c818972c830231fe6ae3ec47b09f6c23b35481b9
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         return jbd2_journal_begin_ordered_truncate(
55                                         EXT4_SB(inode->i_sb)->s_journal,
56                                         &EXT4_I(inode)->jinode,
57                                         new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67         int ea_blocks = EXT4_I(inode)->i_file_acl ?
68                 (inode->i_sb->s_blocksize >> 9) : 0;
69
70         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74  * Work out how many blocks we need to proceed with the next chunk of a
75  * truncate transaction.
76  */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79         ext4_lblk_t needed;
80
81         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83         /* Give ourselves just enough room to cope with inodes in which
84          * i_blocks is corrupt: we've seen disk corruptions in the past
85          * which resulted in random data in an inode which looked enough
86          * like a regular file for ext4 to try to delete it.  Things
87          * will go a bit crazy if that happens, but at least we should
88          * try not to panic the whole kernel. */
89         if (needed < 2)
90                 needed = 2;
91
92         /* But we need to bound the transaction so we don't overflow the
93          * journal. */
94         if (needed > EXT4_MAX_TRANS_DATA)
95                 needed = EXT4_MAX_TRANS_DATA;
96
97         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99
100 /*
101  * Truncate transactions can be complex and absolutely huge.  So we need to
102  * be able to restart the transaction at a conventient checkpoint to make
103  * sure we don't overflow the journal.
104  *
105  * start_transaction gets us a new handle for a truncate transaction,
106  * and extend_transaction tries to extend the existing one a bit.  If
107  * extend fails, we need to propagate the failure up and restart the
108  * transaction in the top-level truncate loop. --sct
109  */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112         handle_t *result;
113
114         result = ext4_journal_start(inode, blocks_for_truncate(inode));
115         if (!IS_ERR(result))
116                 return result;
117
118         ext4_std_error(inode->i_sb, PTR_ERR(result));
119         return result;
120 }
121
122 /*
123  * Try to extend this transaction for the purposes of truncation.
124  *
125  * Returns 0 if we managed to create more room.  If we can't create more
126  * room, and the transaction must be restarted we return 1.
127  */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130         if (!ext4_handle_valid(handle))
131                 return 0;
132         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133                 return 0;
134         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135                 return 0;
136         return 1;
137 }
138
139 /*
140  * Restart the transaction associated with *handle.  This does a commit,
141  * so before we call here everything must be consistently dirtied against
142  * this transaction.
143  */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145                                  int nblocks)
146 {
147         int ret;
148
149         /*
150          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151          * moment, get_block can be called only for blocks inside i_size since
152          * page cache has been already dropped and writes are blocked by
153          * i_mutex. So we can safely drop the i_data_sem here.
154          */
155         BUG_ON(EXT4_JOURNAL(inode) == NULL);
156         jbd_debug(2, "restarting handle %p\n", handle);
157         up_write(&EXT4_I(inode)->i_data_sem);
158         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159         down_write(&EXT4_I(inode)->i_data_sem);
160         ext4_discard_preallocations(inode);
161
162         return ret;
163 }
164
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_delete_inode(struct inode *inode)
169 {
170         handle_t *handle;
171         int err;
172
173         if (ext4_should_order_data(inode))
174                 ext4_begin_ordered_truncate(inode, 0);
175         truncate_inode_pages(&inode->i_data, 0);
176
177         if (is_bad_inode(inode))
178                 goto no_delete;
179
180         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181         if (IS_ERR(handle)) {
182                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
183                 /*
184                  * If we're going to skip the normal cleanup, we still need to
185                  * make sure that the in-core orphan linked list is properly
186                  * cleaned up.
187                  */
188                 ext4_orphan_del(NULL, inode);
189                 goto no_delete;
190         }
191
192         if (IS_SYNC(inode))
193                 ext4_handle_sync(handle);
194         inode->i_size = 0;
195         err = ext4_mark_inode_dirty(handle, inode);
196         if (err) {
197                 ext4_warning(inode->i_sb, __func__,
198                              "couldn't mark inode dirty (err %d)", err);
199                 goto stop_handle;
200         }
201         if (inode->i_blocks)
202                 ext4_truncate(inode);
203
204         /*
205          * ext4_ext_truncate() doesn't reserve any slop when it
206          * restarts journal transactions; therefore there may not be
207          * enough credits left in the handle to remove the inode from
208          * the orphan list and set the dtime field.
209          */
210         if (!ext4_handle_has_enough_credits(handle, 3)) {
211                 err = ext4_journal_extend(handle, 3);
212                 if (err > 0)
213                         err = ext4_journal_restart(handle, 3);
214                 if (err != 0) {
215                         ext4_warning(inode->i_sb, __func__,
216                                      "couldn't extend journal (err %d)", err);
217                 stop_handle:
218                         ext4_journal_stop(handle);
219                         goto no_delete;
220                 }
221         }
222
223         /*
224          * Kill off the orphan record which ext4_truncate created.
225          * AKPM: I think this can be inside the above `if'.
226          * Note that ext4_orphan_del() has to be able to cope with the
227          * deletion of a non-existent orphan - this is because we don't
228          * know if ext4_truncate() actually created an orphan record.
229          * (Well, we could do this if we need to, but heck - it works)
230          */
231         ext4_orphan_del(handle, inode);
232         EXT4_I(inode)->i_dtime  = get_seconds();
233
234         /*
235          * One subtle ordering requirement: if anything has gone wrong
236          * (transaction abort, IO errors, whatever), then we can still
237          * do these next steps (the fs will already have been marked as
238          * having errors), but we can't free the inode if the mark_dirty
239          * fails.
240          */
241         if (ext4_mark_inode_dirty(handle, inode))
242                 /* If that failed, just do the required in-core inode clear. */
243                 clear_inode(inode);
244         else
245                 ext4_free_inode(handle, inode);
246         ext4_journal_stop(handle);
247         return;
248 no_delete:
249         clear_inode(inode);     /* We must guarantee clearing of inode... */
250 }
251
252 typedef struct {
253         __le32  *p;
254         __le32  key;
255         struct buffer_head *bh;
256 } Indirect;
257
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260         p->key = *(p->p = v);
261         p->bh = bh;
262 }
263
264 /**
265  *      ext4_block_to_path - parse the block number into array of offsets
266  *      @inode: inode in question (we are only interested in its superblock)
267  *      @i_block: block number to be parsed
268  *      @offsets: array to store the offsets in
269  *      @boundary: set this non-zero if the referred-to block is likely to be
270  *             followed (on disk) by an indirect block.
271  *
272  *      To store the locations of file's data ext4 uses a data structure common
273  *      for UNIX filesystems - tree of pointers anchored in the inode, with
274  *      data blocks at leaves and indirect blocks in intermediate nodes.
275  *      This function translates the block number into path in that tree -
276  *      return value is the path length and @offsets[n] is the offset of
277  *      pointer to (n+1)th node in the nth one. If @block is out of range
278  *      (negative or too large) warning is printed and zero returned.
279  *
280  *      Note: function doesn't find node addresses, so no IO is needed. All
281  *      we need to know is the capacity of indirect blocks (taken from the
282  *      inode->i_sb).
283  */
284
285 /*
286  * Portability note: the last comparison (check that we fit into triple
287  * indirect block) is spelled differently, because otherwise on an
288  * architecture with 32-bit longs and 8Kb pages we might get into trouble
289  * if our filesystem had 8Kb blocks. We might use long long, but that would
290  * kill us on x86. Oh, well, at least the sign propagation does not matter -
291  * i_block would have to be negative in the very beginning, so we would not
292  * get there at all.
293  */
294
295 static int ext4_block_to_path(struct inode *inode,
296                               ext4_lblk_t i_block,
297                               ext4_lblk_t offsets[4], int *boundary)
298 {
299         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301         const long direct_blocks = EXT4_NDIR_BLOCKS,
302                 indirect_blocks = ptrs,
303                 double_blocks = (1 << (ptrs_bits * 2));
304         int n = 0;
305         int final = 0;
306
307         if (i_block < direct_blocks) {
308                 offsets[n++] = i_block;
309                 final = direct_blocks;
310         } else if ((i_block -= direct_blocks) < indirect_blocks) {
311                 offsets[n++] = EXT4_IND_BLOCK;
312                 offsets[n++] = i_block;
313                 final = ptrs;
314         } else if ((i_block -= indirect_blocks) < double_blocks) {
315                 offsets[n++] = EXT4_DIND_BLOCK;
316                 offsets[n++] = i_block >> ptrs_bits;
317                 offsets[n++] = i_block & (ptrs - 1);
318                 final = ptrs;
319         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320                 offsets[n++] = EXT4_TIND_BLOCK;
321                 offsets[n++] = i_block >> (ptrs_bits * 2);
322                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323                 offsets[n++] = i_block & (ptrs - 1);
324                 final = ptrs;
325         } else {
326                 ext4_warning(inode->i_sb, "ext4_block_to_path",
327                              "block %lu > max in inode %lu",
328                              i_block + direct_blocks +
329                              indirect_blocks + double_blocks, inode->i_ino);
330         }
331         if (boundary)
332                 *boundary = final - 1 - (i_block & (ptrs - 1));
333         return n;
334 }
335
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337                                  __le32 *p, unsigned int max)
338 {
339         __le32 *bref = p;
340         unsigned int blk;
341
342         while (bref < p+max) {
343                 blk = le32_to_cpu(*bref++);
344                 if (blk &&
345                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346                                                     blk, 1))) {
347                         ext4_error(inode->i_sb, function,
348                                    "invalid block reference %u "
349                                    "in inode #%lu", blk, inode->i_ino);
350                         return -EIO;
351                 }
352         }
353         return 0;
354 }
355
356
357 #define ext4_check_indirect_blockref(inode, bh)                         \
358         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361 #define ext4_check_inode_blockref(inode)                                \
362         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363                               EXT4_NDIR_BLOCKS)
364
365 /**
366  *      ext4_get_branch - read the chain of indirect blocks leading to data
367  *      @inode: inode in question
368  *      @depth: depth of the chain (1 - direct pointer, etc.)
369  *      @offsets: offsets of pointers in inode/indirect blocks
370  *      @chain: place to store the result
371  *      @err: here we store the error value
372  *
373  *      Function fills the array of triples <key, p, bh> and returns %NULL
374  *      if everything went OK or the pointer to the last filled triple
375  *      (incomplete one) otherwise. Upon the return chain[i].key contains
376  *      the number of (i+1)-th block in the chain (as it is stored in memory,
377  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *      number (it points into struct inode for i==0 and into the bh->b_data
379  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *      block for i>0 and NULL for i==0. In other words, it holds the block
381  *      numbers of the chain, addresses they were taken from (and where we can
382  *      verify that chain did not change) and buffer_heads hosting these
383  *      numbers.
384  *
385  *      Function stops when it stumbles upon zero pointer (absent block)
386  *              (pointer to last triple returned, *@err == 0)
387  *      or when it gets an IO error reading an indirect block
388  *              (ditto, *@err == -EIO)
389  *      or when it reads all @depth-1 indirect blocks successfully and finds
390  *      the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396                                  ext4_lblk_t  *offsets,
397                                  Indirect chain[4], int *err)
398 {
399         struct super_block *sb = inode->i_sb;
400         Indirect *p = chain;
401         struct buffer_head *bh;
402
403         *err = 0;
404         /* i_data is not going away, no lock needed */
405         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406         if (!p->key)
407                 goto no_block;
408         while (--depth) {
409                 bh = sb_getblk(sb, le32_to_cpu(p->key));
410                 if (unlikely(!bh))
411                         goto failure;
412
413                 if (!bh_uptodate_or_lock(bh)) {
414                         if (bh_submit_read(bh) < 0) {
415                                 put_bh(bh);
416                                 goto failure;
417                         }
418                         /* validate block references */
419                         if (ext4_check_indirect_blockref(inode, bh)) {
420                                 put_bh(bh);
421                                 goto failure;
422                         }
423                 }
424
425                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426                 /* Reader: end */
427                 if (!p->key)
428                         goto no_block;
429         }
430         return NULL;
431
432 failure:
433         *err = -EIO;
434 no_block:
435         return p;
436 }
437
438 /**
439  *      ext4_find_near - find a place for allocation with sufficient locality
440  *      @inode: owner
441  *      @ind: descriptor of indirect block.
442  *
443  *      This function returns the preferred place for block allocation.
444  *      It is used when heuristic for sequential allocation fails.
445  *      Rules are:
446  *        + if there is a block to the left of our position - allocate near it.
447  *        + if pointer will live in indirect block - allocate near that block.
448  *        + if pointer will live in inode - allocate in the same
449  *          cylinder group.
450  *
451  * In the latter case we colour the starting block by the callers PID to
452  * prevent it from clashing with concurrent allocations for a different inode
453  * in the same block group.   The PID is used here so that functionally related
454  * files will be close-by on-disk.
455  *
456  *      Caller must make sure that @ind is valid and will stay that way.
457  */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460         struct ext4_inode_info *ei = EXT4_I(inode);
461         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462         __le32 *p;
463         ext4_fsblk_t bg_start;
464         ext4_fsblk_t last_block;
465         ext4_grpblk_t colour;
466         ext4_group_t block_group;
467         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468
469         /* Try to find previous block */
470         for (p = ind->p - 1; p >= start; p--) {
471                 if (*p)
472                         return le32_to_cpu(*p);
473         }
474
475         /* No such thing, so let's try location of indirect block */
476         if (ind->bh)
477                 return ind->bh->b_blocknr;
478
479         /*
480          * It is going to be referred to from the inode itself? OK, just put it
481          * into the same cylinder group then.
482          */
483         block_group = ei->i_block_group;
484         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485                 block_group &= ~(flex_size-1);
486                 if (S_ISREG(inode->i_mode))
487                         block_group++;
488         }
489         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
492         /*
493          * If we are doing delayed allocation, we don't need take
494          * colour into account.
495          */
496         if (test_opt(inode->i_sb, DELALLOC))
497                 return bg_start;
498
499         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500                 colour = (current->pid % 16) *
501                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502         else
503                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504         return bg_start + colour;
505 }
506
507 /**
508  *      ext4_find_goal - find a preferred place for allocation.
509  *      @inode: owner
510  *      @block:  block we want
511  *      @partial: pointer to the last triple within a chain
512  *
513  *      Normally this function find the preferred place for block allocation,
514  *      returns it.
515  *      Because this is only used for non-extent files, we limit the block nr
516  *      to 32 bits.
517  */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519                                    Indirect *partial)
520 {
521         ext4_fsblk_t goal;
522
523         /*
524          * XXX need to get goal block from mballoc's data structures
525          */
526
527         goal = ext4_find_near(inode, partial);
528         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529         return goal;
530 }
531
532 /**
533  *      ext4_blks_to_allocate: Look up the block map and count the number
534  *      of direct blocks need to be allocated for the given branch.
535  *
536  *      @branch: chain of indirect blocks
537  *      @k: number of blocks need for indirect blocks
538  *      @blks: number of data blocks to be mapped.
539  *      @blocks_to_boundary:  the offset in the indirect block
540  *
541  *      return the total number of blocks to be allocate, including the
542  *      direct and indirect blocks.
543  */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545                                  int blocks_to_boundary)
546 {
547         unsigned int count = 0;
548
549         /*
550          * Simple case, [t,d]Indirect block(s) has not allocated yet
551          * then it's clear blocks on that path have not allocated
552          */
553         if (k > 0) {
554                 /* right now we don't handle cross boundary allocation */
555                 if (blks < blocks_to_boundary + 1)
556                         count += blks;
557                 else
558                         count += blocks_to_boundary + 1;
559                 return count;
560         }
561
562         count++;
563         while (count < blks && count <= blocks_to_boundary &&
564                 le32_to_cpu(*(branch[0].p + count)) == 0) {
565                 count++;
566         }
567         return count;
568 }
569
570 /**
571  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
572  *      @indirect_blks: the number of blocks need to allocate for indirect
573  *                      blocks
574  *
575  *      @new_blocks: on return it will store the new block numbers for
576  *      the indirect blocks(if needed) and the first direct block,
577  *      @blks:  on return it will store the total number of allocated
578  *              direct blocks
579  */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581                              ext4_lblk_t iblock, ext4_fsblk_t goal,
582                              int indirect_blks, int blks,
583                              ext4_fsblk_t new_blocks[4], int *err)
584 {
585         struct ext4_allocation_request ar;
586         int target, i;
587         unsigned long count = 0, blk_allocated = 0;
588         int index = 0;
589         ext4_fsblk_t current_block = 0;
590         int ret = 0;
591
592         /*
593          * Here we try to allocate the requested multiple blocks at once,
594          * on a best-effort basis.
595          * To build a branch, we should allocate blocks for
596          * the indirect blocks(if not allocated yet), and at least
597          * the first direct block of this branch.  That's the
598          * minimum number of blocks need to allocate(required)
599          */
600         /* first we try to allocate the indirect blocks */
601         target = indirect_blks;
602         while (target > 0) {
603                 count = target;
604                 /* allocating blocks for indirect blocks and direct blocks */
605                 current_block = ext4_new_meta_blocks(handle, inode,
606                                                         goal, &count, err);
607                 if (*err)
608                         goto failed_out;
609
610                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611
612                 target -= count;
613                 /* allocate blocks for indirect blocks */
614                 while (index < indirect_blks && count) {
615                         new_blocks[index++] = current_block++;
616                         count--;
617                 }
618                 if (count > 0) {
619                         /*
620                          * save the new block number
621                          * for the first direct block
622                          */
623                         new_blocks[index] = current_block;
624                         printk(KERN_INFO "%s returned more blocks than "
625                                                 "requested\n", __func__);
626                         WARN_ON(1);
627                         break;
628                 }
629         }
630
631         target = blks - count ;
632         blk_allocated = count;
633         if (!target)
634                 goto allocated;
635         /* Now allocate data blocks */
636         memset(&ar, 0, sizeof(ar));
637         ar.inode = inode;
638         ar.goal = goal;
639         ar.len = target;
640         ar.logical = iblock;
641         if (S_ISREG(inode->i_mode))
642                 /* enable in-core preallocation only for regular files */
643                 ar.flags = EXT4_MB_HINT_DATA;
644
645         current_block = ext4_mb_new_blocks(handle, &ar, err);
646         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647
648         if (*err && (target == blks)) {
649                 /*
650                  * if the allocation failed and we didn't allocate
651                  * any blocks before
652                  */
653                 goto failed_out;
654         }
655         if (!*err) {
656                 if (target == blks) {
657                         /*
658                          * save the new block number
659                          * for the first direct block
660                          */
661                         new_blocks[index] = current_block;
662                 }
663                 blk_allocated += ar.len;
664         }
665 allocated:
666         /* total number of blocks allocated for direct blocks */
667         ret = blk_allocated;
668         *err = 0;
669         return ret;
670 failed_out:
671         for (i = 0; i < index; i++)
672                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673         return ret;
674 }
675
676 /**
677  *      ext4_alloc_branch - allocate and set up a chain of blocks.
678  *      @inode: owner
679  *      @indirect_blks: number of allocated indirect blocks
680  *      @blks: number of allocated direct blocks
681  *      @offsets: offsets (in the blocks) to store the pointers to next.
682  *      @branch: place to store the chain in.
683  *
684  *      This function allocates blocks, zeroes out all but the last one,
685  *      links them into chain and (if we are synchronous) writes them to disk.
686  *      In other words, it prepares a branch that can be spliced onto the
687  *      inode. It stores the information about that chain in the branch[], in
688  *      the same format as ext4_get_branch() would do. We are calling it after
689  *      we had read the existing part of chain and partial points to the last
690  *      triple of that (one with zero ->key). Upon the exit we have the same
691  *      picture as after the successful ext4_get_block(), except that in one
692  *      place chain is disconnected - *branch->p is still zero (we did not
693  *      set the last link), but branch->key contains the number that should
694  *      be placed into *branch->p to fill that gap.
695  *
696  *      If allocation fails we free all blocks we've allocated (and forget
697  *      their buffer_heads) and return the error value the from failed
698  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699  *      as described above and return 0.
700  */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702                              ext4_lblk_t iblock, int indirect_blks,
703                              int *blks, ext4_fsblk_t goal,
704                              ext4_lblk_t *offsets, Indirect *branch)
705 {
706         int blocksize = inode->i_sb->s_blocksize;
707         int i, n = 0;
708         int err = 0;
709         struct buffer_head *bh;
710         int num;
711         ext4_fsblk_t new_blocks[4];
712         ext4_fsblk_t current_block;
713
714         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715                                 *blks, new_blocks, &err);
716         if (err)
717                 return err;
718
719         branch[0].key = cpu_to_le32(new_blocks[0]);
720         /*
721          * metadata blocks and data blocks are allocated.
722          */
723         for (n = 1; n <= indirect_blks;  n++) {
724                 /*
725                  * Get buffer_head for parent block, zero it out
726                  * and set the pointer to new one, then send
727                  * parent to disk.
728                  */
729                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730                 branch[n].bh = bh;
731                 lock_buffer(bh);
732                 BUFFER_TRACE(bh, "call get_create_access");
733                 err = ext4_journal_get_create_access(handle, bh);
734                 if (err) {
735                         /* Don't brelse(bh) here; it's done in
736                          * ext4_journal_forget() below */
737                         unlock_buffer(bh);
738                         goto failed;
739                 }
740
741                 memset(bh->b_data, 0, blocksize);
742                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743                 branch[n].key = cpu_to_le32(new_blocks[n]);
744                 *branch[n].p = branch[n].key;
745                 if (n == indirect_blks) {
746                         current_block = new_blocks[n];
747                         /*
748                          * End of chain, update the last new metablock of
749                          * the chain to point to the new allocated
750                          * data blocks numbers
751                          */
752                         for (i = 1; i < num; i++)
753                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
754                 }
755                 BUFFER_TRACE(bh, "marking uptodate");
756                 set_buffer_uptodate(bh);
757                 unlock_buffer(bh);
758
759                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760                 err = ext4_handle_dirty_metadata(handle, inode, bh);
761                 if (err)
762                         goto failed;
763         }
764         *blks = num;
765         return err;
766 failed:
767         /* Allocation failed, free what we already allocated */
768         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769         for (i = 1; i <= n ; i++) {
770                 /* 
771                  * branch[i].bh is newly allocated, so there is no
772                  * need to revoke the block, which is why we don't
773                  * need to set EXT4_FREE_BLOCKS_METADATA.
774                  */
775                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776                                  EXT4_FREE_BLOCKS_FORGET);
777         }
778         for (i = n+1; i < indirect_blks; i++)
779                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780
781         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782
783         return err;
784 }
785
786 /**
787  * ext4_splice_branch - splice the allocated branch onto inode.
788  * @inode: owner
789  * @block: (logical) number of block we are adding
790  * @chain: chain of indirect blocks (with a missing link - see
791  *      ext4_alloc_branch)
792  * @where: location of missing link
793  * @num:   number of indirect blocks we are adding
794  * @blks:  number of direct blocks we are adding
795  *
796  * This function fills the missing link and does all housekeeping needed in
797  * inode (->i_blocks, etc.). In case of success we end up with the full
798  * chain to new block and return 0.
799  */
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801                               ext4_lblk_t block, Indirect *where, int num,
802                               int blks)
803 {
804         int i;
805         int err = 0;
806         ext4_fsblk_t current_block;
807
808         /*
809          * If we're splicing into a [td]indirect block (as opposed to the
810          * inode) then we need to get write access to the [td]indirect block
811          * before the splice.
