3531                 zero_user(page, offset, length);
3532                 set_page_dirty(page);
3533                 goto unlock;
3534         }
3535
3536         if (!page_has_buffers(page))
3537                 create_empty_buffers(page, blocksize, 0);
3538
3539         /* Find the buffer that contains "offset" */
3540         bh = page_buffers(page);
3541         pos = blocksize;
3542         while (offset >= pos) {
3543                 bh = bh->b_this_page;
3544                 iblock++;
3545                 pos += blocksize;
3546         }
3547
3548         err = 0;
3549         if (buffer_freed(bh)) {
3550                 BUFFER_TRACE(bh, "freed: skip");
3551                 goto unlock;
3552         }
3553
3554         if (!buffer_mapped(bh)) {
3555                 BUFFER_TRACE(bh, "unmapped");
3556                 ext4_get_block(inode, iblock, bh, 0);
3557                 /* unmapped? It's a hole - nothing to do */
3558                 if (!buffer_mapped(bh)) {
3559                         BUFFER_TRACE(bh, "still unmapped");
3560                         goto unlock;
3561                 }
3562         }
3563
3564         /* Ok, it's mapped. Make sure it's up-to-date */
3565         if (PageUptodate(page))
3566                 set_buffer_uptodate(bh);
3567
3568         if (!buffer_uptodate(bh)) {
3569                 err = -EIO;
3570                 ll_rw_block(READ, 1, &bh);
3571                 wait_on_buffer(bh);
3572                 /* Uhhuh. Read error. Complain and punt. */
3573                 if (!buffer_uptodate(bh))
3574                         goto unlock;
3575         }
3576
3577         if (ext4_should_journal_data(inode)) {
3578                 BUFFER_TRACE(bh, "get write access");
3579                 err = ext4_journal_get_write_access(handle, bh);
3580                 if (err)
3581                         goto unlock;
3582         }
3583
3584         zero_user(page, offset, length);
3585
3586         BUFFER_TRACE(bh, "zeroed end of block");
3587
3588         err = 0;
3589         if (ext4_should_journal_data(inode)) {
3590                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3591         } else {
3592                 if (ext4_should_order_data(inode))
3593                         err = ext4_jbd2_file_inode(handle, inode);
3594                 mark_buffer_dirty(bh);
3595         }
3596
3597 unlock:
3598         unlock_page(page);
3599         page_cache_release(page);
3600         return err;
3601 }
3602
3603 /*
3604  * Probably it should be a library function... search for first non-zero word
3605  * or memcmp with zero_page, whatever is better for particular architecture.
3606  * Linus?
3607  */
3608 static inline int all_zeroes(__le32 *p, __le32 *q)
3609 {
3610         while (p < q)
3611                 if (*p++)
3612                         return 0;
3613         return 1;
3614 }
3615
3616 /**
3617  *      ext4_find_shared - find the indirect blocks for partial truncation.
3618  *      @inode:   inode in question
3619  *      @depth:   depth of the affected branch
3620  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3621  *      @chain:   place to store the pointers to partial indirect blocks
3622  *      @top:     place to the (detached) top of branch
3623  *
3624  *      This is a helper function used by ext4_truncate().
3625  *
3626  *      When we do truncate() we may have to clean the ends of several
3627  *      indirect blocks but leave the blocks themselves alive. Block is
3628  *      partially truncated if some data below the new i_size is refered
3629  *      from it (and it is on the path to the first completely truncated
3630  *      data block, indeed).  We have to free the top of that path along
3631  *      with everything to the right of the path. Since no allocation
3632  *      past the truncation point is possible until ext4_truncate()
3633  *      finishes, we may safely do the latter, but top of branch may
3634  *      require special attention - pageout below the truncation point
3635  *      might try to populate it.
3636  *
3637  *      We atomically detach the top of branch from the tree, store the
3638  *      block number of its root in *@top, pointers to buffer_heads of
3639  *      partially truncated blocks - in @chain[].bh and pointers to
3640  *      their last elements that should not be removed - in
3641  *      @chain[].p. Return value is the pointer to last filled element
3642  *      of @chain.
3643  *
3644  *      The work left to caller to do the actual freeing of subtrees:
3645  *              a) free the subtree starting from *@top
3646  *              b) free the subtrees whose roots are stored in
3647  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3648  *              c) free the subtrees growing from the inode past the @chain[0].
3649  *                      (no partially truncated stuff there).  */
3650
3651 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3652                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3653 {
3654         Indirect *partial, *p;
3655         int k, err;
3656
3657         *top = 0;
3658         /* Make k index the deepest non-null offest + 1 */
3659         for (k = depth; k > 1 && !offsets[k-1]; k--)
3660                 ;
3661         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3662         /* Writer: pointers */
3663         if (!partial)
3664                 partial = chain + k-1;
3665         /*
3666          * If the branch acquired continuation since we've looked at it -
3667          * fine, it should all survive and (new) top doesn't belong to us.
3668          */
3669         if (!partial->key && *partial->p)
3670                 /* Writer: end */
3671                 goto no_top;
3672         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3673                 ;
3674         /*
3675          * OK, we've found the last block that must survive. The rest of our
3676          * branch should be detached before unlocking. However, if that rest
3677          * of branch is all ours and does not grow immediately from the inode
3678          * it's easier to cheat and just decrement partial->p.
3679          */
3680         if (p == chain + k - 1 && p > chain) {
3681                 p->p--;
3682         } else {
3683                 *top = *p->p;
3684                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3685 #if 0
3686                 *p->p = 0;
3687 #endif
3688         }
3689         /* Writer: end */
3690
3691         while (partial > p) {
3692                 brelse(partial->bh);
3693                 partial--;
3694         }
3695 no_top:
3696         return partial;
3697 }
3698
3699 /*
3700  * Zero a number of block pointers in either an inode or an indirect block.
3701  * If we restart the transaction we must again get write access to the
3702  * indirect block for further modification.
3703  *
3704  * We release `count' blocks on disk, but (last - first) may be greater
3705  * than `count' because there can be holes in there.
3706  */
3707 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3708                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3709                 unsigned long count, __le32 *first, __le32 *last)
3710 {
3711         __le32 *p;
3712         if (try_to_extend_transaction(handle, inode)) {
3713                 if (bh) {
3714                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3715                         ext4_handle_dirty_metadata(handle, inode, bh);
3716                 }
3717                 ext4_mark_inode_dirty(handle, inode);
3718                 ext4_journal_test_restart(handle, inode);
3719                 if (bh) {
3720                         BUFFER_TRACE(bh, "retaking write access");
3721                         ext4_journal_get_write_access(handle, bh);
3722                 }
3723         }
3724
3725         /*
3726          * Any buffers which are on the journal will be in memory. We find
3727          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3728          * on them.  We've already detached each block from the file, so
3729          * bforget() in jbd2_journal_forget() should be safe.
3730          *
3731          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3732          */
3733         for (p = first; p < last; p++) {
3734                 u32 nr = le32_to_cpu(*p);
3735                 if (nr) {
3736                         struct buffer_head *tbh;
3737
3738                         *p = 0;
3739                         tbh = sb_find_get_block(inode->i_sb, nr);
3740                         ext4_forget(handle, 0, inode, tbh, nr);
3741                 }
3742         }
3743
3744         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3745 }
3746
3747 /**
3748  * ext4_free_data - free a list of data blocks
3749  * @handle:     handle for this transaction
3750  * @inode:      inode we are dealing with
3751  * @this_bh:    indirect buffer_head which contains *@first and *@last
3752  * @first:      array of block numbers
3753  * @last:       points immediately past the end of array
3754  *
3755  * We are freeing all blocks refered from that array (numbers are stored as
3756  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3757  *
3758  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3759  * blocks are contiguous then releasing them at one time will only affect one
3760  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3761  * actually use a lot of journal space.
