percpu_counter: FBC_BATCH should be a variable
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51                                                    new_size);
52 }
53
54 static void ext4_invalidatepage(struct page *page, unsigned long offset);
55
56 /*
57  * Test whether an inode is a fast symlink.
58  */
59 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 {
61         int ea_blocks = EXT4_I(inode)->i_file_acl ?
62                 (inode->i_sb->s_blocksize >> 9) : 0;
63
64         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 }
66
67 /*
68  * The ext4 forget function must perform a revoke if we are freeing data
69  * which has been journaled.  Metadata (eg. indirect blocks) must be
70  * revoked in all cases.
71  *
72  * "bh" may be NULL: a metadata block may have been freed from memory
73  * but there may still be a record of it in the journal, and that record
74  * still needs to be revoked.
75  */
76 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
77                         struct buffer_head *bh, ext4_fsblk_t blocknr)
78 {
79         int err;
80
81         might_sleep();
82
83         BUFFER_TRACE(bh, "enter");
84
85         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
86                   "data mode %lx\n",
87                   bh, is_metadata, inode->i_mode,
88                   test_opt(inode->i_sb, DATA_FLAGS));
89
90         /* Never use the revoke function if we are doing full data
91          * journaling: there is no need to, and a V1 superblock won't
92          * support it.  Otherwise, only skip the revoke on un-journaled
93          * data blocks. */
94
95         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
96             (!is_metadata && !ext4_should_journal_data(inode))) {
97                 if (bh) {
98                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
99                         return ext4_journal_forget(handle, bh);
100                 }
101                 return 0;
102         }
103
104         /*
105          * data!=journal && (is_metadata || should_journal_data(inode))
106          */
107         BUFFER_TRACE(bh, "call ext4_journal_revoke");
108         err = ext4_journal_revoke(handle, blocknr, bh);
109         if (err)
110                 ext4_abort(inode->i_sb, __func__,
111                            "error %d when attempting revoke", err);
112         BUFFER_TRACE(bh, "exit");
113         return err;
114 }
115
116 /*
117  * Work out how many blocks we need to proceed with the next chunk of a
118  * truncate transaction.
119  */
120 static unsigned long blocks_for_truncate(struct inode *inode)
121 {
122         ext4_lblk_t needed;
123
124         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125
126         /* Give ourselves just enough room to cope with inodes in which
127          * i_blocks is corrupt: we've seen disk corruptions in the past
128          * which resulted in random data in an inode which looked enough
129          * like a regular file for ext4 to try to delete it.  Things
130          * will go a bit crazy if that happens, but at least we should
131          * try not to panic the whole kernel. */
132         if (needed < 2)
133                 needed = 2;
134
135         /* But we need to bound the transaction so we don't overflow the
136          * journal. */
137         if (needed > EXT4_MAX_TRANS_DATA)
138                 needed = EXT4_MAX_TRANS_DATA;
139
140         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 }
142
143 /*
144  * Truncate transactions can be complex and absolutely huge.  So we need to
145  * be able to restart the transaction at a conventient checkpoint to make
146  * sure we don't overflow the journal.
147  *
148  * start_transaction gets us a new handle for a truncate transaction,
149  * and extend_transaction tries to extend the existing one a bit.  If
150  * extend fails, we need to propagate the failure up and restart the
151  * transaction in the top-level truncate loop. --sct
152  */
153 static handle_t *start_transaction(struct inode *inode)
154 {
155         handle_t *result;
156
157         result = ext4_journal_start(inode, blocks_for_truncate(inode));
158         if (!IS_ERR(result))
159                 return result;
160
161         ext4_std_error(inode->i_sb, PTR_ERR(result));
162         return result;
163 }
164
165 /*
166  * Try to extend this transaction for the purposes of truncation.
167  *
168  * Returns 0 if we managed to create more room.  If we can't create more
169  * room, and the transaction must be restarted we return 1.
170  */
171 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172 {
173         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
174                 return 0;
175         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
176                 return 0;
177         return 1;
178 }
179
180 /*
181  * Restart the transaction associated with *handle.  This does a commit,
182  * so before we call here everything must be consistently dirtied against
183  * this transaction.
184  */
185 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 {
187         jbd_debug(2, "restarting handle %p\n", handle);
188         return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 }
190
191 /*
192  * Called at the last iput() if i_nlink is zero.
193  */
194 void ext4_delete_inode(struct inode *inode)
195 {
196         handle_t *handle;
197         int err;
198
199         if (ext4_should_order_data(inode))
200                 ext4_begin_ordered_truncate(inode, 0);
201         truncate_inode_pages(&inode->i_data, 0);
202
203         if (is_bad_inode(inode))
204                 goto no_delete;
205
206         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207         if (IS_ERR(handle)) {
208                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
209                 /*
210                  * If we're going to skip the normal cleanup, we still need to
211                  * make sure that the in-core orphan linked list is properly
212                  * cleaned up.
213                  */
214                 ext4_orphan_del(NULL, inode);
215                 goto no_delete;
216         }
217
218         if (IS_SYNC(inode))
219                 handle->h_sync = 1;
220         inode->i_size = 0;
221         err = ext4_mark_inode_dirty(handle, inode);
222         if (err) {
223                 ext4_warning(inode->i_sb, __func__,
224                              "couldn't mark inode dirty (err %d)", err);
225                 goto stop_handle;
226         }
227         if (inode->i_blocks)
228                 ext4_truncate(inode);
229
230         /*
231          * ext4_ext_truncate() doesn't reserve any slop when it
232          * restarts journal transactions; therefore there may not be
233          * enough credits left in the handle to remove the inode from
234          * the orphan list and set the dtime field.
235          */
236         if (handle->h_buffer_credits < 3) {
237                 err = ext4_journal_extend(handle, 3);
238                 if (err > 0)
239                         err = ext4_journal_restart(handle, 3);
240                 if (err != 0) {
241                         ext4_warning(inode->i_sb, __func__,
242                                      "couldn't extend journal (err %d)", err);
243                 stop_handle:
244                         ext4_journal_stop(handle);
245                         goto no_delete;
246                 }
247         }
248
249         /*
250          * Kill off the orphan record which ext4_truncate created.
251          * AKPM: I think this can be inside the above `if'.
252          * Note that ext4_orphan_del() has to be able to cope with the
253          * deletion of a non-existent orphan - this is because we don't
254          * know if ext4_truncate() actually created an orphan record.
255          * (Well, we could do this if we need to, but heck - it works)
256          */
257         ext4_orphan_del(handle, inode);
258         EXT4_I(inode)->i_dtime  = get_seconds();
259
260         /*
261          * One subtle ordering requirement: if anything has gone wrong
262          * (transaction abort, IO errors, whatever), then we can still
263          * do these next steps (the fs will already have been marked as
264          * having errors), but we can't free the inode if the mark_dirty
265          * fails.
266          */
267         if (ext4_mark_inode_dirty(handle, inode))
268                 /* If that failed, just do the required in-core inode clear. */
269                 clear_inode(inode);
270         else
271                 ext4_free_inode(handle, inode);
272         ext4_journal_stop(handle);
273         return;
274 no_delete:
275         clear_inode(inode);     /* We must guarantee clearing of inode... */
276 }
277
278 typedef struct {
279         __le32  *p;
280         __le32  key;
281         struct buffer_head *bh;
282 } Indirect;
283
284 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285 {
286         p->key = *(p->p = v);
287         p->bh = bh;
288 }
289
290 /**
291  *      ext4_block_to_path - parse the block number into array of offsets
292  *      @inode: inode in question (we are only interested in its superblock)
293  *      @i_block: block number to be parsed
294  *      @offsets: array to store the offsets in
295  *      @boundary: set this non-zero if the referred-to block is likely to be
296  *             followed (on disk) by an indirect block.
297  *
298  *      To store the locations of file's data ext4 uses a data structure common
299  *      for UNIX filesystems - tree of pointers anchored in the inode, with
300  *      data blocks at leaves and indirect blocks in intermediate nodes.
301  *      This function translates the block number into path in that tree -
302  *      return value is the path length and @offsets[n] is the offset of
303  *      pointer to (n+1)th node in the nth one. If @block is out of range
304  *      (negative or too large) warning is printed and zero returned.
305  *
306  *      Note: function doesn't find node addresses, so no IO is needed. All
307  *      we need to know is the capacity of indirect blocks (taken from the
308  *      inode->i_sb).
309  */
310
311 /*
312  * Portability note: the last comparison (check that we fit into triple
313  * indirect block) is spelled differently, because otherwise on an
314  * architecture with 32-bit longs and 8Kb pages we might get into trouble
315  * if our filesystem had 8Kb blocks. We might use long long, but that would
316  * kill us on x86. Oh, well, at least the sign propagation does not matter -
317  * i_block would have to be negative in the very beginning, so we would not
318  * get there at all.
319  */
320
321 static int ext4_block_to_path(struct inode *inode,
322                         ext4_lblk_t i_block,
323                         ext4_lblk_t offsets[4], int *boundary)
324 {
325         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
326         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
327         const long direct_blocks = EXT4_NDIR_BLOCKS,
328                 indirect_blocks = ptrs,
329                 double_blocks = (1 << (ptrs_bits * 2));
330         int n = 0;
331         int final = 0;
332
333         if (i_block < 0) {
334                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
335         } else if (i_block < direct_blocks) {
336                 offsets[n++] = i_block;
337                 final = direct_blocks;
338         } else if ((i_block -= direct_blocks) < indirect_blocks) {
339                 offsets[n++] = EXT4_IND_BLOCK;
340                 offsets[n++] = i_block;
341                 final = ptrs;
342         } else if ((i_block -= indirect_blocks) < double_blocks) {
343                 offsets[n++] = EXT4_DIND_BLOCK;
344                 offsets[n++] = i_block >> ptrs_bits;
345                 offsets[n++] = i_block & (ptrs - 1);
346                 final = ptrs;
347         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348                 offsets[n++] = EXT4_TIND_BLOCK;
349                 offsets[n++] = i_block >> (ptrs_bits * 2);
350                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351                 offsets[n++] = i_block & (ptrs - 1);
352                 final = ptrs;
353         } else {
354                 ext4_warning(inode->i_sb, "ext4_block_to_path",
355                                 "block %lu > max",
356                                 i_block + direct_blocks +
357                                 indirect_blocks + double_blocks);
358         }
359         if (boundary)
360                 *boundary = final - 1 - (i_block & (ptrs - 1));
361         return n;
362 }
363
364 /**
365  *      ext4_get_branch - read the chain of indirect blocks leading to data
366  *      @inode: inode in question
367  *      @depth: depth of the chain (1 - direct pointer, etc.)
368  *      @offsets: offsets of pointers in inode/indirect blocks
369  *      @chain: place to store the result
370  *      @err: here we store the error value
371  *
372  *      Function fills the array of triples <key, p, bh> and returns %NULL
373  *      if everything went OK or the pointer to the last filled triple
374  *      (incomplete one) otherwise. Upon the return chain[i].key contains
375  *      the number of (i+1)-th block in the chain (as it is stored in memory,
376  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
377  *      number (it points into struct inode for i==0 and into the bh->b_data
378  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379  *      block for i>0 and NULL for i==0. In other words, it holds the block
380  *      numbers of the chain, addresses they were taken from (and where we can
381  *      verify that chain did not change) and buffer_heads hosting these
382  *      numbers.
383  *
384  *      Function stops when it stumbles upon zero pointer (absent block)
385  *              (pointer to last triple returned, *@err == 0)
386  *      or when it gets an IO error reading an indirect block
387  *              (ditto, *@err == -EIO)
388  *      or when it reads all @depth-1 indirect blocks successfully and finds
389  *      the whole chain, all way to the data (returns %NULL, *err == 0).
390  *
391  *      Need to be called with
392  *      down_read(&EXT4_I(inode)->i_data_sem)
393  */
394 static Indirect *ext4_get_branch(struct inode *inode, int depth,
395                                  ext4_lblk_t  *offsets,
396                                  Indirect chain[4], int *err)
397 {
398         struct super_block *sb = inode->i_sb;
399         Indirect *p = chain;
400         struct buffer_head *bh;
401
402         *err = 0;
403         /* i_data is not going away, no lock needed */
404         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
405         if (!p->key)
406                 goto no_block;
407         while (--depth) {
408                 bh = sb_bread(sb, le32_to_cpu(p->key));
409                 if (!bh)
410                         goto failure;
411                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
412                 /* Reader: end */
413                 if (!p->key)
414                         goto no_block;
415         }
416         return NULL;
417
418 failure:
419         *err = -EIO;
420 no_block:
421         return p;
422 }
423
424 /**
425  *      ext4_find_near - find a place for allocation with sufficient locality
426  *      @inode: owner
427  *      @ind: descriptor of indirect block.
428  *
429  *      This function returns the preferred place for block allocation.
430  *      It is used when heuristic for sequential allocation fails.
431  *      Rules are:
432  *        + if there is a block to the left of our position - allocate near it.
433  *        + if pointer will live in indirect block - allocate near that block.
434  *        + if pointer will live in inode - allocate in the same
435  *          cylinder group.
436  *
437  * In the latter case we colour the starting block by the callers PID to
438  * prevent it from clashing with concurrent allocations for a different inode
439  * in the same block group.   The PID is used here so that functionally related
440  * files will be close-by on-disk.
441  *
442  *      Caller must make sure that @ind is valid and will stay that way.
443  */
444 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445 {
446         struct ext4_inode_info *ei = EXT4_I(inode);
447         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
448         __le32 *p;
449         ext4_fsblk_t bg_start;
450         ext4_fsblk_t last_block;
451         ext4_grpblk_t colour;
452
453         /* Try to find previous block */
454         for (p = ind->p - 1; p >= start; p--) {
455                 if (*p)
456                         return le32_to_cpu(*p);
457         }
458
459         /* No such thing, so let's try location of indirect block */
460         if (ind->bh)
461                 return ind->bh->b_blocknr;
462
463         /*
464          * It is going to be referred to from the inode itself? OK, just put it
465          * into the same cylinder group then.
466          */
467         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
468         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469
470         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
471                 colour = (current->pid % 16) *
472                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
473         else
474                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
475         return bg_start + colour;
476 }
477
478 /**
479  *      ext4_find_goal - find a preferred place for allocation.
480  *      @inode: owner
481  *      @block:  block we want
482  *      @partial: pointer to the last triple within a chain
483  *
484  *      Normally this function find the preferred place for block allocation,
485  *      returns it.
486  */
487 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
488                 Indirect *partial)
489 {
490         /*
491          * XXX need to get goal block from mballoc's data structures
492          */
493
494         return ext4_find_near(inode, partial);
495 }
496
497 /**
498  *      ext4_blks_to_allocate: Look up the block map and count the number
499  *      of direct blocks need to be allocated for the given branch.
500  *
501  *      @branch: chain of indirect blocks
502  *      @k: number of blocks need for indirect blocks
503  *      @blks: number of data blocks to be mapped.
504  *      @blocks_to_boundary:  the offset in the indirect block
505  *
506  *      return the total number of blocks to be allocate, including the
507  *      direct and indirect blocks.
508  */
509 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
510                 int blocks_to_boundary)
511 {
512         unsigned long count = 0;
513
514         /*
515          * Simple case, [t,d]Indirect block(s) has not allocated yet
516          * then it's clear blocks on that path have not allocated
517          */
518         if (k > 0) {
519                 /* right now we don't handle cross boundary allocation */
520                 if (blks < blocks_to_boundary + 1)
521                         count += blks;
522                 else
523                         count += blocks_to_boundary + 1;
524                 return count;
525         }
526
527         count++;
528         while (count < blks && count <= blocks_to_boundary &&
529                 le32_to_cpu(*(branch[0].p + count)) == 0) {
530                 count++;
531         }
532         return count;
533 }
534
535 /**
536  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
537  *      @indirect_blks: the number of blocks need to allocate for indirect
538  *                      blocks
539  *
540  *      @new_blocks: on return it will store the new block numbers for
541  *      the indirect blocks(if needed) and the first direct block,
542  *      @blks:  on return it will store the total number of allocated
543  *              direct blocks
544  */
545 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
546                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
547                                 int indirect_blks, int blks,
548                                 ext4_fsblk_t new_blocks[4], int *err)
549 {
550         int target, i;
551         unsigned long count = 0, blk_allocated = 0;
552         int index = 0;
553         ext4_fsblk_t current_block = 0;
554         int ret = 0;
555
556         /*
557          * Here we try to allocate the requested multiple blocks at once,
558          * on a best-effort basis.
559          * To build a branch, we should allocate blocks for
560          * the indirect blocks(if not allocated yet), and at least
561          * the first direct block of this branch.  That's the
562          * minimum number of blocks need to allocate(required)
563          */
564         /* first we try to allocate the indirect blocks */
565         target = indirect_blks;
566         while (target > 0) {
567                 count = target;
568                 /* allocating blocks for indirect blocks and direct blocks */
569                 current_block = ext4_new_meta_blocks(handle, inode,
570                                                         goal, &count, err);
571                 if (*err)
572                         goto failed_out;
573
574                 target -= count;
575                 /* allocate blocks for indirect blocks */
576                 while (index < indirect_blks && count) {
577                         new_blocks[index++] = current_block++;
578                         count--;
579                 }
580                 if (count > 0) {
581                         /*
582                          * save the new block number
583                          * for the first direct block
584                          */
585                         new_blocks[index] = current_block;
586                         printk(KERN_INFO "%s returned more blocks than "
587                                                 "requested\n", __func__);
588                         WARN_ON(1);
589                         break;
590                 }
591         }
592
593         target = blks - count ;
594         blk_allocated = count;
595         if (!target)
596                 goto allocated;
597         /* Now allocate data blocks */
598         count = target;
599         /* allocating blocks for data blocks */
600         current_block = ext4_new_blocks(handle, inode, iblock,
601                                                 goal, &count, err);
602         if (*err && (target == blks)) {
603                 /*
604                  * if the allocation failed and we didn't allocate
605                  * any blocks before
606                  */
607                 goto failed_out;
608         }
609         if (!*err) {
610                 if (target == blks) {
611                 /*
612                  * save the new block number
613                  * for the first direct block
614                  */
615                         new_blocks[index] = current_block;
616                 }
617                 blk_allocated += count;
618         }
619 allocated:
620         /* total number of blocks allocated for direct blocks */
621         ret = blk_allocated;
622         *err = 0;
623         return ret;
624 failed_out:
625         for (i = 0; i < index; i++)
626                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
627         return ret;
628 }
629
630 /**
631  *      ext4_alloc_branch - allocate and set up a chain of blocks.
632  *      @inode: owner
633  *      @indirect_blks: number of allocated indirect blocks
634  *      @blks: number of allocated direct blocks
635  *      @offsets: offsets (in the blocks) to store the pointers to next.
636  *      @branch: place to store the chain in.
637  *
638  *      This function allocates blocks, zeroes out all but the last one,
639  *      links them into chain and (if we are synchronous) writes them to disk.
640  *      In other words, it prepares a branch that can be spliced onto the
641  *      inode. It stores the information about that chain in the branch[], in
642  *      the same format as ext4_get_branch() would do. We are calling it after
643  *      we had read the existing part of chain and partial points to the last
644  *      triple of that (one with zero ->key). Upon the exit we have the same
645  *      picture as after the successful ext4_get_block(), except that in one
646  *      place chain is disconnected - *branch->p is still zero (we did not
647  *      set the last link), but branch->key contains the number that should
648  *      be placed into *branch->p to fill that gap.
649  *
650  *      If allocation fails we free all blocks we've allocated (and forget
651  *      their buffer_heads) and return the error value the from failed
652  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
653  *      as described above and return 0.
654  */
655 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
656                                 ext4_lblk_t iblock, int indirect_blks,
657                                 int *blks, ext4_fsblk_t goal,
658                                 ext4_lblk_t *offsets, Indirect *branch)
659 {
660         int blocksize = inode->i_sb->s_blocksize;
661         int i, n = 0;
662         int err = 0;
663         struct buffer_head *bh;
664         int num;
665         ext4_fsblk_t new_blocks[4];
666         ext4_fsblk_t current_block;
667
668         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
669                                 *blks, new_blocks, &err);
670         if (err)
671                 return err;
672
673         branch[0].key = cpu_to_le32(new_blocks[0]);
674         /*
675          * metadata blocks and data blocks are allocated.
