ext4: Clean up ext4_get_blocks() so it does not depend on bh_result->b_state
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * The ext4_ind_get_blocks() function handles non-extents inodes
896  * (i.e., using the traditional indirect/double-indirect i_blocks
897  * scheme) for ext4_get_blocks().
898  *
899  * Allocation strategy is simple: if we have to allocate something, we will
900  * have to go the whole way to leaf. So let's do it before attaching anything
901  * to tree, set linkage between the newborn blocks, write them if sync is
902  * required, recheck the path, free and repeat if check fails, otherwise
903  * set the last missing link (that will protect us from any truncate-generated
904  * removals - all blocks on the path are immune now) and possibly force the
905  * write on the parent block.
906  * That has a nice additional property: no special recovery from the failed
907  * allocations is needed - we simply release blocks and do not touch anything
908  * reachable from inode.
909  *
910  * `handle' can be NULL if create == 0.
911  *
912  * return > 0, # of blocks mapped or allocated.
913  * return = 0, if plain lookup failed.
914  * return < 0, error case.
915  *
916  * The ext4_ind_get_blocks() function should be called with
917  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920  * blocks.
921  */
922 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923                                   ext4_lblk_t iblock, unsigned int maxblocks,
924                                   struct buffer_head *bh_result,
925                                   int flags)
926 {
927         int err = -EIO;
928         ext4_lblk_t offsets[4];
929         Indirect chain[4];
930         Indirect *partial;
931         ext4_fsblk_t goal;
932         int indirect_blks;
933         int blocks_to_boundary = 0;
934         int depth;
935         struct ext4_inode_info *ei = EXT4_I(inode);
936         int count = 0;
937         ext4_fsblk_t first_block = 0;
938         loff_t disksize;
939
940
941         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
942         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
943         depth = ext4_block_to_path(inode, iblock, offsets,
944                                         &blocks_to_boundary);
945
946         if (depth == 0)
947                 goto out;
948
949         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
950
951         /* Simplest case - block found, no allocation needed */
952         if (!partial) {
953                 first_block = le32_to_cpu(chain[depth - 1].key);
954                 clear_buffer_new(bh_result);
955                 count++;
956                 /*map more blocks*/
957                 while (count < maxblocks && count <= blocks_to_boundary) {
958                         ext4_fsblk_t blk;
959
960                         blk = le32_to_cpu(*(chain[depth-1].p + count));
961
962                         if (blk == first_block + count)
963                                 count++;
964                         else
965                                 break;
966                 }
967                 goto got_it;
968         }
969
970         /* Next simple case - plain lookup or failed read of indirect block */
971         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
972                 goto cleanup;
973
974         /*
975          * Okay, we need to do block allocation.
976         */
977         goal = ext4_find_goal(inode, iblock, partial);
978
979         /* the number of blocks need to allocate for [d,t]indirect blocks */
980         indirect_blks = (chain + depth) - partial - 1;
981
982         /*
983          * Next look up the indirect map to count the totoal number of
984          * direct blocks to allocate for this branch.
985          */
986         count = ext4_blks_to_allocate(partial, indirect_blks,
987                                         maxblocks, blocks_to_boundary);
988         /*
989          * Block out ext4_truncate while we alter the tree
990          */
991         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
992                                         &count, goal,
993                                         offsets + (partial - chain), partial);
994
995         /*
996          * The ext4_splice_branch call will free and forget any buffers
997          * on the new chain if there is a failure, but that risks using
998          * up transaction credits, especially for bitmaps where the
999          * credits cannot be returned.  Can we handle this somehow?  We
1000          * may need to return -EAGAIN upwards in the worst case.  --sct
1001          */
1002         if (!err)
1003                 err = ext4_splice_branch(handle, inode, iblock,
1004                                         partial, indirect_blks, count);
1005         /*
1006          * i_disksize growing is protected by i_data_sem.  Don't forget to
1007          * protect it if you're about to implement concurrent
1008          * ext4_get_block() -bzzz
1009         */
1010         if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
1011                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1012                 if (disksize > i_size_read(inode))
1013                         disksize = i_size_read(inode);
1014                 if (disksize > ei->i_disksize)
1015                         ei->i_disksize = disksize;
1016         }
1017         if (err)
1018                 goto cleanup;
1019
1020         set_buffer_new(bh_result);
1021 got_it:
1022         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1023         if (count > blocks_to_boundary)
1024                 set_buffer_boundary(bh_result);
1025         err = count;
1026         /* Clean up and exit */
1027         partial = chain + depth - 1;    /* the whole chain */
1028 cleanup:
1029         while (partial > chain) {
1030                 BUFFER_TRACE(partial->bh, "call brelse");
1031                 brelse(partial->bh);
1032                 partial--;
1033         }
1034         BUFFER_TRACE(bh_result, "returned");
1035 out:
1036         return err;
1037 }
1038
1039 qsize_t ext4_get_reserved_space(struct inode *inode)
1040 {
1041         unsigned long long total;
1042
1043         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044         total = EXT4_I(inode)->i_reserved_data_blocks +
1045                 EXT4_I(inode)->i_reserved_meta_blocks;
1046         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047
1048         return total;
1049 }
1050 /*
1051  * Calculate the number of metadata blocks need to reserve
1052  * to allocate @blocks for non extent file based file
1053  */
1054 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1055 {
1056         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1057         int ind_blks, dind_blks, tind_blks;
1058
1059         /* number of new indirect blocks needed */
1060         ind_blks = (blocks + icap - 1) / icap;
1061
1062         dind_blks = (ind_blks + icap - 1) / icap;
1063
1064         tind_blks = 1;
1065
1066         return ind_blks + dind_blks + tind_blks;
1067 }
1068
1069 /*
1070  * Calculate the number of metadata blocks need to reserve
1071  * to allocate given number of blocks
1072  */
1073 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1074 {
1075         if (!blocks)
1076                 return 0;
1077
1078         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1079                 return ext4_ext_calc_metadata_amount(inode, blocks);
1080
1081         return ext4_indirect_calc_metadata_amount(inode, blocks);
1082 }
1083
1084 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1085 {
1086         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087         int total, mdb, mdb_free;
1088
1089         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1090         /* recalculate the number of metablocks still need to be reserved */
1091         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1092         mdb = ext4_calc_metadata_amount(inode, total);
1093
1094         /* figure out how many metablocks to release */
1095         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1096         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1097
1098         if (mdb_free) {
1099                 /* Account for allocated meta_blocks */
1100                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1101
1102                 /* update fs dirty blocks counter */
1103                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1104                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1105                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1106         }
1107
1108         /* update per-inode reservations */
1109         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1110         EXT4_I(inode)->i_reserved_data_blocks -= used;
1111         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1112
1113         /*
1114          * free those over-booking quota for metadata blocks
1115          */
1116         if (mdb_free)
1117                 vfs_dq_release_reservation_block(inode, mdb_free);
1118
1119         /*
1120          * If we have done all the pending block allocations and if
1121          * there aren't any writers on the inode, we can discard the
1122          * inode's preallocations.
1123          */
1124         if (!total && (atomic_read(&inode->i_writecount) == 0))
1125                 ext4_discard_preallocations(inode);
1126 }
1127
1128 /*
1129  * The ext4_get_blocks() function tries to look up the requested blocks,
1130  * and returns if the blocks are already mapped.
1131  *
1132  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133  * and store the allocated blocks in the result buffer head and mark it
1134  * mapped.
1135  *
1136  * If file type is extents based, it will call ext4_ext_get_blocks(),
1137  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138  * based files
1139  *
1140  * On success, it returns the number of blocks being mapped or allocate.
1141  * if create==0 and the blocks are pre-allocated and uninitialized block,
1142  * the result buffer head is unmapped. If the create ==1, it will make sure
1143  * the buffer head is mapped.
1144  *
1145  * It returns 0 if plain look up failed (blocks have not been allocated), in
1146  * that casem, buffer head is unmapped
1147  *
1148  * It returns the error in case of allocation failure.
1149  */
1150 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151                     unsigned int max_blocks, struct buffer_head *bh,
1152                     int flags)
1153 {
1154         int retval;
1155
1156         clear_buffer_mapped(bh);
1157         clear_buffer_unwritten(bh);
1158
1159         /*
1160          * Try to see if we can get the block without requesting a new
1161          * file system block.
1162          */
1163         down_read((&EXT4_I(inode)->i_data_sem));
1164         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166                                 bh, 0);
1167         } else {
1168                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169                                              bh, 0);
1170         }
1171         up_read((&EXT4_I(inode)->i_data_sem));
1172
1173         /* If it is only a block(s) look up */
1174         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1175                 return retval;
1176
1177         /*
1178          * Returns if the blocks have already allocated
1179          *
1180          * Note that if blocks have been preallocated
1181          * ext4_ext_get_block() returns th create = 0
1182          * with buffer head unmapped.
1183          */
1184         if (retval > 0 && buffer_mapped(bh))
1185                 return retval;
1186
1187         /*
1188          * When we call get_blocks without the create flag, the
1189          * BH_Unwritten flag could have gotten set if the blocks
1190          * requested were part of a uninitialized extent.  We need to
1191          * clear this flag now that we are committed to convert all or
1192          * part of the uninitialized extent to be an initialized
1193          * extent.  This is because we need to avoid the combination
1194          * of BH_Unwritten and BH_Mapped flags being simultaneously
1195          * set on the buffer_head.
1196          */
1197         clear_buffer_unwritten(bh);
1198
1199         /*
1200          * New blocks allocate and/or writing to uninitialized extent
1201          * will possibly result in updating i_data, so we take
1202          * the write lock of i_data_sem, and call get_blocks()
1203          * with create == 1 flag.
1204          */
1205         down_write((&EXT4_I(inode)->i_data_sem));
1206
1207         /*
1208          * if the caller is from delayed allocation writeout path
1209          * we have already reserved fs blocks for allocation
1210          * let the underlying get_block() function know to
1211          * avoid double accounting
1212          */
1213         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1214                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1215         /*
1216          * We need to check for EXT4 here because migrate
1217          * could have changed the inode type in between
1218          */
1219         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1220                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1221                                               bh, flags);
1222         } else {
1223                 retval = ext4_ind_get_blocks(handle, inode, block,
1224                                              max_blocks, bh, flags);
1225
1226                 if (retval > 0 && buffer_new(bh)) {
1227                         /*
1228                          * We allocated new blocks which will result in
1229                          * i_data's format changing.  Force the migrate
1230                          * to fail by clearing migrate flags
1231                          */
1232                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1233                                                         ~EXT4_EXT_MIGRATE;
1234                 }
1235         }
1236
1237         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1238                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1239
1240         /*
1241          * Update reserved blocks/metadata blocks after successful
1242          * block allocation which had been deferred till now.
1243          */
1244         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1245                 ext4_da_update_reserve_space(inode, retval);
1246
1247         up_write((&EXT4_I(inode)->i_data_sem));
1248         return retval;
1249 }
1250
1251 /* Maximum number of blocks we map for direct IO at once. */
1252 #define DIO_MAX_BLOCKS 4096
1253
1254 int ext4_get_block(struct inode *inode, sector_t iblock,
1255                    struct buffer_head *bh_result, int create)
1256 {
1257         handle_t *handle = ext4_journal_current_handle();
1258         int ret = 0, started = 0;
1259         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1260         int dio_credits;
1261
1262         if (create && !handle) {
1263                 /* Direct IO write... */
1264                 if (max_blocks > DIO_MAX_BLOCKS)
1265                         max_blocks = DIO_MAX_BLOCKS;
1266                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1267                 handle = ext4_journal_start(inode, dio_credits);
1268                 if (IS_ERR(handle)) {
1269                         ret = PTR_ERR(handle);
1270                         goto out;
1271                 }
1272                 started = 1;
1273         }
1274
1275         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1276                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1277         if (ret > 0) {
1278                 bh_result->b_size = (ret << inode->i_blkbits);
1279                 ret = 0;
1280         }
1281         if (started)
1282                 ext4_journal_stop(handle);
1283 out:
1284         return ret;
1285 }
1286
1287 /*
1288  * `handle' can be NULL if create is zero
1289  */
1290 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1291                                 ext4_lblk_t block, int create, int *errp)
1292 {
1293         struct buffer_head dummy;
1294         int fatal = 0, err;
1295         int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
1296
1297         J_ASSERT(handle != NULL || create == 0);
1298
1299         dummy.b_state = 0;
1300         dummy.b_blocknr = -1000;
1301         buffer_trace_init(&dummy.b_history);
1302         if (create)
1303                 flags |= EXT4_GET_BLOCKS_CREATE;
1304         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1305         /*
1306          * ext4_get_blocks() returns number of blocks mapped. 0 in
1307          * case of a HOLE.
1308          */
1309         if (err > 0) {
1310                 if (err > 1)
1311                         WARN_ON(1);
1312                 err = 0;
1313         }
1314         *errp = err;
1315         if (!err && buffer_mapped(&dummy)) {
1316                 struct buffer_head *bh;
1317                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1318                 if (!bh) {
1319                         *errp = -EIO;
1320                         goto err;
1321                 }
1322                 if (buffer_new(&dummy)) {
1323                         J_ASSERT(create != 0);
1324                         J_ASSERT(handle != NULL);
1325
1326                         /*
1327                          * Now that we do not always journal data, we should
1328                          * keep in mind whether this should always journal the
1329                          * new buffer as metadata.  For now, regular file
1330                          * writes use ext4_get_block instead, so it's not a
1331                          * problem.
1332                          */
1333                         lock_buffer(bh);
1334                         BUFFER_TRACE(bh, "call get_create_access");
1335                         fatal = ext4_journal_get_create_access(handle, bh);
1336                         if (!fatal && !buffer_uptodate(bh)) {
1337                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1338                                 set_buffer_uptodate(bh);
1339                         }
1340                         unlock_buffer(bh);
1341                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1342                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1343                         if (!fatal)
1344                                 fatal = err;
1345                 } else {
1346                         BUFFER_TRACE(bh, "not a new buffer");
1347                 }
1348                 if (fatal) {
1349                         *errp = fatal;
1350                         brelse(bh);
1351                         bh = NULL;
1352                 }
1353                 return bh;
1354         }
1355 err:
1356         return NULL;
1357 }
1358
1359 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1360                                ext4_lblk_t block, int create, int *err)
1361 {
1362         struct buffer_head *bh;
1363
1364         bh = ext4_getblk(handle, inode, block, create, err);
1365         if (!bh)
1366                 return bh;
1367         if (buffer_uptodate(bh))
1368                 return bh;
1369         ll_rw_block(READ_META, 1, &bh);
1370         wait_on_buffer(bh);
1371         if (buffer_uptodate(bh))
1372                 return bh;
1373         put_bh(bh);
1374         *err = -EIO;
1375         return NULL;
1376 }
1377
1378 static int walk_page_buffers(handle_t *handle,
1379                              struct buffer_head *head,
1380                              unsigned from,
1381                              unsigned to,
1382                              int *partial,
1383                              int (*fn)(handle_t *handle,
1384                                        struct buffer_head *bh))
1385 {
1386         struct buffer_head *bh;
1387         unsigned block_start, block_end;
1388         unsigned blocksize = head->b_size;
1389         int err, ret = 0;
1390         struct buffer_head *next;
1391
1392         for (bh = head, block_start = 0;
1393              ret == 0 && (bh != head || !block_start);
1394              block_start = block_end, bh = next)
1395         {
1396                 next = bh->b_this_page;
1397                 block_end = block_start + blocksize;
1398                 if (block_end <= from || block_start >= to) {
1399                         if (partial && !buffer_uptodate(bh))
1400                                 *partial = 1;
1401                         continue;
1402                 }
1403                 err = (*fn)(handle, bh);
1404                 if (!ret)
1405                         ret = err;
1406         }
1407         return ret;
1408 }
1409
1410 /*
1411  * To preserve ordering, it is essential that the hole instantiation and
1412  * the data write be encapsulated in a single transaction.  We cannot
1413  * close off a transaction and start a new one between the ext4_get_block()
1414  * and the commit_write().  So doing the jbd2_journal_start at the start of
1415  * prepare_write() is the right place.
1416  *
1417  * Also, this function can nest inside ext4_writepage() ->
1418  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1419  * has generated enough buffer credits to do the whole page.  So we won't
1420  * block on the journal in that case, which is good, because the caller may
1421  * be PF_MEMALLOC.
1422  *
1423  * By accident, ext4 can be reentered when a transaction is open via
1424  * quota file writes.  If we were to commit the transaction while thus
1425  * reentered, there can be a deadlock - we would be holding a quota
1426  * lock, and the commit would never complete if another thread had a
1427  * transaction open and was blocking on the quota lock - a ranking
1428  * violation.
1429  *
1430  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1431  * will _not_ run commit under these circumstances because handle->h_ref
1432  * is elevated.  We'll still have enough credits for the tiny quotafile
1433  * write.
1434  */
1435 static int do_journal_get_write_access(handle_t *handle,
1436                                         struct buffer_head *bh)
1437 {
1438         if (!buffer_mapped(bh) || buffer_freed(bh))
1439                 return 0;
1440         return ext4_journal_get_write_access(handle, bh);
1441 }
1442
1443 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1444                                 loff_t pos, unsigned len, unsigned flags,
1445                                 struct page **pagep, void **fsdata)
1446 {
1447         struct inode *inode = mapping->host;
1448         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1449         handle_t *handle;
1450         int retries = 0;
1451         struct page *page;
1452         pgoff_t index;
1453         unsigned from, to;
1454
1455         trace_mark(ext4_write_begin,
1456                    "dev %s ino %lu pos %llu len %u flags %u",
1457                    inode->i_sb->s_id, inode->i_ino,
1458                    (unsigned long long) pos, len, flags);
1459         index = pos >> PAGE_CACHE_SHIFT;
1460         from = pos & (PAGE_CACHE_SIZE - 1);
1461         to = from + len;
1462
1463 retry:
1464         handle = ext4_journal_start(inode, needed_blocks);
1465         if (IS_ERR(handle)) {
1466                 ret = PTR_ERR(handle);
1467                 goto out;
1468         }
1469
1470         /* We cannot recurse into the filesystem as the transaction is already
1471          * started */
1472         flags |= AOP_FLAG_NOFS;
1473
1474         page = grab_cache_page_write_begin(mapping, index, flags);
1475         if (!page) {
1476                 ext4_journal_stop(handle);
1477                 ret = -ENOMEM;
1478                 goto out;
1479         }
1480         *pagep = page;
1481
1482         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1483                                 ext4_get_block);
1484
1485         if (!ret && ext4_should_journal_data(inode)) {
1486                 ret = walk_page_buffers(handle, page_buffers(page),
1487                                 from, to, NULL, do_journal_get_write_access);
1488         }
1489
1490         if (ret) {
1491                 unlock_page(page);
1492                 ext4_journal_stop(handle);
1493                 page_cache_release(page);
1494                 /*
1495                  * block_write_begin may have instantiated a few blocks
1496                  * outside i_size.  Trim these off again. Don't need
1497                  * i_size_read because we hold i_mutex.