3762  *
3763  * @this_bh will be %NULL if @first and @last point into the inode's direct
3764  * block pointers.
3765  */
3766 static void ext4_free_data(handle_t *handle, struct inode *inode,
3767                            struct buffer_head *this_bh,
3768                            __le32 *first, __le32 *last)
3769 {
3770         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3771         unsigned long count = 0;            /* Number of blocks in the run */
3772         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3773                                                corresponding to
3774                                                block_to_free */
3775         ext4_fsblk_t nr;                    /* Current block # */
3776         __le32 *p;                          /* Pointer into inode/ind
3777                                                for current block */
3778         int err;
3779
3780         if (this_bh) {                          /* For indirect block */
3781                 BUFFER_TRACE(this_bh, "get_write_access");
3782                 err = ext4_journal_get_write_access(handle, this_bh);
3783                 /* Important: if we can't update the indirect pointers
3784                  * to the blocks, we can't free them. */
3785                 if (err)
3786                         return;
3787         }
3788
3789         for (p = first; p < last; p++) {
3790                 nr = le32_to_cpu(*p);
3791                 if (nr) {
3792                         /* accumulate blocks to free if they're contiguous */
3793                         if (count == 0) {
3794                                 block_to_free = nr;
3795                                 block_to_free_p = p;
3796                                 count = 1;
3797                         } else if (nr == block_to_free + count) {
3798                                 count++;
3799                         } else {
3800                                 ext4_clear_blocks(handle, inode, this_bh,
3801                                                   block_to_free,
3802                                                   count, block_to_free_p, p);
3803                                 block_to_free = nr;
3804                                 block_to_free_p = p;
3805                                 count = 1;
3806                         }
3807                 }
3808         }
3809
3810         if (count > 0)
3811                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3812                                   count, block_to_free_p, p);
3813
3814         if (this_bh) {
3815                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3816
3817                 /*
3818                  * The buffer head should have an attached journal head at this
3819                  * point. However, if the data is corrupted and an indirect
3820                  * block pointed to itself, it would have been detached when
3821                  * the block was cleared. Check for this instead of OOPSing.
3822                  */
3823                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3824                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3825                 else
3826                         ext4_error(inode->i_sb, __func__,
3827                                    "circular indirect block detected, "
3828                                    "inode=%lu, block=%llu",
3829                                    inode->i_ino,
3830                                    (unsigned long long) this_bh->b_blocknr);
3831         }
3832 }
3833
3834 /**
3835  *      ext4_free_branches - free an array of branches
3836  *      @handle: JBD handle for this transaction
3837  *      @inode: inode we are dealing with
3838  *      @parent_bh: the buffer_head which contains *@first and *@last
3839  *      @first: array of block numbers
3840  *      @last:  pointer immediately past the end of array
3841  *      @depth: depth of the branches to free
3842  *
3843  *      We are freeing all blocks refered from these branches (numbers are
3844  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3845  *      appropriately.
3846  */
3847 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3848                                struct buffer_head *parent_bh,
3849                                __le32 *first, __le32 *last, int depth)
3850 {
3851         ext4_fsblk_t nr;
3852         __le32 *p;
3853
3854         if (ext4_handle_is_aborted(handle))
3855                 return;
3856
3857         if (depth--) {
3858                 struct buffer_head *bh;
3859                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3860                 p = last;
3861                 while (--p >= first) {
3862                         nr = le32_to_cpu(*p);
3863                         if (!nr)
3864                                 continue;               /* A hole */
3865
3866                         /* Go read the buffer for the next level down */
3867                         bh = sb_bread(inode->i_sb, nr);
3868
3869                         /*
3870                          * A read failure? Report error and clear slot
3871                          * (should be rare).
3872                          */
3873                         if (!bh) {
3874                                 ext4_error(inode->i_sb, "ext4_free_branches",
3875                                            "Read failure, inode=%lu, block=%llu",
3876                                            inode->i_ino, nr);
3877                                 continue;
3878                         }
3879
3880                         /* This zaps the entire block.  Bottom up. */
3881                         BUFFER_TRACE(bh, "free child branches");
3882                         ext4_free_branches(handle, inode, bh,
3883                                         (__le32 *) bh->b_data,
3884                                         (__le32 *) bh->b_data + addr_per_block,
3885                                         depth);
3886
3887                         /*
3888                          * We've probably journalled the indirect block several
3889                          * times during the truncate.  But it's no longer
3890                          * needed and we now drop it from the transaction via
3891                          * jbd2_journal_revoke().
3892                          *
3893                          * That's easy if it's exclusively part of this
3894                          * transaction.  But if it's part of the committing
3895                          * transaction then jbd2_journal_forget() will simply
3896                          * brelse() it.  That means that if the underlying
3897                          * block is reallocated in ext4_get_block(),
3898                          * unmap_underlying_metadata() will find this block
3899                          * and will try to get rid of it.  damn, damn.
3900                          *
3901                          * If this block has already been committed to the
3902                          * journal, a revoke record will be written.  And
3903                          * revoke records must be emitted *before* clearing
3904                          * this block's bit in the bitmaps.
3905                          */
3906                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3907
3908                         /*
3909                          * Everything below this this pointer has been
3910                          * released.  Now let this top-of-subtree go.
3911                          *
3912                          * We want the freeing of this indirect block to be
3913                          * atomic in the journal with the updating of the
3914                          * bitmap block which owns it.  So make some room in
3915                          * the journal.
3916                          *
3917                          * We zero the parent pointer *after* freeing its
3918                          * pointee in the bitmaps, so if extend_transaction()
3919                          * for some reason fails to put the bitmap changes and
3920                          * the release into the same transaction, recovery
3921                          * will merely complain about releasing a free block,
3922                          * rather than leaking blocks.
3923                          */
3924                         if (ext4_handle_is_aborted(handle))
3925                                 return;
3926                         if (try_to_extend_transaction(handle, inode)) {
3927                                 ext4_mark_inode_dirty(handle, inode);
3928                                 ext4_journal_test_restart(handle, inode);
3929                         }
3930
3931                         ext4_free_blocks(handle, inode, nr, 1, 1);
3932
3933                         if (parent_bh) {
3934                                 /*
3935                                  * The block which we have just freed is
3936                                  * pointed to by an indirect block: journal it
3937                                  */
3938                                 BUFFER_TRACE(parent_bh, "get_write_access");
3939                                 if (!ext4_journal_get_write_access(handle,
3940                                                                    parent_bh)){
3941                                         *p = 0;
3942                                         BUFFER_TRACE(parent_bh,
3943                                         "call ext4_handle_dirty_metadata");
3944                                         ext4_handle_dirty_metadata(handle,
3945                                                                    inode,
3946                                                                    parent_bh);
3947                                 }
3948                         }
3949                 }
3950         } else {
3951                 /* We have reached the bottom of the tree. */
3952                 BUFFER_TRACE(parent_bh, "free data blocks");
3953                 ext4_free_data(handle, inode, parent_bh, first, last);
3954         }
3955 }
3956
3957 int ext4_can_truncate(struct inode *inode)
3958 {
3959         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3960                 return 0;
3961         if (S_ISREG(inode->i_mode))
3962                 return 1;
3963         if (S_ISDIR(inode->i_mode))
3964                 return 1;
3965         if (S_ISLNK(inode->i_mode))
3966                 return !ext4_inode_is_fast_symlink(inode);
3967         return 0;
3968 }
3969
3970 /*
3971  * ext4_truncate()
3972  *
3973  * We block out ext4_get_block() block instantiations across the entire
3974  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3975  * simultaneously on behalf of the same inode.
