658c4a7f2578cd61b5b673166957711323a2af18
[safe/jmp/linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 /**
375  *      ext4_get_branch - read the chain of indirect blocks leading to data
376  *      @inode: inode in question
377  *      @depth: depth of the chain (1 - direct pointer, etc.)
378  *      @offsets: offsets of pointers in inode/indirect blocks
379  *      @chain: place to store the result
380  *      @err: here we store the error value
381  *
382  *      Function fills the array of triples <key, p, bh> and returns %NULL
383  *      if everything went OK or the pointer to the last filled triple
384  *      (incomplete one) otherwise. Upon the return chain[i].key contains
385  *      the number of (i+1)-th block in the chain (as it is stored in memory,
386  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
387  *      number (it points into struct inode for i==0 and into the bh->b_data
388  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389  *      block for i>0 and NULL for i==0. In other words, it holds the block
390  *      numbers of the chain, addresses they were taken from (and where we can
391  *      verify that chain did not change) and buffer_heads hosting these
392  *      numbers.
393  *
394  *      Function stops when it stumbles upon zero pointer (absent block)
395  *              (pointer to last triple returned, *@err == 0)
396  *      or when it gets an IO error reading an indirect block
397  *              (ditto, *@err == -EIO)
398  *      or when it reads all @depth-1 indirect blocks successfully and finds
399  *      the whole chain, all way to the data (returns %NULL, *err == 0).
400  *
401  *      Need to be called with
402  *      down_read(&EXT4_I(inode)->i_data_sem)
403  */
404 static Indirect *ext4_get_branch(struct inode *inode, int depth,
405                                  ext4_lblk_t  *offsets,
406                                  Indirect chain[4], int *err)
407 {
408         struct super_block *sb = inode->i_sb;
409         Indirect *p = chain;
410         struct buffer_head *bh;
411
412         *err = 0;
413         /* i_data is not going away, no lock needed */
414         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415         if (!p->key)
416                 goto no_block;
417         while (--depth) {
418                 bh = sb_bread(sb, le32_to_cpu(p->key));
419                 if (!bh)
420                         goto failure;
421                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422                 /* Reader: end */
423                 if (!p->key)
424                         goto no_block;
425         }
426         return NULL;
427
428 failure:
429         *err = -EIO;
430 no_block:
431         return p;
432 }
433
434 /**
435  *      ext4_find_near - find a place for allocation with sufficient locality
436  *      @inode: owner
437  *      @ind: descriptor of indirect block.
438  *
439  *      This function returns the preferred place for block allocation.
440  *      It is used when heuristic for sequential allocation fails.
441  *      Rules are:
442  *        + if there is a block to the left of our position - allocate near it.
443  *        + if pointer will live in indirect block - allocate near that block.
444  *        + if pointer will live in inode - allocate in the same
445  *          cylinder group.
446  *
447  * In the latter case we colour the starting block by the callers PID to
448  * prevent it from clashing with concurrent allocations for a different inode
449  * in the same block group.   The PID is used here so that functionally related
450  * files will be close-by on-disk.
451  *
452  *      Caller must make sure that @ind is valid and will stay that way.
453  */
454 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455 {
456         struct ext4_inode_info *ei = EXT4_I(inode);
457         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458         __le32 *p;
459         ext4_fsblk_t bg_start;
460         ext4_fsblk_t last_block;
461         ext4_grpblk_t colour;
462
463         /* Try to find previous block */
464         for (p = ind->p - 1; p >= start; p--) {
465                 if (*p)
466                         return le32_to_cpu(*p);
467         }
468
469         /* No such thing, so let's try location of indirect block */
470         if (ind->bh)
471                 return ind->bh->b_blocknr;
472
473         /*
474          * It is going to be referred to from the inode itself? OK, just put it
475          * into the same cylinder group then.
476          */
477         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
478         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
479
480         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
481                 colour = (current->pid % 16) *
482                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
483         else
484                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
485         return bg_start + colour;
486 }
487
488 /**
489  *      ext4_find_goal - find a preferred place for allocation.
490  *      @inode: owner
491  *      @block:  block we want
492  *      @partial: pointer to the last triple within a chain
493  *
494  *      Normally this function find the preferred place for block allocation,
495  *      returns it.
496  */
497 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
498                 Indirect *partial)
499 {
500         /*
501          * XXX need to get goal block from mballoc's data structures
502          */
503
504         return ext4_find_near(inode, partial);
505 }
506
507 /**
508  *      ext4_blks_to_allocate: Look up the block map and count the number
509  *      of direct blocks need to be allocated for the given branch.
510  *
511  *      @branch: chain of indirect blocks
512  *      @k: number of blocks need for indirect blocks
513  *      @blks: number of data blocks to be mapped.
514  *      @blocks_to_boundary:  the offset in the indirect block
515  *
516  *      return the total number of blocks to be allocate, including the
517  *      direct and indirect blocks.
518  */
519 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
520                 int blocks_to_boundary)
521 {
522         unsigned int count = 0;
523
524         /*
525          * Simple case, [t,d]Indirect block(s) has not allocated yet
526          * then it's clear blocks on that path have not allocated
527          */
528         if (k > 0) {
529                 /* right now we don't handle cross boundary allocation */
530                 if (blks < blocks_to_boundary + 1)
531                         count += blks;
532                 else
533                         count += blocks_to_boundary + 1;
534                 return count;
535         }
536
537         count++;
538         while (count < blks && count <= blocks_to_boundary &&
539                 le32_to_cpu(*(branch[0].p + count)) == 0) {
540                 count++;
541         }
542         return count;
543 }
544
545 /**
546  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
547  *      @indirect_blks: the number of blocks need to allocate for indirect
548  *                      blocks
549  *
550  *      @new_blocks: on return it will store the new block numbers for
551  *      the indirect blocks(if needed) and the first direct block,
552  *      @blks:  on return it will store the total number of allocated
553  *              direct blocks
554  */
555 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
556                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
557                                 int indirect_blks, int blks,
558                                 ext4_fsblk_t new_blocks[4], int *err)
559 {
560         struct ext4_allocation_request ar;
561         int target, i;
562         unsigned long count = 0, blk_allocated = 0;
563         int index = 0;
564         ext4_fsblk_t current_block = 0;
565         int ret = 0;
566
567         /*
568          * Here we try to allocate the requested multiple blocks at once,
569          * on a best-effort basis.