676          */
677         for (n = 1; n <= indirect_blks;  n++) {
678                 /*
679                  * Get buffer_head for parent block, zero it out
680                  * and set the pointer to new one, then send
681                  * parent to disk.
682                  */
683                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
684                 branch[n].bh = bh;
685                 lock_buffer(bh);
686                 BUFFER_TRACE(bh, "call get_create_access");
687                 err = ext4_journal_get_create_access(handle, bh);
688                 if (err) {
689                         unlock_buffer(bh);
690                         brelse(bh);
691                         goto failed;
692                 }
693
694                 memset(bh->b_data, 0, blocksize);
695                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
696                 branch[n].key = cpu_to_le32(new_blocks[n]);
697                 *branch[n].p = branch[n].key;
698                 if (n == indirect_blks) {
699                         current_block = new_blocks[n];
700                         /*
701                          * End of chain, update the last new metablock of
702                          * the chain to point to the new allocated
703                          * data blocks numbers
704                          */
705                         for (i=1; i < num; i++)
706                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
707                 }
708                 BUFFER_TRACE(bh, "marking uptodate");
709                 set_buffer_uptodate(bh);
710                 unlock_buffer(bh);
711
712                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
713                 err = ext4_journal_dirty_metadata(handle, bh);
714                 if (err)
715                         goto failed;
716         }
717         *blks = num;
718         return err;
719 failed:
720         /* Allocation failed, free what we already allocated */
721         for (i = 1; i <= n ; i++) {
722                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
723                 ext4_journal_forget(handle, branch[i].bh);
724         }
725         for (i = 0; i < indirect_blks; i++)
726                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
727
728         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
729
730         return err;
731 }
732
733 /**
734  * ext4_splice_branch - splice the allocated branch onto inode.
735  * @inode: owner
736  * @block: (logical) number of block we are adding
737  * @chain: chain of indirect blocks (with a missing link - see
738  *      ext4_alloc_branch)
739  * @where: location of missing link
740  * @num:   number of indirect blocks we are adding
741  * @blks:  number of direct blocks we are adding
742  *
743  * This function fills the missing link and does all housekeeping needed in
744  * inode (->i_blocks, etc.). In case of success we end up with the full
745  * chain to new block and return 0.
746  */
747 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
748                         ext4_lblk_t block, Indirect *where, int num, int blks)
749 {
750         int i;
751         int err = 0;
752         ext4_fsblk_t current_block;
753
754         /*
755          * If we're splicing into a [td]indirect block (as opposed to the
756          * inode) then we need to get write access to the [td]indirect block
757          * before the splice.
758          */
759         if (where->bh) {
760                 BUFFER_TRACE(where->bh, "get_write_access");
761                 err = ext4_journal_get_write_access(handle, where->bh);
762                 if (err)
763                         goto err_out;
764         }
765         /* That's it */
766
767         *where->p = where->key;
768
769         /*
770          * Update the host buffer_head or inode to point to more just allocated
771          * direct blocks blocks
772          */
773         if (num == 0 && blks > 1) {
774                 current_block = le32_to_cpu(where->key) + 1;
775                 for (i = 1; i < blks; i++)
776                         *(where->p + i) = cpu_to_le32(current_block++);
777         }
778
779         /* We are done with atomic stuff, now do the rest of housekeeping */
780
781         inode->i_ctime = ext4_current_time(inode);
782         ext4_mark_inode_dirty(handle, inode);
783
784         /* had we spliced it onto indirect block? */
785         if (where->bh) {
786                 /*
787                  * If we spliced it onto an indirect block, we haven't
788                  * altered the inode.  Note however that if it is being spliced
789                  * onto an indirect block at the very end of the file (the
790                  * file is growing) then we *will* alter the inode to reflect
791                  * the new i_size.  But that is not done here - it is done in
792                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
793                  */
794                 jbd_debug(5, "splicing indirect only\n");
795                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
796                 err = ext4_journal_dirty_metadata(handle, where->bh);
797                 if (err)
798                         goto err_out;
799         } else {
800                 /*
801                  * OK, we spliced it into the inode itself on a direct block.
802                  * Inode was dirtied above.
803                  */
804                 jbd_debug(5, "splicing direct\n");
805         }
806         return err;
807
808 err_out:
809         for (i = 1; i <= num; i++) {
810                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
811                 ext4_journal_forget(handle, where[i].bh);
812                 ext4_free_blocks(handle, inode,
813                                         le32_to_cpu(where[i-1].key), 1, 0);
814         }
815         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
816
817         return err;
818 }
819
820 /*
821  * Allocation strategy is simple: if we have to allocate something, we will
822  * have to go the whole way to leaf. So let's do it before attaching anything
823  * to tree, set linkage between the newborn blocks, write them if sync is
824  * required, recheck the path, free and repeat if check fails, otherwise
825  * set the last missing link (that will protect us from any truncate-generated
826  * removals - all blocks on the path are immune now) and possibly force the
827  * write on the parent block.
828  * That has a nice additional property: no special recovery from the failed
829  * allocations is needed - we simply release blocks and do not touch anything
830  * reachable from inode.
831  *
832  * `handle' can be NULL if create == 0.
833  *
834  * return > 0, # of blocks mapped or allocated.
835  * return = 0, if plain lookup failed.
836  * return < 0, error case.
837  *
838  *
839  * Need to be called with
840  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
841  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
842  */
843 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
844                 ext4_lblk_t iblock, unsigned long maxblocks,
845                 struct buffer_head *bh_result,
846                 int create, int extend_disksize)
847 {
848         int err = -EIO;
849         ext4_lblk_t offsets[4];
850         Indirect chain[4];
851         Indirect *partial;
852         ext4_fsblk_t goal;
853         int indirect_blks;
854         int blocks_to_boundary = 0;
855         int depth;
856         struct ext4_inode_info *ei = EXT4_I(inode);
857         int count = 0;
858         ext4_fsblk_t first_block = 0;
859         loff_t disksize;
860
861
862         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
863         J_ASSERT(handle != NULL || create == 0);
864         depth = ext4_block_to_path(inode, iblock, offsets,
865                                         &blocks_to_boundary);
866
867         if (depth == 0)
868                 goto out;
869
870         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
871
872         /* Simplest case - block found, no allocation needed */
873         if (!partial) {
874                 first_block = le32_to_cpu(chain[depth - 1].key);
875                 clear_buffer_new(bh_result);
876                 count++;
877                 /*map more blocks*/
878                 while (count < maxblocks && count <= blocks_to_boundary) {
879                         ext4_fsblk_t blk;
880
881                         blk = le32_to_cpu(*(chain[depth-1].p + count));
882
883                         if (blk == first_block + count)
884                                 count++;
885                         else
886                                 break;
887                 }
888                 goto got_it;
889         }
890
891         /* Next simple case - plain lookup or failed read of indirect block */
892         if (!create || err == -EIO)
893                 goto cleanup;
894
895         /*
896          * Okay, we need to do block allocation.
897         */
898         goal = ext4_find_goal(inode, iblock, partial);
899
900         /* the number of blocks need to allocate for [d,t]indirect blocks */
901         indirect_blks = (chain + depth) - partial - 1;
902
903         /*
904          * Next look up the indirect map to count the totoal number of
905          * direct blocks to allocate for this branch.
906          */
907         count = ext4_blks_to_allocate(partial, indirect_blks,
908                                         maxblocks, blocks_to_boundary);
909         /*
910          * Block out ext4_truncate while we alter the tree
911          */
912         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
913                                         &count, goal,
914                                         offsets + (partial - chain), partial);
915
916         /*
917          * The ext4_splice_branch call will free and forget any buffers
918          * on the new chain if there is a failure, but that risks using
919          * up transaction credits, especially for bitmaps where the
920          * credits cannot be returned.  Can we handle this somehow?  We
921          * may need to return -EAGAIN upwards in the worst case.  --sct
922          */
923         if (!err)
924                 err = ext4_splice_branch(handle, inode, iblock,
925                                         partial, indirect_blks, count);
926         /*
927          * i_disksize growing is protected by i_data_sem.  Don't forget to
928          * protect it if you're about to implement concurrent
929          * ext4_get_block() -bzzz
930         */
931         if (!err && extend_disksize) {
932                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
933                 if (disksize > i_size_read(inode))
934                         disksize = i_size_read(inode);
935                 if (disksize > ei->i_disksize)
936                         ei->i_disksize = disksize;
937         }
938         if (err)
939                 goto cleanup;
940
941         set_buffer_new(bh_result);
942 got_it:
943         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
944         if (count > blocks_to_boundary)
945                 set_buffer_boundary(bh_result);
946         err = count;
947         /* Clean up and exit */
948         partial = chain + depth - 1;    /* the whole chain */
949 cleanup:
950         while (partial > chain) {
951                 BUFFER_TRACE(partial->bh, "call brelse");
952                 brelse(partial->bh);
953                 partial--;
954         }
955         BUFFER_TRACE(bh_result, "returned");
956 out:
957         return err;
958 }
959
960 /*
961  * Calculate the number of metadata blocks need to reserve
962  * to allocate @blocks for non extent file based file
963  */
964 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
965 {
966         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
967         int ind_blks, dind_blks, tind_blks;
968
969         /* number of new indirect blocks needed */
970         ind_blks = (blocks + icap - 1) / icap;
971
972         dind_blks = (ind_blks + icap - 1) / icap;
973
974         tind_blks = 1;
975
976         return ind_blks + dind_blks + tind_blks;
977 }
978
979 /*
980  * Calculate the number of metadata blocks need to reserve
981  * to allocate given number of blocks
982  */
983 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
984 {
985         if (!blocks)
986                 return 0;
987
988         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
989                 return ext4_ext_calc_metadata_amount(inode, blocks);
990
991         return ext4_indirect_calc_metadata_amount(inode, blocks);
992 }
993
994 static void ext4_da_update_reserve_space(struct inode *inode, int used)
995 {
996         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
997         int total, mdb, mdb_free;
998
999         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1000         /* recalculate the number of metablocks still need to be reserved */
1001         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1002         mdb = ext4_calc_metadata_amount(inode, total);
1003
1004         /* figure out how many metablocks to release */
1005         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1006         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1007
1008         if (mdb_free) {
1009                 /* Account for allocated meta_blocks */
1010                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1011
1012                 /* update fs dirty blocks counter */
1013                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1014                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1015                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1016         }
1017
1018         /* update per-inode reservations */
1019         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1020         EXT4_I(inode)->i_reserved_data_blocks -= used;
1021
1022         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1023 }
1024
1025 /*
1026  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1027  * and returns if the blocks are already mapped.
1028  *
1029  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1030  * and store the allocated blocks in the result buffer head and mark it
1031  * mapped.
1032  *
1033  * If file type is extents based, it will call ext4_ext_get_blocks(),
1034  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1035  * based files
1036  *
1037  * On success, it returns the number of blocks being mapped or allocate.
1038  * if create==0 and the blocks are pre-allocated and uninitialized block,
1039  * the result buffer head is unmapped. If the create ==1, it will make sure
1040  * the buffer head is mapped.
1041  *
1042  * It returns 0 if plain look up failed (blocks have not been allocated), in
1043  * that casem, buffer head is unmapped
1044  *
1045  * It returns the error in case of allocation failure.
1046  */
1047 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1048                         unsigned long max_blocks, struct buffer_head *bh,
1049                         int create, int extend_disksize, int flag)
1050 {
1051         int retval;
1052
1053         clear_buffer_mapped(bh);
1054
1055         /*
1056          * Try to see if we can get  the block without requesting
1057          * for new file system block.
1058          */
1059         down_read((&EXT4_I(inode)->i_data_sem));
1060         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1061                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1062                                 bh, 0, 0);
1063         } else {
1064                 retval = ext4_get_blocks_handle(handle,
1065                                 inode, block, max_blocks, bh, 0, 0);
1066         }
1067         up_read((&EXT4_I(inode)->i_data_sem));
1068
1069         /* If it is only a block(s) look up */
1070         if (!create)
1071                 return retval;
1072
1073         /*
1074          * Returns if the blocks have already allocated
1075          *
1076          * Note that if blocks have been preallocated
1077          * ext4_ext_get_block() returns th create = 0
1078          * with buffer head unmapped.
1079          */
1080         if (retval > 0 && buffer_mapped(bh))
1081                 return retval;
1082
1083         /*
1084          * New blocks allocate and/or writing to uninitialized extent
1085          * will possibly result in updating i_data, so we take
1086          * the write lock of i_data_sem, and call get_blocks()
1087          * with create == 1 flag.
1088          */
1089         down_write((&EXT4_I(inode)->i_data_sem));
1090
1091         /*
1092          * if the caller is from delayed allocation writeout path
1093          * we have already reserved fs blocks for allocation
1094          * let the underlying get_block() function know to
1095          * avoid double accounting
1096          */
1097         if (flag)
1098                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1099         /*
1100          * We need to check for EXT4 here because migrate
1101          * could have changed the inode type in between
1102          */
1103         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1104                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1105                                 bh, create, extend_disksize);
1106         } else {
1107                 retval = ext4_get_blocks_handle(handle, inode, block,
1108                                 max_blocks, bh, create, extend_disksize);
1109
1110                 if (retval > 0 && buffer_new(bh)) {
1111                         /*
1112                          * We allocated new blocks which will result in
1113                          * i_data's format changing.  Force the migrate
1114                          * to fail by clearing migrate flags
1115                          */
1116                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1117                                                         ~EXT4_EXT_MIGRATE;
1118                 }
1119         }
1120
1121         if (flag) {
1122                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1123                 /*
1124                  * Update reserved blocks/metadata blocks
1125                  * after successful block allocation
1126                  * which were deferred till now
1127                  */
1128                 if ((retval > 0) && buffer_delay(bh))
1129                         ext4_da_update_reserve_space(inode, retval);
1130         }
1131
1132         up_write((&EXT4_I(inode)->i_data_sem));
1133         return retval;
1134 }
1135
1136 /* Maximum number of blocks we map for direct IO at once. */
1137 #define DIO_MAX_BLOCKS 4096
1138
1139 int ext4_get_block(struct inode *inode, sector_t iblock,
1140                    struct buffer_head *bh_result, int create)
1141 {
1142         handle_t *handle = ext4_journal_current_handle();
1143         int ret = 0, started = 0;
1144         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1145         int dio_credits;
1146
1147         if (create && !handle) {
1148                 /* Direct IO write... */
1149                 if (max_blocks > DIO_MAX_BLOCKS)
1150                         max_blocks = DIO_MAX_BLOCKS;
1151                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1152                 handle = ext4_journal_start(inode, dio_credits);
1153                 if (IS_ERR(handle)) {
1154                         ret = PTR_ERR(handle);
1155                         goto out;
1156                 }
1157                 started = 1;
1158         }
1159
1160         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1161                                         max_blocks, bh_result, create, 0, 0);
1162         if (ret > 0) {
1163                 bh_result->b_size = (ret << inode->i_blkbits);
1164                 ret = 0;
1165         }
1166         if (started)
1167                 ext4_journal_stop(handle);
1168 out:
1169         return ret;
1170 }
1171
1172 /*
1173  * `handle' can be NULL if create is zero
1174  */
1175 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1176                                 ext4_lblk_t block, int create, int *errp)
1177 {
1178         struct buffer_head dummy;
1179         int fatal = 0, err;
1180
1181         J_ASSERT(handle != NULL || create == 0);
1182
1183         dummy.b_state = 0;
1184         dummy.b_blocknr = -1000;
1185         buffer_trace_init(&dummy.b_history);
1186         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1187                                         &dummy, create, 1, 0);
1188         /*
1189          * ext4_get_blocks_handle() returns number of blocks
1190          * mapped. 0 in case of a HOLE.
1191          */
1192         if (err > 0) {
1193                 if (err > 1)
1194                         WARN_ON(1);
1195                 err = 0;
1196         }
1197         *errp = err;
1198         if (!err && buffer_mapped(&dummy)) {
1199                 struct buffer_head *bh;
1200                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1201                 if (!bh) {
1202                         *errp = -EIO;
1203                         goto err;
1204                 }
1205                 if (buffer_new(&dummy)) {
1206                         J_ASSERT(create != 0);
1207                         J_ASSERT(handle != NULL);
1208
1209                         /*
1210                          * Now that we do not always journal data, we should
1211                          * keep in mind whether this should always journal the
1212                          * new buffer as metadata.  For now, regular file
1213                          * writes use ext4_get_block instead, so it's not a
1214                          * problem.
1215                          */
1216                         lock_buffer(bh);
1217                         BUFFER_TRACE(bh, "call get_create_access");
1218                         fatal = ext4_journal_get_create_access(handle, bh);
1219                         if (!fatal && !buffer_uptodate(bh)) {
1220                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1221                                 set_buffer_uptodate(bh);
1222                         }
1223                         unlock_buffer(bh);
1224                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1225                         err = ext4_journal_dirty_metadata(handle, bh);
1226                         if (!fatal)
1227                                 fatal = err;
1228                 } else {
1229                         BUFFER_TRACE(bh, "not a new buffer");
1230                 }
1231                 if (fatal) {
1232                         *errp = fatal;
1233                         brelse(bh);
1234                         bh = NULL;
1235                 }
1236                 return bh;
1237         }
1238 err:
1239         return NULL;
1240 }
1241
1242 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1243                                ext4_lblk_t block, int create, int *err)
1244 {
1245         struct buffer_head *bh;
1246
1247         bh = ext4_getblk(handle, inode, block, create, err);
1248         if (!bh)
1249                 return bh;
1250         if (buffer_uptodate(bh))
1251                 return bh;
1252         ll_rw_block(READ_META, 1, &bh);
1253         wait_on_buffer(bh);
1254         if (buffer_uptodate(bh))
1255                 return bh;
1256         put_bh(bh);
1257         *err = -EIO;
1258         return NULL;
1259 }
1260
1261 static int walk_page_buffers(handle_t *handle,
1262                              struct buffer_head *head,
1263                              unsigned from,
1264                              unsigned to,
1265                              int *partial,
1266                              int (*fn)(handle_t *handle,
1267                                        struct buffer_head *bh))
1268 {
1269         struct buffer_head *bh;
1270         unsigned block_start, block_end;
1271         unsigned blocksize = head->b_size;
1272         int err, ret = 0;
1273         struct buffer_head *next;
1274
1275         for (bh = head, block_start = 0;
1276              ret == 0 && (bh != head || !block_start);
1277              block_start = block_end, bh = next)
1278         {
1279                 next = bh->b_this_page;
1280                 block_end = block_start + blocksize;
1281                 if (block_end <= from || block_start >= to) {
1282                         if (partial && !buffer_uptodate(bh))
1283                                 *partial = 1;
1284                         continue;
1285                 }
1286                 err = (*fn)(handle, bh);
1287                 if (!ret)
1288                         ret = err;
1289         }
1290         return ret;
1291 }
1292
1293 /*
1294  * To preserve ordering, it is essential that the hole instantiation and
1295  * the data write be encapsulated in a single transaction.  We cannot
1296  * close off a transaction and start a new one between the ext4_get_block()
1297  * and the commit_write().  So doing the jbd2_journal_start at the start of
1298  * prepare_write() is the right place.
1299  *
1300  * Also, this function can nest inside ext4_writepage() ->
1301  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1302  * has generated enough buffer credits to do the whole page.  So we won't
1303  * block on the journal in that case, which is good, because the caller may
1304  * be PF_MEMALLOC.
1305  *
1306  * By accident, ext4 can be reentered when a transaction is open via
1307  * quota file writes.  If we were to commit the transaction while thus
1308  * reentered, there can be a deadlock - we would be holding a quota
1309  * lock, and the commit would never complete if another thread had a
1310  * transaction open and was blocking on the quota lock - a ranking
1311  * violation.