3976  *
3977  * As we work through the truncate and commmit bits of it to the journal there
3978  * is one core, guiding principle: the file's tree must always be consistent on
3979  * disk.  We must be able to restart the truncate after a crash.
3980  *
3981  * The file's tree may be transiently inconsistent in memory (although it
3982  * probably isn't), but whenever we close off and commit a journal transaction,
3983  * the contents of (the filesystem + the journal) must be consistent and
3984  * restartable.  It's pretty simple, really: bottom up, right to left (although
3985  * left-to-right works OK too).
3986  *
3987  * Note that at recovery time, journal replay occurs *before* the restart of
3988  * truncate against the orphan inode list.
3989  *
3990  * The committed inode has the new, desired i_size (which is the same as
3991  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3992  * that this inode's truncate did not complete and it will again call
3993  * ext4_truncate() to have another go.  So there will be instantiated blocks
3994  * to the right of the truncation point in a crashed ext4 filesystem.  But
3995  * that's fine - as long as they are linked from the inode, the post-crash
3996  * ext4_truncate() run will find them and release them.
3997  */
3998 void ext4_truncate(struct inode *inode)
3999 {
4000         handle_t *handle;
4001         struct ext4_inode_info *ei = EXT4_I(inode);
4002         __le32 *i_data = ei->i_data;
4003         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4004         struct address_space *mapping = inode->i_mapping;
4005         ext4_lblk_t offsets[4];
4006         Indirect chain[4];
4007         Indirect *partial;
4008         __le32 nr = 0;
4009         int n;
4010         ext4_lblk_t last_block;
4011         unsigned blocksize = inode->i_sb->s_blocksize;
4012
4013         if (!ext4_can_truncate(inode))
4014                 return;
4015
4016         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4017                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4018
4019         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4020                 ext4_ext_truncate(inode);
4021                 return;
4022         }
4023
4024         handle = start_transaction(inode);
4025         if (IS_ERR(handle))
4026                 return;         /* AKPM: return what? */
4027
4028         last_block = (inode->i_size + blocksize-1)
4029                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4030
4031         if (inode->i_size & (blocksize - 1))
4032                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4033                         goto out_stop;
4034
4035         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4036         if (n == 0)
4037                 goto out_stop;  /* error */
4038
4039         /*
4040          * OK.  This truncate is going to happen.  We add the inode to the
4041          * orphan list, so that if this truncate spans multiple transactions,
4042          * and we crash, we will resume the truncate when the filesystem
4043          * recovers.  It also marks the inode dirty, to catch the new size.
4044          *
4045          * Implication: the file must always be in a sane, consistent
4046          * truncatable state while each transaction commits.
4047          */
4048         if (ext4_orphan_add(handle, inode))
4049                 goto out_stop;
4050
4051         /*
4052          * From here we block out all ext4_get_block() callers who want to
4053          * modify the block allocation tree.
4054          */
4055         down_write(&ei->i_data_sem);
4056
4057         ext4_discard_preallocations(inode);
4058
4059         /*
4060          * The orphan list entry will now protect us from any crash which
4061          * occurs before the truncate completes, so it is now safe to propagate
4062          * the new, shorter inode size (held for now in i_size) into the
4063          * on-disk inode. We do this via i_disksize, which is the value which
4064          * ext4 *really* writes onto the disk inode.
4065          */
4066         ei->i_disksize = inode->i_size;
4067
4068         if (n == 1) {           /* direct blocks */
4069                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4070                                i_data + EXT4_NDIR_BLOCKS);
4071                 goto do_indirects;
4072         }
4073
4074         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4075         /* Kill the top of shared branch (not detached) */
4076         if (nr) {
4077                 if (partial == chain) {
4078                         /* Shared branch grows from the inode */
4079                         ext4_free_branches(handle, inode, NULL,
4080                                            &nr, &nr+1, (chain+n-1) - partial);
4081                         *partial->p = 0;
4082                         /*
4083                          * We mark the inode dirty prior to restart,
4084                          * and prior to stop.  No need for it here.
4085                          */
4086                 } else {
4087                         /* Shared branch grows from an indirect block */
4088                         BUFFER_TRACE(partial->bh, "get_write_access");
4089                         ext4_free_branches(handle, inode, partial->bh,
4090                                         partial->p,
4091                                         partial->p+1, (chain+n-1) - partial);
4092                 }
4093         }
4094         /* Clear the ends of indirect blocks on the shared branch */
4095         while (partial > chain) {
4096                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4097                                    (__le32*)partial->bh->b_data+addr_per_block,
4098                                    (chain+n-1) - partial);
4099                 BUFFER_TRACE(partial->bh, "call brelse");
4100                 brelse (partial->bh);
4101                 partial--;
4102         }
4103 do_indirects:
4104         /* Kill the remaining (whole) subtrees */
4105         switch (offsets[0]) {
4106         default:
4107                 nr = i_data[EXT4_IND_BLOCK];
4108                 if (nr) {
4109                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4110                         i_data[EXT4_IND_BLOCK] = 0;
4111                 }
4112         case EXT4_IND_BLOCK:
4113                 nr = i_data[EXT4_DIND_BLOCK];
4114                 if (nr) {
4115                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4116                         i_data[EXT4_DIND_BLOCK] = 0;
4117                 }
4118         case EXT4_DIND_BLOCK:
4119                 nr = i_data[EXT4_TIND_BLOCK];
4120                 if (nr) {
4121                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4122                         i_data[EXT4_TIND_BLOCK] = 0;
4123                 }
4124         case EXT4_TIND_BLOCK:
4125                 ;
4126         }
4127
4128         up_write(&ei->i_data_sem);
4129         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4130         ext4_mark_inode_dirty(handle, inode);
4131
4132         /*
4133          * In a multi-transaction truncate, we only make the final transaction
4134          * synchronous
4135          */
4136         if (IS_SYNC(inode))
4137                 ext4_handle_sync(handle);
4138 out_stop:
4139         /*
4140          * If this was a simple ftruncate(), and the file will remain alive
4141          * then we need to clear up the orphan record which we created above.
4142          * However, if this was a real unlink then we were called by
4143          * ext4_delete_inode(), and we allow that function to clean up the
4144          * orphan info for us.
4145          */
4146         if (inode->i_nlink)
4147                 ext4_orphan_del(handle, inode);
4148
4149         ext4_journal_stop(handle);
4150 }
4151
4152 /*
4153  * ext4_get_inode_loc returns with an extra refcount against the inode's
4154  * underlying buffer_head on success. If 'in_mem' is true, we have all
4155  * data in memory that is needed to recreate the on-disk version of this
4156  * inode.
4157  */
4158 static int __ext4_get_inode_loc(struct inode *inode,
4159                                 struct ext4_iloc *iloc, int in_mem)
4160 {
4161         struct ext4_group_desc  *gdp;
4162         struct buffer_head      *bh;
4163         struct super_block      *sb = inode->i_sb;
4164         ext4_fsblk_t            block;
4165         int                     inodes_per_block, inode_offset;
4166
4167         iloc->bh = NULL;
4168         if (!ext4_valid_inum(sb, inode->i_ino))
4169                 return -EIO;
4170
4171         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4172         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4173         if (!gdp)
4174                 return -EIO;
4175
4176         /*
4177          * Figure out the offset within the block group inode table
4178          */
4179         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4180         inode_offset = ((inode->i_ino - 1) %
4181                         EXT4_INODES_PER_GROUP(sb));
4182         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4183         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4184
4185         bh = sb_getblk(sb, block);
4186         if (!bh) {
4187                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4188                            "inode block - inode=%lu, block=%llu",
4189                            inode->i_ino, block);
4190                 return -EIO;
4191         }
4192         if (!buffer_uptodate(bh)) {
4193                 lock_buffer(bh);
4194
4195                 /*
4196                  * If the buffer has the write error flag, we have failed
4197                  * to write out another inode in the same block.  In this
4198                  * case, we don't have to read the block because we may
4199                  * read the old inode data successfully.