812          */
813         if (where->bh) {
814                 BUFFER_TRACE(where->bh, "get_write_access");
815                 err = ext4_journal_get_write_access(handle, where->bh);
816                 if (err)
817                         goto err_out;
818         }
819         /* That's it */
820
821         *where->p = where->key;
822
823         /*
824          * Update the host buffer_head or inode to point to more just allocated
825          * direct blocks blocks
826          */
827         if (num == 0 && blks > 1) {
828                 current_block = le32_to_cpu(where->key) + 1;
829                 for (i = 1; i < blks; i++)
830                         *(where->p + i) = cpu_to_le32(current_block++);
831         }
832
833         /* We are done with atomic stuff, now do the rest of housekeeping */
834         /* had we spliced it onto indirect block? */
835         if (where->bh) {
836                 /*
837                  * If we spliced it onto an indirect block, we haven't
838                  * altered the inode.  Note however that if it is being spliced
839                  * onto an indirect block at the very end of the file (the
840                  * file is growing) then we *will* alter the inode to reflect
841                  * the new i_size.  But that is not done here - it is done in
842                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843                  */
844                 jbd_debug(5, "splicing indirect only\n");
845                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847                 if (err)
848                         goto err_out;
849         } else {
850                 /*
851                  * OK, we spliced it into the inode itself on a direct block.
852                  */
853                 ext4_mark_inode_dirty(handle, inode);
854                 jbd_debug(5, "splicing direct\n");
855         }
856         return err;
857
858 err_out:
859         for (i = 1; i <= num; i++) {
860                 /* 
861                  * branch[i].bh is newly allocated, so there is no
862                  * need to revoke the block, which is why we don't
863                  * need to set EXT4_FREE_BLOCKS_METADATA.
864                  */
865                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866                                  EXT4_FREE_BLOCKS_FORGET);
867         }
868         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869                          blks, 0);
870
871         return err;
872 }
873
874 /*
875  * The ext4_ind_get_blocks() function handles non-extents inodes
876  * (i.e., using the traditional indirect/double-indirect i_blocks
877  * scheme) for ext4_get_blocks().
878  *
879  * Allocation strategy is simple: if we have to allocate something, we will
880  * have to go the whole way to leaf. So let's do it before attaching anything
881  * to tree, set linkage between the newborn blocks, write them if sync is
882  * required, recheck the path, free and repeat if check fails, otherwise
883  * set the last missing link (that will protect us from any truncate-generated
884  * removals - all blocks on the path are immune now) and possibly force the
885  * write on the parent block.
886  * That has a nice additional property: no special recovery from the failed
887  * allocations is needed - we simply release blocks and do not touch anything
888  * reachable from inode.
889  *
890  * `handle' can be NULL if create == 0.
891  *
892  * return > 0, # of blocks mapped or allocated.
893  * return = 0, if plain lookup failed.
894  * return < 0, error case.
895  *
896  * The ext4_ind_get_blocks() function should be called with
897  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900  * blocks.
901  */
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903                                ext4_lblk_t iblock, unsigned int maxblocks,
904                                struct buffer_head *bh_result,
905                                int flags)
906 {
907         int err = -EIO;
908         ext4_lblk_t offsets[4];
909         Indirect chain[4];
910         Indirect *partial;
911         ext4_fsblk_t goal;
912         int indirect_blks;
913         int blocks_to_boundary = 0;
914         int depth;
915         int count = 0;
916         ext4_fsblk_t first_block = 0;
917
918         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920         depth = ext4_block_to_path(inode, iblock, offsets,
921                                    &blocks_to_boundary);
922
923         if (depth == 0)
924                 goto out;
925
926         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927
928         /* Simplest case - block found, no allocation needed */
929         if (!partial) {
930                 first_block = le32_to_cpu(chain[depth - 1].key);
931                 clear_buffer_new(bh_result);
932                 count++;
933                 /*map more blocks*/
934                 while (count < maxblocks && count <= blocks_to_boundary) {
935                         ext4_fsblk_t blk;
936
937                         blk = le32_to_cpu(*(chain[depth-1].p + count));
938
939                         if (blk == first_block + count)
940                                 count++;
941                         else
942                                 break;
943                 }
944                 goto got_it;
945         }
946
947         /* Next simple case - plain lookup or failed read of indirect block */
948         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949                 goto cleanup;
950
951         /*
952          * Okay, we need to do block allocation.
953         */
954         goal = ext4_find_goal(inode, iblock, partial);
955
956         /* the number of blocks need to allocate for [d,t]indirect blocks */
957         indirect_blks = (chain + depth) - partial - 1;
958
959         /*
960          * Next look up the indirect map to count the totoal number of
961          * direct blocks to allocate for this branch.
962          */
963         count = ext4_blks_to_allocate(partial, indirect_blks,
964                                         maxblocks, blocks_to_boundary);
965         /*
966          * Block out ext4_truncate while we alter the tree
967          */
968         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969                                 &count, goal,
970                                 offsets + (partial - chain), partial);
971
972         /*
973          * The ext4_splice_branch call will free and forget any buffers
974          * on the new chain if there is a failure, but that risks using
975          * up transaction credits, especially for bitmaps where the
976          * credits cannot be returned.  Can we handle this somehow?  We
977          * may need to return -EAGAIN upwards in the worst case.  --sct
978          */
979         if (!err)
980                 err = ext4_splice_branch(handle, inode, iblock,
981                                          partial, indirect_blks, count);
982         if (err)
983                 goto cleanup;
984
985         set_buffer_new(bh_result);
986
987         ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990         if (count > blocks_to_boundary)
991                 set_buffer_boundary(bh_result);
992         err = count;
993         /* Clean up and exit */
994         partial = chain + depth - 1;    /* the whole chain */
995 cleanup:
996         while (partial > chain) {
997                 BUFFER_TRACE(partial->bh, "call brelse");
998                 brelse(partial->bh);
999                 partial--;
1000         }
1001         BUFFER_TRACE(bh_result, "returned");
1002 out:
1003         return err;
1004 }
1005
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1008 {
1009         return &EXT4_I(inode)->i_reserved_quota;
1010 }
1011 #endif
1012
1013 /*
1014  * Calculate the number of metadata blocks need to reserve
1015  * to allocate a new block at @lblocks for non extent file based file
1016  */
1017 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1018                                               sector_t lblock)
1019 {
1020         struct ext4_inode_info *ei = EXT4_I(inode);
1021         int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1022         int blk_bits;
1023
1024         if (lblock < EXT4_NDIR_BLOCKS)
1025                 return 0;
1026
1027         lblock -= EXT4_NDIR_BLOCKS;
1028
1029         if (ei->i_da_metadata_calc_len &&
1030             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1031                 ei->i_da_metadata_calc_len++;
1032                 return 0;
1033         }
1034         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1035         ei->i_da_metadata_calc_len = 1;
1036         blk_bits = roundup_pow_of_two(lblock + 1);
1037         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1038 }
1039
1040 /*
1041  * Calculate the number of metadata blocks need to reserve
1042  * to allocate a block located at @lblock
1043  */
1044 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1045 {
1046         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1047                 return ext4_ext_calc_metadata_amount(inode, lblock);
1048
1049         return ext4_indirect_calc_metadata_amount(inode, lblock);
1050 }
1051
1052 /*
1053  * Called with i_data_sem down, which is important since we can call
1054  * ext4_discard_preallocations() from here.
1055  */
1056 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1057 {
1058         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1059         struct ext4_inode_info *ei = EXT4_I(inode);
1060         int mdb_free = 0;
1061
1062         spin_lock(&ei->i_block_reservation_lock);
1063         if (unlikely(used > ei->i_reserved_data_blocks)) {
1064                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1065                          "with only %d reserved data blocks\n",
1066                          __func__, inode->i_ino, used,
1067                          ei->i_reserved_data_blocks);
1068                 WARN_ON(1);
1069                 used = ei->i_reserved_data_blocks;
1070         }
1071
1072         /* Update per-inode reservations */
1073         ei->i_reserved_data_blocks -= used;
1074         used += ei->i_allocated_meta_blocks;
1075         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1076         ei->i_allocated_meta_blocks = 0;
1077         percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1078
1079         if (ei->i_reserved_data_blocks == 0) {
1080                 /*
1081                  * We can release all of the reserved metadata blocks
1082                  * only when we have written all of the delayed
1083                  * allocation blocks.
1084                  */
1085                 mdb_free = ei->i_reserved_meta_blocks;
1086                 ei->i_reserved_meta_blocks = 0;
1087                 ei->i_da_metadata_calc_len = 0;
1088                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1089         }
1090         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1091
1092         /* Update quota subsystem */
1093         vfs_dq_claim_block(inode, used);
1094         if (mdb_free)
1095                 vfs_dq_release_reservation_block(inode, mdb_free);
1096
1097         /*
1098          * If we have done all the pending block allocations and if
1099          * there aren't any writers on the inode, we can discard the
1100          * inode's preallocations.
1101          */
1102         if ((ei->i_reserved_data_blocks == 0) &&
1103             (atomic_read(&inode->i_writecount) == 0))
1104                 ext4_discard_preallocations(inode);
1105 }
1106
1107 static int check_block_validity(struct inode *inode, const char *msg,
1108                                 sector_t logical, sector_t phys, int len)
1109 {
1110         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1111                 ext4_error(inode->i_sb, msg,
1112                            "inode #%lu logical block %llu mapped to %llu "
1113                            "(size %d)", inode->i_ino,
1114                            (unsigned long long) logical,
1115                            (unsigned long long) phys, len);
1116                 return -EIO;
1117         }
1118         return 0;
1119 }
1120
1121 /*
1122  * Return the number of contiguous dirty pages in a given inode
1123  * starting at page frame idx.
1124  */
1125 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1126                                     unsigned int max_pages)
1127 {
1128         struct address_space *mapping = inode->i_mapping;
1129         pgoff_t index;
1130         struct pagevec pvec;
1131         pgoff_t num = 0;
1132         int i, nr_pages, done = 0;
1133
1134         if (max_pages == 0)
1135                 return 0;
1136         pagevec_init(&pvec, 0);
1137         while (!done) {
1138                 index = idx;
1139                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1140                                               PAGECACHE_TAG_DIRTY,
1141                                               (pgoff_t)PAGEVEC_SIZE);
1142                 if (nr_pages == 0)
1143                         break;
1144                 for (i = 0; i < nr_pages; i++) {
1145                         struct page *page = pvec.pages[i];
1146                         struct buffer_head *bh, *head;
1147
1148                         lock_page(page);
1149                         if (unlikely(page->mapping != mapping) ||
1150                             !PageDirty(page) ||
1151                             PageWriteback(page) ||
1152                             page->index != idx) {
1153                                 done = 1;
1154                                 unlock_page(page);
1155                                 break;
1156                         }
1157                         if (page_has_buffers(page)) {
1158                                 bh = head = page_buffers(page);
1159                                 do {
1160                                         if (!buffer_delay(bh) &&
1161                                             !buffer_unwritten(bh))
1162                                                 done = 1;
1163                                         bh = bh->b_this_page;
1164                                 } while (!done && (bh != head));
1165                         }
1166                         unlock_page(page);
1167                         if (done)
1168                                 break;
1169                         idx++;
1170                         num++;
1171                         if (num >= max_pages)
1172                                 break;
1173                 }
1174                 pagevec_release(&pvec);
1175         }
1176         return num;
1177 }
1178
1179 /*
1180  * The ext4_get_blocks() function tries to look up the requested blocks,
1181  * and returns if the blocks are already mapped.
1182  *
1183  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1184  * and store the allocated blocks in the result buffer head and mark it
1185  * mapped.
1186  *
1187  * If file type is extents based, it will call ext4_ext_get_blocks(),
1188  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1189  * based files
1190  *
1191  * On success, it returns the number of blocks being mapped or allocate.
1192  * if create==0 and the blocks are pre-allocated and uninitialized block,
1193  * the result buffer head is unmapped. If the create ==1, it will make sure
1194  * the buffer head is mapped.
1195  *
1196  * It returns 0 if plain look up failed (blocks have not been allocated), in
1197  * that casem, buffer head is unmapped
1198  *
1199  * It returns the error in case of allocation failure.
1200  */
1201 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1202                     unsigned int max_blocks, struct buffer_head *bh,
1203                     int flags)
1204 {
1205         int retval;
1206
1207         clear_buffer_mapped(bh);
1208         clear_buffer_unwritten(bh);
1209
1210         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1211                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1212                   (unsigned long)block);
1213         /*
1214          * Try to see if we can get the block without requesting a new
1215          * file system block.
1216          */
1217         down_read((&EXT4_I(inode)->i_data_sem));
1218         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1219                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1220                                 bh, 0);
1221         } else {
1222                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1223                                              bh, 0);
1224         }
1225         up_read((&EXT4_I(inode)->i_data_sem));
1226
1227         if (retval > 0 && buffer_mapped(bh)) {
1228                 int ret = check_block_validity(inode, "file system corruption",
1229                                                block, bh->b_blocknr, retval);
1230                 if (ret != 0)
1231                         return ret;
1232         }
1233
1234         /* If it is only a block(s) look up */
1235         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1236                 return retval;
1237
1238         /*
1239          * Returns if the blocks have already allocated
1240          *
1241          * Note that if blocks have been preallocated
1242          * ext4_ext_get_block() returns th create = 0
1243          * with buffer head unmapped.
1244          */
1245         if (retval > 0 && buffer_mapped(bh))
1246                 return retval;
1247
1248         /*
1249          * When we call get_blocks without the create flag, the
1250          * BH_Unwritten flag could have gotten set if the blocks
1251          * requested were part of a uninitialized extent.  We need to
1252          * clear this flag now that we are committed to convert all or
1253          * part of the uninitialized extent to be an initialized
1254          * extent.  This is because we need to avoid the combination
1255          * of BH_Unwritten and BH_Mapped flags being simultaneously
1256          * set on the buffer_head.
1257          */
1258         clear_buffer_unwritten(bh);
1259
1260         /*
1261          * New blocks allocate and/or writing to uninitialized extent
1262          * will possibly result in updating i_data, so we take
1263          * the write lock of i_data_sem, and call get_blocks()
1264          * with create == 1 flag.
1265          */
1266         down_write((&EXT4_I(inode)->i_data_sem));
1267
1268         /*
1269          * if the caller is from delayed allocation writeout path
1270          * we have already reserved fs blocks for allocation
1271          * let the underlying get_block() function know to
1272          * avoid double accounting
1273          */
1274         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1275                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1276         /*
1277          * We need to check for EXT4 here because migrate
1278          * could have changed the inode type in between
1279          */
1280         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1281                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1282                                               bh, flags);
1283         } else {
1284                 retval = ext4_ind_get_blocks(handle, inode, block,
1285                                              max_blocks, bh, flags);
1286
1287                 if (retval > 0 && buffer_new(bh)) {
1288                         /*
1289                          * We allocated new blocks which will result in
1290                          * i_data's format changing.  Force the migrate
1291                          * to fail by clearing migrate flags
1292                          */
1293                         EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1294                 }
1295         }
1296
1297         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1298                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1299
1300         /*
1301          * Update reserved blocks/metadata blocks after successful
1302          * block allocation which had been deferred till now.
1303          */
1304         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1305                 ext4_da_update_reserve_space(inode, retval);
1306
1307         up_write((&EXT4_I(inode)->i_data_sem));
1308         if (retval > 0 && buffer_mapped(bh)) {
1309                 int ret = check_block_validity(inode, "file system "
1310                                                "corruption after allocation",
1311                                                block, bh->b_blocknr, retval);
1312                 if (ret != 0)
1313                         return ret;
1314         }
1315         return retval;
1316 }
1317
1318 /* Maximum number of blocks we map for direct IO at once. */
1319 #define DIO_MAX_BLOCKS 4096
1320
1321 int ext4_get_block(struct inode *inode, sector_t iblock,
1322                    struct buffer_head *bh_result, int create)
1323 {
1324         handle_t *handle = ext4_journal_current_handle();
1325         int ret = 0, started = 0;
1326         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1327         int dio_credits;
1328
1329         if (create && !handle) {
1330                 /* Direct IO write... */
1331                 if (max_blocks > DIO_MAX_BLOCKS)
1332                         max_blocks = DIO_MAX_BLOCKS;
1333                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1334                 handle = ext4_journal_start(inode, dio_credits);
1335                 if (IS_ERR(handle)) {
1336                         ret = PTR_ERR(handle);
1337                         goto out;
1338                 }
1339                 started = 1;
1340         }
1341
1342         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1343                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1344         if (ret > 0) {
1345                 bh_result->b_size = (ret << inode->i_blkbits);
1346                 ret = 0;
1347         }
1348         if (started)
1349                 ext4_journal_stop(handle);
1350 out:
1351         return ret;
1352 }
1353
1354 /*
1355  * `handle' can be NULL if create is zero
1356  */
1357 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1358                                 ext4_lblk_t block, int create, int *errp)
1359 {
1360         struct buffer_head dummy;
1361         int fatal = 0, err;
1362         int flags = 0;
1363
1364         J_ASSERT(handle != NULL || create == 0);
1365
1366         dummy.b_state = 0;
1367         dummy.b_blocknr = -1000;
1368         buffer_trace_init(&dummy.b_history);
1369         if (create)
1370                 flags |= EXT4_GET_BLOCKS_CREATE;
1371         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1372         /*
1373          * ext4_get_blocks() returns number of blocks mapped. 0 in
1374          * case of a HOLE.
1375          */
1376         if (err > 0) {
1377                 if (err > 1)
1378                         WARN_ON(1);
1379                 err = 0;
1380         }
1381         *errp = err;
1382         if (!err && buffer_mapped(&dummy)) {
1383                 struct buffer_head *bh;
1384                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1385                 if (!bh) {
1386                         *errp = -EIO;
1387                         goto err;
1388                 }
1389                 if (buffer_new(&dummy)) {
1390                         J_ASSERT(create != 0);
1391                         J_ASSERT(handle != NULL);
1392
1393                         /*
1394                          * Now that we do not always journal data, we should
1395                          * keep in mind whether this should always journal the
1396                          * new buffer as metadata.  For now, regular file
1397                          * writes use ext4_get_block instead, so it's not a
1398                          * problem.
1399                          */
1400                         lock_buffer(bh);
1401                         BUFFER_TRACE(bh, "call get_create_access");
1402                         fatal = ext4_journal_get_create_access(handle, bh);
1403                         if (!fatal && !buffer_uptodate(bh)) {
1404                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1405                                 set_buffer_uptodate(bh);
1406                         }
1407                         unlock_buffer(bh);
1408                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1409                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1410                         if (!fatal)
1411                                 fatal = err;
1412                 } else {
1413                         BUFFER_TRACE(bh, "not a new buffer");
1414                 }
1415                 if (fatal) {
1416                         *errp = fatal;
1417                         brelse(bh);
1418                         bh = NULL;
1419                 }
1420                 return bh;
1421         }
1422 err:
1423         return NULL;
1424 }
1425
1426 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1427                                ext4_lblk_t block, int create, int *err)
1428 {
1429         struct buffer_head *bh;
1430
1431         bh = ext4_getblk(handle, inode, block, create, err);
1432         if (!bh)
1433                 return bh;
1434         if (buffer_uptodate(bh))
1435                 return bh;
1436         ll_rw_block(READ_META, 1, &bh);
1437         wait_on_buffer(bh);
1438         if (buffer_uptodate(bh))
1439                 return bh;
1440         put_bh(bh);
1441         *err = -EIO;
1442         return NULL;
1443 }
1444
1445 static int walk_page_buffers(handle_t *handle,
1446                              struct buffer_head *head,
1447                              unsigned from,
1448                              unsigned to,
1449                              int *partial,
1450                              int (*fn)(handle_t *handle,
1451                                        struct buffer_head *bh))
1452 {
1453         struct buffer_head *bh;
1454         unsigned block_start, block_end;
1455         unsigned blocksize = head->b_size;
1456         int err, ret = 0;
1457         struct buffer_head *next;
1458
1459         for (bh = head, block_start = 0;
1460              ret == 0 && (bh != head || !block_start);
1461              block_start = block_end, bh = next) {
1462                 next = bh->b_this_page;
1463                 block_end = block_start + blocksize;
1464                 if (block_end <= from || block_start >= to) {
1465                         if (partial && !buffer_uptodate(bh))
1466                                 *partial = 1;
1467                         continue;
1468                 }
1469                 err = (*fn)(handle, bh);
1470                 if (!ret)
1471                         ret = err;
1472         }
1473         return ret;
1474 }
1475
1476 /*
1477  * To preserve ordering, it is essential that the hole instantiation and
1478  * the data write be encapsulated in a single transaction.  We cannot
1479  * close off a transaction and start a new one between the ext4_get_block()
1480  * and the commit_write().  So doing the jbd2_journal_start at the start of
1481  * prepare_write() is the right place.
1482  *
1483  * Also, this function can nest inside ext4_writepage() ->
1484  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1485  * has generated enough buffer credits to do the whole page.  So we won't
1486  * block on the journal in that case, which is good, because the caller may
1487  * be PF_MEMALLOC.
1488  *
1489  * By accident, ext4 can be reentered when a transaction is open via
1490  * quota file writes.  If we were to commit the transaction while thus
1491  * reentered, there can be a deadlock - we would be holding a quota
1492  * lock, and the commit would never complete if another thread had a
1493  * transaction open and was blocking on the quota lock - a ranking
1494  * violation.
1495  *
1496  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1497  * will _not_ run commit under these circumstances because handle->h_ref
1498  * is elevated.  We'll still have enough credits for the tiny quotafile
1499  * write.
1500  */
1501 static int do_journal_get_write_access(handle_t *handle,
1502                                        struct buffer_head *bh)
1503 {
1504         if (!buffer_mapped(bh) || buffer_freed(bh))
1505                 return 0;
1506         return ext4_journal_get_write_access(handle, bh);
1507 }
1508
1509 /*
1510  * Truncate blocks that were not used by write. We have to truncate the
1511  * pagecache as well so that corresponding buffers get properly unmapped.
1512  */
1513 static void ext4_truncate_failed_write(struct inode *inode)
1514 {
1515         truncate_inode_pages(inode->i_mapping, inode->i_size);
1516         ext4_truncate(inode);
1517 }
1518
1519 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1520                             loff_t pos, unsigned len, unsigned flags,
1521                             struct page **pagep, void **fsdata)
1522 {
1523         struct inode *inode = mapping->host;
1524         int ret, needed_blocks;
1525         handle_t *handle;
1526         int retries = 0;
1527         struct page *page;
1528         pgoff_t index;
1529         unsigned from, to;
1530
1531         trace_ext4_write_begin(inode, pos, len, flags);
1532         /*
1533          * Reserve one block more for addition to orphan list in case
1534          * we allocate blocks but write fails for some reason
1535          */
1536         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1537         index = pos >> PAGE_CACHE_SHIFT;
1538         from = pos & (PAGE_CACHE_SIZE - 1);
1539         to = from + len;
1540
1541 retry:
1542         handle = ext4_journal_start(inode, needed_blocks);
1543         if (IS_ERR(handle)) {
1544                 ret = PTR_ERR(handle);
1545                 goto out;
1546         }
1547
1548         /* We cannot recurse into the filesystem as the transaction is already
1549          * started */
1550         flags |= AOP_FLAG_NOFS;
1551
1552         page = grab_cache_page_write_begin(mapping, index, flags);
1553         if (!page) {
1554                 ext4_journal_stop(handle);
1555                 ret = -ENOMEM;
1556                 goto out;
1557         }
1558         *pagep = page;
1559
1560         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1561                                 ext4_get_block);
1562
1563         if (!ret && ext4_should_journal_data(inode)) {
1564                 ret = walk_page_buffers(handle, page_buffers(page),
1565                                 from, to, NULL, do_journal_get_write_access);
1566         }
1567
1568         if (ret) {
1569                 unlock_page(page);
1570                 page_cache_release(page);
1571                 /*
1572                  * block_write_begin may have instantiated a few blocks
1573                  * outside i_size.  Trim these off again. Don't need
1574                  * i_size_read because we hold i_mutex.