1498                  */
1499                 if (pos + len > inode->i_size)
1500                         vmtruncate(inode, inode->i_size);
1501         }
1502
1503         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1504                 goto retry;
1505 out:
1506         return ret;
1507 }
1508
1509 /* For write_end() in data=journal mode */
1510 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1511 {
1512         if (!buffer_mapped(bh) || buffer_freed(bh))
1513                 return 0;
1514         set_buffer_uptodate(bh);
1515         return ext4_handle_dirty_metadata(handle, NULL, bh);
1516 }
1517
1518 /*
1519  * We need to pick up the new inode size which generic_commit_write gave us
1520  * `file' can be NULL - eg, when called from page_symlink().
1521  *
1522  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1523  * buffers are managed internally.
1524  */
1525 static int ext4_ordered_write_end(struct file *file,
1526                                 struct address_space *mapping,
1527                                 loff_t pos, unsigned len, unsigned copied,
1528                                 struct page *page, void *fsdata)
1529 {
1530         handle_t *handle = ext4_journal_current_handle();
1531         struct inode *inode = mapping->host;
1532         int ret = 0, ret2;
1533
1534         trace_mark(ext4_ordered_write_end,
1535                    "dev %s ino %lu pos %llu len %u copied %u",
1536                    inode->i_sb->s_id, inode->i_ino,
1537                    (unsigned long long) pos, len, copied);
1538         ret = ext4_jbd2_file_inode(handle, inode);
1539
1540         if (ret == 0) {
1541                 loff_t new_i_size;
1542
1543                 new_i_size = pos + copied;
1544                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1545                         ext4_update_i_disksize(inode, new_i_size);
1546                         /* We need to mark inode dirty even if
1547                          * new_i_size is less that inode->i_size
1548                          * bu greater than i_disksize.(hint delalloc)
1549                          */
1550                         ext4_mark_inode_dirty(handle, inode);
1551                 }
1552
1553                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1554                                                         page, fsdata);
1555                 copied = ret2;
1556                 if (ret2 < 0)
1557                         ret = ret2;
1558         }
1559         ret2 = ext4_journal_stop(handle);
1560         if (!ret)
1561                 ret = ret2;
1562
1563         return ret ? ret : copied;
1564 }
1565
1566 static int ext4_writeback_write_end(struct file *file,
1567                                 struct address_space *mapping,
1568                                 loff_t pos, unsigned len, unsigned copied,
1569                                 struct page *page, void *fsdata)
1570 {
1571         handle_t *handle = ext4_journal_current_handle();
1572         struct inode *inode = mapping->host;
1573         int ret = 0, ret2;
1574         loff_t new_i_size;
1575
1576         trace_mark(ext4_writeback_write_end,
1577                    "dev %s ino %lu pos %llu len %u copied %u",
1578                    inode->i_sb->s_id, inode->i_ino,
1579                    (unsigned long long) pos, len, copied);
1580         new_i_size = pos + copied;
1581         if (new_i_size > EXT4_I(inode)->i_disksize) {
1582                 ext4_update_i_disksize(inode, new_i_size);
1583                 /* We need to mark inode dirty even if
1584                  * new_i_size is less that inode->i_size
1585                  * bu greater than i_disksize.(hint delalloc)
1586                  */
1587                 ext4_mark_inode_dirty(handle, inode);
1588         }
1589
1590         ret2 = generic_write_end(file, mapping, pos, len, copied,
1591                                                         page, fsdata);
1592         copied = ret2;
1593         if (ret2 < 0)
1594                 ret = ret2;
1595
1596         ret2 = ext4_journal_stop(handle);
1597         if (!ret)
1598                 ret = ret2;
1599
1600         return ret ? ret : copied;
1601 }
1602
1603 static int ext4_journalled_write_end(struct file *file,
1604                                 struct address_space *mapping,
1605                                 loff_t pos, unsigned len, unsigned copied,
1606                                 struct page *page, void *fsdata)
1607 {
1608         handle_t *handle = ext4_journal_current_handle();
1609         struct inode *inode = mapping->host;
1610         int ret = 0, ret2;
1611         int partial = 0;
1612         unsigned from, to;
1613         loff_t new_i_size;
1614
1615         trace_mark(ext4_journalled_write_end,
1616                    "dev %s ino %lu pos %llu len %u copied %u",
1617                    inode->i_sb->s_id, inode->i_ino,
1618                    (unsigned long long) pos, len, copied);
1619         from = pos & (PAGE_CACHE_SIZE - 1);
1620         to = from + len;
1621
1622         if (copied < len) {
1623                 if (!PageUptodate(page))
1624                         copied = 0;
1625                 page_zero_new_buffers(page, from+copied, to);
1626         }
1627
1628         ret = walk_page_buffers(handle, page_buffers(page), from,
1629                                 to, &partial, write_end_fn);
1630         if (!partial)
1631                 SetPageUptodate(page);
1632         new_i_size = pos + copied;
1633         if (new_i_size > inode->i_size)
1634                 i_size_write(inode, pos+copied);
1635         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1636         if (new_i_size > EXT4_I(inode)->i_disksize) {
1637                 ext4_update_i_disksize(inode, new_i_size);
1638                 ret2 = ext4_mark_inode_dirty(handle, inode);
1639                 if (!ret)
1640                         ret = ret2;
1641         }
1642
1643         unlock_page(page);
1644         ret2 = ext4_journal_stop(handle);
1645         if (!ret)
1646                 ret = ret2;
1647         page_cache_release(page);
1648
1649         return ret ? ret : copied;
1650 }
1651
1652 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1653 {
1654         int retries = 0;
1655         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1656         unsigned long md_needed, mdblocks, total = 0;
1657
1658         /*
1659          * recalculate the amount of metadata blocks to reserve
1660          * in order to allocate nrblocks
1661          * worse case is one extent per block
1662          */
1663 repeat:
1664         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1665         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1666         mdblocks = ext4_calc_metadata_amount(inode, total);
1667         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1668
1669         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1670         total = md_needed + nrblocks;
1671
1672         /*
1673          * Make quota reservation here to prevent quota overflow
1674          * later. Real quota accounting is done at pages writeout
1675          * time.
1676          */
1677         if (vfs_dq_reserve_block(inode, total)) {
1678                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1679                 return -EDQUOT;
1680         }
1681
1682         if (ext4_claim_free_blocks(sbi, total)) {
1683                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1684                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1685                         yield();
1686                         goto repeat;
1687                 }
1688                 vfs_dq_release_reservation_block(inode, total);
1689                 return -ENOSPC;
1690         }
1691         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1692         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1693
1694         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1695         return 0;       /* success */
1696 }
1697
1698 static void ext4_da_release_space(struct inode *inode, int to_free)
1699 {
1700         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1701         int total, mdb, mdb_free, release;
1702
1703         if (!to_free)
1704                 return;         /* Nothing to release, exit */
1705
1706         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1707
1708         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1709                 /*
1710                  * if there is no reserved blocks, but we try to free some
1711                  * then the counter is messed up somewhere.
1712                  * but since this function is called from invalidate
1713                  * page, it's harmless to return without any action
1714                  */
1715                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1716                             "blocks for inode %lu, but there is no reserved "
1717                             "data blocks\n", to_free, inode->i_ino);
1718                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1719                 return;
1720         }
1721
1722         /* recalculate the number of metablocks still need to be reserved */
1723         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1724         mdb = ext4_calc_metadata_amount(inode, total);
1725
1726         /* figure out how many metablocks to release */
1727         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1728         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1729
1730         release = to_free + mdb_free;
1731
1732         /* update fs dirty blocks counter for truncate case */
1733         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1734
1735         /* update per-inode reservations */
1736         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1737         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1738
1739         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1740         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1741         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1742
1743         vfs_dq_release_reservation_block(inode, release);
1744 }
1745
1746 static void ext4_da_page_release_reservation(struct page *page,
1747                                                 unsigned long offset)
1748 {
1749         int to_release = 0;
1750         struct buffer_head *head, *bh;
1751         unsigned int curr_off = 0;
1752
1753         head = page_buffers(page);
1754         bh = head;
1755         do {
1756                 unsigned int next_off = curr_off + bh->b_size;
1757
1758                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1759                         to_release++;
1760                         clear_buffer_delay(bh);
1761                 }
1762                 curr_off = next_off;
1763         } while ((bh = bh->b_this_page) != head);
1764         ext4_da_release_space(page->mapping->host, to_release);
1765 }
1766
1767 /*
1768  * Delayed allocation stuff
1769  */
1770
1771 struct mpage_da_data {
1772         struct inode *inode;
1773         sector_t b_blocknr;             /* start block number of extent */
1774         size_t b_size;                  /* size of extent */
1775         unsigned long b_state;          /* state of the extent */
1776         unsigned long first_page, next_page;    /* extent of pages */
1777         struct writeback_control *wbc;
1778         int io_done;
1779         int pages_written;
1780         int retval;
1781 };
1782
1783 /*
1784  * mpage_da_submit_io - walks through extent of pages and try to write
1785  * them with writepage() call back
1786  *
1787  * @mpd->inode: inode
1788  * @mpd->first_page: first page of the extent
1789  * @mpd->next_page: page after the last page of the extent
1790  *
1791  * By the time mpage_da_submit_io() is called we expect all blocks
1792  * to be allocated. this may be wrong if allocation failed.
1793  *
1794  * As pages are already locked by write_cache_pages(), we can't use it
1795  */
1796 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1797 {
1798         long pages_skipped;
1799         struct pagevec pvec;
1800         unsigned long index, end;
1801         int ret = 0, err, nr_pages, i;
1802         struct inode *inode = mpd->inode;
1803         struct address_space *mapping = inode->i_mapping;
1804
1805         BUG_ON(mpd->next_page <= mpd->first_page);
1806         /*
1807          * We need to start from the first_page to the next_page - 1
1808          * to make sure we also write the mapped dirty buffer_heads.
1809          * If we look at mpd->b_blocknr we would only be looking
1810          * at the currently mapped buffer_heads.
1811          */
1812         index = mpd->first_page;
1813         end = mpd->next_page - 1;
1814
1815         pagevec_init(&pvec, 0);
1816         while (index <= end) {
1817                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1818                 if (nr_pages == 0)
1819                         break;
1820                 for (i = 0; i < nr_pages; i++) {
1821                         struct page *page = pvec.pages[i];
1822
1823                         index = page->index;
1824                         if (index > end)
1825                                 break;
1826                         index++;
1827
1828                         BUG_ON(!PageLocked(page));
1829                         BUG_ON(PageWriteback(page));
1830
1831                         pages_skipped = mpd->wbc->pages_skipped;
1832                         err = mapping->a_ops->writepage(page, mpd->wbc);
1833                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1834                                 /*
1835                                  * have successfully written the page
1836                                  * without skipping the same
1837                                  */
1838                                 mpd->pages_written++;
1839                         /*
1840                          * In error case, we have to continue because
1841                          * remaining pages are still locked
1842                          * XXX: unlock and re-dirty them?
1843                          */
1844                         if (ret == 0)
1845                                 ret = err;
1846                 }
1847                 pagevec_release(&pvec);
1848         }
1849         return ret;
1850 }
1851
1852 /*
1853  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1854  *
1855  * @mpd->inode - inode to walk through
1856  * @exbh->b_blocknr - first block on a disk
1857  * @exbh->b_size - amount of space in bytes
1858  * @logical - first logical block to start assignment with
1859  *
1860  * the function goes through all passed space and put actual disk
1861  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1862  */
1863 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1864                                  struct buffer_head *exbh)
1865 {
1866         struct inode *inode = mpd->inode;
1867         struct address_space *mapping = inode->i_mapping;
1868         int blocks = exbh->b_size >> inode->i_blkbits;
1869         sector_t pblock = exbh->b_blocknr, cur_logical;
1870         struct buffer_head *head, *bh;
1871         pgoff_t index, end;
1872         struct pagevec pvec;
1873         int nr_pages, i;
1874
1875         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1876         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1877         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878
1879         pagevec_init(&pvec, 0);
1880
1881         while (index <= end) {
1882                 /* XXX: optimize tail */
1883                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1884                 if (nr_pages == 0)
1885                         break;
1886                 for (i = 0; i < nr_pages; i++) {
1887                         struct page *page = pvec.pages[i];
1888
1889                         index = page->index;
1890                         if (index > end)
1891                                 break;
1892                         index++;
1893
1894                         BUG_ON(!PageLocked(page));
1895                         BUG_ON(PageWriteback(page));
1896                         BUG_ON(!page_has_buffers(page));
1897
1898                         bh = page_buffers(page);
1899                         head = bh;
1900
1901                         /* skip blocks out of the range */
1902                         do {
1903                                 if (cur_logical >= logical)
1904                                         break;
1905                                 cur_logical++;
1906                         } while ((bh = bh->b_this_page) != head);
1907
1908                         do {
1909                                 if (cur_logical >= logical + blocks)
1910                                         break;
1911
1912                                 if (buffer_delay(bh) ||
1913                                                 buffer_unwritten(bh)) {
1914
1915                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1916
1917                                         if (buffer_delay(bh)) {
1918                                                 clear_buffer_delay(bh);
1919                                                 bh->b_blocknr = pblock;
1920                                         } else {
1921                                                 /*
1922                                                  * unwritten already should have
1923                                                  * blocknr assigned. Verify that
1924                                                  */
1925                                                 clear_buffer_unwritten(bh);
1926                                                 BUG_ON(bh->b_blocknr != pblock);
1927                                         }
1928
1929                                 } else if (buffer_mapped(bh))
1930                                         BUG_ON(bh->b_blocknr != pblock);
1931
1932                                 cur_logical++;
1933                                 pblock++;
1934                         } while ((bh = bh->b_this_page) != head);
1935                 }
1936                 pagevec_release(&pvec);
1937         }
1938 }
1939
1940
1941 /*
1942  * __unmap_underlying_blocks - just a helper function to unmap
1943  * set of blocks described by @bh
1944  */
1945 static inline void __unmap_underlying_blocks(struct inode *inode,
1946                                              struct buffer_head *bh)
1947 {
1948         struct block_device *bdev = inode->i_sb->s_bdev;
1949         int blocks, i;
1950
1951         blocks = bh->b_size >> inode->i_blkbits;
1952         for (i = 0; i < blocks; i++)
1953                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1954 }
1955
1956 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1957                                         sector_t logical, long blk_cnt)
1958 {
1959         int nr_pages, i;
1960         pgoff_t index, end;
1961         struct pagevec pvec;
1962         struct inode *inode = mpd->inode;
1963         struct address_space *mapping = inode->i_mapping;
1964
1965         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1966         end   = (logical + blk_cnt - 1) >>
1967                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1968         while (index <= end) {
1969                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1970                 if (nr_pages == 0)
1971                         break;
1972                 for (i = 0; i < nr_pages; i++) {
1973                         struct page *page = pvec.pages[i];
1974                         index = page->index;
1975                         if (index > end)
1976                                 break;
1977                         index++;
1978
1979                         BUG_ON(!PageLocked(page));
1980                         BUG_ON(PageWriteback(page));
1981                         block_invalidatepage(page, 0);
1982                         ClearPageUptodate(page);
1983                         unlock_page(page);
1984                 }
1985         }
1986         return;
1987 }
1988
1989 static void ext4_print_free_blocks(struct inode *inode)
1990 {
1991         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1992         printk(KERN_EMERG "Total free blocks count %lld\n",
1993                         ext4_count_free_blocks(inode->i_sb));
1994         printk(KERN_EMERG "Free/Dirty block details\n");
1995         printk(KERN_EMERG "free_blocks=%lld\n",
1996                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1997         printk(KERN_EMERG "dirty_blocks=%lld\n",
1998                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1999         printk(KERN_EMERG "Block reservation details\n");
2000         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2001                         EXT4_I(inode)->i_reserved_data_blocks);
2002         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2003                         EXT4_I(inode)->i_reserved_meta_blocks);
2004         return;
2005 }
2006
2007 /*
2008  * mpage_da_map_blocks - go through given space
2009  *
2010  * @mpd - bh describing space
2011  *
2012  * The function skips space we know is already mapped to disk blocks.
2013  *
2014  */
2015 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2016 {
2017         int err, blks, get_blocks_flags;
2018         struct buffer_head new;
2019         sector_t next = mpd->b_blocknr;
2020         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2021         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2022         handle_t *handle = NULL;
2023
2024         /*
2025          * We consider only non-mapped and non-allocated blocks
2026          */
2027         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2028                 !(mpd->b_state & (1 << BH_Delay)) &&
2029                 !(mpd->b_state & (1 << BH_Unwritten)))
2030                 return 0;
2031
2032         /*
2033          * If we didn't accumulate anything to write simply return
2034          */
2035         if (!mpd->b_size)
2036                 return 0;
2037
2038         handle = ext4_journal_current_handle();
2039         BUG_ON(!handle);
2040
2041         /*
2042          * Call ext4_get_blocks() to allocate any delayed allocation
2043          * blocks, or to convert an uninitialized extent to be
2044          * initialized (in the case where we have written into
2045          * one or more preallocated blocks).
2046          *
2047          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2048          * indicate that we are on the delayed allocation path.  This
2049          * affects functions in many different parts of the allocation
2050          * call path.  This flag exists primarily because we don't
2051          * want to change *many* call functions, so ext4_get_blocks()
2052          * will set the magic i_delalloc_reserved_flag once the
2053          * inode's allocation semaphore is taken.
2054          *
2055          * If the blocks in questions were delalloc blocks, set
2056          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2057          * variables are updated after the blocks have been allocated.
