ext4: Split uninitialized extents for direct I/O
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51                                               loff_t new_size)
52 {
53         return jbd2_journal_begin_ordered_truncate(
54                                         EXT4_SB(inode->i_sb)->s_journal,
55                                         &EXT4_I(inode)->jinode,
56                                         new_size);
57 }
58
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
61 /*
62  * Test whether an inode is a fast symlink.
63  */
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
65 {
66         int ea_blocks = EXT4_I(inode)->i_file_acl ?
67                 (inode->i_sb->s_blocksize >> 9) : 0;
68
69         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 }
71
72 /*
73  * The ext4 forget function must perform a revoke if we are freeing data
74  * which has been journaled.  Metadata (eg. indirect blocks) must be
75  * revoked in all cases.
76  *
77  * "bh" may be NULL: a metadata block may have been freed from memory
78  * but there may still be a record of it in the journal, and that record
79  * still needs to be revoked.
80  *
81  * If the handle isn't valid we're not journaling, but we still need to
82  * call into ext4_journal_revoke() to put the buffer head.
83  */
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85                 struct buffer_head *bh, ext4_fsblk_t blocknr)
86 {
87         int err;
88
89         might_sleep();
90
91         BUFFER_TRACE(bh, "enter");
92
93         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94                   "data mode %x\n",
95                   bh, is_metadata, inode->i_mode,
96                   test_opt(inode->i_sb, DATA_FLAGS));
97
98         /* Never use the revoke function if we are doing full data
99          * journaling: there is no need to, and a V1 superblock won't
100          * support it.  Otherwise, only skip the revoke on un-journaled
101          * data blocks. */
102
103         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104             (!is_metadata && !ext4_should_journal_data(inode))) {
105                 if (bh) {
106                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
107                         return ext4_journal_forget(handle, bh);
108                 }
109                 return 0;
110         }
111
112         /*
113          * data!=journal && (is_metadata || should_journal_data(inode))
114          */
115         BUFFER_TRACE(bh, "call ext4_journal_revoke");
116         err = ext4_journal_revoke(handle, blocknr, bh);
117         if (err)
118                 ext4_abort(inode->i_sb, __func__,
119                            "error %d when attempting revoke", err);
120         BUFFER_TRACE(bh, "exit");
121         return err;
122 }
123
124 /*
125  * Work out how many blocks we need to proceed with the next chunk of a
126  * truncate transaction.
127  */
128 static unsigned long blocks_for_truncate(struct inode *inode)
129 {
130         ext4_lblk_t needed;
131
132         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133
134         /* Give ourselves just enough room to cope with inodes in which
135          * i_blocks is corrupt: we've seen disk corruptions in the past
136          * which resulted in random data in an inode which looked enough
137          * like a regular file for ext4 to try to delete it.  Things
138          * will go a bit crazy if that happens, but at least we should
139          * try not to panic the whole kernel. */
140         if (needed < 2)
141                 needed = 2;
142
143         /* But we need to bound the transaction so we don't overflow the
144          * journal. */
145         if (needed > EXT4_MAX_TRANS_DATA)
146                 needed = EXT4_MAX_TRANS_DATA;
147
148         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 }
150
151 /*
152  * Truncate transactions can be complex and absolutely huge.  So we need to
153  * be able to restart the transaction at a conventient checkpoint to make
154  * sure we don't overflow the journal.
155  *
156  * start_transaction gets us a new handle for a truncate transaction,
157  * and extend_transaction tries to extend the existing one a bit.  If
158  * extend fails, we need to propagate the failure up and restart the
159  * transaction in the top-level truncate loop. --sct
160  */
161 static handle_t *start_transaction(struct inode *inode)
162 {
163         handle_t *result;
164
165         result = ext4_journal_start(inode, blocks_for_truncate(inode));
166         if (!IS_ERR(result))
167                 return result;
168
169         ext4_std_error(inode->i_sb, PTR_ERR(result));
170         return result;
171 }
172
173 /*
174  * Try to extend this transaction for the purposes of truncation.
175  *
176  * Returns 0 if we managed to create more room.  If we can't create more
177  * room, and the transaction must be restarted we return 1.
178  */
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180 {
181         if (!ext4_handle_valid(handle))
182                 return 0;
183         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184                 return 0;
185         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186                 return 0;
187         return 1;
188 }
189
190 /*
191  * Restart the transaction associated with *handle.  This does a commit,
192  * so before we call here everything must be consistently dirtied against
193  * this transaction.
194  */
195  int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
196                                  int nblocks)
197 {
198         int ret;
199
200         /*
201          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
202          * moment, get_block can be called only for blocks inside i_size since
203          * page cache has been already dropped and writes are blocked by
204          * i_mutex. So we can safely drop the i_data_sem here.
205          */
206         BUG_ON(EXT4_JOURNAL(inode) == NULL);
207         jbd_debug(2, "restarting handle %p\n", handle);
208         up_write(&EXT4_I(inode)->i_data_sem);
209         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
210         down_write(&EXT4_I(inode)->i_data_sem);
211
212         return ret;
213 }
214
215 /*
216  * Called at the last iput() if i_nlink is zero.
217  */
218 void ext4_delete_inode(struct inode *inode)
219 {
220         handle_t *handle;
221         int err;
222
223         if (ext4_should_order_data(inode))
224                 ext4_begin_ordered_truncate(inode, 0);
225         truncate_inode_pages(&inode->i_data, 0);
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229
230         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
231         if (IS_ERR(handle)) {
232                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
233                 /*
234                  * If we're going to skip the normal cleanup, we still need to
235                  * make sure that the in-core orphan linked list is properly
236                  * cleaned up.
237                  */
238                 ext4_orphan_del(NULL, inode);
239                 goto no_delete;
240         }
241
242         if (IS_SYNC(inode))
243                 ext4_handle_sync(handle);
244         inode->i_size = 0;
245         err = ext4_mark_inode_dirty(handle, inode);
246         if (err) {
247                 ext4_warning(inode->i_sb, __func__,
248                              "couldn't mark inode dirty (err %d)", err);
249                 goto stop_handle;
250         }
251         if (inode->i_blocks)
252                 ext4_truncate(inode);
253
254         /*
255          * ext4_ext_truncate() doesn't reserve any slop when it
256          * restarts journal transactions; therefore there may not be
257          * enough credits left in the handle to remove the inode from
258          * the orphan list and set the dtime field.
259          */
260         if (!ext4_handle_has_enough_credits(handle, 3)) {
261                 err = ext4_journal_extend(handle, 3);
262                 if (err > 0)
263                         err = ext4_journal_restart(handle, 3);
264                 if (err != 0) {
265                         ext4_warning(inode->i_sb, __func__,
266                                      "couldn't extend journal (err %d)", err);
267                 stop_handle:
268                         ext4_journal_stop(handle);
269                         goto no_delete;
270                 }
271         }
272
273         /*
274          * Kill off the orphan record which ext4_truncate created.
275          * AKPM: I think this can be inside the above `if'.
276          * Note that ext4_orphan_del() has to be able to cope with the
277          * deletion of a non-existent orphan - this is because we don't
278          * know if ext4_truncate() actually created an orphan record.
279          * (Well, we could do this if we need to, but heck - it works)
280          */
281         ext4_orphan_del(handle, inode);
282         EXT4_I(inode)->i_dtime  = get_seconds();
283
284         /*
285          * One subtle ordering requirement: if anything has gone wrong
286          * (transaction abort, IO errors, whatever), then we can still
287          * do these next steps (the fs will already have been marked as
288          * having errors), but we can't free the inode if the mark_dirty
289          * fails.
290          */
291         if (ext4_mark_inode_dirty(handle, inode))
292                 /* If that failed, just do the required in-core inode clear. */
293                 clear_inode(inode);
294         else
295                 ext4_free_inode(handle, inode);
296         ext4_journal_stop(handle);
297         return;
298 no_delete:
299         clear_inode(inode);     /* We must guarantee clearing of inode... */
300 }
301
302 typedef struct {
303         __le32  *p;
304         __le32  key;
305         struct buffer_head *bh;
306 } Indirect;
307
308 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
309 {
310         p->key = *(p->p = v);
311         p->bh = bh;
312 }
313
314 /**
315  *      ext4_block_to_path - parse the block number into array of offsets
316  *      @inode: inode in question (we are only interested in its superblock)
317  *      @i_block: block number to be parsed
318  *      @offsets: array to store the offsets in
319  *      @boundary: set this non-zero if the referred-to block is likely to be
320  *             followed (on disk) by an indirect block.
321  *
322  *      To store the locations of file's data ext4 uses a data structure common
323  *      for UNIX filesystems - tree of pointers anchored in the inode, with
324  *      data blocks at leaves and indirect blocks in intermediate nodes.
325  *      This function translates the block number into path in that tree -
326  *      return value is the path length and @offsets[n] is the offset of
327  *      pointer to (n+1)th node in the nth one. If @block is out of range
328  *      (negative or too large) warning is printed and zero returned.
329  *
330  *      Note: function doesn't find node addresses, so no IO is needed. All
331  *      we need to know is the capacity of indirect blocks (taken from the
332  *      inode->i_sb).
333  */
334
335 /*
336  * Portability note: the last comparison (check that we fit into triple
337  * indirect block) is spelled differently, because otherwise on an
338  * architecture with 32-bit longs and 8Kb pages we might get into trouble
339  * if our filesystem had 8Kb blocks. We might use long long, but that would
340  * kill us on x86. Oh, well, at least the sign propagation does not matter -
341  * i_block would have to be negative in the very beginning, so we would not
342  * get there at all.
343  */
344
345 static int ext4_block_to_path(struct inode *inode,
346                               ext4_lblk_t i_block,
347                               ext4_lblk_t offsets[4], int *boundary)
348 {
349         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
350         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
351         const long direct_blocks = EXT4_NDIR_BLOCKS,
352                 indirect_blocks = ptrs,
353                 double_blocks = (1 << (ptrs_bits * 2));
354         int n = 0;
355         int final = 0;
356
357         if (i_block < direct_blocks) {
358                 offsets[n++] = i_block;
359                 final = direct_blocks;
360         } else if ((i_block -= direct_blocks) < indirect_blocks) {
361                 offsets[n++] = EXT4_IND_BLOCK;
362                 offsets[n++] = i_block;
363                 final = ptrs;
364         } else if ((i_block -= indirect_blocks) < double_blocks) {
365                 offsets[n++] = EXT4_DIND_BLOCK;
366                 offsets[n++] = i_block >> ptrs_bits;
367                 offsets[n++] = i_block & (ptrs - 1);
368                 final = ptrs;
369         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
370                 offsets[n++] = EXT4_TIND_BLOCK;
371                 offsets[n++] = i_block >> (ptrs_bits * 2);
372                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
373                 offsets[n++] = i_block & (ptrs - 1);
374                 final = ptrs;
375         } else {
376                 ext4_warning(inode->i_sb, "ext4_block_to_path",
377                              "block %lu > max in inode %lu",
378                              i_block + direct_blocks +
379                              indirect_blocks + double_blocks, inode->i_ino);
380         }
381         if (boundary)
382                 *boundary = final - 1 - (i_block & (ptrs - 1));
383         return n;
384 }
385
386 static int __ext4_check_blockref(const char *function, struct inode *inode,
387                                  __le32 *p, unsigned int max)
388 {
389         __le32 *bref = p;
390         unsigned int blk;
391
392         while (bref < p+max) {
393                 blk = le32_to_cpu(*bref++);
394                 if (blk &&
395                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
396                                                     blk, 1))) {
397                         ext4_error(inode->i_sb, function,
398                                    "invalid block reference %u "
399                                    "in inode #%lu", blk, inode->i_ino);
400                         return -EIO;
401                 }
402         }
403         return 0;
404 }
405
406
407 #define ext4_check_indirect_blockref(inode, bh)                         \
408         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
409                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
410
411 #define ext4_check_inode_blockref(inode)                                \
412         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
413                               EXT4_NDIR_BLOCKS)
414
415 /**
416  *      ext4_get_branch - read the chain of indirect blocks leading to data
417  *      @inode: inode in question
418  *      @depth: depth of the chain (1 - direct pointer, etc.)
419  *      @offsets: offsets of pointers in inode/indirect blocks
420  *      @chain: place to store the result
421  *      @err: here we store the error value
422  *
423  *      Function fills the array of triples <key, p, bh> and returns %NULL
424  *      if everything went OK or the pointer to the last filled triple
425  *      (incomplete one) otherwise. Upon the return chain[i].key contains
426  *      the number of (i+1)-th block in the chain (as it is stored in memory,
427  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
428  *      number (it points into struct inode for i==0 and into the bh->b_data
429  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
430  *      block for i>0 and NULL for i==0. In other words, it holds the block
431  *      numbers of the chain, addresses they were taken from (and where we can
432  *      verify that chain did not change) and buffer_heads hosting these
433  *      numbers.
434  *
435  *      Function stops when it stumbles upon zero pointer (absent block)
436  *              (pointer to last triple returned, *@err == 0)
437  *      or when it gets an IO error reading an indirect block
438  *              (ditto, *@err == -EIO)
439  *      or when it reads all @depth-1 indirect blocks successfully and finds
440  *      the whole chain, all way to the data (returns %NULL, *err == 0).
441  *
442  *      Need to be called with
443  *      down_read(&EXT4_I(inode)->i_data_sem)
444  */
445 static Indirect *ext4_get_branch(struct inode *inode, int depth,
446                                  ext4_lblk_t  *offsets,
447                                  Indirect chain[4], int *err)
448 {
449         struct super_block *sb = inode->i_sb;
450         Indirect *p = chain;
451         struct buffer_head *bh;
452
453         *err = 0;
454         /* i_data is not going away, no lock needed */
455         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
456         if (!p->key)
457                 goto no_block;
458         while (--depth) {
459                 bh = sb_getblk(sb, le32_to_cpu(p->key));
460                 if (unlikely(!bh))
461                         goto failure;
462
463                 if (!bh_uptodate_or_lock(bh)) {
464                         if (bh_submit_read(bh) < 0) {
465                                 put_bh(bh);
466                                 goto failure;
467                         }
468                         /* validate block references */
469                         if (ext4_check_indirect_blockref(inode, bh)) {
470                                 put_bh(bh);
471                                 goto failure;
472                         }
473                 }
474
475                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
476                 /* Reader: end */
477                 if (!p->key)
478                         goto no_block;
479         }
480         return NULL;
481
482 failure:
483         *err = -EIO;
484 no_block:
485         return p;
486 }
487
488 /**
489  *      ext4_find_near - find a place for allocation with sufficient locality
490  *      @inode: owner
491  *      @ind: descriptor of indirect block.
492  *
493  *      This function returns the preferred place for block allocation.
494  *      It is used when heuristic for sequential allocation fails.
495  *      Rules are:
496  *        + if there is a block to the left of our position - allocate near it.
497  *        + if pointer will live in indirect block - allocate near that block.
498  *        + if pointer will live in inode - allocate in the same
499  *          cylinder group.
500  *
501  * In the latter case we colour the starting block by the callers PID to
502  * prevent it from clashing with concurrent allocations for a different inode
503  * in the same block group.   The PID is used here so that functionally related
504  * files will be close-by on-disk.
505  *
506  *      Caller must make sure that @ind is valid and will stay that way.
507  */
508 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
509 {
510         struct ext4_inode_info *ei = EXT4_I(inode);
511         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
512         __le32 *p;
513         ext4_fsblk_t bg_start;
514         ext4_fsblk_t last_block;
515         ext4_grpblk_t colour;
516         ext4_group_t block_group;
517         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
518
519         /* Try to find previous block */
520         for (p = ind->p - 1; p >= start; p--) {
521                 if (*p)
522                         return le32_to_cpu(*p);
523         }
524
525         /* No such thing, so let's try location of indirect block */
526         if (ind->bh)
527                 return ind->bh->b_blocknr;
528
529         /*
530          * It is going to be referred to from the inode itself? OK, just put it
531          * into the same cylinder group then.
532          */
533         block_group = ei->i_block_group;
534         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
535                 block_group &= ~(flex_size-1);
536                 if (S_ISREG(inode->i_mode))
537                         block_group++;
538         }
539         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
540         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
541
542         /*
543          * If we are doing delayed allocation, we don't need take
544          * colour into account.
545          */
546         if (test_opt(inode->i_sb, DELALLOC))
547                 return bg_start;
548
549         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
550                 colour = (current->pid % 16) *
551                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
552         else
553                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
554         return bg_start + colour;
555 }
556
557 /**
558  *      ext4_find_goal - find a preferred place for allocation.
559  *      @inode: owner
560  *      @block:  block we want
561  *      @partial: pointer to the last triple within a chain
562  *
563  *      Normally this function find the preferred place for block allocation,
564  *      returns it.
565  *      Because this is only used for non-extent files, we limit the block nr
566  *      to 32 bits.
567  */
568 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
569                                    Indirect *partial)
570 {
571         ext4_fsblk_t goal;
572
573         /*
574          * XXX need to get goal block from mballoc's data structures
575          */
576
577         goal = ext4_find_near(inode, partial);
578         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
579         return goal;
580 }
581
582 /**
583  *      ext4_blks_to_allocate: Look up the block map and count the number
584  *      of direct blocks need to be allocated for the given branch.
585  *
586  *      @branch: chain of indirect blocks
587  *      @k: number of blocks need for indirect blocks
588  *      @blks: number of data blocks to be mapped.
589  *      @blocks_to_boundary:  the offset in the indirect block
590  *
591  *      return the total number of blocks to be allocate, including the
592  *      direct and indirect blocks.
593  */
594 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
595                                  int blocks_to_boundary)
596 {
597         unsigned int count = 0;
598
599         /*
600          * Simple case, [t,d]Indirect block(s) has not allocated yet
601          * then it's clear blocks on that path have not allocated
602          */
603         if (k > 0) {
604                 /* right now we don't handle cross boundary allocation */
605                 if (blks < blocks_to_boundary + 1)
606                         count += blks;
607                 else
608                         count += blocks_to_boundary + 1;
609                 return count;
610         }
611
612         count++;
613         while (count < blks && count <= blocks_to_boundary &&
614                 le32_to_cpu(*(branch[0].p + count)) == 0) {
615                 count++;
616         }
617         return count;
618 }
619
620 /**
621  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
622  *      @indirect_blks: the number of blocks need to allocate for indirect
623  *                      blocks
624  *
625  *      @new_blocks: on return it will store the new block numbers for
626  *      the indirect blocks(if needed) and the first direct block,
627  *      @blks:  on return it will store the total number of allocated
628  *              direct blocks
629  */
630 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
631                              ext4_lblk_t iblock, ext4_fsblk_t goal,
632                              int indirect_blks, int blks,
633                              ext4_fsblk_t new_blocks[4], int *err)
634 {
635         struct ext4_allocation_request ar;
636         int target, i;
637         unsigned long count = 0, blk_allocated = 0;
638         int index = 0;
639         ext4_fsblk_t current_block = 0;
640         int ret = 0;
641
642         /*
643          * Here we try to allocate the requested multiple blocks at once,
644          * on a best-effort basis.
645          * To build a branch, we should allocate blocks for
646          * the indirect blocks(if not allocated yet), and at least
647          * the first direct block of this branch.  That's the
648          * minimum number of blocks need to allocate(required)
649          */
650         /* first we try to allocate the indirect blocks */
651         target = indirect_blks;
652         while (target > 0) {
653                 count = target;
654                 /* allocating blocks for indirect blocks and direct blocks */
655                 current_block = ext4_new_meta_blocks(handle, inode,
656                                                         goal, &count, err);
657                 if (*err)
658                         goto failed_out;
659
660                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
661
662                 target -= count;
663                 /* allocate blocks for indirect blocks */
664                 while (index < indirect_blks && count) {
665                         new_blocks[index++] = current_block++;
666                         count--;
667                 }
668                 if (count > 0) {
669                         /*
670                          * save the new block number
671                          * for the first direct block
672                          */
673                         new_blocks[index] = current_block;
674                         printk(KERN_INFO "%s returned more blocks than "
675                                                 "requested\n", __func__);
676                         WARN_ON(1);
677                         break;
678                 }
679         }
680
681         target = blks - count ;
682         blk_allocated = count;
683         if (!target)
684                 goto allocated;
685         /* Now allocate data blocks */
686         memset(&ar, 0, sizeof(ar));
687         ar.inode = inode;
688         ar.goal = goal;
689         ar.len = target;
690         ar.logical = iblock;
691         if (S_ISREG(inode->i_mode))
692                 /* enable in-core preallocation only for regular files */
693                 ar.flags = EXT4_MB_HINT_DATA;
694
695         current_block = ext4_mb_new_blocks(handle, &ar, err);
696         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
697
698         if (*err && (target == blks)) {
699                 /*
700                  * if the allocation failed and we didn't allocate
701                  * any blocks before
702                  */
703                 goto failed_out;
704         }
705         if (!*err) {
706                 if (target == blks) {
707                         /*
708                          * save the new block number
709                          * for the first direct block
710                          */
711                         new_blocks[index] = current_block;
712                 }
713                 blk_allocated += ar.len;
714         }
715 allocated:
716         /* total number of blocks allocated for direct blocks */
717         ret = blk_allocated;
718         *err = 0;
719         return ret;
720 failed_out:
721         for (i = 0; i < index; i++)
722                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
723         return ret;
724 }
725
726 /**
727  *      ext4_alloc_branch - allocate and set up a chain of blocks.
728  *      @inode: owner
729  *      @indirect_blks: number of allocated indirect blocks
730  *      @blks: number of allocated direct blocks
731  *      @offsets: offsets (in the blocks) to store the pointers to next.
732  *      @branch: place to store the chain in.
733  *
734  *      This function allocates blocks, zeroes out all but the last one,
735  *      links them into chain and (if we are synchronous) writes them to disk.
