ext4: Get rid of EXTEND_DISKSIZE flag of ext4_get_blocks_handle()
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max)
376 {
377         __le32 *bref = p;
378         unsigned int blk;
379
380         while (bref < p+max) {
381                 blk = le32_to_cpu(*bref++);
382                 if (blk && 
383                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 
384                                                     blk, 1))) {
385                         ext4_error(inode->i_sb, function,
386                                    "invalid block reference %u "
387                                    "in inode #%lu", blk, inode->i_ino);
388                         return -EIO;
389                 }
390         }
391         return 0;
392 }
393
394
395 #define ext4_check_indirect_blockref(inode, bh)                         \
396         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
397                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
398
399 #define ext4_check_inode_blockref(inode)                                \
400         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
401                               EXT4_NDIR_BLOCKS)
402
403 /**
404  *      ext4_get_branch - read the chain of indirect blocks leading to data
405  *      @inode: inode in question
406  *      @depth: depth of the chain (1 - direct pointer, etc.)
407  *      @offsets: offsets of pointers in inode/indirect blocks
408  *      @chain: place to store the result
409  *      @err: here we store the error value
410  *
411  *      Function fills the array of triples <key, p, bh> and returns %NULL
412  *      if everything went OK or the pointer to the last filled triple
413  *      (incomplete one) otherwise. Upon the return chain[i].key contains
414  *      the number of (i+1)-th block in the chain (as it is stored in memory,
415  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
416  *      number (it points into struct inode for i==0 and into the bh->b_data
417  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
418  *      block for i>0 and NULL for i==0. In other words, it holds the block
419  *      numbers of the chain, addresses they were taken from (and where we can
420  *      verify that chain did not change) and buffer_heads hosting these
421  *      numbers.
422  *
423  *      Function stops when it stumbles upon zero pointer (absent block)
424  *              (pointer to last triple returned, *@err == 0)
425  *      or when it gets an IO error reading an indirect block
426  *              (ditto, *@err == -EIO)
427  *      or when it reads all @depth-1 indirect blocks successfully and finds
428  *      the whole chain, all way to the data (returns %NULL, *err == 0).
429  *
430  *      Need to be called with
431  *      down_read(&EXT4_I(inode)->i_data_sem)
432  */
433 static Indirect *ext4_get_branch(struct inode *inode, int depth,
434                                  ext4_lblk_t  *offsets,
435                                  Indirect chain[4], int *err)
436 {
437         struct super_block *sb = inode->i_sb;
438         Indirect *p = chain;
439         struct buffer_head *bh;
440
441         *err = 0;
442         /* i_data is not going away, no lock needed */
443         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
444         if (!p->key)
445                 goto no_block;
446         while (--depth) {
447                 bh = sb_getblk(sb, le32_to_cpu(p->key));
448                 if (unlikely(!bh))
449                         goto failure;
450                   
451                 if (!bh_uptodate_or_lock(bh)) {
452                         if (bh_submit_read(bh) < 0) {
453                                 put_bh(bh);
454                                 goto failure;
455                         }
456                         /* validate block references */
457                         if (ext4_check_indirect_blockref(inode, bh)) {
458                                 put_bh(bh);
459                                 goto failure;
460                         }
461                 }
462                 
463                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
464                 /* Reader: end */
465                 if (!p->key)
466                         goto no_block;
467         }
468         return NULL;
469
470 failure:
471         *err = -EIO;
472 no_block:
473         return p;
474 }
475
476 /**
477  *      ext4_find_near - find a place for allocation with sufficient locality
478  *      @inode: owner
479  *      @ind: descriptor of indirect block.
480  *
481  *      This function returns the preferred place for block allocation.
482  *      It is used when heuristic for sequential allocation fails.
483  *      Rules are:
484  *        + if there is a block to the left of our position - allocate near it.
485  *        + if pointer will live in indirect block - allocate near that block.
486  *        + if pointer will live in inode - allocate in the same
487  *          cylinder group.
488  *
489  * In the latter case we colour the starting block by the callers PID to
490  * prevent it from clashing with concurrent allocations for a different inode
491  * in the same block group.   The PID is used here so that functionally related
492  * files will be close-by on-disk.
493  *
494  *      Caller must make sure that @ind is valid and will stay that way.
495  */
496 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
497 {
498         struct ext4_inode_info *ei = EXT4_I(inode);
499         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
500         __le32 *p;
501         ext4_fsblk_t bg_start;
502         ext4_fsblk_t last_block;
503         ext4_grpblk_t colour;
504         ext4_group_t block_group;
505         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
506
507         /* Try to find previous block */
508         for (p = ind->p - 1; p >= start; p--) {
509                 if (*p)
510                         return le32_to_cpu(*p);
511         }
512
513         /* No such thing, so let's try location of indirect block */
514         if (ind->bh)
515                 return ind->bh->b_blocknr;
516
517         /*
518          * It is going to be referred to from the inode itself? OK, just put it
519          * into the same cylinder group then.
520          */
521         block_group = ei->i_block_group;
522         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
523                 block_group &= ~(flex_size-1);
524                 if (S_ISREG(inode->i_mode))
525                         block_group++;
526         }
527         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
528         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
529
530         /*
531          * If we are doing delayed allocation, we don't need take
532          * colour into account.
533          */
534         if (test_opt(inode->i_sb, DELALLOC))
535                 return bg_start;
536
537         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
538                 colour = (current->pid % 16) *
539                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
540         else
541                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
542         return bg_start + colour;
543 }
544
545 /**
546  *      ext4_find_goal - find a preferred place for allocation.
547  *      @inode: owner
548  *      @block:  block we want
549  *      @partial: pointer to the last triple within a chain
550  *
551  *      Normally this function find the preferred place for block allocation,
552  *      returns it.
553  */
554 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
555                 Indirect *partial)
556 {
557         /*
558          * XXX need to get goal block from mballoc's data structures
559          */
560
561         return ext4_find_near(inode, partial);
562 }
563
564 /**
565  *      ext4_blks_to_allocate: Look up the block map and count the number
566  *      of direct blocks need to be allocated for the given branch.
567  *
568  *      @branch: chain of indirect blocks
569  *      @k: number of blocks need for indirect blocks
570  *      @blks: number of data blocks to be mapped.
571  *      @blocks_to_boundary:  the offset in the indirect block
572  *
573  *      return the total number of blocks to be allocate, including the
574  *      direct and indirect blocks.
575  */
576 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
577                 int blocks_to_boundary)
578 {
579         unsigned int count = 0;
580
581         /*
582          * Simple case, [t,d]Indirect block(s) has not allocated yet
583          * then it's clear blocks on that path have not allocated
584          */
585         if (k > 0) {
586                 /* right now we don't handle cross boundary allocation */
587                 if (blks < blocks_to_boundary + 1)
588                         count += blks;
589                 else
590                         count += blocks_to_boundary + 1;
591                 return count;
592         }
593
594         count++;
595         while (count < blks && count <= blocks_to_boundary &&
596                 le32_to_cpu(*(branch[0].p + count)) == 0) {
597                 count++;
598         }
599         return count;
600 }
601
602 /**
603  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
604  *      @indirect_blks: the number of blocks need to allocate for indirect
605  *                      blocks
606  *
607  *      @new_blocks: on return it will store the new block numbers for
608  *      the indirect blocks(if needed) and the first direct block,
609  *      @blks:  on return it will store the total number of allocated
610  *              direct blocks
611  */
612 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
613                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
614                                 int indirect_blks, int blks,
615                                 ext4_fsblk_t new_blocks[4], int *err)
616 {
617         struct ext4_allocation_request ar;
618         int target, i;
619         unsigned long count = 0, blk_allocated = 0;
620         int index = 0;
621         ext4_fsblk_t current_block = 0;
622         int ret = 0;
623
624         /*
625          * Here we try to allocate the requested multiple blocks at once,
626          * on a best-effort basis.
627          * To build a branch, we should allocate blocks for
628          * the indirect blocks(if not allocated yet), and at least
629          * the first direct block of this branch.  That's the
630          * minimum number of blocks need to allocate(required)
631          */
632         /* first we try to allocate the indirect blocks */
633         target = indirect_blks;
634         while (target > 0) {
635                 count = target;
636                 /* allocating blocks for indirect blocks and direct blocks */
637                 current_block = ext4_new_meta_blocks(handle, inode,
638                                                         goal, &count, err);
639                 if (*err)
640                         goto failed_out;
641
642                 target -= count;
643                 /* allocate blocks for indirect blocks */
644                 while (index < indirect_blks && count) {
645                         new_blocks[index++] = current_block++;
646                         count--;
647                 }
648                 if (count > 0) {
649                         /*
650                          * save the new block number
651                          * for the first direct block
652                          */
653                         new_blocks[index] = current_block;
654                         printk(KERN_INFO "%s returned more blocks than "
655                                                 "requested\n", __func__);
656                         WARN_ON(1);
657                         break;
658                 }
659         }
660
661         target = blks - count ;
662         blk_allocated = count;
663         if (!target)
664                 goto allocated;
665         /* Now allocate data blocks */
666         memset(&ar, 0, sizeof(ar));
667         ar.inode = inode;
668         ar.goal = goal;
669         ar.len = target;
670         ar.logical = iblock;
671         if (S_ISREG(inode->i_mode))
672                 /* enable in-core preallocation only for regular files */
673                 ar.flags = EXT4_MB_HINT_DATA;
674
675         current_block = ext4_mb_new_blocks(handle, &ar, err);
676
677         if (*err && (target == blks)) {
678                 /*
679                  * if the allocation failed and we didn't allocate
680                  * any blocks before
681                  */
682                 goto failed_out;
683         }
684         if (!*err) {
685                 if (target == blks) {
686                 /*
687                  * save the new block number
688                  * for the first direct block
689                  */
690                         new_blocks[index] = current_block;
691                 }
692                 blk_allocated += ar.len;
693         }
694 allocated:
695         /* total number of blocks allocated for direct blocks */
696         ret = blk_allocated;
697         *err = 0;
698         return ret;
699 failed_out:
700         for (i = 0; i < index; i++)
701                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
702         return ret;
703 }
704
705 /**
706  *      ext4_alloc_branch - allocate and set up a chain of blocks.
707  *      @inode: owner
708  *      @indirect_blks: number of allocated indirect blocks
709  *      @blks: number of allocated direct blocks
710  *      @offsets: offsets (in the blocks) to store the pointers to next.
711  *      @branch: place to store the chain in.
712  *
713  *      This function allocates blocks, zeroes out all but the last one,
714  *      links them into chain and (if we are synchronous) writes them to disk.
715  *      In other words, it prepares a branch that can be spliced onto the
716  *      inode. It stores the information about that chain in the branch[], in
717  *      the same format as ext4_get_branch() would do. We are calling it after
718  *      we had read the existing part of chain and partial points to the last
719  *      triple of that (one with zero ->key). Upon the exit we have the same
720  *      picture as after the successful ext4_get_block(), except that in one
721  *      place chain is disconnected - *branch->p is still zero (we did not
722  *      set the last link), but branch->key contains the number that should
723  *      be placed into *branch->p to fill that gap.
724  *
725  *      If allocation fails we free all blocks we've allocated (and forget
726  *      their buffer_heads) and return the error value the from failed
727  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
728  *      as described above and return 0.
729  */
730 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
731                                 ext4_lblk_t iblock, int indirect_blks,
732                                 int *blks, ext4_fsblk_t goal,
733                                 ext4_lblk_t *offsets, Indirect *branch)
734 {
735         int blocksize = inode->i_sb->s_blocksize;
736         int i, n = 0;
737         int err = 0;
738         struct buffer_head *bh;
739         int num;
740         ext4_fsblk_t new_blocks[4];
741         ext4_fsblk_t current_block;
742
743         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
744                                 *blks, new_blocks, &err);
745         if (err)
746                 return err;
747
748         branch[0].key = cpu_to_le32(new_blocks[0]);
749         /*
750          * metadata blocks and data blocks are allocated.
751          */
752         for (n = 1; n <= indirect_blks;  n++) {
753                 /*
754                  * Get buffer_head for parent block, zero it out
755                  * and set the pointer to new one, then send
756                  * parent to disk.
757                  */
758                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
759                 branch[n].bh = bh;
760                 lock_buffer(bh);
761                 BUFFER_TRACE(bh, "call get_create_access");
762                 err = ext4_journal_get_create_access(handle, bh);
763                 if (err) {
764                         unlock_buffer(bh);
765                         brelse(bh);
766                         goto failed;
767                 }
768
769                 memset(bh->b_data, 0, blocksize);
770                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771                 branch[n].key = cpu_to_le32(new_blocks[n]);
772                 *branch[n].p = branch[n].key;
773                 if (n == indirect_blks) {
774                         current_block = new_blocks[n];
775                         /*
776                          * End of chain, update the last new metablock of
777                          * the chain to point to the new allocated
778                          * data blocks numbers
779                          */
780                         for (i=1; i < num; i++)
781                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
782                 }
783                 BUFFER_TRACE(bh, "marking uptodate");
784                 set_buffer_uptodate(bh);
785                 unlock_buffer(bh);
786
787                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788                 err = ext4_handle_dirty_metadata(handle, inode, bh);
789                 if (err)
790                         goto failed;
791         }
792         *blks = num;
793         return err;
794 failed:
795         /* Allocation failed, free what we already allocated */
796         for (i = 1; i <= n ; i++) {
797                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798                 ext4_journal_forget(handle, branch[i].bh);
799         }
800         for (i = 0; i < indirect_blks; i++)
801                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
802
803         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
804
805         return err;
806 }
807
808 /**
809  * ext4_splice_branch - splice the allocated branch onto inode.
810  * @inode: owner
811  * @block: (logical) number of block we are adding
812  * @chain: chain of indirect blocks (with a missing link - see
813  *      ext4_alloc_branch)
814  * @where: location of missing link
815  * @num:   number of indirect blocks we are adding
816  * @blks:  number of direct blocks we are adding
817  *
818  * This function fills the missing link and does all housekeeping needed in
819  * inode (->i_blocks, etc.). In case of success we end up with the full
820  * chain to new block and return 0.
821  */
822 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823                         ext4_lblk_t block, Indirect *where, int num, int blks)
824 {
825         int i;
826         int err = 0;
827         ext4_fsblk_t current_block;
828
829         /*
830          * If we're splicing into a [td]indirect block (as opposed to the
831          * inode) then we need to get write access to the [td]indirect block
832          * before the splice.
833          */
834         if (where->bh) {
835                 BUFFER_TRACE(where->bh, "get_write_access");
836                 err = ext4_journal_get_write_access(handle, where->bh);
837                 if (err)
838                         goto err_out;
839         }
840         /* That's it */
841
842         *where->p = where->key;
843
844         /*
845          * Update the host buffer_head or inode to point to more just allocated
846          * direct blocks blocks
847          */
848         if (num == 0 && blks > 1) {
849                 current_block = le32_to_cpu(where->key) + 1;
850                 for (i = 1; i < blks; i++)
851                         *(where->p + i) = cpu_to_le32(current_block++);
852         }
853
854         /* We are done with atomic stuff, now do the rest of housekeeping */
855
856         inode->i_ctime = ext4_current_time(inode);
857         ext4_mark_inode_dirty(handle, inode);
858
859         /* had we spliced it onto indirect block? */
860         if (where->bh) {
861                 /*
862                  * If we spliced it onto an indirect block, we haven't
863                  * altered the inode.  Note however that if it is being spliced
864                  * onto an indirect block at the very end of the file (the
865                  * file is growing) then we *will* alter the inode to reflect
866                  * the new i_size.  But that is not done here - it is done in
867                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
868                  */
869                 jbd_debug(5, "splicing indirect only\n");
870                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
872                 if (err)
873                         goto err_out;
874         } else {
875                 /*
876                  * OK, we spliced it into the inode itself on a direct block.
877                  * Inode was dirtied above.
878                  */
879                 jbd_debug(5, "splicing direct\n");
880         }
881         return err;
882
883 err_out:
884         for (i = 1; i <= num; i++) {
885                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
886                 ext4_journal_forget(handle, where[i].bh);
887                 ext4_free_blocks(handle, inode,
888                                         le32_to_cpu(where[i-1].key), 1, 0);
889         }
890         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
891
892         return err;
893 }
894
895 /*
896  * The ext4_ind_get_blocks() function handles non-extents inodes
897  * (i.e., using the traditional indirect/double-indirect i_blocks
898  * scheme) for ext4_get_blocks().
899  *
900  * Allocation strategy is simple: if we have to allocate something, we will
901  * have to go the whole way to leaf. So let's do it before attaching anything
902  * to tree, set linkage between the newborn blocks, write them if sync is
903  * required, recheck the path, free and repeat if check fails, otherwise
904  * set the last missing link (that will protect us from any truncate-generated
905  * removals - all blocks on the path are immune now) and possibly force the
906  * write on the parent block.
907  * That has a nice additional property: no special recovery from the failed
908  * allocations is needed - we simply release blocks and do not touch anything
909  * reachable from inode.
910  *
911  * `handle' can be NULL if create == 0.
912  *
913  * return > 0, # of blocks mapped or allocated.
914  * return = 0, if plain lookup failed.
915  * return < 0, error case.
916  *
917  * The ext4_ind_get_blocks() function should be called with
918  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
921  * blocks.
922  */
923 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
924                                   ext4_lblk_t iblock, unsigned int maxblocks,
925                                   struct buffer_head *bh_result,
926                                   int flags)
927 {
928         int err = -EIO;
929         ext4_lblk_t offsets[4];
930         Indirect chain[4];
931         Indirect *partial;
932         ext4_fsblk_t goal;
933         int indirect_blks;
934         int blocks_to_boundary = 0;
935         int depth;
936         int count = 0;
937         ext4_fsblk_t first_block = 0;
938
939         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
940         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
941         depth = ext4_block_to_path(inode, iblock, offsets,
942                                         &blocks_to_boundary);
943
944         if (depth == 0)
945                 goto out;
946
947         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
948
949         /* Simplest case - block found, no allocation needed */
950         if (!partial) {
951                 first_block = le32_to_cpu(chain[depth - 1].key);
952                 clear_buffer_new(bh_result);
953                 count++;
954                 /*map more blocks*/
955                 while (count < maxblocks && count <= blocks_to_boundary) {
956                         ext4_fsblk_t blk;
957
958                         blk = le32_to_cpu(*(chain[depth-1].p + count));
959
960                         if (blk == first_block + count)
961                                 count++;
962                         else
963                                 break;
964                 }
965                 goto got_it;
966         }
967
968         /* Next simple case - plain lookup or failed read of indirect block */
969         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970                 goto cleanup;
971
972         /*
973          * Okay, we need to do block allocation.
974         */
975         goal = ext4_find_goal(inode, iblock, partial);
976
977         /* the number of blocks need to allocate for [d,t]indirect blocks */
978         indirect_blks = (chain + depth) - partial - 1;
979
980         /*
981          * Next look up the indirect map to count the totoal number of
982          * direct blocks to allocate for this branch.