570          * To build a branch, we should allocate blocks for
571          * the indirect blocks(if not allocated yet), and at least
572          * the first direct block of this branch.  That's the
573          * minimum number of blocks need to allocate(required)
574          */
575         /* first we try to allocate the indirect blocks */
576         target = indirect_blks;
577         while (target > 0) {
578                 count = target;
579                 /* allocating blocks for indirect blocks and direct blocks */
580                 current_block = ext4_new_meta_blocks(handle, inode,
581                                                         goal, &count, err);
582                 if (*err)
583                         goto failed_out;
584
585                 target -= count;
586                 /* allocate blocks for indirect blocks */
587                 while (index < indirect_blks && count) {
588                         new_blocks[index++] = current_block++;
589                         count--;
590                 }
591                 if (count > 0) {
592                         /*
593                          * save the new block number
594                          * for the first direct block
595                          */
596                         new_blocks[index] = current_block;
597                         printk(KERN_INFO "%s returned more blocks than "
598                                                 "requested\n", __func__);
599                         WARN_ON(1);
600                         break;
601                 }
602         }
603
604         target = blks - count ;
605         blk_allocated = count;
606         if (!target)
607                 goto allocated;
608         /* Now allocate data blocks */
609         memset(&ar, 0, sizeof(ar));
610         ar.inode = inode;
611         ar.goal = goal;
612         ar.len = target;
613         ar.logical = iblock;
614         if (S_ISREG(inode->i_mode))
615                 /* enable in-core preallocation only for regular files */
616                 ar.flags = EXT4_MB_HINT_DATA;
617
618         current_block = ext4_mb_new_blocks(handle, &ar, err);
619
620         if (*err && (target == blks)) {
621                 /*
622                  * if the allocation failed and we didn't allocate
623                  * any blocks before
624                  */
625                 goto failed_out;
626         }
627         if (!*err) {
628                 if (target == blks) {
629                 /*
630                  * save the new block number
631                  * for the first direct block
632                  */
633                         new_blocks[index] = current_block;
634                 }
635                 blk_allocated += ar.len;
636         }
637 allocated:
638         /* total number of blocks allocated for direct blocks */
639         ret = blk_allocated;
640         *err = 0;
641         return ret;
642 failed_out:
643         for (i = 0; i < index; i++)
644                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
645         return ret;
646 }
647
648 /**
649  *      ext4_alloc_branch - allocate and set up a chain of blocks.
650  *      @inode: owner
651  *      @indirect_blks: number of allocated indirect blocks
652  *      @blks: number of allocated direct blocks
653  *      @offsets: offsets (in the blocks) to store the pointers to next.
654  *      @branch: place to store the chain in.
655  *
656  *      This function allocates blocks, zeroes out all but the last one,
657  *      links them into chain and (if we are synchronous) writes them to disk.
658  *      In other words, it prepares a branch that can be spliced onto the
659  *      inode. It stores the information about that chain in the branch[], in
660  *      the same format as ext4_get_branch() would do. We are calling it after
661  *      we had read the existing part of chain and partial points to the last
662  *      triple of that (one with zero ->key). Upon the exit we have the same
663  *      picture as after the successful ext4_get_block(), except that in one
664  *      place chain is disconnected - *branch->p is still zero (we did not
665  *      set the last link), but branch->key contains the number that should
666  *      be placed into *branch->p to fill that gap.
667  *
668  *      If allocation fails we free all blocks we've allocated (and forget
669  *      their buffer_heads) and return the error value the from failed
670  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
671  *      as described above and return 0.
672  */
673 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
674                                 ext4_lblk_t iblock, int indirect_blks,
675                                 int *blks, ext4_fsblk_t goal,
676                                 ext4_lblk_t *offsets, Indirect *branch)
677 {
678         int blocksize = inode->i_sb->s_blocksize;
679         int i, n = 0;
680         int err = 0;
681         struct buffer_head *bh;
682         int num;
683         ext4_fsblk_t new_blocks[4];
684         ext4_fsblk_t current_block;
685
686         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
687                                 *blks, new_blocks, &err);
688         if (err)
689                 return err;
690
691         branch[0].key = cpu_to_le32(new_blocks[0]);
692         /*
693          * metadata blocks and data blocks are allocated.
694          */
695         for (n = 1; n <= indirect_blks;  n++) {
696                 /*
697                  * Get buffer_head for parent block, zero it out
698                  * and set the pointer to new one, then send
699                  * parent to disk.
700                  */
701                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
702                 branch[n].bh = bh;
703                 lock_buffer(bh);
704                 BUFFER_TRACE(bh, "call get_create_access");
705                 err = ext4_journal_get_create_access(handle, bh);
706                 if (err) {
707                         unlock_buffer(bh);
708                         brelse(bh);
709                         goto failed;
710                 }
711
712                 memset(bh->b_data, 0, blocksize);
713                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
714                 branch[n].key = cpu_to_le32(new_blocks[n]);
715                 *branch[n].p = branch[n].key;
716                 if (n == indirect_blks) {
717                         current_block = new_blocks[n];
718                         /*
719                          * End of chain, update the last new metablock of
720                          * the chain to point to the new allocated
721                          * data blocks numbers
722                          */
723                         for (i=1; i < num; i++)
724                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
725                 }
726                 BUFFER_TRACE(bh, "marking uptodate");
727                 set_buffer_uptodate(bh);
728                 unlock_buffer(bh);
729
730                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
731                 err = ext4_handle_dirty_metadata(handle, inode, bh);
732                 if (err)
733                         goto failed;
734         }
735         *blks = num;
736         return err;
737 failed:
738         /* Allocation failed, free what we already allocated */
739         for (i = 1; i <= n ; i++) {
740                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
741                 ext4_journal_forget(handle, branch[i].bh);
742         }
743         for (i = 0; i < indirect_blks; i++)
744                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
745
746         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
747
748         return err;
749 }
750
751 /**
752  * ext4_splice_branch - splice the allocated branch onto inode.
753  * @inode: owner
754  * @block: (logical) number of block we are adding
755  * @chain: chain of indirect blocks (with a missing link - see
756  *      ext4_alloc_branch)
757  * @where: location of missing link
758  * @num:   number of indirect blocks we are adding
759  * @blks:  number of direct blocks we are adding
760  *
761  * This function fills the missing link and does all housekeeping needed in
762  * inode (->i_blocks, etc.). In case of success we end up with the full
763  * chain to new block and return 0.
764  */
765 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
766                         ext4_lblk_t block, Indirect *where, int num, int blks)
767 {
768         int i;
769         int err = 0;
770         ext4_fsblk_t current_block;
771
772         /*
773          * If we're splicing into a [td]indirect block (as opposed to the
774          * inode) then we need to get write access to the [td]indirect block
775          * before the splice.