2058          */
2059         new.b_state = 0;
2060         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2061                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2062         if (mpd->b_state & (1 << BH_Delay))
2063                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2064         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2065                                &new, get_blocks_flags);
2066         if (blks < 0) {
2067                 err = blks;
2068                 /*
2069                  * If get block returns with error we simply
2070                  * return. Later writepage will redirty the page and
2071                  * writepages will find the dirty page again
2072                  */
2073                 if (err == -EAGAIN)
2074                         return 0;
2075
2076                 if (err == -ENOSPC &&
2077                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2078                         mpd->retval = err;
2079                         return 0;
2080                 }
2081
2082                 /*
2083                  * get block failure will cause us to loop in
2084                  * writepages, because a_ops->writepage won't be able
2085                  * to make progress. The page will be redirtied by
2086                  * writepage and writepages will again try to write
2087                  * the same.
2088                  */
2089                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2090                                   "at logical offset %llu with max blocks "
2091                                   "%zd with error %d\n",
2092                                   __func__, mpd->inode->i_ino,
2093                                   (unsigned long long)next,
2094                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2095                 printk(KERN_EMERG "This should not happen.!! "
2096                                         "Data will be lost\n");
2097                 if (err == -ENOSPC) {
2098                         ext4_print_free_blocks(mpd->inode);
2099                 }
2100                 /* invalidate all the pages */
2101                 ext4_da_block_invalidatepages(mpd, next,
2102                                 mpd->b_size >> mpd->inode->i_blkbits);
2103                 return err;
2104         }
2105         BUG_ON(blks == 0);
2106
2107         new.b_size = (blks << mpd->inode->i_blkbits);
2108
2109         if (buffer_new(&new))
2110                 __unmap_underlying_blocks(mpd->inode, &new);
2111
2112         /*
2113          * If blocks are delayed marked, we need to
2114          * put actual blocknr and drop delayed bit
2115          */
2116         if ((mpd->b_state & (1 << BH_Delay)) ||
2117             (mpd->b_state & (1 << BH_Unwritten)))
2118                 mpage_put_bnr_to_bhs(mpd, next, &new);
2119
2120         if (ext4_should_order_data(mpd->inode)) {
2121                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2122                 if (err)
2123                         return err;
2124         }
2125
2126         /*
2127          * Update on-disk size along with block allocation we don't
2128          * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2129          * within already allocated block -bzzz
2130          */
2131         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2132         if (disksize > i_size_read(mpd->inode))
2133                 disksize = i_size_read(mpd->inode);
2134         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2135                 ext4_update_i_disksize(mpd->inode, disksize);
2136                 return ext4_mark_inode_dirty(handle, mpd->inode);
2137         }
2138
2139         return 0;
2140 }
2141
2142 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2143                 (1 << BH_Delay) | (1 << BH_Unwritten))
2144
2145 /*
2146  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2147  *
2148  * @mpd->lbh - extent of blocks
2149  * @logical - logical number of the block in the file
2150  * @bh - bh of the block (used to access block's state)
2151  *
2152  * the function is used to collect contig. blocks in same state
2153  */
2154 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2155                                    sector_t logical, size_t b_size,
2156                                    unsigned long b_state)
2157 {
2158         sector_t next;
2159         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2160
2161         /* check if thereserved journal credits might overflow */
2162         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2163                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2164                         /*
2165                          * With non-extent format we are limited by the journal
2166                          * credit available.  Total credit needed to insert
2167                          * nrblocks contiguous blocks is dependent on the
2168                          * nrblocks.  So limit nrblocks.
2169                          */
2170                         goto flush_it;
2171                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2172                                 EXT4_MAX_TRANS_DATA) {
2173                         /*
2174                          * Adding the new buffer_head would make it cross the
2175                          * allowed limit for which we have journal credit
2176                          * reserved. So limit the new bh->b_size
2177                          */
2178                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2179                                                 mpd->inode->i_blkbits;
2180                         /* we will do mpage_da_submit_io in the next loop */
2181                 }
2182         }
2183         /*
2184          * First block in the extent
2185          */
2186         if (mpd->b_size == 0) {
2187                 mpd->b_blocknr = logical;
2188                 mpd->b_size = b_size;
2189                 mpd->b_state = b_state & BH_FLAGS;
2190                 return;
2191         }
2192
2193         next = mpd->b_blocknr + nrblocks;
2194         /*
2195          * Can we merge the block to our big extent?
2196          */
2197         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2198                 mpd->b_size += b_size;
2199                 return;
2200         }
2201
2202 flush_it:
2203         /*
2204          * We couldn't merge the block to our extent, so we
2205          * need to flush current  extent and start new one
2206          */
2207         if (mpage_da_map_blocks(mpd) == 0)
2208                 mpage_da_submit_io(mpd);
2209         mpd->io_done = 1;
2210         return;
2211 }
2212
2213 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2214 {
2215         /*
2216          * unmapped buffer is possible for holes.
2217          * delay buffer is possible with delayed allocation.
2218          * We also need to consider unwritten buffer as unmapped.
2219          */
2220         return (!buffer_mapped(bh) || buffer_delay(bh) ||
2221                                 buffer_unwritten(bh)) && buffer_dirty(bh);
2222 }
2223
2224 /*
2225  * __mpage_da_writepage - finds extent of pages and blocks
2226  *
2227  * @page: page to consider
2228  * @wbc: not used, we just follow rules
2229  * @data: context
2230  *
2231  * The function finds extents of pages and scan them for all blocks.
2232  */
2233 static int __mpage_da_writepage(struct page *page,
2234                                 struct writeback_control *wbc, void *data)
2235 {
2236         struct mpage_da_data *mpd = data;
2237         struct inode *inode = mpd->inode;
2238         struct buffer_head *bh, *head;
2239         sector_t logical;
2240
2241         if (mpd->io_done) {
2242                 /*
2243                  * Rest of the page in the page_vec
2244                  * redirty then and skip then. We will
2245                  * try to to write them again after
2246                  * starting a new transaction
2247                  */
2248                 redirty_page_for_writepage(wbc, page);
2249                 unlock_page(page);
2250                 return MPAGE_DA_EXTENT_TAIL;
2251         }
2252         /*
2253          * Can we merge this page to current extent?
2254          */
2255         if (mpd->next_page != page->index) {
2256                 /*
2257                  * Nope, we can't. So, we map non-allocated blocks
2258                  * and start IO on them using writepage()
2259                  */
2260                 if (mpd->next_page != mpd->first_page) {
2261                         if (mpage_da_map_blocks(mpd) == 0)
2262                                 mpage_da_submit_io(mpd);
2263                         /*
2264                          * skip rest of the page in the page_vec
2265                          */
2266                         mpd->io_done = 1;
2267                         redirty_page_for_writepage(wbc, page);
2268                         unlock_page(page);
2269                         return MPAGE_DA_EXTENT_TAIL;
2270                 }
2271
2272                 /*
2273                  * Start next extent of pages ...
2274                  */
2275                 mpd->first_page = page->index;
2276
2277                 /*
2278                  * ... and blocks
2279                  */
2280                 mpd->b_size = 0;
2281                 mpd->b_state = 0;
2282                 mpd->b_blocknr = 0;
2283         }
2284
2285         mpd->next_page = page->index + 1;
2286         logical = (sector_t) page->index <<
2287                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2288
2289         if (!page_has_buffers(page)) {
2290                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2291                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2292                 if (mpd->io_done)
2293                         return MPAGE_DA_EXTENT_TAIL;
2294         } else {
2295                 /*
2296                  * Page with regular buffer heads, just add all dirty ones
2297                  */
2298                 head = page_buffers(page);
2299                 bh = head;
2300                 do {
2301                         BUG_ON(buffer_locked(bh));
2302                         /*
2303                          * We need to try to allocate
2304                          * unmapped blocks in the same page.
2305                          * Otherwise we won't make progress
2306                          * with the page in ext4_da_writepage
2307                          */
2308                         if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2309                                 mpage_add_bh_to_extent(mpd, logical,
2310                                                        bh->b_size,
2311                                                        bh->b_state);
2312                                 if (mpd->io_done)
2313                                         return MPAGE_DA_EXTENT_TAIL;
2314                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2315                                 /*
2316                                  * mapped dirty buffer. We need to update
2317                                  * the b_state because we look at
2318                                  * b_state in mpage_da_map_blocks. We don't
2319                                  * update b_size because if we find an
2320                                  * unmapped buffer_head later we need to
2321                                  * use the b_state flag of that buffer_head.
2322                                  */
2323                                 if (mpd->b_size == 0)
2324                                         mpd->b_state = bh->b_state & BH_FLAGS;
2325                         }
2326                         logical++;
2327                 } while ((bh = bh->b_this_page) != head);
2328         }
2329
2330         return 0;
2331 }
2332
2333 /*
2334  * This is a special get_blocks_t callback which is used by
2335  * ext4_da_write_begin().  It will either return mapped block or
2336  * reserve space for a single block.
2337  *
2338  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2339  * We also have b_blocknr = -1 and b_bdev initialized properly
2340  *
2341  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2342  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2343  * initialized properly.
2344  */
2345 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2346                                   struct buffer_head *bh_result, int create)
2347 {
2348         int ret = 0;
2349         sector_t invalid_block = ~((sector_t) 0xffff);
2350
2351         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2352                 invalid_block = ~0;
2353
2354         BUG_ON(create == 0);
2355         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2356
2357         /*
2358          * first, we need to know whether the block is allocated already
2359          * preallocated blocks are unmapped but should treated
2360          * the same as allocated blocks.
2361          */
2362         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2363         if ((ret == 0) && !buffer_delay(bh_result)) {
2364                 /* the block isn't (pre)allocated yet, let's reserve space */
2365                 /*
2366                  * XXX: __block_prepare_write() unmaps passed block,
2367                  * is it OK?
2368                  */
2369                 ret = ext4_da_reserve_space(inode, 1);
2370                 if (ret)
2371                         /* not enough space to reserve */
2372                         return ret;
2373
2374                 map_bh(bh_result, inode->i_sb, invalid_block);
2375                 set_buffer_new(bh_result);
2376                 set_buffer_delay(bh_result);
2377         } else if (ret > 0) {
2378                 bh_result->b_size = (ret << inode->i_blkbits);
2379                 if (buffer_unwritten(bh_result)) {
2380                         /* A delayed write to unwritten bh should
2381                          * be marked new and mapped.  Mapped ensures
2382                          * that we don't do get_block multiple times
2383                          * when we write to the same offset and new
2384                          * ensures that we do proper zero out for
2385                          * partial write.
2386                          */
2387                         set_buffer_new(bh_result);
2388                         set_buffer_mapped(bh_result);
2389                 }
2390                 ret = 0;
2391         }
2392
2393         return ret;
2394 }
2395
2396 /*
2397  * This function is used as a standard get_block_t calback function
2398  * when there is no desire to allocate any blocks.  It is used as a
2399  * callback function for block_prepare_write(), nobh_writepage(), and
2400  * block_write_full_page().  These functions should only try to map a
2401  * single block at a time.
2402  *
2403  * Since this function doesn't do block allocations even if the caller
2404  * requests it by passing in create=1, it is critically important that
2405  * any caller checks to make sure that any buffer heads are returned
2406  * by this function are either all already mapped or marked for
2407  * delayed allocation before calling nobh_writepage() or
2408  * block_write_full_page().  Otherwise, b_blocknr could be left
2409  * unitialized, and the page write functions will be taken by
2410  * surprise.
2411  */
2412 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2413                                    struct buffer_head *bh_result, int create)
2414 {
2415         int ret = 0;
2416         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2417
2418         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2419
2420         /*
2421          * we don't want to do block allocation in writepage
2422          * so call get_block_wrap with create = 0
2423          */
2424         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2425         BUG_ON(create && ret == 0);
2426         if (ret > 0) {
2427                 bh_result->b_size = (ret << inode->i_blkbits);
2428                 ret = 0;
2429         }
2430         return ret;
2431 }
2432
2433 /*
2434  * This function can get called via...
2435  *   - ext4_da_writepages after taking page lock (have journal handle)
2436  *   - journal_submit_inode_data_buffers (no journal handle)
2437  *   - shrink_page_list via pdflush (no journal handle)
2438  *   - grab_page_cache when doing write_begin (have journal handle)
2439  */
2440 static int ext4_da_writepage(struct page *page,
2441                                 struct writeback_control *wbc)
2442 {
2443         int ret = 0;
2444         loff_t size;
2445         unsigned int len;
2446         struct buffer_head *page_bufs;
2447         struct inode *inode = page->mapping->host;
2448
2449         trace_mark(ext4_da_writepage,
2450                    "dev %s ino %lu page_index %lu",
2451                    inode->i_sb->s_id, inode->i_ino, page->index);
2452         size = i_size_read(inode);
2453         if (page->index == size >> PAGE_CACHE_SHIFT)
2454                 len = size & ~PAGE_CACHE_MASK;
2455         else
2456                 len = PAGE_CACHE_SIZE;
2457
2458         if (page_has_buffers(page)) {
2459                 page_bufs = page_buffers(page);
2460                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2461                                         ext4_bh_unmapped_or_delay)) {
2462                         /*
2463                          * We don't want to do  block allocation
2464                          * So redirty the page and return
2465                          * We may reach here when we do a journal commit
2466                          * via journal_submit_inode_data_buffers.
2467                          * If we don't have mapping block we just ignore
2468                          * them. We can also reach here via shrink_page_list
2469                          */
2470                         redirty_page_for_writepage(wbc, page);
2471                         unlock_page(page);
2472                         return 0;
2473                 }
2474         } else {
2475                 /*
2476                  * The test for page_has_buffers() is subtle:
2477                  * We know the page is dirty but it lost buffers. That means
2478                  * that at some moment in time after write_begin()/write_end()
2479                  * has been called all buffers have been clean and thus they
2480                  * must have been written at least once. So they are all
2481                  * mapped and we can happily proceed with mapping them
2482                  * and writing the page.
2483                  *
2484                  * Try to initialize the buffer_heads and check whether
2485                  * all are mapped and non delay. We don't want to
2486                  * do block allocation here.
2487                  */
2488                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2489                                           noalloc_get_block_write);
2490                 if (!ret) {
2491                         page_bufs = page_buffers(page);
2492                         /* check whether all are mapped and non delay */
2493                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2494                                                 ext4_bh_unmapped_or_delay)) {
2495                                 redirty_page_for_writepage(wbc, page);
2496                                 unlock_page(page);
2497                                 return 0;
2498                         }
2499                 } else {
2500                         /*
2501                          * We can't do block allocation here
2502                          * so just redity the page and unlock
2503                          * and return
2504                          */
2505                         redirty_page_for_writepage(wbc, page);
2506                         unlock_page(page);
2507                         return 0;
2508                 }
2509                 /* now mark the buffer_heads as dirty and uptodate */
2510                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2511         }
2512
2513         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2514                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2515         else
2516                 ret = block_write_full_page(page, noalloc_get_block_write,
2517                                             wbc);
2518
2519         return ret;
2520 }
2521
2522 /*
2523  * This is called via ext4_da_writepages() to
2524  * calulate the total number of credits to reserve to fit
2525  * a single extent allocation into a single transaction,
2526  * ext4_da_writpeages() will loop calling this before
2527  * the block allocation.
2528  */
2529
2530 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 {
2532         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2533
2534         /*
2535          * With non-extent format the journal credit needed to
2536          * insert nrblocks contiguous block is dependent on
2537          * number of contiguous block. So we will limit
2538          * number of contiguous block to a sane value
2539          */
2540         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2541             (max_blocks > EXT4_MAX_TRANS_DATA))
2542                 max_blocks = EXT4_MAX_TRANS_DATA;
2543
2544         return ext4_chunk_trans_blocks(inode, max_blocks);
2545 }
2546
2547 static int ext4_da_writepages(struct address_space *mapping,
2548                               struct writeback_control *wbc)
2549 {
2550         pgoff_t index;
2551         int range_whole = 0;
2552         handle_t *handle = NULL;
2553         struct mpage_da_data mpd;
2554         struct inode *inode = mapping->host;
2555         int no_nrwrite_index_update;
2556         int pages_written = 0;
2557         long pages_skipped;
2558         int range_cyclic, cycled = 1, io_done = 0;
2559         int needed_blocks, ret = 0, nr_to_writebump = 0;
2560         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2561
2562         trace_mark(ext4_da_writepages,
2563                    "dev %s ino %lu nr_t_write %ld "
2564                    "pages_skipped %ld range_start %llu "
2565                    "range_end %llu nonblocking %d "
2566                    "for_kupdate %d for_reclaim %d "
2567                    "for_writepages %d range_cyclic %d",
2568                    inode->i_sb->s_id, inode->i_ino,
2569                    wbc->nr_to_write, wbc->pages_skipped,
2570                    (unsigned long long) wbc->range_start,
2571                    (unsigned long long) wbc->range_end,
2572                    wbc->nonblocking, wbc->for_kupdate,
2573                    wbc->for_reclaim, wbc->for_writepages,
2574                    wbc->range_cyclic);
2575
2576         /*
2577          * No pages to write? This is mainly a kludge to avoid starting
2578          * a transaction for special inodes like journal inode on last iput()
2579          * because that could violate lock ordering on umount
2580          */
2581         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2582                 return 0;
2583
2584         /*
2585          * If the filesystem has aborted, it is read-only, so return
2586          * right away instead of dumping stack traces later on that
2587          * will obscure the real source of the problem.  We test
2588          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2589          * the latter could be true if the filesystem is mounted
2590          * read-only, and in that case, ext4_da_writepages should
2591          * *never* be called, so if that ever happens, we would want
2592          * the stack trace.
2593          */
2594         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2595                 return -EROFS;
2596
2597         /*
2598          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2599          * This make sure small files blocks are allocated in
2600          * single attempt. This ensure that small files
2601          * get less fragmented.
2602          */
2603         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2604                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2605                 wbc->nr_to_write = sbi->s_mb_stream_request;
2606         }
2607         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2608                 range_whole = 1;
2609
2610         range_cyclic = wbc->range_cyclic;
2611         if (wbc->range_cyclic) {
2612                 index = mapping->writeback_index;
2613                 if (index)
2614                         cycled = 0;
2615                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2616                 wbc->range_end  = LLONG_MAX;
2617                 wbc->range_cyclic = 0;
2618         } else
2619                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2620
2621         mpd.wbc = wbc;
2622         mpd.inode = mapping->host;
2623
2624         /*
2625          * we don't want write_cache_pages to update
2626          * nr_to_write and writeback_index
2627          */
2628         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2629         wbc->no_nrwrite_index_update = 1;
2630         pages_skipped = wbc->pages_skipped;
2631
2632 retry:
2633         while (!ret && wbc->nr_to_write > 0) {
2634
2635                 /*
2636                  * we  insert one extent at a time. So we need
2637                  * credit needed for single extent allocation.