736  *      In other words, it prepares a branch that can be spliced onto the
737  *      inode. It stores the information about that chain in the branch[], in
738  *      the same format as ext4_get_branch() would do. We are calling it after
739  *      we had read the existing part of chain and partial points to the last
740  *      triple of that (one with zero ->key). Upon the exit we have the same
741  *      picture as after the successful ext4_get_block(), except that in one
742  *      place chain is disconnected - *branch->p is still zero (we did not
743  *      set the last link), but branch->key contains the number that should
744  *      be placed into *branch->p to fill that gap.
745  *
746  *      If allocation fails we free all blocks we've allocated (and forget
747  *      their buffer_heads) and return the error value the from failed
748  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
749  *      as described above and return 0.
750  */
751 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
752                              ext4_lblk_t iblock, int indirect_blks,
753                              int *blks, ext4_fsblk_t goal,
754                              ext4_lblk_t *offsets, Indirect *branch)
755 {
756         int blocksize = inode->i_sb->s_blocksize;
757         int i, n = 0;
758         int err = 0;
759         struct buffer_head *bh;
760         int num;
761         ext4_fsblk_t new_blocks[4];
762         ext4_fsblk_t current_block;
763
764         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
765                                 *blks, new_blocks, &err);
766         if (err)
767                 return err;
768
769         branch[0].key = cpu_to_le32(new_blocks[0]);
770         /*
771          * metadata blocks and data blocks are allocated.
772          */
773         for (n = 1; n <= indirect_blks;  n++) {
774                 /*
775                  * Get buffer_head for parent block, zero it out
776                  * and set the pointer to new one, then send
777                  * parent to disk.
778                  */
779                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
780                 branch[n].bh = bh;
781                 lock_buffer(bh);
782                 BUFFER_TRACE(bh, "call get_create_access");
783                 err = ext4_journal_get_create_access(handle, bh);
784                 if (err) {
785                         /* Don't brelse(bh) here; it's done in
786                          * ext4_journal_forget() below */
787                         unlock_buffer(bh);
788                         goto failed;
789                 }
790
791                 memset(bh->b_data, 0, blocksize);
792                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
793                 branch[n].key = cpu_to_le32(new_blocks[n]);
794                 *branch[n].p = branch[n].key;
795                 if (n == indirect_blks) {
796                         current_block = new_blocks[n];
797                         /*
798                          * End of chain, update the last new metablock of
799                          * the chain to point to the new allocated
800                          * data blocks numbers
801                          */
802                         for (i = 1; i < num; i++)
803                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
804                 }
805                 BUFFER_TRACE(bh, "marking uptodate");
806                 set_buffer_uptodate(bh);
807                 unlock_buffer(bh);
808
809                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
810                 err = ext4_handle_dirty_metadata(handle, inode, bh);
811                 if (err)
812                         goto failed;
813         }
814         *blks = num;
815         return err;
816 failed:
817         /* Allocation failed, free what we already allocated */
818         for (i = 1; i <= n ; i++) {
819                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
820                 ext4_journal_forget(handle, branch[i].bh);
821         }
822         for (i = 0; i < indirect_blks; i++)
823                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
824
825         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
826
827         return err;
828 }
829
830 /**
831  * ext4_splice_branch - splice the allocated branch onto inode.
832  * @inode: owner
833  * @block: (logical) number of block we are adding
834  * @chain: chain of indirect blocks (with a missing link - see
835  *      ext4_alloc_branch)
836  * @where: location of missing link
837  * @num:   number of indirect blocks we are adding
838  * @blks:  number of direct blocks we are adding
839  *
840  * This function fills the missing link and does all housekeeping needed in
841  * inode (->i_blocks, etc.). In case of success we end up with the full
842  * chain to new block and return 0.
843  */
844 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
845                               ext4_lblk_t block, Indirect *where, int num,
846                               int blks)
847 {
848         int i;
849         int err = 0;
850         ext4_fsblk_t current_block;
851
852         /*
853          * If we're splicing into a [td]indirect block (as opposed to the
854          * inode) then we need to get write access to the [td]indirect block
855          * before the splice.
856          */
857         if (where->bh) {
858                 BUFFER_TRACE(where->bh, "get_write_access");
859                 err = ext4_journal_get_write_access(handle, where->bh);
860                 if (err)
861                         goto err_out;
862         }
863         /* That's it */
864
865         *where->p = where->key;
866
867         /*
868          * Update the host buffer_head or inode to point to more just allocated
869          * direct blocks blocks
870          */
871         if (num == 0 && blks > 1) {
872                 current_block = le32_to_cpu(where->key) + 1;
873                 for (i = 1; i < blks; i++)
874                         *(where->p + i) = cpu_to_le32(current_block++);
875         }
876
877         /* We are done with atomic stuff, now do the rest of housekeeping */
878         /* had we spliced it onto indirect block? */
879         if (where->bh) {
880                 /*
881                  * If we spliced it onto an indirect block, we haven't
882                  * altered the inode.  Note however that if it is being spliced
883                  * onto an indirect block at the very end of the file (the
884                  * file is growing) then we *will* alter the inode to reflect
885                  * the new i_size.  But that is not done here - it is done in
886                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
887                  */
888                 jbd_debug(5, "splicing indirect only\n");
889                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
890                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
891                 if (err)
892                         goto err_out;
893         } else {
894                 /*
895                  * OK, we spliced it into the inode itself on a direct block.
896                  */
897                 ext4_mark_inode_dirty(handle, inode);
898                 jbd_debug(5, "splicing direct\n");
899         }
900         return err;
901
902 err_out:
903         for (i = 1; i <= num; i++) {
904                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
905                 ext4_journal_forget(handle, where[i].bh);
906                 ext4_free_blocks(handle, inode,
907                                         le32_to_cpu(where[i-1].key), 1, 0);
908         }
909         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
910
911         return err;
912 }
913
914 /*
915  * The ext4_ind_get_blocks() function handles non-extents inodes
916  * (i.e., using the traditional indirect/double-indirect i_blocks
917  * scheme) for ext4_get_blocks().
918  *
919  * Allocation strategy is simple: if we have to allocate something, we will
920  * have to go the whole way to leaf. So let's do it before attaching anything
921  * to tree, set linkage between the newborn blocks, write them if sync is
922  * required, recheck the path, free and repeat if check fails, otherwise
923  * set the last missing link (that will protect us from any truncate-generated
924  * removals - all blocks on the path are immune now) and possibly force the
925  * write on the parent block.
926  * That has a nice additional property: no special recovery from the failed
927  * allocations is needed - we simply release blocks and do not touch anything
928  * reachable from inode.
929  *
930  * `handle' can be NULL if create == 0.
931  *
932  * return > 0, # of blocks mapped or allocated.
933  * return = 0, if plain lookup failed.
934  * return < 0, error case.
935  *
936  * The ext4_ind_get_blocks() function should be called with
937  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
938  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
939  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
940  * blocks.
941  */
942 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
943                                ext4_lblk_t iblock, unsigned int maxblocks,
944                                struct buffer_head *bh_result,
945                                int flags)
946 {
947         int err = -EIO;
948         ext4_lblk_t offsets[4];
949         Indirect chain[4];
950         Indirect *partial;
951         ext4_fsblk_t goal;
952         int indirect_blks;
953         int blocks_to_boundary = 0;
954         int depth;
955         int count = 0;
956         ext4_fsblk_t first_block = 0;
957
958         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
959         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
960         depth = ext4_block_to_path(inode, iblock, offsets,
961                                    &blocks_to_boundary);
962
963         if (depth == 0)
964                 goto out;
965
966         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
967
968         /* Simplest case - block found, no allocation needed */
969         if (!partial) {
970                 first_block = le32_to_cpu(chain[depth - 1].key);
971                 clear_buffer_new(bh_result);
972                 count++;
973                 /*map more blocks*/
974                 while (count < maxblocks && count <= blocks_to_boundary) {
975                         ext4_fsblk_t blk;
976
977                         blk = le32_to_cpu(*(chain[depth-1].p + count));
978
979                         if (blk == first_block + count)
980                                 count++;
981                         else
982                                 break;
983                 }
984                 goto got_it;
985         }
986
987         /* Next simple case - plain lookup or failed read of indirect block */
988         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
989                 goto cleanup;
990
991         /*
992          * Okay, we need to do block allocation.
993         */
994         goal = ext4_find_goal(inode, iblock, partial);
995
996         /* the number of blocks need to allocate for [d,t]indirect blocks */
997         indirect_blks = (chain + depth) - partial - 1;
998
999         /*
1000          * Next look up the indirect map to count the totoal number of
1001          * direct blocks to allocate for this branch.
1002          */
1003         count = ext4_blks_to_allocate(partial, indirect_blks,
1004                                         maxblocks, blocks_to_boundary);
1005         /*
1006          * Block out ext4_truncate while we alter the tree
1007          */
1008         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1009                                 &count, goal,
1010                                 offsets + (partial - chain), partial);
1011
1012         /*
1013          * The ext4_splice_branch call will free and forget any buffers
1014          * on the new chain if there is a failure, but that risks using
1015          * up transaction credits, especially for bitmaps where the
1016          * credits cannot be returned.  Can we handle this somehow?  We
1017          * may need to return -EAGAIN upwards in the worst case.  --sct
1018          */
1019         if (!err)
1020                 err = ext4_splice_branch(handle, inode, iblock,
1021                                          partial, indirect_blks, count);
1022         else
1023                 goto cleanup;
1024
1025         set_buffer_new(bh_result);
1026 got_it:
1027         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1028         if (count > blocks_to_boundary)
1029                 set_buffer_boundary(bh_result);
1030         err = count;
1031         /* Clean up and exit */
1032         partial = chain + depth - 1;    /* the whole chain */
1033 cleanup:
1034         while (partial > chain) {
1035                 BUFFER_TRACE(partial->bh, "call brelse");
1036                 brelse(partial->bh);
1037                 partial--;
1038         }
1039         BUFFER_TRACE(bh_result, "returned");
1040 out:
1041         return err;
1042 }
1043
1044 qsize_t ext4_get_reserved_space(struct inode *inode)
1045 {
1046         unsigned long long total;
1047
1048         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1049         total = EXT4_I(inode)->i_reserved_data_blocks +
1050                 EXT4_I(inode)->i_reserved_meta_blocks;
1051         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1052
1053         return total;
1054 }
1055 /*
1056  * Calculate the number of metadata blocks need to reserve
1057  * to allocate @blocks for non extent file based file
1058  */
1059 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1060 {
1061         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1062         int ind_blks, dind_blks, tind_blks;
1063
1064         /* number of new indirect blocks needed */
1065         ind_blks = (blocks + icap - 1) / icap;
1066
1067         dind_blks = (ind_blks + icap - 1) / icap;
1068
1069         tind_blks = 1;
1070
1071         return ind_blks + dind_blks + tind_blks;
1072 }
1073
1074 /*
1075  * Calculate the number of metadata blocks need to reserve
1076  * to allocate given number of blocks
1077  */
1078 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1079 {
1080         if (!blocks)
1081                 return 0;
1082
1083         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1084                 return ext4_ext_calc_metadata_amount(inode, blocks);
1085
1086         return ext4_indirect_calc_metadata_amount(inode, blocks);
1087 }
1088
1089 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1090 {
1091         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092         int total, mdb, mdb_free;
1093
1094         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1095         /* recalculate the number of metablocks still need to be reserved */
1096         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1097         mdb = ext4_calc_metadata_amount(inode, total);
1098
1099         /* figure out how many metablocks to release */
1100         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1101         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1102
1103         if (mdb_free) {
1104                 /* Account for allocated meta_blocks */
1105                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1106
1107                 /* update fs dirty blocks counter */
1108                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1109                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1110                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1111         }
1112
1113         /* update per-inode reservations */
1114         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1115         EXT4_I(inode)->i_reserved_data_blocks -= used;
1116         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1117
1118         /*
1119          * free those over-booking quota for metadata blocks
1120          */
1121         if (mdb_free)
1122                 vfs_dq_release_reservation_block(inode, mdb_free);
1123
1124         /*
1125          * If we have done all the pending block allocations and if
1126          * there aren't any writers on the inode, we can discard the
1127          * inode's preallocations.
1128          */
1129         if (!total && (atomic_read(&inode->i_writecount) == 0))
1130                 ext4_discard_preallocations(inode);
1131 }
1132
1133 static int check_block_validity(struct inode *inode, const char *msg,
1134                                 sector_t logical, sector_t phys, int len)
1135 {
1136         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1137                 ext4_error(inode->i_sb, msg,
1138                            "inode #%lu logical block %llu mapped to %llu "
1139                            "(size %d)", inode->i_ino,
1140                            (unsigned long long) logical,
1141                            (unsigned long long) phys, len);
1142                 return -EIO;
1143         }
1144         return 0;
1145 }
1146
1147 /*
1148  * Return the number of dirty pages in the given inode starting at
1149  * page frame idx.
1150  */
1151 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1152                                     unsigned int max_pages)
1153 {
1154         struct address_space *mapping = inode->i_mapping;
1155         pgoff_t index;
1156         struct pagevec pvec;
1157         pgoff_t num = 0;
1158         int i, nr_pages, done = 0;
1159
1160         if (max_pages == 0)
1161                 return 0;
1162         pagevec_init(&pvec, 0);
1163         while (!done) {
1164                 index = idx;
1165                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1166                                               PAGECACHE_TAG_DIRTY,
1167                                               (pgoff_t)PAGEVEC_SIZE);
1168                 if (nr_pages == 0)
1169                         break;
1170                 for (i = 0; i < nr_pages; i++) {
1171                         struct page *page = pvec.pages[i];
1172                         struct buffer_head *bh, *head;
1173
1174                         lock_page(page);
1175                         if (unlikely(page->mapping != mapping) ||
1176                             !PageDirty(page) ||
1177                             PageWriteback(page) ||
1178                             page->index != idx) {
1179                                 done = 1;
1180                                 unlock_page(page);
1181                                 break;
1182                         }
1183                         head = page_buffers(page);
1184                         bh = head;
1185                         do {
1186                                 if (!buffer_delay(bh) &&
1187                                     !buffer_unwritten(bh)) {
1188                                         done = 1;
1189                                         break;
1190                                 }
1191                         } while ((bh = bh->b_this_page) != head);
1192                         unlock_page(page);
1193                         if (done)
1194                                 break;
1195                         idx++;
1196                         num++;
1197                         if (num >= max_pages)
1198                                 break;
1199                 }
1200                 pagevec_release(&pvec);
1201         }
1202         return num;
1203 }
1204
1205 /*
1206  * The ext4_get_blocks() function tries to look up the requested blocks,
1207  * and returns if the blocks are already mapped.
1208  *
1209  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1210  * and store the allocated blocks in the result buffer head and mark it
1211  * mapped.
1212  *
1213  * If file type is extents based, it will call ext4_ext_get_blocks(),
1214  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1215  * based files
1216  *
1217  * On success, it returns the number of blocks being mapped or allocate.
1218  * if create==0 and the blocks are pre-allocated and uninitialized block,
1219  * the result buffer head is unmapped. If the create ==1, it will make sure
1220  * the buffer head is mapped.
1221  *
1222  * It returns 0 if plain look up failed (blocks have not been allocated), in
1223  * that casem, buffer head is unmapped
1224  *
1225  * It returns the error in case of allocation failure.
1226  */
1227 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1228                     unsigned int max_blocks, struct buffer_head *bh,
1229                     int flags)
1230 {
1231         int retval;
1232
1233         clear_buffer_mapped(bh);
1234         clear_buffer_unwritten(bh);
1235
1236         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1237                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1238                   (unsigned long)block);
1239         /*
1240          * Try to see if we can get the block without requesting a new
1241          * file system block.
1242          */
1243         down_read((&EXT4_I(inode)->i_data_sem));
1244         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1245                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1246                                 bh, 0);
1247         } else {
1248                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1249                                              bh, 0);
1250         }
1251         up_read((&EXT4_I(inode)->i_data_sem));
1252
1253         if (retval > 0 && buffer_mapped(bh)) {
1254                 int ret = check_block_validity(inode, "file system corruption",
1255                                                block, bh->b_blocknr, retval);
1256                 if (ret != 0)
1257                         return ret;
1258         }
1259
1260         /* If it is only a block(s) look up */
1261         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1262                 return retval;
1263
1264         /*
1265          * Returns if the blocks have already allocated
1266          *
1267          * Note that if blocks have been preallocated
1268          * ext4_ext_get_block() returns th create = 0
1269          * with buffer head unmapped.
1270          */
1271         if (retval > 0 && buffer_mapped(bh))
1272                 return retval;
1273
1274         /*
1275          * When we call get_blocks without the create flag, the
1276          * BH_Unwritten flag could have gotten set if the blocks
1277          * requested were part of a uninitialized extent.  We need to
1278          * clear this flag now that we are committed to convert all or
1279          * part of the uninitialized extent to be an initialized
1280          * extent.  This is because we need to avoid the combination
1281          * of BH_Unwritten and BH_Mapped flags being simultaneously
1282          * set on the buffer_head.
1283          */
1284         clear_buffer_unwritten(bh);
1285
1286         /*
1287          * New blocks allocate and/or writing to uninitialized extent
1288          * will possibly result in updating i_data, so we take
1289          * the write lock of i_data_sem, and call get_blocks()
1290          * with create == 1 flag.
1291          */
1292         down_write((&EXT4_I(inode)->i_data_sem));
1293
1294         /*
1295          * if the caller is from delayed allocation writeout path
1296          * we have already reserved fs blocks for allocation
1297          * let the underlying get_block() function know to
1298          * avoid double accounting
1299          */
1300         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1301                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1302         /*
1303          * We need to check for EXT4 here because migrate
1304          * could have changed the inode type in between
1305          */
1306         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1307                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1308                                               bh, flags);
1309         } else {
1310                 retval = ext4_ind_get_blocks(handle, inode, block,
1311                                              max_blocks, bh, flags);
1312
1313                 if (retval > 0 && buffer_new(bh)) {
1314                         /*
1315                          * We allocated new blocks which will result in
1316                          * i_data's format changing.  Force the migrate
1317                          * to fail by clearing migrate flags
1318                          */
1319                         EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1320                 }
1321         }
1322
1323         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1324                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1325
1326         /*
1327          * Update reserved blocks/metadata blocks after successful
1328          * block allocation which had been deferred till now.
1329          */
1330         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1331                 ext4_da_update_reserve_space(inode, retval);
1332
1333         up_write((&EXT4_I(inode)->i_data_sem));
1334         if (retval > 0 && buffer_mapped(bh)) {
1335                 int ret = check_block_validity(inode, "file system "
1336                                                "corruption after allocation",
1337                                                block, bh->b_blocknr, retval);
1338                 if (ret != 0)
1339                         return ret;
1340         }
1341         return retval;
1342 }
1343
1344 /* Maximum number of blocks we map for direct IO at once. */
1345 #define DIO_MAX_BLOCKS 4096
1346
1347 int ext4_get_block(struct inode *inode, sector_t iblock,
1348                    struct buffer_head *bh_result, int create)
1349 {
1350         handle_t *handle = ext4_journal_current_handle();
1351         int ret = 0, started = 0;
1352         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1353         int dio_credits;
1354
1355         if (create && !handle) {
1356                 /* Direct IO write... */
1357                 if (max_blocks > DIO_MAX_BLOCKS)
1358                         max_blocks = DIO_MAX_BLOCKS;
1359                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1360                 handle = ext4_journal_start(inode, dio_credits);
1361                 if (IS_ERR(handle)) {
1362                         ret = PTR_ERR(handle);
1363                         goto out;
1364                 }
1365                 started = 1;
1366         }
1367
1368         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1369                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1370         if (ret > 0) {
1371                 bh_result->b_size = (ret << inode->i_blkbits);
1372                 ret = 0;
1373         }
1374         if (started)
1375                 ext4_journal_stop(handle);
1376 out:
1377         return ret;
1378 }
1379
1380 /*
1381  * `handle' can be NULL if create is zero
1382  */
1383 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1384                                 ext4_lblk_t block, int create, int *errp)
1385 {
1386         struct buffer_head dummy;
1387         int fatal = 0, err;
1388         int flags = 0;
1389
1390         J_ASSERT(handle != NULL || create == 0);
1391
1392         dummy.b_state = 0;
1393         dummy.b_blocknr = -1000;
1394         buffer_trace_init(&dummy.b_history);
1395         if (create)
1396                 flags |= EXT4_GET_BLOCKS_CREATE;
1397         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1398         /*
1399          * ext4_get_blocks() returns number of blocks mapped. 0 in
1400          * case of a HOLE.
1401          */
1402         if (err > 0) {
1403                 if (err > 1)
1404                         WARN_ON(1);
1405                 err = 0;
1406         }
1407         *errp = err;
1408         if (!err && buffer_mapped(&dummy)) {
1409                 struct buffer_head *bh;
1410                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1411                 if (!bh) {
1412                         *errp = -EIO;
1413                         goto err;
1414                 }
1415                 if (buffer_new(&dummy)) {
1416                         J_ASSERT(create != 0);
1417                         J_ASSERT(handle != NULL);
1418
1419                         /*
1420                          * Now that we do not always journal data, we should
1421                          * keep in mind whether this should always journal the
1422                          * new buffer as metadata.  For now, regular file
1423                          * writes use ext4_get_block instead, so it's not a
1424                          * problem.