776          */
777         if (where->bh) {
778                 BUFFER_TRACE(where->bh, "get_write_access");
779                 err = ext4_journal_get_write_access(handle, where->bh);
780                 if (err)
781                         goto err_out;
782         }
783         /* That's it */
784
785         *where->p = where->key;
786
787         /*
788          * Update the host buffer_head or inode to point to more just allocated
789          * direct blocks blocks
790          */
791         if (num == 0 && blks > 1) {
792                 current_block = le32_to_cpu(where->key) + 1;
793                 for (i = 1; i < blks; i++)
794                         *(where->p + i) = cpu_to_le32(current_block++);
795         }
796
797         /* We are done with atomic stuff, now do the rest of housekeeping */
798
799         inode->i_ctime = ext4_current_time(inode);
800         ext4_mark_inode_dirty(handle, inode);
801
802         /* had we spliced it onto indirect block? */
803         if (where->bh) {
804                 /*
805                  * If we spliced it onto an indirect block, we haven't
806                  * altered the inode.  Note however that if it is being spliced
807                  * onto an indirect block at the very end of the file (the
808                  * file is growing) then we *will* alter the inode to reflect
809                  * the new i_size.  But that is not done here - it is done in
810                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
811                  */
812                 jbd_debug(5, "splicing indirect only\n");
813                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
814                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
815                 if (err)
816                         goto err_out;
817         } else {
818                 /*
819                  * OK, we spliced it into the inode itself on a direct block.
820                  * Inode was dirtied above.
821                  */
822                 jbd_debug(5, "splicing direct\n");
823         }
824         return err;
825
826 err_out:
827         for (i = 1; i <= num; i++) {
828                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
829                 ext4_journal_forget(handle, where[i].bh);
830                 ext4_free_blocks(handle, inode,
831                                         le32_to_cpu(where[i-1].key), 1, 0);
832         }
833         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
834
835         return err;
836 }
837
838 /*
839  * Allocation strategy is simple: if we have to allocate something, we will
840  * have to go the whole way to leaf. So let's do it before attaching anything
841  * to tree, set linkage between the newborn blocks, write them if sync is
842  * required, recheck the path, free and repeat if check fails, otherwise
843  * set the last missing link (that will protect us from any truncate-generated
844  * removals - all blocks on the path are immune now) and possibly force the
845  * write on the parent block.
846  * That has a nice additional property: no special recovery from the failed
847  * allocations is needed - we simply release blocks and do not touch anything
848  * reachable from inode.
849  *
850  * `handle' can be NULL if create == 0.
851  *
852  * return > 0, # of blocks mapped or allocated.
853  * return = 0, if plain lookup failed.
854  * return < 0, error case.
855  *
856  *
857  * Need to be called with
858  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
859  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
860  */
861 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
862                                   ext4_lblk_t iblock, unsigned int maxblocks,
863                                   struct buffer_head *bh_result,
864                                   int create, int extend_disksize)
865 {
866         int err = -EIO;
867         ext4_lblk_t offsets[4];
868         Indirect chain[4];
869         Indirect *partial;
870         ext4_fsblk_t goal;
871         int indirect_blks;
872         int blocks_to_boundary = 0;
873         int depth;
874         struct ext4_inode_info *ei = EXT4_I(inode);
875         int count = 0;
876         ext4_fsblk_t first_block = 0;
877         loff_t disksize;
878
879
880         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
881         J_ASSERT(handle != NULL || create == 0);
882         depth = ext4_block_to_path(inode, iblock, offsets,
883                                         &blocks_to_boundary);
884
885         if (depth == 0)
886                 goto out;
887
888         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
889
890         /* Simplest case - block found, no allocation needed */
891         if (!partial) {
892                 first_block = le32_to_cpu(chain[depth - 1].key);
893                 clear_buffer_new(bh_result);
894                 count++;
895                 /*map more blocks*/
896                 while (count < maxblocks && count <= blocks_to_boundary) {
897                         ext4_fsblk_t blk;
898
899                         blk = le32_to_cpu(*(chain[depth-1].p + count));
900
901                         if (blk == first_block + count)
902                                 count++;
903                         else
904                                 break;
905                 }
906                 goto got_it;
907         }
908
909         /* Next simple case - plain lookup or failed read of indirect block */
910         if (!create || err == -EIO)
911                 goto cleanup;
912
913         /*
914          * Okay, we need to do block allocation.
915         */
916         goal = ext4_find_goal(inode, iblock, partial);
917
918         /* the number of blocks need to allocate for [d,t]indirect blocks */
919         indirect_blks = (chain + depth) - partial - 1;
920
921         /*
922          * Next look up the indirect map to count the totoal number of
923          * direct blocks to allocate for this branch.
924          */
925         count = ext4_blks_to_allocate(partial, indirect_blks,
926                                         maxblocks, blocks_to_boundary);
927         /*
928          * Block out ext4_truncate while we alter the tree
929          */
930         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
931                                         &count, goal,
932                                         offsets + (partial - chain), partial);
933
934         /*
935          * The ext4_splice_branch call will free and forget any buffers
936          * on the new chain if there is a failure, but that risks using
937          * up transaction credits, especially for bitmaps where the
938          * credits cannot be returned.  Can we handle this somehow?  We
939          * may need to return -EAGAIN upwards in the worst case.  --sct
940          */
941         if (!err)
942                 err = ext4_splice_branch(handle, inode, iblock,
943                                         partial, indirect_blks, count);
944         /*
945          * i_disksize growing is protected by i_data_sem.  Don't forget to
946          * protect it if you're about to implement concurrent
947          * ext4_get_block() -bzzz
948         */
949         if (!err && extend_disksize) {
950                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
951                 if (disksize > i_size_read(inode))
952                         disksize = i_size_read(inode);
953                 if (disksize > ei->i_disksize)
954                         ei->i_disksize = disksize;
955         }
956         if (err)
957                 goto cleanup;
958
959         set_buffer_new(bh_result);
960 got_it:
961         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
962         if (count > blocks_to_boundary)
963                 set_buffer_boundary(bh_result);
964         err = count;
965         /* Clean up and exit */
966         partial = chain + depth - 1;    /* the whole chain */
967 cleanup:
968         while (partial > chain) {
969                 BUFFER_TRACE(partial->bh, "call brelse");
970                 brelse(partial->bh);
971                 partial--;
972         }
973         BUFFER_TRACE(bh_result, "returned");
974 out:
975         return err;
976 }
977
978 /*
979  * Calculate the number of metadata blocks need to reserve
980  * to allocate @blocks for non extent file based file
981  */
982 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
983 {
984         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
985         int ind_blks, dind_blks, tind_blks;
986
987         /* number of new indirect blocks needed */
988         ind_blks = (blocks + icap - 1) / icap;
989
990         dind_blks = (ind_blks + icap - 1) / icap;
991
992         tind_blks = 1;
993
994         return ind_blks + dind_blks + tind_blks;
995 }
996
997 /*
998  * Calculate the number of metadata blocks need to reserve
999  * to allocate given number of blocks
1000  */
1001 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1002 {
1003         if (!blocks)
1004                 return 0;
1005
1006         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1007                 return ext4_ext_calc_metadata_amount(inode, blocks);
1008
1009         return ext4_indirect_calc_metadata_amount(inode, blocks);
1010 }
1011
1012 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1013 {
1014         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1015         int total, mdb, mdb_free;
1016
1017         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1018         /* recalculate the number of metablocks still need to be reserved */
1019         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1020         mdb = ext4_calc_metadata_amount(inode, total);
1021
1022         /* figure out how many metablocks to release */
1023         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1024         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1025
1026         if (mdb_free) {
1027                 /* Account for allocated meta_blocks */
1028                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1029
1030                 /* update fs dirty blocks counter */
1031                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1032                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1033                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1034         }
1035
1036         /* update per-inode reservations */
1037         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1038         EXT4_I(inode)->i_reserved_data_blocks -= used;
1039
1040         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1041 }
1042
1043 /*
1044  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1045  * and returns if the blocks are already mapped.