1312  *
1313  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1314  * will _not_ run commit under these circumstances because handle->h_ref
1315  * is elevated.  We'll still have enough credits for the tiny quotafile
1316  * write.
1317  */
1318 static int do_journal_get_write_access(handle_t *handle,
1319                                         struct buffer_head *bh)
1320 {
1321         if (!buffer_mapped(bh) || buffer_freed(bh))
1322                 return 0;
1323         return ext4_journal_get_write_access(handle, bh);
1324 }
1325
1326 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1327                                 loff_t pos, unsigned len, unsigned flags,
1328                                 struct page **pagep, void **fsdata)
1329 {
1330         struct inode *inode = mapping->host;
1331         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1332         handle_t *handle;
1333         int retries = 0;
1334         struct page *page;
1335         pgoff_t index;
1336         unsigned from, to;
1337
1338         index = pos >> PAGE_CACHE_SHIFT;
1339         from = pos & (PAGE_CACHE_SIZE - 1);
1340         to = from + len;
1341
1342 retry:
1343         handle = ext4_journal_start(inode, needed_blocks);
1344         if (IS_ERR(handle)) {
1345                 ret = PTR_ERR(handle);
1346                 goto out;
1347         }
1348
1349         page = grab_cache_page_write_begin(mapping, index, flags);
1350         if (!page) {
1351                 ext4_journal_stop(handle);
1352                 ret = -ENOMEM;
1353                 goto out;
1354         }
1355         *pagep = page;
1356
1357         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1358                                                         ext4_get_block);
1359
1360         if (!ret && ext4_should_journal_data(inode)) {
1361                 ret = walk_page_buffers(handle, page_buffers(page),
1362                                 from, to, NULL, do_journal_get_write_access);
1363         }
1364
1365         if (ret) {
1366                 unlock_page(page);
1367                 ext4_journal_stop(handle);
1368                 page_cache_release(page);
1369                 /*
1370                  * block_write_begin may have instantiated a few blocks
1371                  * outside i_size.  Trim these off again. Don't need
1372                  * i_size_read because we hold i_mutex.
1373                  */
1374                 if (pos + len > inode->i_size)
1375                         vmtruncate(inode, inode->i_size);
1376         }
1377
1378         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1379                 goto retry;
1380 out:
1381         return ret;
1382 }
1383
1384 /* For write_end() in data=journal mode */
1385 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1386 {
1387         if (!buffer_mapped(bh) || buffer_freed(bh))
1388                 return 0;
1389         set_buffer_uptodate(bh);
1390         return ext4_journal_dirty_metadata(handle, bh);
1391 }
1392
1393 /*
1394  * We need to pick up the new inode size which generic_commit_write gave us
1395  * `file' can be NULL - eg, when called from page_symlink().
1396  *
1397  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1398  * buffers are managed internally.
1399  */
1400 static int ext4_ordered_write_end(struct file *file,
1401                                 struct address_space *mapping,
1402                                 loff_t pos, unsigned len, unsigned copied,
1403                                 struct page *page, void *fsdata)
1404 {
1405         handle_t *handle = ext4_journal_current_handle();
1406         struct inode *inode = mapping->host;
1407         int ret = 0, ret2;
1408
1409         ret = ext4_jbd2_file_inode(handle, inode);
1410
1411         if (ret == 0) {
1412                 loff_t new_i_size;
1413
1414                 new_i_size = pos + copied;
1415                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1416                         ext4_update_i_disksize(inode, new_i_size);
1417                         /* We need to mark inode dirty even if
1418                          * new_i_size is less that inode->i_size
1419                          * bu greater than i_disksize.(hint delalloc)
1420                          */
1421                         ext4_mark_inode_dirty(handle, inode);
1422                 }
1423
1424                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1425                                                         page, fsdata);
1426                 copied = ret2;
1427                 if (ret2 < 0)
1428                         ret = ret2;
1429         }
1430         ret2 = ext4_journal_stop(handle);
1431         if (!ret)
1432                 ret = ret2;
1433
1434         return ret ? ret : copied;
1435 }
1436
1437 static int ext4_writeback_write_end(struct file *file,
1438                                 struct address_space *mapping,
1439                                 loff_t pos, unsigned len, unsigned copied,
1440                                 struct page *page, void *fsdata)
1441 {
1442         handle_t *handle = ext4_journal_current_handle();
1443         struct inode *inode = mapping->host;
1444         int ret = 0, ret2;
1445         loff_t new_i_size;
1446
1447         new_i_size = pos + copied;
1448         if (new_i_size > EXT4_I(inode)->i_disksize) {
1449                 ext4_update_i_disksize(inode, new_i_size);
1450                 /* We need to mark inode dirty even if
1451                  * new_i_size is less that inode->i_size
1452                  * bu greater than i_disksize.(hint delalloc)
1453                  */
1454                 ext4_mark_inode_dirty(handle, inode);
1455         }
1456
1457         ret2 = generic_write_end(file, mapping, pos, len, copied,
1458                                                         page, fsdata);
1459         copied = ret2;
1460         if (ret2 < 0)
1461                 ret = ret2;
1462
1463         ret2 = ext4_journal_stop(handle);
1464         if (!ret)
1465                 ret = ret2;
1466
1467         return ret ? ret : copied;
1468 }
1469
1470 static int ext4_journalled_write_end(struct file *file,
1471                                 struct address_space *mapping,
1472                                 loff_t pos, unsigned len, unsigned copied,
1473                                 struct page *page, void *fsdata)
1474 {
1475         handle_t *handle = ext4_journal_current_handle();
1476         struct inode *inode = mapping->host;
1477         int ret = 0, ret2;
1478         int partial = 0;
1479         unsigned from, to;
1480         loff_t new_i_size;
1481
1482         from = pos & (PAGE_CACHE_SIZE - 1);
1483         to = from + len;
1484
1485         if (copied < len) {
1486                 if (!PageUptodate(page))
1487                         copied = 0;
1488                 page_zero_new_buffers(page, from+copied, to);
1489         }
1490
1491         ret = walk_page_buffers(handle, page_buffers(page), from,
1492                                 to, &partial, write_end_fn);
1493         if (!partial)
1494                 SetPageUptodate(page);
1495         new_i_size = pos + copied;
1496         if (new_i_size > inode->i_size)
1497                 i_size_write(inode, pos+copied);
1498         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1499         if (new_i_size > EXT4_I(inode)->i_disksize) {
1500                 ext4_update_i_disksize(inode, new_i_size);
1501                 ret2 = ext4_mark_inode_dirty(handle, inode);
1502                 if (!ret)
1503                         ret = ret2;
1504         }
1505
1506         unlock_page(page);
1507         ret2 = ext4_journal_stop(handle);
1508         if (!ret)
1509                 ret = ret2;
1510         page_cache_release(page);
1511
1512         return ret ? ret : copied;
1513 }
1514
1515 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1516 {
1517         int retries = 0;
1518        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519        unsigned long md_needed, mdblocks, total = 0;
1520
1521         /*
1522          * recalculate the amount of metadata blocks to reserve
1523          * in order to allocate nrblocks
1524          * worse case is one extent per block
1525          */
1526 repeat:
1527         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1528         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1529         mdblocks = ext4_calc_metadata_amount(inode, total);
1530         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1531
1532         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1533         total = md_needed + nrblocks;
1534
1535         if (ext4_claim_free_blocks(sbi, total)) {
1536                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1537                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1538                         yield();
1539                         goto repeat;
1540                 }
1541                 return -ENOSPC;
1542         }
1543         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1544         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1545
1546         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1547         return 0;       /* success */
1548 }
1549
1550 static void ext4_da_release_space(struct inode *inode, int to_free)
1551 {
1552         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1553         int total, mdb, mdb_free, release;
1554
1555         if (!to_free)
1556                 return;         /* Nothing to release, exit */
1557
1558         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1559
1560         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1561                 /*
1562                  * if there is no reserved blocks, but we try to free some
1563                  * then the counter is messed up somewhere.
1564                  * but since this function is called from invalidate
1565                  * page, it's harmless to return without any action
1566                  */
1567                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1568                             "blocks for inode %lu, but there is no reserved "
1569                             "data blocks\n", to_free, inode->i_ino);
1570                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1571                 return;
1572         }
1573
1574         /* recalculate the number of metablocks still need to be reserved */
1575         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1576         mdb = ext4_calc_metadata_amount(inode, total);
1577
1578         /* figure out how many metablocks to release */
1579         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1580         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1581
1582         release = to_free + mdb_free;
1583
1584         /* update fs dirty blocks counter for truncate case */
1585         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1586
1587         /* update per-inode reservations */
1588         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1589         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1590
1591         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1592         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1593         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1594 }
1595
1596 static void ext4_da_page_release_reservation(struct page *page,
1597                                                 unsigned long offset)
1598 {
1599         int to_release = 0;
1600         struct buffer_head *head, *bh;
1601         unsigned int curr_off = 0;
1602
1603         head = page_buffers(page);
1604         bh = head;
1605         do {
1606                 unsigned int next_off = curr_off + bh->b_size;
1607
1608                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1609                         to_release++;
1610                         clear_buffer_delay(bh);
1611                 }
1612                 curr_off = next_off;
1613         } while ((bh = bh->b_this_page) != head);
1614         ext4_da_release_space(page->mapping->host, to_release);
1615 }
1616
1617 /*
1618  * Delayed allocation stuff
1619  */
1620
1621 struct mpage_da_data {
1622         struct inode *inode;
1623         struct buffer_head lbh;                 /* extent of blocks */
1624         unsigned long first_page, next_page;    /* extent of pages */
1625         get_block_t *get_block;
1626         struct writeback_control *wbc;
1627         int io_done;
1628         long pages_written;
1629         int retval;
1630 };
1631
1632 /*
1633  * mpage_da_submit_io - walks through extent of pages and try to write
1634  * them with writepage() call back
1635  *
1636  * @mpd->inode: inode
1637  * @mpd->first_page: first page of the extent
1638  * @mpd->next_page: page after the last page of the extent
1639  * @mpd->get_block: the filesystem's block mapper function
1640  *
1641  * By the time mpage_da_submit_io() is called we expect all blocks
1642  * to be allocated. this may be wrong if allocation failed.
1643  *
1644  * As pages are already locked by write_cache_pages(), we can't use it
1645  */
1646 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1647 {
1648         struct address_space *mapping = mpd->inode->i_mapping;
1649         int ret = 0, err, nr_pages, i;
1650         unsigned long index, end;
1651         struct pagevec pvec;
1652         long pages_skipped;
1653
1654         BUG_ON(mpd->next_page <= mpd->first_page);
1655         pagevec_init(&pvec, 0);
1656         index = mpd->first_page;
1657         end = mpd->next_page - 1;
1658
1659         while (index <= end) {
1660                 /*
1661                  * We can use PAGECACHE_TAG_DIRTY lookup here because
1662                  * even though we have cleared the dirty flag on the page
1663                  * We still keep the page in the radix tree with tag
1664                  * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1665                  * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1666                  * which is called via the below writepage callback.
1667                  */
1668                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1669                                         PAGECACHE_TAG_DIRTY,
1670                                         min(end - index,
1671                                         (pgoff_t)PAGEVEC_SIZE-1) + 1);
1672                 if (nr_pages == 0)
1673                         break;
1674                 for (i = 0; i < nr_pages; i++) {
1675                         struct page *page = pvec.pages[i];
1676
1677                         pages_skipped = mpd->wbc->pages_skipped;
1678                         err = mapping->a_ops->writepage(page, mpd->wbc);
1679                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1680                                 /*
1681                                  * have successfully written the page
1682                                  * without skipping the same
1683                                  */
1684                                 mpd->pages_written++;
1685                         /*
1686                          * In error case, we have to continue because
1687                          * remaining pages are still locked
1688                          * XXX: unlock and re-dirty them?
1689                          */
1690                         if (ret == 0)
1691                                 ret = err;
1692                 }
1693                 pagevec_release(&pvec);
1694         }
1695         return ret;
1696 }
1697
1698 /*
1699  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1700  *
1701  * @mpd->inode - inode to walk through
1702  * @exbh->b_blocknr - first block on a disk
1703  * @exbh->b_size - amount of space in bytes
1704  * @logical - first logical block to start assignment with
1705  *
1706  * the function goes through all passed space and put actual disk
1707  * block numbers into buffer heads, dropping BH_Delay
1708  */
1709 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1710                                  struct buffer_head *exbh)
1711 {
1712         struct inode *inode = mpd->inode;
1713         struct address_space *mapping = inode->i_mapping;
1714         int blocks = exbh->b_size >> inode->i_blkbits;
1715         sector_t pblock = exbh->b_blocknr, cur_logical;
1716         struct buffer_head *head, *bh;
1717         pgoff_t index, end;
1718         struct pagevec pvec;
1719         int nr_pages, i;
1720
1721         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1722         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1723         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1724
1725         pagevec_init(&pvec, 0);
1726
1727         while (index <= end) {
1728                 /* XXX: optimize tail */
1729                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1730                 if (nr_pages == 0)
1731                         break;
1732                 for (i = 0; i < nr_pages; i++) {
1733                         struct page *page = pvec.pages[i];
1734
1735                         index = page->index;
1736                         if (index > end)
1737                                 break;
1738                         index++;
1739
1740                         BUG_ON(!PageLocked(page));
1741                         BUG_ON(PageWriteback(page));
1742                         BUG_ON(!page_has_buffers(page));
1743
1744                         bh = page_buffers(page);
1745                         head = bh;
1746
1747                         /* skip blocks out of the range */
1748                         do {
1749                                 if (cur_logical >= logical)
1750                                         break;
1751                                 cur_logical++;
1752                         } while ((bh = bh->b_this_page) != head);
1753
1754                         do {
1755                                 if (cur_logical >= logical + blocks)
1756                                         break;
1757                                 if (buffer_delay(bh)) {
1758                                         bh->b_blocknr = pblock;
1759                                         clear_buffer_delay(bh);
1760                                         bh->b_bdev = inode->i_sb->s_bdev;
1761                                 } else if (buffer_unwritten(bh)) {
1762                                         bh->b_blocknr = pblock;
1763                                         clear_buffer_unwritten(bh);
1764                                         set_buffer_mapped(bh);
1765                                         set_buffer_new(bh);
1766                                         bh->b_bdev = inode->i_sb->s_bdev;
1767                                 } else if (buffer_mapped(bh))
1768                                         BUG_ON(bh->b_blocknr != pblock);
1769
1770                                 cur_logical++;
1771                                 pblock++;
1772                         } while ((bh = bh->b_this_page) != head);
1773                 }
1774                 pagevec_release(&pvec);
1775         }
1776 }
1777
1778
1779 /*
1780  * __unmap_underlying_blocks - just a helper function to unmap
1781  * set of blocks described by @bh
1782  */
1783 static inline void __unmap_underlying_blocks(struct inode *inode,
1784                                              struct buffer_head *bh)
1785 {
1786         struct block_device *bdev = inode->i_sb->s_bdev;
1787         int blocks, i;
1788
1789         blocks = bh->b_size >> inode->i_blkbits;
1790         for (i = 0; i < blocks; i++)
1791                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1792 }
1793
1794 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1795                                         sector_t logical, long blk_cnt)
1796 {
1797         int nr_pages, i;
1798         pgoff_t index, end;
1799         struct pagevec pvec;
1800         struct inode *inode = mpd->inode;
1801         struct address_space *mapping = inode->i_mapping;
1802
1803         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1804         end   = (logical + blk_cnt - 1) >>
1805                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1806         while (index <= end) {
1807                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1808                 if (nr_pages == 0)
1809                         break;
1810                 for (i = 0; i < nr_pages; i++) {
1811                         struct page *page = pvec.pages[i];
1812                         index = page->index;
1813                         if (index > end)
1814                                 break;
1815                         index++;
1816
1817                         BUG_ON(!PageLocked(page));
1818                         BUG_ON(PageWriteback(page));
1819                         block_invalidatepage(page, 0);
1820                         ClearPageUptodate(page);
1821                         unlock_page(page);
1822                 }
1823         }
1824         return;
1825 }
1826
1827 static void ext4_print_free_blocks(struct inode *inode)
1828 {
1829         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1830         printk(KERN_EMERG "Total free blocks count %lld\n",
1831                         ext4_count_free_blocks(inode->i_sb));
1832         printk(KERN_EMERG "Free/Dirty block details\n");
1833         printk(KERN_EMERG "free_blocks=%lld\n",
1834                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1835         printk(KERN_EMERG "dirty_blocks=%lld\n",
1836                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1837         printk(KERN_EMERG "Block reservation details\n");
1838         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1839                         EXT4_I(inode)->i_reserved_data_blocks);
1840         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1841                         EXT4_I(inode)->i_reserved_meta_blocks);
1842         return;
1843 }
1844
1845 /*
1846  * mpage_da_map_blocks - go through given space
1847  *
1848  * @mpd->lbh - bh describing space
1849  * @mpd->get_block - the filesystem's block mapper function
1850  *
1851  * The function skips space we know is already mapped to disk blocks.
1852  *
1853  */
1854 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1855 {
1856         int err = 0;
1857         struct buffer_head new;
1858         struct buffer_head *lbh = &mpd->lbh;
1859         sector_t next;
1860
1861         /*
1862          * We consider only non-mapped and non-allocated blocks
1863          */
1864         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1865                 return 0;
1866         new.b_state = lbh->b_state;
1867         new.b_blocknr = 0;
1868         new.b_size = lbh->b_size;
1869         next = lbh->b_blocknr;
1870         /*
1871          * If we didn't accumulate anything
1872          * to write simply return
1873          */
1874         if (!new.b_size)
1875                 return 0;
1876         err = mpd->get_block(mpd->inode, next, &new, 1);
1877         if (err) {
1878
1879                 /* If get block returns with error
1880                  * we simply return. Later writepage
1881                  * will redirty the page and writepages
1882                  * will find the dirty page again
1883                  */
1884                 if (err == -EAGAIN)
1885                         return 0;
1886
1887                 if (err == -ENOSPC &&
1888                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1889                         mpd->retval = err;
1890                         return 0;
1891                 }
1892
1893                 /*
1894                  * get block failure will cause us
1895                  * to loop in writepages. Because
1896                  * a_ops->writepage won't be able to
1897                  * make progress. The page will be redirtied
1898                  * by writepage and writepages will again
1899                  * try to write the same.
1900                  */
1901                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1902                                   "at logical offset %llu with max blocks "
1903                                   "%zd with error %d\n",
1904                                   __func__, mpd->inode->i_ino,
1905                                   (unsigned long long)next,
1906                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1907                 printk(KERN_EMERG "This should not happen.!! "
1908                                         "Data will be lost\n");
1909                 if (err == -ENOSPC) {
1910                         ext4_print_free_blocks(mpd->inode);
1911                 }
1912                 /* invlaidate all the pages */
1913                 ext4_da_block_invalidatepages(mpd, next,
1914                                 lbh->b_size >> mpd->inode->i_blkbits);
1915                 return err;
1916         }
1917         BUG_ON(new.b_size == 0);
1918
1919         if (buffer_new(&new))
1920                 __unmap_underlying_blocks(mpd->inode, &new);
1921
1922         /*
1923          * If blocks are delayed marked, we need to
1924          * put actual blocknr and drop delayed bit
1925          */
1926         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1927                 mpage_put_bnr_to_bhs(mpd, next, &new);
1928
1929         return 0;
1930 }
1931
1932 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1933                 (1 << BH_Delay) | (1 << BH_Unwritten))
1934
1935 /*
1936  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1937  *
1938  * @mpd->lbh - extent of blocks
1939  * @logical - logical number of the block in the file
1940  * @bh - bh of the block (used to access block's state)
1941  *
1942  * the function is used to collect contig. blocks in same state
1943  */
1944 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1945                                    sector_t logical, struct buffer_head *bh)
1946 {
1947         sector_t next;
1948         size_t b_size = bh->b_size;
1949         struct buffer_head *lbh = &mpd->lbh;
1950         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1951
1952         /* check if thereserved journal credits might overflow */
1953         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1954                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1955                         /*
1956                          * With non-extent format we are limited by the journal
1957                          * credit available.  Total credit needed to insert
1958                          * nrblocks contiguous blocks is dependent on the
1959                          * nrblocks.  So limit nrblocks.