1425                          */
1426                         lock_buffer(bh);
1427                         BUFFER_TRACE(bh, "call get_create_access");
1428                         fatal = ext4_journal_get_create_access(handle, bh);
1429                         if (!fatal && !buffer_uptodate(bh)) {
1430                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1431                                 set_buffer_uptodate(bh);
1432                         }
1433                         unlock_buffer(bh);
1434                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1435                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1436                         if (!fatal)
1437                                 fatal = err;
1438                 } else {
1439                         BUFFER_TRACE(bh, "not a new buffer");
1440                 }
1441                 if (fatal) {
1442                         *errp = fatal;
1443                         brelse(bh);
1444                         bh = NULL;
1445                 }
1446                 return bh;
1447         }
1448 err:
1449         return NULL;
1450 }
1451
1452 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1453                                ext4_lblk_t block, int create, int *err)
1454 {
1455         struct buffer_head *bh;
1456
1457         bh = ext4_getblk(handle, inode, block, create, err);
1458         if (!bh)
1459                 return bh;
1460         if (buffer_uptodate(bh))
1461                 return bh;
1462         ll_rw_block(READ_META, 1, &bh);
1463         wait_on_buffer(bh);
1464         if (buffer_uptodate(bh))
1465                 return bh;
1466         put_bh(bh);
1467         *err = -EIO;
1468         return NULL;
1469 }
1470
1471 static int walk_page_buffers(handle_t *handle,
1472                              struct buffer_head *head,
1473                              unsigned from,
1474                              unsigned to,
1475                              int *partial,
1476                              int (*fn)(handle_t *handle,
1477                                        struct buffer_head *bh))
1478 {
1479         struct buffer_head *bh;
1480         unsigned block_start, block_end;
1481         unsigned blocksize = head->b_size;
1482         int err, ret = 0;
1483         struct buffer_head *next;
1484
1485         for (bh = head, block_start = 0;
1486              ret == 0 && (bh != head || !block_start);
1487              block_start = block_end, bh = next) {
1488                 next = bh->b_this_page;
1489                 block_end = block_start + blocksize;
1490                 if (block_end <= from || block_start >= to) {
1491                         if (partial && !buffer_uptodate(bh))
1492                                 *partial = 1;
1493                         continue;
1494                 }
1495                 err = (*fn)(handle, bh);
1496                 if (!ret)
1497                         ret = err;
1498         }
1499         return ret;
1500 }
1501
1502 /*
1503  * To preserve ordering, it is essential that the hole instantiation and
1504  * the data write be encapsulated in a single transaction.  We cannot
1505  * close off a transaction and start a new one between the ext4_get_block()
1506  * and the commit_write().  So doing the jbd2_journal_start at the start of
1507  * prepare_write() is the right place.
1508  *
1509  * Also, this function can nest inside ext4_writepage() ->
1510  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1511  * has generated enough buffer credits to do the whole page.  So we won't
1512  * block on the journal in that case, which is good, because the caller may
1513  * be PF_MEMALLOC.
1514  *
1515  * By accident, ext4 can be reentered when a transaction is open via
1516  * quota file writes.  If we were to commit the transaction while thus
1517  * reentered, there can be a deadlock - we would be holding a quota
1518  * lock, and the commit would never complete if another thread had a
1519  * transaction open and was blocking on the quota lock - a ranking
1520  * violation.
1521  *
1522  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1523  * will _not_ run commit under these circumstances because handle->h_ref
1524  * is elevated.  We'll still have enough credits for the tiny quotafile
1525  * write.
1526  */
1527 static int do_journal_get_write_access(handle_t *handle,
1528                                        struct buffer_head *bh)
1529 {
1530         if (!buffer_mapped(bh) || buffer_freed(bh))
1531                 return 0;
1532         return ext4_journal_get_write_access(handle, bh);
1533 }
1534
1535 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1536                             loff_t pos, unsigned len, unsigned flags,
1537                             struct page **pagep, void **fsdata)
1538 {
1539         struct inode *inode = mapping->host;
1540         int ret, needed_blocks;
1541         handle_t *handle;
1542         int retries = 0;
1543         struct page *page;
1544         pgoff_t index;
1545         unsigned from, to;
1546
1547         trace_ext4_write_begin(inode, pos, len, flags);
1548         /*
1549          * Reserve one block more for addition to orphan list in case
1550          * we allocate blocks but write fails for some reason
1551          */
1552         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1553         index = pos >> PAGE_CACHE_SHIFT;
1554         from = pos & (PAGE_CACHE_SIZE - 1);
1555         to = from + len;
1556
1557 retry:
1558         handle = ext4_journal_start(inode, needed_blocks);
1559         if (IS_ERR(handle)) {
1560                 ret = PTR_ERR(handle);
1561                 goto out;
1562         }
1563
1564         /* We cannot recurse into the filesystem as the transaction is already
1565          * started */
1566         flags |= AOP_FLAG_NOFS;
1567
1568         page = grab_cache_page_write_begin(mapping, index, flags);
1569         if (!page) {
1570                 ext4_journal_stop(handle);
1571                 ret = -ENOMEM;
1572                 goto out;
1573         }
1574         *pagep = page;
1575
1576         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1577                                 ext4_get_block);
1578
1579         if (!ret && ext4_should_journal_data(inode)) {
1580                 ret = walk_page_buffers(handle, page_buffers(page),
1581                                 from, to, NULL, do_journal_get_write_access);
1582         }
1583
1584         if (ret) {
1585                 unlock_page(page);
1586                 page_cache_release(page);
1587                 /*
1588                  * block_write_begin may have instantiated a few blocks
1589                  * outside i_size.  Trim these off again. Don't need
1590                  * i_size_read because we hold i_mutex.
1591                  *
1592                  * Add inode to orphan list in case we crash before
1593                  * truncate finishes
1594                  */
1595                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1596                         ext4_orphan_add(handle, inode);
1597
1598                 ext4_journal_stop(handle);
1599                 if (pos + len > inode->i_size) {
1600                         ext4_truncate(inode);
1601                         /*
1602                          * If truncate failed early the inode might
1603                          * still be on the orphan list; we need to
1604                          * make sure the inode is removed from the
1605                          * orphan list in that case.
1606                          */
1607                         if (inode->i_nlink)
1608                                 ext4_orphan_del(NULL, inode);
1609                 }
1610         }
1611
1612         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1613                 goto retry;
1614 out:
1615         return ret;
1616 }
1617
1618 /* For write_end() in data=journal mode */
1619 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1620 {
1621         if (!buffer_mapped(bh) || buffer_freed(bh))
1622                 return 0;
1623         set_buffer_uptodate(bh);
1624         return ext4_handle_dirty_metadata(handle, NULL, bh);
1625 }
1626
1627 static int ext4_generic_write_end(struct file *file,
1628                                   struct address_space *mapping,
1629                                   loff_t pos, unsigned len, unsigned copied,
1630                                   struct page *page, void *fsdata)
1631 {
1632         int i_size_changed = 0;
1633         struct inode *inode = mapping->host;
1634         handle_t *handle = ext4_journal_current_handle();
1635
1636         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1637
1638         /*
1639          * No need to use i_size_read() here, the i_size
1640          * cannot change under us because we hold i_mutex.
1641          *
1642          * But it's important to update i_size while still holding page lock:
1643          * page writeout could otherwise come in and zero beyond i_size.
1644          */
1645         if (pos + copied > inode->i_size) {
1646                 i_size_write(inode, pos + copied);
1647                 i_size_changed = 1;
1648         }
1649
1650         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1651                 /* We need to mark inode dirty even if
1652                  * new_i_size is less that inode->i_size
1653                  * bu greater than i_disksize.(hint delalloc)
1654                  */
1655                 ext4_update_i_disksize(inode, (pos + copied));
1656                 i_size_changed = 1;
1657         }
1658         unlock_page(page);
1659         page_cache_release(page);
1660
1661         /*
1662          * Don't mark the inode dirty under page lock. First, it unnecessarily
1663          * makes the holding time of page lock longer. Second, it forces lock
1664          * ordering of page lock and transaction start for journaling
1665          * filesystems.
1666          */
1667         if (i_size_changed)
1668                 ext4_mark_inode_dirty(handle, inode);
1669
1670         return copied;
1671 }
1672
1673 /*
1674  * We need to pick up the new inode size which generic_commit_write gave us
1675  * `file' can be NULL - eg, when called from page_symlink().
1676  *
1677  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1678  * buffers are managed internally.
1679  */
1680 static int ext4_ordered_write_end(struct file *file,
1681                                   struct address_space *mapping,
1682                                   loff_t pos, unsigned len, unsigned copied,
1683                                   struct page *page, void *fsdata)
1684 {
1685         handle_t *handle = ext4_journal_current_handle();
1686         struct inode *inode = mapping->host;
1687         int ret = 0, ret2;
1688
1689         trace_ext4_ordered_write_end(inode, pos, len, copied);
1690         ret = ext4_jbd2_file_inode(handle, inode);
1691
1692         if (ret == 0) {
1693                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1694                                                         page, fsdata);
1695                 copied = ret2;
1696                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1697                         /* if we have allocated more blocks and copied
1698                          * less. We will have blocks allocated outside
1699                          * inode->i_size. So truncate them
1700                          */
1701                         ext4_orphan_add(handle, inode);
1702                 if (ret2 < 0)
1703                         ret = ret2;
1704         }
1705         ret2 = ext4_journal_stop(handle);
1706         if (!ret)
1707                 ret = ret2;
1708
1709         if (pos + len > inode->i_size) {
1710                 ext4_truncate(inode);
1711                 /*
1712                  * If truncate failed early the inode might still be
1713                  * on the orphan list; we need to make sure the inode
1714                  * is removed from the orphan list in that case.
1715                  */
1716                 if (inode->i_nlink)
1717                         ext4_orphan_del(NULL, inode);
1718         }
1719
1720
1721         return ret ? ret : copied;
1722 }
1723
1724 static int ext4_writeback_write_end(struct file *file,
1725                                     struct address_space *mapping,
1726                                     loff_t pos, unsigned len, unsigned copied,
1727                                     struct page *page, void *fsdata)
1728 {
1729         handle_t *handle = ext4_journal_current_handle();
1730         struct inode *inode = mapping->host;
1731         int ret = 0, ret2;
1732
1733         trace_ext4_writeback_write_end(inode, pos, len, copied);
1734         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1735                                                         page, fsdata);
1736         copied = ret2;
1737         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1738                 /* if we have allocated more blocks and copied
1739                  * less. We will have blocks allocated outside
1740                  * inode->i_size. So truncate them
1741                  */
1742                 ext4_orphan_add(handle, inode);
1743
1744         if (ret2 < 0)
1745                 ret = ret2;
1746
1747         ret2 = ext4_journal_stop(handle);
1748         if (!ret)
1749                 ret = ret2;
1750
1751         if (pos + len > inode->i_size) {
1752                 ext4_truncate(inode);
1753                 /*
1754                  * If truncate failed early the inode might still be
1755                  * on the orphan list; we need to make sure the inode
1756                  * is removed from the orphan list in that case.
1757                  */
1758                 if (inode->i_nlink)
1759                         ext4_orphan_del(NULL, inode);
1760         }
1761
1762         return ret ? ret : copied;
1763 }
1764
1765 static int ext4_journalled_write_end(struct file *file,
1766                                      struct address_space *mapping,
1767                                      loff_t pos, unsigned len, unsigned copied,
1768                                      struct page *page, void *fsdata)
1769 {
1770         handle_t *handle = ext4_journal_current_handle();
1771         struct inode *inode = mapping->host;
1772         int ret = 0, ret2;
1773         int partial = 0;
1774         unsigned from, to;
1775         loff_t new_i_size;
1776
1777         trace_ext4_journalled_write_end(inode, pos, len, copied);
1778         from = pos & (PAGE_CACHE_SIZE - 1);
1779         to = from + len;
1780
1781         if (copied < len) {
1782                 if (!PageUptodate(page))
1783                         copied = 0;
1784                 page_zero_new_buffers(page, from+copied, to);
1785         }
1786
1787         ret = walk_page_buffers(handle, page_buffers(page), from,
1788                                 to, &partial, write_end_fn);
1789         if (!partial)
1790                 SetPageUptodate(page);
1791         new_i_size = pos + copied;
1792         if (new_i_size > inode->i_size)
1793                 i_size_write(inode, pos+copied);
1794         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1795         if (new_i_size > EXT4_I(inode)->i_disksize) {
1796                 ext4_update_i_disksize(inode, new_i_size);
1797                 ret2 = ext4_mark_inode_dirty(handle, inode);
1798                 if (!ret)
1799                         ret = ret2;
1800         }
1801
1802         unlock_page(page);
1803         page_cache_release(page);
1804         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1805                 /* if we have allocated more blocks and copied
1806                  * less. We will have blocks allocated outside
1807                  * inode->i_size. So truncate them
1808                  */
1809                 ext4_orphan_add(handle, inode);
1810
1811         ret2 = ext4_journal_stop(handle);
1812         if (!ret)
1813                 ret = ret2;
1814         if (pos + len > inode->i_size) {
1815                 ext4_truncate(inode);
1816                 /*
1817                  * If truncate failed early the inode might still be
1818                  * on the orphan list; we need to make sure the inode
1819                  * is removed from the orphan list in that case.
1820                  */
1821                 if (inode->i_nlink)
1822                         ext4_orphan_del(NULL, inode);
1823         }
1824
1825         return ret ? ret : copied;
1826 }
1827
1828 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1829 {
1830         int retries = 0;
1831         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1832         unsigned long md_needed, mdblocks, total = 0;
1833
1834         /*
1835          * recalculate the amount of metadata blocks to reserve
1836          * in order to allocate nrblocks
1837          * worse case is one extent per block
1838          */
1839 repeat:
1840         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1841         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1842         mdblocks = ext4_calc_metadata_amount(inode, total);
1843         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1844
1845         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1846         total = md_needed + nrblocks;
1847
1848         /*
1849          * Make quota reservation here to prevent quota overflow
1850          * later. Real quota accounting is done at pages writeout
1851          * time.
1852          */
1853         if (vfs_dq_reserve_block(inode, total)) {
1854                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1855                 return -EDQUOT;
1856         }
1857
1858         if (ext4_claim_free_blocks(sbi, total)) {
1859                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1860                 vfs_dq_release_reservation_block(inode, total);
1861                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1862                         yield();
1863                         goto repeat;
1864                 }
1865                 return -ENOSPC;
1866         }
1867         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1868         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1869
1870         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1871         return 0;       /* success */
1872 }
1873
1874 static void ext4_da_release_space(struct inode *inode, int to_free)
1875 {
1876         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1877         int total, mdb, mdb_free, release;
1878
1879         if (!to_free)
1880                 return;         /* Nothing to release, exit */
1881
1882         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1883
1884         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1885                 /*
1886                  * if there is no reserved blocks, but we try to free some
1887                  * then the counter is messed up somewhere.
1888                  * but since this function is called from invalidate
1889                  * page, it's harmless to return without any action
1890                  */
1891                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1892                             "blocks for inode %lu, but there is no reserved "
1893                             "data blocks\n", to_free, inode->i_ino);
1894                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1895                 return;
1896         }
1897
1898         /* recalculate the number of metablocks still need to be reserved */
1899         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1900         mdb = ext4_calc_metadata_amount(inode, total);
1901
1902         /* figure out how many metablocks to release */
1903         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1904         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1905
1906         release = to_free + mdb_free;
1907
1908         /* update fs dirty blocks counter for truncate case */
1909         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1910
1911         /* update per-inode reservations */
1912         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1913         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1914
1915         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1916         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1917         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1918
1919         vfs_dq_release_reservation_block(inode, release);
1920 }
1921
1922 static void ext4_da_page_release_reservation(struct page *page,
1923                                              unsigned long offset)
1924 {
1925         int to_release = 0;
1926         struct buffer_head *head, *bh;
1927         unsigned int curr_off = 0;
1928
1929         head = page_buffers(page);
1930         bh = head;
1931         do {
1932                 unsigned int next_off = curr_off + bh->b_size;
1933
1934                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1935                         to_release++;
1936                         clear_buffer_delay(bh);
1937                 }
1938                 curr_off = next_off;
1939         } while ((bh = bh->b_this_page) != head);
1940         ext4_da_release_space(page->mapping->host, to_release);
1941 }
1942
1943 /*
1944  * Delayed allocation stuff
1945  */
1946
1947 /*
1948  * mpage_da_submit_io - walks through extent of pages and try to write
1949  * them with writepage() call back
1950  *
1951  * @mpd->inode: inode
1952  * @mpd->first_page: first page of the extent
1953  * @mpd->next_page: page after the last page of the extent
1954  *
1955  * By the time mpage_da_submit_io() is called we expect all blocks
1956  * to be allocated. this may be wrong if allocation failed.
1957  *
1958  * As pages are already locked by write_cache_pages(), we can't use it
1959  */
1960 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1961 {
1962         long pages_skipped;
1963         struct pagevec pvec;
1964         unsigned long index, end;
1965         int ret = 0, err, nr_pages, i;
1966         struct inode *inode = mpd->inode;
1967         struct address_space *mapping = inode->i_mapping;
1968
1969         BUG_ON(mpd->next_page <= mpd->first_page);
1970         /*
1971          * We need to start from the first_page to the next_page - 1
1972          * to make sure we also write the mapped dirty buffer_heads.
1973          * If we look at mpd->b_blocknr we would only be looking
1974          * at the currently mapped buffer_heads.
1975          */
1976         index = mpd->first_page;
1977         end = mpd->next_page - 1;
1978
1979         pagevec_init(&pvec, 0);
1980         while (index <= end) {
1981                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1982                 if (nr_pages == 0)
1983                         break;
1984                 for (i = 0; i < nr_pages; i++) {
1985                         struct page *page = pvec.pages[i];
1986
1987                         index = page->index;
1988                         if (index > end)
1989                                 break;
1990                         index++;
1991
1992                         BUG_ON(!PageLocked(page));
1993                         BUG_ON(PageWriteback(page));
1994
1995                         pages_skipped = mpd->wbc->pages_skipped;
1996                         err = mapping->a_ops->writepage(page, mpd->wbc);
1997                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1998                                 /*
1999                                  * have successfully written the page
2000                                  * without skipping the same
2001                                  */
2002                                 mpd->pages_written++;
2003                         /*
2004                          * In error case, we have to continue because
2005                          * remaining pages are still locked
2006                          * XXX: unlock and re-dirty them?
2007                          */
2008                         if (ret == 0)
2009                                 ret = err;
2010                 }
2011                 pagevec_release(&pvec);
2012         }
2013         return ret;
2014 }
2015
2016 /*
2017  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2018  *
2019  * @mpd->inode - inode to walk through
2020  * @exbh->b_blocknr - first block on a disk
2021  * @exbh->b_size - amount of space in bytes
2022  * @logical - first logical block to start assignment with
2023  *
2024  * the function goes through all passed space and put actual disk
2025  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2026  */
2027 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2028                                  struct buffer_head *exbh)
2029 {
2030         struct inode *inode = mpd->inode;
2031         struct address_space *mapping = inode->i_mapping;
2032         int blocks = exbh->b_size >> inode->i_blkbits;
2033         sector_t pblock = exbh->b_blocknr, cur_logical;
2034         struct buffer_head *head, *bh;
2035         pgoff_t index, end;
2036         struct pagevec pvec;
2037         int nr_pages, i;
2038
2039         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2040         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2041         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2042
2043         pagevec_init(&pvec, 0);
2044
2045         while (index <= end) {
2046                 /* XXX: optimize tail */
2047                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2048                 if (nr_pages == 0)
2049                         break;
2050                 for (i = 0; i < nr_pages; i++) {
2051                         struct page *page = pvec.pages[i];
2052
2053                         index = page->index;
2054                         if (index > end)
2055                                 break;
2056                         index++;
2057
2058                         BUG_ON(!PageLocked(page));
2059                         BUG_ON(PageWriteback(page));
2060                         BUG_ON(!page_has_buffers(page));
2061
2062                         bh = page_buffers(page);
2063                         head = bh;
2064
2065                         /* skip blocks out of the range */
2066                         do {
2067                                 if (cur_logical >= logical)
2068                                         break;
2069                                 cur_logical++;
2070                         } while ((bh = bh->b_this_page) != head);
2071
2072                         do {
2073                                 if (cur_logical >= logical + blocks)
2074                                         break;
2075
2076                                 if (buffer_delay(bh) ||
2077                                                 buffer_unwritten(bh)) {
2078
2079                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2080
2081                                         if (buffer_delay(bh)) {
2082                                                 clear_buffer_delay(bh);
2083                                                 bh->b_blocknr = pblock;
2084                                         } else {
2085                                                 /*
2086                                                  * unwritten already should have
2087                                                  * blocknr assigned. Verify that
2088                                                  */
2089                                                 clear_buffer_unwritten(bh);
2090                                                 BUG_ON(bh->b_blocknr != pblock);
2091                                         }
2092
2093                                 } else if (buffer_mapped(bh))
2094                                         BUG_ON(bh->b_blocknr != pblock);
2095
2096                                 cur_logical++;
2097                                 pblock++;
2098                         } while ((bh = bh->b_this_page) != head);
2099                 }
2100                 pagevec_release(&pvec);
2101         }
2102 }
2103
2104
2105 /*
2106  * __unmap_underlying_blocks - just a helper function to unmap
2107  * set of blocks described by @bh
2108  */
2109 static inline void __unmap_underlying_blocks(struct inode *inode,
2110                                              struct buffer_head *bh)
2111 {
2112         struct block_device *bdev = inode->i_sb->s_bdev;
2113         int blocks, i;
2114
2115         blocks = bh->b_size >> inode->i_blkbits;
2116         for (i = 0; i < blocks; i++)
2117                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2118 }
2119
2120 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2121                                         sector_t logical, long blk_cnt)
2122 {
2123         int nr_pages, i;
2124         pgoff_t index, end;
2125         struct pagevec pvec;
2126         struct inode *inode = mpd->inode;
2127         struct address_space *mapping = inode->i_mapping;
2128
2129         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2130         end   = (logical + blk_cnt - 1) >>
2131                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132         while (index <= end) {
2133                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2134                 if (nr_pages == 0)
2135                         break;
2136                 for (i = 0; i < nr_pages; i++) {
2137                         struct page *page = pvec.pages[i];
2138                         index = page->index;
2139                         if (index > end)
2140                                 break;
2141                         index++;
2142
2143                         BUG_ON(!PageLocked(page));
2144                         BUG_ON(PageWriteback(page));
2145                         block_invalidatepage(page, 0);
2146                         ClearPageUptodate(page);
2147                         unlock_page(page);
2148                 }
2149         }
2150         return;
2151 }
2152
2153 static void ext4_print_free_blocks(struct inode *inode)
2154 {
2155         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2156         printk(KERN_CRIT "Total free blocks count %lld\n",
2157                ext4_count_free_blocks(inode->i_sb));
2158         printk(KERN_CRIT "Free/Dirty block details\n");
2159         printk(KERN_CRIT "free_blocks=%lld\n",
2160                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2161         printk(KERN_CRIT "dirty_blocks=%lld\n",
2162                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2163         printk(KERN_CRIT "Block reservation details\n");
2164         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2165                EXT4_I(inode)->i_reserved_data_blocks);
2166         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2167                EXT4_I(inode)->i_reserved_meta_blocks);
2168         return;
2169 }
2170
2171 /*
2172  * mpage_da_map_blocks - go through given space
2173  *
2174  * @mpd - bh describing space
2175  *
2176  * The function skips space we know is already mapped to disk blocks.