2638                  * journalled mode is currently not supported
2639                  * by delalloc
2640                  */
2641                 BUG_ON(ext4_should_journal_data(inode));
2642                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2643
2644                 /* start a new transaction*/
2645                 handle = ext4_journal_start(inode, needed_blocks);
2646                 if (IS_ERR(handle)) {
2647                         ret = PTR_ERR(handle);
2648                         printk(KERN_CRIT "%s: jbd2_start: "
2649                                "%ld pages, ino %lu; err %d\n", __func__,
2650                                 wbc->nr_to_write, inode->i_ino, ret);
2651                         dump_stack();
2652                         goto out_writepages;
2653                 }
2654
2655                 /*
2656                  * Now call __mpage_da_writepage to find the next
2657                  * contiguous region of logical blocks that need
2658                  * blocks to be allocated by ext4.  We don't actually
2659                  * submit the blocks for I/O here, even though
2660                  * write_cache_pages thinks it will, and will set the
2661                  * pages as clean for write before calling
2662                  * __mpage_da_writepage().
2663                  */
2664                 mpd.b_size = 0;
2665                 mpd.b_state = 0;
2666                 mpd.b_blocknr = 0;
2667                 mpd.first_page = 0;
2668                 mpd.next_page = 0;
2669                 mpd.io_done = 0;
2670                 mpd.pages_written = 0;
2671                 mpd.retval = 0;
2672                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2673                                         &mpd);
2674                 /*
2675                  * If we have a contigous extent of pages and we
2676                  * haven't done the I/O yet, map the blocks and submit
2677                  * them for I/O.
2678                  */
2679                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2680                         if (mpage_da_map_blocks(&mpd) == 0)
2681                                 mpage_da_submit_io(&mpd);
2682                         mpd.io_done = 1;
2683                         ret = MPAGE_DA_EXTENT_TAIL;
2684                 }
2685                 wbc->nr_to_write -= mpd.pages_written;
2686
2687                 ext4_journal_stop(handle);
2688
2689                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2690                         /* commit the transaction which would
2691                          * free blocks released in the transaction
2692                          * and try again
2693                          */
2694                         jbd2_journal_force_commit_nested(sbi->s_journal);
2695                         wbc->pages_skipped = pages_skipped;
2696                         ret = 0;
2697                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2698                         /*
2699                          * got one extent now try with
2700                          * rest of the pages
2701                          */
2702                         pages_written += mpd.pages_written;
2703                         wbc->pages_skipped = pages_skipped;
2704                         ret = 0;
2705                         io_done = 1;
2706                 } else if (wbc->nr_to_write)
2707                         /*
2708                          * There is no more writeout needed
2709                          * or we requested for a noblocking writeout
2710                          * and we found the device congested
2711                          */
2712                         break;
2713         }
2714         if (!io_done && !cycled) {
2715                 cycled = 1;
2716                 index = 0;
2717                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2718                 wbc->range_end  = mapping->writeback_index - 1;
2719                 goto retry;
2720         }
2721         if (pages_skipped != wbc->pages_skipped)
2722                 printk(KERN_EMERG "This should not happen leaving %s "
2723                                 "with nr_to_write = %ld ret = %d\n",
2724                                 __func__, wbc->nr_to_write, ret);
2725
2726         /* Update index */
2727         index += pages_written;
2728         wbc->range_cyclic = range_cyclic;
2729         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2730                 /*
2731                  * set the writeback_index so that range_cyclic
2732                  * mode will write it back later
2733                  */
2734                 mapping->writeback_index = index;
2735
2736 out_writepages:
2737         if (!no_nrwrite_index_update)
2738                 wbc->no_nrwrite_index_update = 0;
2739         wbc->nr_to_write -= nr_to_writebump;
2740         trace_mark(ext4_da_writepage_result,
2741                    "dev %s ino %lu ret %d pages_written %d "
2742                    "pages_skipped %ld congestion %d "
2743                    "more_io %d no_nrwrite_index_update %d",
2744                    inode->i_sb->s_id, inode->i_ino, ret,
2745                    pages_written, wbc->pages_skipped,
2746                    wbc->encountered_congestion, wbc->more_io,
2747                    wbc->no_nrwrite_index_update);
2748         return ret;
2749 }
2750
2751 #define FALL_BACK_TO_NONDELALLOC 1
2752 static int ext4_nonda_switch(struct super_block *sb)
2753 {
2754         s64 free_blocks, dirty_blocks;
2755         struct ext4_sb_info *sbi = EXT4_SB(sb);
2756
2757         /*
2758          * switch to non delalloc mode if we are running low
2759          * on free block. The free block accounting via percpu
2760          * counters can get slightly wrong with percpu_counter_batch getting
2761          * accumulated on each CPU without updating global counters
2762          * Delalloc need an accurate free block accounting. So switch
2763          * to non delalloc when we are near to error range.
2764          */
2765         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2766         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2767         if (2 * free_blocks < 3 * dirty_blocks ||
2768                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2769                 /*
2770                  * free block count is less that 150% of dirty blocks
2771                  * or free blocks is less that watermark
2772                  */
2773                 return 1;
2774         }
2775         return 0;
2776 }
2777
2778 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2779                                 loff_t pos, unsigned len, unsigned flags,
2780                                 struct page **pagep, void **fsdata)
2781 {
2782         int ret, retries = 0;
2783         struct page *page;
2784         pgoff_t index;
2785         unsigned from, to;
2786         struct inode *inode = mapping->host;
2787         handle_t *handle;
2788
2789         index = pos >> PAGE_CACHE_SHIFT;
2790         from = pos & (PAGE_CACHE_SIZE - 1);
2791         to = from + len;
2792
2793         if (ext4_nonda_switch(inode->i_sb)) {
2794                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2795                 return ext4_write_begin(file, mapping, pos,
2796                                         len, flags, pagep, fsdata);
2797         }
2798         *fsdata = (void *)0;
2799
2800         trace_mark(ext4_da_write_begin,
2801                    "dev %s ino %lu pos %llu len %u flags %u",
2802                    inode->i_sb->s_id, inode->i_ino,
2803                    (unsigned long long) pos, len, flags);
2804 retry:
2805         /*
2806          * With delayed allocation, we don't log the i_disksize update
2807          * if there is delayed block allocation. But we still need
2808          * to journalling the i_disksize update if writes to the end
2809          * of file which has an already mapped buffer.
2810          */
2811         handle = ext4_journal_start(inode, 1);
2812         if (IS_ERR(handle)) {
2813                 ret = PTR_ERR(handle);
2814                 goto out;
2815         }
2816         /* We cannot recurse into the filesystem as the transaction is already
2817          * started */
2818         flags |= AOP_FLAG_NOFS;
2819
2820         page = grab_cache_page_write_begin(mapping, index, flags);
2821         if (!page) {
2822                 ext4_journal_stop(handle);
2823                 ret = -ENOMEM;
2824                 goto out;
2825         }
2826         *pagep = page;
2827
2828         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2829                                 ext4_da_get_block_prep);
2830         if (ret < 0) {
2831                 unlock_page(page);
2832                 ext4_journal_stop(handle);
2833                 page_cache_release(page);
2834                 /*
2835                  * block_write_begin may have instantiated a few blocks
2836                  * outside i_size.  Trim these off again. Don't need
2837                  * i_size_read because we hold i_mutex.
2838                  */
2839                 if (pos + len > inode->i_size)
2840                         vmtruncate(inode, inode->i_size);
2841         }
2842
2843         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2844                 goto retry;
2845 out:
2846         return ret;
2847 }
2848
2849 /*
2850  * Check if we should update i_disksize
2851  * when write to the end of file but not require block allocation
2852  */
2853 static int ext4_da_should_update_i_disksize(struct page *page,
2854                                          unsigned long offset)
2855 {
2856         struct buffer_head *bh;
2857         struct inode *inode = page->mapping->host;
2858         unsigned int idx;
2859         int i;
2860
2861         bh = page_buffers(page);
2862         idx = offset >> inode->i_blkbits;
2863
2864         for (i = 0; i < idx; i++)
2865                 bh = bh->b_this_page;
2866
2867         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2868                 return 0;
2869         return 1;
2870 }
2871
2872 static int ext4_da_write_end(struct file *file,
2873                                 struct address_space *mapping,
2874                                 loff_t pos, unsigned len, unsigned copied,
2875                                 struct page *page, void *fsdata)
2876 {
2877         struct inode *inode = mapping->host;
2878         int ret = 0, ret2;
2879         handle_t *handle = ext4_journal_current_handle();
2880         loff_t new_i_size;
2881         unsigned long start, end;
2882         int write_mode = (int)(unsigned long)fsdata;
2883
2884         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2885                 if (ext4_should_order_data(inode)) {
2886                         return ext4_ordered_write_end(file, mapping, pos,
2887                                         len, copied, page, fsdata);
2888                 } else if (ext4_should_writeback_data(inode)) {
2889                         return ext4_writeback_write_end(file, mapping, pos,
2890                                         len, copied, page, fsdata);
2891                 } else {
2892                         BUG();
2893                 }
2894         }
2895
2896         trace_mark(ext4_da_write_end,
2897                    "dev %s ino %lu pos %llu len %u copied %u",
2898                    inode->i_sb->s_id, inode->i_ino,
2899                    (unsigned long long) pos, len, copied);
2900         start = pos & (PAGE_CACHE_SIZE - 1);
2901         end = start + copied - 1;
2902
2903         /*
2904          * generic_write_end() will run mark_inode_dirty() if i_size
2905          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2906          * into that.
2907          */
2908
2909         new_i_size = pos + copied;
2910         if (new_i_size > EXT4_I(inode)->i_disksize) {
2911                 if (ext4_da_should_update_i_disksize(page, end)) {
2912                         down_write(&EXT4_I(inode)->i_data_sem);
2913                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2914                                 /*
2915                                  * Updating i_disksize when extending file
2916                                  * without needing block allocation
2917                                  */
2918                                 if (ext4_should_order_data(inode))
2919                                         ret = ext4_jbd2_file_inode(handle,
2920                                                                    inode);
2921
2922                                 EXT4_I(inode)->i_disksize = new_i_size;
2923                         }
2924                         up_write(&EXT4_I(inode)->i_data_sem);
2925                         /* We need to mark inode dirty even if
2926                          * new_i_size is less that inode->i_size
2927                          * bu greater than i_disksize.(hint delalloc)
2928                          */
2929                         ext4_mark_inode_dirty(handle, inode);
2930                 }
2931         }
2932         ret2 = generic_write_end(file, mapping, pos, len, copied,
2933                                                         page, fsdata);
2934         copied = ret2;
2935         if (ret2 < 0)
2936                 ret = ret2;
2937         ret2 = ext4_journal_stop(handle);
2938         if (!ret)
2939                 ret = ret2;
2940
2941         return ret ? ret : copied;
2942 }
2943
2944 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2945 {
2946         /*
2947          * Drop reserved blocks
2948          */
2949         BUG_ON(!PageLocked(page));
2950         if (!page_has_buffers(page))
2951                 goto out;
2952
2953         ext4_da_page_release_reservation(page, offset);
2954
2955 out:
2956         ext4_invalidatepage(page, offset);
2957
2958         return;
2959 }
2960
2961 /*
2962  * Force all delayed allocation blocks to be allocated for a given inode.
2963  */
2964 int ext4_alloc_da_blocks(struct inode *inode)
2965 {
2966         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2967             !EXT4_I(inode)->i_reserved_meta_blocks)
2968                 return 0;
2969
2970         /*
2971          * We do something simple for now.  The filemap_flush() will
2972          * also start triggering a write of the data blocks, which is
2973          * not strictly speaking necessary (and for users of
2974          * laptop_mode, not even desirable).  However, to do otherwise
2975          * would require replicating code paths in:
2976          * 
2977          * ext4_da_writepages() ->
2978          *    write_cache_pages() ---> (via passed in callback function)
2979          *        __mpage_da_writepage() -->
2980          *           mpage_add_bh_to_extent()
2981          *           mpage_da_map_blocks()
2982          *
2983          * The problem is that write_cache_pages(), located in
2984          * mm/page-writeback.c, marks pages clean in preparation for
2985          * doing I/O, which is not desirable if we're not planning on
2986          * doing I/O at all.
2987          *
2988          * We could call write_cache_pages(), and then redirty all of
2989          * the pages by calling redirty_page_for_writeback() but that
2990          * would be ugly in the extreme.  So instead we would need to
2991          * replicate parts of the code in the above functions,
2992          * simplifying them becuase we wouldn't actually intend to
2993          * write out the pages, but rather only collect contiguous
2994          * logical block extents, call the multi-block allocator, and
2995          * then update the buffer heads with the block allocations.
2996          * 
2997          * For now, though, we'll cheat by calling filemap_flush(),
2998          * which will map the blocks, and start the I/O, but not
2999          * actually wait for the I/O to complete.
3000          */
3001         return filemap_flush(inode->i_mapping);
3002 }
3003
3004 /*
3005  * bmap() is special.  It gets used by applications such as lilo and by
3006  * the swapper to find the on-disk block of a specific piece of data.
3007  *
3008  * Naturally, this is dangerous if the block concerned is still in the
3009  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3010  * filesystem and enables swap, then they may get a nasty shock when the
3011  * data getting swapped to that swapfile suddenly gets overwritten by
3012  * the original zero's written out previously to the journal and
3013  * awaiting writeback in the kernel's buffer cache.
3014  *
3015  * So, if we see any bmap calls here on a modified, data-journaled file,
3016  * take extra steps to flush any blocks which might be in the cache.
3017  */
3018 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3019 {
3020         struct inode *inode = mapping->host;
3021         journal_t *journal;
3022         int err;
3023
3024         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3025                         test_opt(inode->i_sb, DELALLOC)) {
3026                 /*
3027                  * With delalloc we want to sync the file
3028                  * so that we can make sure we allocate
3029                  * blocks for file
3030                  */
3031                 filemap_write_and_wait(mapping);
3032         }
3033
3034         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3035                 /*
3036                  * This is a REALLY heavyweight approach, but the use of
3037                  * bmap on dirty files is expected to be extremely rare:
3038                  * only if we run lilo or swapon on a freshly made file
3039                  * do we expect this to happen.
3040                  *
3041                  * (bmap requires CAP_SYS_RAWIO so this does not
3042                  * represent an unprivileged user DOS attack --- we'd be
3043                  * in trouble if mortal users could trigger this path at
3044                  * will.)
3045                  *
3046                  * NB. EXT4_STATE_JDATA is not set on files other than
3047                  * regular files.  If somebody wants to bmap a directory
3048                  * or symlink and gets confused because the buffer
3049                  * hasn't yet been flushed to disk, they deserve
3050                  * everything they get.
3051                  */
3052
3053                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3054                 journal = EXT4_JOURNAL(inode);
3055                 jbd2_journal_lock_updates(journal);
3056                 err = jbd2_journal_flush(journal);
3057                 jbd2_journal_unlock_updates(journal);
3058
3059                 if (err)
3060                         return 0;
3061         }
3062
3063         return generic_block_bmap(mapping, block, ext4_get_block);
3064 }
3065
3066 static int bget_one(handle_t *handle, struct buffer_head *bh)
3067 {
3068         get_bh(bh);
3069         return 0;
3070 }
3071
3072 static int bput_one(handle_t *handle, struct buffer_head *bh)
3073 {
3074         put_bh(bh);
3075         return 0;
3076 }
3077
3078 /*
3079  * Note that we don't need to start a transaction unless we're journaling data
3080  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3081  * need to file the inode to the transaction's list in ordered mode because if
3082  * we are writing back data added by write(), the inode is already there and if
3083  * we are writing back data modified via mmap(), noone guarantees in which
3084  * transaction the data will hit the disk. In case we are journaling data, we
3085  * cannot start transaction directly because transaction start ranks above page
3086  * lock so we have to do some magic.
3087  *
3088  * In all journaling modes block_write_full_page() will start the I/O.
3089  *
3090  * Problem:
3091  *
3092  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3093  *              ext4_writepage()
3094  *
3095  * Similar for:
3096  *
3097  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3098  *
3099  * Same applies to ext4_get_block().  We will deadlock on various things like
3100  * lock_journal and i_data_sem
3101  *
3102  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3103  * allocations fail.
3104  *
3105  * 16May01: If we're reentered then journal_current_handle() will be
3106  *          non-zero. We simply *return*.
3107  *
3108  * 1 July 2001: @@@ FIXME:
3109  *   In journalled data mode, a data buffer may be metadata against the
3110  *   current transaction.  But the same file is part of a shared mapping
3111  *   and someone does a writepage() on it.
3112  *
3113  *   We will move the buffer onto the async_data list, but *after* it has
3114  *   been dirtied. So there's a small window where we have dirty data on
3115  *   BJ_Metadata.
3116  *
3117  *   Note that this only applies to the last partial page in the file.  The
3118  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3119  *   broken code anyway: it's wrong for msync()).
3120  *
3121  *   It's a rare case: affects the final partial page, for journalled data
3122  *   where the file is subject to bith write() and writepage() in the same
3123  *   transction.  To fix it we'll need a custom block_write_full_page().
3124  *   We'll probably need that anyway for journalling writepage() output.
3125  *
3126  * We don't honour synchronous mounts for writepage().  That would be
3127  * disastrous.  Any write() or metadata operation will sync the fs for
3128  * us.
3129  *
3130  */
3131 static int __ext4_normal_writepage(struct page *page,
3132                                 struct writeback_control *wbc)
3133 {
3134         struct inode *inode = page->mapping->host;
3135
3136         if (test_opt(inode->i_sb, NOBH))
3137                 return nobh_writepage(page, noalloc_get_block_write, wbc);
3138         else
3139                 return block_write_full_page(page, noalloc_get_block_write,
3140                                              wbc);
3141 }
3142
3143 static int ext4_normal_writepage(struct page *page,
3144                                 struct writeback_control *wbc)
3145 {
3146         struct inode *inode = page->mapping->host;
3147         loff_t size = i_size_read(inode);
3148         loff_t len;
3149
3150         trace_mark(ext4_normal_writepage,
3151                    "dev %s ino %lu page_index %lu",
3152                    inode->i_sb->s_id, inode->i_ino, page->index);
3153         J_ASSERT(PageLocked(page));
3154         if (page->index == size >> PAGE_CACHE_SHIFT)
3155                 len = size & ~PAGE_CACHE_MASK;
3156         else
3157                 len = PAGE_CACHE_SIZE;
3158
3159         if (page_has_buffers(page)) {
3160                 /* if page has buffers it should all be mapped
3161                  * and allocated. If there are not buffers attached
3162                  * to the page we know the page is dirty but it lost
3163                  * buffers. That means that at some moment in time
3164                  * after write_begin() / write_end() has been called
3165                  * all buffers have been clean and thus they must have been
3166                  * written at least once. So they are all mapped and we can
3167                  * happily proceed with mapping them and writing the page.