1046  *
1047  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1048  * and store the allocated blocks in the result buffer head and mark it
1049  * mapped.
1050  *
1051  * If file type is extents based, it will call ext4_ext_get_blocks(),
1052  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1053  * based files
1054  *
1055  * On success, it returns the number of blocks being mapped or allocate.
1056  * if create==0 and the blocks are pre-allocated and uninitialized block,
1057  * the result buffer head is unmapped. If the create ==1, it will make sure
1058  * the buffer head is mapped.
1059  *
1060  * It returns 0 if plain look up failed (blocks have not been allocated), in
1061  * that casem, buffer head is unmapped
1062  *
1063  * It returns the error in case of allocation failure.
1064  */
1065 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1066                         unsigned int max_blocks, struct buffer_head *bh,
1067                         int create, int extend_disksize, int flag)
1068 {
1069         int retval;
1070
1071         clear_buffer_mapped(bh);
1072
1073         /*
1074          * Try to see if we can get  the block without requesting
1075          * for new file system block.
1076          */
1077         down_read((&EXT4_I(inode)->i_data_sem));
1078         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1079                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1080                                 bh, 0, 0);
1081         } else {
1082                 retval = ext4_get_blocks_handle(handle,
1083                                 inode, block, max_blocks, bh, 0, 0);
1084         }
1085         up_read((&EXT4_I(inode)->i_data_sem));
1086
1087         /* If it is only a block(s) look up */
1088         if (!create)
1089                 return retval;
1090
1091         /*
1092          * Returns if the blocks have already allocated
1093          *
1094          * Note that if blocks have been preallocated
1095          * ext4_ext_get_block() returns th create = 0
1096          * with buffer head unmapped.
1097          */
1098         if (retval > 0 && buffer_mapped(bh))
1099                 return retval;
1100
1101         /*
1102          * New blocks allocate and/or writing to uninitialized extent
1103          * will possibly result in updating i_data, so we take
1104          * the write lock of i_data_sem, and call get_blocks()
1105          * with create == 1 flag.
1106          */
1107         down_write((&EXT4_I(inode)->i_data_sem));
1108
1109         /*
1110          * if the caller is from delayed allocation writeout path
1111          * we have already reserved fs blocks for allocation
1112          * let the underlying get_block() function know to
1113          * avoid double accounting
1114          */
1115         if (flag)
1116                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1117         /*
1118          * We need to check for EXT4 here because migrate
1119          * could have changed the inode type in between
1120          */
1121         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1122                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1123                                 bh, create, extend_disksize);
1124         } else {
1125                 retval = ext4_get_blocks_handle(handle, inode, block,
1126                                 max_blocks, bh, create, extend_disksize);
1127
1128                 if (retval > 0 && buffer_new(bh)) {
1129                         /*
1130                          * We allocated new blocks which will result in
1131                          * i_data's format changing.  Force the migrate
1132                          * to fail by clearing migrate flags
1133                          */
1134                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1135                                                         ~EXT4_EXT_MIGRATE;
1136                 }
1137         }
1138
1139         if (flag) {
1140                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1141                 /*
1142                  * Update reserved blocks/metadata blocks
1143                  * after successful block allocation
1144                  * which were deferred till now
1145                  */
1146                 if ((retval > 0) && buffer_delay(bh))
1147                         ext4_da_update_reserve_space(inode, retval);
1148         }
1149
1150         up_write((&EXT4_I(inode)->i_data_sem));
1151         return retval;
1152 }
1153
1154 /* Maximum number of blocks we map for direct IO at once. */
1155 #define DIO_MAX_BLOCKS 4096
1156
1157 int ext4_get_block(struct inode *inode, sector_t iblock,
1158                    struct buffer_head *bh_result, int create)
1159 {
1160         handle_t *handle = ext4_journal_current_handle();
1161         int ret = 0, started = 0;
1162         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1163         int dio_credits;
1164
1165         if (create && !handle) {
1166                 /* Direct IO write... */
1167                 if (max_blocks > DIO_MAX_BLOCKS)
1168                         max_blocks = DIO_MAX_BLOCKS;
1169                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1170                 handle = ext4_journal_start(inode, dio_credits);
1171                 if (IS_ERR(handle)) {
1172                         ret = PTR_ERR(handle);
1173                         goto out;
1174                 }
1175                 started = 1;
1176         }
1177
1178         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1179                                         max_blocks, bh_result, create, 0, 0);
1180         if (ret > 0) {
1181                 bh_result->b_size = (ret << inode->i_blkbits);
1182                 ret = 0;
1183         }
1184         if (started)
1185                 ext4_journal_stop(handle);
1186 out:
1187         return ret;
1188 }
1189
1190 /*
1191  * `handle' can be NULL if create is zero
1192  */
1193 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1194                                 ext4_lblk_t block, int create, int *errp)
1195 {
1196         struct buffer_head dummy;
1197         int fatal = 0, err;
1198
1199         J_ASSERT(handle != NULL || create == 0);
1200
1201         dummy.b_state = 0;
1202         dummy.b_blocknr = -1000;
1203         buffer_trace_init(&dummy.b_history);
1204         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1205                                         &dummy, create, 1, 0);
1206         /*
1207          * ext4_get_blocks_handle() returns number of blocks
1208          * mapped. 0 in case of a HOLE.