4200                  */
4201                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4202                         set_buffer_uptodate(bh);
4203
4204                 if (buffer_uptodate(bh)) {
4205                         /* someone brought it uptodate while we waited */
4206                         unlock_buffer(bh);
4207                         goto has_buffer;
4208                 }
4209
4210                 /*
4211                  * If we have all information of the inode in memory and this
4212                  * is the only valid inode in the block, we need not read the
4213                  * block.
4214                  */
4215                 if (in_mem) {
4216                         struct buffer_head *bitmap_bh;
4217                         int i, start;
4218
4219                         start = inode_offset & ~(inodes_per_block - 1);
4220
4221                         /* Is the inode bitmap in cache? */
4222                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4223                         if (!bitmap_bh)
4224                                 goto make_io;
4225
4226                         /*
4227                          * If the inode bitmap isn't in cache then the
4228                          * optimisation may end up performing two reads instead
4229                          * of one, so skip it.
4230                          */
4231                         if (!buffer_uptodate(bitmap_bh)) {
4232                                 brelse(bitmap_bh);
4233                                 goto make_io;
4234                         }
4235                         for (i = start; i < start + inodes_per_block; i++) {
4236                                 if (i == inode_offset)
4237                                         continue;
4238                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4239                                         break;
4240                         }
4241                         brelse(bitmap_bh);
4242                         if (i == start + inodes_per_block) {
4243                                 /* all other inodes are free, so skip I/O */
4244                                 memset(bh->b_data, 0, bh->b_size);
4245                                 set_buffer_uptodate(bh);
4246                                 unlock_buffer(bh);
4247                                 goto has_buffer;
4248                         }
4249                 }
4250
4251 make_io:
4252                 /*
4253                  * If we need to do any I/O, try to pre-readahead extra
4254                  * blocks from the inode table.
4255                  */
4256                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4257                         ext4_fsblk_t b, end, table;
4258                         unsigned num;
4259
4260                         table = ext4_inode_table(sb, gdp);
4261                         /* s_inode_readahead_blks is always a power of 2 */
4262                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4263                         if (table > b)
4264                                 b = table;
4265                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4266                         num = EXT4_INODES_PER_GROUP(sb);
4267                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4268                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4269                                 num -= ext4_itable_unused_count(sb, gdp);
4270                         table += num / inodes_per_block;
4271                         if (end > table)
4272                                 end = table;
4273                         while (b <= end)
4274                                 sb_breadahead(sb, b++);
4275                 }
4276
4277                 /*
4278                  * There are other valid inodes in the buffer, this inode
4279                  * has in-inode xattrs, or we don't have this inode in memory.
4280                  * Read the block from disk.
4281                  */
4282                 get_bh(bh);
4283                 bh->b_end_io = end_buffer_read_sync;
4284                 submit_bh(READ_META, bh);
4285                 wait_on_buffer(bh);
4286                 if (!buffer_uptodate(bh)) {
4287                         ext4_error(sb, __func__,
4288                                    "unable to read inode block - inode=%lu, "
4289                                    "block=%llu", inode->i_ino, block);
4290                         brelse(bh);
4291                         return -EIO;
4292                 }
4293         }
4294 has_buffer:
4295         iloc->bh = bh;
4296         return 0;
4297 }
4298
4299 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4300 {
4301         /* We have all inode data except xattrs in memory here. */
4302         return __ext4_get_inode_loc(inode, iloc,
4303                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4304 }
4305
4306 void ext4_set_inode_flags(struct inode *inode)
4307 {
4308         unsigned int flags = EXT4_I(inode)->i_flags;
4309
4310         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4311         if (flags & EXT4_SYNC_FL)
4312                 inode->i_flags |= S_SYNC;
4313         if (flags & EXT4_APPEND_FL)
4314                 inode->i_flags |= S_APPEND;
4315         if (flags & EXT4_IMMUTABLE_FL)
4316                 inode->i_flags |= S_IMMUTABLE;
4317         if (flags & EXT4_NOATIME_FL)
4318                 inode->i_flags |= S_NOATIME;
4319         if (flags & EXT4_DIRSYNC_FL)
4320                 inode->i_flags |= S_DIRSYNC;
4321 }
4322
4323 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4324 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4325 {
4326         unsigned int flags = ei->vfs_inode.i_flags;
4327
4328         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4329                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4330         if (flags & S_SYNC)
4331                 ei->i_flags |= EXT4_SYNC_FL;
4332         if (flags & S_APPEND)
4333                 ei->i_flags |= EXT4_APPEND_FL;
4334         if (flags & S_IMMUTABLE)
4335                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4336         if (flags & S_NOATIME)
4337                 ei->i_flags |= EXT4_NOATIME_FL;
4338         if (flags & S_DIRSYNC)
4339                 ei->i_flags |= EXT4_DIRSYNC_FL;
4340 }
4341 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4342                                         struct ext4_inode_info *ei)
4343 {
4344         blkcnt_t i_blocks ;
4345         struct inode *inode = &(ei->vfs_inode);
4346         struct super_block *sb = inode->i_sb;
4347
4348         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4349                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4350                 /* we are using combined 48 bit field */
4351                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4352                                         le32_to_cpu(raw_inode->i_blocks_lo);
4353                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4354                         /* i_blocks represent file system block size */
4355                         return i_blocks  << (inode->i_blkbits - 9);
4356                 } else {
4357                         return i_blocks;
4358                 }
4359         } else {
4360                 return le32_to_cpu(raw_inode->i_blocks_lo);
4361         }
4362 }
4363
4364 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4365 {
4366         struct ext4_iloc iloc;
4367         struct ext4_inode *raw_inode;
4368         struct ext4_inode_info *ei;
4369         struct buffer_head *bh;
4370         struct inode *inode;
4371         long ret;
4372         int block;
4373
4374         inode = iget_locked(sb, ino);
4375         if (!inode)
4376                 return ERR_PTR(-ENOMEM);
4377         if (!(inode->i_state & I_NEW))
4378                 return inode;
4379
4380         ei = EXT4_I(inode);
4381 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4382         ei->i_acl = EXT4_ACL_NOT_CACHED;
4383         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4384 #endif
4385
4386         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4387         if (ret < 0)
4388                 goto bad_inode;
4389         bh = iloc.bh;
4390         raw_inode = ext4_raw_inode(&iloc);
4391         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4392         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4393         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4394         if (!(test_opt(inode->i_sb, NO_UID32))) {
4395                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4396                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4397         }
4398         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4399
4400         ei->i_state = 0;
4401         ei->i_dir_start_lookup = 0;
4402         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4403         /* We now have enough fields to check if the inode was active or not.
4404          * This is needed because nfsd might try to access dead inodes
4405          * the test is that same one that e2fsck uses
4406          * NeilBrown 1999oct15
4407          */
4408         if (inode->i_nlink == 0) {
4409                 if (inode->i_mode == 0 ||
4410                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4411                         /* this inode is deleted */
4412                         brelse(bh);
4413                         ret = -ESTALE;
4414                         goto bad_inode;
4415                 }
4416                 /* The only unlinked inodes we let through here have
4417                  * valid i_mode and are being read by the orphan
4418                  * recovery code: that's fine, we're about to complete
4419                  * the process of deleting those. */
4420         }
4421         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4422         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4423         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4424         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4425                 ei->i_file_acl |=
4426                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4427         inode->i_size = ext4_isize(raw_inode);
4428         ei->i_disksize = inode->i_size;
4429         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4430         ei->i_block_group = iloc.block_group;
4431         ei->i_last_alloc_group = ~0;
4432         /*
4433          * NOTE! The in-memory inode i_data array is in little-endian order
4434          * even on big-endian machines: we do NOT byteswap the block numbers!