1575                  *
1576                  * Add inode to orphan list in case we crash before
1577                  * truncate finishes
1578                  */
1579                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1580                         ext4_orphan_add(handle, inode);
1581
1582                 ext4_journal_stop(handle);
1583                 if (pos + len > inode->i_size) {
1584                         ext4_truncate_failed_write(inode);
1585                         /*
1586                          * If truncate failed early the inode might
1587                          * still be on the orphan list; we need to
1588                          * make sure the inode is removed from the
1589                          * orphan list in that case.
1590                          */
1591                         if (inode->i_nlink)
1592                                 ext4_orphan_del(NULL, inode);
1593                 }
1594         }
1595
1596         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1597                 goto retry;
1598 out:
1599         return ret;
1600 }
1601
1602 /* For write_end() in data=journal mode */
1603 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1604 {
1605         if (!buffer_mapped(bh) || buffer_freed(bh))
1606                 return 0;
1607         set_buffer_uptodate(bh);
1608         return ext4_handle_dirty_metadata(handle, NULL, bh);
1609 }
1610
1611 static int ext4_generic_write_end(struct file *file,
1612                                   struct address_space *mapping,
1613                                   loff_t pos, unsigned len, unsigned copied,
1614                                   struct page *page, void *fsdata)
1615 {
1616         int i_size_changed = 0;
1617         struct inode *inode = mapping->host;
1618         handle_t *handle = ext4_journal_current_handle();
1619
1620         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1621
1622         /*
1623          * No need to use i_size_read() here, the i_size
1624          * cannot change under us because we hold i_mutex.
1625          *
1626          * But it's important to update i_size while still holding page lock:
1627          * page writeout could otherwise come in and zero beyond i_size.
1628          */
1629         if (pos + copied > inode->i_size) {
1630                 i_size_write(inode, pos + copied);
1631                 i_size_changed = 1;
1632         }
1633
1634         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1635                 /* We need to mark inode dirty even if
1636                  * new_i_size is less that inode->i_size
1637                  * bu greater than i_disksize.(hint delalloc)
1638                  */
1639                 ext4_update_i_disksize(inode, (pos + copied));
1640                 i_size_changed = 1;
1641         }
1642         unlock_page(page);
1643         page_cache_release(page);
1644
1645         /*
1646          * Don't mark the inode dirty under page lock. First, it unnecessarily
1647          * makes the holding time of page lock longer. Second, it forces lock
1648          * ordering of page lock and transaction start for journaling
1649          * filesystems.
1650          */
1651         if (i_size_changed)
1652                 ext4_mark_inode_dirty(handle, inode);
1653
1654         return copied;
1655 }
1656
1657 /*
1658  * We need to pick up the new inode size which generic_commit_write gave us
1659  * `file' can be NULL - eg, when called from page_symlink().
1660  *
1661  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1662  * buffers are managed internally.
1663  */
1664 static int ext4_ordered_write_end(struct file *file,
1665                                   struct address_space *mapping,
1666                                   loff_t pos, unsigned len, unsigned copied,
1667                                   struct page *page, void *fsdata)
1668 {
1669         handle_t *handle = ext4_journal_current_handle();
1670         struct inode *inode = mapping->host;
1671         int ret = 0, ret2;
1672
1673         trace_ext4_ordered_write_end(inode, pos, len, copied);
1674         ret = ext4_jbd2_file_inode(handle, inode);
1675
1676         if (ret == 0) {
1677                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1678                                                         page, fsdata);
1679                 copied = ret2;
1680                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1681                         /* if we have allocated more blocks and copied
1682                          * less. We will have blocks allocated outside
1683                          * inode->i_size. So truncate them
1684                          */
1685                         ext4_orphan_add(handle, inode);
1686                 if (ret2 < 0)
1687                         ret = ret2;
1688         }
1689         ret2 = ext4_journal_stop(handle);
1690         if (!ret)
1691                 ret = ret2;
1692
1693         if (pos + len > inode->i_size) {
1694                 ext4_truncate_failed_write(inode);
1695                 /*
1696                  * If truncate failed early the inode might still be
1697                  * on the orphan list; we need to make sure the inode
1698                  * is removed from the orphan list in that case.
1699                  */
1700                 if (inode->i_nlink)
1701                         ext4_orphan_del(NULL, inode);
1702         }
1703
1704
1705         return ret ? ret : copied;
1706 }
1707
1708 static int ext4_writeback_write_end(struct file *file,
1709                                     struct address_space *mapping,
1710                                     loff_t pos, unsigned len, unsigned copied,
1711                                     struct page *page, void *fsdata)
1712 {
1713         handle_t *handle = ext4_journal_current_handle();
1714         struct inode *inode = mapping->host;
1715         int ret = 0, ret2;
1716
1717         trace_ext4_writeback_write_end(inode, pos, len, copied);
1718         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1719                                                         page, fsdata);
1720         copied = ret2;
1721         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1722                 /* if we have allocated more blocks and copied
1723                  * less. We will have blocks allocated outside
1724                  * inode->i_size. So truncate them
1725                  */
1726                 ext4_orphan_add(handle, inode);
1727
1728         if (ret2 < 0)
1729                 ret = ret2;
1730
1731         ret2 = ext4_journal_stop(handle);
1732         if (!ret)
1733                 ret = ret2;
1734
1735         if (pos + len > inode->i_size) {
1736                 ext4_truncate_failed_write(inode);
1737                 /*
1738                  * If truncate failed early the inode might still be
1739                  * on the orphan list; we need to make sure the inode
1740                  * is removed from the orphan list in that case.
1741                  */
1742                 if (inode->i_nlink)
1743                         ext4_orphan_del(NULL, inode);
1744         }
1745
1746         return ret ? ret : copied;
1747 }
1748
1749 static int ext4_journalled_write_end(struct file *file,
1750                                      struct address_space *mapping,
1751                                      loff_t pos, unsigned len, unsigned copied,
1752                                      struct page *page, void *fsdata)
1753 {
1754         handle_t *handle = ext4_journal_current_handle();
1755         struct inode *inode = mapping->host;
1756         int ret = 0, ret2;
1757         int partial = 0;
1758         unsigned from, to;
1759         loff_t new_i_size;
1760
1761         trace_ext4_journalled_write_end(inode, pos, len, copied);
1762         from = pos & (PAGE_CACHE_SIZE - 1);
1763         to = from + len;
1764
1765         if (copied < len) {
1766                 if (!PageUptodate(page))
1767                         copied = 0;
1768                 page_zero_new_buffers(page, from+copied, to);
1769         }
1770
1771         ret = walk_page_buffers(handle, page_buffers(page), from,
1772                                 to, &partial, write_end_fn);
1773         if (!partial)
1774                 SetPageUptodate(page);
1775         new_i_size = pos + copied;
1776         if (new_i_size > inode->i_size)
1777                 i_size_write(inode, pos+copied);
1778         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1779         if (new_i_size > EXT4_I(inode)->i_disksize) {
1780                 ext4_update_i_disksize(inode, new_i_size);
1781                 ret2 = ext4_mark_inode_dirty(handle, inode);
1782                 if (!ret)
1783                         ret = ret2;
1784         }
1785
1786         unlock_page(page);
1787         page_cache_release(page);
1788         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1789                 /* if we have allocated more blocks and copied
1790                  * less. We will have blocks allocated outside
1791                  * inode->i_size. So truncate them
1792                  */
1793                 ext4_orphan_add(handle, inode);
1794
1795         ret2 = ext4_journal_stop(handle);
1796         if (!ret)
1797                 ret = ret2;
1798         if (pos + len > inode->i_size) {
1799                 ext4_truncate_failed_write(inode);
1800                 /*
1801                  * If truncate failed early the inode might still be
1802                  * on the orphan list; we need to make sure the inode
1803                  * is removed from the orphan list in that case.
1804                  */
1805                 if (inode->i_nlink)
1806                         ext4_orphan_del(NULL, inode);
1807         }
1808
1809         return ret ? ret : copied;
1810 }
1811
1812 /*
1813  * Reserve a single block located at lblock
1814  */
1815 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1816 {
1817         int retries = 0;
1818         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1819         struct ext4_inode_info *ei = EXT4_I(inode);
1820         unsigned long md_needed, md_reserved;
1821
1822         /*
1823          * recalculate the amount of metadata blocks to reserve
1824          * in order to allocate nrblocks
1825          * worse case is one extent per block
1826          */
1827 repeat:
1828         spin_lock(&ei->i_block_reservation_lock);
1829         md_reserved = ei->i_reserved_meta_blocks;
1830         md_needed = ext4_calc_metadata_amount(inode, lblock);
1831         spin_unlock(&ei->i_block_reservation_lock);
1832
1833         /*
1834          * Make quota reservation here to prevent quota overflow
1835          * later. Real quota accounting is done at pages writeout
1836          * time.
1837          */
1838         if (vfs_dq_reserve_block(inode, md_needed + 1)) {
1839                 /* 
1840                  * We tend to badly over-estimate the amount of
1841                  * metadata blocks which are needed, so if we have
1842                  * reserved any metadata blocks, try to force out the
1843                  * inode and see if we have any better luck.
1844                  */
1845                 if (md_reserved && retries++ <= 3)
1846                         goto retry;
1847                 return -EDQUOT;
1848         }
1849
1850         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1851                 vfs_dq_release_reservation_block(inode, md_needed + 1);
1852                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1853                 retry:
1854                         if (md_reserved)
1855                                 write_inode_now(inode, (retries == 3));
1856                         yield();
1857                         goto repeat;
1858                 }
1859                 return -ENOSPC;
1860         }
1861         spin_lock(&ei->i_block_reservation_lock);
1862         ei->i_reserved_data_blocks++;
1863         ei->i_reserved_meta_blocks += md_needed;
1864         spin_unlock(&ei->i_block_reservation_lock);
1865
1866         return 0;       /* success */
1867 }
1868
1869 static void ext4_da_release_space(struct inode *inode, int to_free)
1870 {
1871         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1872         struct ext4_inode_info *ei = EXT4_I(inode);
1873
1874         if (!to_free)
1875                 return;         /* Nothing to release, exit */
1876
1877         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1878
1879         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1880                 /*
1881                  * if there aren't enough reserved blocks, then the
1882                  * counter is messed up somewhere.  Since this
1883                  * function is called from invalidate page, it's
1884                  * harmless to return without any action.
1885                  */
1886                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1887                          "ino %lu, to_free %d with only %d reserved "
1888                          "data blocks\n", inode->i_ino, to_free,
1889                          ei->i_reserved_data_blocks);
1890                 WARN_ON(1);
1891                 to_free = ei->i_reserved_data_blocks;
1892         }
1893         ei->i_reserved_data_blocks -= to_free;
1894
1895         if (ei->i_reserved_data_blocks == 0) {
1896                 /*
1897                  * We can release all of the reserved metadata blocks
1898                  * only when we have written all of the delayed
1899                  * allocation blocks.
1900                  */
1901                 to_free += ei->i_reserved_meta_blocks;
1902                 ei->i_reserved_meta_blocks = 0;
1903                 ei->i_da_metadata_calc_len = 0;
1904         }
1905
1906         /* update fs dirty blocks counter */
1907         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1908
1909         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1910
1911         vfs_dq_release_reservation_block(inode, to_free);
1912 }
1913
1914 static void ext4_da_page_release_reservation(struct page *page,
1915                                              unsigned long offset)
1916 {
1917         int to_release = 0;
1918         struct buffer_head *head, *bh;
1919         unsigned int curr_off = 0;
1920
1921         head = page_buffers(page);
1922         bh = head;
1923         do {
1924                 unsigned int next_off = curr_off + bh->b_size;
1925
1926                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1927                         to_release++;
1928                         clear_buffer_delay(bh);
1929                 }
1930                 curr_off = next_off;
1931         } while ((bh = bh->b_this_page) != head);
1932         ext4_da_release_space(page->mapping->host, to_release);
1933 }
1934
1935 /*
1936  * Delayed allocation stuff
1937  */
1938
1939 /*
1940  * mpage_da_submit_io - walks through extent of pages and try to write
1941  * them with writepage() call back
1942  *
1943  * @mpd->inode: inode
1944  * @mpd->first_page: first page of the extent
1945  * @mpd->next_page: page after the last page of the extent
1946  *
1947  * By the time mpage_da_submit_io() is called we expect all blocks
1948  * to be allocated. this may be wrong if allocation failed.
1949  *
1950  * As pages are already locked by write_cache_pages(), we can't use it
1951  */
1952 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1953 {
1954         long pages_skipped;
1955         struct pagevec pvec;
1956         unsigned long index, end;
1957         int ret = 0, err, nr_pages, i;
1958         struct inode *inode = mpd->inode;
1959         struct address_space *mapping = inode->i_mapping;
1960
1961         BUG_ON(mpd->next_page <= mpd->first_page);
1962         /*
1963          * We need to start from the first_page to the next_page - 1
1964          * to make sure we also write the mapped dirty buffer_heads.
1965          * If we look at mpd->b_blocknr we would only be looking
1966          * at the currently mapped buffer_heads.
1967          */
1968         index = mpd->first_page;
1969         end = mpd->next_page - 1;
1970
1971         pagevec_init(&pvec, 0);
1972         while (index <= end) {
1973                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1974                 if (nr_pages == 0)
1975                         break;
1976                 for (i = 0; i < nr_pages; i++) {
1977                         struct page *page = pvec.pages[i];
1978
1979                         index = page->index;
1980                         if (index > end)
1981                                 break;
1982                         index++;
1983
1984                         BUG_ON(!PageLocked(page));
1985                         BUG_ON(PageWriteback(page));
1986
1987                         pages_skipped = mpd->wbc->pages_skipped;
1988                         err = mapping->a_ops->writepage(page, mpd->wbc);
1989                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1990                                 /*
1991                                  * have successfully written the page
1992                                  * without skipping the same
1993                                  */
1994                                 mpd->pages_written++;
1995                         /*
1996                          * In error case, we have to continue because
1997                          * remaining pages are still locked
1998                          * XXX: unlock and re-dirty them?
1999                          */
2000                         if (ret == 0)
2001                                 ret = err;
2002                 }
2003                 pagevec_release(&pvec);
2004         }
2005         return ret;
2006 }
2007
2008 /*
2009  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2010  *
2011  * @mpd->inode - inode to walk through
2012  * @exbh->b_blocknr - first block on a disk
2013  * @exbh->b_size - amount of space in bytes
2014  * @logical - first logical block to start assignment with
2015  *
2016  * the function goes through all passed space and put actual disk
2017  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2018  */
2019 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2020                                  struct buffer_head *exbh)
2021 {
2022         struct inode *inode = mpd->inode;
2023         struct address_space *mapping = inode->i_mapping;
2024         int blocks = exbh->b_size >> inode->i_blkbits;
2025         sector_t pblock = exbh->b_blocknr, cur_logical;
2026         struct buffer_head *head, *bh;
2027         pgoff_t index, end;
2028         struct pagevec pvec;
2029         int nr_pages, i;
2030
2031         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2032         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2033         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2034
2035         pagevec_init(&pvec, 0);
2036
2037         while (index <= end) {
2038                 /* XXX: optimize tail */
2039                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2040                 if (nr_pages == 0)
2041                         break;
2042                 for (i = 0; i < nr_pages; i++) {
2043                         struct page *page = pvec.pages[i];
2044
2045                         index = page->index;
2046                         if (index > end)
2047                                 break;
2048                         index++;
2049
2050                         BUG_ON(!PageLocked(page));
2051                         BUG_ON(PageWriteback(page));
2052                         BUG_ON(!page_has_buffers(page));
2053
2054                         bh = page_buffers(page);
2055                         head = bh;
2056
2057                         /* skip blocks out of the range */
2058                         do {
2059                                 if (cur_logical >= logical)
2060                                         break;
2061                                 cur_logical++;
2062                         } while ((bh = bh->b_this_page) != head);
2063
2064                         do {
2065                                 if (cur_logical >= logical + blocks)
2066                                         break;
2067
2068                                 if (buffer_delay(bh) ||
2069                                                 buffer_unwritten(bh)) {
2070
2071                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2072
2073                                         if (buffer_delay(bh)) {
2074                                                 clear_buffer_delay(bh);
2075                                                 bh->b_blocknr = pblock;
2076                                         } else {
2077                                                 /*
2078                                                  * unwritten already should have
2079                                                  * blocknr assigned. Verify that
2080                                                  */
2081                                                 clear_buffer_unwritten(bh);
2082                                                 BUG_ON(bh->b_blocknr != pblock);
2083                                         }
2084
2085                                 } else if (buffer_mapped(bh))
2086                                         BUG_ON(bh->b_blocknr != pblock);
2087
2088                                 cur_logical++;
2089                                 pblock++;
2090                         } while ((bh = bh->b_this_page) != head);
2091                 }
2092                 pagevec_release(&pvec);
2093         }
2094 }
2095
2096
2097 /*
2098  * __unmap_underlying_blocks - just a helper function to unmap
2099  * set of blocks described by @bh
2100  */
2101 static inline void __unmap_underlying_blocks(struct inode *inode,
2102                                              struct buffer_head *bh)
2103 {
2104         struct block_device *bdev = inode->i_sb->s_bdev;
2105         int blocks, i;
2106
2107         blocks = bh->b_size >> inode->i_blkbits;
2108         for (i = 0; i < blocks; i++)
2109                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2110 }
2111
2112 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2113                                         sector_t logical, long blk_cnt)
2114 {
2115         int nr_pages, i;
2116         pgoff_t index, end;
2117         struct pagevec pvec;
2118         struct inode *inode = mpd->inode;
2119         struct address_space *mapping = inode->i_mapping;
2120
2121         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2122         end   = (logical + blk_cnt - 1) >>
2123                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2124         while (index <= end) {
2125                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2126                 if (nr_pages == 0)
2127                         break;
2128                 for (i = 0; i < nr_pages; i++) {
2129                         struct page *page = pvec.pages[i];
2130                         index = page->index;
2131                         if (index > end)
2132                                 break;
2133                         index++;
2134
2135                         BUG_ON(!PageLocked(page));
2136                         BUG_ON(PageWriteback(page));
2137                         block_invalidatepage(page, 0);
2138                         ClearPageUptodate(page);
2139                         unlock_page(page);
2140                 }
2141         }
2142         return;
2143 }
2144
2145 static void ext4_print_free_blocks(struct inode *inode)
2146 {
2147         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2148         printk(KERN_CRIT "Total free blocks count %lld\n",
2149                ext4_count_free_blocks(inode->i_sb));
2150         printk(KERN_CRIT "Free/Dirty block details\n");
2151         printk(KERN_CRIT "free_blocks=%lld\n",
2152                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2153         printk(KERN_CRIT "dirty_blocks=%lld\n",
2154                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2155         printk(KERN_CRIT "Block reservation details\n");
2156         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2157                EXT4_I(inode)->i_reserved_data_blocks);
2158         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2159                EXT4_I(inode)->i_reserved_meta_blocks);
2160         return;
2161 }
2162
2163 /*
2164  * mpage_da_map_blocks - go through given space
2165  *
2166  * @mpd - bh describing space
2167  *
2168  * The function skips space we know is already mapped to disk blocks.
2169  *
2170  */
2171 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2172 {
2173         int err, blks, get_blocks_flags;
2174         struct buffer_head new;
2175         sector_t next = mpd->b_blocknr;
2176         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2177         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2178         handle_t *handle = NULL;
2179
2180         /*
2181          * We consider only non-mapped and non-allocated blocks
2182          */
2183         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2184                 !(mpd->b_state & (1 << BH_Delay)) &&
2185                 !(mpd->b_state & (1 << BH_Unwritten)))
2186                 return 0;
2187
2188         /*
2189          * If we didn't accumulate anything to write simply return
2190          */
2191         if (!mpd->b_size)
2192                 return 0;
2193
2194         handle = ext4_journal_current_handle();
2195         BUG_ON(!handle);
2196
2197         /*
2198          * Call ext4_get_blocks() to allocate any delayed allocation
2199          * blocks, or to convert an uninitialized extent to be
2200          * initialized (in the case where we have written into
2201          * one or more preallocated blocks).
2202          *
2203          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2204          * indicate that we are on the delayed allocation path.  This
2205          * affects functions in many different parts of the allocation
2206          * call path.  This flag exists primarily because we don't
2207          * want to change *many* call functions, so ext4_get_blocks()
2208          * will set the magic i_delalloc_reserved_flag once the
2209          * inode's allocation semaphore is taken.
2210          *
2211          * If the blocks in questions were delalloc blocks, set
2212          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2213          * variables are updated after the blocks have been allocated.
2214          */
2215         new.b_state = 0;
2216         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2217                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2218         if (mpd->b_state & (1 << BH_Delay))
2219                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2220         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2221                                &new, get_blocks_flags);
2222         if (blks < 0) {
2223                 err = blks;
2224                 /*
2225                  * If get block returns with error we simply
2226                  * return. Later writepage will redirty the page and
2227                  * writepages will find the dirty page again
2228                  */
2229                 if (err == -EAGAIN)
2230                         return 0;
2231
2232                 if (err == -ENOSPC &&
2233                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2234                         mpd->retval = err;
2235                         return 0;
2236                 }
2237
2238                 /*
2239                  * get block failure will cause us to loop in
2240                  * writepages, because a_ops->writepage won't be able
2241                  * to make progress. The page will be redirtied by
2242                  * writepage and writepages will again try to write
2243                  * the same.
2244                  */
2245                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2246                          "delayed block allocation failed for inode %lu at "
2247                          "logical offset %llu with max blocks %zd with "
2248                          "error %d\n", mpd->inode->i_ino,
2249                          (unsigned long long) next,
2250                          mpd->b_size >> mpd->inode->i_blkbits, err);
2251                 printk(KERN_CRIT "This should not happen!!  "
2252                        "Data will be lost\n");
2253                 if (err == -ENOSPC) {
2254                         ext4_print_free_blocks(mpd->inode);
2255                 }
2256                 /* invalidate all the pages */
2257                 ext4_da_block_invalidatepages(mpd, next,
2258                                 mpd->b_size >> mpd->inode->i_blkbits);
2259                 return err;
2260         }
2261         BUG_ON(blks == 0);
2262
2263         new.b_size = (blks << mpd->inode->i_blkbits);
2264
2265         if (buffer_new(&new))
2266                 __unmap_underlying_blocks(mpd->inode, &new);
2267
2268         /*
2269          * If blocks are delayed marked, we need to
2270          * put actual blocknr and drop delayed bit
2271          */
2272         if ((mpd->b_state & (1 << BH_Delay)) ||
2273             (mpd->b_state & (1 << BH_Unwritten)))
2274                 mpage_put_bnr_to_bhs(mpd, next, &new);
2275
2276         if (ext4_should_order_data(mpd->inode)) {
2277                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2278                 if (err)
2279                         return err;
2280         }
2281
2282         /*
2283          * Update on-disk size along with block allocation.