1209          */
1210         if (err > 0) {
1211                 if (err > 1)
1212                         WARN_ON(1);
1213                 err = 0;
1214         }
1215         *errp = err;
1216         if (!err && buffer_mapped(&dummy)) {
1217                 struct buffer_head *bh;
1218                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1219                 if (!bh) {
1220                         *errp = -EIO;
1221                         goto err;
1222                 }
1223                 if (buffer_new(&dummy)) {
1224                         J_ASSERT(create != 0);
1225                         J_ASSERT(handle != NULL);
1226
1227                         /*
1228                          * Now that we do not always journal data, we should
1229                          * keep in mind whether this should always journal the
1230                          * new buffer as metadata.  For now, regular file
1231                          * writes use ext4_get_block instead, so it's not a
1232                          * problem.
1233                          */
1234                         lock_buffer(bh);
1235                         BUFFER_TRACE(bh, "call get_create_access");
1236                         fatal = ext4_journal_get_create_access(handle, bh);
1237                         if (!fatal && !buffer_uptodate(bh)) {
1238                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1239                                 set_buffer_uptodate(bh);
1240                         }
1241                         unlock_buffer(bh);
1242                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1243                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1244                         if (!fatal)
1245                                 fatal = err;
1246                 } else {
1247                         BUFFER_TRACE(bh, "not a new buffer");
1248                 }
1249                 if (fatal) {
1250                         *errp = fatal;
1251                         brelse(bh);
1252                         bh = NULL;
1253                 }
1254                 return bh;
1255         }
1256 err:
1257         return NULL;
1258 }
1259
1260 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1261                                ext4_lblk_t block, int create, int *err)
1262 {
1263         struct buffer_head *bh;
1264
1265         bh = ext4_getblk(handle, inode, block, create, err);
1266         if (!bh)
1267                 return bh;
1268         if (buffer_uptodate(bh))
1269                 return bh;
1270         ll_rw_block(READ_META, 1, &bh);
1271         wait_on_buffer(bh);
1272         if (buffer_uptodate(bh))
1273                 return bh;
1274         put_bh(bh);
1275         *err = -EIO;
1276         return NULL;
1277 }
1278
1279 static int walk_page_buffers(handle_t *handle,
1280                              struct buffer_head *head,
1281                              unsigned from,
1282                              unsigned to,
1283                              int *partial,
1284                              int (*fn)(handle_t *handle,
1285                                        struct buffer_head *bh))
1286 {
1287         struct buffer_head *bh;
1288         unsigned block_start, block_end;
1289         unsigned blocksize = head->b_size;
1290         int err, ret = 0;
1291         struct buffer_head *next;
1292
1293         for (bh = head, block_start = 0;
1294              ret == 0 && (bh != head || !block_start);
1295              block_start = block_end, bh = next)
1296         {
1297                 next = bh->b_this_page;
1298                 block_end = block_start + blocksize;
1299                 if (block_end <= from || block_start >= to) {
1300                         if (partial && !buffer_uptodate(bh))
1301                                 *partial = 1;
1302                         continue;
1303                 }
1304                 err = (*fn)(handle, bh);
1305                 if (!ret)
1306                         ret = err;
1307         }
1308         return ret;
1309 }
1310
1311 /*
1312  * To preserve ordering, it is essential that the hole instantiation and
1313  * the data write be encapsulated in a single transaction.  We cannot
1314  * close off a transaction and start a new one between the ext4_get_block()
1315  * and the commit_write().  So doing the jbd2_journal_start at the start of
1316  * prepare_write() is the right place.
1317  *
1318  * Also, this function can nest inside ext4_writepage() ->
1319  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1320  * has generated enough buffer credits to do the whole page.  So we won't
1321  * block on the journal in that case, which is good, because the caller may
1322  * be PF_MEMALLOC.
1323  *
1324  * By accident, ext4 can be reentered when a transaction is open via
1325  * quota file writes.  If we were to commit the transaction while thus
1326  * reentered, there can be a deadlock - we would be holding a quota
1327  * lock, and the commit would never complete if another thread had a
1328  * transaction open and was blocking on the quota lock - a ranking
1329  * violation.
1330  *
1331  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1332  * will _not_ run commit under these circumstances because handle->h_ref
1333  * is elevated.  We'll still have enough credits for the tiny quotafile
1334  * write.
1335  */
1336 static int do_journal_get_write_access(handle_t *handle,
1337                                         struct buffer_head *bh)
1338 {
1339         if (!buffer_mapped(bh) || buffer_freed(bh))
1340                 return 0;
1341         return ext4_journal_get_write_access(handle, bh);
1342 }
1343
1344 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1345                                 loff_t pos, unsigned len, unsigned flags,
1346                                 struct page **pagep, void **fsdata)
1347 {
1348         struct inode *inode = mapping->host;
1349         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1350         handle_t *handle;
1351         int retries = 0;
1352         struct page *page;
1353         pgoff_t index;
1354         unsigned from, to;
1355
1356         trace_mark(ext4_write_begin,
1357                    "dev %s ino %lu pos %llu len %u flags %u",
1358                    inode->i_sb->s_id, inode->i_ino,
1359                    (unsigned long long) pos, len, flags);
1360         index = pos >> PAGE_CACHE_SHIFT;
1361         from = pos & (PAGE_CACHE_SIZE - 1);
1362         to = from + len;
1363
1364 retry:
1365         handle = ext4_journal_start(inode, needed_blocks);
1366         if (IS_ERR(handle)) {
1367                 ret = PTR_ERR(handle);
1368                 goto out;
1369         }
1370
1371         page = grab_cache_page_write_begin(mapping, index, flags);
1372         if (!page) {
1373                 ext4_journal_stop(handle);
1374                 ret = -ENOMEM;
1375                 goto out;
1376         }
1377         *pagep = page;
1378
1379         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1380                                                         ext4_get_block);
1381
1382         if (!ret && ext4_should_journal_data(inode)) {
1383                 ret = walk_page_buffers(handle, page_buffers(page),
1384                                 from, to, NULL, do_journal_get_write_access);
1385         }
1386
1387         if (ret) {
1388                 unlock_page(page);
1389                 ext4_journal_stop(handle);
1390                 page_cache_release(page);
1391                 /*
1392                  * block_write_begin may have instantiated a few blocks
1393                  * outside i_size.  Trim these off again. Don't need
1394                  * i_size_read because we hold i_mutex.