4435          */
4436         for (block = 0; block < EXT4_N_BLOCKS; block++)
4437                 ei->i_data[block] = raw_inode->i_block[block];
4438         INIT_LIST_HEAD(&ei->i_orphan);
4439
4440         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4441                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4442                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4443                     EXT4_INODE_SIZE(inode->i_sb)) {
4444                         brelse(bh);
4445                         ret = -EIO;
4446                         goto bad_inode;
4447                 }
4448                 if (ei->i_extra_isize == 0) {
4449                         /* The extra space is currently unused. Use it. */
4450                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4451                                             EXT4_GOOD_OLD_INODE_SIZE;
4452                 } else {
4453                         __le32 *magic = (void *)raw_inode +
4454                                         EXT4_GOOD_OLD_INODE_SIZE +
4455                                         ei->i_extra_isize;
4456                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4457                                  ei->i_state |= EXT4_STATE_XATTR;
4458                 }
4459         } else
4460                 ei->i_extra_isize = 0;
4461
4462         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4463         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4464         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4465         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4466
4467         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4468         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4469                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4470                         inode->i_version |=
4471                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4472         }
4473
4474         ret = 0;
4475         if (ei->i_file_acl &&
4476             ((ei->i_file_acl < 
4477               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4478                EXT4_SB(sb)->s_gdb_count)) ||
4479              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4480                 ext4_error(sb, __func__,
4481                            "bad extended attribute block %llu in inode #%lu",
4482                            ei->i_file_acl, inode->i_ino);
4483                 ret = -EIO;
4484                 goto bad_inode;
4485         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4486                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4487                     (S_ISLNK(inode->i_mode) &&
4488                      !ext4_inode_is_fast_symlink(inode)))
4489                         /* Validate extent which is part of inode */
4490                         ret = ext4_ext_check_inode(inode);
4491         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4492                    (S_ISLNK(inode->i_mode) &&
4493                     !ext4_inode_is_fast_symlink(inode))) {
4494                 /* Validate block references which are part of inode */
4495                 ret = ext4_check_inode_blockref(inode);
4496         }
4497         if (ret) {
4498                 brelse(bh);
4499                 goto bad_inode;
4500         }
4501
4502         if (S_ISREG(inode->i_mode)) {
4503                 inode->i_op = &ext4_file_inode_operations;
4504                 inode->i_fop = &ext4_file_operations;
4505                 ext4_set_aops(inode);
4506         } else if (S_ISDIR(inode->i_mode)) {
4507                 inode->i_op = &ext4_dir_inode_operations;
4508                 inode->i_fop = &ext4_dir_operations;
4509         } else if (S_ISLNK(inode->i_mode)) {
4510                 if (ext4_inode_is_fast_symlink(inode)) {
4511                         inode->i_op = &ext4_fast_symlink_inode_operations;
4512                         nd_terminate_link(ei->i_data, inode->i_size,
4513                                 sizeof(ei->i_data) - 1);
4514                 } else {
4515                         inode->i_op = &ext4_symlink_inode_operations;
4516                         ext4_set_aops(inode);
4517                 }
4518         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4519               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4520                 inode->i_op = &ext4_special_inode_operations;
4521                 if (raw_inode->i_block[0])
4522                         init_special_inode(inode, inode->i_mode,
4523                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4524                 else
4525                         init_special_inode(inode, inode->i_mode,
4526                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4527         } else {
4528                 brelse(bh);
4529                 ret = -EIO;
4530                 ext4_error(inode->i_sb, __func__, 
4531                            "bogus i_mode (%o) for inode=%lu",
4532                            inode->i_mode, inode->i_ino);
4533                 goto bad_inode;
4534         }
4535         brelse(iloc.bh);
4536         ext4_set_inode_flags(inode);
4537         unlock_new_inode(inode);
4538         return inode;
4539
4540 bad_inode:
4541         iget_failed(inode);
4542         return ERR_PTR(ret);
4543 }
4544
4545 static int ext4_inode_blocks_set(handle_t *handle,
4546                                 struct ext4_inode *raw_inode,
4547                                 struct ext4_inode_info *ei)
4548 {
4549         struct inode *inode = &(ei->vfs_inode);
4550         u64 i_blocks = inode->i_blocks;
4551         struct super_block *sb = inode->i_sb;
4552
4553         if (i_blocks <= ~0U) {
4554                 /*
4555                  * i_blocks can be represnted in a 32 bit variable
4556                  * as multiple of 512 bytes
4557                  */
4558                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4559                 raw_inode->i_blocks_high = 0;
4560                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4561                 return 0;
4562         }
4563         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4564                 return -EFBIG;
4565
4566         if (i_blocks <= 0xffffffffffffULL) {
4567                 /*
4568                  * i_blocks can be represented in a 48 bit variable
4569                  * as multiple of 512 bytes
4570                  */
4571                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4572                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4573                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4574         } else {
4575                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4576                 /* i_block is stored in file system block size */
4577                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4578                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4579                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4580         }
4581         return 0;
4582 }
4583
4584 /*
4585  * Post the struct inode info into an on-disk inode location in the
4586  * buffer-cache.  This gobbles the caller's reference to the
4587  * buffer_head in the inode location struct.
4588  *
4589  * The caller must have write access to iloc->bh.
4590  */
4591 static int ext4_do_update_inode(handle_t *handle,
4592                                 struct inode *inode,
4593                                 struct ext4_iloc *iloc)
4594 {
4595         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4596         struct ext4_inode_info *ei = EXT4_I(inode);
4597         struct buffer_head *bh = iloc->bh;
4598         int err = 0, rc, block;
4599
4600         /* For fields not not tracking in the in-memory inode,
4601          * initialise them to zero for new inodes. */
4602         if (ei->i_state & EXT4_STATE_NEW)
4603                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4604
4605         ext4_get_inode_flags(ei);
4606         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4607         if (!(test_opt(inode->i_sb, NO_UID32))) {
4608                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4609                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4610 /*
4611  * Fix up interoperability with old kernels. Otherwise, old inodes get
4612  * re-used with the upper 16 bits of the uid/gid intact
4613  */
4614                 if (!ei->i_dtime) {
4615                         raw_inode->i_uid_high =
4616                                 cpu_to_le16(high_16_bits(inode->i_uid));
4617                         raw_inode->i_gid_high =
4618                                 cpu_to_le16(high_16_bits(inode->i_gid));
4619                 } else {
4620                         raw_inode->i_uid_high = 0;
4621                         raw_inode->i_gid_high = 0;
4622                 }
4623         } else {
4624                 raw_inode->i_uid_low =
4625                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4626                 raw_inode->i_gid_low =
4627                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4628                 raw_inode->i_uid_high = 0;
4629                 raw_inode->i_gid_high = 0;
4630         }
4631         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4632
4633         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4634         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4635         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4636         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4637
4638         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4639                 goto out_brelse;
4640         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4641         /* clear the migrate flag in the raw_inode */
4642         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4643         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4644             cpu_to_le32(EXT4_OS_HURD))
4645                 raw_inode->i_file_acl_high =
4646                         cpu_to_le16(ei->i_file_acl >> 32);
4647         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4648         ext4_isize_set(raw_inode, ei->i_disksize);
4649         if (ei->i_disksize > 0x7fffffffULL) {
4650                 struct super_block *sb = inode->i_sb;
4651                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4652                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4653                                 EXT4_SB(sb)->s_es->s_rev_level ==
4654                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4655                         /* If this is the first large file
4656                          * created, add a flag to the superblock.