2284          */
2285         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2286         if (disksize > i_size_read(mpd->inode))
2287                 disksize = i_size_read(mpd->inode);
2288         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2289                 ext4_update_i_disksize(mpd->inode, disksize);
2290                 return ext4_mark_inode_dirty(handle, mpd->inode);
2291         }
2292
2293         return 0;
2294 }
2295
2296 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2297                 (1 << BH_Delay) | (1 << BH_Unwritten))
2298
2299 /*
2300  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2301  *
2302  * @mpd->lbh - extent of blocks
2303  * @logical - logical number of the block in the file
2304  * @bh - bh of the block (used to access block's state)
2305  *
2306  * the function is used to collect contig. blocks in same state
2307  */
2308 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2309                                    sector_t logical, size_t b_size,
2310                                    unsigned long b_state)
2311 {
2312         sector_t next;
2313         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2314
2315         /* check if thereserved journal credits might overflow */
2316         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2317                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2318                         /*
2319                          * With non-extent format we are limited by the journal
2320                          * credit available.  Total credit needed to insert
2321                          * nrblocks contiguous blocks is dependent on the
2322                          * nrblocks.  So limit nrblocks.
2323                          */
2324                         goto flush_it;
2325                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2326                                 EXT4_MAX_TRANS_DATA) {
2327                         /*
2328                          * Adding the new buffer_head would make it cross the
2329                          * allowed limit for which we have journal credit
2330                          * reserved. So limit the new bh->b_size
2331                          */
2332                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2333                                                 mpd->inode->i_blkbits;
2334                         /* we will do mpage_da_submit_io in the next loop */
2335                 }
2336         }
2337         /*
2338          * First block in the extent
2339          */
2340         if (mpd->b_size == 0) {
2341                 mpd->b_blocknr = logical;
2342                 mpd->b_size = b_size;
2343                 mpd->b_state = b_state & BH_FLAGS;
2344                 return;
2345         }
2346
2347         next = mpd->b_blocknr + nrblocks;
2348         /*
2349          * Can we merge the block to our big extent?
2350          */
2351         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2352                 mpd->b_size += b_size;
2353                 return;
2354         }
2355
2356 flush_it:
2357         /*
2358          * We couldn't merge the block to our extent, so we
2359          * need to flush current  extent and start new one
2360          */
2361         if (mpage_da_map_blocks(mpd) == 0)
2362                 mpage_da_submit_io(mpd);
2363         mpd->io_done = 1;
2364         return;
2365 }
2366
2367 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2368 {
2369         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2370 }
2371
2372 /*
2373  * __mpage_da_writepage - finds extent of pages and blocks
2374  *
2375  * @page: page to consider
2376  * @wbc: not used, we just follow rules
2377  * @data: context
2378  *
2379  * The function finds extents of pages and scan them for all blocks.
2380  */
2381 static int __mpage_da_writepage(struct page *page,
2382                                 struct writeback_control *wbc, void *data)
2383 {
2384         struct mpage_da_data *mpd = data;
2385         struct inode *inode = mpd->inode;
2386         struct buffer_head *bh, *head;
2387         sector_t logical;
2388
2389         if (mpd->io_done) {
2390                 /*
2391                  * Rest of the page in the page_vec
2392                  * redirty then and skip then. We will
2393                  * try to write them again after
2394                  * starting a new transaction
2395                  */
2396                 redirty_page_for_writepage(wbc, page);
2397                 unlock_page(page);
2398                 return MPAGE_DA_EXTENT_TAIL;
2399         }
2400         /*
2401          * Can we merge this page to current extent?
2402          */
2403         if (mpd->next_page != page->index) {
2404                 /*
2405                  * Nope, we can't. So, we map non-allocated blocks
2406                  * and start IO on them using writepage()
2407                  */
2408                 if (mpd->next_page != mpd->first_page) {
2409                         if (mpage_da_map_blocks(mpd) == 0)
2410                                 mpage_da_submit_io(mpd);
2411                         /*
2412                          * skip rest of the page in the page_vec
2413                          */
2414                         mpd->io_done = 1;
2415                         redirty_page_for_writepage(wbc, page);
2416                         unlock_page(page);
2417                         return MPAGE_DA_EXTENT_TAIL;
2418                 }
2419
2420                 /*
2421                  * Start next extent of pages ...
2422                  */
2423                 mpd->first_page = page->index;
2424
2425                 /*
2426                  * ... and blocks
2427                  */
2428                 mpd->b_size = 0;
2429                 mpd->b_state = 0;
2430                 mpd->b_blocknr = 0;
2431         }
2432
2433         mpd->next_page = page->index + 1;
2434         logical = (sector_t) page->index <<
2435                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2436
2437         if (!page_has_buffers(page)) {
2438                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2439                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2440                 if (mpd->io_done)
2441                         return MPAGE_DA_EXTENT_TAIL;
2442         } else {
2443                 /*
2444                  * Page with regular buffer heads, just add all dirty ones
2445                  */
2446                 head = page_buffers(page);
2447                 bh = head;
2448                 do {
2449                         BUG_ON(buffer_locked(bh));
2450                         /*
2451                          * We need to try to allocate
2452                          * unmapped blocks in the same page.
2453                          * Otherwise we won't make progress
2454                          * with the page in ext4_writepage
2455                          */
2456                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2457                                 mpage_add_bh_to_extent(mpd, logical,
2458                                                        bh->b_size,
2459                                                        bh->b_state);
2460                                 if (mpd->io_done)
2461                                         return MPAGE_DA_EXTENT_TAIL;
2462                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2463                                 /*
2464                                  * mapped dirty buffer. We need to update
2465                                  * the b_state because we look at
2466                                  * b_state in mpage_da_map_blocks. We don't
2467                                  * update b_size because if we find an
2468                                  * unmapped buffer_head later we need to
2469                                  * use the b_state flag of that buffer_head.
2470                                  */
2471                                 if (mpd->b_size == 0)
2472                                         mpd->b_state = bh->b_state & BH_FLAGS;
2473                         }
2474                         logical++;
2475                 } while ((bh = bh->b_this_page) != head);
2476         }
2477
2478         return 0;
2479 }
2480
2481 /*
2482  * This is a special get_blocks_t callback which is used by
2483  * ext4_da_write_begin().  It will either return mapped block or
2484  * reserve space for a single block.
2485  *
2486  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2487  * We also have b_blocknr = -1 and b_bdev initialized properly
2488  *
2489  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2490  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2491  * initialized properly.
2492  */
2493 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2494                                   struct buffer_head *bh_result, int create)
2495 {
2496         int ret = 0;
2497         sector_t invalid_block = ~((sector_t) 0xffff);
2498
2499         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2500                 invalid_block = ~0;
2501
2502         BUG_ON(create == 0);
2503         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2504
2505         /*
2506          * first, we need to know whether the block is allocated already
2507          * preallocated blocks are unmapped but should treated
2508          * the same as allocated blocks.
2509          */
2510         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2511         if ((ret == 0) && !buffer_delay(bh_result)) {
2512                 /* the block isn't (pre)allocated yet, let's reserve space */
2513                 /*
2514                  * XXX: __block_prepare_write() unmaps passed block,
2515                  * is it OK?
2516                  */
2517                 ret = ext4_da_reserve_space(inode, iblock);
2518                 if (ret)
2519                         /* not enough space to reserve */
2520                         return ret;
2521
2522                 map_bh(bh_result, inode->i_sb, invalid_block);
2523                 set_buffer_new(bh_result);
2524                 set_buffer_delay(bh_result);
2525         } else if (ret > 0) {
2526                 bh_result->b_size = (ret << inode->i_blkbits);
2527                 if (buffer_unwritten(bh_result)) {
2528                         /* A delayed write to unwritten bh should
2529                          * be marked new and mapped.  Mapped ensures
2530                          * that we don't do get_block multiple times
2531                          * when we write to the same offset and new
2532                          * ensures that we do proper zero out for
2533                          * partial write.
2534                          */
2535                         set_buffer_new(bh_result);
2536                         set_buffer_mapped(bh_result);
2537                 }
2538                 ret = 0;
2539         }
2540
2541         return ret;
2542 }
2543
2544 /*
2545  * This function is used as a standard get_block_t calback function
2546  * when there is no desire to allocate any blocks.  It is used as a
2547  * callback function for block_prepare_write(), nobh_writepage(), and
2548  * block_write_full_page().  These functions should only try to map a
2549  * single block at a time.
2550  *
2551  * Since this function doesn't do block allocations even if the caller
2552  * requests it by passing in create=1, it is critically important that
2553  * any caller checks to make sure that any buffer heads are returned
2554  * by this function are either all already mapped or marked for
2555  * delayed allocation before calling nobh_writepage() or
2556  * block_write_full_page().  Otherwise, b_blocknr could be left
2557  * unitialized, and the page write functions will be taken by
2558  * surprise.
2559  */
2560 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2561                                    struct buffer_head *bh_result, int create)
2562 {
2563         int ret = 0;
2564         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2565
2566         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2567
2568         /*
2569          * we don't want to do block allocation in writepage
2570          * so call get_block_wrap with create = 0
2571          */
2572         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2573         if (ret > 0) {
2574                 bh_result->b_size = (ret << inode->i_blkbits);
2575                 ret = 0;
2576         }
2577         return ret;
2578 }
2579
2580 static int bget_one(handle_t *handle, struct buffer_head *bh)
2581 {
2582         get_bh(bh);
2583         return 0;
2584 }
2585
2586 static int bput_one(handle_t *handle, struct buffer_head *bh)
2587 {
2588         put_bh(bh);
2589         return 0;
2590 }
2591
2592 static int __ext4_journalled_writepage(struct page *page,
2593                                        unsigned int len)
2594 {
2595         struct address_space *mapping = page->mapping;
2596         struct inode *inode = mapping->host;
2597         struct buffer_head *page_bufs;
2598         handle_t *handle = NULL;
2599         int ret = 0;
2600         int err;
2601
2602         page_bufs = page_buffers(page);
2603         BUG_ON(!page_bufs);
2604         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2605         /* As soon as we unlock the page, it can go away, but we have
2606          * references to buffers so we are safe */
2607         unlock_page(page);
2608
2609         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2610         if (IS_ERR(handle)) {
2611                 ret = PTR_ERR(handle);
2612                 goto out;
2613         }
2614
2615         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2616                                 do_journal_get_write_access);
2617
2618         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2619                                 write_end_fn);
2620         if (ret == 0)
2621                 ret = err;
2622         err = ext4_journal_stop(handle);
2623         if (!ret)
2624                 ret = err;
2625
2626         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2627         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2628 out:
2629         return ret;
2630 }
2631
2632 /*
2633  * Note that we don't need to start a transaction unless we're journaling data
2634  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2635  * need to file the inode to the transaction's list in ordered mode because if
2636  * we are writing back data added by write(), the inode is already there and if
2637  * we are writing back data modified via mmap(), noone guarantees in which
2638  * transaction the data will hit the disk. In case we are journaling data, we
2639  * cannot start transaction directly because transaction start ranks above page
2640  * lock so we have to do some magic.
2641  *
2642  * This function can get called via...
2643  *   - ext4_da_writepages after taking page lock (have journal handle)
2644  *   - journal_submit_inode_data_buffers (no journal handle)
2645  *   - shrink_page_list via pdflush (no journal handle)
2646  *   - grab_page_cache when doing write_begin (have journal handle)
2647  *
2648  * We don't do any block allocation in this function. If we have page with
2649  * multiple blocks we need to write those buffer_heads that are mapped. This
2650  * is important for mmaped based write. So if we do with blocksize 1K
2651  * truncate(f, 1024);
2652  * a = mmap(f, 0, 4096);
2653  * a[0] = 'a';
2654  * truncate(f, 4096);
2655  * we have in the page first buffer_head mapped via page_mkwrite call back
2656  * but other bufer_heads would be unmapped but dirty(dirty done via the
2657  * do_wp_page). So writepage should write the first block. If we modify
2658  * the mmap area beyond 1024 we will again get a page_fault and the
2659  * page_mkwrite callback will do the block allocation and mark the
2660  * buffer_heads mapped.
2661  *
2662  * We redirty the page if we have any buffer_heads that is either delay or
2663  * unwritten in the page.
2664  *
2665  * We can get recursively called as show below.
2666  *
2667  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2668  *              ext4_writepage()
2669  *
2670  * But since we don't do any block allocation we should not deadlock.
2671  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2672  */
2673 static int ext4_writepage(struct page *page,
2674                           struct writeback_control *wbc)
2675 {
2676         int ret = 0;
2677         loff_t size;
2678         unsigned int len;
2679         struct buffer_head *page_bufs;
2680         struct inode *inode = page->mapping->host;
2681
2682         trace_ext4_writepage(inode, page);
2683         size = i_size_read(inode);
2684         if (page->index == size >> PAGE_CACHE_SHIFT)
2685                 len = size & ~PAGE_CACHE_MASK;
2686         else
2687                 len = PAGE_CACHE_SIZE;
2688
2689         if (page_has_buffers(page)) {
2690                 page_bufs = page_buffers(page);
2691                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2692                                         ext4_bh_delay_or_unwritten)) {
2693                         /*
2694                          * We don't want to do  block allocation
2695                          * So redirty the page and return
2696                          * We may reach here when we do a journal commit
2697                          * via journal_submit_inode_data_buffers.
2698                          * If we don't have mapping block we just ignore
2699                          * them. We can also reach here via shrink_page_list
2700                          */
2701                         redirty_page_for_writepage(wbc, page);
2702                         unlock_page(page);
2703                         return 0;
2704                 }
2705         } else {
2706                 /*
2707                  * The test for page_has_buffers() is subtle:
2708                  * We know the page is dirty but it lost buffers. That means
2709                  * that at some moment in time after write_begin()/write_end()
2710                  * has been called all buffers have been clean and thus they
2711                  * must have been written at least once. So they are all
2712                  * mapped and we can happily proceed with mapping them
2713                  * and writing the page.
2714                  *
2715                  * Try to initialize the buffer_heads and check whether
2716                  * all are mapped and non delay. We don't want to
2717                  * do block allocation here.
2718                  */
2719                 ret = block_prepare_write(page, 0, len,
2720                                           noalloc_get_block_write);
2721                 if (!ret) {
2722                         page_bufs = page_buffers(page);
2723                         /* check whether all are mapped and non delay */
2724                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2725                                                 ext4_bh_delay_or_unwritten)) {
2726                                 redirty_page_for_writepage(wbc, page);
2727                                 unlock_page(page);
2728                                 return 0;
2729                         }
2730                 } else {
2731                         /*
2732                          * We can't do block allocation here
2733                          * so just redity the page and unlock
2734                          * and return
2735                          */
2736                         redirty_page_for_writepage(wbc, page);
2737                         unlock_page(page);
2738                         return 0;
2739                 }
2740                 /* now mark the buffer_heads as dirty and uptodate */
2741                 block_commit_write(page, 0, len);
2742         }
2743
2744         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2745                 /*
2746                  * It's mmapped pagecache.  Add buffers and journal it.  There
2747                  * doesn't seem much point in redirtying the page here.
2748                  */
2749                 ClearPageChecked(page);
2750                 return __ext4_journalled_writepage(page, len);
2751         }
2752
2753         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2754                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2755         else
2756                 ret = block_write_full_page(page, noalloc_get_block_write,
2757                                             wbc);
2758
2759         return ret;
2760 }
2761
2762 /*
2763  * This is called via ext4_da_writepages() to
2764  * calulate the total number of credits to reserve to fit
2765  * a single extent allocation into a single transaction,
2766  * ext4_da_writpeages() will loop calling this before
2767  * the block allocation.
2768  */
2769
2770 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2771 {
2772         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2773
2774         /*
2775          * With non-extent format the journal credit needed to
2776          * insert nrblocks contiguous block is dependent on
2777          * number of contiguous block. So we will limit
2778          * number of contiguous block to a sane value
2779          */
2780         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2781             (max_blocks > EXT4_MAX_TRANS_DATA))
2782                 max_blocks = EXT4_MAX_TRANS_DATA;
2783
2784         return ext4_chunk_trans_blocks(inode, max_blocks);
2785 }
2786
2787 static int ext4_da_writepages(struct address_space *mapping,
2788                               struct writeback_control *wbc)
2789 {
2790         pgoff_t index;
2791         int range_whole = 0;
2792         handle_t *handle = NULL;
2793         struct mpage_da_data mpd;
2794         struct inode *inode = mapping->host;
2795         int no_nrwrite_index_update;
2796         int pages_written = 0;
2797         long pages_skipped;
2798         unsigned int max_pages;
2799         int range_cyclic, cycled = 1, io_done = 0;
2800         int needed_blocks, ret = 0;
2801         long desired_nr_to_write, nr_to_writebump = 0;
2802         loff_t range_start = wbc->range_start;
2803         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2804
2805         trace_ext4_da_writepages(inode, wbc);
2806
2807         /*
2808          * No pages to write? This is mainly a kludge to avoid starting
2809          * a transaction for special inodes like journal inode on last iput()
2810          * because that could violate lock ordering on umount
2811          */
2812         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2813                 return 0;
2814
2815         /*
2816          * If the filesystem has aborted, it is read-only, so return
2817          * right away instead of dumping stack traces later on that
2818          * will obscure the real source of the problem.  We test
2819          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2820          * the latter could be true if the filesystem is mounted
2821          * read-only, and in that case, ext4_da_writepages should
2822          * *never* be called, so if that ever happens, we would want
2823          * the stack trace.
2824          */
2825         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2826                 return -EROFS;
2827
2828         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2829                 range_whole = 1;
2830
2831         range_cyclic = wbc->range_cyclic;
2832         if (wbc->range_cyclic) {
2833                 index = mapping->writeback_index;
2834                 if (index)
2835                         cycled = 0;
2836                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2837                 wbc->range_end  = LLONG_MAX;
2838                 wbc->range_cyclic = 0;
2839         } else
2840                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2841
2842         /*
2843          * This works around two forms of stupidity.  The first is in
2844          * the writeback code, which caps the maximum number of pages
2845          * written to be 1024 pages.  This is wrong on multiple
2846          * levels; different architectues have a different page size,
2847          * which changes the maximum amount of data which gets
2848          * written.  Secondly, 4 megabytes is way too small.  XFS
2849          * forces this value to be 16 megabytes by multiplying
2850          * nr_to_write parameter by four, and then relies on its
2851          * allocator to allocate larger extents to make them
2852          * contiguous.  Unfortunately this brings us to the second
2853          * stupidity, which is that ext4's mballoc code only allocates
2854          * at most 2048 blocks.  So we force contiguous writes up to
2855          * the number of dirty blocks in the inode, or
2856          * sbi->max_writeback_mb_bump whichever is smaller.
2857          */
2858         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2859         if (!range_cyclic && range_whole)
2860                 desired_nr_to_write = wbc->nr_to_write * 8;
2861         else
2862                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2863                                                            max_pages);
2864         if (desired_nr_to_write > max_pages)
2865                 desired_nr_to_write = max_pages;
2866
2867         if (wbc->nr_to_write < desired_nr_to_write) {
2868                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2869                 wbc->nr_to_write = desired_nr_to_write;
2870         }
2871
2872         mpd.wbc = wbc;
2873         mpd.inode = mapping->host;
2874
2875         /*
2876          * we don't want write_cache_pages to update
2877          * nr_to_write and writeback_index
2878          */
2879         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2880         wbc->no_nrwrite_index_update = 1;
2881         pages_skipped = wbc->pages_skipped;
2882
2883 retry:
2884         while (!ret && wbc->nr_to_write > 0) {
2885
2886                 /*
2887                  * we  insert one extent at a time. So we need
2888                  * credit needed for single extent allocation.
2889                  * journalled mode is currently not supported
2890                  * by delalloc
2891                  */
2892                 BUG_ON(ext4_should_journal_data(inode));
2893                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2894
2895                 /* start a new transaction*/
2896                 handle = ext4_journal_start(inode, needed_blocks);
2897                 if (IS_ERR(handle)) {
2898                         ret = PTR_ERR(handle);
2899                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2900                                "%ld pages, ino %lu; err %d\n", __func__,
2901                                 wbc->nr_to_write, inode->i_ino, ret);
2902                         goto out_writepages;
2903                 }
2904
2905                 /*
2906                  * Now call __mpage_da_writepage to find the next
2907                  * contiguous region of logical blocks that need
2908                  * blocks to be allocated by ext4.  We don't actually
2909                  * submit the blocks for I/O here, even though
2910                  * write_cache_pages thinks it will, and will set the
2911                  * pages as clean for write before calling
2912                  * __mpage_da_writepage().
2913                  */
2914                 mpd.b_size = 0;
2915                 mpd.b_state = 0;
2916                 mpd.b_blocknr = 0;
2917                 mpd.first_page = 0;
2918                 mpd.next_page = 0;
2919                 mpd.io_done = 0;
2920                 mpd.pages_written = 0;
2921                 mpd.retval = 0;
2922                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2923                                         &mpd);
2924                 /*
2925                  * If we have a contiguous extent of pages and we
2926                  * haven't done the I/O yet, map the blocks and submit
2927                  * them for I/O.
2928                  */
2929                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2930                         if (mpage_da_map_blocks(&mpd) == 0)
2931                                 mpage_da_submit_io(&mpd);
2932                         mpd.io_done = 1;
2933                         ret = MPAGE_DA_EXTENT_TAIL;
2934                 }
2935                 trace_ext4_da_write_pages(inode, &mpd);
2936                 wbc->nr_to_write -= mpd.pages_written;
2937
2938                 ext4_journal_stop(handle);
2939
2940                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2941                         /* commit the transaction which would
2942                          * free blocks released in the transaction
2943                          * and try again
2944                          */
2945                         jbd2_journal_force_commit_nested(sbi->s_journal);
2946                         wbc->pages_skipped = pages_skipped;
2947                         ret = 0;
2948                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2949                         /*
2950                          * got one extent now try with
2951                          * rest of the pages
2952                          */
2953                         pages_written += mpd.pages_written;
2954                         wbc->pages_skipped = pages_skipped;
2955                         ret = 0;
2956                         io_done = 1;
2957                 } else if (wbc->nr_to_write)
2958                         /*
2959                          * There is no more writeout needed
2960                          * or we requested for a noblocking writeout
2961                          * and we found the device congested
2962                          */
2963                         break;
2964         }
2965         if (!io_done && !cycled) {
2966                 cycled = 1;
2967                 index = 0;
2968                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2969                 wbc->range_end  = mapping->writeback_index - 1;
2970                 goto retry;
2971         }
2972         if (pages_skipped != wbc->pages_skipped)
2973                 ext4_msg(inode->i_sb, KERN_CRIT,
2974                          "This should not happen leaving %s "
2975                          "with nr_to_write = %ld ret = %d\n",
2976                          __func__, wbc->nr_to_write, ret);
2977
2978         /* Update index */
2979         index += pages_written;
2980         wbc->range_cyclic = range_cyclic;
2981         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2982                 /*
2983                  * set the writeback_index so that range_cyclic
2984                  * mode will write it back later
2985                  */
2986                 mapping->writeback_index = index;
2987
2988 out_writepages:
2989         if (!no_nrwrite_index_update)
2990                 wbc->no_nrwrite_index_update = 0;
2991         wbc->nr_to_write -= nr_to_writebump;
2992         wbc->range_start = range_start;
2993         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2994         return ret;
2995 }
2996
2997 #define FALL_BACK_TO_NONDELALLOC 1
2998 static int ext4_nonda_switch(struct super_block *sb)
2999 {
3000         s64 free_blocks, dirty_blocks;
3001         struct ext4_sb_info *sbi = EXT4_SB(sb);
3002
3003         /*
3004          * switch to non delalloc mode if we are running low
3005          * on free block. The free block accounting via percpu
3006          * counters can get slightly wrong with percpu_counter_batch getting
3007          * accumulated on each CPU without updating global counters
3008          * Delalloc need an accurate free block accounting. So switch
3009          * to non delalloc when we are near to error range.