3168                  */
3169                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3170                                         ext4_bh_unmapped_or_delay));
3171         }
3172
3173         if (!ext4_journal_current_handle())
3174                 return __ext4_normal_writepage(page, wbc);
3175
3176         redirty_page_for_writepage(wbc, page);
3177         unlock_page(page);
3178         return 0;
3179 }
3180
3181 static int __ext4_journalled_writepage(struct page *page,
3182                                 struct writeback_control *wbc)
3183 {
3184         struct address_space *mapping = page->mapping;
3185         struct inode *inode = mapping->host;
3186         struct buffer_head *page_bufs;
3187         handle_t *handle = NULL;
3188         int ret = 0;
3189         int err;
3190
3191         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3192                                   noalloc_get_block_write);
3193         if (ret != 0)
3194                 goto out_unlock;
3195
3196         page_bufs = page_buffers(page);
3197         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3198                                                                 bget_one);
3199         /* As soon as we unlock the page, it can go away, but we have
3200          * references to buffers so we are safe */
3201         unlock_page(page);
3202
3203         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3204         if (IS_ERR(handle)) {
3205                 ret = PTR_ERR(handle);
3206                 goto out;
3207         }
3208
3209         ret = walk_page_buffers(handle, page_bufs, 0,
3210                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3211
3212         err = walk_page_buffers(handle, page_bufs, 0,
3213                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3214         if (ret == 0)
3215                 ret = err;
3216         err = ext4_journal_stop(handle);
3217         if (!ret)
3218                 ret = err;
3219
3220         walk_page_buffers(handle, page_bufs, 0,
3221                                 PAGE_CACHE_SIZE, NULL, bput_one);
3222         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3223         goto out;
3224
3225 out_unlock:
3226         unlock_page(page);
3227 out:
3228         return ret;
3229 }
3230
3231 static int ext4_journalled_writepage(struct page *page,
3232                                 struct writeback_control *wbc)
3233 {
3234         struct inode *inode = page->mapping->host;
3235         loff_t size = i_size_read(inode);
3236         loff_t len;
3237
3238         trace_mark(ext4_journalled_writepage,
3239                    "dev %s ino %lu page_index %lu",
3240                    inode->i_sb->s_id, inode->i_ino, page->index);
3241         J_ASSERT(PageLocked(page));
3242         if (page->index == size >> PAGE_CACHE_SHIFT)
3243                 len = size & ~PAGE_CACHE_MASK;
3244         else
3245                 len = PAGE_CACHE_SIZE;
3246
3247         if (page_has_buffers(page)) {
3248                 /* if page has buffers it should all be mapped
3249                  * and allocated. If there are not buffers attached
3250                  * to the page we know the page is dirty but it lost
3251                  * buffers. That means that at some moment in time
3252                  * after write_begin() / write_end() has been called
3253                  * all buffers have been clean and thus they must have been
3254                  * written at least once. So they are all mapped and we can
3255                  * happily proceed with mapping them and writing the page.
3256                  */
3257                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3258                                         ext4_bh_unmapped_or_delay));
3259         }
3260
3261         if (ext4_journal_current_handle())
3262                 goto no_write;
3263
3264         if (PageChecked(page)) {
3265                 /*
3266                  * It's mmapped pagecache.  Add buffers and journal it.  There
3267                  * doesn't seem much point in redirtying the page here.
3268                  */
3269                 ClearPageChecked(page);
3270                 return __ext4_journalled_writepage(page, wbc);
3271         } else {
3272                 /*
3273                  * It may be a page full of checkpoint-mode buffers.  We don't
3274                  * really know unless we go poke around in the buffer_heads.
3275                  * But block_write_full_page will do the right thing.
3276                  */
3277                 return block_write_full_page(page, noalloc_get_block_write,
3278                                              wbc);
3279         }
3280 no_write:
3281         redirty_page_for_writepage(wbc, page);
3282         unlock_page(page);
3283         return 0;
3284 }
3285
3286 static int ext4_readpage(struct file *file, struct page *page)
3287 {
3288         return mpage_readpage(page, ext4_get_block);
3289 }
3290
3291 static int
3292 ext4_readpages(struct file *file, struct address_space *mapping,
3293                 struct list_head *pages, unsigned nr_pages)
3294 {
3295         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3296 }
3297
3298 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3299 {
3300         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3301
3302         /*
3303          * If it's a full truncate we just forget about the pending dirtying
3304          */
3305         if (offset == 0)
3306                 ClearPageChecked(page);
3307
3308         if (journal)
3309                 jbd2_journal_invalidatepage(journal, page, offset);
3310         else
3311                 block_invalidatepage(page, offset);
3312 }
3313
3314 static int ext4_releasepage(struct page *page, gfp_t wait)
3315 {
3316         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3317
3318         WARN_ON(PageChecked(page));
3319         if (!page_has_buffers(page))
3320                 return 0;
3321         if (journal)
3322                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3323         else
3324                 return try_to_free_buffers(page);
3325 }
3326
3327 /*
3328  * If the O_DIRECT write will extend the file then add this inode to the
3329  * orphan list.  So recovery will truncate it back to the original size
3330  * if the machine crashes during the write.
3331  *
3332  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3333  * crashes then stale disk data _may_ be exposed inside the file. But current
3334  * VFS code falls back into buffered path in that case so we are safe.
3335  */
3336 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3337                         const struct iovec *iov, loff_t offset,
3338                         unsigned long nr_segs)
3339 {
3340         struct file *file = iocb->ki_filp;
3341         struct inode *inode = file->f_mapping->host;
3342         struct ext4_inode_info *ei = EXT4_I(inode);
3343         handle_t *handle;
3344         ssize_t ret;
3345         int orphan = 0;
3346         size_t count = iov_length(iov, nr_segs);
3347
3348         if (rw == WRITE) {
3349                 loff_t final_size = offset + count;
3350
3351                 if (final_size > inode->i_size) {
3352                         /* Credits for sb + inode write */
3353                         handle = ext4_journal_start(inode, 2);
3354                         if (IS_ERR(handle)) {
3355                                 ret = PTR_ERR(handle);
3356                                 goto out;
3357                         }
3358                         ret = ext4_orphan_add(handle, inode);
3359                         if (ret) {
3360                                 ext4_journal_stop(handle);
3361                                 goto out;
3362                         }
3363                         orphan = 1;
3364                         ei->i_disksize = inode->i_size;
3365                         ext4_journal_stop(handle);
3366                 }
3367         }
3368
3369         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3370                                  offset, nr_segs,
3371                                  ext4_get_block, NULL);
3372
3373         if (orphan) {
3374                 int err;
3375
3376                 /* Credits for sb + inode write */
3377                 handle = ext4_journal_start(inode, 2);
3378                 if (IS_ERR(handle)) {
3379                         /* This is really bad luck. We've written the data
3380                          * but cannot extend i_size. Bail out and pretend
3381                          * the write failed... */
3382                         ret = PTR_ERR(handle);
3383                         goto out;
3384                 }
3385                 if (inode->i_nlink)
3386                         ext4_orphan_del(handle, inode);
3387                 if (ret > 0) {
3388                         loff_t end = offset + ret;
3389                         if (end > inode->i_size) {
3390                                 ei->i_disksize = end;
3391                                 i_size_write(inode, end);
3392                                 /*
3393                                  * We're going to return a positive `ret'
3394                                  * here due to non-zero-length I/O, so there's
3395                                  * no way of reporting error returns from
3396                                  * ext4_mark_inode_dirty() to userspace.  So
3397                                  * ignore it.
3398                                  */
3399                                 ext4_mark_inode_dirty(handle, inode);
3400                         }
3401                 }
3402                 err = ext4_journal_stop(handle);
3403                 if (ret == 0)
3404                         ret = err;
3405         }
3406 out:
3407         return ret;
3408 }
3409
3410 /*
3411  * Pages can be marked dirty completely asynchronously from ext4's journalling
3412  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3413  * much here because ->set_page_dirty is called under VFS locks.  The page is
3414  * not necessarily locked.
3415  *
3416  * We cannot just dirty the page and leave attached buffers clean, because the
3417  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3418  * or jbddirty because all the journalling code will explode.
3419  *
3420  * So what we do is to mark the page "pending dirty" and next time writepage
3421  * is called, propagate that into the buffers appropriately.
3422  */
3423 static int ext4_journalled_set_page_dirty(struct page *page)
3424 {
3425         SetPageChecked(page);
3426         return __set_page_dirty_nobuffers(page);
3427 }
3428
3429 static const struct address_space_operations ext4_ordered_aops = {
3430         .readpage               = ext4_readpage,
3431         .readpages              = ext4_readpages,
3432         .writepage              = ext4_normal_writepage,
3433         .sync_page              = block_sync_page,
3434         .write_begin            = ext4_write_begin,
3435         .write_end              = ext4_ordered_write_end,
3436         .bmap                   = ext4_bmap,
3437         .invalidatepage         = ext4_invalidatepage,
3438         .releasepage            = ext4_releasepage,
3439         .direct_IO              = ext4_direct_IO,
3440         .migratepage            = buffer_migrate_page,
3441         .is_partially_uptodate  = block_is_partially_uptodate,
3442 };
3443
3444 static const struct address_space_operations ext4_writeback_aops = {
3445         .readpage               = ext4_readpage,
3446         .readpages              = ext4_readpages,
3447         .writepage              = ext4_normal_writepage,
3448         .sync_page              = block_sync_page,
3449         .write_begin            = ext4_write_begin,
3450         .write_end              = ext4_writeback_write_end,
3451         .bmap                   = ext4_bmap,
3452         .invalidatepage         = ext4_invalidatepage,
3453         .releasepage            = ext4_releasepage,
3454         .direct_IO              = ext4_direct_IO,
3455         .migratepage            = buffer_migrate_page,
3456         .is_partially_uptodate  = block_is_partially_uptodate,
3457 };
3458
3459 static const struct address_space_operations ext4_journalled_aops = {
3460         .readpage               = ext4_readpage,
3461         .readpages              = ext4_readpages,
3462         .writepage              = ext4_journalled_writepage,
3463         .sync_page              = block_sync_page,
3464         .write_begin            = ext4_write_begin,
3465         .write_end              = ext4_journalled_write_end,
3466         .set_page_dirty         = ext4_journalled_set_page_dirty,
3467         .bmap                   = ext4_bmap,
3468         .invalidatepage         = ext4_invalidatepage,
3469         .releasepage            = ext4_releasepage,
3470         .is_partially_uptodate  = block_is_partially_uptodate,
3471 };
3472
3473 static const struct address_space_operations ext4_da_aops = {
3474         .readpage               = ext4_readpage,
3475         .readpages              = ext4_readpages,
3476         .writepage              = ext4_da_writepage,
3477         .writepages             = ext4_da_writepages,
3478         .sync_page              = block_sync_page,
3479         .write_begin            = ext4_da_write_begin,
3480         .write_end              = ext4_da_write_end,
3481         .bmap                   = ext4_bmap,
3482         .invalidatepage         = ext4_da_invalidatepage,
3483         .releasepage            = ext4_releasepage,
3484         .direct_IO              = ext4_direct_IO,
3485         .migratepage            = buffer_migrate_page,
3486         .is_partially_uptodate  = block_is_partially_uptodate,
3487 };
3488
3489 void ext4_set_aops(struct inode *inode)
3490 {
3491         if (ext4_should_order_data(inode) &&
3492                 test_opt(inode->i_sb, DELALLOC))
3493                 inode->i_mapping->a_ops = &ext4_da_aops;
3494         else if (ext4_should_order_data(inode))
3495                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3496         else if (ext4_should_writeback_data(inode) &&
3497                  test_opt(inode->i_sb, DELALLOC))
3498                 inode->i_mapping->a_ops = &ext4_da_aops;
3499         else if (ext4_should_writeback_data(inode))
3500                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3501         else
3502                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3503 }
3504
3505 /*
3506  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3507  * up to the end of the block which corresponds to `from'.
3508  * This required during truncate. We need to physically zero the tail end
3509  * of that block so it doesn't yield old data if the file is later grown.
3510  */
3511 int ext4_block_truncate_page(handle_t *handle,
3512                 struct address_space *mapping, loff_t from)
3513 {
3514         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3515         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3516         unsigned blocksize, length, pos;
3517         ext4_lblk_t iblock;
3518         struct inode *inode = mapping->host;
3519         struct buffer_head *bh;
3520         struct page *page;
3521         int err = 0;
3522
3523         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3524         if (!page)
3525                 return -EINVAL;
3526
3527         blocksize = inode->i_sb->s_blocksize;
3528         length = blocksize - (offset & (blocksize - 1));
3529         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3530
3531         /*
3532          * For "nobh" option,  we can only work if we don't need to
3533          * read-in the page - otherwise we create buffers to do the IO.
3534          */
3535         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3536              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3537                 zero_user(page, offset, length);
3538                 set_page_dirty(page);
3539                 goto unlock;
3540         }
3541
3542         if (!page_has_buffers(page))
3543                 create_empty_buffers(page, blocksize, 0);
3544
3545         /* Find the buffer that contains "offset" */
3546         bh = page_buffers(page);
3547         pos = blocksize;
3548         while (offset >= pos) {
3549                 bh = bh->b_this_page;
3550                 iblock++;
3551                 pos += blocksize;
3552         }
3553
3554         err = 0;
3555         if (buffer_freed(bh)) {
3556                 BUFFER_TRACE(bh, "freed: skip");
3557                 goto unlock;
3558         }
3559
3560         if (!buffer_mapped(bh)) {
3561                 BUFFER_TRACE(bh, "unmapped");
3562                 ext4_get_block(inode, iblock, bh, 0);
3563                 /* unmapped? It's a hole - nothing to do */
3564                 if (!buffer_mapped(bh)) {
3565                         BUFFER_TRACE(bh, "still unmapped");
3566                         goto unlock;
3567                 }
3568         }
3569
3570         /* Ok, it's mapped. Make sure it's up-to-date */
3571         if (PageUptodate(page))
3572                 set_buffer_uptodate(bh);
3573
3574         if (!buffer_uptodate(bh)) {
3575                 err = -EIO;
3576                 ll_rw_block(READ, 1, &bh);
3577                 wait_on_buffer(bh);
3578                 /* Uhhuh. Read error. Complain and punt. */
3579                 if (!buffer_uptodate(bh))
3580                         goto unlock;
3581         }
3582
3583         if (ext4_should_journal_data(inode)) {
3584                 BUFFER_TRACE(bh, "get write access");
3585                 err = ext4_journal_get_write_access(handle, bh);
3586                 if (err)
3587                         goto unlock;
3588         }
3589
3590         zero_user(page, offset, length);
3591
3592         BUFFER_TRACE(bh, "zeroed end of block");
3593
3594         err = 0;
3595         if (ext4_should_journal_data(inode)) {
3596                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3597         } else {
3598                 if (ext4_should_order_data(inode))
3599                         err = ext4_jbd2_file_inode(handle, inode);
3600                 mark_buffer_dirty(bh);
3601         }
3602
3603 unlock:
3604         unlock_page(page);
3605         page_cache_release(page);
3606         return err;
3607 }
3608
3609 /*
3610  * Probably it should be a library function... search for first non-zero word
3611  * or memcmp with zero_page, whatever is better for particular architecture.
3612  * Linus?
3613  */
3614 static inline int all_zeroes(__le32 *p, __le32 *q)
3615 {
3616         while (p < q)
3617                 if (*p++)
3618                         return 0;
3619         return 1;
3620 }
3621
3622 /**
3623  *      ext4_find_shared - find the indirect blocks for partial truncation.
3624  *      @inode:   inode in question
3625  *      @depth:   depth of the affected branch
3626  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3627  *      @chain:   place to store the pointers to partial indirect blocks
3628  *      @top:     place to the (detached) top of branch
3629  *
3630  *      This is a helper function used by ext4_truncate().
3631  *
3632  *      When we do truncate() we may have to clean the ends of several
3633  *      indirect blocks but leave the blocks themselves alive. Block is
3634  *      partially truncated if some data below the new i_size is refered
3635  *      from it (and it is on the path to the first completely truncated
3636  *      data block, indeed).  We have to free the top of that path along
3637  *      with everything to the right of the path. Since no allocation
3638  *      past the truncation point is possible until ext4_truncate()
3639  *      finishes, we may safely do the latter, but top of branch may
3640  *      require special attention - pageout below the truncation point
3641  *      might try to populate it.
3642  *
3643  *      We atomically detach the top of branch from the tree, store the
3644  *      block number of its root in *@top, pointers to buffer_heads of
3645  *      partially truncated blocks - in @chain[].bh and pointers to
3646  *      their last elements that should not be removed - in
3647  *      @chain[].p. Return value is the pointer to last filled element
3648  *      of @chain.
3649  *
3650  *      The work left to caller to do the actual freeing of subtrees:
3651  *              a) free the subtree starting from *@top
3652  *              b) free the subtrees whose roots are stored in
3653  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3654  *              c) free the subtrees growing from the inode past the @chain[0].
3655  *                      (no partially truncated stuff there).  */
3656
3657 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3658                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3659 {
3660         Indirect *partial, *p;
3661         int k, err;
3662
3663         *top = 0;
3664         /* Make k index the deepest non-null offest + 1 */
3665         for (k = depth; k > 1 && !offsets[k-1]; k--)
3666                 ;
3667         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3668         /* Writer: pointers */
3669         if (!partial)
3670                 partial = chain + k-1;
3671         /*
3672          * If the branch acquired continuation since we've looked at it -
3673          * fine, it should all survive and (new) top doesn't belong to us.
3674          */
3675         if (!partial->key && *partial->p)
3676                 /* Writer: end */
3677                 goto no_top;
3678         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3679                 ;
3680         /*
3681          * OK, we've found the last block that must survive. The rest of our
3682          * branch should be detached before unlocking. However, if that rest
3683          * of branch is all ours and does not grow immediately from the inode
3684          * it's easier to cheat and just decrement partial->p.