983          */
984         count = ext4_blks_to_allocate(partial, indirect_blks,
985                                         maxblocks, blocks_to_boundary);
986         /*
987          * Block out ext4_truncate while we alter the tree
988          */
989         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
990                                         &count, goal,
991                                         offsets + (partial - chain), partial);
992
993         /*
994          * The ext4_splice_branch call will free and forget any buffers
995          * on the new chain if there is a failure, but that risks using
996          * up transaction credits, especially for bitmaps where the
997          * credits cannot be returned.  Can we handle this somehow?  We
998          * may need to return -EAGAIN upwards in the worst case.  --sct
999          */
1000         if (!err)
1001                 err = ext4_splice_branch(handle, inode, iblock,
1002                                         partial, indirect_blks, count);
1003         else 
1004                 goto cleanup;
1005
1006         set_buffer_new(bh_result);
1007 got_it:
1008         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1009         if (count > blocks_to_boundary)
1010                 set_buffer_boundary(bh_result);
1011         err = count;
1012         /* Clean up and exit */
1013         partial = chain + depth - 1;    /* the whole chain */
1014 cleanup:
1015         while (partial > chain) {
1016                 BUFFER_TRACE(partial->bh, "call brelse");
1017                 brelse(partial->bh);
1018                 partial--;
1019         }
1020         BUFFER_TRACE(bh_result, "returned");
1021 out:
1022         return err;
1023 }
1024
1025 qsize_t ext4_get_reserved_space(struct inode *inode)
1026 {
1027         unsigned long long total;
1028
1029         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1030         total = EXT4_I(inode)->i_reserved_data_blocks +
1031                 EXT4_I(inode)->i_reserved_meta_blocks;
1032         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1033
1034         return total;
1035 }
1036 /*
1037  * Calculate the number of metadata blocks need to reserve
1038  * to allocate @blocks for non extent file based file
1039  */
1040 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1041 {
1042         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1043         int ind_blks, dind_blks, tind_blks;
1044
1045         /* number of new indirect blocks needed */
1046         ind_blks = (blocks + icap - 1) / icap;
1047
1048         dind_blks = (ind_blks + icap - 1) / icap;
1049
1050         tind_blks = 1;
1051
1052         return ind_blks + dind_blks + tind_blks;
1053 }
1054
1055 /*
1056  * Calculate the number of metadata blocks need to reserve
1057  * to allocate given number of blocks
1058  */
1059 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1060 {
1061         if (!blocks)
1062                 return 0;
1063
1064         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065                 return ext4_ext_calc_metadata_amount(inode, blocks);
1066
1067         return ext4_indirect_calc_metadata_amount(inode, blocks);
1068 }
1069
1070 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1071 {
1072         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1073         int total, mdb, mdb_free;
1074
1075         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1076         /* recalculate the number of metablocks still need to be reserved */
1077         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1078         mdb = ext4_calc_metadata_amount(inode, total);
1079
1080         /* figure out how many metablocks to release */
1081         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1082         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1083
1084         if (mdb_free) {
1085                 /* Account for allocated meta_blocks */
1086                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1087
1088                 /* update fs dirty blocks counter */
1089                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1091                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1092         }
1093
1094         /* update per-inode reservations */
1095         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1096         EXT4_I(inode)->i_reserved_data_blocks -= used;
1097         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099         /*
1100          * free those over-booking quota for metadata blocks
1101          */
1102         if (mdb_free)
1103                 vfs_dq_release_reservation_block(inode, mdb_free);
1104
1105         /*
1106          * If we have done all the pending block allocations and if
1107          * there aren't any writers on the inode, we can discard the
1108          * inode's preallocations.
1109          */
1110         if (!total && (atomic_read(&inode->i_writecount) == 0))
1111                 ext4_discard_preallocations(inode);
1112 }
1113
1114 static int check_block_validity(struct inode *inode, sector_t logical,
1115                                 sector_t phys, int len)
1116 {
1117         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1118                 ext4_error(inode->i_sb, "check_block_validity",
1119                            "inode #%lu logical block %llu mapped to %llu "
1120                            "(size %d)", inode->i_ino,
1121                            (unsigned long long) logical,
1122                            (unsigned long long) phys, len);
1123                 WARN_ON(1);
1124                 return -EIO;
1125         }
1126         return 0;
1127 }
1128
1129 /*
1130  * The ext4_get_blocks() function tries to look up the requested blocks,
1131  * and returns if the blocks are already mapped.
1132  *
1133  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1134  * and store the allocated blocks in the result buffer head and mark it
1135  * mapped.
1136  *
1137  * If file type is extents based, it will call ext4_ext_get_blocks(),
1138  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1139  * based files
1140  *
1141  * On success, it returns the number of blocks being mapped or allocate.
1142  * if create==0 and the blocks are pre-allocated and uninitialized block,
1143  * the result buffer head is unmapped. If the create ==1, it will make sure
1144  * the buffer head is mapped.
1145  *
1146  * It returns 0 if plain look up failed (blocks have not been allocated), in
1147  * that casem, buffer head is unmapped
1148  *
1149  * It returns the error in case of allocation failure.
1150  */
1151 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1152                     unsigned int max_blocks, struct buffer_head *bh,
1153                     int flags)
1154 {
1155         int retval;
1156
1157         clear_buffer_mapped(bh);
1158         clear_buffer_unwritten(bh);
1159
1160         /*
1161          * Try to see if we can get the block without requesting a new
1162          * file system block.
1163          */
1164         down_read((&EXT4_I(inode)->i_data_sem));
1165         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1166                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1167                                 bh, 0);
1168         } else {
1169                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1170                                              bh, 0);
1171         }
1172         up_read((&EXT4_I(inode)->i_data_sem));
1173
1174         if (retval > 0 && buffer_mapped(bh)) {
1175                 int ret = check_block_validity(inode, block, 
1176                                                bh->b_blocknr, retval);
1177                 if (ret != 0)
1178                         return ret;
1179         }
1180
1181         /* If it is only a block(s) look up */
1182         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1183                 return retval;
1184
1185         /*
1186          * Returns if the blocks have already allocated
1187          *
1188          * Note that if blocks have been preallocated
1189          * ext4_ext_get_block() returns th create = 0
1190          * with buffer head unmapped.
1191          */
1192         if (retval > 0 && buffer_mapped(bh))
1193                 return retval;
1194
1195         /*
1196          * When we call get_blocks without the create flag, the
1197          * BH_Unwritten flag could have gotten set if the blocks
1198          * requested were part of a uninitialized extent.  We need to
1199          * clear this flag now that we are committed to convert all or
1200          * part of the uninitialized extent to be an initialized
1201          * extent.  This is because we need to avoid the combination
1202          * of BH_Unwritten and BH_Mapped flags being simultaneously
1203          * set on the buffer_head.
1204          */
1205         clear_buffer_unwritten(bh);
1206
1207         /*
1208          * New blocks allocate and/or writing to uninitialized extent
1209          * will possibly result in updating i_data, so we take
1210          * the write lock of i_data_sem, and call get_blocks()
1211          * with create == 1 flag.
1212          */
1213         down_write((&EXT4_I(inode)->i_data_sem));
1214
1215         /*
1216          * if the caller is from delayed allocation writeout path
1217          * we have already reserved fs blocks for allocation
1218          * let the underlying get_block() function know to
1219          * avoid double accounting
1220          */
1221         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1222                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1223         /*
1224          * We need to check for EXT4 here because migrate
1225          * could have changed the inode type in between
1226          */
1227         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1228                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1229                                               bh, flags);
1230         } else {
1231                 retval = ext4_ind_get_blocks(handle, inode, block,
1232                                              max_blocks, bh, flags);
1233
1234                 if (retval > 0 && buffer_new(bh)) {
1235                         /*
1236                          * We allocated new blocks which will result in
1237                          * i_data's format changing.  Force the migrate
1238                          * to fail by clearing migrate flags
1239                          */
1240                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1241                                                         ~EXT4_EXT_MIGRATE;
1242                 }
1243         }
1244
1245         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1246                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1247
1248         /*
1249          * Update reserved blocks/metadata blocks after successful
1250          * block allocation which had been deferred till now.
1251          */
1252         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1253                 ext4_da_update_reserve_space(inode, retval);
1254
1255         up_write((&EXT4_I(inode)->i_data_sem));
1256         if (retval > 0 && buffer_mapped(bh)) {
1257                 int ret = check_block_validity(inode, block, 
1258                                                bh->b_blocknr, retval);
1259                 if (ret != 0)
1260                         return ret;
1261         }
1262         return retval;
1263 }
1264
1265 /* Maximum number of blocks we map for direct IO at once. */
1266 #define DIO_MAX_BLOCKS 4096
1267
1268 int ext4_get_block(struct inode *inode, sector_t iblock,
1269                    struct buffer_head *bh_result, int create)
1270 {
1271         handle_t *handle = ext4_journal_current_handle();
1272         int ret = 0, started = 0;
1273         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1274         int dio_credits;
1275
1276         if (create && !handle) {
1277                 /* Direct IO write... */
1278                 if (max_blocks > DIO_MAX_BLOCKS)
1279                         max_blocks = DIO_MAX_BLOCKS;
1280                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1281                 handle = ext4_journal_start(inode, dio_credits);
1282                 if (IS_ERR(handle)) {
1283                         ret = PTR_ERR(handle);
1284                         goto out;
1285                 }
1286                 started = 1;
1287         }
1288
1289         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1290                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1291         if (ret > 0) {
1292                 bh_result->b_size = (ret << inode->i_blkbits);
1293                 ret = 0;
1294         }
1295         if (started)
1296                 ext4_journal_stop(handle);
1297 out:
1298         return ret;
1299 }
1300
1301 /*
1302  * `handle' can be NULL if create is zero
1303  */
1304 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1305                                 ext4_lblk_t block, int create, int *errp)
1306 {
1307         struct buffer_head dummy;
1308         int fatal = 0, err;
1309         int flags = 0;
1310
1311         J_ASSERT(handle != NULL || create == 0);
1312
1313         dummy.b_state = 0;
1314         dummy.b_blocknr = -1000;
1315         buffer_trace_init(&dummy.b_history);
1316         if (create)
1317                 flags |= EXT4_GET_BLOCKS_CREATE;
1318         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1319         /*
1320          * ext4_get_blocks() returns number of blocks mapped. 0 in
1321          * case of a HOLE.
1322          */
1323         if (err > 0) {
1324                 if (err > 1)
1325                         WARN_ON(1);
1326                 err = 0;
1327         }
1328         *errp = err;
1329         if (!err && buffer_mapped(&dummy)) {
1330                 struct buffer_head *bh;
1331                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1332                 if (!bh) {
1333                         *errp = -EIO;
1334                         goto err;
1335                 }
1336                 if (buffer_new(&dummy)) {
1337                         J_ASSERT(create != 0);
1338                         J_ASSERT(handle != NULL);
1339
1340                         /*
1341                          * Now that we do not always journal data, we should
1342                          * keep in mind whether this should always journal the
1343                          * new buffer as metadata.  For now, regular file
1344                          * writes use ext4_get_block instead, so it's not a
1345                          * problem.
1346                          */
1347                         lock_buffer(bh);
1348                         BUFFER_TRACE(bh, "call get_create_access");
1349                         fatal = ext4_journal_get_create_access(handle, bh);
1350                         if (!fatal && !buffer_uptodate(bh)) {
1351                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1352                                 set_buffer_uptodate(bh);
1353                         }
1354                         unlock_buffer(bh);
1355                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1356                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1357                         if (!fatal)
1358                                 fatal = err;
1359                 } else {
1360                         BUFFER_TRACE(bh, "not a new buffer");
1361                 }
1362                 if (fatal) {
1363                         *errp = fatal;
1364                         brelse(bh);
1365                         bh = NULL;
1366                 }
1367                 return bh;
1368         }
1369 err:
1370         return NULL;
1371 }
1372
1373 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1374                                ext4_lblk_t block, int create, int *err)
1375 {
1376         struct buffer_head *bh;
1377
1378         bh = ext4_getblk(handle, inode, block, create, err);
1379         if (!bh)
1380                 return bh;
1381         if (buffer_uptodate(bh))
1382                 return bh;
1383         ll_rw_block(READ_META, 1, &bh);
1384         wait_on_buffer(bh);
1385         if (buffer_uptodate(bh))
1386                 return bh;
1387         put_bh(bh);
1388         *err = -EIO;
1389         return NULL;
1390 }
1391
1392 static int walk_page_buffers(handle_t *handle,
1393                              struct buffer_head *head,
1394                              unsigned from,
1395                              unsigned to,
1396                              int *partial,
1397                              int (*fn)(handle_t *handle,
1398                                        struct buffer_head *bh))
1399 {
1400         struct buffer_head *bh;
1401         unsigned block_start, block_end;
1402         unsigned blocksize = head->b_size;
1403         int err, ret = 0;
1404         struct buffer_head *next;
1405
1406         for (bh = head, block_start = 0;
1407              ret == 0 && (bh != head || !block_start);
1408              block_start = block_end, bh = next)
1409         {
1410                 next = bh->b_this_page;
1411                 block_end = block_start + blocksize;
1412                 if (block_end <= from || block_start >= to) {
1413                         if (partial && !buffer_uptodate(bh))
1414                                 *partial = 1;
1415                         continue;
1416                 }
1417                 err = (*fn)(handle, bh);
1418                 if (!ret)
1419                         ret = err;
1420         }
1421         return ret;
1422 }
1423
1424 /*
1425  * To preserve ordering, it is essential that the hole instantiation and
1426  * the data write be encapsulated in a single transaction.  We cannot
1427  * close off a transaction and start a new one between the ext4_get_block()
1428  * and the commit_write().  So doing the jbd2_journal_start at the start of
1429  * prepare_write() is the right place.
1430  *
1431  * Also, this function can nest inside ext4_writepage() ->
1432  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1433  * has generated enough buffer credits to do the whole page.  So we won't
1434  * block on the journal in that case, which is good, because the caller may
1435  * be PF_MEMALLOC.
1436  *
1437  * By accident, ext4 can be reentered when a transaction is open via
1438  * quota file writes.  If we were to commit the transaction while thus
1439  * reentered, there can be a deadlock - we would be holding a quota
1440  * lock, and the commit would never complete if another thread had a
1441  * transaction open and was blocking on the quota lock - a ranking
1442  * violation.
1443  *
1444  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1445  * will _not_ run commit under these circumstances because handle->h_ref
1446  * is elevated.  We'll still have enough credits for the tiny quotafile
1447  * write.
1448  */
1449 static int do_journal_get_write_access(handle_t *handle,
1450                                         struct buffer_head *bh)
1451 {
1452         if (!buffer_mapped(bh) || buffer_freed(bh))
1453                 return 0;
1454         return ext4_journal_get_write_access(handle, bh);
1455 }
1456
1457 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1458                                 loff_t pos, unsigned len, unsigned flags,
1459                                 struct page **pagep, void **fsdata)
1460 {
1461         struct inode *inode = mapping->host;
1462         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1463         handle_t *handle;
1464         int retries = 0;
1465         struct page *page;
1466         pgoff_t index;
1467         unsigned from, to;
1468
1469         trace_mark(ext4_write_begin,
1470                    "dev %s ino %lu pos %llu len %u flags %u",
1471                    inode->i_sb->s_id, inode->i_ino,
1472                    (unsigned long long) pos, len, flags);
1473         index = pos >> PAGE_CACHE_SHIFT;
1474         from = pos & (PAGE_CACHE_SIZE - 1);
1475         to = from + len;
1476
1477 retry:
1478         handle = ext4_journal_start(inode, needed_blocks);
1479         if (IS_ERR(handle)) {
1480                 ret = PTR_ERR(handle);
1481                 goto out;
1482         }
1483
1484         /* We cannot recurse into the filesystem as the transaction is already
1485          * started */
1486         flags |= AOP_FLAG_NOFS;
1487
1488         page = grab_cache_page_write_begin(mapping, index, flags);
1489         if (!page) {
1490                 ext4_journal_stop(handle);
1491                 ret = -ENOMEM;
1492                 goto out;
1493         }
1494         *pagep = page;
1495
1496         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1497                                 ext4_get_block);
1498
1499         if (!ret && ext4_should_journal_data(inode)) {
1500                 ret = walk_page_buffers(handle, page_buffers(page),
1501                                 from, to, NULL, do_journal_get_write_access);
1502         }
1503
1504         if (ret) {
1505                 unlock_page(page);
1506                 ext4_journal_stop(handle);
1507                 page_cache_release(page);
1508                 /*
1509                  * block_write_begin may have instantiated a few blocks
1510                  * outside i_size.  Trim these off again. Don't need
1511                  * i_size_read because we hold i_mutex.
1512                  */
1513                 if (pos + len > inode->i_size)
1514                         vmtruncate(inode, inode->i_size);
1515         }
1516
1517         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1518                 goto retry;
1519 out:
1520         return ret;
1521 }
1522
1523 /* For write_end() in data=journal mode */
1524 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1525 {
1526         if (!buffer_mapped(bh) || buffer_freed(bh))
1527                 return 0;
1528         set_buffer_uptodate(bh);
1529         return ext4_handle_dirty_metadata(handle, NULL, bh);
1530 }
1531
1532 /*
1533  * We need to pick up the new inode size which generic_commit_write gave us
1534  * `file' can be NULL - eg, when called from page_symlink().
1535  *
1536  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1537  * buffers are managed internally.
1538  */
1539 static int ext4_ordered_write_end(struct file *file,
1540                                 struct address_space *mapping,
1541                                 loff_t pos, unsigned len, unsigned copied,
1542                                 struct page *page, void *fsdata)
1543 {
1544         handle_t *handle = ext4_journal_current_handle();
1545         struct inode *inode = mapping->host;
1546         int ret = 0, ret2;
1547
1548         trace_mark(ext4_ordered_write_end,
1549                    "dev %s ino %lu pos %llu len %u copied %u",
1550                    inode->i_sb->s_id, inode->i_ino,
1551                    (unsigned long long) pos, len, copied);
1552         ret = ext4_jbd2_file_inode(handle, inode);
1553
1554         if (ret == 0) {
1555                 loff_t new_i_size;
1556
1557                 new_i_size = pos + copied;
1558                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1559                         ext4_update_i_disksize(inode, new_i_size);
1560                         /* We need to mark inode dirty even if
1561                          * new_i_size is less that inode->i_size
1562                          * bu greater than i_disksize.(hint delalloc)
1563                          */
1564                         ext4_mark_inode_dirty(handle, inode);
1565                 }
1566
1567                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1568                                                         page, fsdata);
1569                 copied = ret2;
1570                 if (ret2 < 0)
1571                         ret = ret2;
1572         }
1573         ret2 = ext4_journal_stop(handle);
1574         if (!ret)
1575                 ret = ret2;
1576
1577         return ret ? ret : copied;
1578 }
1579
1580 static int ext4_writeback_write_end(struct file *file,
1581                                 struct address_space *mapping,
1582                                 loff_t pos, unsigned len, unsigned copied,
1583                                 struct page *page, void *fsdata)
1584 {
1585         handle_t *handle = ext4_journal_current_handle();
1586         struct inode *inode = mapping->host;
1587         int ret = 0, ret2;
1588         loff_t new_i_size;
1589
1590         trace_mark(ext4_writeback_write_end,
1591                    "dev %s ino %lu pos %llu len %u copied %u",
1592                    inode->i_sb->s_id, inode->i_ino,
1593                    (unsigned long long) pos, len, copied);
1594         new_i_size = pos + copied;
1595         if (new_i_size > EXT4_I(inode)->i_disksize) {
1596                 ext4_update_i_disksize(inode, new_i_size);
1597                 /* We need to mark inode dirty even if
1598                  * new_i_size is less that inode->i_size
1599                  * bu greater than i_disksize.(hint delalloc)
1600                  */
1601                 ext4_mark_inode_dirty(handle, inode);
1602         }
1603
1604         ret2 = generic_write_end(file, mapping, pos, len, copied,
1605                                                         page, fsdata);
1606         copied = ret2;
1607         if (ret2 < 0)
1608                 ret = ret2;
1609
1610         ret2 = ext4_journal_stop(handle);
1611         if (!ret)
1612                 ret = ret2;
1613
1614         return ret ? ret : copied;
1615 }
1616
1617 static int ext4_journalled_write_end(struct file *file,
1618                                 struct address_space *mapping,
1619                                 loff_t pos, unsigned len, unsigned copied,
1620                                 struct page *page, void *fsdata)
1621 {
1622         handle_t *handle = ext4_journal_current_handle();
1623         struct inode *inode = mapping->host;
1624         int ret = 0, ret2;
1625         int partial = 0;
1626         unsigned from, to;
1627         loff_t new_i_size;
1628
1629         trace_mark(ext4_journalled_write_end,
1630                    "dev %s ino %lu pos %llu len %u copied %u",
1631                    inode->i_sb->s_id, inode->i_ino,
1632                    (unsigned long long) pos, len, copied);
1633         from = pos & (PAGE_CACHE_SIZE - 1);
1634         to = from + len;
1635
1636         if (copied < len) {
1637                 if (!PageUptodate(page))
1638                         copied = 0;
1639                 page_zero_new_buffers(page, from+copied, to);
1640         }
1641
1642         ret = walk_page_buffers(handle, page_buffers(page), from,
1643                                 to, &partial, write_end_fn);
1644         if (!partial)
1645                 SetPageUptodate(page);
1646         new_i_size = pos + copied;
1647         if (new_i_size > inode->i_size)
1648                 i_size_write(inode, pos+copied);
1649         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1650         if (new_i_size > EXT4_I(inode)->i_disksize) {
1651                 ext4_update_i_disksize(inode, new_i_size);
1652                 ret2 = ext4_mark_inode_dirty(handle, inode);
1653                 if (!ret)
1654                         ret = ret2;
1655         }
1656
1657         unlock_page(page);
1658         ret2 = ext4_journal_stop(handle);
1659         if (!ret)
1660                 ret = ret2;
1661         page_cache_release(page);
1662
1663         return ret ? ret : copied;
1664 }
1665
1666 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1667 {
1668         int retries = 0;
1669         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1670         unsigned long md_needed, mdblocks, total = 0;
1671
1672         /*
1673          * recalculate the amount of metadata blocks to reserve
1674          * in order to allocate nrblocks
1675          * worse case is one extent per block
1676          */
1677 repeat:
1678         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1679         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1680         mdblocks = ext4_calc_metadata_amount(inode, total);
1681         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1682
1683         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1684         total = md_needed + nrblocks;
1685
1686         /*
1687          * Make quota reservation here to prevent quota overflow
1688          * later. Real quota accounting is done at pages writeout
1689          * time.