1395                  */
1396                 if (pos + len > inode->i_size)
1397                         vmtruncate(inode, inode->i_size);
1398         }
1399
1400         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1401                 goto retry;
1402 out:
1403         return ret;
1404 }
1405
1406 /* For write_end() in data=journal mode */
1407 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1408 {
1409         if (!buffer_mapped(bh) || buffer_freed(bh))
1410                 return 0;
1411         set_buffer_uptodate(bh);
1412         return ext4_handle_dirty_metadata(handle, NULL, bh);
1413 }
1414
1415 /*
1416  * We need to pick up the new inode size which generic_commit_write gave us
1417  * `file' can be NULL - eg, when called from page_symlink().
1418  *
1419  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1420  * buffers are managed internally.
1421  */
1422 static int ext4_ordered_write_end(struct file *file,
1423                                 struct address_space *mapping,
1424                                 loff_t pos, unsigned len, unsigned copied,
1425                                 struct page *page, void *fsdata)
1426 {
1427         handle_t *handle = ext4_journal_current_handle();
1428         struct inode *inode = mapping->host;
1429         int ret = 0, ret2;
1430
1431         trace_mark(ext4_ordered_write_end,
1432                    "dev %s ino %lu pos %llu len %u copied %u",
1433                    inode->i_sb->s_id, inode->i_ino,
1434                    (unsigned long long) pos, len, copied);
1435         ret = ext4_jbd2_file_inode(handle, inode);
1436
1437         if (ret == 0) {
1438                 loff_t new_i_size;
1439
1440                 new_i_size = pos + copied;
1441                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1442                         ext4_update_i_disksize(inode, new_i_size);
1443                         /* We need to mark inode dirty even if
1444                          * new_i_size is less that inode->i_size
1445                          * bu greater than i_disksize.(hint delalloc)
1446                          */
1447                         ext4_mark_inode_dirty(handle, inode);
1448                 }
1449
1450                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1451                                                         page, fsdata);
1452                 copied = ret2;
1453                 if (ret2 < 0)
1454                         ret = ret2;
1455         }
1456         ret2 = ext4_journal_stop(handle);
1457         if (!ret)
1458                 ret = ret2;
1459
1460         return ret ? ret : copied;
1461 }
1462
1463 static int ext4_writeback_write_end(struct file *file,
1464                                 struct address_space *mapping,
1465                                 loff_t pos, unsigned len, unsigned copied,
1466                                 struct page *page, void *fsdata)
1467 {
1468         handle_t *handle = ext4_journal_current_handle();
1469         struct inode *inode = mapping->host;
1470         int ret = 0, ret2;
1471         loff_t new_i_size;
1472
1473         trace_mark(ext4_writeback_write_end,
1474                    "dev %s ino %lu pos %llu len %u copied %u",
1475                    inode->i_sb->s_id, inode->i_ino,
1476                    (unsigned long long) pos, len, copied);
1477         new_i_size = pos + copied;
1478         if (new_i_size > EXT4_I(inode)->i_disksize) {
1479                 ext4_update_i_disksize(inode, new_i_size);
1480                 /* We need to mark inode dirty even if
1481                  * new_i_size is less that inode->i_size
1482                  * bu greater than i_disksize.(hint delalloc)
1483                  */
1484                 ext4_mark_inode_dirty(handle, inode);
1485         }
1486
1487         ret2 = generic_write_end(file, mapping, pos, len, copied,
1488                                                         page, fsdata);
1489         copied = ret2;
1490         if (ret2 < 0)
1491                 ret = ret2;
1492
1493         ret2 = ext4_journal_stop(handle);
1494         if (!ret)
1495                 ret = ret2;
1496
1497         return ret ? ret : copied;
1498 }
1499
1500 static int ext4_journalled_write_end(struct file *file,
1501                                 struct address_space *mapping,
1502                                 loff_t pos, unsigned len, unsigned copied,
1503                                 struct page *page, void *fsdata)
1504 {
1505         handle_t *handle = ext4_journal_current_handle();
1506         struct inode *inode = mapping->host;
1507         int ret = 0, ret2;
1508         int partial = 0;
1509         unsigned from, to;
1510         loff_t new_i_size;
1511
1512         trace_mark(ext4_journalled_write_end,
1513                    "dev %s ino %lu pos %llu len %u copied %u",
1514                    inode->i_sb->s_id, inode->i_ino,
1515                    (unsigned long long) pos, len, copied);
1516         from = pos & (PAGE_CACHE_SIZE - 1);
1517         to = from + len;
1518
1519         if (copied < len) {
1520                 if (!PageUptodate(page))
1521                         copied = 0;
1522                 page_zero_new_buffers(page, from+copied, to);
1523         }
1524
1525         ret = walk_page_buffers(handle, page_buffers(page), from,
1526                                 to, &partial, write_end_fn);
1527         if (!partial)
1528                 SetPageUptodate(page);
1529         new_i_size = pos + copied;
1530         if (new_i_size > inode->i_size)
1531                 i_size_write(inode, pos+copied);
1532         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1533         if (new_i_size > EXT4_I(inode)->i_disksize) {
1534                 ext4_update_i_disksize(inode, new_i_size);
1535                 ret2 = ext4_mark_inode_dirty(handle, inode);
1536                 if (!ret)
1537                         ret = ret2;
1538         }
1539
1540         unlock_page(page);
1541         ret2 = ext4_journal_stop(handle);
1542         if (!ret)
1543                 ret = ret2;
1544         page_cache_release(page);
1545
1546         return ret ? ret : copied;
1547 }
1548
1549 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1550 {
1551         int retries = 0;
1552        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1553        unsigned long md_needed, mdblocks, total = 0;
1554
1555         /*
1556          * recalculate the amount of metadata blocks to reserve
1557          * in order to allocate nrblocks
1558          * worse case is one extent per block
1559          */
1560 repeat:
1561         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1562         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1563         mdblocks = ext4_calc_metadata_amount(inode, total);
1564         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1565
1566         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1567         total = md_needed + nrblocks;
1568
1569         if (ext4_claim_free_blocks(sbi, total)) {
1570                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1571                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1572                         yield();
1573                         goto repeat;
1574                 }
1575                 return -ENOSPC;
1576         }
1577         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1578         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1579
1580         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1581         return 0;       /* success */
1582 }
1583
1584 static void ext4_da_release_space(struct inode *inode, int to_free)
1585 {
1586         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1587         int total, mdb, mdb_free, release;
1588
1589         if (!to_free)
1590                 return;         /* Nothing to release, exit */
1591
1592         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1593
1594         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1595                 /*
1596                  * if there is no reserved blocks, but we try to free some
1597                  * then the counter is messed up somewhere.