1960                          */
1961                         goto flush_it;
1962                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1963                                 EXT4_MAX_TRANS_DATA) {
1964                         /*
1965                          * Adding the new buffer_head would make it cross the
1966                          * allowed limit for which we have journal credit
1967                          * reserved. So limit the new bh->b_size
1968                          */
1969                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1970                                                 mpd->inode->i_blkbits;
1971                         /* we will do mpage_da_submit_io in the next loop */
1972                 }
1973         }
1974         /*
1975          * First block in the extent
1976          */
1977         if (lbh->b_size == 0) {
1978                 lbh->b_blocknr = logical;
1979                 lbh->b_size = b_size;
1980                 lbh->b_state = bh->b_state & BH_FLAGS;
1981                 return;
1982         }
1983
1984         next = lbh->b_blocknr + nrblocks;
1985         /*
1986          * Can we merge the block to our big extent?
1987          */
1988         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1989                 lbh->b_size += b_size;
1990                 return;
1991         }
1992
1993 flush_it:
1994         /*
1995          * We couldn't merge the block to our extent, so we
1996          * need to flush current  extent and start new one
1997          */
1998         if (mpage_da_map_blocks(mpd) == 0)
1999                 mpage_da_submit_io(mpd);
2000         mpd->io_done = 1;
2001         return;
2002 }
2003
2004 /*
2005  * __mpage_da_writepage - finds extent of pages and blocks
2006  *
2007  * @page: page to consider
2008  * @wbc: not used, we just follow rules
2009  * @data: context
2010  *
2011  * The function finds extents of pages and scan them for all blocks.
2012  */
2013 static int __mpage_da_writepage(struct page *page,
2014                                 struct writeback_control *wbc, void *data)
2015 {
2016         struct mpage_da_data *mpd = data;
2017         struct inode *inode = mpd->inode;
2018         struct buffer_head *bh, *head, fake;
2019         sector_t logical;
2020
2021         if (mpd->io_done) {
2022                 /*
2023                  * Rest of the page in the page_vec
2024                  * redirty then and skip then. We will
2025                  * try to to write them again after
2026                  * starting a new transaction
2027                  */
2028                 redirty_page_for_writepage(wbc, page);
2029                 unlock_page(page);
2030                 return MPAGE_DA_EXTENT_TAIL;
2031         }
2032         /*
2033          * Can we merge this page to current extent?
2034          */
2035         if (mpd->next_page != page->index) {
2036                 /*
2037                  * Nope, we can't. So, we map non-allocated blocks
2038                  * and start IO on them using writepage()
2039                  */
2040                 if (mpd->next_page != mpd->first_page) {
2041                         if (mpage_da_map_blocks(mpd) == 0)
2042                                 mpage_da_submit_io(mpd);
2043                         /*
2044                          * skip rest of the page in the page_vec
2045                          */
2046                         mpd->io_done = 1;
2047                         redirty_page_for_writepage(wbc, page);
2048                         unlock_page(page);
2049                         return MPAGE_DA_EXTENT_TAIL;
2050                 }
2051
2052                 /*
2053                  * Start next extent of pages ...
2054                  */
2055                 mpd->first_page = page->index;
2056
2057                 /*
2058                  * ... and blocks
2059                  */
2060                 mpd->lbh.b_size = 0;
2061                 mpd->lbh.b_state = 0;
2062                 mpd->lbh.b_blocknr = 0;
2063         }
2064
2065         mpd->next_page = page->index + 1;
2066         logical = (sector_t) page->index <<
2067                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2068
2069         if (!page_has_buffers(page)) {
2070                 /*
2071                  * There is no attached buffer heads yet (mmap?)
2072                  * we treat the page asfull of dirty blocks
2073                  */
2074                 bh = &fake;
2075                 bh->b_size = PAGE_CACHE_SIZE;
2076                 bh->b_state = 0;
2077                 set_buffer_dirty(bh);
2078                 set_buffer_uptodate(bh);
2079                 mpage_add_bh_to_extent(mpd, logical, bh);
2080                 if (mpd->io_done)
2081                         return MPAGE_DA_EXTENT_TAIL;
2082         } else {
2083                 /*
2084                  * Page with regular buffer heads, just add all dirty ones
2085                  */
2086                 head = page_buffers(page);
2087                 bh = head;
2088                 do {
2089                         BUG_ON(buffer_locked(bh));
2090                         if (buffer_dirty(bh) &&
2091                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2092                                 mpage_add_bh_to_extent(mpd, logical, bh);
2093                                 if (mpd->io_done)
2094                                         return MPAGE_DA_EXTENT_TAIL;
2095                         }
2096                         logical++;
2097                 } while ((bh = bh->b_this_page) != head);
2098         }
2099
2100         return 0;
2101 }
2102
2103 /*
2104  * mpage_da_writepages - walk the list of dirty pages of the given
2105  * address space, allocates non-allocated blocks, maps newly-allocated
2106  * blocks to existing bhs and issue IO them
2107  *
2108  * @mapping: address space structure to write
2109  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2110  * @get_block: the filesystem's block mapper function.
2111  *
2112  * This is a library function, which implements the writepages()
2113  * address_space_operation.
2114  */
2115 static int mpage_da_writepages(struct address_space *mapping,
2116                                struct writeback_control *wbc,
2117                                struct mpage_da_data *mpd)
2118 {
2119         int ret;
2120
2121         if (!mpd->get_block)
2122                 return generic_writepages(mapping, wbc);
2123
2124         mpd->lbh.b_size = 0;
2125         mpd->lbh.b_state = 0;
2126         mpd->lbh.b_blocknr = 0;
2127         mpd->first_page = 0;
2128         mpd->next_page = 0;
2129         mpd->io_done = 0;
2130         mpd->pages_written = 0;
2131         mpd->retval = 0;
2132
2133         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2134         /*
2135          * Handle last extent of pages
2136          */
2137         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2138                 if (mpage_da_map_blocks(mpd) == 0)
2139                         mpage_da_submit_io(mpd);
2140
2141                 mpd->io_done = 1;
2142                 ret = MPAGE_DA_EXTENT_TAIL;
2143         }
2144         wbc->nr_to_write -= mpd->pages_written;
2145         return ret;
2146 }
2147
2148 /*
2149  * this is a special callback for ->write_begin() only
2150  * it's intention is to return mapped block or reserve space
2151  */
2152 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2153                                   struct buffer_head *bh_result, int create)
2154 {
2155         int ret = 0;
2156
2157         BUG_ON(create == 0);
2158         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2159
2160         /*
2161          * first, we need to know whether the block is allocated already
2162          * preallocated blocks are unmapped but should treated
2163          * the same as allocated blocks.
2164          */
2165         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2166         if ((ret == 0) && !buffer_delay(bh_result)) {
2167                 /* the block isn't (pre)allocated yet, let's reserve space */
2168                 /*
2169                  * XXX: __block_prepare_write() unmaps passed block,
2170                  * is it OK?
2171                  */
2172                 ret = ext4_da_reserve_space(inode, 1);
2173                 if (ret)
2174                         /* not enough space to reserve */
2175                         return ret;
2176
2177                 map_bh(bh_result, inode->i_sb, 0);
2178                 set_buffer_new(bh_result);
2179                 set_buffer_delay(bh_result);
2180         } else if (ret > 0) {
2181                 bh_result->b_size = (ret << inode->i_blkbits);
2182                 ret = 0;
2183         }
2184
2185         return ret;
2186 }
2187 #define         EXT4_DELALLOC_RSVED     1
2188 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2189                                    struct buffer_head *bh_result, int create)
2190 {
2191         int ret;
2192         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2193         loff_t disksize = EXT4_I(inode)->i_disksize;
2194         handle_t *handle = NULL;
2195
2196         handle = ext4_journal_current_handle();
2197         BUG_ON(!handle);
2198         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2199                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2200         if (ret > 0) {
2201
2202                 bh_result->b_size = (ret << inode->i_blkbits);
2203
2204                 if (ext4_should_order_data(inode)) {
2205                         int retval;
2206                         retval = ext4_jbd2_file_inode(handle, inode);
2207                         if (retval)
2208                                 /*
2209                                  * Failed to add inode for ordered
2210                                  * mode. Don't update file size
2211                                  */
2212                                 return retval;
2213                 }
2214
2215                 /*
2216                  * Update on-disk size along with block allocation
2217                  * we don't use 'extend_disksize' as size may change
2218                  * within already allocated block -bzzz
2219                  */
2220                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2221                 if (disksize > i_size_read(inode))
2222                         disksize = i_size_read(inode);
2223                 if (disksize > EXT4_I(inode)->i_disksize) {
2224                         ext4_update_i_disksize(inode, disksize);
2225                         ret = ext4_mark_inode_dirty(handle, inode);
2226                         return ret;
2227                 }
2228                 ret = 0;
2229         }
2230         return ret;
2231 }
2232
2233 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2234 {
2235         /*
2236          * unmapped buffer is possible for holes.
2237          * delay buffer is possible with delayed allocation
2238          */
2239         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2240 }
2241
2242 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2243                                    struct buffer_head *bh_result, int create)
2244 {
2245         int ret = 0;
2246         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2247
2248         /*
2249          * we don't want to do block allocation in writepage
2250          * so call get_block_wrap with create = 0
2251          */
2252         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2253                                    bh_result, 0, 0, 0);
2254         if (ret > 0) {
2255                 bh_result->b_size = (ret << inode->i_blkbits);
2256                 ret = 0;
2257         }
2258         return ret;
2259 }
2260
2261 /*
2262  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2263  * get called via journal_submit_inode_data_buffers (no journal handle)
2264  * get called via shrink_page_list via pdflush (no journal handle)
2265  * or grab_page_cache when doing write_begin (have journal handle)
2266  */
2267 static int ext4_da_writepage(struct page *page,
2268                                 struct writeback_control *wbc)
2269 {
2270         int ret = 0;
2271         loff_t size;
2272         unsigned long len;
2273         struct buffer_head *page_bufs;
2274         struct inode *inode = page->mapping->host;
2275
2276         size = i_size_read(inode);
2277         if (page->index == size >> PAGE_CACHE_SHIFT)
2278                 len = size & ~PAGE_CACHE_MASK;
2279         else
2280                 len = PAGE_CACHE_SIZE;
2281
2282         if (page_has_buffers(page)) {
2283                 page_bufs = page_buffers(page);
2284                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2285                                         ext4_bh_unmapped_or_delay)) {
2286                         /*
2287                          * We don't want to do  block allocation
2288                          * So redirty the page and return
2289                          * We may reach here when we do a journal commit
2290                          * via journal_submit_inode_data_buffers.
2291                          * If we don't have mapping block we just ignore
2292                          * them. We can also reach here via shrink_page_list
2293                          */
2294                         redirty_page_for_writepage(wbc, page);
2295                         unlock_page(page);
2296                         return 0;
2297                 }
2298         } else {
2299                 /*
2300                  * The test for page_has_buffers() is subtle:
2301                  * We know the page is dirty but it lost buffers. That means
2302                  * that at some moment in time after write_begin()/write_end()
2303                  * has been called all buffers have been clean and thus they
2304                  * must have been written at least once. So they are all
2305                  * mapped and we can happily proceed with mapping them
2306                  * and writing the page.
2307                  *
2308                  * Try to initialize the buffer_heads and check whether
2309                  * all are mapped and non delay. We don't want to
2310                  * do block allocation here.
2311                  */
2312                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2313                                                 ext4_normal_get_block_write);
2314                 if (!ret) {
2315                         page_bufs = page_buffers(page);
2316                         /* check whether all are mapped and non delay */
2317                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2318                                                 ext4_bh_unmapped_or_delay)) {
2319                                 redirty_page_for_writepage(wbc, page);
2320                                 unlock_page(page);
2321                                 return 0;
2322                         }
2323                 } else {
2324                         /*
2325                          * We can't do block allocation here
2326                          * so just redity the page and unlock
2327                          * and return
2328                          */
2329                         redirty_page_for_writepage(wbc, page);
2330                         unlock_page(page);
2331                         return 0;
2332                 }
2333                 /* now mark the buffer_heads as dirty and uptodate */
2334                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2335         }
2336
2337         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2338                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2339         else
2340                 ret = block_write_full_page(page,
2341                                                 ext4_normal_get_block_write,
2342                                                 wbc);
2343
2344         return ret;
2345 }
2346
2347 /*
2348  * This is called via ext4_da_writepages() to
2349  * calulate the total number of credits to reserve to fit
2350  * a single extent allocation into a single transaction,
2351  * ext4_da_writpeages() will loop calling this before
2352  * the block allocation.
2353  */
2354
2355 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2356 {
2357         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2358
2359         /*
2360          * With non-extent format the journal credit needed to
2361          * insert nrblocks contiguous block is dependent on
2362          * number of contiguous block. So we will limit
2363          * number of contiguous block to a sane value
2364          */
2365         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2366             (max_blocks > EXT4_MAX_TRANS_DATA))
2367                 max_blocks = EXT4_MAX_TRANS_DATA;
2368
2369         return ext4_chunk_trans_blocks(inode, max_blocks);
2370 }
2371
2372 static int ext4_da_writepages(struct address_space *mapping,
2373                               struct writeback_control *wbc)
2374 {
2375         pgoff_t index;
2376         int range_whole = 0;
2377         handle_t *handle = NULL;
2378         struct mpage_da_data mpd;
2379         struct inode *inode = mapping->host;
2380         int no_nrwrite_index_update;
2381         long pages_written = 0, pages_skipped;
2382         int needed_blocks, ret = 0, nr_to_writebump = 0;
2383         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2384
2385         /*
2386          * No pages to write? This is mainly a kludge to avoid starting
2387          * a transaction for special inodes like journal inode on last iput()
2388          * because that could violate lock ordering on umount
2389          */
2390         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2391                 return 0;
2392         /*
2393          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2394          * This make sure small files blocks are allocated in
2395          * single attempt. This ensure that small files
2396          * get less fragmented.
2397          */
2398         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2399                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2400                 wbc->nr_to_write = sbi->s_mb_stream_request;
2401         }
2402         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2403                 range_whole = 1;
2404
2405         if (wbc->range_cyclic)
2406                 index = mapping->writeback_index;
2407         else
2408                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2409
2410         mpd.wbc = wbc;
2411         mpd.inode = mapping->host;
2412
2413         /*
2414          * we don't want write_cache_pages to update
2415          * nr_to_write and writeback_index
2416          */
2417         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2418         wbc->no_nrwrite_index_update = 1;
2419         pages_skipped = wbc->pages_skipped;
2420
2421         while (!ret && wbc->nr_to_write > 0) {
2422
2423                 /*
2424                  * we  insert one extent at a time. So we need
2425                  * credit needed for single extent allocation.
2426                  * journalled mode is currently not supported
2427                  * by delalloc
2428                  */
2429                 BUG_ON(ext4_should_journal_data(inode));
2430                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2431
2432                 /* start a new transaction*/
2433                 handle = ext4_journal_start(inode, needed_blocks);
2434                 if (IS_ERR(handle)) {
2435                         ret = PTR_ERR(handle);
2436                         printk(KERN_EMERG "%s: jbd2_start: "
2437                                "%ld pages, ino %lu; err %d\n", __func__,
2438                                 wbc->nr_to_write, inode->i_ino, ret);
2439                         dump_stack();
2440                         goto out_writepages;
2441                 }
2442                 mpd.get_block = ext4_da_get_block_write;
2443                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2444
2445                 ext4_journal_stop(handle);
2446
2447                 if (mpd.retval == -ENOSPC) {
2448                         /* commit the transaction which would
2449                          * free blocks released in the transaction
2450                          * and try again
2451                          */
2452                         jbd2_journal_force_commit_nested(sbi->s_journal);
2453                         wbc->pages_skipped = pages_skipped;
2454                         ret = 0;
2455                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2456                         /*
2457                          * got one extent now try with
2458                          * rest of the pages
2459                          */
2460                         pages_written += mpd.pages_written;
2461                         wbc->pages_skipped = pages_skipped;
2462                         ret = 0;
2463                 } else if (wbc->nr_to_write)
2464                         /*
2465                          * There is no more writeout needed
2466                          * or we requested for a noblocking writeout
2467                          * and we found the device congested
2468                          */
2469                         break;
2470         }
2471         if (pages_skipped != wbc->pages_skipped)
2472                 printk(KERN_EMERG "This should not happen leaving %s "
2473                                 "with nr_to_write = %ld ret = %d\n",
2474                                 __func__, wbc->nr_to_write, ret);
2475
2476         /* Update index */
2477         index += pages_written;
2478         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2479                 /*
2480                  * set the writeback_index so that range_cyclic
2481                  * mode will write it back later
2482                  */
2483                 mapping->writeback_index = index;
2484
2485 out_writepages:
2486         if (!no_nrwrite_index_update)
2487                 wbc->no_nrwrite_index_update = 0;
2488         wbc->nr_to_write -= nr_to_writebump;
2489         return ret;
2490 }
2491
2492 #define FALL_BACK_TO_NONDELALLOC 1
2493 static int ext4_nonda_switch(struct super_block *sb)
2494 {
2495         s64 free_blocks, dirty_blocks;
2496         struct ext4_sb_info *sbi = EXT4_SB(sb);
2497
2498         /*
2499          * switch to non delalloc mode if we are running low
2500          * on free block. The free block accounting via percpu
2501          * counters can get slightly wrong with percpu_counter_batch getting
2502          * accumulated on each CPU without updating global counters
2503          * Delalloc need an accurate free block accounting. So switch
2504          * to non delalloc when we are near to error range.
2505          */
2506         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2507         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2508         if (2 * free_blocks < 3 * dirty_blocks ||
2509                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2510                 /*
2511                  * free block count is less that 150% of dirty blocks
2512                  * or free blocks is less that watermark
2513                  */
2514                 return 1;
2515         }
2516         return 0;
2517 }
2518
2519 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2520                                 loff_t pos, unsigned len, unsigned flags,
2521                                 struct page **pagep, void **fsdata)
2522 {
2523         int ret, retries = 0;
2524         struct page *page;
2525         pgoff_t index;
2526         unsigned from, to;
2527         struct inode *inode = mapping->host;
2528         handle_t *handle;
2529
2530         index = pos >> PAGE_CACHE_SHIFT;
2531         from = pos & (PAGE_CACHE_SIZE - 1);
2532         to = from + len;
2533
2534         if (ext4_nonda_switch(inode->i_sb)) {
2535                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2536                 return ext4_write_begin(file, mapping, pos,
2537                                         len, flags, pagep, fsdata);
2538         }
2539         *fsdata = (void *)0;
2540 retry:
2541         /*
2542          * With delayed allocation, we don't log the i_disksize update
2543          * if there is delayed block allocation. But we still need
2544          * to journalling the i_disksize update if writes to the end
2545          * of file which has an already mapped buffer.
2546          */
2547         handle = ext4_journal_start(inode, 1);
2548         if (IS_ERR(handle)) {
2549                 ret = PTR_ERR(handle);
2550                 goto out;
2551         }
2552
2553         page = grab_cache_page_write_begin(mapping, index, flags);
2554         if (!page) {
2555                 ext4_journal_stop(handle);
2556                 ret = -ENOMEM;
2557                 goto out;
2558         }
2559         *pagep = page;
2560
2561         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2562                                                         ext4_da_get_block_prep);
2563         if (ret < 0) {
2564                 unlock_page(page);
2565                 ext4_journal_stop(handle);
2566                 page_cache_release(page);
2567                 /*
2568                  * block_write_begin may have instantiated a few blocks
2569                  * outside i_size.  Trim these off again. Don't need
2570                  * i_size_read because we hold i_mutex.