1690          */
1691         if (vfs_dq_reserve_block(inode, total)) {
1692                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1693                 return -EDQUOT;
1694         }
1695
1696         if (ext4_claim_free_blocks(sbi, total)) {
1697                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1698                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1699                         yield();
1700                         goto repeat;
1701                 }
1702                 vfs_dq_release_reservation_block(inode, total);
1703                 return -ENOSPC;
1704         }
1705         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1706         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1707
1708         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1709         return 0;       /* success */
1710 }
1711
1712 static void ext4_da_release_space(struct inode *inode, int to_free)
1713 {
1714         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1715         int total, mdb, mdb_free, release;
1716
1717         if (!to_free)
1718                 return;         /* Nothing to release, exit */
1719
1720         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1721
1722         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1723                 /*
1724                  * if there is no reserved blocks, but we try to free some
1725                  * then the counter is messed up somewhere.
1726                  * but since this function is called from invalidate
1727                  * page, it's harmless to return without any action
1728                  */
1729                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1730                             "blocks for inode %lu, but there is no reserved "
1731                             "data blocks\n", to_free, inode->i_ino);
1732                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1733                 return;
1734         }
1735
1736         /* recalculate the number of metablocks still need to be reserved */
1737         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1738         mdb = ext4_calc_metadata_amount(inode, total);
1739
1740         /* figure out how many metablocks to release */
1741         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1742         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1743
1744         release = to_free + mdb_free;
1745
1746         /* update fs dirty blocks counter for truncate case */
1747         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1748
1749         /* update per-inode reservations */
1750         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1751         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1752
1753         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1754         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1755         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1756
1757         vfs_dq_release_reservation_block(inode, release);
1758 }
1759
1760 static void ext4_da_page_release_reservation(struct page *page,
1761                                                 unsigned long offset)
1762 {
1763         int to_release = 0;
1764         struct buffer_head *head, *bh;
1765         unsigned int curr_off = 0;
1766
1767         head = page_buffers(page);
1768         bh = head;
1769         do {
1770                 unsigned int next_off = curr_off + bh->b_size;
1771
1772                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1773                         to_release++;
1774                         clear_buffer_delay(bh);
1775                 }
1776                 curr_off = next_off;
1777         } while ((bh = bh->b_this_page) != head);
1778         ext4_da_release_space(page->mapping->host, to_release);
1779 }
1780
1781 /*
1782  * Delayed allocation stuff
1783  */
1784
1785 struct mpage_da_data {
1786         struct inode *inode;
1787         sector_t b_blocknr;             /* start block number of extent */
1788         size_t b_size;                  /* size of extent */
1789         unsigned long b_state;          /* state of the extent */
1790         unsigned long first_page, next_page;    /* extent of pages */
1791         struct writeback_control *wbc;
1792         int io_done;
1793         int pages_written;
1794         int retval;
1795 };
1796
1797 /*
1798  * mpage_da_submit_io - walks through extent of pages and try to write
1799  * them with writepage() call back
1800  *
1801  * @mpd->inode: inode
1802  * @mpd->first_page: first page of the extent
1803  * @mpd->next_page: page after the last page of the extent
1804  *
1805  * By the time mpage_da_submit_io() is called we expect all blocks
1806  * to be allocated. this may be wrong if allocation failed.
1807  *
1808  * As pages are already locked by write_cache_pages(), we can't use it
1809  */
1810 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1811 {
1812         long pages_skipped;
1813         struct pagevec pvec;
1814         unsigned long index, end;
1815         int ret = 0, err, nr_pages, i;
1816         struct inode *inode = mpd->inode;
1817         struct address_space *mapping = inode->i_mapping;
1818
1819         BUG_ON(mpd->next_page <= mpd->first_page);
1820         /*
1821          * We need to start from the first_page to the next_page - 1
1822          * to make sure we also write the mapped dirty buffer_heads.
1823          * If we look at mpd->b_blocknr we would only be looking
1824          * at the currently mapped buffer_heads.
1825          */
1826         index = mpd->first_page;
1827         end = mpd->next_page - 1;
1828
1829         pagevec_init(&pvec, 0);
1830         while (index <= end) {
1831                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1832                 if (nr_pages == 0)
1833                         break;
1834                 for (i = 0; i < nr_pages; i++) {
1835                         struct page *page = pvec.pages[i];
1836
1837                         index = page->index;
1838                         if (index > end)
1839                                 break;
1840                         index++;
1841
1842                         BUG_ON(!PageLocked(page));
1843                         BUG_ON(PageWriteback(page));
1844
1845                         pages_skipped = mpd->wbc->pages_skipped;
1846                         err = mapping->a_ops->writepage(page, mpd->wbc);
1847                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1848                                 /*
1849                                  * have successfully written the page
1850                                  * without skipping the same
1851                                  */
1852                                 mpd->pages_written++;
1853                         /*
1854                          * In error case, we have to continue because
1855                          * remaining pages are still locked
1856                          * XXX: unlock and re-dirty them?
1857                          */
1858                         if (ret == 0)
1859                                 ret = err;
1860                 }
1861                 pagevec_release(&pvec);
1862         }
1863         return ret;
1864 }
1865
1866 /*
1867  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1868  *
1869  * @mpd->inode - inode to walk through
1870  * @exbh->b_blocknr - first block on a disk
1871  * @exbh->b_size - amount of space in bytes
1872  * @logical - first logical block to start assignment with
1873  *
1874  * the function goes through all passed space and put actual disk
1875  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1876  */
1877 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1878                                  struct buffer_head *exbh)
1879 {
1880         struct inode *inode = mpd->inode;
1881         struct address_space *mapping = inode->i_mapping;
1882         int blocks = exbh->b_size >> inode->i_blkbits;
1883         sector_t pblock = exbh->b_blocknr, cur_logical;
1884         struct buffer_head *head, *bh;
1885         pgoff_t index, end;
1886         struct pagevec pvec;
1887         int nr_pages, i;
1888
1889         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1890         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1891         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1892
1893         pagevec_init(&pvec, 0);
1894
1895         while (index <= end) {
1896                 /* XXX: optimize tail */
1897                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1898                 if (nr_pages == 0)
1899                         break;
1900                 for (i = 0; i < nr_pages; i++) {
1901                         struct page *page = pvec.pages[i];
1902
1903                         index = page->index;
1904                         if (index > end)
1905                                 break;
1906                         index++;
1907
1908                         BUG_ON(!PageLocked(page));
1909                         BUG_ON(PageWriteback(page));
1910                         BUG_ON(!page_has_buffers(page));
1911
1912                         bh = page_buffers(page);
1913                         head = bh;
1914
1915                         /* skip blocks out of the range */
1916                         do {
1917                                 if (cur_logical >= logical)
1918                                         break;
1919                                 cur_logical++;
1920                         } while ((bh = bh->b_this_page) != head);
1921
1922                         do {
1923                                 if (cur_logical >= logical + blocks)
1924                                         break;
1925
1926                                 if (buffer_delay(bh) ||
1927                                                 buffer_unwritten(bh)) {
1928
1929                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1930
1931                                         if (buffer_delay(bh)) {
1932                                                 clear_buffer_delay(bh);
1933                                                 bh->b_blocknr = pblock;
1934                                         } else {
1935                                                 /*
1936                                                  * unwritten already should have
1937                                                  * blocknr assigned. Verify that
1938                                                  */
1939                                                 clear_buffer_unwritten(bh);
1940                                                 BUG_ON(bh->b_blocknr != pblock);
1941                                         }
1942
1943                                 } else if (buffer_mapped(bh))
1944                                         BUG_ON(bh->b_blocknr != pblock);
1945
1946                                 cur_logical++;
1947                                 pblock++;
1948                         } while ((bh = bh->b_this_page) != head);
1949                 }
1950                 pagevec_release(&pvec);
1951         }
1952 }
1953
1954
1955 /*
1956  * __unmap_underlying_blocks - just a helper function to unmap
1957  * set of blocks described by @bh
1958  */
1959 static inline void __unmap_underlying_blocks(struct inode *inode,
1960                                              struct buffer_head *bh)
1961 {
1962         struct block_device *bdev = inode->i_sb->s_bdev;
1963         int blocks, i;
1964
1965         blocks = bh->b_size >> inode->i_blkbits;
1966         for (i = 0; i < blocks; i++)
1967                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1968 }
1969
1970 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1971                                         sector_t logical, long blk_cnt)
1972 {
1973         int nr_pages, i;
1974         pgoff_t index, end;
1975         struct pagevec pvec;
1976         struct inode *inode = mpd->inode;
1977         struct address_space *mapping = inode->i_mapping;
1978
1979         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1980         end   = (logical + blk_cnt - 1) >>
1981                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1982         while (index <= end) {
1983                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1984                 if (nr_pages == 0)
1985                         break;
1986                 for (i = 0; i < nr_pages; i++) {
1987                         struct page *page = pvec.pages[i];
1988                         index = page->index;
1989                         if (index > end)
1990                                 break;
1991                         index++;
1992
1993                         BUG_ON(!PageLocked(page));
1994                         BUG_ON(PageWriteback(page));
1995                         block_invalidatepage(page, 0);
1996                         ClearPageUptodate(page);
1997                         unlock_page(page);
1998                 }
1999         }
2000         return;
2001 }
2002
2003 static void ext4_print_free_blocks(struct inode *inode)
2004 {
2005         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2006         printk(KERN_EMERG "Total free blocks count %lld\n",
2007                         ext4_count_free_blocks(inode->i_sb));
2008         printk(KERN_EMERG "Free/Dirty block details\n");
2009         printk(KERN_EMERG "free_blocks=%lld\n",
2010                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2011         printk(KERN_EMERG "dirty_blocks=%lld\n",
2012                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2013         printk(KERN_EMERG "Block reservation details\n");
2014         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2015                         EXT4_I(inode)->i_reserved_data_blocks);
2016         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2017                         EXT4_I(inode)->i_reserved_meta_blocks);
2018         return;
2019 }
2020
2021 /*
2022  * mpage_da_map_blocks - go through given space
2023  *
2024  * @mpd - bh describing space
2025  *
2026  * The function skips space we know is already mapped to disk blocks.
2027  *
2028  */
2029 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2030 {
2031         int err, blks, get_blocks_flags;
2032         struct buffer_head new;
2033         sector_t next = mpd->b_blocknr;
2034         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2035         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2036         handle_t *handle = NULL;
2037
2038         /*
2039          * We consider only non-mapped and non-allocated blocks
2040          */
2041         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2042                 !(mpd->b_state & (1 << BH_Delay)) &&
2043                 !(mpd->b_state & (1 << BH_Unwritten)))
2044                 return 0;
2045
2046         /*
2047          * If we didn't accumulate anything to write simply return
2048          */
2049         if (!mpd->b_size)
2050                 return 0;
2051
2052         handle = ext4_journal_current_handle();
2053         BUG_ON(!handle);
2054
2055         /*
2056          * Call ext4_get_blocks() to allocate any delayed allocation
2057          * blocks, or to convert an uninitialized extent to be
2058          * initialized (in the case where we have written into
2059          * one or more preallocated blocks).
2060          *
2061          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2062          * indicate that we are on the delayed allocation path.  This
2063          * affects functions in many different parts of the allocation
2064          * call path.  This flag exists primarily because we don't
2065          * want to change *many* call functions, so ext4_get_blocks()
2066          * will set the magic i_delalloc_reserved_flag once the
2067          * inode's allocation semaphore is taken.
2068          *
2069          * If the blocks in questions were delalloc blocks, set
2070          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2071          * variables are updated after the blocks have been allocated.
2072          */
2073         new.b_state = 0;
2074         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2075                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2076         if (mpd->b_state & (1 << BH_Delay))
2077                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2078         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2079                                &new, get_blocks_flags);
2080         if (blks < 0) {
2081                 err = blks;
2082                 /*
2083                  * If get block returns with error we simply
2084                  * return. Later writepage will redirty the page and
2085                  * writepages will find the dirty page again
2086                  */
2087                 if (err == -EAGAIN)
2088                         return 0;
2089
2090                 if (err == -ENOSPC &&
2091                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2092                         mpd->retval = err;
2093                         return 0;
2094                 }
2095
2096                 /*
2097                  * get block failure will cause us to loop in
2098                  * writepages, because a_ops->writepage won't be able
2099                  * to make progress. The page will be redirtied by
2100                  * writepage and writepages will again try to write
2101                  * the same.
2102                  */
2103                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2104                                   "at logical offset %llu with max blocks "
2105                                   "%zd with error %d\n",
2106                                   __func__, mpd->inode->i_ino,
2107                                   (unsigned long long)next,
2108                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2109                 printk(KERN_EMERG "This should not happen.!! "
2110                                         "Data will be lost\n");
2111                 if (err == -ENOSPC) {
2112                         ext4_print_free_blocks(mpd->inode);
2113                 }
2114                 /* invalidate all the pages */
2115                 ext4_da_block_invalidatepages(mpd, next,
2116                                 mpd->b_size >> mpd->inode->i_blkbits);
2117                 return err;
2118         }
2119         BUG_ON(blks == 0);
2120
2121         new.b_size = (blks << mpd->inode->i_blkbits);
2122
2123         if (buffer_new(&new))
2124                 __unmap_underlying_blocks(mpd->inode, &new);
2125
2126         /*
2127          * If blocks are delayed marked, we need to
2128          * put actual blocknr and drop delayed bit
2129          */
2130         if ((mpd->b_state & (1 << BH_Delay)) ||
2131             (mpd->b_state & (1 << BH_Unwritten)))
2132                 mpage_put_bnr_to_bhs(mpd, next, &new);
2133
2134         if (ext4_should_order_data(mpd->inode)) {
2135                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2136                 if (err)
2137                         return err;
2138         }
2139
2140         /*
2141          * Update on-disk size along with block allocation.
2142          */
2143         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2144         if (disksize > i_size_read(mpd->inode))
2145                 disksize = i_size_read(mpd->inode);
2146         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2147                 ext4_update_i_disksize(mpd->inode, disksize);
2148                 return ext4_mark_inode_dirty(handle, mpd->inode);
2149         }
2150
2151         return 0;
2152 }
2153
2154 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2155                 (1 << BH_Delay) | (1 << BH_Unwritten))
2156
2157 /*
2158  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2159  *
2160  * @mpd->lbh - extent of blocks
2161  * @logical - logical number of the block in the file
2162  * @bh - bh of the block (used to access block's state)
2163  *
2164  * the function is used to collect contig. blocks in same state
2165  */
2166 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2167                                    sector_t logical, size_t b_size,
2168                                    unsigned long b_state)
2169 {
2170         sector_t next;
2171         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2172
2173         /* check if thereserved journal credits might overflow */
2174         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2175                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2176                         /*
2177                          * With non-extent format we are limited by the journal
2178                          * credit available.  Total credit needed to insert
2179                          * nrblocks contiguous blocks is dependent on the
2180                          * nrblocks.  So limit nrblocks.
2181                          */
2182                         goto flush_it;
2183                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2184                                 EXT4_MAX_TRANS_DATA) {
2185                         /*
2186                          * Adding the new buffer_head would make it cross the
2187                          * allowed limit for which we have journal credit
2188                          * reserved. So limit the new bh->b_size
2189                          */
2190                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2191                                                 mpd->inode->i_blkbits;
2192                         /* we will do mpage_da_submit_io in the next loop */
2193                 }
2194         }
2195         /*
2196          * First block in the extent
2197          */
2198         if (mpd->b_size == 0) {
2199                 mpd->b_blocknr = logical;
2200                 mpd->b_size = b_size;
2201                 mpd->b_state = b_state & BH_FLAGS;
2202                 return;
2203         }
2204
2205         next = mpd->b_blocknr + nrblocks;
2206         /*
2207          * Can we merge the block to our big extent?
2208          */
2209         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2210                 mpd->b_size += b_size;
2211                 return;
2212         }
2213
2214 flush_it:
2215         /*
2216          * We couldn't merge the block to our extent, so we
2217          * need to flush current  extent and start new one
2218          */
2219         if (mpage_da_map_blocks(mpd) == 0)
2220                 mpage_da_submit_io(mpd);
2221         mpd->io_done = 1;
2222         return;
2223 }
2224
2225 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2226 {
2227         /*
2228          * unmapped buffer is possible for holes.
2229          * delay buffer is possible with delayed allocation.
2230          * We also need to consider unwritten buffer as unmapped.
2231          */
2232         return (!buffer_mapped(bh) || buffer_delay(bh) ||
2233                                 buffer_unwritten(bh)) && buffer_dirty(bh);
2234 }
2235
2236 /*
2237  * __mpage_da_writepage - finds extent of pages and blocks
2238  *
2239  * @page: page to consider
2240  * @wbc: not used, we just follow rules
2241  * @data: context
2242  *
2243  * The function finds extents of pages and scan them for all blocks.
2244  */
2245 static int __mpage_da_writepage(struct page *page,
2246                                 struct writeback_control *wbc, void *data)
2247 {
2248         struct mpage_da_data *mpd = data;
2249         struct inode *inode = mpd->inode;
2250         struct buffer_head *bh, *head;
2251         sector_t logical;
2252
2253         if (mpd->io_done) {
2254                 /*
2255                  * Rest of the page in the page_vec
2256                  * redirty then and skip then. We will
2257                  * try to to write them again after
2258                  * starting a new transaction
2259                  */
2260                 redirty_page_for_writepage(wbc, page);
2261                 unlock_page(page);
2262                 return MPAGE_DA_EXTENT_TAIL;
2263         }
2264         /*
2265          * Can we merge this page to current extent?
2266          */
2267         if (mpd->next_page != page->index) {
2268                 /*
2269                  * Nope, we can't. So, we map non-allocated blocks
2270                  * and start IO on them using writepage()
2271                  */
2272                 if (mpd->next_page != mpd->first_page) {
2273                         if (mpage_da_map_blocks(mpd) == 0)
2274                                 mpage_da_submit_io(mpd);
2275                         /*
2276                          * skip rest of the page in the page_vec
2277                          */
2278                         mpd->io_done = 1;
2279                         redirty_page_for_writepage(wbc, page);
2280                         unlock_page(page);
2281                         return MPAGE_DA_EXTENT_TAIL;
2282                 }
2283
2284                 /*
2285                  * Start next extent of pages ...
2286                  */
2287                 mpd->first_page = page->index;
2288
2289                 /*
2290                  * ... and blocks
2291                  */
2292                 mpd->b_size = 0;
2293                 mpd->b_state = 0;
2294                 mpd->b_blocknr = 0;
2295         }
2296
2297         mpd->next_page = page->index + 1;
2298         logical = (sector_t) page->index <<
2299                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2300
2301         if (!page_has_buffers(page)) {
2302                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2303                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2304                 if (mpd->io_done)
2305                         return MPAGE_DA_EXTENT_TAIL;
2306         } else {
2307                 /*
2308                  * Page with regular buffer heads, just add all dirty ones
2309                  */
2310                 head = page_buffers(page);
2311                 bh = head;
2312                 do {
2313                         BUG_ON(buffer_locked(bh));
2314                         /*
2315                          * We need to try to allocate
2316                          * unmapped blocks in the same page.
2317                          * Otherwise we won't make progress
2318                          * with the page in ext4_da_writepage
2319                          */
2320                         if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2321                                 mpage_add_bh_to_extent(mpd, logical,
2322                                                        bh->b_size,
2323                                                        bh->b_state);
2324                                 if (mpd->io_done)
2325                                         return MPAGE_DA_EXTENT_TAIL;
2326                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2327                                 /*
2328                                  * mapped dirty buffer. We need to update
2329                                  * the b_state because we look at
2330                                  * b_state in mpage_da_map_blocks. We don't
2331                                  * update b_size because if we find an
2332                                  * unmapped buffer_head later we need to
2333                                  * use the b_state flag of that buffer_head.