4657                          */
4658                         err = ext4_journal_get_write_access(handle,
4659                                         EXT4_SB(sb)->s_sbh);
4660                         if (err)
4661                                 goto out_brelse;
4662                         ext4_update_dynamic_rev(sb);
4663                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4664                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4665                         sb->s_dirt = 1;
4666                         ext4_handle_sync(handle);
4667                         err = ext4_handle_dirty_metadata(handle, inode,
4668                                         EXT4_SB(sb)->s_sbh);
4669                 }
4670         }
4671         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4672         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4673                 if (old_valid_dev(inode->i_rdev)) {
4674                         raw_inode->i_block[0] =
4675                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4676                         raw_inode->i_block[1] = 0;
4677                 } else {
4678                         raw_inode->i_block[0] = 0;
4679                         raw_inode->i_block[1] =
4680                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4681                         raw_inode->i_block[2] = 0;
4682                 }
4683         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4684                 raw_inode->i_block[block] = ei->i_data[block];
4685
4686         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4687         if (ei->i_extra_isize) {
4688                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4689                         raw_inode->i_version_hi =
4690                         cpu_to_le32(inode->i_version >> 32);
4691                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4692         }
4693
4694         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4695         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4696         if (!err)
4697                 err = rc;
4698         ei->i_state &= ~EXT4_STATE_NEW;
4699
4700 out_brelse:
4701         brelse(bh);
4702         ext4_std_error(inode->i_sb, err);
4703         return err;
4704 }
4705
4706 /*
4707  * ext4_write_inode()
4708  *
4709  * We are called from a few places:
4710  *
4711  * - Within generic_file_write() for O_SYNC files.
4712  *   Here, there will be no transaction running. We wait for any running
4713  *   trasnaction to commit.
4714  *
4715  * - Within sys_sync(), kupdate and such.
4716  *   We wait on commit, if tol to.
4717  *
4718  * - Within prune_icache() (PF_MEMALLOC == true)
4719  *   Here we simply return.  We can't afford to block kswapd on the
4720  *   journal commit.
4721  *
4722  * In all cases it is actually safe for us to return without doing anything,
4723  * because the inode has been copied into a raw inode buffer in
4724  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4725  * knfsd.
4726  *
4727  * Note that we are absolutely dependent upon all inode dirtiers doing the
4728  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4729  * which we are interested.
4730  *
4731  * It would be a bug for them to not do this.  The code:
4732  *
4733  *      mark_inode_dirty(inode)
4734  *      stuff();
4735  *      inode->i_size = expr;
4736  *
4737  * is in error because a kswapd-driven write_inode() could occur while
4738  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4739  * will no longer be on the superblock's dirty inode list.
4740  */
4741 int ext4_write_inode(struct inode *inode, int wait)
4742 {
4743         if (current->flags & PF_MEMALLOC)
4744                 return 0;
4745
4746         if (ext4_journal_current_handle()) {
4747                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4748                 dump_stack();
4749                 return -EIO;
4750         }
4751
4752         if (!wait)
4753                 return 0;
4754
4755         return ext4_force_commit(inode->i_sb);
4756 }
4757
4758 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4759 {
4760         int err = 0;
4761
4762         mark_buffer_dirty(bh);
4763         if (inode && inode_needs_sync(inode)) {
4764                 sync_dirty_buffer(bh);
4765                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4766                         ext4_error(inode->i_sb, __func__,
4767                                    "IO error syncing inode, "
4768                                    "inode=%lu, block=%llu",
4769                                    inode->i_ino,
4770                                    (unsigned long long)bh->b_blocknr);
4771                         err = -EIO;
4772                 }
4773         }
4774         return err;
4775 }
4776
4777 /*
4778  * ext4_setattr()
4779  *
4780  * Called from notify_change.
4781  *
4782  * We want to trap VFS attempts to truncate the file as soon as
4783  * possible.  In particular, we want to make sure that when the VFS
4784  * shrinks i_size, we put the inode on the orphan list and modify
4785  * i_disksize immediately, so that during the subsequent flushing of
4786  * dirty pages and freeing of disk blocks, we can guarantee that any
4787  * commit will leave the blocks being flushed in an unused state on
4788  * disk.  (On recovery, the inode will get truncated and the blocks will
4789  * be freed, so we have a strong guarantee that no future commit will
4790  * leave these blocks visible to the user.)
4791  *
4792  * Another thing we have to assure is that if we are in ordered mode
4793  * and inode is still attached to the committing transaction, we must
4794  * we start writeout of all the dirty pages which are being truncated.
4795  * This way we are sure that all the data written in the previous
4796  * transaction are already on disk (truncate waits for pages under
4797  * writeback).
4798  *
4799  * Called with inode->i_mutex down.
4800  */
4801 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4802 {
4803         struct inode *inode = dentry->d_inode;
4804         int error, rc = 0;
4805         const unsigned int ia_valid = attr->ia_valid;
4806
4807         error = inode_change_ok(inode, attr);
4808         if (error)
4809                 return error;
4810
4811         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4812                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4813                 handle_t *handle;
4814
4815                 /* (user+group)*(old+new) structure, inode write (sb,
4816                  * inode block, ? - but truncate inode update has it) */
4817                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4818                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4819                 if (IS_ERR(handle)) {
4820                         error = PTR_ERR(handle);
4821                         goto err_out;
4822                 }
4823                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4824                 if (error) {
4825                         ext4_journal_stop(handle);
4826                         return error;
4827                 }
4828                 /* Update corresponding info in inode so that everything is in
4829                  * one transaction */
4830                 if (attr->ia_valid & ATTR_UID)
4831                         inode->i_uid = attr->ia_uid;
4832                 if (attr->ia_valid & ATTR_GID)
4833                         inode->i_gid = attr->ia_gid;
4834                 error = ext4_mark_inode_dirty(handle, inode);
4835                 ext4_journal_stop(handle);
4836         }
4837
4838         if (attr->ia_valid & ATTR_SIZE) {
4839                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4840                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4841
4842                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4843                                 error = -EFBIG;
4844                                 goto err_out;
4845                         }
4846                 }
4847         }
4848
4849         if (S_ISREG(inode->i_mode) &&
4850             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4851                 handle_t *handle;
4852
4853                 handle = ext4_journal_start(inode, 3);
4854                 if (IS_ERR(handle)) {
4855                         error = PTR_ERR(handle);
4856                         goto err_out;
4857                 }
4858
4859                 error = ext4_orphan_add(handle, inode);
4860                 EXT4_I(inode)->i_disksize = attr->ia_size;
4861                 rc = ext4_mark_inode_dirty(handle, inode);
4862                 if (!error)
4863                         error = rc;
4864                 ext4_journal_stop(handle);
4865
4866                 if (ext4_should_order_data(inode)) {
4867                         error = ext4_begin_ordered_truncate(inode,
4868                                                             attr->ia_size);
4869                         if (error) {
4870                                 /* Do as much error cleanup as possible */
4871                                 handle = ext4_journal_start(inode, 3);
4872                                 if (IS_ERR(handle)) {
4873                                         ext4_orphan_del(NULL, inode);
4874                                         goto err_out;
4875                                 }
4876                                 ext4_orphan_del(handle, inode);
4877                                 ext4_journal_stop(handle);
4878                                 goto err_out;
4879                         }
4880                 }
4881         }
4882
4883         rc = inode_setattr(inode, attr);
4884
4885         /* If inode_setattr's call to ext4_truncate failed to get a
4886          * transaction handle at all, we need to clean up the in-core
4887          * orphan list manually. */
4888         if (inode->i_nlink)
4889                 ext4_orphan_del(NULL, inode);
4890
4891         if (!rc && (ia_valid & ATTR_MODE))
4892                 rc = ext4_acl_chmod(inode);
4893
4894 err_out:
4895         ext4_std_error(inode->i_sb, error);
4896         if (!error)
4897                 error = rc;
4898         return error;
4899 }
4900
4901 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4902                  struct kstat *stat)
4903 {
4904         struct inode *inode;
4905         unsigned long delalloc_blocks;
4906
4907         inode = dentry->d_inode;
4908         generic_fillattr(inode, stat);
4909
4910         /*
4911          * We can't update i_blocks if the block allocation is delayed
4912          * otherwise in the case of system crash before the real block
4913          * allocation is done, we will have i_blocks inconsistent with
4914          * on-disk file blocks.