3685          */
3686         if (p == chain + k - 1 && p > chain) {
3687                 p->p--;
3688         } else {
3689                 *top = *p->p;
3690                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3691 #if 0
3692                 *p->p = 0;
3693 #endif
3694         }
3695         /* Writer: end */
3696
3697         while (partial > p) {
3698                 brelse(partial->bh);
3699                 partial--;
3700         }
3701 no_top:
3702         return partial;
3703 }
3704
3705 /*
3706  * Zero a number of block pointers in either an inode or an indirect block.
3707  * If we restart the transaction we must again get write access to the
3708  * indirect block for further modification.
3709  *
3710  * We release `count' blocks on disk, but (last - first) may be greater
3711  * than `count' because there can be holes in there.
3712  */
3713 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3714                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3715                 unsigned long count, __le32 *first, __le32 *last)
3716 {
3717         __le32 *p;
3718         if (try_to_extend_transaction(handle, inode)) {
3719                 if (bh) {
3720                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3721                         ext4_handle_dirty_metadata(handle, inode, bh);
3722                 }
3723                 ext4_mark_inode_dirty(handle, inode);
3724                 ext4_journal_test_restart(handle, inode);
3725                 if (bh) {
3726                         BUFFER_TRACE(bh, "retaking write access");
3727                         ext4_journal_get_write_access(handle, bh);
3728                 }
3729         }
3730
3731         /*
3732          * Any buffers which are on the journal will be in memory. We find
3733          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3734          * on them.  We've already detached each block from the file, so
3735          * bforget() in jbd2_journal_forget() should be safe.
3736          *
3737          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3738          */
3739         for (p = first; p < last; p++) {
3740                 u32 nr = le32_to_cpu(*p);
3741                 if (nr) {
3742                         struct buffer_head *tbh;
3743
3744                         *p = 0;
3745                         tbh = sb_find_get_block(inode->i_sb, nr);
3746                         ext4_forget(handle, 0, inode, tbh, nr);
3747                 }
3748         }
3749
3750         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3751 }
3752
3753 /**
3754  * ext4_free_data - free a list of data blocks
3755  * @handle:     handle for this transaction
3756  * @inode:      inode we are dealing with
3757  * @this_bh:    indirect buffer_head which contains *@first and *@last
3758  * @first:      array of block numbers
3759  * @last:       points immediately past the end of array
3760  *
3761  * We are freeing all blocks refered from that array (numbers are stored as
3762  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3763  *
3764  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3765  * blocks are contiguous then releasing them at one time will only affect one
3766  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3767  * actually use a lot of journal space.
3768  *
3769  * @this_bh will be %NULL if @first and @last point into the inode's direct
3770  * block pointers.
3771  */
3772 static void ext4_free_data(handle_t *handle, struct inode *inode,
3773                            struct buffer_head *this_bh,
3774                            __le32 *first, __le32 *last)
3775 {
3776         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3777         unsigned long count = 0;            /* Number of blocks in the run */
3778         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3779                                                corresponding to
3780                                                block_to_free */
3781         ext4_fsblk_t nr;                    /* Current block # */
3782         __le32 *p;                          /* Pointer into inode/ind
3783                                                for current block */
3784         int err;
3785
3786         if (this_bh) {                          /* For indirect block */
3787                 BUFFER_TRACE(this_bh, "get_write_access");
3788                 err = ext4_journal_get_write_access(handle, this_bh);
3789                 /* Important: if we can't update the indirect pointers
3790                  * to the blocks, we can't free them. */
3791                 if (err)
3792                         return;
3793         }
3794
3795         for (p = first; p < last; p++) {
3796                 nr = le32_to_cpu(*p);
3797                 if (nr) {
3798                         /* accumulate blocks to free if they're contiguous */
3799                         if (count == 0) {
3800                                 block_to_free = nr;
3801                                 block_to_free_p = p;
3802                                 count = 1;
3803                         } else if (nr == block_to_free + count) {
3804                                 count++;
3805                         } else {
3806                                 ext4_clear_blocks(handle, inode, this_bh,
3807                                                   block_to_free,
3808                                                   count, block_to_free_p, p);
3809                                 block_to_free = nr;
3810                                 block_to_free_p = p;
3811                                 count = 1;
3812                         }
3813                 }
3814         }
3815
3816         if (count > 0)
3817                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3818                                   count, block_to_free_p, p);
3819
3820         if (this_bh) {
3821                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3822
3823                 /*
3824                  * The buffer head should have an attached journal head at this
3825                  * point. However, if the data is corrupted and an indirect
3826                  * block pointed to itself, it would have been detached when
3827                  * the block was cleared. Check for this instead of OOPSing.
3828                  */
3829                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3830                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3831                 else
3832                         ext4_error(inode->i_sb, __func__,
3833                                    "circular indirect block detected, "
3834                                    "inode=%lu, block=%llu",
3835                                    inode->i_ino,
3836                                    (unsigned long long) this_bh->b_blocknr);
3837         }
3838 }
3839
3840 /**
3841  *      ext4_free_branches - free an array of branches
3842  *      @handle: JBD handle for this transaction
3843  *      @inode: inode we are dealing with
3844  *      @parent_bh: the buffer_head which contains *@first and *@last
3845  *      @first: array of block numbers
3846  *      @last:  pointer immediately past the end of array
3847  *      @depth: depth of the branches to free
3848  *
3849  *      We are freeing all blocks refered from these branches (numbers are
3850  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3851  *      appropriately.
3852  */
3853 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3854                                struct buffer_head *parent_bh,
3855                                __le32 *first, __le32 *last, int depth)
3856 {
3857         ext4_fsblk_t nr;
3858         __le32 *p;
3859
3860         if (ext4_handle_is_aborted(handle))
3861                 return;
3862
3863         if (depth--) {
3864                 struct buffer_head *bh;
3865                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3866                 p = last;
3867                 while (--p >= first) {
3868                         nr = le32_to_cpu(*p);
3869                         if (!nr)
3870                                 continue;               /* A hole */
3871
3872                         /* Go read the buffer for the next level down */
3873                         bh = sb_bread(inode->i_sb, nr);
3874
3875                         /*
3876                          * A read failure? Report error and clear slot
3877                          * (should be rare).
3878                          */
3879                         if (!bh) {
3880                                 ext4_error(inode->i_sb, "ext4_free_branches",
3881                                            "Read failure, inode=%lu, block=%llu",
3882                                            inode->i_ino, nr);
3883                                 continue;
3884                         }
3885
3886                         /* This zaps the entire block.  Bottom up. */
3887                         BUFFER_TRACE(bh, "free child branches");
3888                         ext4_free_branches(handle, inode, bh,
3889                                         (__le32 *) bh->b_data,
3890                                         (__le32 *) bh->b_data + addr_per_block,
3891                                         depth);
3892
3893                         /*
3894                          * We've probably journalled the indirect block several
3895                          * times during the truncate.  But it's no longer
3896                          * needed and we now drop it from the transaction via
3897                          * jbd2_journal_revoke().
3898                          *
3899                          * That's easy if it's exclusively part of this
3900                          * transaction.  But if it's part of the committing
3901                          * transaction then jbd2_journal_forget() will simply
3902                          * brelse() it.  That means that if the underlying
3903                          * block is reallocated in ext4_get_block(),
3904                          * unmap_underlying_metadata() will find this block
3905                          * and will try to get rid of it.  damn, damn.
3906                          *
3907                          * If this block has already been committed to the
3908                          * journal, a revoke record will be written.  And
3909                          * revoke records must be emitted *before* clearing
3910                          * this block's bit in the bitmaps.
3911                          */
3912                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3913
3914                         /*
3915                          * Everything below this this pointer has been
3916                          * released.  Now let this top-of-subtree go.
3917                          *
3918                          * We want the freeing of this indirect block to be
3919                          * atomic in the journal with the updating of the
3920                          * bitmap block which owns it.  So make some room in
3921                          * the journal.
3922                          *
3923                          * We zero the parent pointer *after* freeing its
3924                          * pointee in the bitmaps, so if extend_transaction()
3925                          * for some reason fails to put the bitmap changes and
3926                          * the release into the same transaction, recovery
3927                          * will merely complain about releasing a free block,
3928                          * rather than leaking blocks.
3929                          */
3930                         if (ext4_handle_is_aborted(handle))
3931                                 return;
3932                         if (try_to_extend_transaction(handle, inode)) {
3933                                 ext4_mark_inode_dirty(handle, inode);
3934                                 ext4_journal_test_restart(handle, inode);
3935                         }
3936
3937                         ext4_free_blocks(handle, inode, nr, 1, 1);
3938
3939                         if (parent_bh) {
3940                                 /*
3941                                  * The block which we have just freed is
3942                                  * pointed to by an indirect block: journal it
3943                                  */
3944                                 BUFFER_TRACE(parent_bh, "get_write_access");
3945                                 if (!ext4_journal_get_write_access(handle,
3946                                                                    parent_bh)){
3947                                         *p = 0;
3948                                         BUFFER_TRACE(parent_bh,
3949                                         "call ext4_handle_dirty_metadata");
3950                                         ext4_handle_dirty_metadata(handle,
3951                                                                    inode,
3952                                                                    parent_bh);
3953                                 }
3954                         }
3955                 }
3956         } else {
3957                 /* We have reached the bottom of the tree. */
3958                 BUFFER_TRACE(parent_bh, "free data blocks");
3959                 ext4_free_data(handle, inode, parent_bh, first, last);
3960         }
3961 }
3962
3963 int ext4_can_truncate(struct inode *inode)
3964 {
3965         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3966                 return 0;
3967         if (S_ISREG(inode->i_mode))
3968                 return 1;
3969         if (S_ISDIR(inode->i_mode))
3970                 return 1;
3971         if (S_ISLNK(inode->i_mode))
3972                 return !ext4_inode_is_fast_symlink(inode);
3973         return 0;
3974 }
3975
3976 /*
3977  * ext4_truncate()
3978  *
3979  * We block out ext4_get_block() block instantiations across the entire
3980  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3981  * simultaneously on behalf of the same inode.
3982  *
3983  * As we work through the truncate and commmit bits of it to the journal there
3984  * is one core, guiding principle: the file's tree must always be consistent on
3985  * disk.  We must be able to restart the truncate after a crash.
3986  *
3987  * The file's tree may be transiently inconsistent in memory (although it
3988  * probably isn't), but whenever we close off and commit a journal transaction,
3989  * the contents of (the filesystem + the journal) must be consistent and
3990  * restartable.  It's pretty simple, really: bottom up, right to left (although
3991  * left-to-right works OK too).
3992  *
3993  * Note that at recovery time, journal replay occurs *before* the restart of
3994  * truncate against the orphan inode list.
3995  *
3996  * The committed inode has the new, desired i_size (which is the same as
3997  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3998  * that this inode's truncate did not complete and it will again call
3999  * ext4_truncate() to have another go.  So there will be instantiated blocks
4000  * to the right of the truncation point in a crashed ext4 filesystem.  But
4001  * that's fine - as long as they are linked from the inode, the post-crash
4002  * ext4_truncate() run will find them and release them.
4003  */
4004 void ext4_truncate(struct inode *inode)
4005 {
4006         handle_t *handle;
4007         struct ext4_inode_info *ei = EXT4_I(inode);
4008         __le32 *i_data = ei->i_data;
4009         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4010         struct address_space *mapping = inode->i_mapping;
4011         ext4_lblk_t offsets[4];
4012         Indirect chain[4];
4013         Indirect *partial;
4014         __le32 nr = 0;
4015         int n;
4016         ext4_lblk_t last_block;
4017         unsigned blocksize = inode->i_sb->s_blocksize;
4018
4019         if (!ext4_can_truncate(inode))
4020                 return;
4021
4022         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4023                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4024
4025         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4026                 ext4_ext_truncate(inode);
4027                 return;
4028         }
4029
4030         handle = start_transaction(inode);
4031         if (IS_ERR(handle))
4032                 return;         /* AKPM: return what? */
4033
4034         last_block = (inode->i_size + blocksize-1)
4035                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4036
4037         if (inode->i_size & (blocksize - 1))
4038                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4039                         goto out_stop;
4040
4041         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4042         if (n == 0)
4043                 goto out_stop;  /* error */
4044
4045         /*
4046          * OK.  This truncate is going to happen.  We add the inode to the
4047          * orphan list, so that if this truncate spans multiple transactions,
4048          * and we crash, we will resume the truncate when the filesystem
4049          * recovers.  It also marks the inode dirty, to catch the new size.
4050          *
4051          * Implication: the file must always be in a sane, consistent
4052          * truncatable state while each transaction commits.
4053          */
4054         if (ext4_orphan_add(handle, inode))
4055                 goto out_stop;
4056
4057         /*
4058          * From here we block out all ext4_get_block() callers who want to
4059          * modify the block allocation tree.
4060          */
4061         down_write(&ei->i_data_sem);
4062
4063         ext4_discard_preallocations(inode);
4064
4065         /*
4066          * The orphan list entry will now protect us from any crash which
4067          * occurs before the truncate completes, so it is now safe to propagate
4068          * the new, shorter inode size (held for now in i_size) into the
4069          * on-disk inode. We do this via i_disksize, which is the value which
4070          * ext4 *really* writes onto the disk inode.
4071          */
4072         ei->i_disksize = inode->i_size;
4073
4074         if (n == 1) {           /* direct blocks */
4075                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4076                                i_data + EXT4_NDIR_BLOCKS);
4077                 goto do_indirects;
4078         }
4079
4080         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4081         /* Kill the top of shared branch (not detached) */
4082         if (nr) {
4083                 if (partial == chain) {
4084                         /* Shared branch grows from the inode */
4085                         ext4_free_branches(handle, inode, NULL,
4086                                            &nr, &nr+1, (chain+n-1) - partial);
4087                         *partial->p = 0;
4088                         /*
4089                          * We mark the inode dirty prior to restart,
4090                          * and prior to stop.  No need for it here.
4091                          */
4092                 } else {
4093                         /* Shared branch grows from an indirect block */
4094                         BUFFER_TRACE(partial->bh, "get_write_access");
4095                         ext4_free_branches(handle, inode, partial->bh,
4096                                         partial->p,
4097                                         partial->p+1, (chain+n-1) - partial);
4098                 }
4099         }
4100         /* Clear the ends of indirect blocks on the shared branch */
4101         while (partial > chain) {
4102                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4103                                    (__le32*)partial->bh->b_data+addr_per_block,
4104                                    (chain+n-1) - partial);
4105                 BUFFER_TRACE(partial->bh, "call brelse");
4106                 brelse (partial->bh);
4107                 partial--;
4108         }
4109 do_indirects:
4110         /* Kill the remaining (whole) subtrees */
4111         switch (offsets[0]) {
4112         default:
4113                 nr = i_data[EXT4_IND_BLOCK];
4114                 if (nr) {
4115                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4116                         i_data[EXT4_IND_BLOCK] = 0;
4117                 }
4118         case EXT4_IND_BLOCK:
4119                 nr = i_data[EXT4_DIND_BLOCK];
4120                 if (nr) {
4121                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4122                         i_data[EXT4_DIND_BLOCK] = 0;
4123                 }
4124         case EXT4_DIND_BLOCK:
4125                 nr = i_data[EXT4_TIND_BLOCK];
4126                 if (nr) {
4127                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4128                         i_data[EXT4_TIND_BLOCK] = 0;
4129                 }
4130         case EXT4_TIND_BLOCK:
4131                 ;
4132         }
4133
4134         up_write(&ei->i_data_sem);
4135         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4136         ext4_mark_inode_dirty(handle, inode);
4137
4138         /*
4139          * In a multi-transaction truncate, we only make the final transaction
4140          * synchronous
4141          */
4142         if (IS_SYNC(inode))
4143                 ext4_handle_sync(handle);
4144 out_stop:
4145         /*
4146          * If this was a simple ftruncate(), and the file will remain alive
4147          * then we need to clear up the orphan record which we created above.
4148          * However, if this was a real unlink then we were called by
4149          * ext4_delete_inode(), and we allow that function to clean up the
4150          * orphan info for us.
4151          */
4152         if (inode->i_nlink)
4153                 ext4_orphan_del(handle, inode);
4154
4155         ext4_journal_stop(handle);
4156 }
4157
4158 /*
4159  * ext4_get_inode_loc returns with an extra refcount against the inode's
4160  * underlying buffer_head on success. If 'in_mem' is true, we have all
4161  * data in memory that is needed to recreate the on-disk version of this
4162  * inode.
4163  */
4164 static int __ext4_get_inode_loc(struct inode *inode,
4165                                 struct ext4_iloc *iloc, int in_mem)
4166 {
4167         struct ext4_group_desc  *gdp;
4168         struct buffer_head      *bh;
4169         struct super_block      *sb = inode->i_sb;
4170         ext4_fsblk_t            block;
4171         int                     inodes_per_block, inode_offset;
4172
4173         iloc->bh = NULL;
4174         if (!ext4_valid_inum(sb, inode->i_ino))
4175                 return -EIO;
4176
4177         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4178         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4179         if (!gdp)
4180                 return -EIO;
4181
4182         /*
4183          * Figure out the offset within the block group inode table
4184          */
4185         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4186         inode_offset = ((inode->i_ino - 1) %
4187                         EXT4_INODES_PER_GROUP(sb));
4188         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4189         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4190
4191         bh = sb_getblk(sb, block);
4192         if (!bh) {
4193                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4194                            "inode block - inode=%lu, block=%llu",
4195                            inode->i_ino, block);
4196                 return -EIO;
4197         }
4198         if (!buffer_uptodate(bh)) {
4199                 lock_buffer(bh);
4200
4201                 /*
4202                  * If the buffer has the write error flag, we have failed
4203                  * to write out another inode in the same block.  In this
4204                  * case, we don't have to read the block because we may
4205                  * read the old inode data successfully.
4206                  */
4207                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4208                         set_buffer_uptodate(bh);
4209
4210                 if (buffer_uptodate(bh)) {
4211                         /* someone brought it uptodate while we waited */
4212                         unlock_buffer(bh);
4213                         goto has_buffer;
4214                 }
4215
4216                 /*
4217                  * If we have all information of the inode in memory and this
4218                  * is the only valid inode in the block, we need not read the
4219                  * block.