3010          */
3011         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3012         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3013         if (2 * free_blocks < 3 * dirty_blocks ||
3014                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3015                 /*
3016                  * free block count is less than 150% of dirty blocks
3017                  * or free blocks is less than watermark
3018                  */
3019                 return 1;
3020         }
3021         /*
3022          * Even if we don't switch but are nearing capacity,
3023          * start pushing delalloc when 1/2 of free blocks are dirty.
3024          */
3025         if (free_blocks < 2 * dirty_blocks)
3026                 writeback_inodes_sb_if_idle(sb);
3027
3028         return 0;
3029 }
3030
3031 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3032                                loff_t pos, unsigned len, unsigned flags,
3033                                struct page **pagep, void **fsdata)
3034 {
3035         int ret, retries = 0;
3036         struct page *page;
3037         pgoff_t index;
3038         unsigned from, to;
3039         struct inode *inode = mapping->host;
3040         handle_t *handle;
3041
3042         index = pos >> PAGE_CACHE_SHIFT;
3043         from = pos & (PAGE_CACHE_SIZE - 1);
3044         to = from + len;
3045
3046         if (ext4_nonda_switch(inode->i_sb)) {
3047                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3048                 return ext4_write_begin(file, mapping, pos,
3049                                         len, flags, pagep, fsdata);
3050         }
3051         *fsdata = (void *)0;
3052         trace_ext4_da_write_begin(inode, pos, len, flags);
3053 retry:
3054         /*
3055          * With delayed allocation, we don't log the i_disksize update
3056          * if there is delayed block allocation. But we still need
3057          * to journalling the i_disksize update if writes to the end
3058          * of file which has an already mapped buffer.
3059          */
3060         handle = ext4_journal_start(inode, 1);
3061         if (IS_ERR(handle)) {
3062                 ret = PTR_ERR(handle);
3063                 goto out;
3064         }
3065         /* We cannot recurse into the filesystem as the transaction is already
3066          * started */
3067         flags |= AOP_FLAG_NOFS;
3068
3069         page = grab_cache_page_write_begin(mapping, index, flags);
3070         if (!page) {
3071                 ext4_journal_stop(handle);
3072                 ret = -ENOMEM;
3073                 goto out;
3074         }
3075         *pagep = page;
3076
3077         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3078                                 ext4_da_get_block_prep);
3079         if (ret < 0) {
3080                 unlock_page(page);
3081                 ext4_journal_stop(handle);
3082                 page_cache_release(page);
3083                 /*
3084                  * block_write_begin may have instantiated a few blocks
3085                  * outside i_size.  Trim these off again. Don't need
3086                  * i_size_read because we hold i_mutex.
3087                  */
3088                 if (pos + len > inode->i_size)
3089                         ext4_truncate_failed_write(inode);
3090         }
3091
3092         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3093                 goto retry;
3094 out:
3095         return ret;
3096 }
3097
3098 /*
3099  * Check if we should update i_disksize
3100  * when write to the end of file but not require block allocation
3101  */
3102 static int ext4_da_should_update_i_disksize(struct page *page,
3103                                             unsigned long offset)
3104 {
3105         struct buffer_head *bh;
3106         struct inode *inode = page->mapping->host;
3107         unsigned int idx;
3108         int i;
3109
3110         bh = page_buffers(page);
3111         idx = offset >> inode->i_blkbits;
3112
3113         for (i = 0; i < idx; i++)
3114                 bh = bh->b_this_page;
3115
3116         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3117                 return 0;
3118         return 1;
3119 }
3120
3121 static int ext4_da_write_end(struct file *file,
3122                              struct address_space *mapping,
3123                              loff_t pos, unsigned len, unsigned copied,
3124                              struct page *page, void *fsdata)
3125 {
3126         struct inode *inode = mapping->host;
3127         int ret = 0, ret2;
3128         handle_t *handle = ext4_journal_current_handle();
3129         loff_t new_i_size;
3130         unsigned long start, end;
3131         int write_mode = (int)(unsigned long)fsdata;
3132
3133         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3134                 if (ext4_should_order_data(inode)) {
3135                         return ext4_ordered_write_end(file, mapping, pos,
3136                                         len, copied, page, fsdata);
3137                 } else if (ext4_should_writeback_data(inode)) {
3138                         return ext4_writeback_write_end(file, mapping, pos,
3139                                         len, copied, page, fsdata);
3140                 } else {
3141                         BUG();
3142                 }
3143         }
3144
3145         trace_ext4_da_write_end(inode, pos, len, copied);
3146         start = pos & (PAGE_CACHE_SIZE - 1);
3147         end = start + copied - 1;
3148
3149         /*
3150          * generic_write_end() will run mark_inode_dirty() if i_size
3151          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3152          * into that.
3153          */
3154
3155         new_i_size = pos + copied;
3156         if (new_i_size > EXT4_I(inode)->i_disksize) {
3157                 if (ext4_da_should_update_i_disksize(page, end)) {
3158                         down_write(&EXT4_I(inode)->i_data_sem);
3159                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3160                                 /*
3161                                  * Updating i_disksize when extending file
3162                                  * without needing block allocation
3163                                  */
3164                                 if (ext4_should_order_data(inode))
3165                                         ret = ext4_jbd2_file_inode(handle,
3166                                                                    inode);
3167
3168                                 EXT4_I(inode)->i_disksize = new_i_size;
3169                         }
3170                         up_write(&EXT4_I(inode)->i_data_sem);
3171                         /* We need to mark inode dirty even if
3172                          * new_i_size is less that inode->i_size
3173                          * bu greater than i_disksize.(hint delalloc)
3174                          */
3175                         ext4_mark_inode_dirty(handle, inode);
3176                 }
3177         }
3178         ret2 = generic_write_end(file, mapping, pos, len, copied,
3179                                                         page, fsdata);
3180         copied = ret2;
3181         if (ret2 < 0)
3182                 ret = ret2;
3183         ret2 = ext4_journal_stop(handle);
3184         if (!ret)
3185                 ret = ret2;
3186
3187         return ret ? ret : copied;
3188 }
3189
3190 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3191 {
3192         /*
3193          * Drop reserved blocks
3194          */
3195         BUG_ON(!PageLocked(page));
3196         if (!page_has_buffers(page))
3197                 goto out;
3198
3199         ext4_da_page_release_reservation(page, offset);
3200
3201 out:
3202         ext4_invalidatepage(page, offset);
3203
3204         return;
3205 }
3206
3207 /*
3208  * Force all delayed allocation blocks to be allocated for a given inode.
3209  */
3210 int ext4_alloc_da_blocks(struct inode *inode)
3211 {
3212         trace_ext4_alloc_da_blocks(inode);
3213
3214         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3215             !EXT4_I(inode)->i_reserved_meta_blocks)
3216                 return 0;
3217
3218         /*
3219          * We do something simple for now.  The filemap_flush() will
3220          * also start triggering a write of the data blocks, which is
3221          * not strictly speaking necessary (and for users of
3222          * laptop_mode, not even desirable).  However, to do otherwise
3223          * would require replicating code paths in:
3224          *
3225          * ext4_da_writepages() ->
3226          *    write_cache_pages() ---> (via passed in callback function)
3227          *        __mpage_da_writepage() -->
3228          *           mpage_add_bh_to_extent()
3229          *           mpage_da_map_blocks()
3230          *
3231          * The problem is that write_cache_pages(), located in
3232          * mm/page-writeback.c, marks pages clean in preparation for
3233          * doing I/O, which is not desirable if we're not planning on
3234          * doing I/O at all.
3235          *
3236          * We could call write_cache_pages(), and then redirty all of
3237          * the pages by calling redirty_page_for_writeback() but that
3238          * would be ugly in the extreme.  So instead we would need to
3239          * replicate parts of the code in the above functions,
3240          * simplifying them becuase we wouldn't actually intend to
3241          * write out the pages, but rather only collect contiguous
3242          * logical block extents, call the multi-block allocator, and
3243          * then update the buffer heads with the block allocations.
3244          *
3245          * For now, though, we'll cheat by calling filemap_flush(),
3246          * which will map the blocks, and start the I/O, but not
3247          * actually wait for the I/O to complete.
3248          */
3249         return filemap_flush(inode->i_mapping);
3250 }
3251
3252 /*
3253  * bmap() is special.  It gets used by applications such as lilo and by
3254  * the swapper to find the on-disk block of a specific piece of data.
3255  *
3256  * Naturally, this is dangerous if the block concerned is still in the
3257  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3258  * filesystem and enables swap, then they may get a nasty shock when the
3259  * data getting swapped to that swapfile suddenly gets overwritten by
3260  * the original zero's written out previously to the journal and
3261  * awaiting writeback in the kernel's buffer cache.
3262  *
3263  * So, if we see any bmap calls here on a modified, data-journaled file,
3264  * take extra steps to flush any blocks which might be in the cache.
3265  */
3266 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3267 {
3268         struct inode *inode = mapping->host;
3269         journal_t *journal;
3270         int err;
3271
3272         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273                         test_opt(inode->i_sb, DELALLOC)) {
3274                 /*
3275                  * With delalloc we want to sync the file
3276                  * so that we can make sure we allocate
3277                  * blocks for file
3278                  */
3279                 filemap_write_and_wait(mapping);
3280         }
3281
3282         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3283                 /*
3284                  * This is a REALLY heavyweight approach, but the use of
3285                  * bmap on dirty files is expected to be extremely rare:
3286                  * only if we run lilo or swapon on a freshly made file
3287                  * do we expect this to happen.
3288                  *
3289                  * (bmap requires CAP_SYS_RAWIO so this does not
3290                  * represent an unprivileged user DOS attack --- we'd be
3291                  * in trouble if mortal users could trigger this path at
3292                  * will.)
3293                  *
3294                  * NB. EXT4_STATE_JDATA is not set on files other than
3295                  * regular files.  If somebody wants to bmap a directory
3296                  * or symlink and gets confused because the buffer
3297                  * hasn't yet been flushed to disk, they deserve
3298                  * everything they get.
3299                  */
3300
3301                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3302                 journal = EXT4_JOURNAL(inode);
3303                 jbd2_journal_lock_updates(journal);
3304                 err = jbd2_journal_flush(journal);
3305                 jbd2_journal_unlock_updates(journal);
3306
3307                 if (err)
3308                         return 0;
3309         }
3310
3311         return generic_block_bmap(mapping, block, ext4_get_block);
3312 }
3313
3314 static int ext4_readpage(struct file *file, struct page *page)
3315 {
3316         return mpage_readpage(page, ext4_get_block);
3317 }
3318
3319 static int
3320 ext4_readpages(struct file *file, struct address_space *mapping,
3321                 struct list_head *pages, unsigned nr_pages)
3322 {
3323         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3324 }
3325
3326 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3327 {
3328         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3329
3330         /*
3331          * If it's a full truncate we just forget about the pending dirtying
3332          */
3333         if (offset == 0)
3334                 ClearPageChecked(page);
3335
3336         if (journal)
3337                 jbd2_journal_invalidatepage(journal, page, offset);
3338         else
3339                 block_invalidatepage(page, offset);
3340 }
3341
3342 static int ext4_releasepage(struct page *page, gfp_t wait)
3343 {
3344         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3345
3346         WARN_ON(PageChecked(page));
3347         if (!page_has_buffers(page))
3348                 return 0;
3349         if (journal)
3350                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3351         else
3352                 return try_to_free_buffers(page);
3353 }
3354
3355 /*
3356  * O_DIRECT for ext3 (or indirect map) based files
3357  *
3358  * If the O_DIRECT write will extend the file then add this inode to the
3359  * orphan list.  So recovery will truncate it back to the original size
3360  * if the machine crashes during the write.
3361  *
3362  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3363  * crashes then stale disk data _may_ be exposed inside the file. But current
3364  * VFS code falls back into buffered path in that case so we are safe.
3365  */
3366 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3367                               const struct iovec *iov, loff_t offset,
3368                               unsigned long nr_segs)
3369 {
3370         struct file *file = iocb->ki_filp;
3371         struct inode *inode = file->f_mapping->host;
3372         struct ext4_inode_info *ei = EXT4_I(inode);
3373         handle_t *handle;
3374         ssize_t ret;
3375         int orphan = 0;
3376         size_t count = iov_length(iov, nr_segs);
3377         int retries = 0;
3378
3379         if (rw == WRITE) {
3380                 loff_t final_size = offset + count;
3381
3382                 if (final_size > inode->i_size) {
3383                         /* Credits for sb + inode write */
3384                         handle = ext4_journal_start(inode, 2);
3385                         if (IS_ERR(handle)) {
3386                                 ret = PTR_ERR(handle);
3387                                 goto out;
3388                         }
3389                         ret = ext4_orphan_add(handle, inode);
3390                         if (ret) {
3391                                 ext4_journal_stop(handle);
3392                                 goto out;
3393                         }
3394                         orphan = 1;
3395                         ei->i_disksize = inode->i_size;
3396                         ext4_journal_stop(handle);
3397                 }
3398         }
3399
3400 retry:
3401         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3402                                  offset, nr_segs,
3403                                  ext4_get_block, NULL);
3404         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3405                 goto retry;
3406
3407         if (orphan) {
3408                 int err;
3409
3410                 /* Credits for sb + inode write */
3411                 handle = ext4_journal_start(inode, 2);
3412                 if (IS_ERR(handle)) {
3413                         /* This is really bad luck. We've written the data
3414                          * but cannot extend i_size. Bail out and pretend
3415                          * the write failed... */
3416                         ret = PTR_ERR(handle);
3417                         goto out;
3418                 }
3419                 if (inode->i_nlink)
3420                         ext4_orphan_del(handle, inode);
3421                 if (ret > 0) {
3422                         loff_t end = offset + ret;
3423                         if (end > inode->i_size) {
3424                                 ei->i_disksize = end;
3425                                 i_size_write(inode, end);
3426                                 /*
3427                                  * We're going to return a positive `ret'
3428                                  * here due to non-zero-length I/O, so there's
3429                                  * no way of reporting error returns from
3430                                  * ext4_mark_inode_dirty() to userspace.  So
3431                                  * ignore it.
3432                                  */
3433                                 ext4_mark_inode_dirty(handle, inode);
3434                         }
3435                 }
3436                 err = ext4_journal_stop(handle);
3437                 if (ret == 0)
3438                         ret = err;
3439         }
3440 out:
3441         return ret;
3442 }
3443
3444 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3445                    struct buffer_head *bh_result, int create)
3446 {
3447         handle_t *handle = NULL;
3448         int ret = 0;
3449         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3450         int dio_credits;
3451
3452         ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3453                    inode->i_ino, create);
3454         /*
3455          * DIO VFS code passes create = 0 flag for write to
3456          * the middle of file. It does this to avoid block
3457          * allocation for holes, to prevent expose stale data
3458          * out when there is parallel buffered read (which does
3459          * not hold the i_mutex lock) while direct IO write has
3460          * not completed. DIO request on holes finally falls back
3461          * to buffered IO for this reason.
3462          *
3463          * For ext4 extent based file, since we support fallocate,
3464          * new allocated extent as uninitialized, for holes, we
3465          * could fallocate blocks for holes, thus parallel
3466          * buffered IO read will zero out the page when read on
3467          * a hole while parallel DIO write to the hole has not completed.
3468          *
3469          * when we come here, we know it's a direct IO write to
3470          * to the middle of file (<i_size)
3471          * so it's safe to override the create flag from VFS.
3472          */
3473         create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3474
3475         if (max_blocks > DIO_MAX_BLOCKS)
3476                 max_blocks = DIO_MAX_BLOCKS;
3477         dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3478         handle = ext4_journal_start(inode, dio_credits);
3479         if (IS_ERR(handle)) {
3480                 ret = PTR_ERR(handle);
3481                 goto out;
3482         }
3483         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3484                               create);
3485         if (ret > 0) {
3486                 bh_result->b_size = (ret << inode->i_blkbits);
3487                 ret = 0;
3488         }
3489         ext4_journal_stop(handle);
3490 out:
3491         return ret;
3492 }
3493
3494 static void ext4_free_io_end(ext4_io_end_t *io)
3495 {
3496         BUG_ON(!io);
3497         iput(io->inode);
3498         kfree(io);
3499 }
3500 static void dump_aio_dio_list(struct inode * inode)
3501 {
3502 #ifdef  EXT4_DEBUG
3503         struct list_head *cur, *before, *after;
3504         ext4_io_end_t *io, *io0, *io1;
3505
3506         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3507                 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3508                 return;
3509         }
3510
3511         ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3512         list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3513                 cur = &io->list;
3514                 before = cur->prev;
3515                 io0 = container_of(before, ext4_io_end_t, list);
3516                 after = cur->next;
3517                 io1 = container_of(after, ext4_io_end_t, list);
3518
3519                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3520                             io, inode->i_ino, io0, io1);
3521         }
3522 #endif
3523 }
3524
3525 /*
3526  * check a range of space and convert unwritten extents to written.
3527  */
3528 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3529 {
3530         struct inode *inode = io->inode;
3531         loff_t offset = io->offset;
3532         size_t size = io->size;
3533         int ret = 0;
3534
3535         ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3536                    "list->prev 0x%p\n",
3537                    io, inode->i_ino, io->list.next, io->list.prev);
3538
3539         if (list_empty(&io->list))
3540                 return ret;
3541
3542         if (io->flag != DIO_AIO_UNWRITTEN)
3543                 return ret;
3544
3545         if (offset + size <= i_size_read(inode))
3546                 ret = ext4_convert_unwritten_extents(inode, offset, size);
3547
3548         if (ret < 0) {
3549                 printk(KERN_EMERG "%s: failed to convert unwritten"
3550                         "extents to written extents, error is %d"
3551                         " io is still on inode %lu aio dio list\n",
3552                        __func__, ret, inode->i_ino);
3553                 return ret;
3554         }
3555
3556         /* clear the DIO AIO unwritten flag */
3557         io->flag = 0;
3558         return ret;
3559 }
3560 /*
3561  * work on completed aio dio IO, to convert unwritten extents to extents
3562  */
3563 static void ext4_end_aio_dio_work(struct work_struct *work)
3564 {
3565         ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3566         struct inode *inode = io->inode;
3567         int ret = 0;
3568
3569         mutex_lock(&inode->i_mutex);
3570         ret = ext4_end_aio_dio_nolock(io);
3571         if (ret >= 0) {
3572                 if (!list_empty(&io->list))
3573                         list_del_init(&io->list);
3574                 ext4_free_io_end(io);
3575         }
3576         mutex_unlock(&inode->i_mutex);
3577 }
3578 /*
3579  * This function is called from ext4_sync_file().
3580  *
3581  * When AIO DIO IO is completed, the work to convert unwritten
3582  * extents to written is queued on workqueue but may not get immediately
3583  * scheduled. When fsync is called, we need to ensure the
3584  * conversion is complete before fsync returns.
3585  * The inode keeps track of a list of completed AIO from DIO path
3586  * that might needs to do the conversion. This function walks through
3587  * the list and convert the related unwritten extents to written.
3588  */
3589 int flush_aio_dio_completed_IO(struct inode *inode)
3590 {
3591         ext4_io_end_t *io;
3592         int ret = 0;
3593         int ret2 = 0;
3594
3595         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3596                 return ret;
3597
3598         dump_aio_dio_list(inode);
3599         while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3600                 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3601                                 ext4_io_end_t, list);
3602                 /*
3603                  * Calling ext4_end_aio_dio_nolock() to convert completed
3604                  * IO to written.
3605                  *
3606                  * When ext4_sync_file() is called, run_queue() may already
3607                  * about to flush the work corresponding to this io structure.
3608                  * It will be upset if it founds the io structure related
3609                  * to the work-to-be schedule is freed.
3610                  *
3611                  * Thus we need to keep the io structure still valid here after
3612                  * convertion finished. The io structure has a flag to
3613                  * avoid double converting from both fsync and background work
3614                  * queue work.
3615                  */
3616                 ret = ext4_end_aio_dio_nolock(io);
3617                 if (ret < 0)
3618                         ret2 = ret;
3619                 else
3620                         list_del_init(&io->list);
3621         }
3622         return (ret2 < 0) ? ret2 : 0;
3623 }
3624
3625 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3626 {
3627         ext4_io_end_t *io = NULL;
3628
3629         io = kmalloc(sizeof(*io), GFP_NOFS);
3630
3631         if (io) {
3632                 igrab(inode);
3633                 io->inode = inode;
3634                 io->flag = 0;
3635                 io->offset = 0;
3636                 io->size = 0;
3637                 io->error = 0;
3638                 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3639                 INIT_LIST_HEAD(&io->list);
3640         }
3641
3642         return io;
3643 }
3644
3645 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3646                             ssize_t size, void *private)
3647 {
3648         ext4_io_end_t *io_end = iocb->private;
3649         struct workqueue_struct *wq;
3650
3651         /* if not async direct IO or dio with 0 bytes write, just return */
3652         if (!io_end || !size)
3653                 return;
3654
3655         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3656                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3657                   iocb->private, io_end->inode->i_ino, iocb, offset,
3658                   size);
3659
3660         /* if not aio dio with unwritten extents, just free io and return */
3661         if (io_end->flag != DIO_AIO_UNWRITTEN){
3662                 ext4_free_io_end(io_end);
3663                 iocb->private = NULL;
3664                 return;
3665         }
3666
3667         io_end->offset = offset;
3668         io_end->size = size;
3669         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3670
3671         /* queue the work to convert unwritten extents to written */
3672         queue_work(wq, &io_end->work);
3673
3674         /* Add the io_end to per-inode completed aio dio list*/
3675         list_add_tail(&io_end->list,
3676                  &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3677         iocb->private = NULL;
3678 }
3679 /*
3680  * For ext4 extent files, ext4 will do direct-io write to holes,
3681  * preallocated extents, and those write extend the file, no need to
3682  * fall back to buffered IO.
3683  *
3684  * For holes, we fallocate those blocks, mark them as unintialized
3685  * If those blocks were preallocated, we mark sure they are splited, but
3686  * still keep the range to write as unintialized.
3687  *
3688  * The unwrritten extents will be converted to written when DIO is completed.
3689  * For async direct IO, since the IO may still pending when return, we
3690  * set up an end_io call back function, which will do the convertion
3691  * when async direct IO completed.