2177  *
2178  */
2179 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2180 {
2181         int err, blks, get_blocks_flags;
2182         struct buffer_head new;
2183         sector_t next = mpd->b_blocknr;
2184         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2185         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2186         handle_t *handle = NULL;
2187
2188         /*
2189          * We consider only non-mapped and non-allocated blocks
2190          */
2191         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2192                 !(mpd->b_state & (1 << BH_Delay)) &&
2193                 !(mpd->b_state & (1 << BH_Unwritten)))
2194                 return 0;
2195
2196         /*
2197          * If we didn't accumulate anything to write simply return
2198          */
2199         if (!mpd->b_size)
2200                 return 0;
2201
2202         handle = ext4_journal_current_handle();
2203         BUG_ON(!handle);
2204
2205         /*
2206          * Call ext4_get_blocks() to allocate any delayed allocation
2207          * blocks, or to convert an uninitialized extent to be
2208          * initialized (in the case where we have written into
2209          * one or more preallocated blocks).
2210          *
2211          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2212          * indicate that we are on the delayed allocation path.  This
2213          * affects functions in many different parts of the allocation
2214          * call path.  This flag exists primarily because we don't
2215          * want to change *many* call functions, so ext4_get_blocks()
2216          * will set the magic i_delalloc_reserved_flag once the
2217          * inode's allocation semaphore is taken.
2218          *
2219          * If the blocks in questions were delalloc blocks, set
2220          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2221          * variables are updated after the blocks have been allocated.
2222          */
2223         new.b_state = 0;
2224         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2225                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2226         if (mpd->b_state & (1 << BH_Delay))
2227                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2228         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2229                                &new, get_blocks_flags);
2230         if (blks < 0) {
2231                 err = blks;
2232                 /*
2233                  * If get block returns with error we simply
2234                  * return. Later writepage will redirty the page and
2235                  * writepages will find the dirty page again
2236                  */
2237                 if (err == -EAGAIN)
2238                         return 0;
2239
2240                 if (err == -ENOSPC &&
2241                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2242                         mpd->retval = err;
2243                         return 0;
2244                 }
2245
2246                 /*
2247                  * get block failure will cause us to loop in
2248                  * writepages, because a_ops->writepage won't be able
2249                  * to make progress. The page will be redirtied by
2250                  * writepage and writepages will again try to write
2251                  * the same.
2252                  */
2253                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2254                          "delayed block allocation failed for inode %lu at "
2255                          "logical offset %llu with max blocks %zd with "
2256                          "error %d\n", mpd->inode->i_ino,
2257                          (unsigned long long) next,
2258                          mpd->b_size >> mpd->inode->i_blkbits, err);
2259                 printk(KERN_CRIT "This should not happen!!  "
2260                        "Data will be lost\n");
2261                 if (err == -ENOSPC) {
2262                         ext4_print_free_blocks(mpd->inode);
2263                 }
2264                 /* invalidate all the pages */
2265                 ext4_da_block_invalidatepages(mpd, next,
2266                                 mpd->b_size >> mpd->inode->i_blkbits);
2267                 return err;
2268         }
2269         BUG_ON(blks == 0);
2270
2271         new.b_size = (blks << mpd->inode->i_blkbits);
2272
2273         if (buffer_new(&new))
2274                 __unmap_underlying_blocks(mpd->inode, &new);
2275
2276         /*
2277          * If blocks are delayed marked, we need to
2278          * put actual blocknr and drop delayed bit
2279          */
2280         if ((mpd->b_state & (1 << BH_Delay)) ||
2281             (mpd->b_state & (1 << BH_Unwritten)))
2282                 mpage_put_bnr_to_bhs(mpd, next, &new);
2283
2284         if (ext4_should_order_data(mpd->inode)) {
2285                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2286                 if (err)
2287                         return err;
2288         }
2289
2290         /*
2291          * Update on-disk size along with block allocation.
2292          */
2293         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2294         if (disksize > i_size_read(mpd->inode))
2295                 disksize = i_size_read(mpd->inode);
2296         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2297                 ext4_update_i_disksize(mpd->inode, disksize);
2298                 return ext4_mark_inode_dirty(handle, mpd->inode);
2299         }
2300
2301         return 0;
2302 }
2303
2304 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2305                 (1 << BH_Delay) | (1 << BH_Unwritten))
2306
2307 /*
2308  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2309  *
2310  * @mpd->lbh - extent of blocks
2311  * @logical - logical number of the block in the file
2312  * @bh - bh of the block (used to access block's state)
2313  *
2314  * the function is used to collect contig. blocks in same state
2315  */
2316 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2317                                    sector_t logical, size_t b_size,
2318                                    unsigned long b_state)
2319 {
2320         sector_t next;
2321         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2322
2323         /* check if thereserved journal credits might overflow */
2324         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2325                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2326                         /*
2327                          * With non-extent format we are limited by the journal
2328                          * credit available.  Total credit needed to insert
2329                          * nrblocks contiguous blocks is dependent on the
2330                          * nrblocks.  So limit nrblocks.
2331                          */
2332                         goto flush_it;
2333                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2334                                 EXT4_MAX_TRANS_DATA) {
2335                         /*
2336                          * Adding the new buffer_head would make it cross the
2337                          * allowed limit for which we have journal credit
2338                          * reserved. So limit the new bh->b_size
2339                          */
2340                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2341                                                 mpd->inode->i_blkbits;
2342                         /* we will do mpage_da_submit_io in the next loop */
2343                 }
2344         }
2345         /*
2346          * First block in the extent
2347          */
2348         if (mpd->b_size == 0) {
2349                 mpd->b_blocknr = logical;
2350                 mpd->b_size = b_size;
2351                 mpd->b_state = b_state & BH_FLAGS;
2352                 return;
2353         }
2354
2355         next = mpd->b_blocknr + nrblocks;
2356         /*
2357          * Can we merge the block to our big extent?
2358          */
2359         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2360                 mpd->b_size += b_size;
2361                 return;
2362         }
2363
2364 flush_it:
2365         /*
2366          * We couldn't merge the block to our extent, so we
2367          * need to flush current  extent and start new one
2368          */
2369         if (mpage_da_map_blocks(mpd) == 0)
2370                 mpage_da_submit_io(mpd);
2371         mpd->io_done = 1;
2372         return;
2373 }
2374
2375 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2376 {
2377         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2378 }
2379
2380 /*
2381  * __mpage_da_writepage - finds extent of pages and blocks
2382  *
2383  * @page: page to consider
2384  * @wbc: not used, we just follow rules
2385  * @data: context
2386  *
2387  * The function finds extents of pages and scan them for all blocks.
2388  */
2389 static int __mpage_da_writepage(struct page *page,
2390                                 struct writeback_control *wbc, void *data)
2391 {
2392         struct mpage_da_data *mpd = data;
2393         struct inode *inode = mpd->inode;
2394         struct buffer_head *bh, *head;
2395         sector_t logical;
2396
2397         if (mpd->io_done) {
2398                 /*
2399                  * Rest of the page in the page_vec
2400                  * redirty then and skip then. We will
2401                  * try to write them again after
2402                  * starting a new transaction
2403                  */
2404                 redirty_page_for_writepage(wbc, page);
2405                 unlock_page(page);
2406                 return MPAGE_DA_EXTENT_TAIL;
2407         }
2408         /*
2409          * Can we merge this page to current extent?
2410          */
2411         if (mpd->next_page != page->index) {
2412                 /*
2413                  * Nope, we can't. So, we map non-allocated blocks
2414                  * and start IO on them using writepage()
2415                  */
2416                 if (mpd->next_page != mpd->first_page) {
2417                         if (mpage_da_map_blocks(mpd) == 0)
2418                                 mpage_da_submit_io(mpd);
2419                         /*
2420                          * skip rest of the page in the page_vec
2421                          */
2422                         mpd->io_done = 1;
2423                         redirty_page_for_writepage(wbc, page);
2424                         unlock_page(page);
2425                         return MPAGE_DA_EXTENT_TAIL;
2426                 }
2427
2428                 /*
2429                  * Start next extent of pages ...
2430                  */
2431                 mpd->first_page = page->index;
2432
2433                 /*
2434                  * ... and blocks
2435                  */
2436                 mpd->b_size = 0;
2437                 mpd->b_state = 0;
2438                 mpd->b_blocknr = 0;
2439         }
2440
2441         mpd->next_page = page->index + 1;
2442         logical = (sector_t) page->index <<
2443                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2444
2445         if (!page_has_buffers(page)) {
2446                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2447                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2448                 if (mpd->io_done)
2449                         return MPAGE_DA_EXTENT_TAIL;
2450         } else {
2451                 /*
2452                  * Page with regular buffer heads, just add all dirty ones
2453                  */
2454                 head = page_buffers(page);
2455                 bh = head;
2456                 do {
2457                         BUG_ON(buffer_locked(bh));
2458                         /*
2459                          * We need to try to allocate
2460                          * unmapped blocks in the same page.
2461                          * Otherwise we won't make progress
2462                          * with the page in ext4_writepage
2463                          */
2464                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2465                                 mpage_add_bh_to_extent(mpd, logical,
2466                                                        bh->b_size,
2467                                                        bh->b_state);
2468                                 if (mpd->io_done)
2469                                         return MPAGE_DA_EXTENT_TAIL;
2470                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2471                                 /*
2472                                  * mapped dirty buffer. We need to update
2473                                  * the b_state because we look at
2474                                  * b_state in mpage_da_map_blocks. We don't
2475                                  * update b_size because if we find an
2476                                  * unmapped buffer_head later we need to
2477                                  * use the b_state flag of that buffer_head.
2478                                  */
2479                                 if (mpd->b_size == 0)
2480                                         mpd->b_state = bh->b_state & BH_FLAGS;
2481                         }
2482                         logical++;
2483                 } while ((bh = bh->b_this_page) != head);
2484         }
2485
2486         return 0;
2487 }
2488
2489 /*
2490  * This is a special get_blocks_t callback which is used by
2491  * ext4_da_write_begin().  It will either return mapped block or
2492  * reserve space for a single block.
2493  *
2494  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2495  * We also have b_blocknr = -1 and b_bdev initialized properly
2496  *
2497  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2498  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2499  * initialized properly.
2500  */
2501 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2502                                   struct buffer_head *bh_result, int create)
2503 {
2504         int ret = 0;
2505         sector_t invalid_block = ~((sector_t) 0xffff);
2506
2507         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2508                 invalid_block = ~0;
2509
2510         BUG_ON(create == 0);
2511         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2512
2513         /*
2514          * first, we need to know whether the block is allocated already
2515          * preallocated blocks are unmapped but should treated
2516          * the same as allocated blocks.
2517          */
2518         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2519         if ((ret == 0) && !buffer_delay(bh_result)) {
2520                 /* the block isn't (pre)allocated yet, let's reserve space */
2521                 /*
2522                  * XXX: __block_prepare_write() unmaps passed block,
2523                  * is it OK?
2524                  */
2525                 ret = ext4_da_reserve_space(inode, 1);
2526                 if (ret)
2527                         /* not enough space to reserve */
2528                         return ret;
2529
2530                 map_bh(bh_result, inode->i_sb, invalid_block);
2531                 set_buffer_new(bh_result);
2532                 set_buffer_delay(bh_result);
2533         } else if (ret > 0) {
2534                 bh_result->b_size = (ret << inode->i_blkbits);
2535                 if (buffer_unwritten(bh_result)) {
2536                         /* A delayed write to unwritten bh should
2537                          * be marked new and mapped.  Mapped ensures
2538                          * that we don't do get_block multiple times
2539                          * when we write to the same offset and new
2540                          * ensures that we do proper zero out for
2541                          * partial write.
2542                          */
2543                         set_buffer_new(bh_result);
2544                         set_buffer_mapped(bh_result);
2545                 }
2546                 ret = 0;
2547         }
2548
2549         return ret;
2550 }
2551
2552 /*
2553  * This function is used as a standard get_block_t calback function
2554  * when there is no desire to allocate any blocks.  It is used as a
2555  * callback function for block_prepare_write(), nobh_writepage(), and
2556  * block_write_full_page().  These functions should only try to map a
2557  * single block at a time.
2558  *
2559  * Since this function doesn't do block allocations even if the caller
2560  * requests it by passing in create=1, it is critically important that
2561  * any caller checks to make sure that any buffer heads are returned
2562  * by this function are either all already mapped or marked for
2563  * delayed allocation before calling nobh_writepage() or
2564  * block_write_full_page().  Otherwise, b_blocknr could be left
2565  * unitialized, and the page write functions will be taken by
2566  * surprise.
2567  */
2568 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2569                                    struct buffer_head *bh_result, int create)
2570 {
2571         int ret = 0;
2572         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2573
2574         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2575
2576         /*
2577          * we don't want to do block allocation in writepage
2578          * so call get_block_wrap with create = 0
2579          */
2580         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2581         if (ret > 0) {
2582                 bh_result->b_size = (ret << inode->i_blkbits);
2583                 ret = 0;
2584         }
2585         return ret;
2586 }
2587
2588 static int bget_one(handle_t *handle, struct buffer_head *bh)
2589 {
2590         get_bh(bh);
2591         return 0;
2592 }
2593
2594 static int bput_one(handle_t *handle, struct buffer_head *bh)
2595 {
2596         put_bh(bh);
2597         return 0;
2598 }
2599
2600 static int __ext4_journalled_writepage(struct page *page,
2601                                        struct writeback_control *wbc,
2602                                        unsigned int len)
2603 {
2604         struct address_space *mapping = page->mapping;
2605         struct inode *inode = mapping->host;
2606         struct buffer_head *page_bufs;
2607         handle_t *handle = NULL;
2608         int ret = 0;
2609         int err;
2610
2611         page_bufs = page_buffers(page);
2612         BUG_ON(!page_bufs);
2613         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2614         /* As soon as we unlock the page, it can go away, but we have
2615          * references to buffers so we are safe */
2616         unlock_page(page);
2617
2618         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2619         if (IS_ERR(handle)) {
2620                 ret = PTR_ERR(handle);
2621                 goto out;
2622         }
2623
2624         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2625                                 do_journal_get_write_access);
2626
2627         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2628                                 write_end_fn);
2629         if (ret == 0)
2630                 ret = err;
2631         err = ext4_journal_stop(handle);
2632         if (!ret)
2633                 ret = err;
2634
2635         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2636         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2637 out:
2638         return ret;
2639 }
2640
2641 /*
2642  * Note that we don't need to start a transaction unless we're journaling data
2643  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2644  * need to file the inode to the transaction's list in ordered mode because if
2645  * we are writing back data added by write(), the inode is already there and if
2646  * we are writing back data modified via mmap(), noone guarantees in which
2647  * transaction the data will hit the disk. In case we are journaling data, we
2648  * cannot start transaction directly because transaction start ranks above page
2649  * lock so we have to do some magic.
2650  *
2651  * This function can get called via...
2652  *   - ext4_da_writepages after taking page lock (have journal handle)
2653  *   - journal_submit_inode_data_buffers (no journal handle)
2654  *   - shrink_page_list via pdflush (no journal handle)
2655  *   - grab_page_cache when doing write_begin (have journal handle)
2656  *
2657  * We don't do any block allocation in this function. If we have page with
2658  * multiple blocks we need to write those buffer_heads that are mapped. This
2659  * is important for mmaped based write. So if we do with blocksize 1K
2660  * truncate(f, 1024);
2661  * a = mmap(f, 0, 4096);
2662  * a[0] = 'a';
2663  * truncate(f, 4096);
2664  * we have in the page first buffer_head mapped via page_mkwrite call back
2665  * but other bufer_heads would be unmapped but dirty(dirty done via the
2666  * do_wp_page). So writepage should write the first block. If we modify
2667  * the mmap area beyond 1024 we will again get a page_fault and the
2668  * page_mkwrite callback will do the block allocation and mark the
2669  * buffer_heads mapped.
2670  *
2671  * We redirty the page if we have any buffer_heads that is either delay or
2672  * unwritten in the page.
2673  *
2674  * We can get recursively called as show below.
2675  *
2676  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2677  *              ext4_writepage()
2678  *
2679  * But since we don't do any block allocation we should not deadlock.
2680  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2681  */
2682 static int ext4_writepage(struct page *page,
2683                           struct writeback_control *wbc)
2684 {
2685         int ret = 0;
2686         loff_t size;
2687         unsigned int len;
2688         struct buffer_head *page_bufs;
2689         struct inode *inode = page->mapping->host;
2690
2691         trace_ext4_writepage(inode, page);
2692         size = i_size_read(inode);
2693         if (page->index == size >> PAGE_CACHE_SHIFT)
2694                 len = size & ~PAGE_CACHE_MASK;
2695         else
2696                 len = PAGE_CACHE_SIZE;
2697
2698         if (page_has_buffers(page)) {
2699                 page_bufs = page_buffers(page);
2700                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2701                                         ext4_bh_delay_or_unwritten)) {
2702                         /*
2703                          * We don't want to do  block allocation
2704                          * So redirty the page and return
2705                          * We may reach here when we do a journal commit
2706                          * via journal_submit_inode_data_buffers.
2707                          * If we don't have mapping block we just ignore
2708                          * them. We can also reach here via shrink_page_list
2709                          */
2710                         redirty_page_for_writepage(wbc, page);
2711                         unlock_page(page);
2712                         return 0;
2713                 }
2714         } else {
2715                 /*
2716                  * The test for page_has_buffers() is subtle:
2717                  * We know the page is dirty but it lost buffers. That means
2718                  * that at some moment in time after write_begin()/write_end()
2719                  * has been called all buffers have been clean and thus they
2720                  * must have been written at least once. So they are all
2721                  * mapped and we can happily proceed with mapping them
2722                  * and writing the page.
2723                  *
2724                  * Try to initialize the buffer_heads and check whether
2725                  * all are mapped and non delay. We don't want to
2726                  * do block allocation here.
2727                  */
2728                 ret = block_prepare_write(page, 0, len,
2729                                           noalloc_get_block_write);
2730                 if (!ret) {
2731                         page_bufs = page_buffers(page);
2732                         /* check whether all are mapped and non delay */
2733                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2734                                                 ext4_bh_delay_or_unwritten)) {
2735                                 redirty_page_for_writepage(wbc, page);
2736                                 unlock_page(page);
2737                                 return 0;
2738                         }
2739                 } else {
2740                         /*
2741                          * We can't do block allocation here
2742                          * so just redity the page and unlock
2743                          * and return
2744                          */
2745                         redirty_page_for_writepage(wbc, page);
2746                         unlock_page(page);
2747                         return 0;
2748                 }
2749                 /* now mark the buffer_heads as dirty and uptodate */
2750                 block_commit_write(page, 0, len);
2751         }
2752
2753         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2754                 /*
2755                  * It's mmapped pagecache.  Add buffers and journal it.  There
2756                  * doesn't seem much point in redirtying the page here.
2757                  */
2758                 ClearPageChecked(page);
2759                 return __ext4_journalled_writepage(page, wbc, len);
2760         }
2761
2762         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2763                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2764         else
2765                 ret = block_write_full_page(page, noalloc_get_block_write,
2766                                             wbc);
2767
2768         return ret;
2769 }
2770
2771 /*
2772  * This is called via ext4_da_writepages() to
2773  * calulate the total number of credits to reserve to fit
2774  * a single extent allocation into a single transaction,
2775  * ext4_da_writpeages() will loop calling this before
2776  * the block allocation.
2777  */
2778
2779 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2780 {
2781         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2782
2783         /*
2784          * With non-extent format the journal credit needed to
2785          * insert nrblocks contiguous block is dependent on
2786          * number of contiguous block. So we will limit
2787          * number of contiguous block to a sane value
2788          */
2789         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2790             (max_blocks > EXT4_MAX_TRANS_DATA))
2791                 max_blocks = EXT4_MAX_TRANS_DATA;
2792
2793         return ext4_chunk_trans_blocks(inode, max_blocks);
2794 }
2795
2796 static int ext4_da_writepages(struct address_space *mapping,
2797                               struct writeback_control *wbc)
2798 {
2799         pgoff_t index;
2800         int range_whole = 0;
2801         handle_t *handle = NULL;
2802         struct mpage_da_data mpd;
2803         struct inode *inode = mapping->host;
2804         int no_nrwrite_index_update;
2805         int pages_written = 0;
2806         long pages_skipped;
2807         unsigned int max_pages;
2808         int range_cyclic, cycled = 1, io_done = 0;
2809         int needed_blocks, ret = 0;
2810         long desired_nr_to_write, nr_to_writebump = 0;
2811         loff_t range_start = wbc->range_start;
2812         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2813
2814         trace_ext4_da_writepages(inode, wbc);
2815
2816         /*
2817          * No pages to write? This is mainly a kludge to avoid starting
2818          * a transaction for special inodes like journal inode on last iput()
2819          * because that could violate lock ordering on umount
2820          */
2821         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2822                 return 0;
2823
2824         /*
2825          * If the filesystem has aborted, it is read-only, so return
2826          * right away instead of dumping stack traces later on that
2827          * will obscure the real source of the problem.  We test
2828          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2829          * the latter could be true if the filesystem is mounted
2830          * read-only, and in that case, ext4_da_writepages should
2831          * *never* be called, so if that ever happens, we would want
2832          * the stack trace.