1598                  * but since this function is called from invalidate
1599                  * page, it's harmless to return without any action
1600                  */
1601                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1602                             "blocks for inode %lu, but there is no reserved "
1603                             "data blocks\n", to_free, inode->i_ino);
1604                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1605                 return;
1606         }
1607
1608         /* recalculate the number of metablocks still need to be reserved */
1609         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1610         mdb = ext4_calc_metadata_amount(inode, total);
1611
1612         /* figure out how many metablocks to release */
1613         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1614         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1615
1616         release = to_free + mdb_free;
1617
1618         /* update fs dirty blocks counter for truncate case */
1619         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1620
1621         /* update per-inode reservations */
1622         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1623         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1624
1625         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1626         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1627         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1628 }
1629
1630 static void ext4_da_page_release_reservation(struct page *page,
1631                                                 unsigned long offset)
1632 {
1633         int to_release = 0;
1634         struct buffer_head *head, *bh;
1635         unsigned int curr_off = 0;
1636
1637         head = page_buffers(page);
1638         bh = head;
1639         do {
1640                 unsigned int next_off = curr_off + bh->b_size;
1641
1642                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1643                         to_release++;
1644                         clear_buffer_delay(bh);
1645                 }
1646                 curr_off = next_off;
1647         } while ((bh = bh->b_this_page) != head);
1648         ext4_da_release_space(page->mapping->host, to_release);
1649 }
1650
1651 /*
1652  * Delayed allocation stuff
1653  */
1654
1655 struct mpage_da_data {
1656         struct inode *inode;
1657         struct buffer_head lbh;                 /* extent of blocks */
1658         unsigned long first_page, next_page;    /* extent of pages */
1659         get_block_t *get_block;
1660         struct writeback_control *wbc;
1661         int io_done;
1662         int pages_written;
1663         int retval;
1664 };
1665
1666 /*
1667  * mpage_da_submit_io - walks through extent of pages and try to write
1668  * them with writepage() call back
1669  *
1670  * @mpd->inode: inode
1671  * @mpd->first_page: first page of the extent
1672  * @mpd->next_page: page after the last page of the extent
1673  * @mpd->get_block: the filesystem's block mapper function
1674  *
1675  * By the time mpage_da_submit_io() is called we expect all blocks
1676  * to be allocated. this may be wrong if allocation failed.
1677  *
1678  * As pages are already locked by write_cache_pages(), we can't use it
1679  */
1680 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1681 {
1682         long pages_skipped;
1683         struct pagevec pvec;
1684         unsigned long index, end;
1685         int ret = 0, err, nr_pages, i;
1686         struct inode *inode = mpd->inode;
1687         struct address_space *mapping = inode->i_mapping;
1688
1689         BUG_ON(mpd->next_page <= mpd->first_page);
1690         /*
1691          * We need to start from the first_page to the next_page - 1
1692          * to make sure we also write the mapped dirty buffer_heads.
1693          * If we look at mpd->lbh.b_blocknr we would only be looking
1694          * at the currently mapped buffer_heads.
1695          */
1696         index = mpd->first_page;
1697         end = mpd->next_page - 1;
1698
1699         pagevec_init(&pvec, 0);
1700         while (index <= end) {
1701                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1702                 if (nr_pages == 0)
1703                         break;
1704                 for (i = 0; i < nr_pages; i++) {
1705                         struct page *page = pvec.pages[i];
1706
1707                         index = page->index;
1708                         if (index > end)
1709                                 break;
1710                         index++;
1711
1712                         BUG_ON(!PageLocked(page));
1713                         BUG_ON(PageWriteback(page));
1714
1715                         pages_skipped = mpd->wbc->pages_skipped;
1716                         err = mapping->a_ops->writepage(page, mpd->wbc);
1717                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1718                                 /*
1719                                  * have successfully written the page
1720                                  * without skipping the same
1721                                  */
1722                                 mpd->pages_written++;
1723                         /*
1724                          * In error case, we have to continue because
1725                          * remaining pages are still locked
1726                          * XXX: unlock and re-dirty them?
1727                          */
1728                         if (ret == 0)
1729                                 ret = err;
1730                 }
1731                 pagevec_release(&pvec);
1732         }
1733         return ret;
1734 }
1735
1736 /*
1737  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1738  *
1739  * @mpd->inode - inode to walk through
1740  * @exbh->b_blocknr - first block on a disk
1741  * @exbh->b_size - amount of space in bytes
1742  * @logical - first logical block to start assignment with
1743  *
1744  * the function goes through all passed space and put actual disk
1745  * block numbers into buffer heads, dropping BH_Delay
1746  */
1747 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1748                                  struct buffer_head *exbh)
1749 {
1750         struct inode *inode = mpd->inode;
1751         struct address_space *mapping = inode->i_mapping;
1752         int blocks = exbh->b_size >> inode->i_blkbits;
1753         sector_t pblock = exbh->b_blocknr, cur_logical;
1754         struct buffer_head *head, *bh;
1755         pgoff_t index, end;
1756         struct pagevec pvec;
1757         int nr_pages, i;
1758
1759         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1760         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1761         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1762
1763         pagevec_init(&pvec, 0);
1764
1765         while (index <= end) {
1766                 /* XXX: optimize tail */
1767                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1768                 if (nr_pages == 0)
1769                         break;
1770                 for (i = 0; i < nr_pages; i++) {
1771                         struct page *page = pvec.pages[i];
1772
1773                         index = page->index;
1774                         if (index > end)
1775                                 break;
1776                         index++;
1777
1778                         BUG_ON(!PageLocked(page));
1779                         BUG_ON(PageWriteback(page));
1780                         BUG_ON(!page_has_buffers(page));
1781
1782                         bh = page_buffers(page);
1783                         head = bh;
1784
1785                         /* skip blocks out of the range */
1786                         do {
1787                                 if (cur_logical >= logical)
1788                                         break;
1789                                 cur_logical++;
1790                         } while ((bh = bh->b_this_page) != head);
1791
1792                         do {
1793                                 if (cur_logical >= logical + blocks)
1794                                         break;
1795                                 if (buffer_delay(bh)) {
1796                                         bh->b_blocknr = pblock;
1797                                         clear_buffer_delay(bh);
1798                                         bh->b_bdev = inode->i_sb->s_bdev;
1799                                 } else if (buffer_unwritten(bh)) {
1800                                         bh->b_blocknr = pblock;
1801                                         clear_buffer_unwritten(bh);
1802                                         set_buffer_mapped(bh);
1803                                         set_buffer_new(bh);
1804                                         bh->b_bdev = inode->i_sb->s_bdev;
1805                                 } else if (buffer_mapped(bh))