3692  *
3693  * If the O_DIRECT write will extend the file then add this inode to the
3694  * orphan list.  So recovery will truncate it back to the original size
3695  * if the machine crashes during the write.
3696  *
3697  */
3698 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3699                               const struct iovec *iov, loff_t offset,
3700                               unsigned long nr_segs)
3701 {
3702         struct file *file = iocb->ki_filp;
3703         struct inode *inode = file->f_mapping->host;
3704         ssize_t ret;
3705         size_t count = iov_length(iov, nr_segs);
3706
3707         loff_t final_size = offset + count;
3708         if (rw == WRITE && final_size <= inode->i_size) {
3709                 /*
3710                  * We could direct write to holes and fallocate.
3711                  *
3712                  * Allocated blocks to fill the hole are marked as uninitialized
3713                  * to prevent paralel buffered read to expose the stale data
3714                  * before DIO complete the data IO.
3715                  *
3716                  * As to previously fallocated extents, ext4 get_block
3717                  * will just simply mark the buffer mapped but still
3718                  * keep the extents uninitialized.
3719                  *
3720                  * for non AIO case, we will convert those unwritten extents
3721                  * to written after return back from blockdev_direct_IO.
3722                  *
3723                  * for async DIO, the conversion needs to be defered when
3724                  * the IO is completed. The ext4 end_io callback function
3725                  * will be called to take care of the conversion work.
3726                  * Here for async case, we allocate an io_end structure to
3727                  * hook to the iocb.
3728                  */
3729                 iocb->private = NULL;
3730                 EXT4_I(inode)->cur_aio_dio = NULL;
3731                 if (!is_sync_kiocb(iocb)) {
3732                         iocb->private = ext4_init_io_end(inode);
3733                         if (!iocb->private)
3734                                 return -ENOMEM;
3735                         /*
3736                          * we save the io structure for current async
3737                          * direct IO, so that later ext4_get_blocks()
3738                          * could flag the io structure whether there
3739                          * is a unwritten extents needs to be converted
3740                          * when IO is completed.
3741                          */
3742                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3743                 }
3744
3745                 ret = blockdev_direct_IO(rw, iocb, inode,
3746                                          inode->i_sb->s_bdev, iov,
3747                                          offset, nr_segs,
3748                                          ext4_get_block_dio_write,
3749                                          ext4_end_io_dio);
3750                 if (iocb->private)
3751                         EXT4_I(inode)->cur_aio_dio = NULL;
3752                 /*
3753                  * The io_end structure takes a reference to the inode,
3754                  * that structure needs to be destroyed and the
3755                  * reference to the inode need to be dropped, when IO is
3756                  * complete, even with 0 byte write, or failed.
3757                  *
3758                  * In the successful AIO DIO case, the io_end structure will be
3759                  * desctroyed and the reference to the inode will be dropped
3760                  * after the end_io call back function is called.
3761                  *
3762                  * In the case there is 0 byte write, or error case, since
3763                  * VFS direct IO won't invoke the end_io call back function,
3764                  * we need to free the end_io structure here.
3765                  */
3766                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3767                         ext4_free_io_end(iocb->private);
3768                         iocb->private = NULL;
3769                 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3770                                        EXT4_STATE_DIO_UNWRITTEN)) {
3771                         int err;
3772                         /*
3773                          * for non AIO case, since the IO is already
3774                          * completed, we could do the convertion right here
3775                          */
3776                         err = ext4_convert_unwritten_extents(inode,
3777                                                              offset, ret);
3778                         if (err < 0)
3779                                 ret = err;
3780                         EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3781                 }
3782                 return ret;
3783         }
3784
3785         /* for write the the end of file case, we fall back to old way */
3786         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3787 }
3788
3789 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3790                               const struct iovec *iov, loff_t offset,
3791                               unsigned long nr_segs)
3792 {
3793         struct file *file = iocb->ki_filp;
3794         struct inode *inode = file->f_mapping->host;
3795
3796         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3797                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3798
3799         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3800 }
3801
3802 /*
3803  * Pages can be marked dirty completely asynchronously from ext4's journalling
3804  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3805  * much here because ->set_page_dirty is called under VFS locks.  The page is
3806  * not necessarily locked.
3807  *
3808  * We cannot just dirty the page and leave attached buffers clean, because the
3809  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3810  * or jbddirty because all the journalling code will explode.
3811  *
3812  * So what we do is to mark the page "pending dirty" and next time writepage
3813  * is called, propagate that into the buffers appropriately.
3814  */
3815 static int ext4_journalled_set_page_dirty(struct page *page)
3816 {
3817         SetPageChecked(page);
3818         return __set_page_dirty_nobuffers(page);
3819 }
3820
3821 static const struct address_space_operations ext4_ordered_aops = {
3822         .readpage               = ext4_readpage,
3823         .readpages              = ext4_readpages,
3824         .writepage              = ext4_writepage,
3825         .sync_page              = block_sync_page,
3826         .write_begin            = ext4_write_begin,
3827         .write_end              = ext4_ordered_write_end,
3828         .bmap                   = ext4_bmap,
3829         .invalidatepage         = ext4_invalidatepage,
3830         .releasepage            = ext4_releasepage,
3831         .direct_IO              = ext4_direct_IO,
3832         .migratepage            = buffer_migrate_page,
3833         .is_partially_uptodate  = block_is_partially_uptodate,
3834         .error_remove_page      = generic_error_remove_page,
3835 };
3836
3837 static const struct address_space_operations ext4_writeback_aops = {
3838         .readpage               = ext4_readpage,
3839         .readpages              = ext4_readpages,
3840         .writepage              = ext4_writepage,
3841         .sync_page              = block_sync_page,
3842         .write_begin            = ext4_write_begin,
3843         .write_end              = ext4_writeback_write_end,
3844         .bmap                   = ext4_bmap,
3845         .invalidatepage         = ext4_invalidatepage,
3846         .releasepage            = ext4_releasepage,
3847         .direct_IO              = ext4_direct_IO,
3848         .migratepage            = buffer_migrate_page,
3849         .is_partially_uptodate  = block_is_partially_uptodate,
3850         .error_remove_page      = generic_error_remove_page,
3851 };
3852
3853 static const struct address_space_operations ext4_journalled_aops = {
3854         .readpage               = ext4_readpage,
3855         .readpages              = ext4_readpages,
3856         .writepage              = ext4_writepage,
3857         .sync_page              = block_sync_page,
3858         .write_begin            = ext4_write_begin,
3859         .write_end              = ext4_journalled_write_end,
3860         .set_page_dirty         = ext4_journalled_set_page_dirty,
3861         .bmap                   = ext4_bmap,
3862         .invalidatepage         = ext4_invalidatepage,
3863         .releasepage            = ext4_releasepage,
3864         .is_partially_uptodate  = block_is_partially_uptodate,
3865         .error_remove_page      = generic_error_remove_page,
3866 };
3867
3868 static const struct address_space_operations ext4_da_aops = {
3869         .readpage               = ext4_readpage,
3870         .readpages              = ext4_readpages,
3871         .writepage              = ext4_writepage,
3872         .writepages             = ext4_da_writepages,
3873         .sync_page              = block_sync_page,
3874         .write_begin            = ext4_da_write_begin,
3875         .write_end              = ext4_da_write_end,
3876         .bmap                   = ext4_bmap,
3877         .invalidatepage         = ext4_da_invalidatepage,
3878         .releasepage            = ext4_releasepage,
3879         .direct_IO              = ext4_direct_IO,
3880         .migratepage            = buffer_migrate_page,
3881         .is_partially_uptodate  = block_is_partially_uptodate,
3882         .error_remove_page      = generic_error_remove_page,
3883 };
3884
3885 void ext4_set_aops(struct inode *inode)
3886 {
3887         if (ext4_should_order_data(inode) &&
3888                 test_opt(inode->i_sb, DELALLOC))
3889                 inode->i_mapping->a_ops = &ext4_da_aops;
3890         else if (ext4_should_order_data(inode))
3891                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3892         else if (ext4_should_writeback_data(inode) &&
3893                  test_opt(inode->i_sb, DELALLOC))
3894                 inode->i_mapping->a_ops = &ext4_da_aops;
3895         else if (ext4_should_writeback_data(inode))
3896                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3897         else
3898                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3899 }
3900
3901 /*
3902  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3903  * up to the end of the block which corresponds to `from'.
3904  * This required during truncate. We need to physically zero the tail end
3905  * of that block so it doesn't yield old data if the file is later grown.
3906  */
3907 int ext4_block_truncate_page(handle_t *handle,
3908                 struct address_space *mapping, loff_t from)
3909 {
3910         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3911         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3912         unsigned blocksize, length, pos;
3913         ext4_lblk_t iblock;
3914         struct inode *inode = mapping->host;
3915         struct buffer_head *bh;
3916         struct page *page;
3917         int err = 0;
3918
3919         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3920                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3921         if (!page)
3922                 return -EINVAL;
3923
3924         blocksize = inode->i_sb->s_blocksize;
3925         length = blocksize - (offset & (blocksize - 1));
3926         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3927
3928         /*
3929          * For "nobh" option,  we can only work if we don't need to
3930          * read-in the page - otherwise we create buffers to do the IO.
3931          */
3932         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3933              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3934                 zero_user(page, offset, length);
3935                 set_page_dirty(page);
3936                 goto unlock;
3937         }
3938
3939         if (!page_has_buffers(page))
3940                 create_empty_buffers(page, blocksize, 0);
3941
3942         /* Find the buffer that contains "offset" */
3943         bh = page_buffers(page);
3944         pos = blocksize;
3945         while (offset >= pos) {
3946                 bh = bh->b_this_page;
3947                 iblock++;
3948                 pos += blocksize;
3949         }
3950
3951         err = 0;
3952         if (buffer_freed(bh)) {
3953                 BUFFER_TRACE(bh, "freed: skip");
3954                 goto unlock;
3955         }
3956
3957         if (!buffer_mapped(bh)) {
3958                 BUFFER_TRACE(bh, "unmapped");
3959                 ext4_get_block(inode, iblock, bh, 0);
3960                 /* unmapped? It's a hole - nothing to do */
3961                 if (!buffer_mapped(bh)) {
3962                         BUFFER_TRACE(bh, "still unmapped");
3963                         goto unlock;
3964                 }
3965         }
3966
3967         /* Ok, it's mapped. Make sure it's up-to-date */
3968         if (PageUptodate(page))
3969                 set_buffer_uptodate(bh);
3970
3971         if (!buffer_uptodate(bh)) {
3972                 err = -EIO;
3973                 ll_rw_block(READ, 1, &bh);
3974                 wait_on_buffer(bh);
3975                 /* Uhhuh. Read error. Complain and punt. */
3976                 if (!buffer_uptodate(bh))
3977                         goto unlock;
3978         }
3979
3980         if (ext4_should_journal_data(inode)) {
3981                 BUFFER_TRACE(bh, "get write access");
3982                 err = ext4_journal_get_write_access(handle, bh);
3983                 if (err)
3984                         goto unlock;
3985         }
3986
3987         zero_user(page, offset, length);
3988
3989         BUFFER_TRACE(bh, "zeroed end of block");
3990
3991         err = 0;
3992         if (ext4_should_journal_data(inode)) {
3993                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3994         } else {
3995                 if (ext4_should_order_data(inode))
3996                         err = ext4_jbd2_file_inode(handle, inode);
3997                 mark_buffer_dirty(bh);
3998         }
3999
4000 unlock:
4001         unlock_page(page);
4002         page_cache_release(page);
4003         return err;
4004 }
4005
4006 /*
4007  * Probably it should be a library function... search for first non-zero word
4008  * or memcmp with zero_page, whatever is better for particular architecture.
4009  * Linus?
4010  */
4011 static inline int all_zeroes(__le32 *p, __le32 *q)
4012 {
4013         while (p < q)
4014                 if (*p++)
4015                         return 0;
4016         return 1;
4017 }
4018
4019 /**
4020  *      ext4_find_shared - find the indirect blocks for partial truncation.
4021  *      @inode:   inode in question
4022  *      @depth:   depth of the affected branch
4023  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4024  *      @chain:   place to store the pointers to partial indirect blocks
4025  *      @top:     place to the (detached) top of branch
4026  *
4027  *      This is a helper function used by ext4_truncate().
4028  *
4029  *      When we do truncate() we may have to clean the ends of several
4030  *      indirect blocks but leave the blocks themselves alive. Block is
4031  *      partially truncated if some data below the new i_size is refered
4032  *      from it (and it is on the path to the first completely truncated
4033  *      data block, indeed).  We have to free the top of that path along
4034  *      with everything to the right of the path. Since no allocation
4035  *      past the truncation point is possible until ext4_truncate()
4036  *      finishes, we may safely do the latter, but top of branch may
4037  *      require special attention - pageout below the truncation point
4038  *      might try to populate it.
4039  *
4040  *      We atomically detach the top of branch from the tree, store the
4041  *      block number of its root in *@top, pointers to buffer_heads of
4042  *      partially truncated blocks - in @chain[].bh and pointers to
4043  *      their last elements that should not be removed - in
4044  *      @chain[].p. Return value is the pointer to last filled element
4045  *      of @chain.
4046  *
4047  *      The work left to caller to do the actual freeing of subtrees:
4048  *              a) free the subtree starting from *@top
4049  *              b) free the subtrees whose roots are stored in
4050  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4051  *              c) free the subtrees growing from the inode past the @chain[0].
4052  *                      (no partially truncated stuff there).  */
4053
4054 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4055                                   ext4_lblk_t offsets[4], Indirect chain[4],
4056                                   __le32 *top)
4057 {
4058         Indirect *partial, *p;
4059         int k, err;
4060
4061         *top = 0;
4062         /* Make k index the deepest non-null offset + 1 */
4063         for (k = depth; k > 1 && !offsets[k-1]; k--)
4064                 ;
4065         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4066         /* Writer: pointers */
4067         if (!partial)
4068                 partial = chain + k-1;
4069         /*
4070          * If the branch acquired continuation since we've looked at it -
4071          * fine, it should all survive and (new) top doesn't belong to us.
4072          */
4073         if (!partial->key && *partial->p)
4074                 /* Writer: end */
4075                 goto no_top;
4076         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4077                 ;
4078         /*
4079          * OK, we've found the last block that must survive. The rest of our
4080          * branch should be detached before unlocking. However, if that rest
4081          * of branch is all ours and does not grow immediately from the inode
4082          * it's easier to cheat and just decrement partial->p.
4083          */
4084         if (p == chain + k - 1 && p > chain) {
4085                 p->p--;
4086         } else {
4087                 *top = *p->p;
4088                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4089 #if 0
4090                 *p->p = 0;
4091 #endif
4092         }
4093         /* Writer: end */
4094
4095         while (partial > p) {
4096                 brelse(partial->bh);
4097                 partial--;
4098         }
4099 no_top:
4100         return partial;
4101 }
4102
4103 /*
4104  * Zero a number of block pointers in either an inode or an indirect block.
4105  * If we restart the transaction we must again get write access to the
4106  * indirect block for further modification.
4107  *
4108  * We release `count' blocks on disk, but (last - first) may be greater
4109  * than `count' because there can be holes in there.
4110  */
4111 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4112                               struct buffer_head *bh,
4113                               ext4_fsblk_t block_to_free,
4114                               unsigned long count, __le32 *first,
4115                               __le32 *last)
4116 {
4117         __le32 *p;
4118         int     flags = EXT4_FREE_BLOCKS_FORGET;
4119
4120         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4121                 flags |= EXT4_FREE_BLOCKS_METADATA;
4122
4123         if (try_to_extend_transaction(handle, inode)) {
4124                 if (bh) {
4125                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4126                         ext4_handle_dirty_metadata(handle, inode, bh);
4127                 }
4128                 ext4_mark_inode_dirty(handle, inode);
4129                 ext4_truncate_restart_trans(handle, inode,
4130                                             blocks_for_truncate(inode));
4131                 if (bh) {
4132                         BUFFER_TRACE(bh, "retaking write access");
4133                         ext4_journal_get_write_access(handle, bh);
4134                 }
4135         }
4136
4137         for (p = first; p < last; p++)
4138                 *p = 0;
4139
4140         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4141 }
4142
4143 /**
4144  * ext4_free_data - free a list of data blocks
4145  * @handle:     handle for this transaction
4146  * @inode:      inode we are dealing with
4147  * @this_bh:    indirect buffer_head which contains *@first and *@last
4148  * @first:      array of block numbers
4149  * @last:       points immediately past the end of array
4150  *
4151  * We are freeing all blocks refered from that array (numbers are stored as
4152  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4153  *
4154  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4155  * blocks are contiguous then releasing them at one time will only affect one
4156  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4157  * actually use a lot of journal space.
4158  *
4159  * @this_bh will be %NULL if @first and @last point into the inode's direct
4160  * block pointers.
4161  */
4162 static void ext4_free_data(handle_t *handle, struct inode *inode,
4163                            struct buffer_head *this_bh,
4164                            __le32 *first, __le32 *last)
4165 {
4166         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4167         unsigned long count = 0;            /* Number of blocks in the run */
4168         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4169                                                corresponding to
4170                                                block_to_free */
4171         ext4_fsblk_t nr;                    /* Current block # */
4172         __le32 *p;                          /* Pointer into inode/ind
4173                                                for current block */
4174         int err;
4175
4176         if (this_bh) {                          /* For indirect block */
4177                 BUFFER_TRACE(this_bh, "get_write_access");
4178                 err = ext4_journal_get_write_access(handle, this_bh);
4179                 /* Important: if we can't update the indirect pointers
4180                  * to the blocks, we can't free them. */
4181                 if (err)
4182                         return;
4183         }
4184
4185         for (p = first; p < last; p++) {
4186                 nr = le32_to_cpu(*p);
4187                 if (nr) {
4188                         /* accumulate blocks to free if they're contiguous */
4189                         if (count == 0) {
4190                                 block_to_free = nr;
4191                                 block_to_free_p = p;
4192                                 count = 1;
4193                         } else if (nr == block_to_free + count) {
4194                                 count++;
4195                         } else {
4196                                 ext4_clear_blocks(handle, inode, this_bh,
4197                                                   block_to_free,
4198                                                   count, block_to_free_p, p);
4199                                 block_to_free = nr;
4200                                 block_to_free_p = p;
4201                                 count = 1;
4202                         }
4203                 }
4204         }
4205
4206         if (count > 0)
4207                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4208                                   count, block_to_free_p, p);
4209
4210         if (this_bh) {
4211                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4212
4213                 /*
4214                  * The buffer head should have an attached journal head at this
4215                  * point. However, if the data is corrupted and an indirect
4216                  * block pointed to itself, it would have been detached when
4217                  * the block was cleared. Check for this instead of OOPSing.
4218                  */
4219                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4220                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4221                 else
4222                         ext4_error(inode->i_sb, __func__,
4223                                    "circular indirect block detected, "
4224                                    "inode=%lu, block=%llu",
4225                                    inode->i_ino,
4226                                    (unsigned long long) this_bh->b_blocknr);
4227         }
4228 }
4229
4230 /**
4231  *      ext4_free_branches - free an array of branches
4232  *      @handle: JBD handle for this transaction
4233  *      @inode: inode we are dealing with
4234  *      @parent_bh: the buffer_head which contains *@first and *@last
4235  *      @first: array of block numbers
4236  *      @last:  pointer immediately past the end of array
4237  *      @depth: depth of the branches to free
4238  *
4239  *      We are freeing all blocks refered from these branches (numbers are
4240  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4241  *      appropriately.
4242  */
4243 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4244                                struct buffer_head *parent_bh,
4245                                __le32 *first, __le32 *last, int depth)
4246 {
4247         ext4_fsblk_t nr;
4248         __le32 *p;
4249
4250         if (ext4_handle_is_aborted(handle))
4251                 return;
4252
4253         if (depth--) {
4254                 struct buffer_head *bh;
4255                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4256                 p = last;
4257                 while (--p >= first) {
4258                         nr = le32_to_cpu(*p);
4259                         if (!nr)
4260                                 continue;               /* A hole */
4261
4262                         /* Go read the buffer for the next level down */
4263                         bh = sb_bread(inode->i_sb, nr);
4264
4265                         /*
4266                          * A read failure? Report error and clear slot
4267                          * (should be rare).
4268                          */
4269                         if (!bh) {
4270                                 ext4_error(inode->i_sb, "ext4_free_branches",
4271                                            "Read failure, inode=%lu, block=%llu",
4272                                            inode->i_ino, nr);
4273                                 continue;
4274                         }
4275
4276                         /* This zaps the entire block.  Bottom up. */
4277                         BUFFER_TRACE(bh, "free child branches");
4278                         ext4_free_branches(handle, inode, bh,
4279                                         (__le32 *) bh->b_data,
4280                                         (__le32 *) bh->b_data + addr_per_block,
4281                                         depth);
4282
4283                         /*
4284                          * We've probably journalled the indirect block several
4285                          * times during the truncate.  But it's no longer
4286                          * needed and we now drop it from the transaction via
4287                          * jbd2_journal_revoke().
4288                          *
4289                          * That's easy if it's exclusively part of this
4290                          * transaction.  But if it's part of the committing
4291                          * transaction then jbd2_journal_forget() will simply
4292                          * brelse() it.  That means that if the underlying
4293                          * block is reallocated in ext4_get_block(),
4294                          * unmap_underlying_metadata() will find this block
4295                          * and will try to get rid of it.  damn, damn.
4296                          *
4297                          * If this block has already been committed to the
4298                          * journal, a revoke record will be written.  And
4299                          * revoke records must be emitted *before* clearing
4300                          * this block's bit in the bitmaps.
4301                          */
4302                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4303
4304                         /*
4305                          * Everything below this this pointer has been
4306                          * released.  Now let this top-of-subtree go.
4307                          *
4308                          * We want the freeing of this indirect block to be
4309                          * atomic in the journal with the updating of the
4310                          * bitmap block which owns it.  So make some room in
4311                          * the journal.
4312                          *
4313                          * We zero the parent pointer *after* freeing its
4314                          * pointee in the bitmaps, so if extend_transaction()
4315                          * for some reason fails to put the bitmap changes and
4316                          * the release into the same transaction, recovery
4317                          * will merely complain about releasing a free block,
4318                          * rather than leaking blocks.
4319                          */
4320                         if (ext4_handle_is_aborted(handle))
4321                                 return;
4322                         if (try_to_extend_transaction(handle, inode)) {
4323                                 ext4_mark_inode_dirty(handle, inode);
4324                                 ext4_truncate_restart_trans(handle, inode,
4325                                             blocks_for_truncate(inode));
4326                         }
4327
4328                         ext4_free_blocks(handle, inode, 0, nr, 1,
4329                                          EXT4_FREE_BLOCKS_METADATA);
4330
4331                         if (parent_bh) {
4332                                 /*
4333                                  * The block which we have just freed is
4334                                  * pointed to by an indirect block: journal it
4335                                  */
4336                                 BUFFER_TRACE(parent_bh, "get_write_access");
4337                                 if (!ext4_journal_get_write_access(handle,
4338                                                                    parent_bh)){
4339                                         *p = 0;
4340                                         BUFFER_TRACE(parent_bh,
4341                                         "call ext4_handle_dirty_metadata");
4342                                         ext4_handle_dirty_metadata(handle,
4343                                                                    inode,
4344                                                                    parent_bh);
4345                                 }
4346                         }
4347                 }
4348         } else {
4349                 /* We have reached the bottom of the tree. */
4350                 BUFFER_TRACE(parent_bh, "free data blocks");
4351                 ext4_free_data(handle, inode, parent_bh, first, last);
4352         }
4353 }
4354
4355 int ext4_can_truncate(struct inode *inode)
4356 {
4357         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4358                 return 0;
4359         if (S_ISREG(inode->i_mode))
4360                 return 1;
4361         if (S_ISDIR(inode->i_mode))
4362                 return 1;
4363         if (S_ISLNK(inode->i_mode))
4364                 return !ext4_inode_is_fast_symlink(inode);
4365         return 0;
4366 }
4367
4368 /*
4369  * ext4_truncate()
4370  *
4371  * We block out ext4_get_block() block instantiations across the entire
4372  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4373  * simultaneously on behalf of the same inode.