2833          */
2834         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2835                 return -EROFS;
2836
2837         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2838                 range_whole = 1;
2839
2840         range_cyclic = wbc->range_cyclic;
2841         if (wbc->range_cyclic) {
2842                 index = mapping->writeback_index;
2843                 if (index)
2844                         cycled = 0;
2845                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2846                 wbc->range_end  = LLONG_MAX;
2847                 wbc->range_cyclic = 0;
2848         } else
2849                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2850
2851         /*
2852          * This works around two forms of stupidity.  The first is in
2853          * the writeback code, which caps the maximum number of pages
2854          * written to be 1024 pages.  This is wrong on multiple
2855          * levels; different architectues have a different page size,
2856          * which changes the maximum amount of data which gets
2857          * written.  Secondly, 4 megabytes is way too small.  XFS
2858          * forces this value to be 16 megabytes by multiplying
2859          * nr_to_write parameter by four, and then relies on its
2860          * allocator to allocate larger extents to make them
2861          * contiguous.  Unfortunately this brings us to the second
2862          * stupidity, which is that ext4's mballoc code only allocates
2863          * at most 2048 blocks.  So we force contiguous writes up to
2864          * the number of dirty blocks in the inode, or
2865          * sbi->max_writeback_mb_bump whichever is smaller.
2866          */
2867         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2868         if (!range_cyclic && range_whole)
2869                 desired_nr_to_write = wbc->nr_to_write * 8;
2870         else
2871                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2872                                                            max_pages);
2873         if (desired_nr_to_write > max_pages)
2874                 desired_nr_to_write = max_pages;
2875
2876         if (wbc->nr_to_write < desired_nr_to_write) {
2877                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2878                 wbc->nr_to_write = desired_nr_to_write;
2879         }
2880
2881         mpd.wbc = wbc;
2882         mpd.inode = mapping->host;
2883
2884         /*
2885          * we don't want write_cache_pages to update
2886          * nr_to_write and writeback_index
2887          */
2888         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2889         wbc->no_nrwrite_index_update = 1;
2890         pages_skipped = wbc->pages_skipped;
2891
2892 retry:
2893         while (!ret && wbc->nr_to_write > 0) {
2894
2895                 /*
2896                  * we  insert one extent at a time. So we need
2897                  * credit needed for single extent allocation.
2898                  * journalled mode is currently not supported
2899                  * by delalloc
2900                  */
2901                 BUG_ON(ext4_should_journal_data(inode));
2902                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2903
2904                 /* start a new transaction*/
2905                 handle = ext4_journal_start(inode, needed_blocks);
2906                 if (IS_ERR(handle)) {
2907                         ret = PTR_ERR(handle);
2908                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2909                                "%ld pages, ino %lu; err %d\n", __func__,
2910                                 wbc->nr_to_write, inode->i_ino, ret);
2911                         goto out_writepages;
2912                 }
2913
2914                 /*
2915                  * Now call __mpage_da_writepage to find the next
2916                  * contiguous region of logical blocks that need
2917                  * blocks to be allocated by ext4.  We don't actually
2918                  * submit the blocks for I/O here, even though
2919                  * write_cache_pages thinks it will, and will set the
2920                  * pages as clean for write before calling
2921                  * __mpage_da_writepage().
2922                  */
2923                 mpd.b_size = 0;
2924                 mpd.b_state = 0;
2925                 mpd.b_blocknr = 0;
2926                 mpd.first_page = 0;
2927                 mpd.next_page = 0;
2928                 mpd.io_done = 0;
2929                 mpd.pages_written = 0;
2930                 mpd.retval = 0;
2931                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2932                                         &mpd);
2933                 /*
2934                  * If we have a contigous extent of pages and we
2935                  * haven't done the I/O yet, map the blocks and submit
2936                  * them for I/O.
2937                  */
2938                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2939                         if (mpage_da_map_blocks(&mpd) == 0)
2940                                 mpage_da_submit_io(&mpd);
2941                         mpd.io_done = 1;
2942                         ret = MPAGE_DA_EXTENT_TAIL;
2943                 }
2944                 trace_ext4_da_write_pages(inode, &mpd);
2945                 wbc->nr_to_write -= mpd.pages_written;
2946
2947                 ext4_journal_stop(handle);
2948
2949                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2950                         /* commit the transaction which would
2951                          * free blocks released in the transaction
2952                          * and try again
2953                          */
2954                         jbd2_journal_force_commit_nested(sbi->s_journal);
2955                         wbc->pages_skipped = pages_skipped;
2956                         ret = 0;
2957                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2958                         /*
2959                          * got one extent now try with
2960                          * rest of the pages
2961                          */
2962                         pages_written += mpd.pages_written;
2963                         wbc->pages_skipped = pages_skipped;
2964                         ret = 0;
2965                         io_done = 1;
2966                 } else if (wbc->nr_to_write)
2967                         /*
2968                          * There is no more writeout needed
2969                          * or we requested for a noblocking writeout
2970                          * and we found the device congested
2971                          */
2972                         break;
2973         }
2974         if (!io_done && !cycled) {
2975                 cycled = 1;
2976                 index = 0;
2977                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2978                 wbc->range_end  = mapping->writeback_index - 1;
2979                 goto retry;
2980         }
2981         if (pages_skipped != wbc->pages_skipped)
2982                 ext4_msg(inode->i_sb, KERN_CRIT,
2983                          "This should not happen leaving %s "
2984                          "with nr_to_write = %ld ret = %d\n",
2985                          __func__, wbc->nr_to_write, ret);
2986
2987         /* Update index */
2988         index += pages_written;
2989         wbc->range_cyclic = range_cyclic;
2990         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2991                 /*
2992                  * set the writeback_index so that range_cyclic
2993                  * mode will write it back later
2994                  */
2995                 mapping->writeback_index = index;
2996
2997 out_writepages:
2998         if (!no_nrwrite_index_update)
2999                 wbc->no_nrwrite_index_update = 0;
3000         if (wbc->nr_to_write > nr_to_writebump)
3001                 wbc->nr_to_write -= nr_to_writebump;
3002         wbc->range_start = range_start;
3003         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3004         return ret;
3005 }
3006
3007 #define FALL_BACK_TO_NONDELALLOC 1
3008 static int ext4_nonda_switch(struct super_block *sb)
3009 {
3010         s64 free_blocks, dirty_blocks;
3011         struct ext4_sb_info *sbi = EXT4_SB(sb);
3012
3013         /*
3014          * switch to non delalloc mode if we are running low
3015          * on free block. The free block accounting via percpu
3016          * counters can get slightly wrong with percpu_counter_batch getting
3017          * accumulated on each CPU without updating global counters
3018          * Delalloc need an accurate free block accounting. So switch
3019          * to non delalloc when we are near to error range.
3020          */
3021         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3022         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3023         if (2 * free_blocks < 3 * dirty_blocks ||
3024                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3025                 /*
3026                  * free block count is less that 150% of dirty blocks
3027                  * or free blocks is less that watermark
3028                  */
3029                 return 1;
3030         }
3031         return 0;
3032 }
3033
3034 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3035                                loff_t pos, unsigned len, unsigned flags,
3036                                struct page **pagep, void **fsdata)
3037 {
3038         int ret, retries = 0;
3039         struct page *page;
3040         pgoff_t index;
3041         unsigned from, to;
3042         struct inode *inode = mapping->host;
3043         handle_t *handle;
3044
3045         index = pos >> PAGE_CACHE_SHIFT;
3046         from = pos & (PAGE_CACHE_SIZE - 1);
3047         to = from + len;
3048
3049         if (ext4_nonda_switch(inode->i_sb)) {
3050                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3051                 return ext4_write_begin(file, mapping, pos,
3052                                         len, flags, pagep, fsdata);
3053         }
3054         *fsdata = (void *)0;
3055         trace_ext4_da_write_begin(inode, pos, len, flags);
3056 retry:
3057         /*
3058          * With delayed allocation, we don't log the i_disksize update
3059          * if there is delayed block allocation. But we still need
3060          * to journalling the i_disksize update if writes to the end
3061          * of file which has an already mapped buffer.
3062          */
3063         handle = ext4_journal_start(inode, 1);
3064         if (IS_ERR(handle)) {
3065                 ret = PTR_ERR(handle);
3066                 goto out;
3067         }
3068         /* We cannot recurse into the filesystem as the transaction is already
3069          * started */
3070         flags |= AOP_FLAG_NOFS;
3071
3072         page = grab_cache_page_write_begin(mapping, index, flags);
3073         if (!page) {
3074                 ext4_journal_stop(handle);
3075                 ret = -ENOMEM;
3076                 goto out;
3077         }
3078         *pagep = page;
3079
3080         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3081                                 ext4_da_get_block_prep);
3082         if (ret < 0) {
3083                 unlock_page(page);
3084                 ext4_journal_stop(handle);
3085                 page_cache_release(page);
3086                 /*
3087                  * block_write_begin may have instantiated a few blocks
3088                  * outside i_size.  Trim these off again. Don't need
3089                  * i_size_read because we hold i_mutex.
3090                  */
3091                 if (pos + len > inode->i_size)
3092                         ext4_truncate(inode);
3093         }
3094
3095         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3096                 goto retry;
3097 out:
3098         return ret;
3099 }
3100
3101 /*
3102  * Check if we should update i_disksize
3103  * when write to the end of file but not require block allocation
3104  */
3105 static int ext4_da_should_update_i_disksize(struct page *page,
3106                                             unsigned long offset)
3107 {
3108         struct buffer_head *bh;
3109         struct inode *inode = page->mapping->host;
3110         unsigned int idx;
3111         int i;
3112
3113         bh = page_buffers(page);
3114         idx = offset >> inode->i_blkbits;
3115
3116         for (i = 0; i < idx; i++)
3117                 bh = bh->b_this_page;
3118
3119         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3120                 return 0;
3121         return 1;
3122 }
3123
3124 static int ext4_da_write_end(struct file *file,
3125                              struct address_space *mapping,
3126                              loff_t pos, unsigned len, unsigned copied,
3127                              struct page *page, void *fsdata)
3128 {
3129         struct inode *inode = mapping->host;
3130         int ret = 0, ret2;
3131         handle_t *handle = ext4_journal_current_handle();
3132         loff_t new_i_size;
3133         unsigned long start, end;
3134         int write_mode = (int)(unsigned long)fsdata;
3135
3136         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3137                 if (ext4_should_order_data(inode)) {
3138                         return ext4_ordered_write_end(file, mapping, pos,
3139                                         len, copied, page, fsdata);
3140                 } else if (ext4_should_writeback_data(inode)) {
3141                         return ext4_writeback_write_end(file, mapping, pos,
3142                                         len, copied, page, fsdata);
3143                 } else {
3144                         BUG();
3145                 }
3146         }
3147
3148         trace_ext4_da_write_end(inode, pos, len, copied);
3149         start = pos & (PAGE_CACHE_SIZE - 1);
3150         end = start + copied - 1;
3151
3152         /*
3153          * generic_write_end() will run mark_inode_dirty() if i_size
3154          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3155          * into that.
3156          */
3157
3158         new_i_size = pos + copied;
3159         if (new_i_size > EXT4_I(inode)->i_disksize) {
3160                 if (ext4_da_should_update_i_disksize(page, end)) {
3161                         down_write(&EXT4_I(inode)->i_data_sem);
3162                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3163                                 /*
3164                                  * Updating i_disksize when extending file
3165                                  * without needing block allocation
3166                                  */
3167                                 if (ext4_should_order_data(inode))
3168                                         ret = ext4_jbd2_file_inode(handle,
3169                                                                    inode);
3170
3171                                 EXT4_I(inode)->i_disksize = new_i_size;
3172                         }
3173                         up_write(&EXT4_I(inode)->i_data_sem);
3174                         /* We need to mark inode dirty even if
3175                          * new_i_size is less that inode->i_size
3176                          * bu greater than i_disksize.(hint delalloc)
3177                          */
3178                         ext4_mark_inode_dirty(handle, inode);
3179                 }
3180         }
3181         ret2 = generic_write_end(file, mapping, pos, len, copied,
3182                                                         page, fsdata);
3183         copied = ret2;
3184         if (ret2 < 0)
3185                 ret = ret2;
3186         ret2 = ext4_journal_stop(handle);
3187         if (!ret)
3188                 ret = ret2;
3189
3190         return ret ? ret : copied;
3191 }
3192
3193 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3194 {
3195         /*
3196          * Drop reserved blocks
3197          */
3198         BUG_ON(!PageLocked(page));
3199         if (!page_has_buffers(page))
3200                 goto out;
3201
3202         ext4_da_page_release_reservation(page, offset);
3203
3204 out:
3205         ext4_invalidatepage(page, offset);
3206
3207         return;
3208 }
3209
3210 /*
3211  * Force all delayed allocation blocks to be allocated for a given inode.
3212  */
3213 int ext4_alloc_da_blocks(struct inode *inode)
3214 {
3215         trace_ext4_alloc_da_blocks(inode);
3216
3217         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3218             !EXT4_I(inode)->i_reserved_meta_blocks)
3219                 return 0;
3220
3221         /*
3222          * We do something simple for now.  The filemap_flush() will
3223          * also start triggering a write of the data blocks, which is
3224          * not strictly speaking necessary (and for users of
3225          * laptop_mode, not even desirable).  However, to do otherwise
3226          * would require replicating code paths in:
3227          *
3228          * ext4_da_writepages() ->
3229          *    write_cache_pages() ---> (via passed in callback function)
3230          *        __mpage_da_writepage() -->
3231          *           mpage_add_bh_to_extent()
3232          *           mpage_da_map_blocks()
3233          *
3234          * The problem is that write_cache_pages(), located in
3235          * mm/page-writeback.c, marks pages clean in preparation for
3236          * doing I/O, which is not desirable if we're not planning on
3237          * doing I/O at all.
3238          *
3239          * We could call write_cache_pages(), and then redirty all of
3240          * the pages by calling redirty_page_for_writeback() but that
3241          * would be ugly in the extreme.  So instead we would need to
3242          * replicate parts of the code in the above functions,
3243          * simplifying them becuase we wouldn't actually intend to
3244          * write out the pages, but rather only collect contiguous
3245          * logical block extents, call the multi-block allocator, and
3246          * then update the buffer heads with the block allocations.
3247          *
3248          * For now, though, we'll cheat by calling filemap_flush(),
3249          * which will map the blocks, and start the I/O, but not
3250          * actually wait for the I/O to complete.
3251          */
3252         return filemap_flush(inode->i_mapping);
3253 }
3254
3255 /*
3256  * bmap() is special.  It gets used by applications such as lilo and by
3257  * the swapper to find the on-disk block of a specific piece of data.
3258  *
3259  * Naturally, this is dangerous if the block concerned is still in the
3260  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3261  * filesystem and enables swap, then they may get a nasty shock when the
3262  * data getting swapped to that swapfile suddenly gets overwritten by
3263  * the original zero's written out previously to the journal and
3264  * awaiting writeback in the kernel's buffer cache.
3265  *
3266  * So, if we see any bmap calls here on a modified, data-journaled file,
3267  * take extra steps to flush any blocks which might be in the cache.
3268  */
3269 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3270 {
3271         struct inode *inode = mapping->host;
3272         journal_t *journal;
3273         int err;
3274
3275         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3276                         test_opt(inode->i_sb, DELALLOC)) {
3277                 /*
3278                  * With delalloc we want to sync the file
3279                  * so that we can make sure we allocate
3280                  * blocks for file
3281                  */
3282                 filemap_write_and_wait(mapping);
3283         }
3284
3285         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3286                 /*
3287                  * This is a REALLY heavyweight approach, but the use of
3288                  * bmap on dirty files is expected to be extremely rare:
3289                  * only if we run lilo or swapon on a freshly made file
3290                  * do we expect this to happen.
3291                  *
3292                  * (bmap requires CAP_SYS_RAWIO so this does not
3293                  * represent an unprivileged user DOS attack --- we'd be
3294                  * in trouble if mortal users could trigger this path at
3295                  * will.)
3296                  *
3297                  * NB. EXT4_STATE_JDATA is not set on files other than
3298                  * regular files.  If somebody wants to bmap a directory
3299                  * or symlink and gets confused because the buffer
3300                  * hasn't yet been flushed to disk, they deserve
3301                  * everything they get.
3302                  */
3303
3304                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3305                 journal = EXT4_JOURNAL(inode);
3306                 jbd2_journal_lock_updates(journal);
3307                 err = jbd2_journal_flush(journal);
3308                 jbd2_journal_unlock_updates(journal);
3309
3310                 if (err)
3311                         return 0;
3312         }
3313
3314         return generic_block_bmap(mapping, block, ext4_get_block);
3315 }
3316
3317 static int ext4_readpage(struct file *file, struct page *page)
3318 {
3319         return mpage_readpage(page, ext4_get_block);
3320 }
3321
3322 static int
3323 ext4_readpages(struct file *file, struct address_space *mapping,
3324                 struct list_head *pages, unsigned nr_pages)
3325 {
3326         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3327 }
3328
3329 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3330 {
3331         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3332
3333         /*
3334          * If it's a full truncate we just forget about the pending dirtying
3335          */
3336         if (offset == 0)
3337                 ClearPageChecked(page);
3338
3339         if (journal)
3340                 jbd2_journal_invalidatepage(journal, page, offset);
3341         else
3342                 block_invalidatepage(page, offset);
3343 }
3344
3345 static int ext4_releasepage(struct page *page, gfp_t wait)
3346 {
3347         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3348
3349         WARN_ON(PageChecked(page));
3350         if (!page_has_buffers(page))
3351                 return 0;
3352         if (journal)
3353                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3354         else
3355                 return try_to_free_buffers(page);
3356 }
3357
3358 /*
3359  * If the O_DIRECT write will extend the file then add this inode to the
3360  * orphan list.  So recovery will truncate it back to the original size
3361  * if the machine crashes during the write.
3362  *
3363  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3364  * crashes then stale disk data _may_ be exposed inside the file. But current
3365  * VFS code falls back into buffered path in that case so we are safe.
3366  */
3367 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3368                               const struct iovec *iov, loff_t offset,
3369                               unsigned long nr_segs)
3370 {
3371         struct file *file = iocb->ki_filp;
3372         struct inode *inode = file->f_mapping->host;
3373         struct ext4_inode_info *ei = EXT4_I(inode);
3374         handle_t *handle;
3375         ssize_t ret;
3376         int orphan = 0;
3377         size_t count = iov_length(iov, nr_segs);
3378
3379         if (rw == WRITE) {
3380                 loff_t final_size = offset + count;
3381
3382                 if (final_size > inode->i_size) {
3383                         /* Credits for sb + inode write */
3384                         handle = ext4_journal_start(inode, 2);
3385                         if (IS_ERR(handle)) {
3386                                 ret = PTR_ERR(handle);
3387                                 goto out;
3388                         }
3389                         ret = ext4_orphan_add(handle, inode);
3390                         if (ret) {
3391                                 ext4_journal_stop(handle);
3392                                 goto out;
3393                         }
3394                         orphan = 1;
3395                         ei->i_disksize = inode->i_size;
3396                         ext4_journal_stop(handle);
3397                 }
3398         }
3399
3400         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3401                                  offset, nr_segs,
3402                                  ext4_get_block, NULL);
3403
3404         if (orphan) {
3405                 int err;
3406
3407                 /* Credits for sb + inode write */
3408                 handle = ext4_journal_start(inode, 2);
3409                 if (IS_ERR(handle)) {
3410                         /* This is really bad luck. We've written the data
3411                          * but cannot extend i_size. Bail out and pretend
3412                          * the write failed... */
3413                         ret = PTR_ERR(handle);
3414                         goto out;
3415                 }
3416                 if (inode->i_nlink)
3417                         ext4_orphan_del(handle, inode);
3418                 if (ret > 0) {
3419                         loff_t end = offset + ret;
3420                         if (end > inode->i_size) {
3421                                 ei->i_disksize = end;
3422                                 i_size_write(inode, end);
3423                                 /*
3424                                  * We're going to return a positive `ret'
3425                                  * here due to non-zero-length I/O, so there's
3426                                  * no way of reporting error returns from
3427                                  * ext4_mark_inode_dirty() to userspace.  So
3428                                  * ignore it.
3429                                  */
3430                                 ext4_mark_inode_dirty(handle, inode);
3431                         }
3432                 }
3433                 err = ext4_journal_stop(handle);
3434                 if (ret == 0)
3435                         ret = err;
3436         }
3437 out:
3438         return ret;
3439 }
3440
3441 /*
3442  * Pages can be marked dirty completely asynchronously from ext4's journalling
3443  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3444  * much here because ->set_page_dirty is called under VFS locks.  The page is
3445  * not necessarily locked.
3446  *
3447  * We cannot just dirty the page and leave attached buffers clean, because the
3448  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3449  * or jbddirty because all the journalling code will explode.
3450  *
3451  * So what we do is to mark the page "pending dirty" and next time writepage
3452  * is called, propagate that into the buffers appropriately.