2571                  */
2572                 if (pos + len > inode->i_size)
2573                         vmtruncate(inode, inode->i_size);
2574         }
2575
2576         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2577                 goto retry;
2578 out:
2579         return ret;
2580 }
2581
2582 /*
2583  * Check if we should update i_disksize
2584  * when write to the end of file but not require block allocation
2585  */
2586 static int ext4_da_should_update_i_disksize(struct page *page,
2587                                          unsigned long offset)
2588 {
2589         struct buffer_head *bh;
2590         struct inode *inode = page->mapping->host;
2591         unsigned int idx;
2592         int i;
2593
2594         bh = page_buffers(page);
2595         idx = offset >> inode->i_blkbits;
2596
2597         for (i = 0; i < idx; i++)
2598                 bh = bh->b_this_page;
2599
2600         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2601                 return 0;
2602         return 1;
2603 }
2604
2605 static int ext4_da_write_end(struct file *file,
2606                                 struct address_space *mapping,
2607                                 loff_t pos, unsigned len, unsigned copied,
2608                                 struct page *page, void *fsdata)
2609 {
2610         struct inode *inode = mapping->host;
2611         int ret = 0, ret2;
2612         handle_t *handle = ext4_journal_current_handle();
2613         loff_t new_i_size;
2614         unsigned long start, end;
2615         int write_mode = (int)(unsigned long)fsdata;
2616
2617         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2618                 if (ext4_should_order_data(inode)) {
2619                         return ext4_ordered_write_end(file, mapping, pos,
2620                                         len, copied, page, fsdata);
2621                 } else if (ext4_should_writeback_data(inode)) {
2622                         return ext4_writeback_write_end(file, mapping, pos,
2623                                         len, copied, page, fsdata);
2624                 } else {
2625                         BUG();
2626                 }
2627         }
2628
2629         start = pos & (PAGE_CACHE_SIZE - 1);
2630         end = start + copied - 1;
2631
2632         /*
2633          * generic_write_end() will run mark_inode_dirty() if i_size
2634          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2635          * into that.
2636          */
2637
2638         new_i_size = pos + copied;
2639         if (new_i_size > EXT4_I(inode)->i_disksize) {
2640                 if (ext4_da_should_update_i_disksize(page, end)) {
2641                         down_write(&EXT4_I(inode)->i_data_sem);
2642                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2643                                 /*
2644                                  * Updating i_disksize when extending file
2645                                  * without needing block allocation
2646                                  */
2647                                 if (ext4_should_order_data(inode))
2648                                         ret = ext4_jbd2_file_inode(handle,
2649                                                                    inode);
2650
2651                                 EXT4_I(inode)->i_disksize = new_i_size;
2652                         }
2653                         up_write(&EXT4_I(inode)->i_data_sem);
2654                         /* We need to mark inode dirty even if
2655                          * new_i_size is less that inode->i_size
2656                          * bu greater than i_disksize.(hint delalloc)
2657                          */
2658                         ext4_mark_inode_dirty(handle, inode);
2659                 }
2660         }
2661         ret2 = generic_write_end(file, mapping, pos, len, copied,
2662                                                         page, fsdata);
2663         copied = ret2;
2664         if (ret2 < 0)
2665                 ret = ret2;
2666         ret2 = ext4_journal_stop(handle);
2667         if (!ret)
2668                 ret = ret2;
2669
2670         return ret ? ret : copied;
2671 }
2672
2673 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2674 {
2675         /*
2676          * Drop reserved blocks
2677          */
2678         BUG_ON(!PageLocked(page));
2679         if (!page_has_buffers(page))
2680                 goto out;
2681
2682         ext4_da_page_release_reservation(page, offset);
2683
2684 out:
2685         ext4_invalidatepage(page, offset);
2686
2687         return;
2688 }
2689
2690
2691 /*
2692  * bmap() is special.  It gets used by applications such as lilo and by
2693  * the swapper to find the on-disk block of a specific piece of data.
2694  *
2695  * Naturally, this is dangerous if the block concerned is still in the
2696  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2697  * filesystem and enables swap, then they may get a nasty shock when the
2698  * data getting swapped to that swapfile suddenly gets overwritten by
2699  * the original zero's written out previously to the journal and
2700  * awaiting writeback in the kernel's buffer cache.
2701  *
2702  * So, if we see any bmap calls here on a modified, data-journaled file,
2703  * take extra steps to flush any blocks which might be in the cache.
2704  */
2705 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2706 {
2707         struct inode *inode = mapping->host;
2708         journal_t *journal;
2709         int err;
2710
2711         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2712                         test_opt(inode->i_sb, DELALLOC)) {
2713                 /*
2714                  * With delalloc we want to sync the file
2715                  * so that we can make sure we allocate
2716                  * blocks for file
2717                  */
2718                 filemap_write_and_wait(mapping);
2719         }
2720
2721         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2722                 /*
2723                  * This is a REALLY heavyweight approach, but the use of
2724                  * bmap on dirty files is expected to be extremely rare:
2725                  * only if we run lilo or swapon on a freshly made file
2726                  * do we expect this to happen.
2727                  *
2728                  * (bmap requires CAP_SYS_RAWIO so this does not
2729                  * represent an unprivileged user DOS attack --- we'd be
2730                  * in trouble if mortal users could trigger this path at
2731                  * will.)
2732                  *
2733                  * NB. EXT4_STATE_JDATA is not set on files other than
2734                  * regular files.  If somebody wants to bmap a directory
2735                  * or symlink and gets confused because the buffer
2736                  * hasn't yet been flushed to disk, they deserve
2737                  * everything they get.
2738                  */
2739
2740                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2741                 journal = EXT4_JOURNAL(inode);
2742                 jbd2_journal_lock_updates(journal);
2743                 err = jbd2_journal_flush(journal);
2744                 jbd2_journal_unlock_updates(journal);
2745
2746                 if (err)
2747                         return 0;
2748         }
2749
2750         return generic_block_bmap(mapping, block, ext4_get_block);
2751 }
2752
2753 static int bget_one(handle_t *handle, struct buffer_head *bh)
2754 {
2755         get_bh(bh);
2756         return 0;
2757 }
2758
2759 static int bput_one(handle_t *handle, struct buffer_head *bh)
2760 {
2761         put_bh(bh);
2762         return 0;
2763 }
2764
2765 /*
2766  * Note that we don't need to start a transaction unless we're journaling data
2767  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2768  * need to file the inode to the transaction's list in ordered mode because if
2769  * we are writing back data added by write(), the inode is already there and if
2770  * we are writing back data modified via mmap(), noone guarantees in which
2771  * transaction the data will hit the disk. In case we are journaling data, we
2772  * cannot start transaction directly because transaction start ranks above page
2773  * lock so we have to do some magic.
2774  *
2775  * In all journaling modes block_write_full_page() will start the I/O.
2776  *
2777  * Problem:
2778  *
2779  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2780  *              ext4_writepage()
2781  *
2782  * Similar for:
2783  *
2784  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2785  *
2786  * Same applies to ext4_get_block().  We will deadlock on various things like
2787  * lock_journal and i_data_sem
2788  *
2789  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2790  * allocations fail.
2791  *
2792  * 16May01: If we're reentered then journal_current_handle() will be
2793  *          non-zero. We simply *return*.
2794  *
2795  * 1 July 2001: @@@ FIXME:
2796  *   In journalled data mode, a data buffer may be metadata against the
2797  *   current transaction.  But the same file is part of a shared mapping
2798  *   and someone does a writepage() on it.
2799  *
2800  *   We will move the buffer onto the async_data list, but *after* it has
2801  *   been dirtied. So there's a small window where we have dirty data on
2802  *   BJ_Metadata.
2803  *
2804  *   Note that this only applies to the last partial page in the file.  The
2805  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2806  *   broken code anyway: it's wrong for msync()).
2807  *
2808  *   It's a rare case: affects the final partial page, for journalled data
2809  *   where the file is subject to bith write() and writepage() in the same
2810  *   transction.  To fix it we'll need a custom block_write_full_page().
2811  *   We'll probably need that anyway for journalling writepage() output.
2812  *
2813  * We don't honour synchronous mounts for writepage().  That would be
2814  * disastrous.  Any write() or metadata operation will sync the fs for
2815  * us.
2816  *
2817  */
2818 static int __ext4_normal_writepage(struct page *page,
2819                                 struct writeback_control *wbc)
2820 {
2821         struct inode *inode = page->mapping->host;
2822
2823         if (test_opt(inode->i_sb, NOBH))
2824                 return nobh_writepage(page,
2825                                         ext4_normal_get_block_write, wbc);
2826         else
2827                 return block_write_full_page(page,
2828                                                 ext4_normal_get_block_write,
2829                                                 wbc);
2830 }
2831
2832 static int ext4_normal_writepage(struct page *page,
2833                                 struct writeback_control *wbc)
2834 {
2835         struct inode *inode = page->mapping->host;
2836         loff_t size = i_size_read(inode);
2837         loff_t len;
2838
2839         J_ASSERT(PageLocked(page));
2840         if (page->index == size >> PAGE_CACHE_SHIFT)
2841                 len = size & ~PAGE_CACHE_MASK;
2842         else
2843                 len = PAGE_CACHE_SIZE;
2844
2845         if (page_has_buffers(page)) {
2846                 /* if page has buffers it should all be mapped
2847                  * and allocated. If there are not buffers attached
2848                  * to the page we know the page is dirty but it lost
2849                  * buffers. That means that at some moment in time
2850                  * after write_begin() / write_end() has been called
2851                  * all buffers have been clean and thus they must have been
2852                  * written at least once. So they are all mapped and we can
2853                  * happily proceed with mapping them and writing the page.
2854                  */
2855                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2856                                         ext4_bh_unmapped_or_delay));
2857         }
2858
2859         if (!ext4_journal_current_handle())
2860                 return __ext4_normal_writepage(page, wbc);
2861
2862         redirty_page_for_writepage(wbc, page);
2863         unlock_page(page);
2864         return 0;
2865 }
2866
2867 static int __ext4_journalled_writepage(struct page *page,
2868                                 struct writeback_control *wbc)
2869 {
2870         struct address_space *mapping = page->mapping;
2871         struct inode *inode = mapping->host;
2872         struct buffer_head *page_bufs;
2873         handle_t *handle = NULL;
2874         int ret = 0;
2875         int err;
2876
2877         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2878                                         ext4_normal_get_block_write);
2879         if (ret != 0)
2880                 goto out_unlock;
2881
2882         page_bufs = page_buffers(page);
2883         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2884                                                                 bget_one);
2885         /* As soon as we unlock the page, it can go away, but we have
2886          * references to buffers so we are safe */
2887         unlock_page(page);
2888
2889         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2890         if (IS_ERR(handle)) {
2891                 ret = PTR_ERR(handle);
2892                 goto out;
2893         }
2894
2895         ret = walk_page_buffers(handle, page_bufs, 0,
2896                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2897
2898         err = walk_page_buffers(handle, page_bufs, 0,
2899                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2900         if (ret == 0)
2901                 ret = err;
2902         err = ext4_journal_stop(handle);
2903         if (!ret)
2904                 ret = err;
2905
2906         walk_page_buffers(handle, page_bufs, 0,
2907                                 PAGE_CACHE_SIZE, NULL, bput_one);
2908         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2909         goto out;
2910
2911 out_unlock:
2912         unlock_page(page);
2913 out:
2914         return ret;
2915 }
2916
2917 static int ext4_journalled_writepage(struct page *page,
2918                                 struct writeback_control *wbc)
2919 {
2920         struct inode *inode = page->mapping->host;
2921         loff_t size = i_size_read(inode);
2922         loff_t len;
2923
2924         J_ASSERT(PageLocked(page));
2925         if (page->index == size >> PAGE_CACHE_SHIFT)
2926                 len = size & ~PAGE_CACHE_MASK;
2927         else
2928                 len = PAGE_CACHE_SIZE;
2929
2930         if (page_has_buffers(page)) {
2931                 /* if page has buffers it should all be mapped
2932                  * and allocated. If there are not buffers attached
2933                  * to the page we know the page is dirty but it lost
2934                  * buffers. That means that at some moment in time
2935                  * after write_begin() / write_end() has been called
2936                  * all buffers have been clean and thus they must have been
2937                  * written at least once. So they are all mapped and we can
2938                  * happily proceed with mapping them and writing the page.
2939                  */
2940                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2941                                         ext4_bh_unmapped_or_delay));
2942         }
2943
2944         if (ext4_journal_current_handle())
2945                 goto no_write;
2946
2947         if (PageChecked(page)) {
2948                 /*
2949                  * It's mmapped pagecache.  Add buffers and journal it.  There
2950                  * doesn't seem much point in redirtying the page here.
2951                  */
2952                 ClearPageChecked(page);
2953                 return __ext4_journalled_writepage(page, wbc);
2954         } else {
2955                 /*
2956                  * It may be a page full of checkpoint-mode buffers.  We don't
2957                  * really know unless we go poke around in the buffer_heads.
2958                  * But block_write_full_page will do the right thing.
2959                  */
2960                 return block_write_full_page(page,
2961                                                 ext4_normal_get_block_write,
2962                                                 wbc);
2963         }
2964 no_write:
2965         redirty_page_for_writepage(wbc, page);
2966         unlock_page(page);
2967         return 0;
2968 }
2969
2970 static int ext4_readpage(struct file *file, struct page *page)
2971 {
2972         return mpage_readpage(page, ext4_get_block);
2973 }
2974
2975 static int
2976 ext4_readpages(struct file *file, struct address_space *mapping,
2977                 struct list_head *pages, unsigned nr_pages)
2978 {
2979         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2980 }
2981
2982 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2983 {
2984         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2985
2986         /*
2987          * If it's a full truncate we just forget about the pending dirtying
2988          */
2989         if (offset == 0)
2990                 ClearPageChecked(page);
2991
2992         jbd2_journal_invalidatepage(journal, page, offset);
2993 }
2994
2995 static int ext4_releasepage(struct page *page, gfp_t wait)
2996 {
2997         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2998
2999         WARN_ON(PageChecked(page));
3000         if (!page_has_buffers(page))
3001                 return 0;
3002         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3003 }
3004
3005 /*
3006  * If the O_DIRECT write will extend the file then add this inode to the
3007  * orphan list.  So recovery will truncate it back to the original size
3008  * if the machine crashes during the write.
3009  *
3010  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3011  * crashes then stale disk data _may_ be exposed inside the file. But current
3012  * VFS code falls back into buffered path in that case so we are safe.
3013  */
3014 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3015                         const struct iovec *iov, loff_t offset,
3016                         unsigned long nr_segs)
3017 {
3018         struct file *file = iocb->ki_filp;
3019         struct inode *inode = file->f_mapping->host;
3020         struct ext4_inode_info *ei = EXT4_I(inode);
3021         handle_t *handle;
3022         ssize_t ret;
3023         int orphan = 0;
3024         size_t count = iov_length(iov, nr_segs);
3025
3026         if (rw == WRITE) {
3027                 loff_t final_size = offset + count;
3028
3029                 if (final_size > inode->i_size) {
3030                         /* Credits for sb + inode write */
3031                         handle = ext4_journal_start(inode, 2);
3032                         if (IS_ERR(handle)) {
3033                                 ret = PTR_ERR(handle);
3034                                 goto out;
3035                         }
3036                         ret = ext4_orphan_add(handle, inode);
3037                         if (ret) {
3038                                 ext4_journal_stop(handle);
3039                                 goto out;
3040                         }
3041                         orphan = 1;
3042                         ei->i_disksize = inode->i_size;
3043                         ext4_journal_stop(handle);
3044                 }
3045         }
3046
3047         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3048                                  offset, nr_segs,
3049                                  ext4_get_block, NULL);
3050
3051         if (orphan) {
3052                 int err;
3053
3054                 /* Credits for sb + inode write */
3055                 handle = ext4_journal_start(inode, 2);
3056                 if (IS_ERR(handle)) {
3057                         /* This is really bad luck. We've written the data
3058                          * but cannot extend i_size. Bail out and pretend
3059                          * the write failed... */
3060                         ret = PTR_ERR(handle);
3061                         goto out;
3062                 }
3063                 if (inode->i_nlink)
3064                         ext4_orphan_del(handle, inode);
3065                 if (ret > 0) {
3066                         loff_t end = offset + ret;
3067                         if (end > inode->i_size) {
3068                                 ei->i_disksize = end;
3069                                 i_size_write(inode, end);
3070                                 /*
3071                                  * We're going to return a positive `ret'
3072                                  * here due to non-zero-length I/O, so there's
3073                                  * no way of reporting error returns from
3074                                  * ext4_mark_inode_dirty() to userspace.  So
3075                                  * ignore it.
3076                                  */
3077                                 ext4_mark_inode_dirty(handle, inode);
3078                         }
3079                 }
3080                 err = ext4_journal_stop(handle);
3081                 if (ret == 0)
3082                         ret = err;
3083         }
3084 out:
3085         return ret;
3086 }
3087
3088 /*
3089  * Pages can be marked dirty completely asynchronously from ext4's journalling
3090  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3091  * much here because ->set_page_dirty is called under VFS locks.  The page is
3092  * not necessarily locked.
3093  *
3094  * We cannot just dirty the page and leave attached buffers clean, because the
3095  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3096  * or jbddirty because all the journalling code will explode.
3097  *
3098  * So what we do is to mark the page "pending dirty" and next time writepage
3099  * is called, propagate that into the buffers appropriately.
3100  */
3101 static int ext4_journalled_set_page_dirty(struct page *page)
3102 {
3103         SetPageChecked(page);
3104         return __set_page_dirty_nobuffers(page);
3105 }
3106
3107 static const struct address_space_operations ext4_ordered_aops = {
3108         .readpage               = ext4_readpage,
3109         .readpages              = ext4_readpages,
3110         .writepage              = ext4_normal_writepage,
3111         .sync_page              = block_sync_page,
3112         .write_begin            = ext4_write_begin,
3113         .write_end              = ext4_ordered_write_end,
3114         .bmap                   = ext4_bmap,
3115         .invalidatepage         = ext4_invalidatepage,
3116         .releasepage            = ext4_releasepage,
3117         .direct_IO              = ext4_direct_IO,
3118         .migratepage            = buffer_migrate_page,
3119         .is_partially_uptodate  = block_is_partially_uptodate,
3120 };
3121
3122 static const struct address_space_operations ext4_writeback_aops = {
3123         .readpage               = ext4_readpage,
3124         .readpages              = ext4_readpages,
3125         .writepage              = ext4_normal_writepage,
3126         .sync_page              = block_sync_page,
3127         .write_begin            = ext4_write_begin,
3128         .write_end              = ext4_writeback_write_end,
3129         .bmap                   = ext4_bmap,
3130         .invalidatepage         = ext4_invalidatepage,
3131         .releasepage            = ext4_releasepage,
3132         .direct_IO              = ext4_direct_IO,
3133         .migratepage            = buffer_migrate_page,
3134         .is_partially_uptodate  = block_is_partially_uptodate,
3135 };
3136
3137 static const struct address_space_operations ext4_journalled_aops = {
3138         .readpage               = ext4_readpage,
3139         .readpages              = ext4_readpages,
3140         .writepage              = ext4_journalled_writepage,
3141         .sync_page              = block_sync_page,
3142         .write_begin            = ext4_write_begin,
3143         .write_end              = ext4_journalled_write_end,
3144         .set_page_dirty         = ext4_journalled_set_page_dirty,
3145         .bmap                   = ext4_bmap,
3146         .invalidatepage         = ext4_invalidatepage,
3147         .releasepage            = ext4_releasepage,
3148         .is_partially_uptodate  = block_is_partially_uptodate,
3149 };
3150
3151 static const struct address_space_operations ext4_da_aops = {
3152         .readpage               = ext4_readpage,
3153         .readpages              = ext4_readpages,
3154         .writepage              = ext4_da_writepage,
3155         .writepages             = ext4_da_writepages,
3156         .sync_page              = block_sync_page,
3157         .write_begin            = ext4_da_write_begin,
3158         .write_end              = ext4_da_write_end,
3159         .bmap                   = ext4_bmap,
3160         .invalidatepage         = ext4_da_invalidatepage,
3161         .releasepage            = ext4_releasepage,
3162         .direct_IO              = ext4_direct_IO,
3163         .migratepage            = buffer_migrate_page,
3164         .is_partially_uptodate  = block_is_partially_uptodate,
3165 };
3166
3167 void ext4_set_aops(struct inode *inode)
3168 {
3169         if (ext4_should_order_data(inode) &&
3170                 test_opt(inode->i_sb, DELALLOC))
3171                 inode->i_mapping->a_ops = &ext4_da_aops;
3172         else if (ext4_should_order_data(inode))
3173                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3174         else if (ext4_should_writeback_data(inode) &&
3175                  test_opt(inode->i_sb, DELALLOC))
3176                 inode->i_mapping->a_ops = &ext4_da_aops;
3177         else if (ext4_should_writeback_data(inode))
3178                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3179         else
3180                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3181 }
3182
3183 /*
3184  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3185  * up to the end of the block which corresponds to `from'.