4915          * We always keep i_blocks updated together with real
4916          * allocation. But to not confuse with user, stat
4917          * will return the blocks that include the delayed allocation
4918          * blocks for this file.
4919          */
4920         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4921         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4922         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4923
4924         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4925         return 0;
4926 }
4927
4928 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4929                                       int chunk)
4930 {
4931         int indirects;
4932
4933         /* if nrblocks are contiguous */
4934         if (chunk) {
4935                 /*
4936                  * With N contiguous data blocks, it need at most
4937                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4938                  * 2 dindirect blocks
4939                  * 1 tindirect block
4940                  */
4941                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4942                 return indirects + 3;
4943         }
4944         /*
4945          * if nrblocks are not contiguous, worse case, each block touch
4946          * a indirect block, and each indirect block touch a double indirect
4947          * block, plus a triple indirect block
4948          */
4949         indirects = nrblocks * 2 + 1;
4950         return indirects;
4951 }
4952
4953 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4954 {
4955         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4956                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4957         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4958 }
4959
4960 /*
4961  * Account for index blocks, block groups bitmaps and block group
4962  * descriptor blocks if modify datablocks and index blocks
4963  * worse case, the indexs blocks spread over different block groups
4964  *
4965  * If datablocks are discontiguous, they are possible to spread over
4966  * different block groups too. If they are contiugous, with flexbg,
4967  * they could still across block group boundary.
4968  *
4969  * Also account for superblock, inode, quota and xattr blocks
4970  */
4971 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4972 {
4973         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4974         int gdpblocks;
4975         int idxblocks;
4976         int ret = 0;
4977
4978         /*
4979          * How many index blocks need to touch to modify nrblocks?
4980          * The "Chunk" flag indicating whether the nrblocks is
4981          * physically contiguous on disk
4982          *
4983          * For Direct IO and fallocate, they calls get_block to allocate
4984          * one single extent at a time, so they could set the "Chunk" flag
4985          */
4986         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4987
4988         ret = idxblocks;
4989
4990         /*
4991          * Now let's see how many group bitmaps and group descriptors need
4992          * to account
4993          */
4994         groups = idxblocks;
4995         if (chunk)
4996                 groups += 1;
4997         else
4998                 groups += nrblocks;
4999
5000         gdpblocks = groups;
5001         if (groups > ngroups)
5002                 groups = ngroups;
5003         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5004                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5005
5006         /* bitmaps and block group descriptor blocks */
5007         ret += groups + gdpblocks;
5008
5009         /* Blocks for super block, inode, quota and xattr blocks */
5010         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5011
5012         return ret;
5013 }
5014
5015 /*
5016  * Calulate the total number of credits to reserve to fit
5017  * the modification of a single pages into a single transaction,
5018  * which may include multiple chunks of block allocations.
5019  *
5020  * This could be called via ext4_write_begin()
5021  *
5022  * We need to consider the worse case, when
5023  * one new block per extent.
5024  */
5025 int ext4_writepage_trans_blocks(struct inode *inode)
5026 {
5027         int bpp = ext4_journal_blocks_per_page(inode);
5028         int ret;
5029
5030         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5031
5032         /* Account for data blocks for journalled mode */
5033         if (ext4_should_journal_data(inode))
5034                 ret += bpp;
5035         return ret;
5036 }
5037
5038 /*
5039  * Calculate the journal credits for a chunk of data modification.
5040  *
5041  * This is called from DIO, fallocate or whoever calling
5042  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5043  *
5044  * journal buffers for data blocks are not included here, as DIO
5045  * and fallocate do no need to journal data buffers.
5046  */
5047 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5048 {
5049         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5050 }
5051
5052 /*
5053  * The caller must have previously called ext4_reserve_inode_write().
5054  * Give this, we know that the caller already has write access to iloc->bh.
5055  */
5056 int ext4_mark_iloc_dirty(handle_t *handle,
5057                 struct inode *inode, struct ext4_iloc *iloc)
5058 {
5059         int err = 0;
5060
5061         if (test_opt(inode->i_sb, I_VERSION))
5062                 inode_inc_iversion(inode);
5063
5064         /* the do_update_inode consumes one bh->b_count */
5065         get_bh(iloc->bh);
5066
5067         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5068         err = ext4_do_update_inode(handle, inode, iloc);
5069         put_bh(iloc->bh);
5070         return err;
5071 }
5072
5073 /*
5074  * On success, We end up with an outstanding reference count against
5075  * iloc->bh.  This _must_ be cleaned up later.
5076  */
5077
5078 int
5079 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5080                          struct ext4_iloc *iloc)
5081 {
5082         int err;
5083
5084         err = ext4_get_inode_loc(inode, iloc);
5085         if (!err) {
5086                 BUFFER_TRACE(iloc->bh, "get_write_access");
5087                 err = ext4_journal_get_write_access(handle, iloc->bh);
5088                 if (err) {
5089                         brelse(iloc->bh);
5090                         iloc->bh = NULL;
5091                 }
5092         }
5093         ext4_std_error(inode->i_sb, err);
5094         return err;
5095 }
5096
5097 /*
5098  * Expand an inode by new_extra_isize bytes.
5099  * Returns 0 on success or negative error number on failure.
5100  */
5101 static int ext4_expand_extra_isize(struct inode *inode,
5102                                    unsigned int new_extra_isize,
5103                                    struct ext4_iloc iloc,
5104                                    handle_t *handle)
5105 {
5106         struct ext4_inode *raw_inode;
5107         struct ext4_xattr_ibody_header *header;
5108         struct ext4_xattr_entry *entry;
5109
5110         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5111                 return 0;
5112
5113         raw_inode = ext4_raw_inode(&iloc);
5114
5115         header = IHDR(inode, raw_inode);
5116         entry = IFIRST(header);
5117
5118         /* No extended attributes present */
5119         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5120                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5121                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5122                         new_extra_isize);
5123                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5124                 return 0;
5125         }
5126
5127         /* try to expand with EAs present */
5128         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5129                                           raw_inode, handle);
5130 }
5131
5132 /*
5133  * What we do here is to mark the in-core inode as clean with respect to inode
5134  * dirtiness (it may still be data-dirty).
5135  * This means that the in-core inode may be reaped by prune_icache
5136  * without having to perform any I/O.  This is a very good thing,
5137  * because *any* task may call prune_icache - even ones which
5138  * have a transaction open against a different journal.
5139  *
5140  * Is this cheating?  Not really.  Sure, we haven't written the
5141  * inode out, but prune_icache isn't a user-visible syncing function.
5142  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5143  * we start and wait on commits.
5144  *
5145  * Is this efficient/effective?  Well, we're being nice to the system
5146  * by cleaning up our inodes proactively so they can be reaped
5147  * without I/O.  But we are potentially leaving up to five seconds'
5148  * worth of inodes floating about which prune_icache wants us to
5149  * write out.  One way to fix that would be to get prune_icache()
5150  * to do a write_super() to free up some memory.  It has the desired
5151  * effect.