2334                                  */
2335                                 if (mpd->b_size == 0)
2336                                         mpd->b_state = bh->b_state & BH_FLAGS;
2337                         }
2338                         logical++;
2339                 } while ((bh = bh->b_this_page) != head);
2340         }
2341
2342         return 0;
2343 }
2344
2345 /*
2346  * This is a special get_blocks_t callback which is used by
2347  * ext4_da_write_begin().  It will either return mapped block or
2348  * reserve space for a single block.
2349  *
2350  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2351  * We also have b_blocknr = -1 and b_bdev initialized properly
2352  *
2353  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2354  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2355  * initialized properly.
2356  */
2357 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2358                                   struct buffer_head *bh_result, int create)
2359 {
2360         int ret = 0;
2361         sector_t invalid_block = ~((sector_t) 0xffff);
2362
2363         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2364                 invalid_block = ~0;
2365
2366         BUG_ON(create == 0);
2367         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2368
2369         /*
2370          * first, we need to know whether the block is allocated already
2371          * preallocated blocks are unmapped but should treated
2372          * the same as allocated blocks.
2373          */
2374         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2375         if ((ret == 0) && !buffer_delay(bh_result)) {
2376                 /* the block isn't (pre)allocated yet, let's reserve space */
2377                 /*
2378                  * XXX: __block_prepare_write() unmaps passed block,
2379                  * is it OK?
2380                  */
2381                 ret = ext4_da_reserve_space(inode, 1);
2382                 if (ret)
2383                         /* not enough space to reserve */
2384                         return ret;
2385
2386                 map_bh(bh_result, inode->i_sb, invalid_block);
2387                 set_buffer_new(bh_result);
2388                 set_buffer_delay(bh_result);
2389         } else if (ret > 0) {
2390                 bh_result->b_size = (ret << inode->i_blkbits);
2391                 if (buffer_unwritten(bh_result)) {
2392                         /* A delayed write to unwritten bh should
2393                          * be marked new and mapped.  Mapped ensures
2394                          * that we don't do get_block multiple times
2395                          * when we write to the same offset and new
2396                          * ensures that we do proper zero out for
2397                          * partial write.
2398                          */
2399                         set_buffer_new(bh_result);
2400                         set_buffer_mapped(bh_result);
2401                 }
2402                 ret = 0;
2403         }
2404
2405         return ret;
2406 }
2407
2408 /*
2409  * This function is used as a standard get_block_t calback function
2410  * when there is no desire to allocate any blocks.  It is used as a
2411  * callback function for block_prepare_write(), nobh_writepage(), and
2412  * block_write_full_page().  These functions should only try to map a
2413  * single block at a time.
2414  *
2415  * Since this function doesn't do block allocations even if the caller
2416  * requests it by passing in create=1, it is critically important that
2417  * any caller checks to make sure that any buffer heads are returned
2418  * by this function are either all already mapped or marked for
2419  * delayed allocation before calling nobh_writepage() or
2420  * block_write_full_page().  Otherwise, b_blocknr could be left
2421  * unitialized, and the page write functions will be taken by
2422  * surprise.
2423  */
2424 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2425                                    struct buffer_head *bh_result, int create)
2426 {
2427         int ret = 0;
2428         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2429
2430         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2431
2432         /*
2433          * we don't want to do block allocation in writepage
2434          * so call get_block_wrap with create = 0
2435          */
2436         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2437         BUG_ON(create && ret == 0);
2438         if (ret > 0) {
2439                 bh_result->b_size = (ret << inode->i_blkbits);
2440                 ret = 0;
2441         }
2442         return ret;
2443 }
2444
2445 /*
2446  * This function can get called via...
2447  *   - ext4_da_writepages after taking page lock (have journal handle)
2448  *   - journal_submit_inode_data_buffers (no journal handle)
2449  *   - shrink_page_list via pdflush (no journal handle)
2450  *   - grab_page_cache when doing write_begin (have journal handle)
2451  */
2452 static int ext4_da_writepage(struct page *page,
2453                                 struct writeback_control *wbc)
2454 {
2455         int ret = 0;
2456         loff_t size;
2457         unsigned int len;
2458         struct buffer_head *page_bufs;
2459         struct inode *inode = page->mapping->host;
2460
2461         trace_mark(ext4_da_writepage,
2462                    "dev %s ino %lu page_index %lu",
2463                    inode->i_sb->s_id, inode->i_ino, page->index);
2464         size = i_size_read(inode);
2465         if (page->index == size >> PAGE_CACHE_SHIFT)
2466                 len = size & ~PAGE_CACHE_MASK;
2467         else
2468                 len = PAGE_CACHE_SIZE;
2469
2470         if (page_has_buffers(page)) {
2471                 page_bufs = page_buffers(page);
2472                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2473                                         ext4_bh_unmapped_or_delay)) {
2474                         /*
2475                          * We don't want to do  block allocation
2476                          * So redirty the page and return
2477                          * We may reach here when we do a journal commit
2478                          * via journal_submit_inode_data_buffers.
2479                          * If we don't have mapping block we just ignore
2480                          * them. We can also reach here via shrink_page_list
2481                          */
2482                         redirty_page_for_writepage(wbc, page);
2483                         unlock_page(page);
2484                         return 0;
2485                 }
2486         } else {
2487                 /*
2488                  * The test for page_has_buffers() is subtle:
2489                  * We know the page is dirty but it lost buffers. That means
2490                  * that at some moment in time after write_begin()/write_end()
2491                  * has been called all buffers have been clean and thus they
2492                  * must have been written at least once. So they are all
2493                  * mapped and we can happily proceed with mapping them
2494                  * and writing the page.
2495                  *
2496                  * Try to initialize the buffer_heads and check whether
2497                  * all are mapped and non delay. We don't want to
2498                  * do block allocation here.
2499                  */
2500                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2501                                           noalloc_get_block_write);
2502                 if (!ret) {
2503                         page_bufs = page_buffers(page);
2504                         /* check whether all are mapped and non delay */
2505                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2506                                                 ext4_bh_unmapped_or_delay)) {
2507                                 redirty_page_for_writepage(wbc, page);
2508                                 unlock_page(page);
2509                                 return 0;
2510                         }
2511                 } else {
2512                         /*
2513                          * We can't do block allocation here
2514                          * so just redity the page and unlock
2515                          * and return
2516                          */
2517                         redirty_page_for_writepage(wbc, page);
2518                         unlock_page(page);
2519                         return 0;
2520                 }
2521                 /* now mark the buffer_heads as dirty and uptodate */
2522                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2523         }
2524
2525         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2526                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2527         else
2528                 ret = block_write_full_page(page, noalloc_get_block_write,
2529                                             wbc);
2530
2531         return ret;
2532 }
2533
2534 /*
2535  * This is called via ext4_da_writepages() to
2536  * calulate the total number of credits to reserve to fit
2537  * a single extent allocation into a single transaction,
2538  * ext4_da_writpeages() will loop calling this before
2539  * the block allocation.
2540  */
2541
2542 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2543 {
2544         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2545
2546         /*
2547          * With non-extent format the journal credit needed to
2548          * insert nrblocks contiguous block is dependent on
2549          * number of contiguous block. So we will limit
2550          * number of contiguous block to a sane value
2551          */
2552         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2553             (max_blocks > EXT4_MAX_TRANS_DATA))
2554                 max_blocks = EXT4_MAX_TRANS_DATA;
2555
2556         return ext4_chunk_trans_blocks(inode, max_blocks);
2557 }
2558
2559 static int ext4_da_writepages(struct address_space *mapping,
2560                               struct writeback_control *wbc)
2561 {
2562         pgoff_t index;
2563         int range_whole = 0;
2564         handle_t *handle = NULL;
2565         struct mpage_da_data mpd;
2566         struct inode *inode = mapping->host;
2567         int no_nrwrite_index_update;
2568         int pages_written = 0;
2569         long pages_skipped;
2570         int range_cyclic, cycled = 1, io_done = 0;
2571         int needed_blocks, ret = 0, nr_to_writebump = 0;
2572         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2573
2574         trace_mark(ext4_da_writepages,
2575                    "dev %s ino %lu nr_t_write %ld "
2576                    "pages_skipped %ld range_start %llu "
2577                    "range_end %llu nonblocking %d "
2578                    "for_kupdate %d for_reclaim %d "
2579                    "for_writepages %d range_cyclic %d",
2580                    inode->i_sb->s_id, inode->i_ino,
2581                    wbc->nr_to_write, wbc->pages_skipped,
2582                    (unsigned long long) wbc->range_start,
2583                    (unsigned long long) wbc->range_end,
2584                    wbc->nonblocking, wbc->for_kupdate,
2585                    wbc->for_reclaim, wbc->for_writepages,
2586                    wbc->range_cyclic);
2587
2588         /*
2589          * No pages to write? This is mainly a kludge to avoid starting
2590          * a transaction for special inodes like journal inode on last iput()
2591          * because that could violate lock ordering on umount
2592          */
2593         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2594                 return 0;
2595
2596         /*
2597          * If the filesystem has aborted, it is read-only, so return
2598          * right away instead of dumping stack traces later on that
2599          * will obscure the real source of the problem.  We test
2600          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2601          * the latter could be true if the filesystem is mounted
2602          * read-only, and in that case, ext4_da_writepages should
2603          * *never* be called, so if that ever happens, we would want
2604          * the stack trace.
2605          */
2606         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2607                 return -EROFS;
2608
2609         /*
2610          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2611          * This make sure small files blocks are allocated in
2612          * single attempt. This ensure that small files
2613          * get less fragmented.
2614          */
2615         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2616                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2617                 wbc->nr_to_write = sbi->s_mb_stream_request;
2618         }
2619         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2620                 range_whole = 1;
2621
2622         range_cyclic = wbc->range_cyclic;
2623         if (wbc->range_cyclic) {
2624                 index = mapping->writeback_index;
2625                 if (index)
2626                         cycled = 0;
2627                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2628                 wbc->range_end  = LLONG_MAX;
2629                 wbc->range_cyclic = 0;
2630         } else
2631                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2632
2633         mpd.wbc = wbc;
2634         mpd.inode = mapping->host;
2635
2636         /*
2637          * we don't want write_cache_pages to update
2638          * nr_to_write and writeback_index
2639          */
2640         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2641         wbc->no_nrwrite_index_update = 1;
2642         pages_skipped = wbc->pages_skipped;
2643
2644 retry:
2645         while (!ret && wbc->nr_to_write > 0) {
2646
2647                 /*
2648                  * we  insert one extent at a time. So we need
2649                  * credit needed for single extent allocation.
2650                  * journalled mode is currently not supported
2651                  * by delalloc
2652                  */
2653                 BUG_ON(ext4_should_journal_data(inode));
2654                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2655
2656                 /* start a new transaction*/
2657                 handle = ext4_journal_start(inode, needed_blocks);
2658                 if (IS_ERR(handle)) {
2659                         ret = PTR_ERR(handle);
2660                         printk(KERN_CRIT "%s: jbd2_start: "
2661                                "%ld pages, ino %lu; err %d\n", __func__,
2662                                 wbc->nr_to_write, inode->i_ino, ret);
2663                         dump_stack();
2664                         goto out_writepages;
2665                 }
2666
2667                 /*
2668                  * Now call __mpage_da_writepage to find the next
2669                  * contiguous region of logical blocks that need
2670                  * blocks to be allocated by ext4.  We don't actually
2671                  * submit the blocks for I/O here, even though
2672                  * write_cache_pages thinks it will, and will set the
2673                  * pages as clean for write before calling
2674                  * __mpage_da_writepage().
2675                  */
2676                 mpd.b_size = 0;
2677                 mpd.b_state = 0;
2678                 mpd.b_blocknr = 0;
2679                 mpd.first_page = 0;
2680                 mpd.next_page = 0;
2681                 mpd.io_done = 0;
2682                 mpd.pages_written = 0;
2683                 mpd.retval = 0;
2684                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2685                                         &mpd);
2686                 /*
2687                  * If we have a contigous extent of pages and we
2688                  * haven't done the I/O yet, map the blocks and submit
2689                  * them for I/O.
2690                  */
2691                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2692                         if (mpage_da_map_blocks(&mpd) == 0)
2693                                 mpage_da_submit_io(&mpd);
2694                         mpd.io_done = 1;
2695                         ret = MPAGE_DA_EXTENT_TAIL;
2696                 }
2697                 wbc->nr_to_write -= mpd.pages_written;
2698
2699                 ext4_journal_stop(handle);
2700
2701                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2702                         /* commit the transaction which would
2703                          * free blocks released in the transaction
2704                          * and try again
2705                          */
2706                         jbd2_journal_force_commit_nested(sbi->s_journal);
2707                         wbc->pages_skipped = pages_skipped;
2708                         ret = 0;
2709                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2710                         /*
2711                          * got one extent now try with
2712                          * rest of the pages
2713                          */
2714                         pages_written += mpd.pages_written;
2715                         wbc->pages_skipped = pages_skipped;
2716                         ret = 0;
2717                         io_done = 1;
2718                 } else if (wbc->nr_to_write)
2719                         /*
2720                          * There is no more writeout needed
2721                          * or we requested for a noblocking writeout
2722                          * and we found the device congested
2723                          */
2724                         break;
2725         }
2726         if (!io_done && !cycled) {
2727                 cycled = 1;
2728                 index = 0;
2729                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2730                 wbc->range_end  = mapping->writeback_index - 1;
2731                 goto retry;
2732         }
2733         if (pages_skipped != wbc->pages_skipped)
2734                 printk(KERN_EMERG "This should not happen leaving %s "
2735                                 "with nr_to_write = %ld ret = %d\n",
2736                                 __func__, wbc->nr_to_write, ret);
2737
2738         /* Update index */
2739         index += pages_written;
2740         wbc->range_cyclic = range_cyclic;
2741         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2742                 /*
2743                  * set the writeback_index so that range_cyclic
2744                  * mode will write it back later
2745                  */
2746                 mapping->writeback_index = index;
2747
2748 out_writepages:
2749         if (!no_nrwrite_index_update)
2750                 wbc->no_nrwrite_index_update = 0;
2751         wbc->nr_to_write -= nr_to_writebump;
2752         trace_mark(ext4_da_writepage_result,
2753                    "dev %s ino %lu ret %d pages_written %d "
2754                    "pages_skipped %ld congestion %d "
2755                    "more_io %d no_nrwrite_index_update %d",
2756                    inode->i_sb->s_id, inode->i_ino, ret,
2757                    pages_written, wbc->pages_skipped,
2758                    wbc->encountered_congestion, wbc->more_io,
2759                    wbc->no_nrwrite_index_update);
2760         return ret;
2761 }
2762
2763 #define FALL_BACK_TO_NONDELALLOC 1
2764 static int ext4_nonda_switch(struct super_block *sb)
2765 {
2766         s64 free_blocks, dirty_blocks;
2767         struct ext4_sb_info *sbi = EXT4_SB(sb);
2768
2769         /*
2770          * switch to non delalloc mode if we are running low
2771          * on free block. The free block accounting via percpu
2772          * counters can get slightly wrong with percpu_counter_batch getting
2773          * accumulated on each CPU without updating global counters
2774          * Delalloc need an accurate free block accounting. So switch
2775          * to non delalloc when we are near to error range.
2776          */
2777         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2778         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2779         if (2 * free_blocks < 3 * dirty_blocks ||
2780                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2781                 /*
2782                  * free block count is less that 150% of dirty blocks
2783                  * or free blocks is less that watermark
2784                  */
2785                 return 1;
2786         }
2787         return 0;
2788 }
2789
2790 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2791                                 loff_t pos, unsigned len, unsigned flags,
2792                                 struct page **pagep, void **fsdata)
2793 {
2794         int ret, retries = 0;
2795         struct page *page;
2796         pgoff_t index;
2797         unsigned from, to;
2798         struct inode *inode = mapping->host;
2799         handle_t *handle;
2800
2801         index = pos >> PAGE_CACHE_SHIFT;
2802         from = pos & (PAGE_CACHE_SIZE - 1);
2803         to = from + len;
2804
2805         if (ext4_nonda_switch(inode->i_sb)) {
2806                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2807                 return ext4_write_begin(file, mapping, pos,
2808                                         len, flags, pagep, fsdata);
2809         }
2810         *fsdata = (void *)0;
2811
2812         trace_mark(ext4_da_write_begin,
2813                    "dev %s ino %lu pos %llu len %u flags %u",
2814                    inode->i_sb->s_id, inode->i_ino,
2815                    (unsigned long long) pos, len, flags);
2816 retry:
2817         /*
2818          * With delayed allocation, we don't log the i_disksize update
2819          * if there is delayed block allocation. But we still need
2820          * to journalling the i_disksize update if writes to the end
2821          * of file which has an already mapped buffer.
2822          */
2823         handle = ext4_journal_start(inode, 1);
2824         if (IS_ERR(handle)) {
2825                 ret = PTR_ERR(handle);
2826                 goto out;
2827         }
2828         /* We cannot recurse into the filesystem as the transaction is already
2829          * started */
2830         flags |= AOP_FLAG_NOFS;
2831
2832         page = grab_cache_page_write_begin(mapping, index, flags);
2833         if (!page) {
2834                 ext4_journal_stop(handle);
2835                 ret = -ENOMEM;
2836                 goto out;
2837         }
2838         *pagep = page;
2839
2840         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2841                                 ext4_da_get_block_prep);
2842         if (ret < 0) {
2843                 unlock_page(page);
2844                 ext4_journal_stop(handle);
2845                 page_cache_release(page);
2846                 /*
2847                  * block_write_begin may have instantiated a few blocks
2848                  * outside i_size.  Trim these off again. Don't need
2849                  * i_size_read because we hold i_mutex.
2850                  */
2851                 if (pos + len > inode->i_size)
2852                         vmtruncate(inode, inode->i_size);
2853         }
2854
2855         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2856                 goto retry;
2857 out:
2858         return ret;
2859 }
2860
2861 /*
2862  * Check if we should update i_disksize
2863  * when write to the end of file but not require block allocation
2864  */
2865 static int ext4_da_should_update_i_disksize(struct page *page,
2866                                          unsigned long offset)
2867 {
2868         struct buffer_head *bh;
2869         struct inode *inode = page->mapping->host;
2870         unsigned int idx;
2871         int i;
2872
2873         bh = page_buffers(page);
2874         idx = offset >> inode->i_blkbits;
2875
2876         for (i = 0; i < idx; i++)
2877                 bh = bh->b_this_page;
2878
2879         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2880                 return 0;
2881         return 1;
2882 }
2883
2884 static int ext4_da_write_end(struct file *file,
2885                                 struct address_space *mapping,
2886                                 loff_t pos, unsigned len, unsigned copied,
2887                                 struct page *page, void *fsdata)
2888 {
2889         struct inode *inode = mapping->host;
2890         int ret = 0, ret2;
2891         handle_t *handle = ext4_journal_current_handle();
2892         loff_t new_i_size;
2893         unsigned long start, end;
2894         int write_mode = (int)(unsigned long)fsdata;
2895
2896         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2897                 if (ext4_should_order_data(inode)) {
2898                         return ext4_ordered_write_end(file, mapping, pos,
2899                                         len, copied, page, fsdata);
2900                 } else if (ext4_should_writeback_data(inode)) {
2901                         return ext4_writeback_write_end(file, mapping, pos,
2902                                         len, copied, page, fsdata);
2903                 } else {
2904                         BUG();
2905                 }
2906         }
2907
2908         trace_mark(ext4_da_write_end,
2909                    "dev %s ino %lu pos %llu len %u copied %u",
2910                    inode->i_sb->s_id, inode->i_ino,
2911                    (unsigned long long) pos, len, copied);
2912         start = pos & (PAGE_CACHE_SIZE - 1);
2913         end = start + copied - 1;
2914
2915         /*
2916          * generic_write_end() will run mark_inode_dirty() if i_size
2917          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2918          * into that.