3186  * This required during truncate. We need to physically zero the tail end
3187  * of that block so it doesn't yield old data if the file is later grown.
3188  */
3189 int ext4_block_truncate_page(handle_t *handle,
3190                 struct address_space *mapping, loff_t from)
3191 {
3192         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3193         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3194         unsigned blocksize, length, pos;
3195         ext4_lblk_t iblock;
3196         struct inode *inode = mapping->host;
3197         struct buffer_head *bh;
3198         struct page *page;
3199         int err = 0;
3200
3201         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3202         if (!page)
3203                 return -EINVAL;
3204
3205         blocksize = inode->i_sb->s_blocksize;
3206         length = blocksize - (offset & (blocksize - 1));
3207         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3208
3209         /*
3210          * For "nobh" option,  we can only work if we don't need to
3211          * read-in the page - otherwise we create buffers to do the IO.
3212          */
3213         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3214              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3215                 zero_user(page, offset, length);
3216                 set_page_dirty(page);
3217                 goto unlock;
3218         }
3219
3220         if (!page_has_buffers(page))
3221                 create_empty_buffers(page, blocksize, 0);
3222
3223         /* Find the buffer that contains "offset" */
3224         bh = page_buffers(page);
3225         pos = blocksize;
3226         while (offset >= pos) {
3227                 bh = bh->b_this_page;
3228                 iblock++;
3229                 pos += blocksize;
3230         }
3231
3232         err = 0;
3233         if (buffer_freed(bh)) {
3234                 BUFFER_TRACE(bh, "freed: skip");
3235                 goto unlock;
3236         }
3237
3238         if (!buffer_mapped(bh)) {
3239                 BUFFER_TRACE(bh, "unmapped");
3240                 ext4_get_block(inode, iblock, bh, 0);
3241                 /* unmapped? It's a hole - nothing to do */
3242                 if (!buffer_mapped(bh)) {
3243                         BUFFER_TRACE(bh, "still unmapped");
3244                         goto unlock;
3245                 }
3246         }
3247
3248         /* Ok, it's mapped. Make sure it's up-to-date */
3249         if (PageUptodate(page))
3250                 set_buffer_uptodate(bh);
3251
3252         if (!buffer_uptodate(bh)) {
3253                 err = -EIO;
3254                 ll_rw_block(READ, 1, &bh);
3255                 wait_on_buffer(bh);
3256                 /* Uhhuh. Read error. Complain and punt. */
3257                 if (!buffer_uptodate(bh))
3258                         goto unlock;
3259         }
3260
3261         if (ext4_should_journal_data(inode)) {
3262                 BUFFER_TRACE(bh, "get write access");
3263                 err = ext4_journal_get_write_access(handle, bh);
3264                 if (err)
3265                         goto unlock;
3266         }
3267
3268         zero_user(page, offset, length);
3269
3270         BUFFER_TRACE(bh, "zeroed end of block");
3271
3272         err = 0;
3273         if (ext4_should_journal_data(inode)) {
3274                 err = ext4_journal_dirty_metadata(handle, bh);
3275         } else {
3276                 if (ext4_should_order_data(inode))
3277                         err = ext4_jbd2_file_inode(handle, inode);
3278                 mark_buffer_dirty(bh);
3279         }
3280
3281 unlock:
3282         unlock_page(page);
3283         page_cache_release(page);
3284         return err;
3285 }
3286
3287 /*
3288  * Probably it should be a library function... search for first non-zero word
3289  * or memcmp with zero_page, whatever is better for particular architecture.
3290  * Linus?
3291  */
3292 static inline int all_zeroes(__le32 *p, __le32 *q)
3293 {
3294         while (p < q)
3295                 if (*p++)
3296                         return 0;
3297         return 1;
3298 }
3299
3300 /**
3301  *      ext4_find_shared - find the indirect blocks for partial truncation.
3302  *      @inode:   inode in question
3303  *      @depth:   depth of the affected branch
3304  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3305  *      @chain:   place to store the pointers to partial indirect blocks
3306  *      @top:     place to the (detached) top of branch
3307  *
3308  *      This is a helper function used by ext4_truncate().
3309  *
3310  *      When we do truncate() we may have to clean the ends of several
3311  *      indirect blocks but leave the blocks themselves alive. Block is
3312  *      partially truncated if some data below the new i_size is refered
3313  *      from it (and it is on the path to the first completely truncated
3314  *      data block, indeed).  We have to free the top of that path along
3315  *      with everything to the right of the path. Since no allocation
3316  *      past the truncation point is possible until ext4_truncate()
3317  *      finishes, we may safely do the latter, but top of branch may
3318  *      require special attention - pageout below the truncation point
3319  *      might try to populate it.
3320  *
3321  *      We atomically detach the top of branch from the tree, store the
3322  *      block number of its root in *@top, pointers to buffer_heads of
3323  *      partially truncated blocks - in @chain[].bh and pointers to
3324  *      their last elements that should not be removed - in
3325  *      @chain[].p. Return value is the pointer to last filled element
3326  *      of @chain.
3327  *
3328  *      The work left to caller to do the actual freeing of subtrees:
3329  *              a) free the subtree starting from *@top
3330  *              b) free the subtrees whose roots are stored in
3331  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3332  *              c) free the subtrees growing from the inode past the @chain[0].
3333  *                      (no partially truncated stuff there).  */
3334
3335 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3336                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3337 {
3338         Indirect *partial, *p;
3339         int k, err;
3340
3341         *top = 0;
3342         /* Make k index the deepest non-null offest + 1 */
3343         for (k = depth; k > 1 && !offsets[k-1]; k--)
3344                 ;
3345         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3346         /* Writer: pointers */
3347         if (!partial)
3348                 partial = chain + k-1;
3349         /*
3350          * If the branch acquired continuation since we've looked at it -
3351          * fine, it should all survive and (new) top doesn't belong to us.
3352          */
3353         if (!partial->key && *partial->p)
3354                 /* Writer: end */
3355                 goto no_top;
3356         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3357                 ;
3358         /*
3359          * OK, we've found the last block that must survive. The rest of our
3360          * branch should be detached before unlocking. However, if that rest
3361          * of branch is all ours and does not grow immediately from the inode
3362          * it's easier to cheat and just decrement partial->p.
3363          */
3364         if (p == chain + k - 1 && p > chain) {
3365                 p->p--;
3366         } else {
3367                 *top = *p->p;
3368                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3369 #if 0
3370                 *p->p = 0;
3371 #endif
3372         }
3373         /* Writer: end */
3374
3375         while (partial > p) {
3376                 brelse(partial->bh);
3377                 partial--;
3378         }
3379 no_top:
3380         return partial;
3381 }
3382
3383 /*
3384  * Zero a number of block pointers in either an inode or an indirect block.
3385  * If we restart the transaction we must again get write access to the
3386  * indirect block for further modification.
3387  *
3388  * We release `count' blocks on disk, but (last - first) may be greater
3389  * than `count' because there can be holes in there.
3390  */
3391 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3392                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3393                 unsigned long count, __le32 *first, __le32 *last)
3394 {
3395         __le32 *p;
3396         if (try_to_extend_transaction(handle, inode)) {
3397                 if (bh) {
3398                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3399                         ext4_journal_dirty_metadata(handle, bh);
3400                 }
3401                 ext4_mark_inode_dirty(handle, inode);
3402                 ext4_journal_test_restart(handle, inode);
3403                 if (bh) {
3404                         BUFFER_TRACE(bh, "retaking write access");
3405                         ext4_journal_get_write_access(handle, bh);
3406                 }
3407         }
3408
3409         /*
3410          * Any buffers which are on the journal will be in memory. We find
3411          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3412          * on them.  We've already detached each block from the file, so
3413          * bforget() in jbd2_journal_forget() should be safe.
3414          *
3415          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3416          */
3417         for (p = first; p < last; p++) {
3418                 u32 nr = le32_to_cpu(*p);
3419                 if (nr) {
3420                         struct buffer_head *tbh;
3421
3422                         *p = 0;
3423                         tbh = sb_find_get_block(inode->i_sb, nr);
3424                         ext4_forget(handle, 0, inode, tbh, nr);
3425                 }
3426         }
3427
3428         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3429 }
3430
3431 /**
3432  * ext4_free_data - free a list of data blocks
3433  * @handle:     handle for this transaction
3434  * @inode:      inode we are dealing with
3435  * @this_bh:    indirect buffer_head which contains *@first and *@last
3436  * @first:      array of block numbers
3437  * @last:       points immediately past the end of array
3438  *
3439  * We are freeing all blocks refered from that array (numbers are stored as
3440  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3441  *
3442  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3443  * blocks are contiguous then releasing them at one time will only affect one
3444  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3445  * actually use a lot of journal space.
3446  *
3447  * @this_bh will be %NULL if @first and @last point into the inode's direct
3448  * block pointers.
3449  */
3450 static void ext4_free_data(handle_t *handle, struct inode *inode,
3451                            struct buffer_head *this_bh,
3452                            __le32 *first, __le32 *last)
3453 {
3454         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3455         unsigned long count = 0;            /* Number of blocks in the run */
3456         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3457                                                corresponding to
3458                                                block_to_free */
3459         ext4_fsblk_t nr;                    /* Current block # */
3460         __le32 *p;                          /* Pointer into inode/ind
3461                                                for current block */
3462         int err;
3463
3464         if (this_bh) {                          /* For indirect block */
3465                 BUFFER_TRACE(this_bh, "get_write_access");
3466                 err = ext4_journal_get_write_access(handle, this_bh);
3467                 /* Important: if we can't update the indirect pointers
3468                  * to the blocks, we can't free them. */
3469                 if (err)
3470                         return;
3471         }
3472
3473         for (p = first; p < last; p++) {
3474                 nr = le32_to_cpu(*p);
3475                 if (nr) {
3476                         /* accumulate blocks to free if they're contiguous */
3477                         if (count == 0) {
3478                                 block_to_free = nr;
3479                                 block_to_free_p = p;
3480                                 count = 1;
3481                         } else if (nr == block_to_free + count) {
3482                                 count++;
3483                         } else {
3484                                 ext4_clear_blocks(handle, inode, this_bh,
3485                                                   block_to_free,
3486                                                   count, block_to_free_p, p);
3487                                 block_to_free = nr;
3488                                 block_to_free_p = p;
3489                                 count = 1;
3490                         }
3491                 }
3492         }
3493
3494         if (count > 0)
3495                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3496                                   count, block_to_free_p, p);
3497
3498         if (this_bh) {
3499                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3500
3501                 /*
3502                  * The buffer head should have an attached journal head at this
3503                  * point. However, if the data is corrupted and an indirect
3504                  * block pointed to itself, it would have been detached when
3505                  * the block was cleared. Check for this instead of OOPSing.
3506                  */
3507                 if (bh2jh(this_bh))
3508                         ext4_journal_dirty_metadata(handle, this_bh);
3509                 else
3510                         ext4_error(inode->i_sb, __func__,
3511                                    "circular indirect block detected, "
3512                                    "inode=%lu, block=%llu",
3513                                    inode->i_ino,
3514                                    (unsigned long long) this_bh->b_blocknr);
3515         }
3516 }
3517
3518 /**
3519  *      ext4_free_branches - free an array of branches
3520  *      @handle: JBD handle for this transaction
3521  *      @inode: inode we are dealing with
3522  *      @parent_bh: the buffer_head which contains *@first and *@last
3523  *      @first: array of block numbers
3524  *      @last:  pointer immediately past the end of array
3525  *      @depth: depth of the branches to free
3526  *
3527  *      We are freeing all blocks refered from these branches (numbers are
3528  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3529  *      appropriately.
3530  */
3531 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3532                                struct buffer_head *parent_bh,
3533                                __le32 *first, __le32 *last, int depth)
3534 {
3535         ext4_fsblk_t nr;
3536         __le32 *p;
3537
3538         if (is_handle_aborted(handle))
3539                 return;
3540
3541         if (depth--) {
3542                 struct buffer_head *bh;
3543                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3544                 p = last;
3545                 while (--p >= first) {
3546                         nr = le32_to_cpu(*p);
3547                         if (!nr)
3548                                 continue;               /* A hole */
3549
3550                         /* Go read the buffer for the next level down */
3551                         bh = sb_bread(inode->i_sb, nr);
3552
3553                         /*
3554                          * A read failure? Report error and clear slot
3555                          * (should be rare).
3556                          */
3557                         if (!bh) {
3558                                 ext4_error(inode->i_sb, "ext4_free_branches",
3559                                            "Read failure, inode=%lu, block=%llu",
3560                                            inode->i_ino, nr);
3561                                 continue;
3562                         }
3563
3564                         /* This zaps the entire block.  Bottom up. */
3565                         BUFFER_TRACE(bh, "free child branches");
3566                         ext4_free_branches(handle, inode, bh,
3567                                         (__le32 *) bh->b_data,
3568                                         (__le32 *) bh->b_data + addr_per_block,
3569                                         depth);
3570
3571                         /*
3572                          * We've probably journalled the indirect block several
3573                          * times during the truncate.  But it's no longer
3574                          * needed and we now drop it from the transaction via
3575                          * jbd2_journal_revoke().
3576                          *
3577                          * That's easy if it's exclusively part of this
3578                          * transaction.  But if it's part of the committing
3579                          * transaction then jbd2_journal_forget() will simply
3580                          * brelse() it.  That means that if the underlying
3581                          * block is reallocated in ext4_get_block(),
3582                          * unmap_underlying_metadata() will find this block
3583                          * and will try to get rid of it.  damn, damn.
3584                          *
3585                          * If this block has already been committed to the
3586                          * journal, a revoke record will be written.  And
3587                          * revoke records must be emitted *before* clearing
3588                          * this block's bit in the bitmaps.
3589                          */
3590                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3591
3592                         /*
3593                          * Everything below this this pointer has been
3594                          * released.  Now let this top-of-subtree go.
3595                          *
3596                          * We want the freeing of this indirect block to be
3597                          * atomic in the journal with the updating of the
3598                          * bitmap block which owns it.  So make some room in
3599                          * the journal.
3600                          *
3601                          * We zero the parent pointer *after* freeing its
3602                          * pointee in the bitmaps, so if extend_transaction()
3603                          * for some reason fails to put the bitmap changes and
3604                          * the release into the same transaction, recovery
3605                          * will merely complain about releasing a free block,
3606                          * rather than leaking blocks.
3607                          */
3608                         if (is_handle_aborted(handle))
3609                                 return;
3610                         if (try_to_extend_transaction(handle, inode)) {
3611                                 ext4_mark_inode_dirty(handle, inode);
3612                                 ext4_journal_test_restart(handle, inode);
3613                         }
3614
3615                         ext4_free_blocks(handle, inode, nr, 1, 1);
3616
3617                         if (parent_bh) {
3618                                 /*
3619                                  * The block which we have just freed is
3620                                  * pointed to by an indirect block: journal it
3621                                  */
3622                                 BUFFER_TRACE(parent_bh, "get_write_access");
3623                                 if (!ext4_journal_get_write_access(handle,
3624                                                                    parent_bh)){
3625                                         *p = 0;
3626                                         BUFFER_TRACE(parent_bh,
3627                                         "call ext4_journal_dirty_metadata");
3628                                         ext4_journal_dirty_metadata(handle,
3629                                                                     parent_bh);
3630                                 }
3631                         }
3632                 }
3633         } else {
3634                 /* We have reached the bottom of the tree. */
3635                 BUFFER_TRACE(parent_bh, "free data blocks");
3636                 ext4_free_data(handle, inode, parent_bh, first, last);
3637         }
3638 }
3639
3640 int ext4_can_truncate(struct inode *inode)
3641 {
3642         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3643                 return 0;
3644         if (S_ISREG(inode->i_mode))
3645                 return 1;
3646         if (S_ISDIR(inode->i_mode))
3647                 return 1;
3648         if (S_ISLNK(inode->i_mode))
3649                 return !ext4_inode_is_fast_symlink(inode);
3650         return 0;
3651 }
3652
3653 /*
3654  * ext4_truncate()
3655  *
3656  * We block out ext4_get_block() block instantiations across the entire
3657  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3658  * simultaneously on behalf of the same inode.
3659  *
3660  * As we work through the truncate and commmit bits of it to the journal there
3661  * is one core, guiding principle: the file's tree must always be consistent on
3662  * disk.  We must be able to restart the truncate after a crash.
3663  *
3664  * The file's tree may be transiently inconsistent in memory (although it
3665  * probably isn't), but whenever we close off and commit a journal transaction,
3666  * the contents of (the filesystem + the journal) must be consistent and
3667  * restartable.  It's pretty simple, really: bottom up, right to left (although
3668  * left-to-right works OK too).
3669  *
3670  * Note that at recovery time, journal replay occurs *before* the restart of
3671  * truncate against the orphan inode list.
3672  *
3673  * The committed inode has the new, desired i_size (which is the same as
3674  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3675  * that this inode's truncate did not complete and it will again call
3676  * ext4_truncate() to have another go.  So there will be instantiated blocks
3677  * to the right of the truncation point in a crashed ext4 filesystem.  But
3678  * that's fine - as long as they are linked from the inode, the post-crash
3679  * ext4_truncate() run will find them and release them.
3680  */
3681 void ext4_truncate(struct inode *inode)
3682 {
3683         handle_t *handle;
3684         struct ext4_inode_info *ei = EXT4_I(inode);
3685         __le32 *i_data = ei->i_data;
3686         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3687         struct address_space *mapping = inode->i_mapping;
3688         ext4_lblk_t offsets[4];
3689         Indirect chain[4];
3690         Indirect *partial;
3691         __le32 nr = 0;
3692         int n;
3693         ext4_lblk_t last_block;
3694         unsigned blocksize = inode->i_sb->s_blocksize;
3695
3696         if (!ext4_can_truncate(inode))
3697                 return;
3698
3699         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3700                 ext4_ext_truncate(inode);
3701                 return;
3702         }
3703
3704         handle = start_transaction(inode);
3705         if (IS_ERR(handle))
3706                 return;         /* AKPM: return what? */
3707
3708         last_block = (inode->i_size + blocksize-1)
3709                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3710
3711         if (inode->i_size & (blocksize - 1))
3712                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3713                         goto out_stop;
3714
3715         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3716         if (n == 0)
3717                 goto out_stop;  /* error */
3718
3719         /*
3720          * OK.  This truncate is going to happen.  We add the inode to the
3721          * orphan list, so that if this truncate spans multiple transactions,
3722          * and we crash, we will resume the truncate when the filesystem
3723          * recovers.  It also marks the inode dirty, to catch the new size.
3724          *
3725          * Implication: the file must always be in a sane, consistent
3726          * truncatable state while each transaction commits.
3727          */
3728         if (ext4_orphan_add(handle, inode))
3729                 goto out_stop;
3730
3731         /*
3732          * From here we block out all ext4_get_block() callers who want to
3733          * modify the block allocation tree.
3734          */
3735         down_write(&ei->i_data_sem);
3736
3737         ext4_discard_preallocations(inode);
3738
3739         /*
3740          * The orphan list entry will now protect us from any crash which
3741          * occurs before the truncate completes, so it is now safe to propagate
3742          * the new, shorter inode size (held for now in i_size) into the
3743          * on-disk inode. We do this via i_disksize, which is the value which
3744          * ext4 *really* writes onto the disk inode.