3453  */
3454 static int ext4_journalled_set_page_dirty(struct page *page)
3455 {
3456         SetPageChecked(page);
3457         return __set_page_dirty_nobuffers(page);
3458 }
3459
3460 static const struct address_space_operations ext4_ordered_aops = {
3461         .readpage               = ext4_readpage,
3462         .readpages              = ext4_readpages,
3463         .writepage              = ext4_writepage,
3464         .sync_page              = block_sync_page,
3465         .write_begin            = ext4_write_begin,
3466         .write_end              = ext4_ordered_write_end,
3467         .bmap                   = ext4_bmap,
3468         .invalidatepage         = ext4_invalidatepage,
3469         .releasepage            = ext4_releasepage,
3470         .direct_IO              = ext4_direct_IO,
3471         .migratepage            = buffer_migrate_page,
3472         .is_partially_uptodate  = block_is_partially_uptodate,
3473         .error_remove_page      = generic_error_remove_page,
3474 };
3475
3476 static const struct address_space_operations ext4_writeback_aops = {
3477         .readpage               = ext4_readpage,
3478         .readpages              = ext4_readpages,
3479         .writepage              = ext4_writepage,
3480         .sync_page              = block_sync_page,
3481         .write_begin            = ext4_write_begin,
3482         .write_end              = ext4_writeback_write_end,
3483         .bmap                   = ext4_bmap,
3484         .invalidatepage         = ext4_invalidatepage,
3485         .releasepage            = ext4_releasepage,
3486         .direct_IO              = ext4_direct_IO,
3487         .migratepage            = buffer_migrate_page,
3488         .is_partially_uptodate  = block_is_partially_uptodate,
3489         .error_remove_page      = generic_error_remove_page,
3490 };
3491
3492 static const struct address_space_operations ext4_journalled_aops = {
3493         .readpage               = ext4_readpage,
3494         .readpages              = ext4_readpages,
3495         .writepage              = ext4_writepage,
3496         .sync_page              = block_sync_page,
3497         .write_begin            = ext4_write_begin,
3498         .write_end              = ext4_journalled_write_end,
3499         .set_page_dirty         = ext4_journalled_set_page_dirty,
3500         .bmap                   = ext4_bmap,
3501         .invalidatepage         = ext4_invalidatepage,
3502         .releasepage            = ext4_releasepage,
3503         .is_partially_uptodate  = block_is_partially_uptodate,
3504         .error_remove_page      = generic_error_remove_page,
3505 };
3506
3507 static const struct address_space_operations ext4_da_aops = {
3508         .readpage               = ext4_readpage,
3509         .readpages              = ext4_readpages,
3510         .writepage              = ext4_writepage,
3511         .writepages             = ext4_da_writepages,
3512         .sync_page              = block_sync_page,
3513         .write_begin            = ext4_da_write_begin,
3514         .write_end              = ext4_da_write_end,
3515         .bmap                   = ext4_bmap,
3516         .invalidatepage         = ext4_da_invalidatepage,
3517         .releasepage            = ext4_releasepage,
3518         .direct_IO              = ext4_direct_IO,
3519         .migratepage            = buffer_migrate_page,
3520         .is_partially_uptodate  = block_is_partially_uptodate,
3521         .error_remove_page      = generic_error_remove_page,
3522 };
3523
3524 void ext4_set_aops(struct inode *inode)
3525 {
3526         if (ext4_should_order_data(inode) &&
3527                 test_opt(inode->i_sb, DELALLOC))
3528                 inode->i_mapping->a_ops = &ext4_da_aops;
3529         else if (ext4_should_order_data(inode))
3530                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3531         else if (ext4_should_writeback_data(inode) &&
3532                  test_opt(inode->i_sb, DELALLOC))
3533                 inode->i_mapping->a_ops = &ext4_da_aops;
3534         else if (ext4_should_writeback_data(inode))
3535                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3536         else
3537                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3538 }
3539
3540 /*
3541  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3542  * up to the end of the block which corresponds to `from'.
3543  * This required during truncate. We need to physically zero the tail end
3544  * of that block so it doesn't yield old data if the file is later grown.
3545  */
3546 int ext4_block_truncate_page(handle_t *handle,
3547                 struct address_space *mapping, loff_t from)
3548 {
3549         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3550         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3551         unsigned blocksize, length, pos;
3552         ext4_lblk_t iblock;
3553         struct inode *inode = mapping->host;
3554         struct buffer_head *bh;
3555         struct page *page;
3556         int err = 0;
3557
3558         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3559                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3560         if (!page)
3561                 return -EINVAL;
3562
3563         blocksize = inode->i_sb->s_blocksize;
3564         length = blocksize - (offset & (blocksize - 1));
3565         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3566
3567         /*
3568          * For "nobh" option,  we can only work if we don't need to
3569          * read-in the page - otherwise we create buffers to do the IO.
3570          */
3571         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3572              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3573                 zero_user(page, offset, length);
3574                 set_page_dirty(page);
3575                 goto unlock;
3576         }
3577
3578         if (!page_has_buffers(page))
3579                 create_empty_buffers(page, blocksize, 0);
3580
3581         /* Find the buffer that contains "offset" */
3582         bh = page_buffers(page);
3583         pos = blocksize;
3584         while (offset >= pos) {
3585                 bh = bh->b_this_page;
3586                 iblock++;
3587                 pos += blocksize;
3588         }
3589
3590         err = 0;
3591         if (buffer_freed(bh)) {
3592                 BUFFER_TRACE(bh, "freed: skip");
3593                 goto unlock;
3594         }
3595
3596         if (!buffer_mapped(bh)) {
3597                 BUFFER_TRACE(bh, "unmapped");
3598                 ext4_get_block(inode, iblock, bh, 0);
3599                 /* unmapped? It's a hole - nothing to do */
3600                 if (!buffer_mapped(bh)) {
3601                         BUFFER_TRACE(bh, "still unmapped");
3602                         goto unlock;
3603                 }
3604         }
3605
3606         /* Ok, it's mapped. Make sure it's up-to-date */
3607         if (PageUptodate(page))
3608                 set_buffer_uptodate(bh);
3609
3610         if (!buffer_uptodate(bh)) {
3611                 err = -EIO;
3612                 ll_rw_block(READ, 1, &bh);
3613                 wait_on_buffer(bh);
3614                 /* Uhhuh. Read error. Complain and punt. */
3615                 if (!buffer_uptodate(bh))
3616                         goto unlock;
3617         }
3618
3619         if (ext4_should_journal_data(inode)) {
3620                 BUFFER_TRACE(bh, "get write access");
3621                 err = ext4_journal_get_write_access(handle, bh);
3622                 if (err)
3623                         goto unlock;
3624         }
3625
3626         zero_user(page, offset, length);
3627
3628         BUFFER_TRACE(bh, "zeroed end of block");
3629
3630         err = 0;
3631         if (ext4_should_journal_data(inode)) {
3632                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3633         } else {
3634                 if (ext4_should_order_data(inode))
3635                         err = ext4_jbd2_file_inode(handle, inode);
3636                 mark_buffer_dirty(bh);
3637         }
3638
3639 unlock:
3640         unlock_page(page);
3641         page_cache_release(page);
3642         return err;
3643 }
3644
3645 /*
3646  * Probably it should be a library function... search for first non-zero word
3647  * or memcmp with zero_page, whatever is better for particular architecture.
3648  * Linus?
3649  */
3650 static inline int all_zeroes(__le32 *p, __le32 *q)
3651 {
3652         while (p < q)
3653                 if (*p++)
3654                         return 0;
3655         return 1;
3656 }
3657
3658 /**
3659  *      ext4_find_shared - find the indirect blocks for partial truncation.
3660  *      @inode:   inode in question
3661  *      @depth:   depth of the affected branch
3662  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3663  *      @chain:   place to store the pointers to partial indirect blocks
3664  *      @top:     place to the (detached) top of branch
3665  *
3666  *      This is a helper function used by ext4_truncate().
3667  *
3668  *      When we do truncate() we may have to clean the ends of several
3669  *      indirect blocks but leave the blocks themselves alive. Block is
3670  *      partially truncated if some data below the new i_size is refered
3671  *      from it (and it is on the path to the first completely truncated
3672  *      data block, indeed).  We have to free the top of that path along
3673  *      with everything to the right of the path. Since no allocation
3674  *      past the truncation point is possible until ext4_truncate()
3675  *      finishes, we may safely do the latter, but top of branch may
3676  *      require special attention - pageout below the truncation point
3677  *      might try to populate it.
3678  *
3679  *      We atomically detach the top of branch from the tree, store the
3680  *      block number of its root in *@top, pointers to buffer_heads of
3681  *      partially truncated blocks - in @chain[].bh and pointers to
3682  *      their last elements that should not be removed - in
3683  *      @chain[].p. Return value is the pointer to last filled element
3684  *      of @chain.
3685  *
3686  *      The work left to caller to do the actual freeing of subtrees:
3687  *              a) free the subtree starting from *@top
3688  *              b) free the subtrees whose roots are stored in
3689  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3690  *              c) free the subtrees growing from the inode past the @chain[0].
3691  *                      (no partially truncated stuff there).  */
3692
3693 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3694                                   ext4_lblk_t offsets[4], Indirect chain[4],
3695                                   __le32 *top)
3696 {
3697         Indirect *partial, *p;
3698         int k, err;
3699
3700         *top = 0;
3701         /* Make k index the deepest non-null offest + 1 */
3702         for (k = depth; k > 1 && !offsets[k-1]; k--)
3703                 ;
3704         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3705         /* Writer: pointers */
3706         if (!partial)
3707                 partial = chain + k-1;
3708         /*
3709          * If the branch acquired continuation since we've looked at it -
3710          * fine, it should all survive and (new) top doesn't belong to us.
3711          */
3712         if (!partial->key && *partial->p)
3713                 /* Writer: end */
3714                 goto no_top;
3715         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3716                 ;
3717         /*
3718          * OK, we've found the last block that must survive. The rest of our
3719          * branch should be detached before unlocking. However, if that rest
3720          * of branch is all ours and does not grow immediately from the inode
3721          * it's easier to cheat and just decrement partial->p.
3722          */
3723         if (p == chain + k - 1 && p > chain) {
3724                 p->p--;
3725         } else {
3726                 *top = *p->p;
3727                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3728 #if 0
3729                 *p->p = 0;
3730 #endif
3731         }
3732         /* Writer: end */
3733
3734         while (partial > p) {
3735                 brelse(partial->bh);
3736                 partial--;
3737         }
3738 no_top:
3739         return partial;
3740 }
3741
3742 /*
3743  * Zero a number of block pointers in either an inode or an indirect block.
3744  * If we restart the transaction we must again get write access to the
3745  * indirect block for further modification.
3746  *
3747  * We release `count' blocks on disk, but (last - first) may be greater
3748  * than `count' because there can be holes in there.
3749  */
3750 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3751                               struct buffer_head *bh,
3752                               ext4_fsblk_t block_to_free,
3753                               unsigned long count, __le32 *first,
3754                               __le32 *last)
3755 {
3756         __le32 *p;
3757         if (try_to_extend_transaction(handle, inode)) {
3758                 if (bh) {
3759                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3760                         ext4_handle_dirty_metadata(handle, inode, bh);
3761                 }
3762                 ext4_mark_inode_dirty(handle, inode);
3763                 ext4_truncate_restart_trans(handle, inode,
3764                                             blocks_for_truncate(inode));
3765                 if (bh) {
3766                         BUFFER_TRACE(bh, "retaking write access");
3767                         ext4_journal_get_write_access(handle, bh);
3768                 }
3769         }
3770
3771         /*
3772          * Any buffers which are on the journal will be in memory. We
3773          * find them on the hash table so jbd2_journal_revoke() will
3774          * run jbd2_journal_forget() on them.  We've already detached
3775          * each block from the file, so bforget() in
3776          * jbd2_journal_forget() should be safe.
3777          *
3778          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3779          */
3780         for (p = first; p < last; p++) {
3781                 u32 nr = le32_to_cpu(*p);
3782                 if (nr) {
3783                         struct buffer_head *tbh;
3784
3785                         *p = 0;
3786                         tbh = sb_find_get_block(inode->i_sb, nr);
3787                         ext4_forget(handle, 0, inode, tbh, nr);
3788                 }
3789         }
3790
3791         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3792 }
3793
3794 /**
3795  * ext4_free_data - free a list of data blocks
3796  * @handle:     handle for this transaction
3797  * @inode:      inode we are dealing with
3798  * @this_bh:    indirect buffer_head which contains *@first and *@last
3799  * @first:      array of block numbers
3800  * @last:       points immediately past the end of array
3801  *
3802  * We are freeing all blocks refered from that array (numbers are stored as
3803  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3804  *
3805  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3806  * blocks are contiguous then releasing them at one time will only affect one
3807  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3808  * actually use a lot of journal space.
3809  *
3810  * @this_bh will be %NULL if @first and @last point into the inode's direct
3811  * block pointers.
3812  */
3813 static void ext4_free_data(handle_t *handle, struct inode *inode,
3814                            struct buffer_head *this_bh,
3815                            __le32 *first, __le32 *last)
3816 {
3817         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3818         unsigned long count = 0;            /* Number of blocks in the run */
3819         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3820                                                corresponding to
3821                                                block_to_free */
3822         ext4_fsblk_t nr;                    /* Current block # */
3823         __le32 *p;                          /* Pointer into inode/ind
3824                                                for current block */
3825         int err;
3826
3827         if (this_bh) {                          /* For indirect block */
3828                 BUFFER_TRACE(this_bh, "get_write_access");
3829                 err = ext4_journal_get_write_access(handle, this_bh);
3830                 /* Important: if we can't update the indirect pointers
3831                  * to the blocks, we can't free them. */
3832                 if (err)
3833                         return;
3834         }
3835
3836         for (p = first; p < last; p++) {
3837                 nr = le32_to_cpu(*p);
3838                 if (nr) {
3839                         /* accumulate blocks to free if they're contiguous */
3840                         if (count == 0) {
3841                                 block_to_free = nr;
3842                                 block_to_free_p = p;
3843                                 count = 1;
3844                         } else if (nr == block_to_free + count) {
3845                                 count++;
3846                         } else {
3847                                 ext4_clear_blocks(handle, inode, this_bh,
3848                                                   block_to_free,
3849                                                   count, block_to_free_p, p);
3850                                 block_to_free = nr;
3851                                 block_to_free_p = p;
3852                                 count = 1;
3853                         }
3854                 }
3855         }
3856
3857         if (count > 0)
3858                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3859                                   count, block_to_free_p, p);
3860
3861         if (this_bh) {
3862                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3863
3864                 /*
3865                  * The buffer head should have an attached journal head at this
3866                  * point. However, if the data is corrupted and an indirect
3867                  * block pointed to itself, it would have been detached when
3868                  * the block was cleared. Check for this instead of OOPSing.
3869                  */
3870                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3871                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3872                 else
3873                         ext4_error(inode->i_sb, __func__,
3874                                    "circular indirect block detected, "
3875                                    "inode=%lu, block=%llu",
3876                                    inode->i_ino,
3877                                    (unsigned long long) this_bh->b_blocknr);
3878         }
3879 }
3880
3881 /**
3882  *      ext4_free_branches - free an array of branches
3883  *      @handle: JBD handle for this transaction
3884  *      @inode: inode we are dealing with
3885  *      @parent_bh: the buffer_head which contains *@first and *@last
3886  *      @first: array of block numbers
3887  *      @last:  pointer immediately past the end of array
3888  *      @depth: depth of the branches to free
3889  *
3890  *      We are freeing all blocks refered from these branches (numbers are
3891  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3892  *      appropriately.
3893  */
3894 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3895                                struct buffer_head *parent_bh,
3896                                __le32 *first, __le32 *last, int depth)
3897 {
3898         ext4_fsblk_t nr;
3899         __le32 *p;
3900
3901         if (ext4_handle_is_aborted(handle))
3902                 return;
3903
3904         if (depth--) {
3905                 struct buffer_head *bh;
3906                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3907                 p = last;
3908                 while (--p >= first) {
3909                         nr = le32_to_cpu(*p);
3910                         if (!nr)
3911                                 continue;               /* A hole */
3912
3913                         /* Go read the buffer for the next level down */
3914                         bh = sb_bread(inode->i_sb, nr);
3915
3916                         /*
3917                          * A read failure? Report error and clear slot
3918                          * (should be rare).
3919                          */
3920                         if (!bh) {
3921                                 ext4_error(inode->i_sb, "ext4_free_branches",
3922                                            "Read failure, inode=%lu, block=%llu",
3923                                            inode->i_ino, nr);
3924                                 continue;
3925                         }
3926
3927                         /* This zaps the entire block.  Bottom up. */
3928                         BUFFER_TRACE(bh, "free child branches");
3929                         ext4_free_branches(handle, inode, bh,
3930                                         (__le32 *) bh->b_data,
3931                                         (__le32 *) bh->b_data + addr_per_block,
3932                                         depth);
3933
3934                         /*
3935                          * We've probably journalled the indirect block several
3936                          * times during the truncate.  But it's no longer
3937                          * needed and we now drop it from the transaction via
3938                          * jbd2_journal_revoke().
3939                          *
3940                          * That's easy if it's exclusively part of this
3941                          * transaction.  But if it's part of the committing
3942                          * transaction then jbd2_journal_forget() will simply
3943                          * brelse() it.  That means that if the underlying
3944                          * block is reallocated in ext4_get_block(),
3945                          * unmap_underlying_metadata() will find this block
3946                          * and will try to get rid of it.  damn, damn.
3947                          *
3948                          * If this block has already been committed to the
3949                          * journal, a revoke record will be written.  And
3950                          * revoke records must be emitted *before* clearing
3951                          * this block's bit in the bitmaps.
3952                          */
3953                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3954
3955                         /*
3956                          * Everything below this this pointer has been
3957                          * released.  Now let this top-of-subtree go.
3958                          *
3959                          * We want the freeing of this indirect block to be
3960                          * atomic in the journal with the updating of the
3961                          * bitmap block which owns it.  So make some room in
3962                          * the journal.
3963                          *
3964                          * We zero the parent pointer *after* freeing its
3965                          * pointee in the bitmaps, so if extend_transaction()
3966                          * for some reason fails to put the bitmap changes and
3967                          * the release into the same transaction, recovery
3968                          * will merely complain about releasing a free block,
3969                          * rather than leaking blocks.
3970                          */
3971                         if (ext4_handle_is_aborted(handle))
3972                                 return;
3973                         if (try_to_extend_transaction(handle, inode)) {
3974                                 ext4_mark_inode_dirty(handle, inode);
3975                                 ext4_truncate_restart_trans(handle, inode,
3976                                             blocks_for_truncate(inode));
3977                         }
3978
3979                         ext4_free_blocks(handle, inode, nr, 1, 1);
3980
3981                         if (parent_bh) {
3982                                 /*
3983                                  * The block which we have just freed is
3984                                  * pointed to by an indirect block: journal it
3985                                  */
3986                                 BUFFER_TRACE(parent_bh, "get_write_access");
3987                                 if (!ext4_journal_get_write_access(handle,
3988                                                                    parent_bh)){
3989                                         *p = 0;
3990                                         BUFFER_TRACE(parent_bh,
3991                                         "call ext4_handle_dirty_metadata");
3992                                         ext4_handle_dirty_metadata(handle,
3993                                                                    inode,
3994                                                                    parent_bh);
3995                                 }
3996                         }
3997                 }
3998         } else {
3999                 /* We have reached the bottom of the tree. */
4000                 BUFFER_TRACE(parent_bh, "free data blocks");
4001                 ext4_free_data(handle, inode, parent_bh, first, last);
4002         }
4003 }
4004
4005 int ext4_can_truncate(struct inode *inode)
4006 {
4007         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4008                 return 0;
4009         if (S_ISREG(inode->i_mode))
4010                 return 1;
4011         if (S_ISDIR(inode->i_mode))
4012                 return 1;
4013         if (S_ISLNK(inode->i_mode))
4014                 return !ext4_inode_is_fast_symlink(inode);
4015         return 0;
4016 }
4017
4018 /*
4019  * ext4_truncate()
4020  *
4021  * We block out ext4_get_block() block instantiations across the entire
4022  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4023  * simultaneously on behalf of the same inode.
4024  *
4025  * As we work through the truncate and commmit bits of it to the journal there
4026  * is one core, guiding principle: the file's tree must always be consistent on
4027  * disk.  We must be able to restart the truncate after a crash.
4028  *
4029  * The file's tree may be transiently inconsistent in memory (although it
4030  * probably isn't), but whenever we close off and commit a journal transaction,
4031  * the contents of (the filesystem + the journal) must be consistent and
4032  * restartable.  It's pretty simple, really: bottom up, right to left (although
4033  * left-to-right works OK too).
4034  *
4035  * Note that at recovery time, journal replay occurs *before* the restart of
4036  * truncate against the orphan inode list.
4037  *
4038  * The committed inode has the new, desired i_size (which is the same as
4039  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4040  * that this inode's truncate did not complete and it will again call
4041  * ext4_truncate() to have another go.  So there will be instantiated blocks
4042  * to the right of the truncation point in a crashed ext4 filesystem.  But
4043  * that's fine - as long as they are linked from the inode, the post-crash
4044  * ext4_truncate() run will find them and release them.
4045  */
4046 void ext4_truncate(struct inode *inode)
4047 {
4048         handle_t *handle;
4049         struct ext4_inode_info *ei = EXT4_I(inode);
4050         __le32 *i_data = ei->i_data;
4051         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4052         struct address_space *mapping = inode->i_mapping;
4053         ext4_lblk_t offsets[4];
4054         Indirect chain[4];
4055         Indirect *partial;
4056         __le32 nr = 0;
4057         int n;
4058         ext4_lblk_t last_block;
4059         unsigned blocksize = inode->i_sb->s_blocksize;
4060
4061         if (!ext4_can_truncate(inode))
4062                 return;
4063
4064         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4065                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4066
4067         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4068                 ext4_ext_truncate(inode);
4069                 return;
4070         }
4071
4072         handle = start_transaction(inode);
4073         if (IS_ERR(handle))
4074                 return;         /* AKPM: return what? */
4075
4076         last_block = (inode->i_size + blocksize-1)
4077                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4078
4079         if (inode->i_size & (blocksize - 1))
4080                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4081                         goto out_stop;
4082
4083         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4084         if (n == 0)
4085                 goto out_stop;  /* error */
4086
4087         /*
4088          * OK.  This truncate is going to happen.  We add the inode to the
4089          * orphan list, so that if this truncate spans multiple transactions,
4090          * and we crash, we will resume the truncate when the filesystem
4091          * recovers.  It also marks the inode dirty, to catch the new size.