2919          */
2920
2921         new_i_size = pos + copied;
2922         if (new_i_size > EXT4_I(inode)->i_disksize) {
2923                 if (ext4_da_should_update_i_disksize(page, end)) {
2924                         down_write(&EXT4_I(inode)->i_data_sem);
2925                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2926                                 /*
2927                                  * Updating i_disksize when extending file
2928                                  * without needing block allocation
2929                                  */
2930                                 if (ext4_should_order_data(inode))
2931                                         ret = ext4_jbd2_file_inode(handle,
2932                                                                    inode);
2933
2934                                 EXT4_I(inode)->i_disksize = new_i_size;
2935                         }
2936                         up_write(&EXT4_I(inode)->i_data_sem);
2937                         /* We need to mark inode dirty even if
2938                          * new_i_size is less that inode->i_size
2939                          * bu greater than i_disksize.(hint delalloc)
2940                          */
2941                         ext4_mark_inode_dirty(handle, inode);
2942                 }
2943         }
2944         ret2 = generic_write_end(file, mapping, pos, len, copied,
2945                                                         page, fsdata);
2946         copied = ret2;
2947         if (ret2 < 0)
2948                 ret = ret2;
2949         ret2 = ext4_journal_stop(handle);
2950         if (!ret)
2951                 ret = ret2;
2952
2953         return ret ? ret : copied;
2954 }
2955
2956 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2957 {
2958         /*
2959          * Drop reserved blocks
2960          */
2961         BUG_ON(!PageLocked(page));
2962         if (!page_has_buffers(page))
2963                 goto out;
2964
2965         ext4_da_page_release_reservation(page, offset);
2966
2967 out:
2968         ext4_invalidatepage(page, offset);
2969
2970         return;
2971 }
2972
2973 /*
2974  * Force all delayed allocation blocks to be allocated for a given inode.
2975  */
2976 int ext4_alloc_da_blocks(struct inode *inode)
2977 {
2978         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2979             !EXT4_I(inode)->i_reserved_meta_blocks)
2980                 return 0;
2981
2982         /*
2983          * We do something simple for now.  The filemap_flush() will
2984          * also start triggering a write of the data blocks, which is
2985          * not strictly speaking necessary (and for users of
2986          * laptop_mode, not even desirable).  However, to do otherwise
2987          * would require replicating code paths in:
2988          * 
2989          * ext4_da_writepages() ->
2990          *    write_cache_pages() ---> (via passed in callback function)
2991          *        __mpage_da_writepage() -->
2992          *           mpage_add_bh_to_extent()
2993          *           mpage_da_map_blocks()
2994          *
2995          * The problem is that write_cache_pages(), located in
2996          * mm/page-writeback.c, marks pages clean in preparation for
2997          * doing I/O, which is not desirable if we're not planning on
2998          * doing I/O at all.
2999          *
3000          * We could call write_cache_pages(), and then redirty all of
3001          * the pages by calling redirty_page_for_writeback() but that
3002          * would be ugly in the extreme.  So instead we would need to
3003          * replicate parts of the code in the above functions,
3004          * simplifying them becuase we wouldn't actually intend to
3005          * write out the pages, but rather only collect contiguous
3006          * logical block extents, call the multi-block allocator, and
3007          * then update the buffer heads with the block allocations.
3008          * 
3009          * For now, though, we'll cheat by calling filemap_flush(),
3010          * which will map the blocks, and start the I/O, but not
3011          * actually wait for the I/O to complete.
3012          */
3013         return filemap_flush(inode->i_mapping);
3014 }
3015
3016 /*
3017  * bmap() is special.  It gets used by applications such as lilo and by
3018  * the swapper to find the on-disk block of a specific piece of data.
3019  *
3020  * Naturally, this is dangerous if the block concerned is still in the
3021  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3022  * filesystem and enables swap, then they may get a nasty shock when the
3023  * data getting swapped to that swapfile suddenly gets overwritten by
3024  * the original zero's written out previously to the journal and
3025  * awaiting writeback in the kernel's buffer cache.
3026  *
3027  * So, if we see any bmap calls here on a modified, data-journaled file,
3028  * take extra steps to flush any blocks which might be in the cache.
3029  */
3030 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3031 {
3032         struct inode *inode = mapping->host;
3033         journal_t *journal;
3034         int err;
3035
3036         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3037                         test_opt(inode->i_sb, DELALLOC)) {
3038                 /*
3039                  * With delalloc we want to sync the file
3040                  * so that we can make sure we allocate
3041                  * blocks for file
3042                  */
3043                 filemap_write_and_wait(mapping);
3044         }
3045
3046         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3047                 /*
3048                  * This is a REALLY heavyweight approach, but the use of
3049                  * bmap on dirty files is expected to be extremely rare:
3050                  * only if we run lilo or swapon on a freshly made file
3051                  * do we expect this to happen.
3052                  *
3053                  * (bmap requires CAP_SYS_RAWIO so this does not
3054                  * represent an unprivileged user DOS attack --- we'd be
3055                  * in trouble if mortal users could trigger this path at
3056                  * will.)
3057                  *
3058                  * NB. EXT4_STATE_JDATA is not set on files other than
3059                  * regular files.  If somebody wants to bmap a directory
3060                  * or symlink and gets confused because the buffer
3061                  * hasn't yet been flushed to disk, they deserve
3062                  * everything they get.
3063                  */
3064
3065                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3066                 journal = EXT4_JOURNAL(inode);
3067                 jbd2_journal_lock_updates(journal);
3068                 err = jbd2_journal_flush(journal);
3069                 jbd2_journal_unlock_updates(journal);
3070
3071                 if (err)
3072                         return 0;
3073         }
3074
3075         return generic_block_bmap(mapping, block, ext4_get_block);
3076 }
3077
3078 static int bget_one(handle_t *handle, struct buffer_head *bh)
3079 {
3080         get_bh(bh);
3081         return 0;
3082 }
3083
3084 static int bput_one(handle_t *handle, struct buffer_head *bh)
3085 {
3086         put_bh(bh);
3087         return 0;
3088 }
3089
3090 /*
3091  * Note that we don't need to start a transaction unless we're journaling data
3092  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3093  * need to file the inode to the transaction's list in ordered mode because if
3094  * we are writing back data added by write(), the inode is already there and if
3095  * we are writing back data modified via mmap(), noone guarantees in which
3096  * transaction the data will hit the disk. In case we are journaling data, we
3097  * cannot start transaction directly because transaction start ranks above page
3098  * lock so we have to do some magic.
3099  *
3100  * In all journaling modes block_write_full_page() will start the I/O.
3101  *
3102  * Problem:
3103  *
3104  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3105  *              ext4_writepage()
3106  *
3107  * Similar for:
3108  *
3109  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3110  *
3111  * Same applies to ext4_get_block().  We will deadlock on various things like
3112  * lock_journal and i_data_sem
3113  *
3114  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3115  * allocations fail.
3116  *
3117  * 16May01: If we're reentered then journal_current_handle() will be
3118  *          non-zero. We simply *return*.
3119  *
3120  * 1 July 2001: @@@ FIXME:
3121  *   In journalled data mode, a data buffer may be metadata against the
3122  *   current transaction.  But the same file is part of a shared mapping
3123  *   and someone does a writepage() on it.
3124  *
3125  *   We will move the buffer onto the async_data list, but *after* it has
3126  *   been dirtied. So there's a small window where we have dirty data on
3127  *   BJ_Metadata.
3128  *
3129  *   Note that this only applies to the last partial page in the file.  The
3130  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3131  *   broken code anyway: it's wrong for msync()).
3132  *
3133  *   It's a rare case: affects the final partial page, for journalled data
3134  *   where the file is subject to bith write() and writepage() in the same
3135  *   transction.  To fix it we'll need a custom block_write_full_page().
3136  *   We'll probably need that anyway for journalling writepage() output.
3137  *
3138  * We don't honour synchronous mounts for writepage().  That would be
3139  * disastrous.  Any write() or metadata operation will sync the fs for
3140  * us.
3141  *
3142  */
3143 static int __ext4_normal_writepage(struct page *page,
3144                                 struct writeback_control *wbc)
3145 {
3146         struct inode *inode = page->mapping->host;
3147
3148         if (test_opt(inode->i_sb, NOBH))
3149                 return nobh_writepage(page, noalloc_get_block_write, wbc);
3150         else
3151                 return block_write_full_page(page, noalloc_get_block_write,
3152                                              wbc);
3153 }
3154
3155 static int ext4_normal_writepage(struct page *page,
3156                                 struct writeback_control *wbc)
3157 {
3158         struct inode *inode = page->mapping->host;
3159         loff_t size = i_size_read(inode);
3160         loff_t len;
3161
3162         trace_mark(ext4_normal_writepage,
3163                    "dev %s ino %lu page_index %lu",
3164                    inode->i_sb->s_id, inode->i_ino, page->index);
3165         J_ASSERT(PageLocked(page));
3166         if (page->index == size >> PAGE_CACHE_SHIFT)
3167                 len = size & ~PAGE_CACHE_MASK;
3168         else
3169                 len = PAGE_CACHE_SIZE;
3170
3171         if (page_has_buffers(page)) {
3172                 /* if page has buffers it should all be mapped
3173                  * and allocated. If there are not buffers attached
3174                  * to the page we know the page is dirty but it lost
3175                  * buffers. That means that at some moment in time
3176                  * after write_begin() / write_end() has been called
3177                  * all buffers have been clean and thus they must have been
3178                  * written at least once. So they are all mapped and we can
3179                  * happily proceed with mapping them and writing the page.
3180                  */
3181                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3182                                         ext4_bh_unmapped_or_delay));
3183         }
3184
3185         if (!ext4_journal_current_handle())
3186                 return __ext4_normal_writepage(page, wbc);
3187
3188         redirty_page_for_writepage(wbc, page);
3189         unlock_page(page);
3190         return 0;
3191 }
3192
3193 static int __ext4_journalled_writepage(struct page *page,
3194                                 struct writeback_control *wbc)
3195 {
3196         struct address_space *mapping = page->mapping;
3197         struct inode *inode = mapping->host;
3198         struct buffer_head *page_bufs;
3199         handle_t *handle = NULL;
3200         int ret = 0;
3201         int err;
3202
3203         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3204                                   noalloc_get_block_write);
3205         if (ret != 0)
3206                 goto out_unlock;
3207
3208         page_bufs = page_buffers(page);
3209         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3210                                                                 bget_one);
3211         /* As soon as we unlock the page, it can go away, but we have
3212          * references to buffers so we are safe */
3213         unlock_page(page);
3214
3215         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3216         if (IS_ERR(handle)) {
3217                 ret = PTR_ERR(handle);
3218                 goto out;
3219         }
3220
3221         ret = walk_page_buffers(handle, page_bufs, 0,
3222                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3223
3224         err = walk_page_buffers(handle, page_bufs, 0,
3225                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3226         if (ret == 0)
3227                 ret = err;
3228         err = ext4_journal_stop(handle);
3229         if (!ret)
3230                 ret = err;
3231
3232         walk_page_buffers(handle, page_bufs, 0,
3233                                 PAGE_CACHE_SIZE, NULL, bput_one);
3234         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3235         goto out;
3236
3237 out_unlock:
3238         unlock_page(page);
3239 out:
3240         return ret;
3241 }
3242
3243 static int ext4_journalled_writepage(struct page *page,
3244                                 struct writeback_control *wbc)
3245 {
3246         struct inode *inode = page->mapping->host;
3247         loff_t size = i_size_read(inode);
3248         loff_t len;
3249
3250         trace_mark(ext4_journalled_writepage,
3251                    "dev %s ino %lu page_index %lu",
3252                    inode->i_sb->s_id, inode->i_ino, page->index);
3253         J_ASSERT(PageLocked(page));
3254         if (page->index == size >> PAGE_CACHE_SHIFT)
3255                 len = size & ~PAGE_CACHE_MASK;
3256         else
3257                 len = PAGE_CACHE_SIZE;
3258
3259         if (page_has_buffers(page)) {
3260                 /* if page has buffers it should all be mapped
3261                  * and allocated. If there are not buffers attached
3262                  * to the page we know the page is dirty but it lost
3263                  * buffers. That means that at some moment in time
3264                  * after write_begin() / write_end() has been called
3265                  * all buffers have been clean and thus they must have been
3266                  * written at least once. So they are all mapped and we can
3267                  * happily proceed with mapping them and writing the page.
3268                  */
3269                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3270                                         ext4_bh_unmapped_or_delay));
3271         }
3272
3273         if (ext4_journal_current_handle())
3274                 goto no_write;
3275
3276         if (PageChecked(page)) {
3277                 /*
3278                  * It's mmapped pagecache.  Add buffers and journal it.  There
3279                  * doesn't seem much point in redirtying the page here.
3280                  */
3281                 ClearPageChecked(page);
3282                 return __ext4_journalled_writepage(page, wbc);
3283         } else {
3284                 /*
3285                  * It may be a page full of checkpoint-mode buffers.  We don't
3286                  * really know unless we go poke around in the buffer_heads.
3287                  * But block_write_full_page will do the right thing.
3288                  */
3289                 return block_write_full_page(page, noalloc_get_block_write,
3290                                              wbc);
3291         }
3292 no_write:
3293         redirty_page_for_writepage(wbc, page);
3294         unlock_page(page);
3295         return 0;
3296 }
3297
3298 static int ext4_readpage(struct file *file, struct page *page)
3299 {
3300         return mpage_readpage(page, ext4_get_block);
3301 }
3302
3303 static int
3304 ext4_readpages(struct file *file, struct address_space *mapping,
3305                 struct list_head *pages, unsigned nr_pages)
3306 {
3307         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3308 }
3309
3310 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3311 {
3312         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3313
3314         /*
3315          * If it's a full truncate we just forget about the pending dirtying
3316          */
3317         if (offset == 0)
3318                 ClearPageChecked(page);
3319
3320         if (journal)
3321                 jbd2_journal_invalidatepage(journal, page, offset);
3322         else
3323                 block_invalidatepage(page, offset);
3324 }
3325
3326 static int ext4_releasepage(struct page *page, gfp_t wait)
3327 {
3328         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3329
3330         WARN_ON(PageChecked(page));
3331         if (!page_has_buffers(page))
3332                 return 0;
3333         if (journal)
3334                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3335         else
3336                 return try_to_free_buffers(page);
3337 }
3338
3339 /*
3340  * If the O_DIRECT write will extend the file then add this inode to the
3341  * orphan list.  So recovery will truncate it back to the original size
3342  * if the machine crashes during the write.
3343  *
3344  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3345  * crashes then stale disk data _may_ be exposed inside the file. But current
3346  * VFS code falls back into buffered path in that case so we are safe.
3347  */
3348 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3349                         const struct iovec *iov, loff_t offset,
3350                         unsigned long nr_segs)
3351 {
3352         struct file *file = iocb->ki_filp;
3353         struct inode *inode = file->f_mapping->host;
3354         struct ext4_inode_info *ei = EXT4_I(inode);
3355         handle_t *handle;
3356         ssize_t ret;
3357         int orphan = 0;
3358         size_t count = iov_length(iov, nr_segs);
3359
3360         if (rw == WRITE) {
3361                 loff_t final_size = offset + count;
3362
3363                 if (final_size > inode->i_size) {
3364                         /* Credits for sb + inode write */
3365                         handle = ext4_journal_start(inode, 2);
3366                         if (IS_ERR(handle)) {
3367                                 ret = PTR_ERR(handle);
3368                                 goto out;
3369                         }
3370                         ret = ext4_orphan_add(handle, inode);
3371                         if (ret) {
3372                                 ext4_journal_stop(handle);
3373                                 goto out;
3374                         }
3375                         orphan = 1;
3376                         ei->i_disksize = inode->i_size;
3377                         ext4_journal_stop(handle);
3378                 }
3379         }
3380
3381         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3382                                  offset, nr_segs,
3383                                  ext4_get_block, NULL);
3384
3385         if (orphan) {
3386                 int err;
3387
3388                 /* Credits for sb + inode write */
3389                 handle = ext4_journal_start(inode, 2);
3390                 if (IS_ERR(handle)) {
3391                         /* This is really bad luck. We've written the data
3392                          * but cannot extend i_size. Bail out and pretend
3393                          * the write failed... */
3394                         ret = PTR_ERR(handle);
3395                         goto out;
3396                 }
3397                 if (inode->i_nlink)
3398                         ext4_orphan_del(handle, inode);
3399                 if (ret > 0) {
3400                         loff_t end = offset + ret;
3401                         if (end > inode->i_size) {
3402                                 ei->i_disksize = end;
3403                                 i_size_write(inode, end);
3404                                 /*
3405                                  * We're going to return a positive `ret'
3406                                  * here due to non-zero-length I/O, so there's
3407                                  * no way of reporting error returns from
3408                                  * ext4_mark_inode_dirty() to userspace.  So
3409                                  * ignore it.
3410                                  */
3411                                 ext4_mark_inode_dirty(handle, inode);
3412                         }
3413                 }
3414                 err = ext4_journal_stop(handle);
3415                 if (ret == 0)
3416                         ret = err;
3417         }
3418 out:
3419         return ret;
3420 }
3421
3422 /*
3423  * Pages can be marked dirty completely asynchronously from ext4's journalling
3424  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3425  * much here because ->set_page_dirty is called under VFS locks.  The page is
3426  * not necessarily locked.
3427  *
3428  * We cannot just dirty the page and leave attached buffers clean, because the
3429  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3430  * or jbddirty because all the journalling code will explode.
3431  *
3432  * So what we do is to mark the page "pending dirty" and next time writepage
3433  * is called, propagate that into the buffers appropriately.
3434  */
3435 static int ext4_journalled_set_page_dirty(struct page *page)
3436 {
3437         SetPageChecked(page);
3438         return __set_page_dirty_nobuffers(page);
3439 }
3440
3441 static const struct address_space_operations ext4_ordered_aops = {
3442         .readpage               = ext4_readpage,
3443         .readpages              = ext4_readpages,
3444         .writepage              = ext4_normal_writepage,
3445         .sync_page              = block_sync_page,
3446         .write_begin            = ext4_write_begin,
3447         .write_end              = ext4_ordered_write_end,
3448         .bmap                   = ext4_bmap,
3449         .invalidatepage         = ext4_invalidatepage,
3450         .releasepage            = ext4_releasepage,
3451         .direct_IO              = ext4_direct_IO,
3452         .migratepage            = buffer_migrate_page,
3453         .is_partially_uptodate  = block_is_partially_uptodate,
3454 };
3455
3456 static const struct address_space_operations ext4_writeback_aops = {
3457         .readpage               = ext4_readpage,
3458         .readpages              = ext4_readpages,
3459         .writepage              = ext4_normal_writepage,
3460         .sync_page              = block_sync_page,
3461         .write_begin            = ext4_write_begin,
3462         .write_end              = ext4_writeback_write_end,
3463         .bmap                   = ext4_bmap,
3464         .invalidatepage         = ext4_invalidatepage,
3465         .releasepage            = ext4_releasepage,
3466         .direct_IO              = ext4_direct_IO,
3467         .migratepage            = buffer_migrate_page,
3468         .is_partially_uptodate  = block_is_partially_uptodate,
3469 };
3470
3471 static const struct address_space_operations ext4_journalled_aops = {
3472         .readpage               = ext4_readpage,
3473         .readpages              = ext4_readpages,
3474         .writepage              = ext4_journalled_writepage,
3475         .sync_page              = block_sync_page,
3476         .write_begin            = ext4_write_begin,
3477         .write_end              = ext4_journalled_write_end,
3478         .set_page_dirty         = ext4_journalled_set_page_dirty,
3479         .bmap                   = ext4_bmap,
3480         .invalidatepage         = ext4_invalidatepage,
3481         .releasepage            = ext4_releasepage,
3482         .is_partially_uptodate  = block_is_partially_uptodate,
3483 };
3484
3485 static const struct address_space_operations ext4_da_aops = {
3486         .readpage               = ext4_readpage,
3487         .readpages              = ext4_readpages,
3488         .writepage              = ext4_da_writepage,
3489         .writepages             = ext4_da_writepages,
3490         .sync_page              = block_sync_page,
3491         .write_begin            = ext4_da_write_begin,
3492         .write_end              = ext4_da_write_end,
3493         .bmap                   = ext4_bmap,
3494         .invalidatepage         = ext4_da_invalidatepage,
3495         .releasepage            = ext4_releasepage,
3496         .direct_IO              = ext4_direct_IO,
3497         .migratepage            = buffer_migrate_page,
3498         .is_partially_uptodate  = block_is_partially_uptodate,
3499 };
3500
3501 void ext4_set_aops(struct inode *inode)
3502 {
3503         if (ext4_should_order_data(inode) &&
3504                 test_opt(inode->i_sb, DELALLOC))
3505                 inode->i_mapping->a_ops = &ext4_da_aops;
3506         else if (ext4_should_order_data(inode))
3507                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3508         else if (ext4_should_writeback_data(inode) &&
3509                  test_opt(inode->i_sb, DELALLOC))
3510                 inode->i_mapping->a_ops = &ext4_da_aops;
3511         else if (ext4_should_writeback_data(inode))
3512                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3513         else
3514                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3515 }
3516
3517 /*
3518  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3519  * up to the end of the block which corresponds to `from'.