3745          */
3746         ei->i_disksize = inode->i_size;
3747
3748         if (n == 1) {           /* direct blocks */
3749                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3750                                i_data + EXT4_NDIR_BLOCKS);
3751                 goto do_indirects;
3752         }
3753
3754         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3755         /* Kill the top of shared branch (not detached) */
3756         if (nr) {
3757                 if (partial == chain) {
3758                         /* Shared branch grows from the inode */
3759                         ext4_free_branches(handle, inode, NULL,
3760                                            &nr, &nr+1, (chain+n-1) - partial);
3761                         *partial->p = 0;
3762                         /*
3763                          * We mark the inode dirty prior to restart,
3764                          * and prior to stop.  No need for it here.
3765                          */
3766                 } else {
3767                         /* Shared branch grows from an indirect block */
3768                         BUFFER_TRACE(partial->bh, "get_write_access");
3769                         ext4_free_branches(handle, inode, partial->bh,
3770                                         partial->p,
3771                                         partial->p+1, (chain+n-1) - partial);
3772                 }
3773         }
3774         /* Clear the ends of indirect blocks on the shared branch */
3775         while (partial > chain) {
3776                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3777                                    (__le32*)partial->bh->b_data+addr_per_block,
3778                                    (chain+n-1) - partial);
3779                 BUFFER_TRACE(partial->bh, "call brelse");
3780                 brelse (partial->bh);
3781                 partial--;
3782         }
3783 do_indirects:
3784         /* Kill the remaining (whole) subtrees */
3785         switch (offsets[0]) {
3786         default:
3787                 nr = i_data[EXT4_IND_BLOCK];
3788                 if (nr) {
3789                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3790                         i_data[EXT4_IND_BLOCK] = 0;
3791                 }
3792         case EXT4_IND_BLOCK:
3793                 nr = i_data[EXT4_DIND_BLOCK];
3794                 if (nr) {
3795                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3796                         i_data[EXT4_DIND_BLOCK] = 0;
3797                 }
3798         case EXT4_DIND_BLOCK:
3799                 nr = i_data[EXT4_TIND_BLOCK];
3800                 if (nr) {
3801                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3802                         i_data[EXT4_TIND_BLOCK] = 0;
3803                 }
3804         case EXT4_TIND_BLOCK:
3805                 ;
3806         }
3807
3808         up_write(&ei->i_data_sem);
3809         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3810         ext4_mark_inode_dirty(handle, inode);
3811
3812         /*
3813          * In a multi-transaction truncate, we only make the final transaction
3814          * synchronous
3815          */
3816         if (IS_SYNC(inode))
3817                 handle->h_sync = 1;
3818 out_stop:
3819         /*
3820          * If this was a simple ftruncate(), and the file will remain alive
3821          * then we need to clear up the orphan record which we created above.
3822          * However, if this was a real unlink then we were called by
3823          * ext4_delete_inode(), and we allow that function to clean up the
3824          * orphan info for us.
3825          */
3826         if (inode->i_nlink)
3827                 ext4_orphan_del(handle, inode);
3828
3829         ext4_journal_stop(handle);
3830 }
3831
3832 /*
3833  * ext4_get_inode_loc returns with an extra refcount against the inode's
3834  * underlying buffer_head on success. If 'in_mem' is true, we have all
3835  * data in memory that is needed to recreate the on-disk version of this
3836  * inode.
3837  */
3838 static int __ext4_get_inode_loc(struct inode *inode,
3839                                 struct ext4_iloc *iloc, int in_mem)
3840 {
3841         struct ext4_group_desc  *gdp;
3842         struct buffer_head      *bh;
3843         struct super_block      *sb = inode->i_sb;
3844         ext4_fsblk_t            block;
3845         int                     inodes_per_block, inode_offset;
3846
3847         iloc->bh = 0;
3848         if (!ext4_valid_inum(sb, inode->i_ino))
3849                 return -EIO;
3850
3851         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3852         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3853         if (!gdp)
3854                 return -EIO;
3855
3856         /*
3857          * Figure out the offset within the block group inode table
3858          */
3859         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3860         inode_offset = ((inode->i_ino - 1) %
3861                         EXT4_INODES_PER_GROUP(sb));
3862         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3863         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3864
3865         bh = sb_getblk(sb, block);
3866         if (!bh) {
3867                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3868                            "inode block - inode=%lu, block=%llu",
3869                            inode->i_ino, block);
3870                 return -EIO;
3871         }
3872         if (!buffer_uptodate(bh)) {
3873                 lock_buffer(bh);
3874
3875                 /*
3876                  * If the buffer has the write error flag, we have failed
3877                  * to write out another inode in the same block.  In this
3878                  * case, we don't have to read the block because we may
3879                  * read the old inode data successfully.
3880                  */
3881                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3882                         set_buffer_uptodate(bh);
3883
3884                 if (buffer_uptodate(bh)) {
3885                         /* someone brought it uptodate while we waited */
3886                         unlock_buffer(bh);
3887                         goto has_buffer;
3888                 }
3889
3890                 /*
3891                  * If we have all information of the inode in memory and this
3892                  * is the only valid inode in the block, we need not read the
3893                  * block.
3894                  */
3895                 if (in_mem) {
3896                         struct buffer_head *bitmap_bh;
3897                         int i, start;
3898
3899                         start = inode_offset & ~(inodes_per_block - 1);
3900
3901                         /* Is the inode bitmap in cache? */
3902                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3903                         if (!bitmap_bh)
3904                                 goto make_io;
3905
3906                         /*
3907                          * If the inode bitmap isn't in cache then the
3908                          * optimisation may end up performing two reads instead
3909                          * of one, so skip it.
3910                          */
3911                         if (!buffer_uptodate(bitmap_bh)) {
3912                                 brelse(bitmap_bh);
3913                                 goto make_io;
3914                         }
3915                         for (i = start; i < start + inodes_per_block; i++) {
3916                                 if (i == inode_offset)
3917                                         continue;
3918                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3919                                         break;
3920                         }
3921                         brelse(bitmap_bh);
3922                         if (i == start + inodes_per_block) {
3923                                 /* all other inodes are free, so skip I/O */
3924                                 memset(bh->b_data, 0, bh->b_size);
3925                                 set_buffer_uptodate(bh);
3926                                 unlock_buffer(bh);
3927                                 goto has_buffer;
3928                         }
3929                 }
3930
3931 make_io:
3932                 /*
3933                  * If we need to do any I/O, try to pre-readahead extra
3934                  * blocks from the inode table.
3935                  */
3936                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3937                         ext4_fsblk_t b, end, table;
3938                         unsigned num;
3939
3940                         table = ext4_inode_table(sb, gdp);
3941                         /* Make sure s_inode_readahead_blks is a power of 2 */
3942                         while (EXT4_SB(sb)->s_inode_readahead_blks &
3943                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
3944                                 EXT4_SB(sb)->s_inode_readahead_blks = 
3945                                    (EXT4_SB(sb)->s_inode_readahead_blks &
3946                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
3947                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3948                         if (table > b)
3949                                 b = table;
3950                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3951                         num = EXT4_INODES_PER_GROUP(sb);
3952                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3953                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3954                                 num -= le16_to_cpu(gdp->bg_itable_unused);
3955                         table += num / inodes_per_block;
3956                         if (end > table)
3957                                 end = table;
3958                         while (b <= end)
3959                                 sb_breadahead(sb, b++);
3960                 }
3961
3962                 /*
3963                  * There are other valid inodes in the buffer, this inode
3964                  * has in-inode xattrs, or we don't have this inode in memory.
3965                  * Read the block from disk.
3966                  */
3967                 get_bh(bh);
3968                 bh->b_end_io = end_buffer_read_sync;
3969                 submit_bh(READ_META, bh);
3970                 wait_on_buffer(bh);
3971                 if (!buffer_uptodate(bh)) {
3972                         ext4_error(sb, __func__,
3973                                    "unable to read inode block - inode=%lu, "
3974                                    "block=%llu", inode->i_ino, block);
3975                         brelse(bh);
3976                         return -EIO;
3977                 }
3978         }
3979 has_buffer:
3980         iloc->bh = bh;
3981         return 0;
3982 }
3983
3984 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3985 {
3986         /* We have all inode data except xattrs in memory here. */
3987         return __ext4_get_inode_loc(inode, iloc,
3988                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3989 }
3990
3991 void ext4_set_inode_flags(struct inode *inode)
3992 {
3993         unsigned int flags = EXT4_I(inode)->i_flags;
3994
3995         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3996         if (flags & EXT4_SYNC_FL)
3997                 inode->i_flags |= S_SYNC;
3998         if (flags & EXT4_APPEND_FL)
3999                 inode->i_flags |= S_APPEND;
4000         if (flags & EXT4_IMMUTABLE_FL)
4001                 inode->i_flags |= S_IMMUTABLE;
4002         if (flags & EXT4_NOATIME_FL)
4003                 inode->i_flags |= S_NOATIME;
4004         if (flags & EXT4_DIRSYNC_FL)
4005                 inode->i_flags |= S_DIRSYNC;
4006 }
4007
4008 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4009 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4010 {
4011         unsigned int flags = ei->vfs_inode.i_flags;
4012
4013         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4014                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4015         if (flags & S_SYNC)
4016                 ei->i_flags |= EXT4_SYNC_FL;
4017         if (flags & S_APPEND)
4018                 ei->i_flags |= EXT4_APPEND_FL;
4019         if (flags & S_IMMUTABLE)
4020                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4021         if (flags & S_NOATIME)
4022                 ei->i_flags |= EXT4_NOATIME_FL;
4023         if (flags & S_DIRSYNC)
4024                 ei->i_flags |= EXT4_DIRSYNC_FL;
4025 }
4026 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4027                                         struct ext4_inode_info *ei)
4028 {
4029         blkcnt_t i_blocks ;
4030         struct inode *inode = &(ei->vfs_inode);
4031         struct super_block *sb = inode->i_sb;
4032
4033         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4034                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4035                 /* we are using combined 48 bit field */
4036                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4037                                         le32_to_cpu(raw_inode->i_blocks_lo);
4038                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4039                         /* i_blocks represent file system block size */
4040                         return i_blocks  << (inode->i_blkbits - 9);
4041                 } else {
4042                         return i_blocks;
4043                 }
4044         } else {
4045                 return le32_to_cpu(raw_inode->i_blocks_lo);
4046         }
4047 }
4048
4049 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4050 {
4051         struct ext4_iloc iloc;
4052         struct ext4_inode *raw_inode;
4053         struct ext4_inode_info *ei;
4054         struct buffer_head *bh;
4055         struct inode *inode;
4056         long ret;
4057         int block;
4058
4059         inode = iget_locked(sb, ino);
4060         if (!inode)
4061                 return ERR_PTR(-ENOMEM);
4062         if (!(inode->i_state & I_NEW))
4063                 return inode;
4064
4065         ei = EXT4_I(inode);
4066 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4067         ei->i_acl = EXT4_ACL_NOT_CACHED;
4068         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4069 #endif
4070
4071         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4072         if (ret < 0)
4073                 goto bad_inode;
4074         bh = iloc.bh;
4075         raw_inode = ext4_raw_inode(&iloc);
4076         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4077         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4078         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4079         if (!(test_opt(inode->i_sb, NO_UID32))) {
4080                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4081                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4082         }
4083         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4084
4085         ei->i_state = 0;
4086         ei->i_dir_start_lookup = 0;
4087         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4088         /* We now have enough fields to check if the inode was active or not.
4089          * This is needed because nfsd might try to access dead inodes
4090          * the test is that same one that e2fsck uses
4091          * NeilBrown 1999oct15
4092          */
4093         if (inode->i_nlink == 0) {
4094                 if (inode->i_mode == 0 ||
4095                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4096                         /* this inode is deleted */
4097                         brelse(bh);
4098                         ret = -ESTALE;
4099                         goto bad_inode;
4100                 }
4101                 /* The only unlinked inodes we let through here have
4102                  * valid i_mode and are being read by the orphan
4103                  * recovery code: that's fine, we're about to complete
4104                  * the process of deleting those. */
4105         }
4106         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4107         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4108         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4110             cpu_to_le32(EXT4_OS_HURD)) {
4111                 ei->i_file_acl |=
4112                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4113         }
4114         inode->i_size = ext4_isize(raw_inode);
4115         ei->i_disksize = inode->i_size;
4116         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4117         ei->i_block_group = iloc.block_group;
4118         /*
4119          * NOTE! The in-memory inode i_data array is in little-endian order
4120          * even on big-endian machines: we do NOT byteswap the block numbers!
4121          */
4122         for (block = 0; block < EXT4_N_BLOCKS; block++)
4123                 ei->i_data[block] = raw_inode->i_block[block];
4124         INIT_LIST_HEAD(&ei->i_orphan);
4125
4126         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4127                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4128                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4129                     EXT4_INODE_SIZE(inode->i_sb)) {
4130                         brelse(bh);
4131                         ret = -EIO;
4132                         goto bad_inode;
4133                 }
4134                 if (ei->i_extra_isize == 0) {
4135                         /* The extra space is currently unused. Use it. */
4136                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4137                                             EXT4_GOOD_OLD_INODE_SIZE;
4138                 } else {
4139                         __le32 *magic = (void *)raw_inode +
4140                                         EXT4_GOOD_OLD_INODE_SIZE +
4141                                         ei->i_extra_isize;
4142                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4143                                  ei->i_state |= EXT4_STATE_XATTR;
4144                 }
4145         } else
4146                 ei->i_extra_isize = 0;
4147
4148         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4149         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4150         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4151         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4152
4153         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4154         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4155                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4156                         inode->i_version |=
4157                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4158         }
4159
4160         if (S_ISREG(inode->i_mode)) {
4161                 inode->i_op = &ext4_file_inode_operations;
4162                 inode->i_fop = &ext4_file_operations;
4163                 ext4_set_aops(inode);
4164         } else if (S_ISDIR(inode->i_mode)) {
4165                 inode->i_op = &ext4_dir_inode_operations;
4166                 inode->i_fop = &ext4_dir_operations;
4167         } else if (S_ISLNK(inode->i_mode)) {
4168                 if (ext4_inode_is_fast_symlink(inode)) {
4169                         inode->i_op = &ext4_fast_symlink_inode_operations;
4170                         nd_terminate_link(ei->i_data, inode->i_size,
4171                                 sizeof(ei->i_data) - 1);
4172                 } else {
4173                         inode->i_op = &ext4_symlink_inode_operations;
4174                         ext4_set_aops(inode);
4175                 }
4176         } else {
4177                 inode->i_op = &ext4_special_inode_operations;
4178                 if (raw_inode->i_block[0])
4179                         init_special_inode(inode, inode->i_mode,
4180                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4181                 else
4182                         init_special_inode(inode, inode->i_mode,
4183                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4184         }
4185         brelse(iloc.bh);
4186         ext4_set_inode_flags(inode);
4187         unlock_new_inode(inode);
4188         return inode;
4189
4190 bad_inode:
4191         iget_failed(inode);
4192         return ERR_PTR(ret);
4193 }
4194
4195 static int ext4_inode_blocks_set(handle_t *handle,
4196                                 struct ext4_inode *raw_inode,
4197                                 struct ext4_inode_info *ei)
4198 {
4199         struct inode *inode = &(ei->vfs_inode);
4200         u64 i_blocks = inode->i_blocks;
4201         struct super_block *sb = inode->i_sb;
4202
4203         if (i_blocks <= ~0U) {
4204                 /*
4205                  * i_blocks can be represnted in a 32 bit variable
4206                  * as multiple of 512 bytes
4207                  */
4208                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4209                 raw_inode->i_blocks_high = 0;
4210                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4211                 return 0;
4212         }
4213         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4214                 return -EFBIG;
4215
4216         if (i_blocks <= 0xffffffffffffULL) {
4217                 /*
4218                  * i_blocks can be represented in a 48 bit variable
4219                  * as multiple of 512 bytes
4220                  */
4221                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4222                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4223                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4224         } else {
4225                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4226                 /* i_block is stored in file system block size */
4227                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4228                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4229                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4230         }
4231         return 0;
4232 }
4233
4234 /*
4235  * Post the struct inode info into an on-disk inode location in the
4236  * buffer-cache.  This gobbles the caller's reference to the
4237  * buffer_head in the inode location struct.
4238  *
4239  * The caller must have write access to iloc->bh.
4240  */
4241 static int ext4_do_update_inode(handle_t *handle,
4242                                 struct inode *inode,
4243                                 struct ext4_iloc *iloc)
4244 {
4245         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4246         struct ext4_inode_info *ei = EXT4_I(inode);
4247         struct buffer_head *bh = iloc->bh;
4248         int err = 0, rc, block;
4249
4250         /* For fields not not tracking in the in-memory inode,
4251          * initialise them to zero for new inodes. */
4252         if (ei->i_state & EXT4_STATE_NEW)
4253                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4254
4255         ext4_get_inode_flags(ei);
4256         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4257         if (!(test_opt(inode->i_sb, NO_UID32))) {
4258                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4259                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4260 /*
4261  * Fix up interoperability with old kernels. Otherwise, old inodes get
4262  * re-used with the upper 16 bits of the uid/gid intact
4263  */
4264                 if (!ei->i_dtime) {
4265                         raw_inode->i_uid_high =
4266                                 cpu_to_le16(high_16_bits(inode->i_uid));
4267                         raw_inode->i_gid_high =
4268                                 cpu_to_le16(high_16_bits(inode->i_gid));
4269                 } else {
4270                         raw_inode->i_uid_high = 0;
4271                         raw_inode->i_gid_high = 0;
4272                 }
4273         } else {
4274                 raw_inode->i_uid_low =
4275                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4276                 raw_inode->i_gid_low =
4277                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4278                 raw_inode->i_uid_high = 0;
4279                 raw_inode->i_gid_high = 0;
4280         }
4281         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4282
4283         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4284         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4285         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4286         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4287
4288         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4289                 goto out_brelse;
4290         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4291         /* clear the migrate flag in the raw_inode */
4292         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4293         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4294             cpu_to_le32(EXT4_OS_HURD))
4295                 raw_inode->i_file_acl_high =
4296                         cpu_to_le16(ei->i_file_acl >> 32);
4297         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4298         ext4_isize_set(raw_inode, ei->i_disksize);
4299         if (ei->i_disksize > 0x7fffffffULL) {
4300                 struct super_block *sb = inode->i_sb;
4301                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4302                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4303                                 EXT4_SB(sb)->s_es->s_rev_level ==
4304                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4305                         /* If this is the first large file
4306                          * created, add a flag to the superblock.
4307                          */
4308                         err = ext4_journal_get_write_access(handle,
4309                                         EXT4_SB(sb)->s_sbh);
4310                         if (err)
4311                                 goto out_brelse;
4312                         ext4_update_dynamic_rev(sb);
4313                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4314                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4315                         sb->s_dirt = 1;
4316                         handle->h_sync = 1;
4317                         err = ext4_journal_dirty_metadata(handle,
4318                                         EXT4_SB(sb)->s_sbh);
4319                 }
4320         }
4321         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4322         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4323                 if (old_valid_dev(inode->i_rdev)) {
4324                         raw_inode->i_block[0] =
4325                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4326                         raw_inode->i_block[1] = 0;
4327                 } else {
4328                         raw_inode->i_block[0] = 0;
4329                         raw_inode->i_block[1] =
4330                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4331                         raw_inode->i_block[2] = 0;
4332                 }
4333         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4334                 raw_inode->i_block[block] = ei->i_data[block];
4335
4336         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4337         if (ei->i_extra_isize) {
4338                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4339                         raw_inode->i_version_hi =
4340                         cpu_to_le32(inode->i_version >> 32);
4341                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4342         }
4343
4344
4345         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4346         rc = ext4_journal_dirty_metadata(handle, bh);
4347         if (!err)
4348                 err = rc;
4349         ei->i_state &= ~EXT4_STATE_NEW;
4350
4351 out_brelse:
4352         brelse(bh);
4353         ext4_std_error(inode->i_sb, err);
4354         return err;
4355 }
4356
4357 /*
4358  * ext4_write_inode()
4359  *
4360  * We are called from a few places:
4361  *
4362  * - Within generic_file_write() for O_SYNC files.