4092          *
4093          * Implication: the file must always be in a sane, consistent
4094          * truncatable state while each transaction commits.
4095          */
4096         if (ext4_orphan_add(handle, inode))
4097                 goto out_stop;
4098
4099         /*
4100          * From here we block out all ext4_get_block() callers who want to
4101          * modify the block allocation tree.
4102          */
4103         down_write(&ei->i_data_sem);
4104
4105         ext4_discard_preallocations(inode);
4106
4107         /*
4108          * The orphan list entry will now protect us from any crash which
4109          * occurs before the truncate completes, so it is now safe to propagate
4110          * the new, shorter inode size (held for now in i_size) into the
4111          * on-disk inode. We do this via i_disksize, which is the value which
4112          * ext4 *really* writes onto the disk inode.
4113          */
4114         ei->i_disksize = inode->i_size;
4115
4116         if (n == 1) {           /* direct blocks */
4117                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4118                                i_data + EXT4_NDIR_BLOCKS);
4119                 goto do_indirects;
4120         }
4121
4122         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4123         /* Kill the top of shared branch (not detached) */
4124         if (nr) {
4125                 if (partial == chain) {
4126                         /* Shared branch grows from the inode */
4127                         ext4_free_branches(handle, inode, NULL,
4128                                            &nr, &nr+1, (chain+n-1) - partial);
4129                         *partial->p = 0;
4130                         /*
4131                          * We mark the inode dirty prior to restart,
4132                          * and prior to stop.  No need for it here.
4133                          */
4134                 } else {
4135                         /* Shared branch grows from an indirect block */
4136                         BUFFER_TRACE(partial->bh, "get_write_access");
4137                         ext4_free_branches(handle, inode, partial->bh,
4138                                         partial->p,
4139                                         partial->p+1, (chain+n-1) - partial);
4140                 }
4141         }
4142         /* Clear the ends of indirect blocks on the shared branch */
4143         while (partial > chain) {
4144                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4145                                    (__le32*)partial->bh->b_data+addr_per_block,
4146                                    (chain+n-1) - partial);
4147                 BUFFER_TRACE(partial->bh, "call brelse");
4148                 brelse(partial->bh);
4149                 partial--;
4150         }
4151 do_indirects:
4152         /* Kill the remaining (whole) subtrees */
4153         switch (offsets[0]) {
4154         default:
4155                 nr = i_data[EXT4_IND_BLOCK];
4156                 if (nr) {
4157                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4158                         i_data[EXT4_IND_BLOCK] = 0;
4159                 }
4160         case EXT4_IND_BLOCK:
4161                 nr = i_data[EXT4_DIND_BLOCK];
4162                 if (nr) {
4163                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4164                         i_data[EXT4_DIND_BLOCK] = 0;
4165                 }
4166         case EXT4_DIND_BLOCK:
4167                 nr = i_data[EXT4_TIND_BLOCK];
4168                 if (nr) {
4169                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4170                         i_data[EXT4_TIND_BLOCK] = 0;
4171                 }
4172         case EXT4_TIND_BLOCK:
4173                 ;
4174         }
4175
4176         up_write(&ei->i_data_sem);
4177         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4178         ext4_mark_inode_dirty(handle, inode);
4179
4180         /*
4181          * In a multi-transaction truncate, we only make the final transaction
4182          * synchronous
4183          */
4184         if (IS_SYNC(inode))
4185                 ext4_handle_sync(handle);
4186 out_stop:
4187         /*
4188          * If this was a simple ftruncate(), and the file will remain alive
4189          * then we need to clear up the orphan record which we created above.
4190          * However, if this was a real unlink then we were called by
4191          * ext4_delete_inode(), and we allow that function to clean up the
4192          * orphan info for us.
4193          */
4194         if (inode->i_nlink)
4195                 ext4_orphan_del(handle, inode);
4196
4197         ext4_journal_stop(handle);
4198 }
4199
4200 /*
4201  * ext4_get_inode_loc returns with an extra refcount against the inode's
4202  * underlying buffer_head on success. If 'in_mem' is true, we have all
4203  * data in memory that is needed to recreate the on-disk version of this
4204  * inode.
4205  */
4206 static int __ext4_get_inode_loc(struct inode *inode,
4207                                 struct ext4_iloc *iloc, int in_mem)
4208 {
4209         struct ext4_group_desc  *gdp;
4210         struct buffer_head      *bh;
4211         struct super_block      *sb = inode->i_sb;
4212         ext4_fsblk_t            block;
4213         int                     inodes_per_block, inode_offset;
4214
4215         iloc->bh = NULL;
4216         if (!ext4_valid_inum(sb, inode->i_ino))
4217                 return -EIO;
4218
4219         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4220         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4221         if (!gdp)
4222                 return -EIO;
4223
4224         /*
4225          * Figure out the offset within the block group inode table
4226          */
4227         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4228         inode_offset = ((inode->i_ino - 1) %
4229                         EXT4_INODES_PER_GROUP(sb));
4230         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4231         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4232
4233         bh = sb_getblk(sb, block);
4234         if (!bh) {
4235                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4236                            "inode block - inode=%lu, block=%llu",
4237                            inode->i_ino, block);
4238                 return -EIO;
4239         }
4240         if (!buffer_uptodate(bh)) {
4241                 lock_buffer(bh);
4242
4243                 /*
4244                  * If the buffer has the write error flag, we have failed
4245                  * to write out another inode in the same block.  In this
4246                  * case, we don't have to read the block because we may
4247                  * read the old inode data successfully.
4248                  */
4249                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4250                         set_buffer_uptodate(bh);
4251
4252                 if (buffer_uptodate(bh)) {
4253                         /* someone brought it uptodate while we waited */
4254                         unlock_buffer(bh);
4255                         goto has_buffer;
4256                 }
4257
4258                 /*
4259                  * If we have all information of the inode in memory and this
4260                  * is the only valid inode in the block, we need not read the
4261                  * block.
4262                  */
4263                 if (in_mem) {
4264                         struct buffer_head *bitmap_bh;
4265                         int i, start;
4266
4267                         start = inode_offset & ~(inodes_per_block - 1);
4268
4269                         /* Is the inode bitmap in cache? */
4270                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4271                         if (!bitmap_bh)
4272                                 goto make_io;
4273
4274                         /*
4275                          * If the inode bitmap isn't in cache then the
4276                          * optimisation may end up performing two reads instead
4277                          * of one, so skip it.
4278                          */
4279                         if (!buffer_uptodate(bitmap_bh)) {
4280                                 brelse(bitmap_bh);
4281                                 goto make_io;
4282                         }
4283                         for (i = start; i < start + inodes_per_block; i++) {
4284                                 if (i == inode_offset)
4285                                         continue;
4286                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4287                                         break;
4288                         }
4289                         brelse(bitmap_bh);
4290                         if (i == start + inodes_per_block) {
4291                                 /* all other inodes are free, so skip I/O */
4292                                 memset(bh->b_data, 0, bh->b_size);
4293                                 set_buffer_uptodate(bh);
4294                                 unlock_buffer(bh);
4295                                 goto has_buffer;
4296                         }
4297                 }
4298
4299 make_io:
4300                 /*
4301                  * If we need to do any I/O, try to pre-readahead extra
4302                  * blocks from the inode table.
4303                  */
4304                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4305                         ext4_fsblk_t b, end, table;
4306                         unsigned num;
4307
4308                         table = ext4_inode_table(sb, gdp);
4309                         /* s_inode_readahead_blks is always a power of 2 */
4310                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4311                         if (table > b)
4312                                 b = table;
4313                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4314                         num = EXT4_INODES_PER_GROUP(sb);
4315                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4316                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4317                                 num -= ext4_itable_unused_count(sb, gdp);
4318                         table += num / inodes_per_block;
4319                         if (end > table)
4320                                 end = table;
4321                         while (b <= end)
4322                                 sb_breadahead(sb, b++);
4323                 }
4324
4325                 /*
4326                  * There are other valid inodes in the buffer, this inode
4327                  * has in-inode xattrs, or we don't have this inode in memory.
4328                  * Read the block from disk.
4329                  */
4330                 get_bh(bh);
4331                 bh->b_end_io = end_buffer_read_sync;
4332                 submit_bh(READ_META, bh);
4333                 wait_on_buffer(bh);
4334                 if (!buffer_uptodate(bh)) {
4335                         ext4_error(sb, __func__,
4336                                    "unable to read inode block - inode=%lu, "
4337                                    "block=%llu", inode->i_ino, block);
4338                         brelse(bh);
4339                         return -EIO;
4340                 }
4341         }
4342 has_buffer:
4343         iloc->bh = bh;
4344         return 0;
4345 }
4346
4347 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4348 {
4349         /* We have all inode data except xattrs in memory here. */
4350         return __ext4_get_inode_loc(inode, iloc,
4351                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4352 }
4353
4354 void ext4_set_inode_flags(struct inode *inode)
4355 {
4356         unsigned int flags = EXT4_I(inode)->i_flags;
4357
4358         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4359         if (flags & EXT4_SYNC_FL)
4360                 inode->i_flags |= S_SYNC;
4361         if (flags & EXT4_APPEND_FL)
4362                 inode->i_flags |= S_APPEND;
4363         if (flags & EXT4_IMMUTABLE_FL)
4364                 inode->i_flags |= S_IMMUTABLE;
4365         if (flags & EXT4_NOATIME_FL)
4366                 inode->i_flags |= S_NOATIME;
4367         if (flags & EXT4_DIRSYNC_FL)
4368                 inode->i_flags |= S_DIRSYNC;
4369 }
4370
4371 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4372 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4373 {
4374         unsigned int flags = ei->vfs_inode.i_flags;
4375
4376         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4377                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4378         if (flags & S_SYNC)
4379                 ei->i_flags |= EXT4_SYNC_FL;
4380         if (flags & S_APPEND)
4381                 ei->i_flags |= EXT4_APPEND_FL;
4382         if (flags & S_IMMUTABLE)
4383                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4384         if (flags & S_NOATIME)
4385                 ei->i_flags |= EXT4_NOATIME_FL;
4386         if (flags & S_DIRSYNC)
4387                 ei->i_flags |= EXT4_DIRSYNC_FL;
4388 }
4389
4390 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4391                                   struct ext4_inode_info *ei)
4392 {
4393         blkcnt_t i_blocks ;
4394         struct inode *inode = &(ei->vfs_inode);
4395         struct super_block *sb = inode->i_sb;
4396
4397         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4398                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4399                 /* we are using combined 48 bit field */
4400                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4401                                         le32_to_cpu(raw_inode->i_blocks_lo);
4402                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4403                         /* i_blocks represent file system block size */
4404                         return i_blocks  << (inode->i_blkbits - 9);
4405                 } else {
4406                         return i_blocks;
4407                 }
4408         } else {
4409                 return le32_to_cpu(raw_inode->i_blocks_lo);
4410         }
4411 }
4412
4413 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4414 {
4415         struct ext4_iloc iloc;
4416         struct ext4_inode *raw_inode;
4417         struct ext4_inode_info *ei;
4418         struct buffer_head *bh;
4419         struct inode *inode;
4420         long ret;
4421         int block;
4422
4423         inode = iget_locked(sb, ino);
4424         if (!inode)
4425                 return ERR_PTR(-ENOMEM);
4426         if (!(inode->i_state & I_NEW))
4427                 return inode;
4428
4429         ei = EXT4_I(inode);
4430
4431         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4432         if (ret < 0)
4433                 goto bad_inode;
4434         bh = iloc.bh;
4435         raw_inode = ext4_raw_inode(&iloc);
4436         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4437         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4438         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4439         if (!(test_opt(inode->i_sb, NO_UID32))) {
4440                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4441                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4442         }
4443         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4444
4445         ei->i_state = 0;
4446         ei->i_dir_start_lookup = 0;
4447         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4448         /* We now have enough fields to check if the inode was active or not.
4449          * This is needed because nfsd might try to access dead inodes
4450          * the test is that same one that e2fsck uses
4451          * NeilBrown 1999oct15
4452          */
4453         if (inode->i_nlink == 0) {
4454                 if (inode->i_mode == 0 ||
4455                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4456                         /* this inode is deleted */
4457                         brelse(bh);
4458                         ret = -ESTALE;
4459                         goto bad_inode;
4460                 }
4461                 /* The only unlinked inodes we let through here have
4462                  * valid i_mode and are being read by the orphan
4463                  * recovery code: that's fine, we're about to complete
4464                  * the process of deleting those. */
4465         }
4466         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4467         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4468         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4469         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4470                 ei->i_file_acl |=
4471                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4472         inode->i_size = ext4_isize(raw_inode);
4473         ei->i_disksize = inode->i_size;
4474         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4475         ei->i_block_group = iloc.block_group;
4476         ei->i_last_alloc_group = ~0;
4477         /*
4478          * NOTE! The in-memory inode i_data array is in little-endian order
4479          * even on big-endian machines: we do NOT byteswap the block numbers!
4480          */
4481         for (block = 0; block < EXT4_N_BLOCKS; block++)
4482                 ei->i_data[block] = raw_inode->i_block[block];
4483         INIT_LIST_HEAD(&ei->i_orphan);
4484
4485         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4486                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4487                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4488                     EXT4_INODE_SIZE(inode->i_sb)) {
4489                         brelse(bh);
4490                         ret = -EIO;
4491                         goto bad_inode;
4492                 }
4493                 if (ei->i_extra_isize == 0) {
4494                         /* The extra space is currently unused. Use it. */
4495                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4496                                             EXT4_GOOD_OLD_INODE_SIZE;
4497                 } else {
4498                         __le32 *magic = (void *)raw_inode +
4499                                         EXT4_GOOD_OLD_INODE_SIZE +
4500                                         ei->i_extra_isize;
4501                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4502                                 ei->i_state |= EXT4_STATE_XATTR;
4503                 }
4504         } else
4505                 ei->i_extra_isize = 0;
4506
4507         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4508         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4509         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4510         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4511
4512         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4513         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4514                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4515                         inode->i_version |=
4516                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4517         }
4518
4519         ret = 0;
4520         if (ei->i_file_acl &&
4521             ((ei->i_file_acl <
4522               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4523                EXT4_SB(sb)->s_gdb_count)) ||
4524              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4525                 ext4_error(sb, __func__,
4526                            "bad extended attribute block %llu in inode #%lu",
4527                            ei->i_file_acl, inode->i_ino);
4528                 ret = -EIO;
4529                 goto bad_inode;
4530         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4531                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4532                     (S_ISLNK(inode->i_mode) &&
4533                      !ext4_inode_is_fast_symlink(inode)))
4534                         /* Validate extent which is part of inode */
4535                         ret = ext4_ext_check_inode(inode);
4536         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4537                    (S_ISLNK(inode->i_mode) &&
4538                     !ext4_inode_is_fast_symlink(inode))) {
4539                 /* Validate block references which are part of inode */
4540                 ret = ext4_check_inode_blockref(inode);
4541         }
4542         if (ret) {
4543                 brelse(bh);
4544                 goto bad_inode;
4545         }
4546
4547         if (S_ISREG(inode->i_mode)) {
4548                 inode->i_op = &ext4_file_inode_operations;
4549                 inode->i_fop = &ext4_file_operations;
4550                 ext4_set_aops(inode);
4551         } else if (S_ISDIR(inode->i_mode)) {
4552                 inode->i_op = &ext4_dir_inode_operations;
4553                 inode->i_fop = &ext4_dir_operations;
4554         } else if (S_ISLNK(inode->i_mode)) {
4555                 if (ext4_inode_is_fast_symlink(inode)) {
4556                         inode->i_op = &ext4_fast_symlink_inode_operations;
4557                         nd_terminate_link(ei->i_data, inode->i_size,
4558                                 sizeof(ei->i_data) - 1);
4559                 } else {
4560                         inode->i_op = &ext4_symlink_inode_operations;
4561                         ext4_set_aops(inode);
4562                 }
4563         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4564               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4565                 inode->i_op = &ext4_special_inode_operations;
4566                 if (raw_inode->i_block[0])
4567                         init_special_inode(inode, inode->i_mode,
4568                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4569                 else
4570                         init_special_inode(inode, inode->i_mode,
4571                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4572         } else {
4573                 brelse(bh);
4574                 ret = -EIO;
4575                 ext4_error(inode->i_sb, __func__,
4576                            "bogus i_mode (%o) for inode=%lu",
4577                            inode->i_mode, inode->i_ino);
4578                 goto bad_inode;
4579         }
4580         brelse(iloc.bh);
4581         ext4_set_inode_flags(inode);
4582         unlock_new_inode(inode);
4583         return inode;
4584
4585 bad_inode:
4586         iget_failed(inode);
4587         return ERR_PTR(ret);
4588 }
4589
4590 static int ext4_inode_blocks_set(handle_t *handle,
4591                                 struct ext4_inode *raw_inode,
4592                                 struct ext4_inode_info *ei)
4593 {
4594         struct inode *inode = &(ei->vfs_inode);
4595         u64 i_blocks = inode->i_blocks;
4596         struct super_block *sb = inode->i_sb;
4597
4598         if (i_blocks <= ~0U) {
4599                 /*
4600                  * i_blocks can be represnted in a 32 bit variable
4601                  * as multiple of 512 bytes
4602                  */
4603                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4604                 raw_inode->i_blocks_high = 0;
4605                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4606                 return 0;
4607         }
4608         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4609                 return -EFBIG;
4610
4611         if (i_blocks <= 0xffffffffffffULL) {
4612                 /*
4613                  * i_blocks can be represented in a 48 bit variable
4614                  * as multiple of 512 bytes
4615                  */
4616                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4617                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4618                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4619         } else {
4620                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4621                 /* i_block is stored in file system block size */
4622                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4623                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4624                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4625         }
4626         return 0;
4627 }
4628
4629 /*
4630  * Post the struct inode info into an on-disk inode location in the
4631  * buffer-cache.  This gobbles the caller's reference to the
4632  * buffer_head in the inode location struct.
4633  *
4634  * The caller must have write access to iloc->bh.
4635  */
4636 static int ext4_do_update_inode(handle_t *handle,
4637                                 struct inode *inode,
4638                                 struct ext4_iloc *iloc,
4639                                 int do_sync)
4640 {
4641         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4642         struct ext4_inode_info *ei = EXT4_I(inode);
4643         struct buffer_head *bh = iloc->bh;
4644         int err = 0, rc, block;
4645
4646         /* For fields not not tracking in the in-memory inode,
4647          * initialise them to zero for new inodes. */
4648         if (ei->i_state & EXT4_STATE_NEW)
4649                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4650
4651         ext4_get_inode_flags(ei);
4652         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4653         if (!(test_opt(inode->i_sb, NO_UID32))) {
4654                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4655                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4656 /*
4657  * Fix up interoperability with old kernels. Otherwise, old inodes get
4658  * re-used with the upper 16 bits of the uid/gid intact
4659  */
4660                 if (!ei->i_dtime) {
4661                         raw_inode->i_uid_high =
4662                                 cpu_to_le16(high_16_bits(inode->i_uid));
4663                         raw_inode->i_gid_high =
4664                                 cpu_to_le16(high_16_bits(inode->i_gid));
4665                 } else {
4666                         raw_inode->i_uid_high = 0;
4667                         raw_inode->i_gid_high = 0;
4668                 }
4669         } else {
4670                 raw_inode->i_uid_low =
4671                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4672                 raw_inode->i_gid_low =
4673                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4674                 raw_inode->i_uid_high = 0;
4675                 raw_inode->i_gid_high = 0;
4676         }
4677         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4678
4679         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4680         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4681         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4682         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4683
4684         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4685                 goto out_brelse;
4686         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4687         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
4688         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4689             cpu_to_le32(EXT4_OS_HURD))
4690                 raw_inode->i_file_acl_high =
4691                         cpu_to_le16(ei->i_file_acl >> 32);
4692         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4693         ext4_isize_set(raw_inode, ei->i_disksize);
4694         if (ei->i_disksize > 0x7fffffffULL) {
4695                 struct super_block *sb = inode->i_sb;
4696                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4697                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4698                                 EXT4_SB(sb)->s_es->s_rev_level ==
4699                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4700                         /* If this is the first large file
4701                          * created, add a flag to the superblock.
4702                          */
4703                         err = ext4_journal_get_write_access(handle,
4704                                         EXT4_SB(sb)->s_sbh);
4705                         if (err)
4706                                 goto out_brelse;
4707                         ext4_update_dynamic_rev(sb);
4708                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4709                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4710                         sb->s_dirt = 1;
4711                         ext4_handle_sync(handle);
4712                         err = ext4_handle_dirty_metadata(handle, inode,
4713                                         EXT4_SB(sb)->s_sbh);
4714                 }
4715         }
4716         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4717         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4718                 if (old_valid_dev(inode->i_rdev)) {
4719                         raw_inode->i_block[0] =
4720                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4721                         raw_inode->i_block[1] = 0;
4722                 } else {
4723                         raw_inode->i_block[0] = 0;
4724                         raw_inode->i_block[1] =
4725                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4726                         raw_inode->i_block[2] = 0;
4727                 }
4728         } else
4729                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4730                         raw_inode->i_block[block] = ei->i_data[block];
4731
4732         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4733         if (ei->i_extra_isize) {
4734                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4735                         raw_inode->i_version_hi =
4736                         cpu_to_le32(inode->i_version >> 32);
4737                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4738         }
4739
4740         /*
4741          * If we're not using a journal and we were called from
4742          * ext4_write_inode() to sync the inode (making do_sync true),
4743          * we can just use sync_dirty_buffer() directly to do our dirty
4744          * work.  Testing s_journal here is a bit redundant but it's
4745          * worth it to avoid potential future trouble.