3520  * This required during truncate. We need to physically zero the tail end
3521  * of that block so it doesn't yield old data if the file is later grown.
3522  */
3523 int ext4_block_truncate_page(handle_t *handle,
3524                 struct address_space *mapping, loff_t from)
3525 {
3526         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3527         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3528         unsigned blocksize, length, pos;
3529         ext4_lblk_t iblock;
3530         struct inode *inode = mapping->host;
3531         struct buffer_head *bh;
3532         struct page *page;
3533         int err = 0;
3534
3535         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3536         if (!page)
3537                 return -EINVAL;
3538
3539         blocksize = inode->i_sb->s_blocksize;
3540         length = blocksize - (offset & (blocksize - 1));
3541         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3542
3543         /*
3544          * For "nobh" option,  we can only work if we don't need to
3545          * read-in the page - otherwise we create buffers to do the IO.
3546          */
3547         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3548              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3549                 zero_user(page, offset, length);
3550                 set_page_dirty(page);
3551                 goto unlock;
3552         }
3553
3554         if (!page_has_buffers(page))
3555                 create_empty_buffers(page, blocksize, 0);
3556
3557         /* Find the buffer that contains "offset" */
3558         bh = page_buffers(page);
3559         pos = blocksize;
3560         while (offset >= pos) {
3561                 bh = bh->b_this_page;
3562                 iblock++;
3563                 pos += blocksize;
3564         }
3565
3566         err = 0;
3567         if (buffer_freed(bh)) {
3568                 BUFFER_TRACE(bh, "freed: skip");
3569                 goto unlock;
3570         }
3571
3572         if (!buffer_mapped(bh)) {
3573                 BUFFER_TRACE(bh, "unmapped");
3574                 ext4_get_block(inode, iblock, bh, 0);
3575                 /* unmapped? It's a hole - nothing to do */
3576                 if (!buffer_mapped(bh)) {
3577                         BUFFER_TRACE(bh, "still unmapped");
3578                         goto unlock;
3579                 }
3580         }
3581
3582         /* Ok, it's mapped. Make sure it's up-to-date */
3583         if (PageUptodate(page))
3584                 set_buffer_uptodate(bh);
3585
3586         if (!buffer_uptodate(bh)) {
3587                 err = -EIO;
3588                 ll_rw_block(READ, 1, &bh);
3589                 wait_on_buffer(bh);
3590                 /* Uhhuh. Read error. Complain and punt. */
3591                 if (!buffer_uptodate(bh))
3592                         goto unlock;
3593         }
3594
3595         if (ext4_should_journal_data(inode)) {
3596                 BUFFER_TRACE(bh, "get write access");
3597                 err = ext4_journal_get_write_access(handle, bh);
3598                 if (err)
3599                         goto unlock;
3600         }
3601
3602         zero_user(page, offset, length);
3603
3604         BUFFER_TRACE(bh, "zeroed end of block");
3605
3606         err = 0;
3607         if (ext4_should_journal_data(inode)) {
3608                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3609         } else {
3610                 if (ext4_should_order_data(inode))
3611                         err = ext4_jbd2_file_inode(handle, inode);
3612                 mark_buffer_dirty(bh);
3613         }
3614
3615 unlock:
3616         unlock_page(page);
3617         page_cache_release(page);
3618         return err;
3619 }
3620
3621 /*
3622  * Probably it should be a library function... search for first non-zero word
3623  * or memcmp with zero_page, whatever is better for particular architecture.
3624  * Linus?
3625  */
3626 static inline int all_zeroes(__le32 *p, __le32 *q)
3627 {
3628         while (p < q)
3629                 if (*p++)
3630                         return 0;
3631         return 1;
3632 }
3633
3634 /**
3635  *      ext4_find_shared - find the indirect blocks for partial truncation.
3636  *      @inode:   inode in question
3637  *      @depth:   depth of the affected branch
3638  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3639  *      @chain:   place to store the pointers to partial indirect blocks
3640  *      @top:     place to the (detached) top of branch
3641  *
3642  *      This is a helper function used by ext4_truncate().
3643  *
3644  *      When we do truncate() we may have to clean the ends of several
3645  *      indirect blocks but leave the blocks themselves alive. Block is
3646  *      partially truncated if some data below the new i_size is refered
3647  *      from it (and it is on the path to the first completely truncated
3648  *      data block, indeed).  We have to free the top of that path along
3649  *      with everything to the right of the path. Since no allocation
3650  *      past the truncation point is possible until ext4_truncate()
3651  *      finishes, we may safely do the latter, but top of branch may
3652  *      require special attention - pageout below the truncation point
3653  *      might try to populate it.
3654  *
3655  *      We atomically detach the top of branch from the tree, store the
3656  *      block number of its root in *@top, pointers to buffer_heads of
3657  *      partially truncated blocks - in @chain[].bh and pointers to
3658  *      their last elements that should not be removed - in
3659  *      @chain[].p. Return value is the pointer to last filled element
3660  *      of @chain.
3661  *
3662  *      The work left to caller to do the actual freeing of subtrees:
3663  *              a) free the subtree starting from *@top
3664  *              b) free the subtrees whose roots are stored in
3665  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3666  *              c) free the subtrees growing from the inode past the @chain[0].
3667  *                      (no partially truncated stuff there).  */
3668
3669 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3670                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3671 {
3672         Indirect *partial, *p;
3673         int k, err;
3674
3675         *top = 0;
3676         /* Make k index the deepest non-null offest + 1 */
3677         for (k = depth; k > 1 && !offsets[k-1]; k--)
3678                 ;
3679         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3680         /* Writer: pointers */
3681         if (!partial)
3682                 partial = chain + k-1;
3683         /*
3684          * If the branch acquired continuation since we've looked at it -
3685          * fine, it should all survive and (new) top doesn't belong to us.
3686          */
3687         if (!partial->key && *partial->p)
3688                 /* Writer: end */
3689                 goto no_top;
3690         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3691                 ;
3692         /*
3693          * OK, we've found the last block that must survive. The rest of our
3694          * branch should be detached before unlocking. However, if that rest
3695          * of branch is all ours and does not grow immediately from the inode
3696          * it's easier to cheat and just decrement partial->p.
3697          */
3698         if (p == chain + k - 1 && p > chain) {
3699                 p->p--;
3700         } else {
3701                 *top = *p->p;
3702                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3703 #if 0
3704                 *p->p = 0;
3705 #endif
3706         }
3707         /* Writer: end */
3708
3709         while (partial > p) {
3710                 brelse(partial->bh);
3711                 partial--;
3712         }
3713 no_top:
3714         return partial;
3715 }
3716
3717 /*
3718  * Zero a number of block pointers in either an inode or an indirect block.
3719  * If we restart the transaction we must again get write access to the
3720  * indirect block for further modification.
3721  *
3722  * We release `count' blocks on disk, but (last - first) may be greater
3723  * than `count' because there can be holes in there.
3724  */
3725 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3726                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3727                 unsigned long count, __le32 *first, __le32 *last)
3728 {
3729         __le32 *p;
3730         if (try_to_extend_transaction(handle, inode)) {
3731                 if (bh) {
3732                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3733                         ext4_handle_dirty_metadata(handle, inode, bh);
3734                 }
3735                 ext4_mark_inode_dirty(handle, inode);
3736                 ext4_journal_test_restart(handle, inode);
3737                 if (bh) {
3738                         BUFFER_TRACE(bh, "retaking write access");
3739                         ext4_journal_get_write_access(handle, bh);
3740                 }
3741         }
3742
3743         /*
3744          * Any buffers which are on the journal will be in memory. We find
3745          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3746          * on them.  We've already detached each block from the file, so
3747          * bforget() in jbd2_journal_forget() should be safe.
3748          *
3749          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3750          */
3751         for (p = first; p < last; p++) {
3752                 u32 nr = le32_to_cpu(*p);
3753                 if (nr) {
3754                         struct buffer_head *tbh;
3755
3756                         *p = 0;
3757                         tbh = sb_find_get_block(inode->i_sb, nr);
3758                         ext4_forget(handle, 0, inode, tbh, nr);
3759                 }
3760         }
3761
3762         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3763 }
3764
3765 /**
3766  * ext4_free_data - free a list of data blocks
3767  * @handle:     handle for this transaction
3768  * @inode:      inode we are dealing with
3769  * @this_bh:    indirect buffer_head which contains *@first and *@last
3770  * @first:      array of block numbers
3771  * @last:       points immediately past the end of array
3772  *
3773  * We are freeing all blocks refered from that array (numbers are stored as
3774  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3775  *
3776  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3777  * blocks are contiguous then releasing them at one time will only affect one
3778  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3779  * actually use a lot of journal space.
3780  *
3781  * @this_bh will be %NULL if @first and @last point into the inode's direct
3782  * block pointers.
3783  */
3784 static void ext4_free_data(handle_t *handle, struct inode *inode,
3785                            struct buffer_head *this_bh,
3786                            __le32 *first, __le32 *last)
3787 {
3788         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3789         unsigned long count = 0;            /* Number of blocks in the run */
3790         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3791                                                corresponding to
3792                                                block_to_free */
3793         ext4_fsblk_t nr;                    /* Current block # */
3794         __le32 *p;                          /* Pointer into inode/ind
3795                                                for current block */
3796         int err;
3797
3798         if (this_bh) {                          /* For indirect block */
3799                 BUFFER_TRACE(this_bh, "get_write_access");
3800                 err = ext4_journal_get_write_access(handle, this_bh);
3801                 /* Important: if we can't update the indirect pointers
3802                  * to the blocks, we can't free them. */
3803                 if (err)
3804                         return;
3805         }
3806
3807         for (p = first; p < last; p++) {
3808                 nr = le32_to_cpu(*p);
3809                 if (nr) {
3810                         /* accumulate blocks to free if they're contiguous */
3811                         if (count == 0) {
3812                                 block_to_free = nr;
3813                                 block_to_free_p = p;
3814                                 count = 1;
3815                         } else if (nr == block_to_free + count) {
3816                                 count++;
3817                         } else {
3818                                 ext4_clear_blocks(handle, inode, this_bh,
3819                                                   block_to_free,
3820                                                   count, block_to_free_p, p);
3821                                 block_to_free = nr;
3822                                 block_to_free_p = p;
3823                                 count = 1;
3824                         }
3825                 }
3826         }
3827
3828         if (count > 0)
3829                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3830                                   count, block_to_free_p, p);
3831
3832         if (this_bh) {
3833                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3834
3835                 /*
3836                  * The buffer head should have an attached journal head at this
3837                  * point. However, if the data is corrupted and an indirect
3838                  * block pointed to itself, it would have been detached when
3839                  * the block was cleared. Check for this instead of OOPSing.
3840                  */
3841                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3842                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3843                 else
3844                         ext4_error(inode->i_sb, __func__,
3845                                    "circular indirect block detected, "
3846                                    "inode=%lu, block=%llu",
3847                                    inode->i_ino,
3848                                    (unsigned long long) this_bh->b_blocknr);
3849         }
3850 }
3851
3852 /**
3853  *      ext4_free_branches - free an array of branches
3854  *      @handle: JBD handle for this transaction
3855  *      @inode: inode we are dealing with
3856  *      @parent_bh: the buffer_head which contains *@first and *@last
3857  *      @first: array of block numbers
3858  *      @last:  pointer immediately past the end of array
3859  *      @depth: depth of the branches to free
3860  *
3861  *      We are freeing all blocks refered from these branches (numbers are
3862  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3863  *      appropriately.
3864  */
3865 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3866                                struct buffer_head *parent_bh,
3867                                __le32 *first, __le32 *last, int depth)
3868 {
3869         ext4_fsblk_t nr;
3870         __le32 *p;
3871
3872         if (ext4_handle_is_aborted(handle))
3873                 return;
3874
3875         if (depth--) {
3876                 struct buffer_head *bh;
3877                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3878                 p = last;
3879                 while (--p >= first) {
3880                         nr = le32_to_cpu(*p);
3881                         if (!nr)
3882                                 continue;               /* A hole */
3883
3884                         /* Go read the buffer for the next level down */
3885                         bh = sb_bread(inode->i_sb, nr);
3886
3887                         /*
3888                          * A read failure? Report error and clear slot
3889                          * (should be rare).
3890                          */
3891                         if (!bh) {
3892                                 ext4_error(inode->i_sb, "ext4_free_branches",
3893                                            "Read failure, inode=%lu, block=%llu",
3894                                            inode->i_ino, nr);
3895                                 continue;
3896                         }
3897
3898                         /* This zaps the entire block.  Bottom up. */
3899                         BUFFER_TRACE(bh, "free child branches");
3900                         ext4_free_branches(handle, inode, bh,
3901                                         (__le32 *) bh->b_data,
3902                                         (__le32 *) bh->b_data + addr_per_block,
3903                                         depth);
3904
3905                         /*
3906                          * We've probably journalled the indirect block several
3907                          * times during the truncate.  But it's no longer
3908                          * needed and we now drop it from the transaction via
3909                          * jbd2_journal_revoke().
3910                          *
3911                          * That's easy if it's exclusively part of this
3912                          * transaction.  But if it's part of the committing
3913                          * transaction then jbd2_journal_forget() will simply
3914                          * brelse() it.  That means that if the underlying
3915                          * block is reallocated in ext4_get_block(),
3916                          * unmap_underlying_metadata() will find this block
3917                          * and will try to get rid of it.  damn, damn.
3918                          *
3919                          * If this block has already been committed to the
3920                          * journal, a revoke record will be written.  And
3921                          * revoke records must be emitted *before* clearing
3922                          * this block's bit in the bitmaps.
3923                          */
3924                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3925
3926                         /*
3927                          * Everything below this this pointer has been
3928                          * released.  Now let this top-of-subtree go.
3929                          *
3930                          * We want the freeing of this indirect block to be
3931                          * atomic in the journal with the updating of the
3932                          * bitmap block which owns it.  So make some room in
3933                          * the journal.
3934                          *
3935                          * We zero the parent pointer *after* freeing its
3936                          * pointee in the bitmaps, so if extend_transaction()
3937                          * for some reason fails to put the bitmap changes and
3938                          * the release into the same transaction, recovery
3939                          * will merely complain about releasing a free block,
3940                          * rather than leaking blocks.
3941                          */
3942                         if (ext4_handle_is_aborted(handle))
3943                                 return;
3944                         if (try_to_extend_transaction(handle, inode)) {
3945                                 ext4_mark_inode_dirty(handle, inode);
3946                                 ext4_journal_test_restart(handle, inode);
3947                         }
3948
3949                         ext4_free_blocks(handle, inode, nr, 1, 1);
3950
3951                         if (parent_bh) {
3952                                 /*
3953                                  * The block which we have just freed is
3954                                  * pointed to by an indirect block: journal it
3955                                  */
3956                                 BUFFER_TRACE(parent_bh, "get_write_access");
3957                                 if (!ext4_journal_get_write_access(handle,
3958                                                                    parent_bh)){
3959                                         *p = 0;
3960                                         BUFFER_TRACE(parent_bh,
3961                                         "call ext4_handle_dirty_metadata");
3962                                         ext4_handle_dirty_metadata(handle,
3963                                                                    inode,
3964                                                                    parent_bh);
3965                                 }
3966                         }
3967                 }
3968         } else {
3969                 /* We have reached the bottom of the tree. */
3970                 BUFFER_TRACE(parent_bh, "free data blocks");
3971                 ext4_free_data(handle, inode, parent_bh, first, last);
3972         }
3973 }
3974
3975 int ext4_can_truncate(struct inode *inode)
3976 {
3977         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3978                 return 0;
3979         if (S_ISREG(inode->i_mode))
3980                 return 1;
3981         if (S_ISDIR(inode->i_mode))
3982                 return 1;
3983         if (S_ISLNK(inode->i_mode))
3984                 return !ext4_inode_is_fast_symlink(inode);
3985         return 0;
3986 }
3987
3988 /*
3989  * ext4_truncate()
3990  *
3991  * We block out ext4_get_block() block instantiations across the entire
3992  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3993  * simultaneously on behalf of the same inode.
3994  *
3995  * As we work through the truncate and commmit bits of it to the journal there
3996  * is one core, guiding principle: the file's tree must always be consistent on
3997  * disk.  We must be able to restart the truncate after a crash.
3998  *
3999  * The file's tree may be transiently inconsistent in memory (although it
4000  * probably isn't), but whenever we close off and commit a journal transaction,
4001  * the contents of (the filesystem + the journal) must be consistent and
4002  * restartable.  It's pretty simple, really: bottom up, right to left (although
4003  * left-to-right works OK too).
4004  *
4005  * Note that at recovery time, journal replay occurs *before* the restart of
4006  * truncate against the orphan inode list.
4007  *
4008  * The committed inode has the new, desired i_size (which is the same as
4009  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4010  * that this inode's truncate did not complete and it will again call
4011  * ext4_truncate() to have another go.  So there will be instantiated blocks
4012  * to the right of the truncation point in a crashed ext4 filesystem.  But
4013  * that's fine - as long as they are linked from the inode, the post-crash
4014  * ext4_truncate() run will find them and release them.
4015  */
4016 void ext4_truncate(struct inode *inode)
4017 {
4018         handle_t *handle;
4019         struct ext4_inode_info *ei = EXT4_I(inode);
4020         __le32 *i_data = ei->i_data;
4021         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4022         struct address_space *mapping = inode->i_mapping;
4023         ext4_lblk_t offsets[4];
4024         Indirect chain[4];
4025         Indirect *partial;
4026         __le32 nr = 0;
4027         int n;
4028         ext4_lblk_t last_block;
4029         unsigned blocksize = inode->i_sb->s_blocksize;
4030
4031         if (!ext4_can_truncate(inode))
4032                 return;
4033
4034         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4035                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4036
4037         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4038                 ext4_ext_truncate(inode);
4039                 return;
4040         }
4041
4042         handle = start_transaction(inode);
4043         if (IS_ERR(handle))
4044                 return;         /* AKPM: return what? */
4045
4046         last_block = (inode->i_size + blocksize-1)
4047                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4048
4049         if (inode->i_size & (blocksize - 1))
4050                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4051                         goto out_stop;
4052
4053         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4054         if (n == 0)
4055                 goto out_stop;  /* error */
4056
4057         /*
4058          * OK.  This truncate is going to happen.  We add the inode to the
4059          * orphan list, so that if this truncate spans multiple transactions,
4060          * and we crash, we will resume the truncate when the filesystem
4061          * recovers.  It also marks the inode dirty, to catch the new size.
4062          *
4063          * Implication: the file must always be in a sane, consistent
4064          * truncatable state while each transaction commits.
4065          */
4066         if (ext4_orphan_add(handle, inode))
4067                 goto out_stop;
4068
4069         /*
4070          * From here we block out all ext4_get_block() callers who want to
4071          * modify the block allocation tree.
4072          */
4073         down_write(&ei->i_data_sem);
4074
4075         ext4_discard_preallocations(inode);
4076
4077         /*
4078          * The orphan list entry will now protect us from any crash which
4079          * occurs before the truncate completes, so it is now safe to propagate
4080          * the new, shorter inode size (held for now in i_size) into the
4081          * on-disk inode. We do this via i_disksize, which is the value which
4082          * ext4 *really* writes onto the disk inode.
4083          */
4084         ei->i_disksize = inode->i_size;
4085
4086         if (n == 1) {           /* direct blocks */
4087                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4088                                i_data + EXT4_NDIR_BLOCKS);
4089                 goto do_indirects;
4090         }
4091
4092         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4093         /* Kill the top of shared branch (not detached) */
4094         if (nr) {
4095                 if (partial == chain) {
4096                         /* Shared branch grows from the inode */
4097                         ext4_free_branches(handle, inode, NULL,
4098                                            &nr, &nr+1, (chain+n-1) - partial);
4099                         *partial->p = 0;
4100                         /*
4101                          * We mark the inode dirty prior to restart,
4102                          * and prior to stop.  No need for it here.