4220                  */
4221                 if (in_mem) {
4222                         struct buffer_head *bitmap_bh;
4223                         int i, start;
4224
4225                         start = inode_offset & ~(inodes_per_block - 1);
4226
4227                         /* Is the inode bitmap in cache? */
4228                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4229                         if (!bitmap_bh)
4230                                 goto make_io;
4231
4232                         /*
4233                          * If the inode bitmap isn't in cache then the
4234                          * optimisation may end up performing two reads instead
4235                          * of one, so skip it.
4236                          */
4237                         if (!buffer_uptodate(bitmap_bh)) {
4238                                 brelse(bitmap_bh);
4239                                 goto make_io;
4240                         }
4241                         for (i = start; i < start + inodes_per_block; i++) {
4242                                 if (i == inode_offset)
4243                                         continue;
4244                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4245                                         break;
4246                         }
4247                         brelse(bitmap_bh);
4248                         if (i == start + inodes_per_block) {
4249                                 /* all other inodes are free, so skip I/O */
4250                                 memset(bh->b_data, 0, bh->b_size);
4251                                 set_buffer_uptodate(bh);
4252                                 unlock_buffer(bh);
4253                                 goto has_buffer;
4254                         }
4255                 }
4256
4257 make_io:
4258                 /*
4259                  * If we need to do any I/O, try to pre-readahead extra
4260                  * blocks from the inode table.
4261                  */
4262                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4263                         ext4_fsblk_t b, end, table;
4264                         unsigned num;
4265
4266                         table = ext4_inode_table(sb, gdp);
4267                         /* s_inode_readahead_blks is always a power of 2 */
4268                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4269                         if (table > b)
4270                                 b = table;
4271                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4272                         num = EXT4_INODES_PER_GROUP(sb);
4273                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4274                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4275                                 num -= ext4_itable_unused_count(sb, gdp);
4276                         table += num / inodes_per_block;
4277                         if (end > table)
4278                                 end = table;
4279                         while (b <= end)
4280                                 sb_breadahead(sb, b++);
4281                 }
4282
4283                 /*
4284                  * There are other valid inodes in the buffer, this inode
4285                  * has in-inode xattrs, or we don't have this inode in memory.
4286                  * Read the block from disk.
4287                  */
4288                 get_bh(bh);
4289                 bh->b_end_io = end_buffer_read_sync;
4290                 submit_bh(READ_META, bh);
4291                 wait_on_buffer(bh);
4292                 if (!buffer_uptodate(bh)) {
4293                         ext4_error(sb, __func__,
4294                                    "unable to read inode block - inode=%lu, "
4295                                    "block=%llu", inode->i_ino, block);
4296                         brelse(bh);
4297                         return -EIO;
4298                 }
4299         }
4300 has_buffer:
4301         iloc->bh = bh;
4302         return 0;
4303 }
4304
4305 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4306 {
4307         /* We have all inode data except xattrs in memory here. */
4308         return __ext4_get_inode_loc(inode, iloc,
4309                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4310 }
4311
4312 void ext4_set_inode_flags(struct inode *inode)
4313 {
4314         unsigned int flags = EXT4_I(inode)->i_flags;
4315
4316         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4317         if (flags & EXT4_SYNC_FL)
4318                 inode->i_flags |= S_SYNC;
4319         if (flags & EXT4_APPEND_FL)
4320                 inode->i_flags |= S_APPEND;
4321         if (flags & EXT4_IMMUTABLE_FL)
4322                 inode->i_flags |= S_IMMUTABLE;
4323         if (flags & EXT4_NOATIME_FL)
4324                 inode->i_flags |= S_NOATIME;
4325         if (flags & EXT4_DIRSYNC_FL)
4326                 inode->i_flags |= S_DIRSYNC;
4327 }
4328
4329 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4330 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4331 {
4332         unsigned int flags = ei->vfs_inode.i_flags;
4333
4334         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4335                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4336         if (flags & S_SYNC)
4337                 ei->i_flags |= EXT4_SYNC_FL;
4338         if (flags & S_APPEND)
4339                 ei->i_flags |= EXT4_APPEND_FL;
4340         if (flags & S_IMMUTABLE)
4341                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4342         if (flags & S_NOATIME)
4343                 ei->i_flags |= EXT4_NOATIME_FL;
4344         if (flags & S_DIRSYNC)
4345                 ei->i_flags |= EXT4_DIRSYNC_FL;
4346 }
4347 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4348                                         struct ext4_inode_info *ei)
4349 {
4350         blkcnt_t i_blocks ;
4351         struct inode *inode = &(ei->vfs_inode);
4352         struct super_block *sb = inode->i_sb;
4353
4354         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4355                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4356                 /* we are using combined 48 bit field */
4357                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4358                                         le32_to_cpu(raw_inode->i_blocks_lo);
4359                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4360                         /* i_blocks represent file system block size */
4361                         return i_blocks  << (inode->i_blkbits - 9);
4362                 } else {
4363                         return i_blocks;
4364                 }
4365         } else {
4366                 return le32_to_cpu(raw_inode->i_blocks_lo);
4367         }
4368 }
4369
4370 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4371 {
4372         struct ext4_iloc iloc;
4373         struct ext4_inode *raw_inode;
4374         struct ext4_inode_info *ei;
4375         struct buffer_head *bh;
4376         struct inode *inode;
4377         long ret;
4378         int block;
4379
4380         inode = iget_locked(sb, ino);
4381         if (!inode)
4382                 return ERR_PTR(-ENOMEM);
4383         if (!(inode->i_state & I_NEW))
4384                 return inode;
4385
4386         ei = EXT4_I(inode);
4387 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4388         ei->i_acl = EXT4_ACL_NOT_CACHED;
4389         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4390 #endif
4391
4392         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4393         if (ret < 0)
4394                 goto bad_inode;
4395         bh = iloc.bh;
4396         raw_inode = ext4_raw_inode(&iloc);
4397         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4398         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4399         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4400         if (!(test_opt(inode->i_sb, NO_UID32))) {
4401                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4402                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4403         }
4404         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4405
4406         ei->i_state = 0;
4407         ei->i_dir_start_lookup = 0;
4408         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4409         /* We now have enough fields to check if the inode was active or not.
4410          * This is needed because nfsd might try to access dead inodes
4411          * the test is that same one that e2fsck uses
4412          * NeilBrown 1999oct15
4413          */
4414         if (inode->i_nlink == 0) {
4415                 if (inode->i_mode == 0 ||
4416                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4417                         /* this inode is deleted */
4418                         brelse(bh);
4419                         ret = -ESTALE;
4420                         goto bad_inode;
4421                 }
4422                 /* The only unlinked inodes we let through here have
4423                  * valid i_mode and are being read by the orphan
4424                  * recovery code: that's fine, we're about to complete
4425                  * the process of deleting those. */
4426         }
4427         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4428         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4429         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4430         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4431                 ei->i_file_acl |=
4432                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4433         inode->i_size = ext4_isize(raw_inode);
4434         ei->i_disksize = inode->i_size;
4435         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4436         ei->i_block_group = iloc.block_group;
4437         ei->i_last_alloc_group = ~0;
4438         /*
4439          * NOTE! The in-memory inode i_data array is in little-endian order
4440          * even on big-endian machines: we do NOT byteswap the block numbers!
4441          */
4442         for (block = 0; block < EXT4_N_BLOCKS; block++)
4443                 ei->i_data[block] = raw_inode->i_block[block];
4444         INIT_LIST_HEAD(&ei->i_orphan);
4445
4446         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4447                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4448                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4449                     EXT4_INODE_SIZE(inode->i_sb)) {
4450                         brelse(bh);
4451                         ret = -EIO;
4452                         goto bad_inode;
4453                 }
4454                 if (ei->i_extra_isize == 0) {
4455                         /* The extra space is currently unused. Use it. */
4456                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4457                                             EXT4_GOOD_OLD_INODE_SIZE;
4458                 } else {
4459                         __le32 *magic = (void *)raw_inode +
4460                                         EXT4_GOOD_OLD_INODE_SIZE +
4461                                         ei->i_extra_isize;
4462                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4463                                  ei->i_state |= EXT4_STATE_XATTR;
4464                 }
4465         } else
4466                 ei->i_extra_isize = 0;
4467
4468         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4469         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4470         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4471         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4472
4473         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4474         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4475                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4476                         inode->i_version |=
4477                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4478         }
4479
4480         ret = 0;
4481         if (ei->i_file_acl &&
4482             ((ei->i_file_acl < 
4483               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4484                EXT4_SB(sb)->s_gdb_count)) ||
4485              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4486                 ext4_error(sb, __func__,
4487                            "bad extended attribute block %llu in inode #%lu",
4488                            ei->i_file_acl, inode->i_ino);
4489                 ret = -EIO;
4490                 goto bad_inode;
4491         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4492                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4493                     (S_ISLNK(inode->i_mode) &&
4494                      !ext4_inode_is_fast_symlink(inode)))
4495                         /* Validate extent which is part of inode */
4496                         ret = ext4_ext_check_inode(inode);
4497         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4498                    (S_ISLNK(inode->i_mode) &&
4499                     !ext4_inode_is_fast_symlink(inode))) {
4500                 /* Validate block references which are part of inode */
4501                 ret = ext4_check_inode_blockref(inode);
4502         }
4503         if (ret) {
4504                 brelse(bh);
4505                 goto bad_inode;
4506         }
4507
4508         if (S_ISREG(inode->i_mode)) {
4509                 inode->i_op = &ext4_file_inode_operations;
4510                 inode->i_fop = &ext4_file_operations;
4511                 ext4_set_aops(inode);
4512         } else if (S_ISDIR(inode->i_mode)) {
4513                 inode->i_op = &ext4_dir_inode_operations;
4514                 inode->i_fop = &ext4_dir_operations;
4515         } else if (S_ISLNK(inode->i_mode)) {
4516                 if (ext4_inode_is_fast_symlink(inode)) {
4517                         inode->i_op = &ext4_fast_symlink_inode_operations;
4518                         nd_terminate_link(ei->i_data, inode->i_size,
4519                                 sizeof(ei->i_data) - 1);
4520                 } else {
4521                         inode->i_op = &ext4_symlink_inode_operations;
4522                         ext4_set_aops(inode);
4523                 }
4524         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4525               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4526                 inode->i_op = &ext4_special_inode_operations;
4527                 if (raw_inode->i_block[0])
4528                         init_special_inode(inode, inode->i_mode,
4529                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4530                 else
4531                         init_special_inode(inode, inode->i_mode,
4532                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4533         } else {
4534                 brelse(bh);
4535                 ret = -EIO;
4536                 ext4_error(inode->i_sb, __func__, 
4537                            "bogus i_mode (%o) for inode=%lu",
4538                            inode->i_mode, inode->i_ino);
4539                 goto bad_inode;
4540         }
4541         brelse(iloc.bh);
4542         ext4_set_inode_flags(inode);
4543         unlock_new_inode(inode);
4544         return inode;
4545
4546 bad_inode:
4547         iget_failed(inode);
4548         return ERR_PTR(ret);
4549 }
4550
4551 static int ext4_inode_blocks_set(handle_t *handle,
4552                                 struct ext4_inode *raw_inode,
4553                                 struct ext4_inode_info *ei)
4554 {
4555         struct inode *inode = &(ei->vfs_inode);
4556         u64 i_blocks = inode->i_blocks;
4557         struct super_block *sb = inode->i_sb;
4558
4559         if (i_blocks <= ~0U) {
4560                 /*
4561                  * i_blocks can be represnted in a 32 bit variable
4562                  * as multiple of 512 bytes
4563                  */
4564                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4565                 raw_inode->i_blocks_high = 0;
4566                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4567                 return 0;
4568         }
4569         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4570                 return -EFBIG;
4571
4572         if (i_blocks <= 0xffffffffffffULL) {
4573                 /*
4574                  * i_blocks can be represented in a 48 bit variable
4575                  * as multiple of 512 bytes
4576                  */
4577                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4578                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4579                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4580         } else {
4581                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4582                 /* i_block is stored in file system block size */
4583                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4584                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4585                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4586         }
4587         return 0;
4588 }
4589
4590 /*
4591  * Post the struct inode info into an on-disk inode location in the
4592  * buffer-cache.  This gobbles the caller's reference to the
4593  * buffer_head in the inode location struct.
4594  *
4595  * The caller must have write access to iloc->bh.
4596  */
4597 static int ext4_do_update_inode(handle_t *handle,
4598                                 struct inode *inode,
4599                                 struct ext4_iloc *iloc)
4600 {
4601         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4602         struct ext4_inode_info *ei = EXT4_I(inode);
4603         struct buffer_head *bh = iloc->bh;
4604         int err = 0, rc, block;
4605
4606         /* For fields not not tracking in the in-memory inode,
4607          * initialise them to zero for new inodes. */
4608         if (ei->i_state & EXT4_STATE_NEW)
4609                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4610
4611         ext4_get_inode_flags(ei);
4612         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4613         if (!(test_opt(inode->i_sb, NO_UID32))) {
4614                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4615                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4616 /*
4617  * Fix up interoperability with old kernels. Otherwise, old inodes get
4618  * re-used with the upper 16 bits of the uid/gid intact
4619  */
4620                 if (!ei->i_dtime) {
4621                         raw_inode->i_uid_high =
4622                                 cpu_to_le16(high_16_bits(inode->i_uid));
4623                         raw_inode->i_gid_high =
4624                                 cpu_to_le16(high_16_bits(inode->i_gid));
4625                 } else {
4626                         raw_inode->i_uid_high = 0;
4627                         raw_inode->i_gid_high = 0;
4628                 }
4629         } else {
4630                 raw_inode->i_uid_low =
4631                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4632                 raw_inode->i_gid_low =
4633                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4634                 raw_inode->i_uid_high = 0;
4635                 raw_inode->i_gid_high = 0;
4636         }
4637         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4638
4639         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4640         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4641         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4642         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4643
4644         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4645                 goto out_brelse;
4646         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4647         /* clear the migrate flag in the raw_inode */
4648         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4649         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4650             cpu_to_le32(EXT4_OS_HURD))
4651                 raw_inode->i_file_acl_high =
4652                         cpu_to_le16(ei->i_file_acl >> 32);
4653         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4654         ext4_isize_set(raw_inode, ei->i_disksize);
4655         if (ei->i_disksize > 0x7fffffffULL) {
4656                 struct super_block *sb = inode->i_sb;
4657                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4658                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4659                                 EXT4_SB(sb)->s_es->s_rev_level ==
4660                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4661                         /* If this is the first large file
4662                          * created, add a flag to the superblock.
4663                          */
4664                         err = ext4_journal_get_write_access(handle,
4665                                         EXT4_SB(sb)->s_sbh);
4666                         if (err)
4667                                 goto out_brelse;
4668                         ext4_update_dynamic_rev(sb);
4669                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4670                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4671                         sb->s_dirt = 1;
4672                         ext4_handle_sync(handle);
4673                         err = ext4_handle_dirty_metadata(handle, inode,
4674                                         EXT4_SB(sb)->s_sbh);
4675                 }
4676         }
4677         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4678         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4679                 if (old_valid_dev(inode->i_rdev)) {
4680                         raw_inode->i_block[0] =
4681                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4682                         raw_inode->i_block[1] = 0;
4683                 } else {
4684                         raw_inode->i_block[0] = 0;
4685                         raw_inode->i_block[1] =
4686                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4687                         raw_inode->i_block[2] = 0;
4688                 }
4689         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4690                 raw_inode->i_block[block] = ei->i_data[block];
4691
4692         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4693         if (ei->i_extra_isize) {
4694                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4695                         raw_inode->i_version_hi =
4696                         cpu_to_le32(inode->i_version >> 32);
4697                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4698         }
4699
4700         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4701         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4702         if (!err)
4703                 err = rc;
4704         ei->i_state &= ~EXT4_STATE_NEW;
4705
4706 out_brelse:
4707         brelse(bh);
4708         ext4_std_error(inode->i_sb, err);
4709         return err;
4710 }
4711
4712 /*
4713  * ext4_write_inode()
4714  *
4715  * We are called from a few places:
4716  *
4717  * - Within generic_file_write() for O_SYNC files.
4718  *   Here, there will be no transaction running. We wait for any running
4719  *   trasnaction to commit.
4720  *
4721  * - Within sys_sync(), kupdate and such.
4722  *   We wait on commit, if tol to.
4723  *
4724  * - Within prune_icache() (PF_MEMALLOC == true)
4725  *   Here we simply return.  We can't afford to block kswapd on the
4726  *   journal commit.
4727  *
4728  * In all cases it is actually safe for us to return without doing anything,
4729  * because the inode has been copied into a raw inode buffer in
4730  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4731  * knfsd.
4732  *
4733  * Note that we are absolutely dependent upon all inode dirtiers doing the
4734  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4735  * which we are interested.
4736  *
4737  * It would be a bug for them to not do this.  The code:
4738  *
4739  *      mark_inode_dirty(inode)
4740  *      stuff();
4741  *      inode->i_size = expr;
4742  *
4743  * is in error because a kswapd-driven write_inode() could occur while
4744  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4745  * will no longer be on the superblock's dirty inode list.
4746  */
4747 int ext4_write_inode(struct inode *inode, int wait)
4748 {
4749         if (current->flags & PF_MEMALLOC)
4750                 return 0;
4751
4752         if (ext4_journal_current_handle()) {
4753                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4754                 dump_stack();
4755                 return -EIO;
4756         }
4757
4758         if (!wait)
4759                 return 0;
4760
4761         return ext4_force_commit(inode->i_sb);
4762 }
4763
4764 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4765 {
4766         int err = 0;
4767
4768         mark_buffer_dirty(bh);
4769         if (inode && inode_needs_sync(inode)) {
4770                 sync_dirty_buffer(bh);
4771                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4772                         ext4_error(inode->i_sb, __func__,
4773                                    "IO error syncing inode, "
4774                                    "inode=%lu, block=%llu",
4775                                    inode->i_ino,
4776                                    (unsigned long long)bh->b_blocknr);
4777                         err = -EIO;
4778                 }
4779         }
4780         return err;
4781 }
4782
4783 /*
4784  * ext4_setattr()
4785  *
4786  * Called from notify_change.
4787  *
4788  * We want to trap VFS attempts to truncate the file as soon as
4789  * possible.  In particular, we want to make sure that when the VFS
4790  * shrinks i_size, we put the inode on the orphan list and modify
4791  * i_disksize immediately, so that during the subsequent flushing of
4792  * dirty pages and freeing of disk blocks, we can guarantee that any
4793  * commit will leave the blocks being flushed in an unused state on
4794  * disk.  (On recovery, the inode will get truncated and the blocks will
4795  * be freed, so we have a strong guarantee that no future commit will
4796  * leave these blocks visible to the user.)