4363  *   Here, there will be no transaction running. We wait for any running
4364  *   trasnaction to commit.
4365  *
4366  * - Within sys_sync(), kupdate and such.
4367  *   We wait on commit, if tol to.
4368  *
4369  * - Within prune_icache() (PF_MEMALLOC == true)
4370  *   Here we simply return.  We can't afford to block kswapd on the
4371  *   journal commit.
4372  *
4373  * In all cases it is actually safe for us to return without doing anything,
4374  * because the inode has been copied into a raw inode buffer in
4375  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4376  * knfsd.
4377  *
4378  * Note that we are absolutely dependent upon all inode dirtiers doing the
4379  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4380  * which we are interested.
4381  *
4382  * It would be a bug for them to not do this.  The code:
4383  *
4384  *      mark_inode_dirty(inode)
4385  *      stuff();
4386  *      inode->i_size = expr;
4387  *
4388  * is in error because a kswapd-driven write_inode() could occur while
4389  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4390  * will no longer be on the superblock's dirty inode list.
4391  */
4392 int ext4_write_inode(struct inode *inode, int wait)
4393 {
4394         if (current->flags & PF_MEMALLOC)
4395                 return 0;
4396
4397         if (ext4_journal_current_handle()) {
4398                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4399                 dump_stack();
4400                 return -EIO;
4401         }
4402
4403         if (!wait)
4404                 return 0;
4405
4406         return ext4_force_commit(inode->i_sb);
4407 }
4408
4409 /*
4410  * ext4_setattr()
4411  *
4412  * Called from notify_change.
4413  *
4414  * We want to trap VFS attempts to truncate the file as soon as
4415  * possible.  In particular, we want to make sure that when the VFS
4416  * shrinks i_size, we put the inode on the orphan list and modify
4417  * i_disksize immediately, so that during the subsequent flushing of
4418  * dirty pages and freeing of disk blocks, we can guarantee that any
4419  * commit will leave the blocks being flushed in an unused state on
4420  * disk.  (On recovery, the inode will get truncated and the blocks will
4421  * be freed, so we have a strong guarantee that no future commit will
4422  * leave these blocks visible to the user.)
4423  *
4424  * Another thing we have to assure is that if we are in ordered mode
4425  * and inode is still attached to the committing transaction, we must
4426  * we start writeout of all the dirty pages which are being truncated.
4427  * This way we are sure that all the data written in the previous
4428  * transaction are already on disk (truncate waits for pages under
4429  * writeback).
4430  *
4431  * Called with inode->i_mutex down.
4432  */
4433 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4434 {
4435         struct inode *inode = dentry->d_inode;
4436         int error, rc = 0;
4437         const unsigned int ia_valid = attr->ia_valid;
4438
4439         error = inode_change_ok(inode, attr);
4440         if (error)
4441                 return error;
4442
4443         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4444                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4445                 handle_t *handle;
4446
4447                 /* (user+group)*(old+new) structure, inode write (sb,
4448                  * inode block, ? - but truncate inode update has it) */
4449                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4450                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4451                 if (IS_ERR(handle)) {
4452                         error = PTR_ERR(handle);
4453                         goto err_out;
4454                 }
4455                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4456                 if (error) {
4457                         ext4_journal_stop(handle);
4458                         return error;
4459                 }
4460                 /* Update corresponding info in inode so that everything is in
4461                  * one transaction */
4462                 if (attr->ia_valid & ATTR_UID)
4463                         inode->i_uid = attr->ia_uid;
4464                 if (attr->ia_valid & ATTR_GID)
4465                         inode->i_gid = attr->ia_gid;
4466                 error = ext4_mark_inode_dirty(handle, inode);
4467                 ext4_journal_stop(handle);
4468         }
4469
4470         if (attr->ia_valid & ATTR_SIZE) {
4471                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4472                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4473
4474                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4475                                 error = -EFBIG;
4476                                 goto err_out;
4477                         }
4478                 }
4479         }
4480
4481         if (S_ISREG(inode->i_mode) &&
4482             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4483                 handle_t *handle;
4484
4485                 handle = ext4_journal_start(inode, 3);
4486                 if (IS_ERR(handle)) {
4487                         error = PTR_ERR(handle);
4488                         goto err_out;
4489                 }
4490
4491                 error = ext4_orphan_add(handle, inode);
4492                 EXT4_I(inode)->i_disksize = attr->ia_size;
4493                 rc = ext4_mark_inode_dirty(handle, inode);
4494                 if (!error)
4495                         error = rc;
4496                 ext4_journal_stop(handle);
4497
4498                 if (ext4_should_order_data(inode)) {
4499                         error = ext4_begin_ordered_truncate(inode,
4500                                                             attr->ia_size);
4501                         if (error) {
4502                                 /* Do as much error cleanup as possible */
4503                                 handle = ext4_journal_start(inode, 3);
4504                                 if (IS_ERR(handle)) {
4505                                         ext4_orphan_del(NULL, inode);
4506                                         goto err_out;
4507                                 }
4508                                 ext4_orphan_del(handle, inode);
4509                                 ext4_journal_stop(handle);
4510                                 goto err_out;
4511                         }
4512                 }
4513         }
4514
4515         rc = inode_setattr(inode, attr);
4516
4517         /* If inode_setattr's call to ext4_truncate failed to get a
4518          * transaction handle at all, we need to clean up the in-core
4519          * orphan list manually. */
4520         if (inode->i_nlink)
4521                 ext4_orphan_del(NULL, inode);
4522
4523         if (!rc && (ia_valid & ATTR_MODE))
4524                 rc = ext4_acl_chmod(inode);
4525
4526 err_out:
4527         ext4_std_error(inode->i_sb, error);
4528         if (!error)
4529                 error = rc;
4530         return error;
4531 }
4532
4533 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4534                  struct kstat *stat)
4535 {
4536         struct inode *inode;
4537         unsigned long delalloc_blocks;
4538
4539         inode = dentry->d_inode;
4540         generic_fillattr(inode, stat);
4541
4542         /*
4543          * We can't update i_blocks if the block allocation is delayed
4544          * otherwise in the case of system crash before the real block
4545          * allocation is done, we will have i_blocks inconsistent with
4546          * on-disk file blocks.
4547          * We always keep i_blocks updated together with real
4548          * allocation. But to not confuse with user, stat
4549          * will return the blocks that include the delayed allocation
4550          * blocks for this file.
4551          */
4552         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4553         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4554         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4555
4556         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4557         return 0;
4558 }
4559
4560 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4561                                       int chunk)
4562 {
4563         int indirects;
4564
4565         /* if nrblocks are contiguous */
4566         if (chunk) {
4567                 /*
4568                  * With N contiguous data blocks, it need at most
4569                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4570                  * 2 dindirect blocks
4571                  * 1 tindirect block
4572                  */
4573                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4574                 return indirects + 3;
4575         }
4576         /*
4577          * if nrblocks are not contiguous, worse case, each block touch
4578          * a indirect block, and each indirect block touch a double indirect
4579          * block, plus a triple indirect block
4580          */
4581         indirects = nrblocks * 2 + 1;
4582         return indirects;
4583 }
4584
4585 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4586 {
4587         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4588                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4589         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4590 }
4591
4592 /*
4593  * Account for index blocks, block groups bitmaps and block group
4594  * descriptor blocks if modify datablocks and index blocks
4595  * worse case, the indexs blocks spread over different block groups
4596  *
4597  * If datablocks are discontiguous, they are possible to spread over
4598  * different block groups too. If they are contiugous, with flexbg,
4599  * they could still across block group boundary.
4600  *
4601  * Also account for superblock, inode, quota and xattr blocks
4602  */
4603 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4604 {
4605         int groups, gdpblocks;
4606         int idxblocks;
4607         int ret = 0;
4608
4609         /*
4610          * How many index blocks need to touch to modify nrblocks?
4611          * The "Chunk" flag indicating whether the nrblocks is
4612          * physically contiguous on disk
4613          *
4614          * For Direct IO and fallocate, they calls get_block to allocate
4615          * one single extent at a time, so they could set the "Chunk" flag
4616          */
4617         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4618
4619         ret = idxblocks;
4620
4621         /*
4622          * Now let's see how many group bitmaps and group descriptors need
4623          * to account
4624          */
4625         groups = idxblocks;
4626         if (chunk)
4627                 groups += 1;
4628         else
4629                 groups += nrblocks;
4630
4631         gdpblocks = groups;
4632         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4633                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4634         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4635                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4636
4637         /* bitmaps and block group descriptor blocks */
4638         ret += groups + gdpblocks;
4639
4640         /* Blocks for super block, inode, quota and xattr blocks */
4641         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4642
4643         return ret;
4644 }
4645
4646 /*
4647  * Calulate the total number of credits to reserve to fit
4648  * the modification of a single pages into a single transaction,
4649  * which may include multiple chunks of block allocations.
4650  *
4651  * This could be called via ext4_write_begin()
4652  *
4653  * We need to consider the worse case, when
4654  * one new block per extent.
4655  */
4656 int ext4_writepage_trans_blocks(struct inode *inode)
4657 {
4658         int bpp = ext4_journal_blocks_per_page(inode);
4659         int ret;
4660
4661         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4662
4663         /* Account for data blocks for journalled mode */
4664         if (ext4_should_journal_data(inode))
4665                 ret += bpp;
4666         return ret;
4667 }
4668
4669 /*
4670  * Calculate the journal credits for a chunk of data modification.
4671  *
4672  * This is called from DIO, fallocate or whoever calling
4673  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4674  *
4675  * journal buffers for data blocks are not included here, as DIO
4676  * and fallocate do no need to journal data buffers.
4677  */
4678 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4679 {
4680         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4681 }
4682
4683 /*
4684  * The caller must have previously called ext4_reserve_inode_write().
4685  * Give this, we know that the caller already has write access to iloc->bh.
4686  */
4687 int ext4_mark_iloc_dirty(handle_t *handle,
4688                 struct inode *inode, struct ext4_iloc *iloc)
4689 {
4690         int err = 0;
4691
4692         if (test_opt(inode->i_sb, I_VERSION))
4693                 inode_inc_iversion(inode);
4694
4695         /* the do_update_inode consumes one bh->b_count */
4696         get_bh(iloc->bh);
4697
4698         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4699         err = ext4_do_update_inode(handle, inode, iloc);
4700         put_bh(iloc->bh);
4701         return err;
4702 }
4703
4704 /*
4705  * On success, We end up with an outstanding reference count against
4706  * iloc->bh.  This _must_ be cleaned up later.
4707  */
4708
4709 int
4710 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4711                          struct ext4_iloc *iloc)
4712 {
4713         int err = 0;
4714         if (handle) {
4715                 err = ext4_get_inode_loc(inode, iloc);
4716                 if (!err) {
4717                         BUFFER_TRACE(iloc->bh, "get_write_access");
4718                         err = ext4_journal_get_write_access(handle, iloc->bh);
4719                         if (err) {
4720                                 brelse(iloc->bh);
4721                                 iloc->bh = NULL;
4722                         }
4723                 }
4724         }
4725         ext4_std_error(inode->i_sb, err);
4726         return err;
4727 }
4728
4729 /*
4730  * Expand an inode by new_extra_isize bytes.
4731  * Returns 0 on success or negative error number on failure.
4732  */
4733 static int ext4_expand_extra_isize(struct inode *inode,
4734                                    unsigned int new_extra_isize,
4735                                    struct ext4_iloc iloc,
4736                                    handle_t *handle)
4737 {
4738         struct ext4_inode *raw_inode;
4739         struct ext4_xattr_ibody_header *header;
4740         struct ext4_xattr_entry *entry;
4741
4742         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4743                 return 0;
4744
4745         raw_inode = ext4_raw_inode(&iloc);
4746
4747         header = IHDR(inode, raw_inode);
4748         entry = IFIRST(header);
4749
4750         /* No extended attributes present */
4751         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4752                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4753                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4754                         new_extra_isize);
4755                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4756                 return 0;
4757         }
4758
4759         /* try to expand with EAs present */
4760         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4761                                           raw_inode, handle);
4762 }
4763
4764 /*
4765  * What we do here is to mark the in-core inode as clean with respect to inode
4766  * dirtiness (it may still be data-dirty).
4767  * This means that the in-core inode may be reaped by prune_icache
4768  * without having to perform any I/O.  This is a very good thing,
4769  * because *any* task may call prune_icache - even ones which
4770  * have a transaction open against a different journal.
4771  *
4772  * Is this cheating?  Not really.  Sure, we haven't written the
4773  * inode out, but prune_icache isn't a user-visible syncing function.
4774  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4775  * we start and wait on commits.
4776  *
4777  * Is this efficient/effective?  Well, we're being nice to the system
4778  * by cleaning up our inodes proactively so they can be reaped
4779  * without I/O.  But we are potentially leaving up to five seconds'
4780  * worth of inodes floating about which prune_icache wants us to
4781  * write out.  One way to fix that would be to get prune_icache()
4782  * to do a write_super() to free up some memory.  It has the desired
4783  * effect.
4784  */
4785 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4786 {
4787         struct ext4_iloc iloc;
4788         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4789         static unsigned int mnt_count;
4790         int err, ret;
4791
4792         might_sleep();
4793         err = ext4_reserve_inode_write(handle, inode, &iloc);
4794         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4795             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4796                 /*
4797                  * We need extra buffer credits since we may write into EA block
4798                  * with this same handle. If journal_extend fails, then it will
4799                  * only result in a minor loss of functionality for that inode.
4800                  * If this is felt to be critical, then e2fsck should be run to
4801                  * force a large enough s_min_extra_isize.
4802                  */
4803                 if ((jbd2_journal_extend(handle,
4804                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4805                         ret = ext4_expand_extra_isize(inode,
4806                                                       sbi->s_want_extra_isize,
4807                                                       iloc, handle);
4808                         if (ret) {
4809                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4810                                 if (mnt_count !=
4811                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4812                                         ext4_warning(inode->i_sb, __func__,
4813                                         "Unable to expand inode %lu. Delete"
4814                                         " some EAs or run e2fsck.",
4815                                         inode->i_ino);
4816                                         mnt_count =
4817                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4818                                 }
4819                         }
4820                 }
4821         }
4822         if (!err)
4823                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4824         return err;
4825 }
4826
4827 /*
4828  * ext4_dirty_inode() is called from __mark_inode_dirty()
4829  *
4830  * We're really interested in the case where a file is being extended.
4831  * i_size has been changed by generic_commit_write() and we thus need
4832  * to include the updated inode in the current transaction.
4833  *
4834  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4835  * are allocated to the file.
4836  *
4837  * If the inode is marked synchronous, we don't honour that here - doing
4838  * so would cause a commit on atime updates, which we don't bother doing.
4839  * We handle synchronous inodes at the highest possible level.
4840  */
4841 void ext4_dirty_inode(struct inode *inode)
4842 {
4843         handle_t *current_handle = ext4_journal_current_handle();
4844         handle_t *handle;
4845
4846         handle = ext4_journal_start(inode, 2);
4847         if (IS_ERR(handle))
4848                 goto out;
4849         if (current_handle &&
4850                 current_handle->h_transaction != handle->h_transaction) {
4851                 /* This task has a transaction open against a different fs */
4852                 printk(KERN_EMERG "%s: transactions do not match!\n",
4853                        __func__);
4854         } else {
4855                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4856                                 current_handle);
4857                 ext4_mark_inode_dirty(handle, inode);
4858         }
4859         ext4_journal_stop(handle);
4860 out:
4861         return;
4862 }
4863
4864 #if 0
4865 /*
4866  * Bind an inode's backing buffer_head into this transaction, to prevent
4867  * it from being flushed to disk early.  Unlike
4868  * ext4_reserve_inode_write, this leaves behind no bh reference and
4869  * returns no iloc structure, so the caller needs to repeat the iloc
4870  * lookup to mark the inode dirty later.
4871  */
4872 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4873 {
4874         struct ext4_iloc iloc;
4875
4876         int err = 0;
4877         if (handle) {
4878                 err = ext4_get_inode_loc(inode, &iloc);
4879                 if (!err) {
4880                         BUFFER_TRACE(iloc.bh, "get_write_access");
4881                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4882                         if (!err)
4883                                 err = ext4_journal_dirty_metadata(handle,
4884                                                                   iloc.bh);
4885                         brelse(iloc.bh);
4886                 }
4887         }
4888         ext4_std_error(inode->i_sb, err);
4889         return err;
4890 }
4891 #endif
4892
4893 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4894 {
4895         journal_t *journal;
4896         handle_t *handle;
4897         int err;
4898
4899         /*
4900          * We have to be very careful here: changing a data block's
4901          * journaling status dynamically is dangerous.  If we write a
4902          * data block to the journal, change the status and then delete
4903          * that block, we risk forgetting to revoke the old log record
4904          * from the journal and so a subsequent replay can corrupt data.
4905          * So, first we make sure that the journal is empty and that
4906          * nobody is changing anything.
4907          */
4908
4909         journal = EXT4_JOURNAL(inode);
4910         if (is_journal_aborted(journal))
4911                 return -EROFS;
4912
4913         jbd2_journal_lock_updates(journal);
4914         jbd2_journal_flush(journal);
4915
4916         /*
4917          * OK, there are no updates running now, and all cached data is
4918          * synced to disk.  We are now in a completely consistent state
4919          * which doesn't have anything in the journal, and we know that
4920          * no filesystem updates are running, so it is safe to modify
4921          * the inode's in-core data-journaling state flag now.
4922          */
4923
4924         if (val)
4925                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4926         else
4927                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4928         ext4_set_aops(inode);
4929
4930         jbd2_journal_unlock_updates(journal);
4931
4932         /* Finally we can mark the inode as dirty. */
4933
4934         handle = ext4_journal_start(inode, 1);
4935         if (IS_ERR(handle))
4936                 return PTR_ERR(handle);
4937
4938         err = ext4_mark_inode_dirty(handle, inode);
4939         handle->h_sync = 1;
4940         ext4_journal_stop(handle);
4941         ext4_std_error(inode->i_sb, err);
4942
4943         return err;
4944 }
4945
4946 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4947 {
4948         return !buffer_mapped(bh);
4949 }
4950
4951 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4952 {
4953         loff_t size;
4954         unsigned long len;
4955         int ret = -EINVAL;
4956         void *fsdata;
4957         struct file *file = vma->vm_file;
4958         struct inode *inode = file->f_path.dentry->d_inode;
4959         struct address_space *mapping = inode->i_mapping;
4960
4961         /*
4962          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4963          * get i_mutex because we are already holding mmap_sem.
4964          */
4965         down_read(&inode->i_alloc_sem);
4966         size = i_size_read(inode);
4967         if (page->mapping != mapping || size <= page_offset(page)
4968             || !PageUptodate(page)) {
4969                 /* page got truncated from under us? */
4970                 goto out_unlock;
4971         }
4972         ret = 0;
4973         if (PageMappedToDisk(page))
4974                 goto out_unlock;
4975
4976         if (page->index == size >> PAGE_CACHE_SHIFT)
4977                 len = size & ~PAGE_CACHE_MASK;
4978         else
4979                 len = PAGE_CACHE_SIZE;
4980
4981         if (page_has_buffers(page)) {
4982                 /* return if we have all the buffers mapped */
4983                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4984                                        ext4_bh_unmapped))
4985                         goto out_unlock;
4986         }
4987         /*
4988          * OK, we need to fill the hole... Do write_begin write_end
4989          * to do block allocation/reservation.We are not holding
4990          * inode.i__mutex here. That allow * parallel write_begin,
4991          * write_end call. lock_page prevent this from happening
4992          * on the same page though
4993          */
4994         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4995                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4996         if (ret < 0)
4997                 goto out_unlock;
4998         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4999                         len, len, page, fsdata);
5000         if (ret < 0)
5001                 goto out_unlock;
5002         ret = 0;
5003 out_unlock:
5004         up_read(&inode->i_alloc_sem);
5005         return ret;
5006 }