4103                          */
4104                 } else {
4105                         /* Shared branch grows from an indirect block */
4106                         BUFFER_TRACE(partial->bh, "get_write_access");
4107                         ext4_free_branches(handle, inode, partial->bh,
4108                                         partial->p,
4109                                         partial->p+1, (chain+n-1) - partial);
4110                 }
4111         }
4112         /* Clear the ends of indirect blocks on the shared branch */
4113         while (partial > chain) {
4114                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4115                                    (__le32*)partial->bh->b_data+addr_per_block,
4116                                    (chain+n-1) - partial);
4117                 BUFFER_TRACE(partial->bh, "call brelse");
4118                 brelse (partial->bh);
4119                 partial--;
4120         }
4121 do_indirects:
4122         /* Kill the remaining (whole) subtrees */
4123         switch (offsets[0]) {
4124         default:
4125                 nr = i_data[EXT4_IND_BLOCK];
4126                 if (nr) {
4127                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4128                         i_data[EXT4_IND_BLOCK] = 0;
4129                 }
4130         case EXT4_IND_BLOCK:
4131                 nr = i_data[EXT4_DIND_BLOCK];
4132                 if (nr) {
4133                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4134                         i_data[EXT4_DIND_BLOCK] = 0;
4135                 }
4136         case EXT4_DIND_BLOCK:
4137                 nr = i_data[EXT4_TIND_BLOCK];
4138                 if (nr) {
4139                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4140                         i_data[EXT4_TIND_BLOCK] = 0;
4141                 }
4142         case EXT4_TIND_BLOCK:
4143                 ;
4144         }
4145
4146         up_write(&ei->i_data_sem);
4147         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4148         ext4_mark_inode_dirty(handle, inode);
4149
4150         /*
4151          * In a multi-transaction truncate, we only make the final transaction
4152          * synchronous
4153          */
4154         if (IS_SYNC(inode))
4155                 ext4_handle_sync(handle);
4156 out_stop:
4157         /*
4158          * If this was a simple ftruncate(), and the file will remain alive
4159          * then we need to clear up the orphan record which we created above.
4160          * However, if this was a real unlink then we were called by
4161          * ext4_delete_inode(), and we allow that function to clean up the
4162          * orphan info for us.
4163          */
4164         if (inode->i_nlink)
4165                 ext4_orphan_del(handle, inode);
4166
4167         ext4_journal_stop(handle);
4168 }
4169
4170 /*
4171  * ext4_get_inode_loc returns with an extra refcount against the inode's
4172  * underlying buffer_head on success. If 'in_mem' is true, we have all
4173  * data in memory that is needed to recreate the on-disk version of this
4174  * inode.
4175  */
4176 static int __ext4_get_inode_loc(struct inode *inode,
4177                                 struct ext4_iloc *iloc, int in_mem)
4178 {
4179         struct ext4_group_desc  *gdp;
4180         struct buffer_head      *bh;
4181         struct super_block      *sb = inode->i_sb;
4182         ext4_fsblk_t            block;
4183         int                     inodes_per_block, inode_offset;
4184
4185         iloc->bh = NULL;
4186         if (!ext4_valid_inum(sb, inode->i_ino))
4187                 return -EIO;
4188
4189         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4190         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4191         if (!gdp)
4192                 return -EIO;
4193
4194         /*
4195          * Figure out the offset within the block group inode table
4196          */
4197         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4198         inode_offset = ((inode->i_ino - 1) %
4199                         EXT4_INODES_PER_GROUP(sb));
4200         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4201         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4202
4203         bh = sb_getblk(sb, block);
4204         if (!bh) {
4205                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4206                            "inode block - inode=%lu, block=%llu",
4207                            inode->i_ino, block);
4208                 return -EIO;
4209         }
4210         if (!buffer_uptodate(bh)) {
4211                 lock_buffer(bh);
4212
4213                 /*
4214                  * If the buffer has the write error flag, we have failed
4215                  * to write out another inode in the same block.  In this
4216                  * case, we don't have to read the block because we may
4217                  * read the old inode data successfully.
4218                  */
4219                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4220                         set_buffer_uptodate(bh);
4221
4222                 if (buffer_uptodate(bh)) {
4223                         /* someone brought it uptodate while we waited */
4224                         unlock_buffer(bh);
4225                         goto has_buffer;
4226                 }
4227
4228                 /*
4229                  * If we have all information of the inode in memory and this
4230                  * is the only valid inode in the block, we need not read the
4231                  * block.
4232                  */
4233                 if (in_mem) {
4234                         struct buffer_head *bitmap_bh;
4235                         int i, start;
4236
4237                         start = inode_offset & ~(inodes_per_block - 1);
4238
4239                         /* Is the inode bitmap in cache? */
4240                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4241                         if (!bitmap_bh)
4242                                 goto make_io;
4243
4244                         /*
4245                          * If the inode bitmap isn't in cache then the
4246                          * optimisation may end up performing two reads instead
4247                          * of one, so skip it.
4248                          */
4249                         if (!buffer_uptodate(bitmap_bh)) {
4250                                 brelse(bitmap_bh);
4251                                 goto make_io;
4252                         }
4253                         for (i = start; i < start + inodes_per_block; i++) {
4254                                 if (i == inode_offset)
4255                                         continue;
4256                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4257                                         break;
4258                         }
4259                         brelse(bitmap_bh);
4260                         if (i == start + inodes_per_block) {
4261                                 /* all other inodes are free, so skip I/O */
4262                                 memset(bh->b_data, 0, bh->b_size);
4263                                 set_buffer_uptodate(bh);
4264                                 unlock_buffer(bh);
4265                                 goto has_buffer;
4266                         }
4267                 }
4268
4269 make_io:
4270                 /*
4271                  * If we need to do any I/O, try to pre-readahead extra
4272                  * blocks from the inode table.
4273                  */
4274                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4275                         ext4_fsblk_t b, end, table;
4276                         unsigned num;
4277
4278                         table = ext4_inode_table(sb, gdp);
4279                         /* s_inode_readahead_blks is always a power of 2 */
4280                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4281                         if (table > b)
4282                                 b = table;
4283                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4284                         num = EXT4_INODES_PER_GROUP(sb);
4285                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4286                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4287                                 num -= ext4_itable_unused_count(sb, gdp);
4288                         table += num / inodes_per_block;
4289                         if (end > table)
4290                                 end = table;
4291                         while (b <= end)
4292                                 sb_breadahead(sb, b++);
4293                 }
4294
4295                 /*
4296                  * There are other valid inodes in the buffer, this inode
4297                  * has in-inode xattrs, or we don't have this inode in memory.
4298                  * Read the block from disk.
4299                  */
4300                 get_bh(bh);
4301                 bh->b_end_io = end_buffer_read_sync;
4302                 submit_bh(READ_META, bh);
4303                 wait_on_buffer(bh);
4304                 if (!buffer_uptodate(bh)) {
4305                         ext4_error(sb, __func__,
4306                                    "unable to read inode block - inode=%lu, "
4307                                    "block=%llu", inode->i_ino, block);
4308                         brelse(bh);
4309                         return -EIO;
4310                 }
4311         }
4312 has_buffer:
4313         iloc->bh = bh;
4314         return 0;
4315 }
4316
4317 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4318 {
4319         /* We have all inode data except xattrs in memory here. */
4320         return __ext4_get_inode_loc(inode, iloc,
4321                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4322 }
4323
4324 void ext4_set_inode_flags(struct inode *inode)
4325 {
4326         unsigned int flags = EXT4_I(inode)->i_flags;
4327
4328         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4329         if (flags & EXT4_SYNC_FL)
4330                 inode->i_flags |= S_SYNC;
4331         if (flags & EXT4_APPEND_FL)
4332                 inode->i_flags |= S_APPEND;
4333         if (flags & EXT4_IMMUTABLE_FL)
4334                 inode->i_flags |= S_IMMUTABLE;
4335         if (flags & EXT4_NOATIME_FL)
4336                 inode->i_flags |= S_NOATIME;
4337         if (flags & EXT4_DIRSYNC_FL)
4338                 inode->i_flags |= S_DIRSYNC;
4339 }
4340
4341 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4342 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4343 {
4344         unsigned int flags = ei->vfs_inode.i_flags;
4345
4346         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4347                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4348         if (flags & S_SYNC)
4349                 ei->i_flags |= EXT4_SYNC_FL;
4350         if (flags & S_APPEND)
4351                 ei->i_flags |= EXT4_APPEND_FL;
4352         if (flags & S_IMMUTABLE)
4353                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4354         if (flags & S_NOATIME)
4355                 ei->i_flags |= EXT4_NOATIME_FL;
4356         if (flags & S_DIRSYNC)
4357                 ei->i_flags |= EXT4_DIRSYNC_FL;
4358 }
4359 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4360                                         struct ext4_inode_info *ei)
4361 {
4362         blkcnt_t i_blocks ;
4363         struct inode *inode = &(ei->vfs_inode);
4364         struct super_block *sb = inode->i_sb;
4365
4366         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4367                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4368                 /* we are using combined 48 bit field */
4369                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4370                                         le32_to_cpu(raw_inode->i_blocks_lo);
4371                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4372                         /* i_blocks represent file system block size */
4373                         return i_blocks  << (inode->i_blkbits - 9);
4374                 } else {
4375                         return i_blocks;
4376                 }
4377         } else {
4378                 return le32_to_cpu(raw_inode->i_blocks_lo);
4379         }
4380 }
4381
4382 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4383 {
4384         struct ext4_iloc iloc;
4385         struct ext4_inode *raw_inode;
4386         struct ext4_inode_info *ei;
4387         struct buffer_head *bh;
4388         struct inode *inode;
4389         long ret;
4390         int block;
4391
4392         inode = iget_locked(sb, ino);
4393         if (!inode)
4394                 return ERR_PTR(-ENOMEM);
4395         if (!(inode->i_state & I_NEW))
4396                 return inode;
4397
4398         ei = EXT4_I(inode);
4399 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4400         ei->i_acl = EXT4_ACL_NOT_CACHED;
4401         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4402 #endif
4403
4404         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4405         if (ret < 0)
4406                 goto bad_inode;
4407         bh = iloc.bh;
4408         raw_inode = ext4_raw_inode(&iloc);
4409         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4410         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4411         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4412         if (!(test_opt(inode->i_sb, NO_UID32))) {
4413                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4414                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4415         }
4416         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4417
4418         ei->i_state = 0;
4419         ei->i_dir_start_lookup = 0;
4420         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4421         /* We now have enough fields to check if the inode was active or not.
4422          * This is needed because nfsd might try to access dead inodes
4423          * the test is that same one that e2fsck uses
4424          * NeilBrown 1999oct15
4425          */
4426         if (inode->i_nlink == 0) {
4427                 if (inode->i_mode == 0 ||
4428                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4429                         /* this inode is deleted */
4430                         brelse(bh);
4431                         ret = -ESTALE;
4432                         goto bad_inode;
4433                 }
4434                 /* The only unlinked inodes we let through here have
4435                  * valid i_mode and are being read by the orphan
4436                  * recovery code: that's fine, we're about to complete
4437                  * the process of deleting those. */
4438         }
4439         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4440         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4441         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4442         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4443                 ei->i_file_acl |=
4444                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4445         inode->i_size = ext4_isize(raw_inode);
4446         ei->i_disksize = inode->i_size;
4447         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4448         ei->i_block_group = iloc.block_group;
4449         ei->i_last_alloc_group = ~0;
4450         /*
4451          * NOTE! The in-memory inode i_data array is in little-endian order
4452          * even on big-endian machines: we do NOT byteswap the block numbers!
4453          */
4454         for (block = 0; block < EXT4_N_BLOCKS; block++)
4455                 ei->i_data[block] = raw_inode->i_block[block];
4456         INIT_LIST_HEAD(&ei->i_orphan);
4457
4458         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4459                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4460                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4461                     EXT4_INODE_SIZE(inode->i_sb)) {
4462                         brelse(bh);
4463                         ret = -EIO;
4464                         goto bad_inode;
4465                 }
4466                 if (ei->i_extra_isize == 0) {
4467                         /* The extra space is currently unused. Use it. */
4468                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4469                                             EXT4_GOOD_OLD_INODE_SIZE;
4470                 } else {
4471                         __le32 *magic = (void *)raw_inode +
4472                                         EXT4_GOOD_OLD_INODE_SIZE +
4473                                         ei->i_extra_isize;
4474                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4475                                  ei->i_state |= EXT4_STATE_XATTR;
4476                 }
4477         } else
4478                 ei->i_extra_isize = 0;
4479
4480         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4481         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4482         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4483         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4484
4485         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4486         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4487                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4488                         inode->i_version |=
4489                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4490         }
4491
4492         ret = 0;
4493         if (ei->i_file_acl &&
4494             ((ei->i_file_acl < 
4495               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4496                EXT4_SB(sb)->s_gdb_count)) ||
4497              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4498                 ext4_error(sb, __func__,
4499                            "bad extended attribute block %llu in inode #%lu",
4500                            ei->i_file_acl, inode->i_ino);
4501                 ret = -EIO;
4502                 goto bad_inode;
4503         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4504                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4505                     (S_ISLNK(inode->i_mode) &&
4506                      !ext4_inode_is_fast_symlink(inode)))
4507                         /* Validate extent which is part of inode */
4508                         ret = ext4_ext_check_inode(inode);
4509         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4510                    (S_ISLNK(inode->i_mode) &&
4511                     !ext4_inode_is_fast_symlink(inode))) {
4512                 /* Validate block references which are part of inode */
4513                 ret = ext4_check_inode_blockref(inode);
4514         }
4515         if (ret) {
4516                 brelse(bh);
4517                 goto bad_inode;
4518         }
4519
4520         if (S_ISREG(inode->i_mode)) {
4521                 inode->i_op = &ext4_file_inode_operations;
4522                 inode->i_fop = &ext4_file_operations;
4523                 ext4_set_aops(inode);
4524         } else if (S_ISDIR(inode->i_mode)) {
4525                 inode->i_op = &ext4_dir_inode_operations;
4526                 inode->i_fop = &ext4_dir_operations;
4527         } else if (S_ISLNK(inode->i_mode)) {
4528                 if (ext4_inode_is_fast_symlink(inode)) {
4529                         inode->i_op = &ext4_fast_symlink_inode_operations;
4530                         nd_terminate_link(ei->i_data, inode->i_size,
4531                                 sizeof(ei->i_data) - 1);
4532                 } else {
4533                         inode->i_op = &ext4_symlink_inode_operations;
4534                         ext4_set_aops(inode);
4535                 }
4536         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4537               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4538                 inode->i_op = &ext4_special_inode_operations;
4539                 if (raw_inode->i_block[0])
4540                         init_special_inode(inode, inode->i_mode,
4541                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4542                 else
4543                         init_special_inode(inode, inode->i_mode,
4544                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4545         } else {
4546                 brelse(bh);
4547                 ret = -EIO;
4548                 ext4_error(inode->i_sb, __func__, 
4549                            "bogus i_mode (%o) for inode=%lu",
4550                            inode->i_mode, inode->i_ino);
4551                 goto bad_inode;
4552         }
4553         brelse(iloc.bh);
4554         ext4_set_inode_flags(inode);
4555         unlock_new_inode(inode);
4556         return inode;
4557
4558 bad_inode:
4559         iget_failed(inode);
4560         return ERR_PTR(ret);
4561 }
4562
4563 static int ext4_inode_blocks_set(handle_t *handle,
4564                                 struct ext4_inode *raw_inode,
4565                                 struct ext4_inode_info *ei)
4566 {
4567         struct inode *inode = &(ei->vfs_inode);
4568         u64 i_blocks = inode->i_blocks;
4569         struct super_block *sb = inode->i_sb;
4570
4571         if (i_blocks <= ~0U) {
4572                 /*
4573                  * i_blocks can be represnted in a 32 bit variable
4574                  * as multiple of 512 bytes
4575                  */
4576                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4577                 raw_inode->i_blocks_high = 0;
4578                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4579                 return 0;
4580         }
4581         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4582                 return -EFBIG;
4583
4584         if (i_blocks <= 0xffffffffffffULL) {
4585                 /*
4586                  * i_blocks can be represented in a 48 bit variable
4587                  * as multiple of 512 bytes
4588                  */
4589                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4590                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4591                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4592         } else {
4593                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4594                 /* i_block is stored in file system block size */
4595                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4596                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4597                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4598         }
4599         return 0;
4600 }
4601
4602 /*
4603  * Post the struct inode info into an on-disk inode location in the
4604  * buffer-cache.  This gobbles the caller's reference to the
4605  * buffer_head in the inode location struct.
4606  *
4607  * The caller must have write access to iloc->bh.
4608  */
4609 static int ext4_do_update_inode(handle_t *handle,
4610                                 struct inode *inode,
4611                                 struct ext4_iloc *iloc)
4612 {
4613         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4614         struct ext4_inode_info *ei = EXT4_I(inode);
4615         struct buffer_head *bh = iloc->bh;
4616         int err = 0, rc, block;
4617
4618         /* For fields not not tracking in the in-memory inode,
4619          * initialise them to zero for new inodes. */
4620         if (ei->i_state & EXT4_STATE_NEW)
4621                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4622
4623         ext4_get_inode_flags(ei);
4624         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4625         if (!(test_opt(inode->i_sb, NO_UID32))) {
4626                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4627                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4628 /*
4629  * Fix up interoperability with old kernels. Otherwise, old inodes get
4630  * re-used with the upper 16 bits of the uid/gid intact
4631  */
4632                 if (!ei->i_dtime) {
4633                         raw_inode->i_uid_high =
4634                                 cpu_to_le16(high_16_bits(inode->i_uid));
4635                         raw_inode->i_gid_high =
4636                                 cpu_to_le16(high_16_bits(inode->i_gid));
4637                 } else {
4638                         raw_inode->i_uid_high = 0;
4639                         raw_inode->i_gid_high = 0;
4640                 }
4641         } else {
4642                 raw_inode->i_uid_low =
4643                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4644                 raw_inode->i_gid_low =
4645                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4646                 raw_inode->i_uid_high = 0;
4647                 raw_inode->i_gid_high = 0;
4648         }
4649         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4650
4651         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4652         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4653         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4654         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4655
4656         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4657                 goto out_brelse;
4658         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4659         /* clear the migrate flag in the raw_inode */
4660         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4661         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4662             cpu_to_le32(EXT4_OS_HURD))
4663                 raw_inode->i_file_acl_high =
4664                         cpu_to_le16(ei->i_file_acl >> 32);
4665         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4666         ext4_isize_set(raw_inode, ei->i_disksize);
4667         if (ei->i_disksize > 0x7fffffffULL) {
4668                 struct super_block *sb = inode->i_sb;
4669                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4670                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4671                                 EXT4_SB(sb)->s_es->s_rev_level ==
4672                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4673                         /* If this is the first large file
4674                          * created, add a flag to the superblock.
4675                          */
4676                         err = ext4_journal_get_write_access(handle,
4677                                         EXT4_SB(sb)->s_sbh);
4678                         if (err)
4679                                 goto out_brelse;
4680                         ext4_update_dynamic_rev(sb);
4681                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4682                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4683                         sb->s_dirt = 1;
4684                         ext4_handle_sync(handle);
4685                         err = ext4_handle_dirty_metadata(handle, inode,
4686                                         EXT4_SB(sb)->s_sbh);
4687                 }
4688         }
4689         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4690         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4691                 if (old_valid_dev(inode->i_rdev)) {
4692                         raw_inode->i_block[0] =
4693                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4694                         raw_inode->i_block[1] = 0;
4695                 } else {
4696                         raw_inode->i_block[0] = 0;
4697                         raw_inode->i_block[1] =
4698                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4699                         raw_inode->i_block[2] = 0;
4700                 }
4701         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4702                 raw_inode->i_block[block] = ei->i_data[block];
4703
4704         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4705         if (ei->i_extra_isize) {
4706                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4707                         raw_inode->i_version_hi =
4708                         cpu_to_le32(inode->i_version >> 32);
4709                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4710         }
4711
4712         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4713         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4714         if (!err)
4715                 err = rc;
4716         ei->i_state &= ~EXT4_STATE_NEW;
4717
4718 out_brelse:
4719         brelse(bh);
4720         ext4_std_error(inode->i_sb, err);
4721         return err;
4722 }
4723
4724 /*
4725  * ext4_write_inode()
4726  *
4727  * We are called from a few places:
4728  *
4729  * - Within generic_file_write() for O_SYNC files.