4374  *
4375  * As we work through the truncate and commmit bits of it to the journal there
4376  * is one core, guiding principle: the file's tree must always be consistent on
4377  * disk.  We must be able to restart the truncate after a crash.
4378  *
4379  * The file's tree may be transiently inconsistent in memory (although it
4380  * probably isn't), but whenever we close off and commit a journal transaction,
4381  * the contents of (the filesystem + the journal) must be consistent and
4382  * restartable.  It's pretty simple, really: bottom up, right to left (although
4383  * left-to-right works OK too).
4384  *
4385  * Note that at recovery time, journal replay occurs *before* the restart of
4386  * truncate against the orphan inode list.
4387  *
4388  * The committed inode has the new, desired i_size (which is the same as
4389  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4390  * that this inode's truncate did not complete and it will again call
4391  * ext4_truncate() to have another go.  So there will be instantiated blocks
4392  * to the right of the truncation point in a crashed ext4 filesystem.  But
4393  * that's fine - as long as they are linked from the inode, the post-crash
4394  * ext4_truncate() run will find them and release them.
4395  */
4396 void ext4_truncate(struct inode *inode)
4397 {
4398         handle_t *handle;
4399         struct ext4_inode_info *ei = EXT4_I(inode);
4400         __le32 *i_data = ei->i_data;
4401         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4402         struct address_space *mapping = inode->i_mapping;
4403         ext4_lblk_t offsets[4];
4404         Indirect chain[4];
4405         Indirect *partial;
4406         __le32 nr = 0;
4407         int n;
4408         ext4_lblk_t last_block;
4409         unsigned blocksize = inode->i_sb->s_blocksize;
4410
4411         if (!ext4_can_truncate(inode))
4412                 return;
4413
4414         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4416
4417         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4418                 ext4_ext_truncate(inode);
4419                 return;
4420         }
4421
4422         handle = start_transaction(inode);
4423         if (IS_ERR(handle))
4424                 return;         /* AKPM: return what? */
4425
4426         last_block = (inode->i_size + blocksize-1)
4427                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4428
4429         if (inode->i_size & (blocksize - 1))
4430                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4431                         goto out_stop;
4432
4433         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4434         if (n == 0)
4435                 goto out_stop;  /* error */
4436
4437         /*
4438          * OK.  This truncate is going to happen.  We add the inode to the
4439          * orphan list, so that if this truncate spans multiple transactions,
4440          * and we crash, we will resume the truncate when the filesystem
4441          * recovers.  It also marks the inode dirty, to catch the new size.
4442          *
4443          * Implication: the file must always be in a sane, consistent
4444          * truncatable state while each transaction commits.
4445          */
4446         if (ext4_orphan_add(handle, inode))
4447                 goto out_stop;
4448
4449         /*
4450          * From here we block out all ext4_get_block() callers who want to
4451          * modify the block allocation tree.
4452          */
4453         down_write(&ei->i_data_sem);
4454
4455         ext4_discard_preallocations(inode);
4456
4457         /*
4458          * The orphan list entry will now protect us from any crash which
4459          * occurs before the truncate completes, so it is now safe to propagate
4460          * the new, shorter inode size (held for now in i_size) into the
4461          * on-disk inode. We do this via i_disksize, which is the value which
4462          * ext4 *really* writes onto the disk inode.
4463          */
4464         ei->i_disksize = inode->i_size;
4465
4466         if (n == 1) {           /* direct blocks */
4467                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4468                                i_data + EXT4_NDIR_BLOCKS);
4469                 goto do_indirects;
4470         }
4471
4472         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4473         /* Kill the top of shared branch (not detached) */
4474         if (nr) {
4475                 if (partial == chain) {
4476                         /* Shared branch grows from the inode */
4477                         ext4_free_branches(handle, inode, NULL,
4478                                            &nr, &nr+1, (chain+n-1) - partial);
4479                         *partial->p = 0;
4480                         /*
4481                          * We mark the inode dirty prior to restart,
4482                          * and prior to stop.  No need for it here.
4483                          */
4484                 } else {
4485                         /* Shared branch grows from an indirect block */
4486                         BUFFER_TRACE(partial->bh, "get_write_access");
4487                         ext4_free_branches(handle, inode, partial->bh,
4488                                         partial->p,
4489                                         partial->p+1, (chain+n-1) - partial);
4490                 }
4491         }
4492         /* Clear the ends of indirect blocks on the shared branch */
4493         while (partial > chain) {
4494                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4495                                    (__le32*)partial->bh->b_data+addr_per_block,
4496                                    (chain+n-1) - partial);
4497                 BUFFER_TRACE(partial->bh, "call brelse");
4498                 brelse(partial->bh);
4499                 partial--;
4500         }
4501 do_indirects:
4502         /* Kill the remaining (whole) subtrees */
4503         switch (offsets[0]) {
4504         default:
4505                 nr = i_data[EXT4_IND_BLOCK];
4506                 if (nr) {
4507                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4508                         i_data[EXT4_IND_BLOCK] = 0;
4509                 }
4510         case EXT4_IND_BLOCK:
4511                 nr = i_data[EXT4_DIND_BLOCK];
4512                 if (nr) {
4513                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4514                         i_data[EXT4_DIND_BLOCK] = 0;
4515                 }
4516         case EXT4_DIND_BLOCK:
4517                 nr = i_data[EXT4_TIND_BLOCK];
4518                 if (nr) {
4519                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4520                         i_data[EXT4_TIND_BLOCK] = 0;
4521                 }
4522         case EXT4_TIND_BLOCK:
4523                 ;
4524         }
4525
4526         up_write(&ei->i_data_sem);
4527         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4528         ext4_mark_inode_dirty(handle, inode);
4529
4530         /*
4531          * In a multi-transaction truncate, we only make the final transaction
4532          * synchronous
4533          */
4534         if (IS_SYNC(inode))
4535                 ext4_handle_sync(handle);
4536 out_stop:
4537         /*
4538          * If this was a simple ftruncate(), and the file will remain alive
4539          * then we need to clear up the orphan record which we created above.
4540          * However, if this was a real unlink then we were called by
4541          * ext4_delete_inode(), and we allow that function to clean up the
4542          * orphan info for us.
4543          */
4544         if (inode->i_nlink)
4545                 ext4_orphan_del(handle, inode);
4546
4547         ext4_journal_stop(handle);
4548 }
4549
4550 /*
4551  * ext4_get_inode_loc returns with an extra refcount against the inode's
4552  * underlying buffer_head on success. If 'in_mem' is true, we have all
4553  * data in memory that is needed to recreate the on-disk version of this
4554  * inode.
4555  */
4556 static int __ext4_get_inode_loc(struct inode *inode,
4557                                 struct ext4_iloc *iloc, int in_mem)
4558 {
4559         struct ext4_group_desc  *gdp;
4560         struct buffer_head      *bh;
4561         struct super_block      *sb = inode->i_sb;
4562         ext4_fsblk_t            block;
4563         int                     inodes_per_block, inode_offset;
4564
4565         iloc->bh = NULL;
4566         if (!ext4_valid_inum(sb, inode->i_ino))
4567                 return -EIO;
4568
4569         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4570         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4571         if (!gdp)
4572                 return -EIO;
4573
4574         /*
4575          * Figure out the offset within the block group inode table
4576          */
4577         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4578         inode_offset = ((inode->i_ino - 1) %
4579                         EXT4_INODES_PER_GROUP(sb));
4580         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4581         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4582
4583         bh = sb_getblk(sb, block);
4584         if (!bh) {
4585                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4586                            "inode block - inode=%lu, block=%llu",
4587                            inode->i_ino, block);
4588                 return -EIO;
4589         }
4590         if (!buffer_uptodate(bh)) {
4591                 lock_buffer(bh);
4592
4593                 /*
4594                  * If the buffer has the write error flag, we have failed
4595                  * to write out another inode in the same block.  In this
4596                  * case, we don't have to read the block because we may
4597                  * read the old inode data successfully.
4598                  */
4599                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4600                         set_buffer_uptodate(bh);
4601
4602                 if (buffer_uptodate(bh)) {
4603                         /* someone brought it uptodate while we waited */
4604                         unlock_buffer(bh);
4605                         goto has_buffer;
4606                 }
4607
4608                 /*
4609                  * If we have all information of the inode in memory and this
4610                  * is the only valid inode in the block, we need not read the
4611                  * block.
4612                  */
4613                 if (in_mem) {
4614                         struct buffer_head *bitmap_bh;
4615                         int i, start;
4616
4617                         start = inode_offset & ~(inodes_per_block - 1);
4618
4619                         /* Is the inode bitmap in cache? */
4620                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4621                         if (!bitmap_bh)
4622                                 goto make_io;
4623
4624                         /*
4625                          * If the inode bitmap isn't in cache then the
4626                          * optimisation may end up performing two reads instead
4627                          * of one, so skip it.
4628                          */
4629                         if (!buffer_uptodate(bitmap_bh)) {
4630                                 brelse(bitmap_bh);
4631                                 goto make_io;
4632                         }
4633                         for (i = start; i < start + inodes_per_block; i++) {
4634                                 if (i == inode_offset)
4635                                         continue;
4636                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4637                                         break;
4638                         }
4639                         brelse(bitmap_bh);
4640                         if (i == start + inodes_per_block) {
4641                                 /* all other inodes are free, so skip I/O */
4642                                 memset(bh->b_data, 0, bh->b_size);
4643                                 set_buffer_uptodate(bh);
4644                                 unlock_buffer(bh);
4645                                 goto has_buffer;
4646                         }
4647                 }
4648
4649 make_io:
4650                 /*
4651                  * If we need to do any I/O, try to pre-readahead extra
4652                  * blocks from the inode table.
4653                  */
4654                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4655                         ext4_fsblk_t b, end, table;
4656                         unsigned num;
4657
4658                         table = ext4_inode_table(sb, gdp);
4659                         /* s_inode_readahead_blks is always a power of 2 */
4660                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4661                         if (table > b)
4662                                 b = table;
4663                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4664                         num = EXT4_INODES_PER_GROUP(sb);
4665                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4666                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4667                                 num -= ext4_itable_unused_count(sb, gdp);
4668                         table += num / inodes_per_block;
4669                         if (end > table)
4670                                 end = table;
4671                         while (b <= end)
4672                                 sb_breadahead(sb, b++);
4673                 }
4674
4675                 /*
4676                  * There are other valid inodes in the buffer, this inode
4677                  * has in-inode xattrs, or we don't have this inode in memory.
4678                  * Read the block from disk.
4679                  */
4680                 get_bh(bh);
4681                 bh->b_end_io = end_buffer_read_sync;
4682                 submit_bh(READ_META, bh);
4683                 wait_on_buffer(bh);
4684                 if (!buffer_uptodate(bh)) {
4685                         ext4_error(sb, __func__,
4686                                    "unable to read inode block - inode=%lu, "
4687                                    "block=%llu", inode->i_ino, block);
4688                         brelse(bh);
4689                         return -EIO;
4690                 }
4691         }
4692 has_buffer:
4693         iloc->bh = bh;
4694         return 0;
4695 }
4696
4697 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4698 {
4699         /* We have all inode data except xattrs in memory here. */
4700         return __ext4_get_inode_loc(inode, iloc,
4701                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4702 }
4703
4704 void ext4_set_inode_flags(struct inode *inode)
4705 {
4706         unsigned int flags = EXT4_I(inode)->i_flags;
4707
4708         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4709         if (flags & EXT4_SYNC_FL)
4710                 inode->i_flags |= S_SYNC;
4711         if (flags & EXT4_APPEND_FL)
4712                 inode->i_flags |= S_APPEND;
4713         if (flags & EXT4_IMMUTABLE_FL)
4714                 inode->i_flags |= S_IMMUTABLE;
4715         if (flags & EXT4_NOATIME_FL)
4716                 inode->i_flags |= S_NOATIME;
4717         if (flags & EXT4_DIRSYNC_FL)
4718                 inode->i_flags |= S_DIRSYNC;
4719 }
4720
4721 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4722 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4723 {
4724         unsigned int flags = ei->vfs_inode.i_flags;
4725
4726         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4727                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4728         if (flags & S_SYNC)
4729                 ei->i_flags |= EXT4_SYNC_FL;
4730         if (flags & S_APPEND)
4731                 ei->i_flags |= EXT4_APPEND_FL;
4732         if (flags & S_IMMUTABLE)
4733                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4734         if (flags & S_NOATIME)
4735                 ei->i_flags |= EXT4_NOATIME_FL;
4736         if (flags & S_DIRSYNC)
4737                 ei->i_flags |= EXT4_DIRSYNC_FL;
4738 }
4739
4740 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4741                                   struct ext4_inode_info *ei)
4742 {
4743         blkcnt_t i_blocks ;
4744         struct inode *inode = &(ei->vfs_inode);
4745         struct super_block *sb = inode->i_sb;
4746
4747         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4748                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4749                 /* we are using combined 48 bit field */
4750                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4751                                         le32_to_cpu(raw_inode->i_blocks_lo);
4752                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4753                         /* i_blocks represent file system block size */
4754                         return i_blocks  << (inode->i_blkbits - 9);
4755                 } else {
4756                         return i_blocks;
4757                 }
4758         } else {
4759                 return le32_to_cpu(raw_inode->i_blocks_lo);
4760         }
4761 }
4762
4763 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4764 {
4765         struct ext4_iloc iloc;
4766         struct ext4_inode *raw_inode;
4767         struct ext4_inode_info *ei;
4768         struct inode *inode;
4769         journal_t *journal = EXT4_SB(sb)->s_journal;
4770         long ret;
4771         int block;
4772
4773         inode = iget_locked(sb, ino);
4774         if (!inode)
4775                 return ERR_PTR(-ENOMEM);
4776         if (!(inode->i_state & I_NEW))
4777                 return inode;
4778
4779         ei = EXT4_I(inode);
4780         iloc.bh = 0;
4781
4782         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4783         if (ret < 0)
4784                 goto bad_inode;
4785         raw_inode = ext4_raw_inode(&iloc);
4786         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4787         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4788         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4789         if (!(test_opt(inode->i_sb, NO_UID32))) {
4790                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4791                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4792         }
4793         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4794
4795         ei->i_state = 0;
4796         ei->i_dir_start_lookup = 0;
4797         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4798         /* We now have enough fields to check if the inode was active or not.
4799          * This is needed because nfsd might try to access dead inodes
4800          * the test is that same one that e2fsck uses
4801          * NeilBrown 1999oct15
4802          */
4803         if (inode->i_nlink == 0) {
4804                 if (inode->i_mode == 0 ||
4805                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4806                         /* this inode is deleted */
4807                         ret = -ESTALE;
4808                         goto bad_inode;
4809                 }
4810                 /* The only unlinked inodes we let through here have
4811                  * valid i_mode and are being read by the orphan
4812                  * recovery code: that's fine, we're about to complete
4813                  * the process of deleting those. */
4814         }
4815         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4816         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4817         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4818         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4819                 ei->i_file_acl |=
4820                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4821         inode->i_size = ext4_isize(raw_inode);
4822         ei->i_disksize = inode->i_size;
4823 #ifdef CONFIG_QUOTA
4824         ei->i_reserved_quota = 0;
4825 #endif
4826         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4827         ei->i_block_group = iloc.block_group;
4828         ei->i_last_alloc_group = ~0;
4829         /*
4830          * NOTE! The in-memory inode i_data array is in little-endian order
4831          * even on big-endian machines: we do NOT byteswap the block numbers!
4832          */
4833         for (block = 0; block < EXT4_N_BLOCKS; block++)
4834                 ei->i_data[block] = raw_inode->i_block[block];
4835         INIT_LIST_HEAD(&ei->i_orphan);
4836
4837         /*
4838          * Set transaction id's of transactions that have to be committed
4839          * to finish f[data]sync. We set them to currently running transaction
4840          * as we cannot be sure that the inode or some of its metadata isn't
4841          * part of the transaction - the inode could have been reclaimed and
4842          * now it is reread from disk.
4843          */
4844         if (journal) {
4845                 transaction_t *transaction;
4846                 tid_t tid;
4847
4848                 spin_lock(&journal->j_state_lock);
4849                 if (journal->j_running_transaction)
4850                         transaction = journal->j_running_transaction;
4851                 else
4852                         transaction = journal->j_committing_transaction;
4853                 if (transaction)
4854                         tid = transaction->t_tid;
4855                 else
4856                         tid = journal->j_commit_sequence;
4857                 spin_unlock(&journal->j_state_lock);
4858                 ei->i_sync_tid = tid;
4859                 ei->i_datasync_tid = tid;
4860         }
4861
4862         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4865                     EXT4_INODE_SIZE(inode->i_sb)) {
4866                         ret = -EIO;
4867                         goto bad_inode;
4868                 }
4869                 if (ei->i_extra_isize == 0) {
4870                         /* The extra space is currently unused. Use it. */
4871                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4872                                             EXT4_GOOD_OLD_INODE_SIZE;
4873                 } else {
4874                         __le32 *magic = (void *)raw_inode +
4875                                         EXT4_GOOD_OLD_INODE_SIZE +
4876                                         ei->i_extra_isize;
4877                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4878                                 ei->i_state |= EXT4_STATE_XATTR;
4879                 }
4880         } else
4881                 ei->i_extra_isize = 0;
4882
4883         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4884         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4885         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4886         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4887
4888         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4889         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4891                         inode->i_version |=
4892                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4893         }
4894
4895         ret = 0;
4896         if (ei->i_file_acl &&
4897             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4898                 ext4_error(sb, __func__,
4899                            "bad extended attribute block %llu in inode #%lu",
4900                            ei->i_file_acl, inode->i_ino);
4901                 ret = -EIO;
4902                 goto bad_inode;
4903         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4904                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4905                     (S_ISLNK(inode->i_mode) &&
4906                      !ext4_inode_is_fast_symlink(inode)))
4907                         /* Validate extent which is part of inode */
4908                         ret = ext4_ext_check_inode(inode);
4909         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4910                    (S_ISLNK(inode->i_mode) &&
4911                     !ext4_inode_is_fast_symlink(inode))) {
4912                 /* Validate block references which are part of inode */
4913                 ret = ext4_check_inode_blockref(inode);
4914         }
4915         if (ret)
4916                 goto bad_inode;
4917
4918         if (S_ISREG(inode->i_mode)) {
4919                 inode->i_op = &ext4_file_inode_operations;
4920                 inode->i_fop = &ext4_file_operations;
4921                 ext4_set_aops(inode);
4922         } else if (S_ISDIR(inode->i_mode)) {
4923                 inode->i_op = &ext4_dir_inode_operations;
4924                 inode->i_fop = &ext4_dir_operations;
4925         } else if (S_ISLNK(inode->i_mode)) {
4926                 if (ext4_inode_is_fast_symlink(inode)) {
4927                         inode->i_op = &ext4_fast_symlink_inode_operations;
4928                         nd_terminate_link(ei->i_data, inode->i_size,
4929                                 sizeof(ei->i_data) - 1);
4930                 } else {
4931                         inode->i_op = &ext4_symlink_inode_operations;
4932                         ext4_set_aops(inode);
4933                 }
4934         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4935               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4936                 inode->i_op = &ext4_special_inode_operations;
4937                 if (raw_inode->i_block[0])
4938                         init_special_inode(inode, inode->i_mode,
4939                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4940                 else
4941                         init_special_inode(inode, inode->i_mode,
4942                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4943         } else {
4944                 ret = -EIO;
4945                 ext4_error(inode->i_sb, __func__,
4946                            "bogus i_mode (%o) for inode=%lu",
4947                            inode->i_mode, inode->i_ino);
4948                 goto bad_inode;
4949         }
4950         brelse(iloc.bh);
4951         ext4_set_inode_flags(inode);
4952         unlock_new_inode(inode);
4953         return inode;
4954
4955 bad_inode:
4956         brelse(iloc.bh);
4957         iget_failed(inode);
4958         return ERR_PTR(ret);
4959 }
4960
4961 static int ext4_inode_blocks_set(handle_t *handle,
4962                                 struct ext4_inode *raw_inode,
4963                                 struct ext4_inode_info *ei)
4964 {
4965         struct inode *inode = &(ei->vfs_inode);
4966         u64 i_blocks = inode->i_blocks;
4967         struct super_block *sb = inode->i_sb;
4968
4969         if (i_blocks <= ~0U) {
4970                 /*
4971                  * i_blocks can be represnted in a 32 bit variable
4972                  * as multiple of 512 bytes
4973                  */
4974                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4975                 raw_inode->i_blocks_high = 0;
4976                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4977                 return 0;
4978         }
4979         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4980                 return -EFBIG;
4981
4982         if (i_blocks <= 0xffffffffffffULL) {
4983                 /*
4984                  * i_blocks can be represented in a 48 bit variable
4985                  * as multiple of 512 bytes
4986                  */
4987                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4988                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4989                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4990         } else {
4991                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4992                 /* i_block is stored in file system block size */
4993                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4994                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4995                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4996         }
4997         return 0;
4998 }
4999
5000 /*
5001  * Post the struct inode info into an on-disk inode location in the
5002  * buffer-cache.  This gobbles the caller's reference to the
5003  * buffer_head in the inode location struct.
5004  *
5005  * The caller must have write access to iloc->bh.
5006  */
5007 static int ext4_do_update_inode(handle_t *handle,
5008                                 struct inode *inode,
5009                                 struct ext4_iloc *iloc)
5010 {
5011         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5012         struct ext4_inode_info *ei = EXT4_I(inode);
5013         struct buffer_head *bh = iloc->bh;
5014         int err = 0, rc, block;
5015
5016         /* For fields not not tracking in the in-memory inode,
5017          * initialise them to zero for new inodes. */
5018         if (ei->i_state & EXT4_STATE_NEW)
5019                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5020
5021         ext4_get_inode_flags(ei);
5022         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5023         if (!(test_opt(inode->i_sb, NO_UID32))) {
5024                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5025                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5026 /*
5027  * Fix up interoperability with old kernels. Otherwise, old inodes get
5028  * re-used with the upper 16 bits of the uid/gid intact
5029  */
5030                 if (!ei->i_dtime) {
5031                         raw_inode->i_uid_high =
5032                                 cpu_to_le16(high_16_bits(inode->i_uid));
5033                         raw_inode->i_gid_high =
5034                                 cpu_to_le16(high_16_bits(inode->i_gid));
5035                 } else {
5036                         raw_inode->i_uid_high = 0;
5037                         raw_inode->i_gid_high = 0;
5038                 }
5039         } else {
5040                 raw_inode->i_uid_low =
5041                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5042                 raw_inode->i_gid_low =
5043                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5044                 raw_inode->i_uid_high = 0;
5045                 raw_inode->i_gid_high = 0;
5046         }
5047         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5048
5049         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5050         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5051         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5052         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5053
5054         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5055                 goto out_brelse;
5056         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5057         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5058         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5059             cpu_to_le32(EXT4_OS_HURD))
5060                 raw_inode->i_file_acl_high =
5061                         cpu_to_le16(ei->i_file_acl >> 32);
5062         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5063         ext4_isize_set(raw_inode, ei->i_disksize);
5064         if (ei->i_disksize > 0x7fffffffULL) {
5065                 struct super_block *sb = inode->i_sb;
5066                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5067                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5068                                 EXT4_SB(sb)->s_es->s_rev_level ==
5069                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5070                         /* If this is the first large file
5071                          * created, add a flag to the superblock.