4746          */
4747         if (EXT4_SB(inode->i_sb)->s_journal == NULL && do_sync) {
4748                 BUFFER_TRACE(bh, "call sync_dirty_buffer");
4749                 sync_dirty_buffer(bh);
4750         } else {
4751                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4752                 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4753                 if (!err)
4754                         err = rc;
4755         }
4756         ei->i_state &= ~EXT4_STATE_NEW;
4757
4758 out_brelse:
4759         brelse(bh);
4760         ext4_std_error(inode->i_sb, err);
4761         return err;
4762 }
4763
4764 /*
4765  * ext4_write_inode()
4766  *
4767  * We are called from a few places:
4768  *
4769  * - Within generic_file_write() for O_SYNC files.
4770  *   Here, there will be no transaction running. We wait for any running
4771  *   trasnaction to commit.
4772  *
4773  * - Within sys_sync(), kupdate and such.
4774  *   We wait on commit, if tol to.
4775  *
4776  * - Within prune_icache() (PF_MEMALLOC == true)
4777  *   Here we simply return.  We can't afford to block kswapd on the
4778  *   journal commit.
4779  *
4780  * In all cases it is actually safe for us to return without doing anything,
4781  * because the inode has been copied into a raw inode buffer in
4782  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4783  * knfsd.
4784  *
4785  * Note that we are absolutely dependent upon all inode dirtiers doing the
4786  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4787  * which we are interested.
4788  *
4789  * It would be a bug for them to not do this.  The code:
4790  *
4791  *      mark_inode_dirty(inode)
4792  *      stuff();
4793  *      inode->i_size = expr;
4794  *
4795  * is in error because a kswapd-driven write_inode() could occur while
4796  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4797  * will no longer be on the superblock's dirty inode list.
4798  */
4799 int ext4_write_inode(struct inode *inode, int wait)
4800 {
4801         int err;
4802
4803         if (current->flags & PF_MEMALLOC)
4804                 return 0;
4805
4806         if (EXT4_SB(inode->i_sb)->s_journal) {
4807                 if (ext4_journal_current_handle()) {
4808                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4809                         dump_stack();
4810                         return -EIO;
4811                 }
4812
4813                 if (!wait)
4814                         return 0;
4815
4816                 err = ext4_force_commit(inode->i_sb);
4817         } else {
4818                 struct ext4_iloc iloc;
4819
4820                 err = ext4_get_inode_loc(inode, &iloc);
4821                 if (err)
4822                         return err;
4823                 err = ext4_do_update_inode(EXT4_NOJOURNAL_HANDLE,
4824                                            inode, &iloc, wait);
4825         }
4826         return err;
4827 }
4828
4829 /*
4830  * ext4_setattr()
4831  *
4832  * Called from notify_change.
4833  *
4834  * We want to trap VFS attempts to truncate the file as soon as
4835  * possible.  In particular, we want to make sure that when the VFS
4836  * shrinks i_size, we put the inode on the orphan list and modify
4837  * i_disksize immediately, so that during the subsequent flushing of
4838  * dirty pages and freeing of disk blocks, we can guarantee that any
4839  * commit will leave the blocks being flushed in an unused state on
4840  * disk.  (On recovery, the inode will get truncated and the blocks will
4841  * be freed, so we have a strong guarantee that no future commit will
4842  * leave these blocks visible to the user.)
4843  *
4844  * Another thing we have to assure is that if we are in ordered mode
4845  * and inode is still attached to the committing transaction, we must
4846  * we start writeout of all the dirty pages which are being truncated.
4847  * This way we are sure that all the data written in the previous
4848  * transaction are already on disk (truncate waits for pages under
4849  * writeback).
4850  *
4851  * Called with inode->i_mutex down.
4852  */
4853 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4854 {
4855         struct inode *inode = dentry->d_inode;
4856         int error, rc = 0;
4857         const unsigned int ia_valid = attr->ia_valid;
4858
4859         error = inode_change_ok(inode, attr);
4860         if (error)
4861                 return error;
4862
4863         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4864                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4865                 handle_t *handle;
4866
4867                 /* (user+group)*(old+new) structure, inode write (sb,
4868                  * inode block, ? - but truncate inode update has it) */
4869                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4870                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4871                 if (IS_ERR(handle)) {
4872                         error = PTR_ERR(handle);
4873                         goto err_out;
4874                 }
4875                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4876                 if (error) {
4877                         ext4_journal_stop(handle);
4878                         return error;
4879                 }
4880                 /* Update corresponding info in inode so that everything is in
4881                  * one transaction */
4882                 if (attr->ia_valid & ATTR_UID)
4883                         inode->i_uid = attr->ia_uid;
4884                 if (attr->ia_valid & ATTR_GID)
4885                         inode->i_gid = attr->ia_gid;
4886                 error = ext4_mark_inode_dirty(handle, inode);
4887                 ext4_journal_stop(handle);
4888         }
4889
4890         if (attr->ia_valid & ATTR_SIZE) {
4891                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4892                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4893
4894                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4895                                 error = -EFBIG;
4896                                 goto err_out;
4897                         }
4898                 }
4899         }
4900
4901         if (S_ISREG(inode->i_mode) &&
4902             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4903                 handle_t *handle;
4904
4905                 handle = ext4_journal_start(inode, 3);
4906                 if (IS_ERR(handle)) {
4907                         error = PTR_ERR(handle);
4908                         goto err_out;
4909                 }
4910
4911                 error = ext4_orphan_add(handle, inode);
4912                 EXT4_I(inode)->i_disksize = attr->ia_size;
4913                 rc = ext4_mark_inode_dirty(handle, inode);
4914                 if (!error)
4915                         error = rc;
4916                 ext4_journal_stop(handle);
4917
4918                 if (ext4_should_order_data(inode)) {
4919                         error = ext4_begin_ordered_truncate(inode,
4920                                                             attr->ia_size);
4921                         if (error) {
4922                                 /* Do as much error cleanup as possible */
4923                                 handle = ext4_journal_start(inode, 3);
4924                                 if (IS_ERR(handle)) {
4925                                         ext4_orphan_del(NULL, inode);
4926                                         goto err_out;
4927                                 }
4928                                 ext4_orphan_del(handle, inode);
4929                                 ext4_journal_stop(handle);
4930                                 goto err_out;
4931                         }
4932                 }
4933         }
4934
4935         rc = inode_setattr(inode, attr);
4936
4937         /* If inode_setattr's call to ext4_truncate failed to get a
4938          * transaction handle at all, we need to clean up the in-core
4939          * orphan list manually. */
4940         if (inode->i_nlink)
4941                 ext4_orphan_del(NULL, inode);
4942
4943         if (!rc && (ia_valid & ATTR_MODE))
4944                 rc = ext4_acl_chmod(inode);
4945
4946 err_out:
4947         ext4_std_error(inode->i_sb, error);
4948         if (!error)
4949                 error = rc;
4950         return error;
4951 }
4952
4953 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4954                  struct kstat *stat)
4955 {
4956         struct inode *inode;
4957         unsigned long delalloc_blocks;
4958
4959         inode = dentry->d_inode;
4960         generic_fillattr(inode, stat);
4961
4962         /*
4963          * We can't update i_blocks if the block allocation is delayed
4964          * otherwise in the case of system crash before the real block
4965          * allocation is done, we will have i_blocks inconsistent with
4966          * on-disk file blocks.
4967          * We always keep i_blocks updated together with real
4968          * allocation. But to not confuse with user, stat
4969          * will return the blocks that include the delayed allocation
4970          * blocks for this file.
4971          */
4972         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4973         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4974         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4975
4976         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4977         return 0;
4978 }
4979
4980 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4981                                       int chunk)
4982 {
4983         int indirects;
4984
4985         /* if nrblocks are contiguous */
4986         if (chunk) {
4987                 /*
4988                  * With N contiguous data blocks, it need at most
4989                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4990                  * 2 dindirect blocks
4991                  * 1 tindirect block
4992                  */
4993                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4994                 return indirects + 3;
4995         }
4996         /*
4997          * if nrblocks are not contiguous, worse case, each block touch
4998          * a indirect block, and each indirect block touch a double indirect
4999          * block, plus a triple indirect block
5000          */
5001         indirects = nrblocks * 2 + 1;
5002         return indirects;
5003 }
5004
5005 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5006 {
5007         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5008                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5009         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5010 }
5011
5012 /*
5013  * Account for index blocks, block groups bitmaps and block group
5014  * descriptor blocks if modify datablocks and index blocks
5015  * worse case, the indexs blocks spread over different block groups
5016  *
5017  * If datablocks are discontiguous, they are possible to spread over
5018  * different block groups too. If they are contiugous, with flexbg,
5019  * they could still across block group boundary.
5020  *
5021  * Also account for superblock, inode, quota and xattr blocks
5022  */
5023 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5024 {
5025         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5026         int gdpblocks;
5027         int idxblocks;
5028         int ret = 0;
5029
5030         /*
5031          * How many index blocks need to touch to modify nrblocks?
5032          * The "Chunk" flag indicating whether the nrblocks is
5033          * physically contiguous on disk
5034          *
5035          * For Direct IO and fallocate, they calls get_block to allocate
5036          * one single extent at a time, so they could set the "Chunk" flag
5037          */
5038         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5039
5040         ret = idxblocks;
5041
5042         /*
5043          * Now let's see how many group bitmaps and group descriptors need
5044          * to account
5045          */
5046         groups = idxblocks;
5047         if (chunk)
5048                 groups += 1;
5049         else
5050                 groups += nrblocks;
5051
5052         gdpblocks = groups;
5053         if (groups > ngroups)
5054                 groups = ngroups;
5055         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5056                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5057
5058         /* bitmaps and block group descriptor blocks */
5059         ret += groups + gdpblocks;
5060
5061         /* Blocks for super block, inode, quota and xattr blocks */
5062         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5063
5064         return ret;
5065 }
5066
5067 /*
5068  * Calulate the total number of credits to reserve to fit
5069  * the modification of a single pages into a single transaction,
5070  * which may include multiple chunks of block allocations.
5071  *
5072  * This could be called via ext4_write_begin()
5073  *
5074  * We need to consider the worse case, when
5075  * one new block per extent.
5076  */
5077 int ext4_writepage_trans_blocks(struct inode *inode)
5078 {
5079         int bpp = ext4_journal_blocks_per_page(inode);
5080         int ret;
5081
5082         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5083
5084         /* Account for data blocks for journalled mode */
5085         if (ext4_should_journal_data(inode))
5086                 ret += bpp;
5087         return ret;
5088 }
5089
5090 /*
5091  * Calculate the journal credits for a chunk of data modification.
5092  *
5093  * This is called from DIO, fallocate or whoever calling
5094  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5095  *
5096  * journal buffers for data blocks are not included here, as DIO
5097  * and fallocate do no need to journal data buffers.
5098  */
5099 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5100 {
5101         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5102 }
5103
5104 /*
5105  * The caller must have previously called ext4_reserve_inode_write().
5106  * Give this, we know that the caller already has write access to iloc->bh.
5107  */
5108 int ext4_mark_iloc_dirty(handle_t *handle,
5109                          struct inode *inode, struct ext4_iloc *iloc)
5110 {
5111         int err = 0;
5112
5113         if (test_opt(inode->i_sb, I_VERSION))
5114                 inode_inc_iversion(inode);
5115
5116         /* the do_update_inode consumes one bh->b_count */
5117         get_bh(iloc->bh);
5118
5119         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5120         err = ext4_do_update_inode(handle, inode, iloc, 0);
5121         put_bh(iloc->bh);
5122         return err;
5123 }
5124
5125 /*
5126  * On success, We end up with an outstanding reference count against
5127  * iloc->bh.  This _must_ be cleaned up later.
5128  */
5129
5130 int
5131 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5132                          struct ext4_iloc *iloc)
5133 {
5134         int err;
5135
5136         err = ext4_get_inode_loc(inode, iloc);
5137         if (!err) {
5138                 BUFFER_TRACE(iloc->bh, "get_write_access");
5139                 err = ext4_journal_get_write_access(handle, iloc->bh);
5140                 if (err) {
5141                         brelse(iloc->bh);
5142                         iloc->bh = NULL;
5143                 }
5144         }
5145         ext4_std_error(inode->i_sb, err);
5146         return err;
5147 }
5148
5149 /*
5150  * Expand an inode by new_extra_isize bytes.
5151  * Returns 0 on success or negative error number on failure.
5152  */
5153 static int ext4_expand_extra_isize(struct inode *inode,
5154                                    unsigned int new_extra_isize,
5155                                    struct ext4_iloc iloc,
5156                                    handle_t *handle)
5157 {
5158         struct ext4_inode *raw_inode;
5159         struct ext4_xattr_ibody_header *header;
5160         struct ext4_xattr_entry *entry;
5161
5162         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5163                 return 0;
5164
5165         raw_inode = ext4_raw_inode(&iloc);
5166
5167         header = IHDR(inode, raw_inode);
5168         entry = IFIRST(header);
5169
5170         /* No extended attributes present */
5171         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5172                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5173                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5174                         new_extra_isize);
5175                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5176                 return 0;
5177         }
5178
5179         /* try to expand with EAs present */
5180         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5181                                           raw_inode, handle);
5182 }
5183
5184 /*
5185  * What we do here is to mark the in-core inode as clean with respect to inode
5186  * dirtiness (it may still be data-dirty).
5187  * This means that the in-core inode may be reaped by prune_icache
5188  * without having to perform any I/O.  This is a very good thing,
5189  * because *any* task may call prune_icache - even ones which
5190  * have a transaction open against a different journal.
5191  *
5192  * Is this cheating?  Not really.  Sure, we haven't written the
5193  * inode out, but prune_icache isn't a user-visible syncing function.
5194  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5195  * we start and wait on commits.
5196  *
5197  * Is this efficient/effective?  Well, we're being nice to the system
5198  * by cleaning up our inodes proactively so they can be reaped
5199  * without I/O.  But we are potentially leaving up to five seconds'
5200  * worth of inodes floating about which prune_icache wants us to
5201  * write out.  One way to fix that would be to get prune_icache()
5202  * to do a write_super() to free up some memory.  It has the desired
5203  * effect.
5204  */
5205 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5206 {
5207         struct ext4_iloc iloc;
5208         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5209         static unsigned int mnt_count;
5210         int err, ret;
5211
5212         might_sleep();
5213         err = ext4_reserve_inode_write(handle, inode, &iloc);
5214         if (ext4_handle_valid(handle) &&
5215             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5216             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5217                 /*
5218                  * We need extra buffer credits since we may write into EA block
5219                  * with this same handle. If journal_extend fails, then it will
5220                  * only result in a minor loss of functionality for that inode.
5221                  * If this is felt to be critical, then e2fsck should be run to
5222                  * force a large enough s_min_extra_isize.
5223                  */
5224                 if ((jbd2_journal_extend(handle,
5225                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5226                         ret = ext4_expand_extra_isize(inode,
5227                                                       sbi->s_want_extra_isize,
5228                                                       iloc, handle);
5229                         if (ret) {
5230                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5231                                 if (mnt_count !=
5232                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5233                                         ext4_warning(inode->i_sb, __func__,
5234                                         "Unable to expand inode %lu. Delete"
5235                                         " some EAs or run e2fsck.",
5236                                         inode->i_ino);
5237                                         mnt_count =
5238                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5239                                 }
5240                         }
5241                 }
5242         }
5243         if (!err)
5244                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5245         return err;
5246 }
5247
5248 /*
5249  * ext4_dirty_inode() is called from __mark_inode_dirty()
5250  *
5251  * We're really interested in the case where a file is being extended.
5252  * i_size has been changed by generic_commit_write() and we thus need
5253  * to include the updated inode in the current transaction.
5254  *
5255  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5256  * are allocated to the file.
5257  *
5258  * If the inode is marked synchronous, we don't honour that here - doing
5259  * so would cause a commit on atime updates, which we don't bother doing.
5260  * We handle synchronous inodes at the highest possible level.
5261  */
5262 void ext4_dirty_inode(struct inode *inode)
5263 {
5264         handle_t *current_handle = ext4_journal_current_handle();
5265         handle_t *handle;
5266
5267         if (!ext4_handle_valid(current_handle)) {
5268                 ext4_mark_inode_dirty(current_handle, inode);
5269                 return;
5270         }
5271
5272         handle = ext4_journal_start(inode, 2);
5273         if (IS_ERR(handle))
5274                 goto out;
5275         if (current_handle &&
5276                 current_handle->h_transaction != handle->h_transaction) {
5277                 /* This task has a transaction open against a different fs */
5278                 printk(KERN_EMERG "%s: transactions do not match!\n",
5279                        __func__);
5280         } else {
5281                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5282                                 current_handle);
5283                 ext4_mark_inode_dirty(handle, inode);
5284         }
5285         ext4_journal_stop(handle);
5286 out:
5287         return;
5288 }
5289
5290 #if 0
5291 /*
5292  * Bind an inode's backing buffer_head into this transaction, to prevent
5293  * it from being flushed to disk early.  Unlike
5294  * ext4_reserve_inode_write, this leaves behind no bh reference and
5295  * returns no iloc structure, so the caller needs to repeat the iloc
5296  * lookup to mark the inode dirty later.
5297  */
5298 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5299 {
5300         struct ext4_iloc iloc;
5301
5302         int err = 0;
5303         if (handle) {
5304                 err = ext4_get_inode_loc(inode, &iloc);
5305                 if (!err) {
5306                         BUFFER_TRACE(iloc.bh, "get_write_access");
5307                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5308                         if (!err)
5309                                 err = ext4_handle_dirty_metadata(handle,
5310                                                                  inode,
5311                                                                  iloc.bh);
5312                         brelse(iloc.bh);
5313                 }
5314         }
5315         ext4_std_error(inode->i_sb, err);
5316         return err;
5317 }
5318 #endif
5319
5320 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5321 {
5322         journal_t *journal;
5323         handle_t *handle;
5324         int err;
5325
5326         /*
5327          * We have to be very careful here: changing a data block's
5328          * journaling status dynamically is dangerous.  If we write a
5329          * data block to the journal, change the status and then delete
5330          * that block, we risk forgetting to revoke the old log record
5331          * from the journal and so a subsequent replay can corrupt data.
5332          * So, first we make sure that the journal is empty and that
5333          * nobody is changing anything.
5334          */
5335
5336         journal = EXT4_JOURNAL(inode);
5337         if (!journal)
5338                 return 0;
5339         if (is_journal_aborted(journal))
5340                 return -EROFS;
5341
5342         jbd2_journal_lock_updates(journal);
5343         jbd2_journal_flush(journal);
5344
5345         /*
5346          * OK, there are no updates running now, and all cached data is
5347          * synced to disk.  We are now in a completely consistent state
5348          * which doesn't have anything in the journal, and we know that
5349          * no filesystem updates are running, so it is safe to modify
5350          * the inode's in-core data-journaling state flag now.
5351          */
5352
5353         if (val)
5354                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5355         else
5356                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5357         ext4_set_aops(inode);
5358
5359         jbd2_journal_unlock_updates(journal);
5360
5361         /* Finally we can mark the inode as dirty. */
5362
5363         handle = ext4_journal_start(inode, 1);
5364         if (IS_ERR(handle))
5365                 return PTR_ERR(handle);
5366
5367         err = ext4_mark_inode_dirty(handle, inode);
5368         ext4_handle_sync(handle);
5369         ext4_journal_stop(handle);
5370         ext4_std_error(inode->i_sb, err);
5371
5372         return err;
5373 }
5374
5375 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5376 {
5377         return !buffer_mapped(bh);
5378 }
5379
5380 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5381 {
5382         struct page *page = vmf->page;
5383         loff_t size;
5384         unsigned long len;
5385         int ret = -EINVAL;
5386         void *fsdata;
5387         struct file *file = vma->vm_file;
5388         struct inode *inode = file->f_path.dentry->d_inode;
5389         struct address_space *mapping = inode->i_mapping;
5390
5391         /*
5392          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5393          * get i_mutex because we are already holding mmap_sem.
5394          */
5395         down_read(&inode->i_alloc_sem);
5396         size = i_size_read(inode);
5397         if (page->mapping != mapping || size <= page_offset(page)
5398             || !PageUptodate(page)) {
5399                 /* page got truncated from under us? */
5400                 goto out_unlock;
5401         }
5402         ret = 0;
5403         if (PageMappedToDisk(page))
5404                 goto out_unlock;
5405
5406         if (page->index == size >> PAGE_CACHE_SHIFT)
5407                 len = size & ~PAGE_CACHE_MASK;
5408         else
5409                 len = PAGE_CACHE_SIZE;
5410
5411         lock_page(page);
5412         /*
5413          * return if we have all the buffers mapped. This avoid
5414          * the need to call write_begin/write_end which does a
5415          * journal_start/journal_stop which can block and take
5416          * long time
5417          */
5418         if (page_has_buffers(page)) {
5419                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5420                                         ext4_bh_unmapped)) {
5421                         unlock_page(page);
5422                         goto out_unlock;
5423                 }
5424         }
5425         unlock_page(page);
5426         /*
5427          * OK, we need to fill the hole... Do write_begin write_end
5428          * to do block allocation/reservation.We are not holding
5429          * inode.i__mutex here. That allow * parallel write_begin,
5430          * write_end call. lock_page prevent this from happening
5431          * on the same page though
5432          */
5433         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5434                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5435         if (ret < 0)
5436                 goto out_unlock;
5437         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5438                         len, len, page, fsdata);
5439         if (ret < 0)
5440                 goto out_unlock;
5441         ret = 0;
5442 out_unlock:
5443         if (ret)
5444                 ret = VM_FAULT_SIGBUS;
5445         up_read(&inode->i_alloc_sem);
5446         return ret;
5447 }