4730  *   Here, there will be no transaction running. We wait for any running
4731  *   trasnaction to commit.
4732  *
4733  * - Within sys_sync(), kupdate and such.
4734  *   We wait on commit, if tol to.
4735  *
4736  * - Within prune_icache() (PF_MEMALLOC == true)
4737  *   Here we simply return.  We can't afford to block kswapd on the
4738  *   journal commit.
4739  *
4740  * In all cases it is actually safe for us to return without doing anything,
4741  * because the inode has been copied into a raw inode buffer in
4742  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4743  * knfsd.
4744  *
4745  * Note that we are absolutely dependent upon all inode dirtiers doing the
4746  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4747  * which we are interested.
4748  *
4749  * It would be a bug for them to not do this.  The code:
4750  *
4751  *      mark_inode_dirty(inode)
4752  *      stuff();
4753  *      inode->i_size = expr;
4754  *
4755  * is in error because a kswapd-driven write_inode() could occur while
4756  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4757  * will no longer be on the superblock's dirty inode list.
4758  */
4759 int ext4_write_inode(struct inode *inode, int wait)
4760 {
4761         if (current->flags & PF_MEMALLOC)
4762                 return 0;
4763
4764         if (ext4_journal_current_handle()) {
4765                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4766                 dump_stack();
4767                 return -EIO;
4768         }
4769
4770         if (!wait)
4771                 return 0;
4772
4773         return ext4_force_commit(inode->i_sb);
4774 }
4775
4776 /*
4777  * ext4_setattr()
4778  *
4779  * Called from notify_change.
4780  *
4781  * We want to trap VFS attempts to truncate the file as soon as
4782  * possible.  In particular, we want to make sure that when the VFS
4783  * shrinks i_size, we put the inode on the orphan list and modify
4784  * i_disksize immediately, so that during the subsequent flushing of
4785  * dirty pages and freeing of disk blocks, we can guarantee that any
4786  * commit will leave the blocks being flushed in an unused state on
4787  * disk.  (On recovery, the inode will get truncated and the blocks will
4788  * be freed, so we have a strong guarantee that no future commit will
4789  * leave these blocks visible to the user.)
4790  *
4791  * Another thing we have to assure is that if we are in ordered mode
4792  * and inode is still attached to the committing transaction, we must
4793  * we start writeout of all the dirty pages which are being truncated.
4794  * This way we are sure that all the data written in the previous
4795  * transaction are already on disk (truncate waits for pages under
4796  * writeback).
4797  *
4798  * Called with inode->i_mutex down.
4799  */
4800 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4801 {
4802         struct inode *inode = dentry->d_inode;
4803         int error, rc = 0;
4804         const unsigned int ia_valid = attr->ia_valid;
4805
4806         error = inode_change_ok(inode, attr);
4807         if (error)
4808                 return error;
4809
4810         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4811                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4812                 handle_t *handle;
4813
4814                 /* (user+group)*(old+new) structure, inode write (sb,
4815                  * inode block, ? - but truncate inode update has it) */
4816                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4817                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4818                 if (IS_ERR(handle)) {
4819                         error = PTR_ERR(handle);
4820                         goto err_out;
4821                 }
4822                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4823                 if (error) {
4824                         ext4_journal_stop(handle);
4825                         return error;
4826                 }
4827                 /* Update corresponding info in inode so that everything is in
4828                  * one transaction */
4829                 if (attr->ia_valid & ATTR_UID)
4830                         inode->i_uid = attr->ia_uid;
4831                 if (attr->ia_valid & ATTR_GID)
4832                         inode->i_gid = attr->ia_gid;
4833                 error = ext4_mark_inode_dirty(handle, inode);
4834                 ext4_journal_stop(handle);
4835         }
4836
4837         if (attr->ia_valid & ATTR_SIZE) {
4838                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4839                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4840
4841                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4842                                 error = -EFBIG;
4843                                 goto err_out;
4844                         }
4845                 }
4846         }
4847
4848         if (S_ISREG(inode->i_mode) &&
4849             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4850                 handle_t *handle;
4851
4852                 handle = ext4_journal_start(inode, 3);
4853                 if (IS_ERR(handle)) {
4854                         error = PTR_ERR(handle);
4855                         goto err_out;
4856                 }
4857
4858                 error = ext4_orphan_add(handle, inode);
4859                 EXT4_I(inode)->i_disksize = attr->ia_size;
4860                 rc = ext4_mark_inode_dirty(handle, inode);
4861                 if (!error)
4862                         error = rc;
4863                 ext4_journal_stop(handle);
4864
4865                 if (ext4_should_order_data(inode)) {
4866                         error = ext4_begin_ordered_truncate(inode,
4867                                                             attr->ia_size);
4868                         if (error) {
4869                                 /* Do as much error cleanup as possible */
4870                                 handle = ext4_journal_start(inode, 3);
4871                                 if (IS_ERR(handle)) {
4872                                         ext4_orphan_del(NULL, inode);
4873                                         goto err_out;
4874                                 }
4875                                 ext4_orphan_del(handle, inode);
4876                                 ext4_journal_stop(handle);
4877                                 goto err_out;
4878                         }
4879                 }
4880         }
4881
4882         rc = inode_setattr(inode, attr);
4883
4884         /* If inode_setattr's call to ext4_truncate failed to get a
4885          * transaction handle at all, we need to clean up the in-core
4886          * orphan list manually. */
4887         if (inode->i_nlink)
4888                 ext4_orphan_del(NULL, inode);
4889
4890         if (!rc && (ia_valid & ATTR_MODE))
4891                 rc = ext4_acl_chmod(inode);
4892
4893 err_out:
4894         ext4_std_error(inode->i_sb, error);
4895         if (!error)
4896                 error = rc;
4897         return error;
4898 }
4899
4900 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4901                  struct kstat *stat)
4902 {
4903         struct inode *inode;
4904         unsigned long delalloc_blocks;
4905
4906         inode = dentry->d_inode;
4907         generic_fillattr(inode, stat);
4908
4909         /*
4910          * We can't update i_blocks if the block allocation is delayed
4911          * otherwise in the case of system crash before the real block
4912          * allocation is done, we will have i_blocks inconsistent with
4913          * on-disk file blocks.
4914          * We always keep i_blocks updated together with real
4915          * allocation. But to not confuse with user, stat
4916          * will return the blocks that include the delayed allocation
4917          * blocks for this file.
4918          */
4919         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4920         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4921         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4922
4923         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4924         return 0;
4925 }
4926
4927 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4928                                       int chunk)
4929 {
4930         int indirects;
4931
4932         /* if nrblocks are contiguous */
4933         if (chunk) {
4934                 /*
4935                  * With N contiguous data blocks, it need at most
4936                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4937                  * 2 dindirect blocks
4938                  * 1 tindirect block
4939                  */
4940                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4941                 return indirects + 3;
4942         }
4943         /*
4944          * if nrblocks are not contiguous, worse case, each block touch
4945          * a indirect block, and each indirect block touch a double indirect
4946          * block, plus a triple indirect block
4947          */
4948         indirects = nrblocks * 2 + 1;
4949         return indirects;
4950 }
4951
4952 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4953 {
4954         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4955                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4956         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4957 }
4958
4959 /*
4960  * Account for index blocks, block groups bitmaps and block group
4961  * descriptor blocks if modify datablocks and index blocks
4962  * worse case, the indexs blocks spread over different block groups
4963  *
4964  * If datablocks are discontiguous, they are possible to spread over
4965  * different block groups too. If they are contiugous, with flexbg,
4966  * they could still across block group boundary.
4967  *
4968  * Also account for superblock, inode, quota and xattr blocks
4969  */
4970 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4971 {
4972         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4973         int gdpblocks;
4974         int idxblocks;
4975         int ret = 0;
4976
4977         /*
4978          * How many index blocks need to touch to modify nrblocks?
4979          * The "Chunk" flag indicating whether the nrblocks is
4980          * physically contiguous on disk
4981          *
4982          * For Direct IO and fallocate, they calls get_block to allocate
4983          * one single extent at a time, so they could set the "Chunk" flag
4984          */
4985         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4986
4987         ret = idxblocks;
4988
4989         /*
4990          * Now let's see how many group bitmaps and group descriptors need
4991          * to account
4992          */
4993         groups = idxblocks;
4994         if (chunk)
4995                 groups += 1;
4996         else
4997                 groups += nrblocks;
4998
4999         gdpblocks = groups;
5000         if (groups > ngroups)
5001                 groups = ngroups;
5002         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5003                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5004
5005         /* bitmaps and block group descriptor blocks */
5006         ret += groups + gdpblocks;
5007
5008         /* Blocks for super block, inode, quota and xattr blocks */
5009         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5010
5011         return ret;
5012 }
5013
5014 /*
5015  * Calulate the total number of credits to reserve to fit
5016  * the modification of a single pages into a single transaction,
5017  * which may include multiple chunks of block allocations.
5018  *
5019  * This could be called via ext4_write_begin()
5020  *
5021  * We need to consider the worse case, when
5022  * one new block per extent.
5023  */
5024 int ext4_writepage_trans_blocks(struct inode *inode)
5025 {
5026         int bpp = ext4_journal_blocks_per_page(inode);
5027         int ret;
5028
5029         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5030
5031         /* Account for data blocks for journalled mode */
5032         if (ext4_should_journal_data(inode))
5033                 ret += bpp;
5034         return ret;
5035 }
5036
5037 /*
5038  * Calculate the journal credits for a chunk of data modification.
5039  *
5040  * This is called from DIO, fallocate or whoever calling
5041  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5042  *
5043  * journal buffers for data blocks are not included here, as DIO
5044  * and fallocate do no need to journal data buffers.
5045  */
5046 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5047 {
5048         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5049 }
5050
5051 /*
5052  * The caller must have previously called ext4_reserve_inode_write().
5053  * Give this, we know that the caller already has write access to iloc->bh.
5054  */
5055 int ext4_mark_iloc_dirty(handle_t *handle,
5056                 struct inode *inode, struct ext4_iloc *iloc)
5057 {
5058         int err = 0;
5059
5060         if (test_opt(inode->i_sb, I_VERSION))
5061                 inode_inc_iversion(inode);
5062
5063         /* the do_update_inode consumes one bh->b_count */
5064         get_bh(iloc->bh);
5065
5066         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5067         err = ext4_do_update_inode(handle, inode, iloc);
5068         put_bh(iloc->bh);
5069         return err;
5070 }
5071
5072 /*
5073  * On success, We end up with an outstanding reference count against
5074  * iloc->bh.  This _must_ be cleaned up later.
5075  */
5076
5077 int
5078 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5079                          struct ext4_iloc *iloc)
5080 {
5081         int err;
5082
5083         err = ext4_get_inode_loc(inode, iloc);
5084         if (!err) {
5085                 BUFFER_TRACE(iloc->bh, "get_write_access");
5086                 err = ext4_journal_get_write_access(handle, iloc->bh);
5087                 if (err) {
5088                         brelse(iloc->bh);
5089                         iloc->bh = NULL;
5090                 }
5091         }
5092         ext4_std_error(inode->i_sb, err);
5093         return err;
5094 }
5095
5096 /*
5097  * Expand an inode by new_extra_isize bytes.
5098  * Returns 0 on success or negative error number on failure.
5099  */
5100 static int ext4_expand_extra_isize(struct inode *inode,
5101                                    unsigned int new_extra_isize,
5102                                    struct ext4_iloc iloc,
5103                                    handle_t *handle)
5104 {
5105         struct ext4_inode *raw_inode;
5106         struct ext4_xattr_ibody_header *header;
5107         struct ext4_xattr_entry *entry;
5108
5109         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5110                 return 0;
5111
5112         raw_inode = ext4_raw_inode(&iloc);
5113
5114         header = IHDR(inode, raw_inode);
5115         entry = IFIRST(header);
5116
5117         /* No extended attributes present */
5118         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5119                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5120                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5121                         new_extra_isize);
5122                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5123                 return 0;
5124         }
5125
5126         /* try to expand with EAs present */
5127         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5128                                           raw_inode, handle);
5129 }
5130
5131 /*
5132  * What we do here is to mark the in-core inode as clean with respect to inode
5133  * dirtiness (it may still be data-dirty).
5134  * This means that the in-core inode may be reaped by prune_icache
5135  * without having to perform any I/O.  This is a very good thing,
5136  * because *any* task may call prune_icache - even ones which
5137  * have a transaction open against a different journal.
5138  *
5139  * Is this cheating?  Not really.  Sure, we haven't written the
5140  * inode out, but prune_icache isn't a user-visible syncing function.
5141  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5142  * we start and wait on commits.
5143  *
5144  * Is this efficient/effective?  Well, we're being nice to the system
5145  * by cleaning up our inodes proactively so they can be reaped
5146  * without I/O.  But we are potentially leaving up to five seconds'
5147  * worth of inodes floating about which prune_icache wants us to
5148  * write out.  One way to fix that would be to get prune_icache()
5149  * to do a write_super() to free up some memory.  It has the desired
5150  * effect.
5151  */
5152 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5153 {
5154         struct ext4_iloc iloc;
5155         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5156         static unsigned int mnt_count;
5157         int err, ret;
5158
5159         might_sleep();
5160         err = ext4_reserve_inode_write(handle, inode, &iloc);
5161         if (ext4_handle_valid(handle) &&
5162             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5163             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5164                 /*
5165                  * We need extra buffer credits since we may write into EA block
5166                  * with this same handle. If journal_extend fails, then it will
5167                  * only result in a minor loss of functionality for that inode.
5168                  * If this is felt to be critical, then e2fsck should be run to
5169                  * force a large enough s_min_extra_isize.
5170                  */
5171                 if ((jbd2_journal_extend(handle,
5172                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5173                         ret = ext4_expand_extra_isize(inode,
5174                                                       sbi->s_want_extra_isize,
5175                                                       iloc, handle);
5176                         if (ret) {
5177                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5178                                 if (mnt_count !=
5179                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5180                                         ext4_warning(inode->i_sb, __func__,
5181                                         "Unable to expand inode %lu. Delete"
5182                                         " some EAs or run e2fsck.",
5183                                         inode->i_ino);
5184                                         mnt_count =
5185                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5186                                 }
5187                         }
5188                 }
5189         }
5190         if (!err)
5191                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5192         return err;
5193 }
5194
5195 /*
5196  * ext4_dirty_inode() is called from __mark_inode_dirty()
5197  *
5198  * We're really interested in the case where a file is being extended.
5199  * i_size has been changed by generic_commit_write() and we thus need
5200  * to include the updated inode in the current transaction.
5201  *
5202  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5203  * are allocated to the file.
5204  *
5205  * If the inode is marked synchronous, we don't honour that here - doing
5206  * so would cause a commit on atime updates, which we don't bother doing.
5207  * We handle synchronous inodes at the highest possible level.
5208  */
5209 void ext4_dirty_inode(struct inode *inode)
5210 {
5211         handle_t *current_handle = ext4_journal_current_handle();
5212         handle_t *handle;
5213
5214         if (!ext4_handle_valid(current_handle)) {
5215                 ext4_mark_inode_dirty(current_handle, inode);
5216                 return;
5217         }
5218
5219         handle = ext4_journal_start(inode, 2);
5220         if (IS_ERR(handle))
5221                 goto out;
5222         if (current_handle &&
5223                 current_handle->h_transaction != handle->h_transaction) {
5224                 /* This task has a transaction open against a different fs */
5225                 printk(KERN_EMERG "%s: transactions do not match!\n",
5226                        __func__);
5227         } else {
5228                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5229                                 current_handle);
5230                 ext4_mark_inode_dirty(handle, inode);
5231         }
5232         ext4_journal_stop(handle);
5233 out:
5234         return;
5235 }
5236
5237 #if 0
5238 /*
5239  * Bind an inode's backing buffer_head into this transaction, to prevent
5240  * it from being flushed to disk early.  Unlike
5241  * ext4_reserve_inode_write, this leaves behind no bh reference and
5242  * returns no iloc structure, so the caller needs to repeat the iloc
5243  * lookup to mark the inode dirty later.
5244  */
5245 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5246 {
5247         struct ext4_iloc iloc;
5248
5249         int err = 0;
5250         if (handle) {
5251                 err = ext4_get_inode_loc(inode, &iloc);
5252                 if (!err) {
5253                         BUFFER_TRACE(iloc.bh, "get_write_access");
5254                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5255                         if (!err)
5256                                 err = ext4_handle_dirty_metadata(handle,
5257                                                                  inode,
5258                                                                  iloc.bh);
5259                         brelse(iloc.bh);
5260                 }
5261         }
5262         ext4_std_error(inode->i_sb, err);
5263         return err;
5264 }
5265 #endif
5266
5267 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5268 {
5269         journal_t *journal;
5270         handle_t *handle;
5271         int err;
5272
5273         /*
5274          * We have to be very careful here: changing a data block's
5275          * journaling status dynamically is dangerous.  If we write a
5276          * data block to the journal, change the status and then delete
5277          * that block, we risk forgetting to revoke the old log record
5278          * from the journal and so a subsequent replay can corrupt data.
5279          * So, first we make sure that the journal is empty and that
5280          * nobody is changing anything.
5281          */
5282
5283         journal = EXT4_JOURNAL(inode);
5284         if (!journal)
5285                 return 0;
5286         if (is_journal_aborted(journal))
5287                 return -EROFS;
5288
5289         jbd2_journal_lock_updates(journal);
5290         jbd2_journal_flush(journal);
5291
5292         /*
5293          * OK, there are no updates running now, and all cached data is
5294          * synced to disk.  We are now in a completely consistent state
5295          * which doesn't have anything in the journal, and we know that
5296          * no filesystem updates are running, so it is safe to modify
5297          * the inode's in-core data-journaling state flag now.
5298          */
5299
5300         if (val)
5301                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5302         else
5303                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5304         ext4_set_aops(inode);
5305
5306         jbd2_journal_unlock_updates(journal);
5307
5308         /* Finally we can mark the inode as dirty. */
5309
5310         handle = ext4_journal_start(inode, 1);
5311         if (IS_ERR(handle))
5312                 return PTR_ERR(handle);
5313
5314         err = ext4_mark_inode_dirty(handle, inode);
5315         ext4_handle_sync(handle);
5316         ext4_journal_stop(handle);
5317         ext4_std_error(inode->i_sb, err);
5318
5319         return err;
5320 }
5321
5322 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5323 {
5324         return !buffer_mapped(bh);
5325 }
5326
5327 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5328 {
5329         struct page *page = vmf->page;
5330         loff_t size;
5331         unsigned long len;
5332         int ret = -EINVAL;
5333         void *fsdata;
5334         struct file *file = vma->vm_file;
5335         struct inode *inode = file->f_path.dentry->d_inode;
5336         struct address_space *mapping = inode->i_mapping;
5337
5338         /*
5339          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5340          * get i_mutex because we are already holding mmap_sem.
5341          */
5342         down_read(&inode->i_alloc_sem);
5343         size = i_size_read(inode);
5344         if (page->mapping != mapping || size <= page_offset(page)
5345             || !PageUptodate(page)) {
5346                 /* page got truncated from under us? */
5347                 goto out_unlock;
5348         }
5349         ret = 0;
5350         if (PageMappedToDisk(page))
5351                 goto out_unlock;
5352
5353         if (page->index == size >> PAGE_CACHE_SHIFT)
5354                 len = size & ~PAGE_CACHE_MASK;
5355         else
5356                 len = PAGE_CACHE_SIZE;
5357
5358         if (page_has_buffers(page)) {
5359                 /* return if we have all the buffers mapped */
5360                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5361                                        ext4_bh_unmapped))
5362                         goto out_unlock;
5363         }
5364         /*
5365          * OK, we need to fill the hole... Do write_begin write_end
5366          * to do block allocation/reservation.We are not holding
5367          * inode.i__mutex here. That allow * parallel write_begin,
5368          * write_end call. lock_page prevent this from happening
5369          * on the same page though
5370          */
5371         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5372                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5373         if (ret < 0)
5374                 goto out_unlock;
5375         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5376                         len, len, page, fsdata);
5377         if (ret < 0)
5378                 goto out_unlock;
5379         ret = 0;
5380 out_unlock:
5381         if (ret)
5382                 ret = VM_FAULT_SIGBUS;
5383         up_read(&inode->i_alloc_sem);
5384         return ret;
5385 }