5072                          */
5073                         err = ext4_journal_get_write_access(handle,
5074                                         EXT4_SB(sb)->s_sbh);
5075                         if (err)
5076                                 goto out_brelse;
5077                         ext4_update_dynamic_rev(sb);
5078                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5079                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5080                         sb->s_dirt = 1;
5081                         ext4_handle_sync(handle);
5082                         err = ext4_handle_dirty_metadata(handle, inode,
5083                                         EXT4_SB(sb)->s_sbh);
5084                 }
5085         }
5086         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5087         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5088                 if (old_valid_dev(inode->i_rdev)) {
5089                         raw_inode->i_block[0] =
5090                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5091                         raw_inode->i_block[1] = 0;
5092                 } else {
5093                         raw_inode->i_block[0] = 0;
5094                         raw_inode->i_block[1] =
5095                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5096                         raw_inode->i_block[2] = 0;
5097                 }
5098         } else
5099                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5100                         raw_inode->i_block[block] = ei->i_data[block];
5101
5102         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5103         if (ei->i_extra_isize) {
5104                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5105                         raw_inode->i_version_hi =
5106                         cpu_to_le32(inode->i_version >> 32);
5107                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5108         }
5109
5110         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5111         rc = ext4_handle_dirty_metadata(handle, inode, bh);
5112         if (!err)
5113                 err = rc;
5114         ei->i_state &= ~EXT4_STATE_NEW;
5115
5116         ext4_update_inode_fsync_trans(handle, inode, 0);
5117 out_brelse:
5118         brelse(bh);
5119         ext4_std_error(inode->i_sb, err);
5120         return err;
5121 }
5122
5123 /*
5124  * ext4_write_inode()
5125  *
5126  * We are called from a few places:
5127  *
5128  * - Within generic_file_write() for O_SYNC files.
5129  *   Here, there will be no transaction running. We wait for any running
5130  *   trasnaction to commit.
5131  *
5132  * - Within sys_sync(), kupdate and such.
5133  *   We wait on commit, if tol to.
5134  *
5135  * - Within prune_icache() (PF_MEMALLOC == true)
5136  *   Here we simply return.  We can't afford to block kswapd on the
5137  *   journal commit.
5138  *
5139  * In all cases it is actually safe for us to return without doing anything,
5140  * because the inode has been copied into a raw inode buffer in
5141  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5142  * knfsd.
5143  *
5144  * Note that we are absolutely dependent upon all inode dirtiers doing the
5145  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5146  * which we are interested.
5147  *
5148  * It would be a bug for them to not do this.  The code:
5149  *
5150  *      mark_inode_dirty(inode)
5151  *      stuff();
5152  *      inode->i_size = expr;
5153  *
5154  * is in error because a kswapd-driven write_inode() could occur while
5155  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5156  * will no longer be on the superblock's dirty inode list.
5157  */
5158 int ext4_write_inode(struct inode *inode, int wait)
5159 {
5160         int err;
5161
5162         if (current->flags & PF_MEMALLOC)
5163                 return 0;
5164
5165         if (EXT4_SB(inode->i_sb)->s_journal) {
5166                 if (ext4_journal_current_handle()) {
5167                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5168                         dump_stack();
5169                         return -EIO;
5170                 }
5171
5172                 if (!wait)
5173                         return 0;
5174
5175                 err = ext4_force_commit(inode->i_sb);
5176         } else {
5177                 struct ext4_iloc iloc;
5178
5179                 err = ext4_get_inode_loc(inode, &iloc);
5180                 if (err)
5181                         return err;
5182                 if (wait)
5183                         sync_dirty_buffer(iloc.bh);
5184                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5185                         ext4_error(inode->i_sb, __func__,
5186                                    "IO error syncing inode, "
5187                                    "inode=%lu, block=%llu",
5188                                    inode->i_ino,
5189                                    (unsigned long long)iloc.bh->b_blocknr);
5190                         err = -EIO;
5191                 }
5192         }
5193         return err;
5194 }
5195
5196 /*
5197  * ext4_setattr()
5198  *
5199  * Called from notify_change.
5200  *
5201  * We want to trap VFS attempts to truncate the file as soon as
5202  * possible.  In particular, we want to make sure that when the VFS
5203  * shrinks i_size, we put the inode on the orphan list and modify
5204  * i_disksize immediately, so that during the subsequent flushing of
5205  * dirty pages and freeing of disk blocks, we can guarantee that any
5206  * commit will leave the blocks being flushed in an unused state on
5207  * disk.  (On recovery, the inode will get truncated and the blocks will
5208  * be freed, so we have a strong guarantee that no future commit will
5209  * leave these blocks visible to the user.)
5210  *
5211  * Another thing we have to assure is that if we are in ordered mode
5212  * and inode is still attached to the committing transaction, we must
5213  * we start writeout of all the dirty pages which are being truncated.
5214  * This way we are sure that all the data written in the previous
5215  * transaction are already on disk (truncate waits for pages under
5216  * writeback).
5217  *
5218  * Called with inode->i_mutex down.
5219  */
5220 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5221 {
5222         struct inode *inode = dentry->d_inode;
5223         int error, rc = 0;
5224         const unsigned int ia_valid = attr->ia_valid;
5225
5226         error = inode_change_ok(inode, attr);
5227         if (error)
5228                 return error;
5229
5230         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5231                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5232                 handle_t *handle;
5233
5234                 /* (user+group)*(old+new) structure, inode write (sb,
5235                  * inode block, ? - but truncate inode update has it) */
5236                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5237                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5238                 if (IS_ERR(handle)) {
5239                         error = PTR_ERR(handle);
5240                         goto err_out;
5241                 }
5242                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5243                 if (error) {
5244                         ext4_journal_stop(handle);
5245                         return error;
5246                 }
5247                 /* Update corresponding info in inode so that everything is in
5248                  * one transaction */
5249                 if (attr->ia_valid & ATTR_UID)
5250                         inode->i_uid = attr->ia_uid;
5251                 if (attr->ia_valid & ATTR_GID)
5252                         inode->i_gid = attr->ia_gid;
5253                 error = ext4_mark_inode_dirty(handle, inode);
5254                 ext4_journal_stop(handle);
5255         }
5256
5257         if (attr->ia_valid & ATTR_SIZE) {
5258                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5259                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5260
5261                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5262                                 error = -EFBIG;
5263                                 goto err_out;
5264                         }
5265                 }
5266         }
5267
5268         if (S_ISREG(inode->i_mode) &&
5269             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5270                 handle_t *handle;
5271
5272                 handle = ext4_journal_start(inode, 3);
5273                 if (IS_ERR(handle)) {
5274                         error = PTR_ERR(handle);
5275                         goto err_out;
5276                 }
5277
5278                 error = ext4_orphan_add(handle, inode);
5279                 EXT4_I(inode)->i_disksize = attr->ia_size;
5280                 rc = ext4_mark_inode_dirty(handle, inode);
5281                 if (!error)
5282                         error = rc;
5283                 ext4_journal_stop(handle);
5284
5285                 if (ext4_should_order_data(inode)) {
5286                         error = ext4_begin_ordered_truncate(inode,
5287                                                             attr->ia_size);
5288                         if (error) {
5289                                 /* Do as much error cleanup as possible */
5290                                 handle = ext4_journal_start(inode, 3);
5291                                 if (IS_ERR(handle)) {
5292                                         ext4_orphan_del(NULL, inode);
5293                                         goto err_out;
5294                                 }
5295                                 ext4_orphan_del(handle, inode);
5296                                 ext4_journal_stop(handle);
5297                                 goto err_out;
5298                         }
5299                 }
5300         }
5301
5302         rc = inode_setattr(inode, attr);
5303
5304         /* If inode_setattr's call to ext4_truncate failed to get a
5305          * transaction handle at all, we need to clean up the in-core
5306          * orphan list manually. */
5307         if (inode->i_nlink)
5308                 ext4_orphan_del(NULL, inode);
5309
5310         if (!rc && (ia_valid & ATTR_MODE))
5311                 rc = ext4_acl_chmod(inode);
5312
5313 err_out:
5314         ext4_std_error(inode->i_sb, error);
5315         if (!error)
5316                 error = rc;
5317         return error;
5318 }
5319
5320 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5321                  struct kstat *stat)
5322 {
5323         struct inode *inode;
5324         unsigned long delalloc_blocks;
5325
5326         inode = dentry->d_inode;
5327         generic_fillattr(inode, stat);
5328
5329         /*
5330          * We can't update i_blocks if the block allocation is delayed
5331          * otherwise in the case of system crash before the real block
5332          * allocation is done, we will have i_blocks inconsistent with
5333          * on-disk file blocks.
5334          * We always keep i_blocks updated together with real
5335          * allocation. But to not confuse with user, stat
5336          * will return the blocks that include the delayed allocation
5337          * blocks for this file.
5338          */
5339         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5340         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5341         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5342
5343         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5344         return 0;
5345 }
5346
5347 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5348                                       int chunk)
5349 {
5350         int indirects;
5351
5352         /* if nrblocks are contiguous */
5353         if (chunk) {
5354                 /*
5355                  * With N contiguous data blocks, it need at most
5356                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5357                  * 2 dindirect blocks
5358                  * 1 tindirect block
5359                  */
5360                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5361                 return indirects + 3;
5362         }
5363         /*
5364          * if nrblocks are not contiguous, worse case, each block touch
5365          * a indirect block, and each indirect block touch a double indirect
5366          * block, plus a triple indirect block
5367          */
5368         indirects = nrblocks * 2 + 1;
5369         return indirects;
5370 }
5371
5372 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5373 {
5374         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5375                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5376         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5377 }
5378
5379 /*
5380  * Account for index blocks, block groups bitmaps and block group
5381  * descriptor blocks if modify datablocks and index blocks
5382  * worse case, the indexs blocks spread over different block groups
5383  *
5384  * If datablocks are discontiguous, they are possible to spread over
5385  * different block groups too. If they are contiuguous, with flexbg,
5386  * they could still across block group boundary.
5387  *
5388  * Also account for superblock, inode, quota and xattr blocks
5389  */
5390 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5391 {
5392         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5393         int gdpblocks;
5394         int idxblocks;
5395         int ret = 0;
5396
5397         /*
5398          * How many index blocks need to touch to modify nrblocks?
5399          * The "Chunk" flag indicating whether the nrblocks is
5400          * physically contiguous on disk
5401          *
5402          * For Direct IO and fallocate, they calls get_block to allocate
5403          * one single extent at a time, so they could set the "Chunk" flag
5404          */
5405         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5406
5407         ret = idxblocks;
5408
5409         /*
5410          * Now let's see how many group bitmaps and group descriptors need
5411          * to account
5412          */
5413         groups = idxblocks;
5414         if (chunk)
5415                 groups += 1;
5416         else
5417                 groups += nrblocks;
5418
5419         gdpblocks = groups;
5420         if (groups > ngroups)
5421                 groups = ngroups;
5422         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5423                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5424
5425         /* bitmaps and block group descriptor blocks */
5426         ret += groups + gdpblocks;
5427
5428         /* Blocks for super block, inode, quota and xattr blocks */
5429         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5430
5431         return ret;
5432 }
5433
5434 /*
5435  * Calulate the total number of credits to reserve to fit
5436  * the modification of a single pages into a single transaction,
5437  * which may include multiple chunks of block allocations.
5438  *
5439  * This could be called via ext4_write_begin()
5440  *
5441  * We need to consider the worse case, when
5442  * one new block per extent.
5443  */
5444 int ext4_writepage_trans_blocks(struct inode *inode)
5445 {
5446         int bpp = ext4_journal_blocks_per_page(inode);
5447         int ret;
5448
5449         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5450
5451         /* Account for data blocks for journalled mode */
5452         if (ext4_should_journal_data(inode))
5453                 ret += bpp;
5454         return ret;
5455 }
5456
5457 /*
5458  * Calculate the journal credits for a chunk of data modification.
5459  *
5460  * This is called from DIO, fallocate or whoever calling
5461  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5462  *
5463  * journal buffers for data blocks are not included here, as DIO
5464  * and fallocate do no need to journal data buffers.
5465  */
5466 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5467 {
5468         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5469 }
5470
5471 /*
5472  * The caller must have previously called ext4_reserve_inode_write().
5473  * Give this, we know that the caller already has write access to iloc->bh.
5474  */
5475 int ext4_mark_iloc_dirty(handle_t *handle,
5476                          struct inode *inode, struct ext4_iloc *iloc)
5477 {
5478         int err = 0;
5479
5480         if (test_opt(inode->i_sb, I_VERSION))
5481                 inode_inc_iversion(inode);
5482
5483         /* the do_update_inode consumes one bh->b_count */
5484         get_bh(iloc->bh);
5485
5486         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5487         err = ext4_do_update_inode(handle, inode, iloc);
5488         put_bh(iloc->bh);
5489         return err;
5490 }
5491
5492 /*
5493  * On success, We end up with an outstanding reference count against
5494  * iloc->bh.  This _must_ be cleaned up later.
5495  */
5496
5497 int
5498 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5499                          struct ext4_iloc *iloc)
5500 {
5501         int err;
5502
5503         err = ext4_get_inode_loc(inode, iloc);
5504         if (!err) {
5505                 BUFFER_TRACE(iloc->bh, "get_write_access");
5506                 err = ext4_journal_get_write_access(handle, iloc->bh);
5507                 if (err) {
5508                         brelse(iloc->bh);
5509                         iloc->bh = NULL;
5510                 }
5511         }
5512         ext4_std_error(inode->i_sb, err);
5513         return err;
5514 }
5515
5516 /*
5517  * Expand an inode by new_extra_isize bytes.
5518  * Returns 0 on success or negative error number on failure.
5519  */
5520 static int ext4_expand_extra_isize(struct inode *inode,
5521                                    unsigned int new_extra_isize,
5522                                    struct ext4_iloc iloc,
5523                                    handle_t *handle)
5524 {
5525         struct ext4_inode *raw_inode;
5526         struct ext4_xattr_ibody_header *header;
5527         struct ext4_xattr_entry *entry;
5528
5529         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5530                 return 0;
5531
5532         raw_inode = ext4_raw_inode(&iloc);
5533
5534         header = IHDR(inode, raw_inode);
5535         entry = IFIRST(header);
5536
5537         /* No extended attributes present */
5538         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5539                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5540                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5541                         new_extra_isize);
5542                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5543                 return 0;
5544         }
5545
5546         /* try to expand with EAs present */
5547         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5548                                           raw_inode, handle);
5549 }
5550
5551 /*
5552  * What we do here is to mark the in-core inode as clean with respect to inode
5553  * dirtiness (it may still be data-dirty).
5554  * This means that the in-core inode may be reaped by prune_icache
5555  * without having to perform any I/O.  This is a very good thing,
5556  * because *any* task may call prune_icache - even ones which
5557  * have a transaction open against a different journal.
5558  *
5559  * Is this cheating?  Not really.  Sure, we haven't written the
5560  * inode out, but prune_icache isn't a user-visible syncing function.
5561  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5562  * we start and wait on commits.
5563  *
5564  * Is this efficient/effective?  Well, we're being nice to the system
5565  * by cleaning up our inodes proactively so they can be reaped
5566  * without I/O.  But we are potentially leaving up to five seconds'
5567  * worth of inodes floating about which prune_icache wants us to
5568  * write out.  One way to fix that would be to get prune_icache()
5569  * to do a write_super() to free up some memory.  It has the desired
5570  * effect.
5571  */
5572 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5573 {
5574         struct ext4_iloc iloc;
5575         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5576         static unsigned int mnt_count;
5577         int err, ret;
5578
5579         might_sleep();
5580         err = ext4_reserve_inode_write(handle, inode, &iloc);
5581         if (ext4_handle_valid(handle) &&
5582             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5583             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5584                 /*
5585                  * We need extra buffer credits since we may write into EA block
5586                  * with this same handle. If journal_extend fails, then it will
5587                  * only result in a minor loss of functionality for that inode.
5588                  * If this is felt to be critical, then e2fsck should be run to
5589                  * force a large enough s_min_extra_isize.
5590                  */
5591                 if ((jbd2_journal_extend(handle,
5592                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5593                         ret = ext4_expand_extra_isize(inode,
5594                                                       sbi->s_want_extra_isize,
5595                                                       iloc, handle);
5596                         if (ret) {
5597                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5598                                 if (mnt_count !=
5599                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5600                                         ext4_warning(inode->i_sb, __func__,
5601                                         "Unable to expand inode %lu. Delete"
5602                                         " some EAs or run e2fsck.",
5603                                         inode->i_ino);
5604                                         mnt_count =
5605                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5606                                 }
5607                         }
5608                 }
5609         }
5610         if (!err)
5611                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5612         return err;
5613 }
5614
5615 /*
5616  * ext4_dirty_inode() is called from __mark_inode_dirty()
5617  *
5618  * We're really interested in the case where a file is being extended.
5619  * i_size has been changed by generic_commit_write() and we thus need
5620  * to include the updated inode in the current transaction.
5621  *
5622  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5623  * are allocated to the file.
5624  *
5625  * If the inode is marked synchronous, we don't honour that here - doing
5626  * so would cause a commit on atime updates, which we don't bother doing.
5627  * We handle synchronous inodes at the highest possible level.
5628  */
5629 void ext4_dirty_inode(struct inode *inode)
5630 {
5631         handle_t *handle;
5632
5633         handle = ext4_journal_start(inode, 2);
5634         if (IS_ERR(handle))
5635                 goto out;
5636
5637         ext4_mark_inode_dirty(handle, inode);
5638
5639         ext4_journal_stop(handle);
5640 out:
5641         return;
5642 }
5643
5644 #if 0
5645 /*
5646  * Bind an inode's backing buffer_head into this transaction, to prevent
5647  * it from being flushed to disk early.  Unlike
5648  * ext4_reserve_inode_write, this leaves behind no bh reference and
5649  * returns no iloc structure, so the caller needs to repeat the iloc
5650  * lookup to mark the inode dirty later.
5651  */
5652 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5653 {
5654         struct ext4_iloc iloc;
5655
5656         int err = 0;
5657         if (handle) {
5658                 err = ext4_get_inode_loc(inode, &iloc);
5659                 if (!err) {
5660                         BUFFER_TRACE(iloc.bh, "get_write_access");
5661                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5662                         if (!err)
5663                                 err = ext4_handle_dirty_metadata(handle,
5664                                                                  inode,
5665                                                                  iloc.bh);
5666                         brelse(iloc.bh);
5667                 }
5668         }
5669         ext4_std_error(inode->i_sb, err);
5670         return err;
5671 }
5672 #endif
5673
5674 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5675 {
5676         journal_t *journal;
5677         handle_t *handle;
5678         int err;
5679
5680         /*
5681          * We have to be very careful here: changing a data block's
5682          * journaling status dynamically is dangerous.  If we write a
5683          * data block to the journal, change the status and then delete
5684          * that block, we risk forgetting to revoke the old log record
5685          * from the journal and so a subsequent replay can corrupt data.
5686          * So, first we make sure that the journal is empty and that
5687          * nobody is changing anything.
5688          */
5689
5690         journal = EXT4_JOURNAL(inode);
5691         if (!journal)
5692                 return 0;
5693         if (is_journal_aborted(journal))
5694                 return -EROFS;
5695
5696         jbd2_journal_lock_updates(journal);
5697         jbd2_journal_flush(journal);
5698
5699         /*
5700          * OK, there are no updates running now, and all cached data is
5701          * synced to disk.  We are now in a completely consistent state
5702          * which doesn't have anything in the journal, and we know that
5703          * no filesystem updates are running, so it is safe to modify
5704          * the inode's in-core data-journaling state flag now.
5705          */
5706
5707         if (val)
5708                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5709         else
5710                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5711         ext4_set_aops(inode);
5712
5713         jbd2_journal_unlock_updates(journal);
5714
5715         /* Finally we can mark the inode as dirty. */
5716
5717         handle = ext4_journal_start(inode, 1);
5718         if (IS_ERR(handle))
5719                 return PTR_ERR(handle);
5720
5721         err = ext4_mark_inode_dirty(handle, inode);
5722         ext4_handle_sync(handle);
5723         ext4_journal_stop(handle);
5724         ext4_std_error(inode->i_sb, err);
5725
5726         return err;
5727 }
5728
5729 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5730 {
5731         return !buffer_mapped(bh);
5732 }
5733
5734 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5735 {
5736         struct page *page = vmf->page;
5737         loff_t size;
5738         unsigned long len;
5739         int ret = -EINVAL;
5740         void *fsdata;
5741         struct file *file = vma->vm_file;
5742         struct inode *inode = file->f_path.dentry->d_inode;
5743         struct address_space *mapping = inode->i_mapping;
5744
5745         /*
5746          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5747          * get i_mutex because we are already holding mmap_sem.
5748          */
5749         down_read(&inode->i_alloc_sem);
5750         size = i_size_read(inode);
5751         if (page->mapping != mapping || size <= page_offset(page)
5752             || !PageUptodate(page)) {
5753                 /* page got truncated from under us? */
5754                 goto out_unlock;
5755         }
5756         ret = 0;
5757         if (PageMappedToDisk(page))
5758                 goto out_unlock;
5759
5760         if (page->index == size >> PAGE_CACHE_SHIFT)
5761                 len = size & ~PAGE_CACHE_MASK;
5762         else
5763                 len = PAGE_CACHE_SIZE;
5764
5765         lock_page(page);
5766         /*
5767          * return if we have all the buffers mapped. This avoid
5768          * the need to call write_begin/write_end which does a
5769          * journal_start/journal_stop which can block and take
5770          * long time
5771          */
5772         if (page_has_buffers(page)) {
5773                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5774                                         ext4_bh_unmapped)) {
5775                         unlock_page(page);
5776                         goto out_unlock;
5777                 }
5778         }
5779         unlock_page(page);
5780         /*
5781          * OK, we need to fill the hole... Do write_begin write_end
5782          * to do block allocation/reservation.We are not holding
5783          * inode.i__mutex here. That allow * parallel write_begin,
5784          * write_end call. lock_page prevent this from happening
5785          * on the same page though
5786          */
5787         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5788                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5789         if (ret < 0)
5790                 goto out_unlock;
5791         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5792                         len, len, page, fsdata);
5793         if (ret < 0)
5794                 goto out_unlock;
5795         ret = 0;
5796 out_unlock:
5797         if (ret)
5798                 ret = VM_FAULT_SIGBUS;
5799         up_read(&inode->i_alloc_sem);
5800         return ret;
5801 }