4797  *
4798  * Another thing we have to assure is that if we are in ordered mode
4799  * and inode is still attached to the committing transaction, we must
4800  * we start writeout of all the dirty pages which are being truncated.
4801  * This way we are sure that all the data written in the previous
4802  * transaction are already on disk (truncate waits for pages under
4803  * writeback).
4804  *
4805  * Called with inode->i_mutex down.
4806  */
4807 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4808 {
4809         struct inode *inode = dentry->d_inode;
4810         int error, rc = 0;
4811         const unsigned int ia_valid = attr->ia_valid;
4812
4813         error = inode_change_ok(inode, attr);
4814         if (error)
4815                 return error;
4816
4817         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4818                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4819                 handle_t *handle;
4820
4821                 /* (user+group)*(old+new) structure, inode write (sb,
4822                  * inode block, ? - but truncate inode update has it) */
4823                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4824                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4825                 if (IS_ERR(handle)) {
4826                         error = PTR_ERR(handle);
4827                         goto err_out;
4828                 }
4829                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4830                 if (error) {
4831                         ext4_journal_stop(handle);
4832                         return error;
4833                 }
4834                 /* Update corresponding info in inode so that everything is in
4835                  * one transaction */
4836                 if (attr->ia_valid & ATTR_UID)
4837                         inode->i_uid = attr->ia_uid;
4838                 if (attr->ia_valid & ATTR_GID)
4839                         inode->i_gid = attr->ia_gid;
4840                 error = ext4_mark_inode_dirty(handle, inode);
4841                 ext4_journal_stop(handle);
4842         }
4843
4844         if (attr->ia_valid & ATTR_SIZE) {
4845                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4846                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4847
4848                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4849                                 error = -EFBIG;
4850                                 goto err_out;
4851                         }
4852                 }
4853         }
4854
4855         if (S_ISREG(inode->i_mode) &&
4856             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4857                 handle_t *handle;
4858
4859                 handle = ext4_journal_start(inode, 3);
4860                 if (IS_ERR(handle)) {
4861                         error = PTR_ERR(handle);
4862                         goto err_out;
4863                 }
4864
4865                 error = ext4_orphan_add(handle, inode);
4866                 EXT4_I(inode)->i_disksize = attr->ia_size;
4867                 rc = ext4_mark_inode_dirty(handle, inode);
4868                 if (!error)
4869                         error = rc;
4870                 ext4_journal_stop(handle);
4871
4872                 if (ext4_should_order_data(inode)) {
4873                         error = ext4_begin_ordered_truncate(inode,
4874                                                             attr->ia_size);
4875                         if (error) {
4876                                 /* Do as much error cleanup as possible */
4877                                 handle = ext4_journal_start(inode, 3);
4878                                 if (IS_ERR(handle)) {
4879                                         ext4_orphan_del(NULL, inode);
4880                                         goto err_out;
4881                                 }
4882                                 ext4_orphan_del(handle, inode);
4883                                 ext4_journal_stop(handle);
4884                                 goto err_out;
4885                         }
4886                 }
4887         }
4888
4889         rc = inode_setattr(inode, attr);
4890
4891         /* If inode_setattr's call to ext4_truncate failed to get a
4892          * transaction handle at all, we need to clean up the in-core
4893          * orphan list manually. */
4894         if (inode->i_nlink)
4895                 ext4_orphan_del(NULL, inode);
4896
4897         if (!rc && (ia_valid & ATTR_MODE))
4898                 rc = ext4_acl_chmod(inode);
4899
4900 err_out:
4901         ext4_std_error(inode->i_sb, error);
4902         if (!error)
4903                 error = rc;
4904         return error;
4905 }
4906
4907 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4908                  struct kstat *stat)
4909 {
4910         struct inode *inode;
4911         unsigned long delalloc_blocks;
4912
4913         inode = dentry->d_inode;
4914         generic_fillattr(inode, stat);
4915
4916         /*
4917          * We can't update i_blocks if the block allocation is delayed
4918          * otherwise in the case of system crash before the real block
4919          * allocation is done, we will have i_blocks inconsistent with
4920          * on-disk file blocks.
4921          * We always keep i_blocks updated together with real
4922          * allocation. But to not confuse with user, stat
4923          * will return the blocks that include the delayed allocation
4924          * blocks for this file.
4925          */
4926         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4927         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4928         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4929
4930         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4931         return 0;
4932 }
4933
4934 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4935                                       int chunk)
4936 {
4937         int indirects;
4938
4939         /* if nrblocks are contiguous */
4940         if (chunk) {
4941                 /*
4942                  * With N contiguous data blocks, it need at most
4943                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4944                  * 2 dindirect blocks
4945                  * 1 tindirect block
4946                  */
4947                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4948                 return indirects + 3;
4949         }
4950         /*
4951          * if nrblocks are not contiguous, worse case, each block touch
4952          * a indirect block, and each indirect block touch a double indirect
4953          * block, plus a triple indirect block
4954          */
4955         indirects = nrblocks * 2 + 1;
4956         return indirects;
4957 }
4958
4959 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4960 {
4961         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4962                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4963         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4964 }
4965
4966 /*
4967  * Account for index blocks, block groups bitmaps and block group
4968  * descriptor blocks if modify datablocks and index blocks
4969  * worse case, the indexs blocks spread over different block groups
4970  *
4971  * If datablocks are discontiguous, they are possible to spread over
4972  * different block groups too. If they are contiugous, with flexbg,
4973  * they could still across block group boundary.
4974  *
4975  * Also account for superblock, inode, quota and xattr blocks
4976  */
4977 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4978 {
4979         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4980         int gdpblocks;
4981         int idxblocks;
4982         int ret = 0;
4983
4984         /*
4985          * How many index blocks need to touch to modify nrblocks?
4986          * The "Chunk" flag indicating whether the nrblocks is
4987          * physically contiguous on disk
4988          *
4989          * For Direct IO and fallocate, they calls get_block to allocate
4990          * one single extent at a time, so they could set the "Chunk" flag
4991          */
4992         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4993
4994         ret = idxblocks;
4995
4996         /*
4997          * Now let's see how many group bitmaps and group descriptors need
4998          * to account
4999          */
5000         groups = idxblocks;
5001         if (chunk)
5002                 groups += 1;
5003         else
5004                 groups += nrblocks;
5005
5006         gdpblocks = groups;
5007         if (groups > ngroups)
5008                 groups = ngroups;
5009         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5010                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5011
5012         /* bitmaps and block group descriptor blocks */
5013         ret += groups + gdpblocks;
5014
5015         /* Blocks for super block, inode, quota and xattr blocks */
5016         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5017
5018         return ret;
5019 }
5020
5021 /*
5022  * Calulate the total number of credits to reserve to fit
5023  * the modification of a single pages into a single transaction,
5024  * which may include multiple chunks of block allocations.
5025  *
5026  * This could be called via ext4_write_begin()
5027  *
5028  * We need to consider the worse case, when
5029  * one new block per extent.
5030  */
5031 int ext4_writepage_trans_blocks(struct inode *inode)
5032 {
5033         int bpp = ext4_journal_blocks_per_page(inode);
5034         int ret;
5035
5036         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5037
5038         /* Account for data blocks for journalled mode */
5039         if (ext4_should_journal_data(inode))
5040                 ret += bpp;
5041         return ret;
5042 }
5043
5044 /*
5045  * Calculate the journal credits for a chunk of data modification.
5046  *
5047  * This is called from DIO, fallocate or whoever calling
5048  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5049  *
5050  * journal buffers for data blocks are not included here, as DIO
5051  * and fallocate do no need to journal data buffers.
5052  */
5053 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5054 {
5055         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5056 }
5057
5058 /*
5059  * The caller must have previously called ext4_reserve_inode_write().
5060  * Give this, we know that the caller already has write access to iloc->bh.
5061  */
5062 int ext4_mark_iloc_dirty(handle_t *handle,
5063                 struct inode *inode, struct ext4_iloc *iloc)
5064 {
5065         int err = 0;
5066
5067         if (test_opt(inode->i_sb, I_VERSION))
5068                 inode_inc_iversion(inode);
5069
5070         /* the do_update_inode consumes one bh->b_count */
5071         get_bh(iloc->bh);
5072
5073         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5074         err = ext4_do_update_inode(handle, inode, iloc);
5075         put_bh(iloc->bh);
5076         return err;
5077 }
5078
5079 /*
5080  * On success, We end up with an outstanding reference count against
5081  * iloc->bh.  This _must_ be cleaned up later.
5082  */
5083
5084 int
5085 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5086                          struct ext4_iloc *iloc)
5087 {
5088         int err;
5089
5090         err = ext4_get_inode_loc(inode, iloc);
5091         if (!err) {
5092                 BUFFER_TRACE(iloc->bh, "get_write_access");
5093                 err = ext4_journal_get_write_access(handle, iloc->bh);
5094                 if (err) {
5095                         brelse(iloc->bh);
5096                         iloc->bh = NULL;
5097                 }
5098         }
5099         ext4_std_error(inode->i_sb, err);
5100         return err;
5101 }
5102
5103 /*
5104  * Expand an inode by new_extra_isize bytes.
5105  * Returns 0 on success or negative error number on failure.
5106  */
5107 static int ext4_expand_extra_isize(struct inode *inode,
5108                                    unsigned int new_extra_isize,
5109                                    struct ext4_iloc iloc,
5110                                    handle_t *handle)
5111 {
5112         struct ext4_inode *raw_inode;
5113         struct ext4_xattr_ibody_header *header;
5114         struct ext4_xattr_entry *entry;
5115
5116         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5117                 return 0;
5118
5119         raw_inode = ext4_raw_inode(&iloc);
5120
5121         header = IHDR(inode, raw_inode);
5122         entry = IFIRST(header);
5123
5124         /* No extended attributes present */
5125         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5126                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5127                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5128                         new_extra_isize);
5129                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5130                 return 0;
5131         }
5132
5133         /* try to expand with EAs present */
5134         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5135                                           raw_inode, handle);
5136 }
5137
5138 /*
5139  * What we do here is to mark the in-core inode as clean with respect to inode
5140  * dirtiness (it may still be data-dirty).
5141  * This means that the in-core inode may be reaped by prune_icache
5142  * without having to perform any I/O.  This is a very good thing,
5143  * because *any* task may call prune_icache - even ones which
5144  * have a transaction open against a different journal.
5145  *
5146  * Is this cheating?  Not really.  Sure, we haven't written the
5147  * inode out, but prune_icache isn't a user-visible syncing function.
5148  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5149  * we start and wait on commits.
5150  *
5151  * Is this efficient/effective?  Well, we're being nice to the system
5152  * by cleaning up our inodes proactively so they can be reaped
5153  * without I/O.  But we are potentially leaving up to five seconds'
5154  * worth of inodes floating about which prune_icache wants us to
5155  * write out.  One way to fix that would be to get prune_icache()
5156  * to do a write_super() to free up some memory.  It has the desired
5157  * effect.
5158  */
5159 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5160 {
5161         struct ext4_iloc iloc;
5162         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5163         static unsigned int mnt_count;
5164         int err, ret;
5165
5166         might_sleep();
5167         err = ext4_reserve_inode_write(handle, inode, &iloc);
5168         if (ext4_handle_valid(handle) &&
5169             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5170             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5171                 /*
5172                  * We need extra buffer credits since we may write into EA block
5173                  * with this same handle. If journal_extend fails, then it will
5174                  * only result in a minor loss of functionality for that inode.
5175                  * If this is felt to be critical, then e2fsck should be run to
5176                  * force a large enough s_min_extra_isize.
5177                  */
5178                 if ((jbd2_journal_extend(handle,
5179                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5180                         ret = ext4_expand_extra_isize(inode,
5181                                                       sbi->s_want_extra_isize,
5182                                                       iloc, handle);
5183                         if (ret) {
5184                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5185                                 if (mnt_count !=
5186                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5187                                         ext4_warning(inode->i_sb, __func__,
5188                                         "Unable to expand inode %lu. Delete"
5189                                         " some EAs or run e2fsck.",
5190                                         inode->i_ino);
5191                                         mnt_count =
5192                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5193                                 }
5194                         }
5195                 }
5196         }
5197         if (!err)
5198                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5199         return err;
5200 }
5201
5202 /*
5203  * ext4_dirty_inode() is called from __mark_inode_dirty()
5204  *
5205  * We're really interested in the case where a file is being extended.
5206  * i_size has been changed by generic_commit_write() and we thus need
5207  * to include the updated inode in the current transaction.
5208  *
5209  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5210  * are allocated to the file.
5211  *
5212  * If the inode is marked synchronous, we don't honour that here - doing
5213  * so would cause a commit on atime updates, which we don't bother doing.
5214  * We handle synchronous inodes at the highest possible level.
5215  */
5216 void ext4_dirty_inode(struct inode *inode)
5217 {
5218         handle_t *current_handle = ext4_journal_current_handle();
5219         handle_t *handle;
5220
5221         if (!ext4_handle_valid(current_handle)) {
5222                 ext4_mark_inode_dirty(current_handle, inode);
5223                 return;
5224         }
5225
5226         handle = ext4_journal_start(inode, 2);
5227         if (IS_ERR(handle))
5228                 goto out;
5229         if (current_handle &&
5230                 current_handle->h_transaction != handle->h_transaction) {
5231                 /* This task has a transaction open against a different fs */
5232                 printk(KERN_EMERG "%s: transactions do not match!\n",
5233                        __func__);
5234         } else {
5235                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5236                                 current_handle);
5237                 ext4_mark_inode_dirty(handle, inode);
5238         }
5239         ext4_journal_stop(handle);
5240 out:
5241         return;
5242 }
5243
5244 #if 0
5245 /*
5246  * Bind an inode's backing buffer_head into this transaction, to prevent
5247  * it from being flushed to disk early.  Unlike
5248  * ext4_reserve_inode_write, this leaves behind no bh reference and
5249  * returns no iloc structure, so the caller needs to repeat the iloc
5250  * lookup to mark the inode dirty later.
5251  */
5252 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5253 {
5254         struct ext4_iloc iloc;
5255
5256         int err = 0;
5257         if (handle) {
5258                 err = ext4_get_inode_loc(inode, &iloc);
5259                 if (!err) {
5260                         BUFFER_TRACE(iloc.bh, "get_write_access");
5261                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5262                         if (!err)
5263                                 err = ext4_handle_dirty_metadata(handle,
5264                                                                  inode,
5265                                                                  iloc.bh);
5266                         brelse(iloc.bh);
5267                 }
5268         }
5269         ext4_std_error(inode->i_sb, err);
5270         return err;
5271 }
5272 #endif
5273
5274 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5275 {
5276         journal_t *journal;
5277         handle_t *handle;
5278         int err;
5279
5280         /*
5281          * We have to be very careful here: changing a data block's
5282          * journaling status dynamically is dangerous.  If we write a
5283          * data block to the journal, change the status and then delete
5284          * that block, we risk forgetting to revoke the old log record
5285          * from the journal and so a subsequent replay can corrupt data.
5286          * So, first we make sure that the journal is empty and that
5287          * nobody is changing anything.
5288          */
5289
5290         journal = EXT4_JOURNAL(inode);
5291         if (!journal)
5292                 return 0;
5293         if (is_journal_aborted(journal))
5294                 return -EROFS;
5295
5296         jbd2_journal_lock_updates(journal);
5297         jbd2_journal_flush(journal);
5298
5299         /*
5300          * OK, there are no updates running now, and all cached data is
5301          * synced to disk.  We are now in a completely consistent state
5302          * which doesn't have anything in the journal, and we know that
5303          * no filesystem updates are running, so it is safe to modify
5304          * the inode's in-core data-journaling state flag now.
5305          */
5306
5307         if (val)
5308                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5309         else
5310                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5311         ext4_set_aops(inode);
5312
5313         jbd2_journal_unlock_updates(journal);
5314
5315         /* Finally we can mark the inode as dirty. */
5316
5317         handle = ext4_journal_start(inode, 1);
5318         if (IS_ERR(handle))
5319                 return PTR_ERR(handle);
5320
5321         err = ext4_mark_inode_dirty(handle, inode);
5322         ext4_handle_sync(handle);
5323         ext4_journal_stop(handle);
5324         ext4_std_error(inode->i_sb, err);
5325
5326         return err;
5327 }
5328
5329 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5330 {
5331         return !buffer_mapped(bh);
5332 }
5333
5334 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5335 {
5336         struct page *page = vmf->page;
5337         loff_t size;
5338         unsigned long len;
5339         int ret = -EINVAL;
5340         void *fsdata;
5341         struct file *file = vma->vm_file;
5342         struct inode *inode = file->f_path.dentry->d_inode;
5343         struct address_space *mapping = inode->i_mapping;
5344
5345         /*
5346          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5347          * get i_mutex because we are already holding mmap_sem.
5348          */
5349         down_read(&inode->i_alloc_sem);
5350         size = i_size_read(inode);
5351         if (page->mapping != mapping || size <= page_offset(page)
5352             || !PageUptodate(page)) {
5353                 /* page got truncated from under us? */
5354                 goto out_unlock;
5355         }
5356         ret = 0;
5357         if (PageMappedToDisk(page))
5358                 goto out_unlock;
5359
5360         if (page->index == size >> PAGE_CACHE_SHIFT)
5361                 len = size & ~PAGE_CACHE_MASK;
5362         else
5363                 len = PAGE_CACHE_SIZE;
5364
5365         if (page_has_buffers(page)) {
5366                 /* return if we have all the buffers mapped */
5367                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5368                                        ext4_bh_unmapped))
5369                         goto out_unlock;
5370         }
5371         /*
5372          * OK, we need to fill the hole... Do write_begin write_end
5373          * to do block allocation/reservation.We are not holding
5374          * inode.i__mutex here. That allow * parallel write_begin,
5375          * write_end call. lock_page prevent this from happening
5376          * on the same page though
5377          */
5378         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5379                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5380         if (ret < 0)
5381                 goto out_unlock;
5382         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5383                         len, len, page, fsdata);
5384         if (ret < 0)
5385                 goto out_unlock;
5386         ret = 0;
5387 out_unlock:
5388         if (ret)
5389                 ret = VM_FAULT_SIGBUS;
5390         up_read(&inode->i_alloc_sem);
5391         return ret;
5392 }