5152  */
5153 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5154 {
5155         struct ext4_iloc iloc;
5156         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5157         static unsigned int mnt_count;
5158         int err, ret;
5159
5160         might_sleep();
5161         err = ext4_reserve_inode_write(handle, inode, &iloc);
5162         if (ext4_handle_valid(handle) &&
5163             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5164             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5165                 /*
5166                  * We need extra buffer credits since we may write into EA block
5167                  * with this same handle. If journal_extend fails, then it will
5168                  * only result in a minor loss of functionality for that inode.
5169                  * If this is felt to be critical, then e2fsck should be run to
5170                  * force a large enough s_min_extra_isize.
5171                  */
5172                 if ((jbd2_journal_extend(handle,
5173                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5174                         ret = ext4_expand_extra_isize(inode,
5175                                                       sbi->s_want_extra_isize,
5176                                                       iloc, handle);
5177                         if (ret) {
5178                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5179                                 if (mnt_count !=
5180                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5181                                         ext4_warning(inode->i_sb, __func__,
5182                                         "Unable to expand inode %lu. Delete"
5183                                         " some EAs or run e2fsck.",
5184                                         inode->i_ino);
5185                                         mnt_count =
5186                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5187                                 }
5188                         }
5189                 }
5190         }
5191         if (!err)
5192                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5193         return err;
5194 }
5195
5196 /*
5197  * ext4_dirty_inode() is called from __mark_inode_dirty()
5198  *
5199  * We're really interested in the case where a file is being extended.
5200  * i_size has been changed by generic_commit_write() and we thus need
5201  * to include the updated inode in the current transaction.
5202  *
5203  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5204  * are allocated to the file.
5205  *
5206  * If the inode is marked synchronous, we don't honour that here - doing
5207  * so would cause a commit on atime updates, which we don't bother doing.
5208  * We handle synchronous inodes at the highest possible level.
5209  */
5210 void ext4_dirty_inode(struct inode *inode)
5211 {
5212         handle_t *current_handle = ext4_journal_current_handle();
5213         handle_t *handle;
5214
5215         if (!ext4_handle_valid(current_handle)) {
5216                 ext4_mark_inode_dirty(current_handle, inode);
5217                 return;
5218         }
5219
5220         handle = ext4_journal_start(inode, 2);
5221         if (IS_ERR(handle))
5222                 goto out;
5223         if (current_handle &&
5224                 current_handle->h_transaction != handle->h_transaction) {
5225                 /* This task has a transaction open against a different fs */
5226                 printk(KERN_EMERG "%s: transactions do not match!\n",
5227                        __func__);
5228         } else {
5229                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5230                                 current_handle);
5231                 ext4_mark_inode_dirty(handle, inode);
5232         }
5233         ext4_journal_stop(handle);
5234 out:
5235         return;
5236 }
5237
5238 #if 0
5239 /*
5240  * Bind an inode's backing buffer_head into this transaction, to prevent
5241  * it from being flushed to disk early.  Unlike
5242  * ext4_reserve_inode_write, this leaves behind no bh reference and
5243  * returns no iloc structure, so the caller needs to repeat the iloc
5244  * lookup to mark the inode dirty later.
5245  */
5246 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5247 {
5248         struct ext4_iloc iloc;
5249
5250         int err = 0;
5251         if (handle) {
5252                 err = ext4_get_inode_loc(inode, &iloc);
5253                 if (!err) {
5254                         BUFFER_TRACE(iloc.bh, "get_write_access");
5255                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5256                         if (!err)
5257                                 err = ext4_handle_dirty_metadata(handle,
5258                                                                  inode,
5259                                                                  iloc.bh);
5260                         brelse(iloc.bh);
5261                 }
5262         }
5263         ext4_std_error(inode->i_sb, err);
5264         return err;
5265 }
5266 #endif
5267
5268 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5269 {
5270         journal_t *journal;
5271         handle_t *handle;
5272         int err;
5273
5274         /*
5275          * We have to be very careful here: changing a data block's
5276          * journaling status dynamically is dangerous.  If we write a
5277          * data block to the journal, change the status and then delete
5278          * that block, we risk forgetting to revoke the old log record
5279          * from the journal and so a subsequent replay can corrupt data.
5280          * So, first we make sure that the journal is empty and that
5281          * nobody is changing anything.
5282          */
5283
5284         journal = EXT4_JOURNAL(inode);
5285         if (!journal)
5286                 return 0;
5287         if (is_journal_aborted(journal))
5288                 return -EROFS;
5289
5290         jbd2_journal_lock_updates(journal);
5291         jbd2_journal_flush(journal);
5292
5293         /*
5294          * OK, there are no updates running now, and all cached data is
5295          * synced to disk.  We are now in a completely consistent state
5296          * which doesn't have anything in the journal, and we know that
5297          * no filesystem updates are running, so it is safe to modify
5298          * the inode's in-core data-journaling state flag now.
5299          */
5300
5301         if (val)
5302                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5303         else
5304                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5305         ext4_set_aops(inode);
5306
5307         jbd2_journal_unlock_updates(journal);
5308
5309         /* Finally we can mark the inode as dirty. */
5310
5311         handle = ext4_journal_start(inode, 1);
5312         if (IS_ERR(handle))
5313                 return PTR_ERR(handle);
5314
5315         err = ext4_mark_inode_dirty(handle, inode);
5316         ext4_handle_sync(handle);
5317         ext4_journal_stop(handle);
5318         ext4_std_error(inode->i_sb, err);
5319
5320         return err;
5321 }
5322
5323 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5324 {
5325         return !buffer_mapped(bh);
5326 }
5327
5328 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5329 {
5330         struct page *page = vmf->page;
5331         loff_t size;
5332         unsigned long len;
5333         int ret = -EINVAL;
5334         void *fsdata;
5335         struct file *file = vma->vm_file;
5336         struct inode *inode = file->f_path.dentry->d_inode;
5337         struct address_space *mapping = inode->i_mapping;
5338
5339         /*
5340          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5341          * get i_mutex because we are already holding mmap_sem.
5342          */
5343         down_read(&inode->i_alloc_sem);
5344         size = i_size_read(inode);
5345         if (page->mapping != mapping || size <= page_offset(page)
5346             || !PageUptodate(page)) {
5347                 /* page got truncated from under us? */
5348                 goto out_unlock;
5349         }
5350         ret = 0;
5351         if (PageMappedToDisk(page))
5352                 goto out_unlock;
5353
5354         if (page->index == size >> PAGE_CACHE_SHIFT)
5355                 len = size & ~PAGE_CACHE_MASK;
5356         else
5357                 len = PAGE_CACHE_SIZE;
5358
5359         if (page_has_buffers(page)) {
5360                 /* return if we have all the buffers mapped */
5361                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5362                                        ext4_bh_unmapped))
5363                         goto out_unlock;
5364         }
5365         /*
5366          * OK, we need to fill the hole... Do write_begin write_end
5367          * to do block allocation/reservation.We are not holding
5368          * inode.i__mutex here. That allow * parallel write_begin,
5369          * write_end call. lock_page prevent this from happening
5370          * on the same page though
5371          */
5372         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5373                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5374         if (ret < 0)
5375                 goto out_unlock;
5376         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5377                         len, len, page, fsdata);
5378         if (ret < 0)
5379                 goto out_unlock;
5380         ret = 0;
5381 out_unlock:
5382         if (ret)
5383                 ret = VM_FAULT_SIGBUS;
5384         up_read(&inode->i_alloc_sem);
5385         return ret;
5386 }