1806                                         BUG_ON(bh->b_blocknr != pblock);
1807
1808                                 cur_logical++;
1809                                 pblock++;
1810                         } while ((bh = bh->b_this_page) != head);
1811                 }
1812                 pagevec_release(&pvec);
1813         }
1814 }
1815
1816
1817 /*
1818  * __unmap_underlying_blocks - just a helper function to unmap
1819  * set of blocks described by @bh
1820  */
1821 static inline void __unmap_underlying_blocks(struct inode *inode,
1822                                              struct buffer_head *bh)
1823 {
1824         struct block_device *bdev = inode->i_sb->s_bdev;
1825         int blocks, i;
1826
1827         blocks = bh->b_size >> inode->i_blkbits;
1828         for (i = 0; i < blocks; i++)
1829                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1830 }
1831
1832 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1833                                         sector_t logical, long blk_cnt)
1834 {
1835         int nr_pages, i;
1836         pgoff_t index, end;
1837         struct pagevec pvec;
1838         struct inode *inode = mpd->inode;
1839         struct address_space *mapping = inode->i_mapping;
1840
1841         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1842         end   = (logical + blk_cnt - 1) >>
1843                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1844         while (index <= end) {
1845                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1846                 if (nr_pages == 0)
1847                         break;
1848                 for (i = 0; i < nr_pages; i++) {
1849                         struct page *page = pvec.pages[i];
1850                         index = page->index;
1851                         if (index > end)
1852                                 break;
1853                         index++;
1854
1855                         BUG_ON(!PageLocked(page));
1856                         BUG_ON(PageWriteback(page));
1857                         block_invalidatepage(page, 0);
1858                         ClearPageUptodate(page);
1859                         unlock_page(page);
1860                 }
1861         }
1862         return;
1863 }
1864
1865 static void ext4_print_free_blocks(struct inode *inode)
1866 {
1867         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1868         printk(KERN_EMERG "Total free blocks count %lld\n",
1869                         ext4_count_free_blocks(inode->i_sb));
1870         printk(KERN_EMERG "Free/Dirty block details\n");
1871         printk(KERN_EMERG "free_blocks=%lld\n",
1872                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1873         printk(KERN_EMERG "dirty_blocks=%lld\n",
1874                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1875         printk(KERN_EMERG "Block reservation details\n");
1876         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1877                         EXT4_I(inode)->i_reserved_data_blocks);
1878         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1879                         EXT4_I(inode)->i_reserved_meta_blocks);
1880         return;
1881 }
1882
1883 /*
1884  * mpage_da_map_blocks - go through given space
1885  *
1886  * @mpd->lbh - bh describing space
1887  * @mpd->get_block - the filesystem's block mapper function
1888  *
1889  * The function skips space we know is already mapped to disk blocks.
1890  *
1891  */
1892 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1893 {
1894         int err = 0;
1895         struct buffer_head new;
1896         struct buffer_head *lbh = &mpd->lbh;
1897         sector_t next;
1898
1899         /*
1900          * We consider only non-mapped and non-allocated blocks
1901          */
1902         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1903                 return 0;
1904         new.b_state = lbh->b_state;
1905         new.b_blocknr = 0;
1906         new.b_size = lbh->b_size;
1907         next = lbh->b_blocknr;
1908         /*
1909          * If we didn't accumulate anything
1910          * to write simply return
1911          */
1912         if (!new.b_size)
1913                 return 0;
1914         err = mpd->get_block(mpd->inode, next, &new, 1);
1915         if (err) {
1916
1917                 /* If get block returns with error
1918                  * we simply return. Later writepage
1919                  * will redirty the page and writepages
1920                  * will find the dirty page again
1921                  */
1922                 if (err == -EAGAIN)
1923                         return 0;
1924
1925                 if (err == -ENOSPC &&
1926                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1927                         mpd->retval = err;
1928                         return 0;
1929                 }
1930
1931                 /*
1932                  * get block failure will cause us
1933                  * to loop in writepages. Because
1934                  * a_ops->writepage won't be able to
1935                  * make progress. The page will be redirtied
1936                  * by writepage and writepages will again
1937                  * try to write the same.
1938                  */
1939                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1940                                   "at logical offset %llu with max blocks "
1941                                   "%zd with error %d\n",
1942                                   __func__, mpd->inode->i_ino,
1943                                   (unsigned long long)next,
1944                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1945                 printk(KERN_EMERG "This should not happen.!! "
1946                                         "Data will be lost\n");
1947                 if (err == -ENOSPC) {
1948                         ext4_print_free_blocks(mpd->inode);
1949                 }
1950                 /* invlaidate all the pages */
1951                 ext4_da_block_invalidatepages(mpd, next,
1952                                 lbh->b_size >> mpd->inode->i_blkbits);
1953                 return err;
1954         }
1955         BUG_ON(new.b_size == 0);
1956
1957         if (buffer_new(&new))
1958                 __unmap_underlying_blocks(mpd->inode, &new);
1959
1960         /*
1961          * If blocks are delayed marked, we need to
1962          * put actual blocknr and drop delayed bit
1963          */
1964         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1965                 mpage_put_bnr_to_bhs(mpd, next, &new);
1966
1967         return 0;
1968 }
1969
1970 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1971                 (1 << BH_Delay) | (1 << BH_Unwritten))
1972
1973 /*
1974  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1975  *
1976  * @mpd->lbh - extent of blocks
1977  * @logical - logical number of the block in the file
1978  * @bh - bh of the block (used to access block's state)
1979  *
1980  * the function is used to collect contig. blocks in same state
1981  */
1982 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1983                                    sector_t logical, struct buffer_head *bh)
1984 {
1985         sector_t next;
1986         size_t b_size = bh->b_size;
1987         struct buffer_head *lbh = &mpd->lbh;
1988         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1989
1990         /* check if thereserved journal credits might overflow */
1991         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1992                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1993                         /*
1994                          * With non-extent format we are limited by the journal
1995                          * credit available.  Total credit needed to insert
1996                          * nrblocks contiguous blocks is dependent on the
1997                          * nrblocks.  So limit nrblocks.
1998                          */
1999                         goto flush_it;
2000                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2001                                 EXT4_MAX_TRANS_DATA) {
2002                         /*
2003                          * Adding the new buffer_head would make it cross the
2004                          * allowed limit for which we have journal credit
2005                          * reserved. So limit the new bh->b_size
2006                          */
2007                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2008                                                 mpd->inode->i_blkbits;
2009                         /* we will do mpage_da_submit_io in the next loop */
2010                 }
2011         }
2012         /*
2013          * First block in the extent
2014          */
2015         if (lbh->b_size == 0) {
2016                 lbh->b_blocknr = logical;
2017                 lbh->b_size = b_size;
2018                 lbh->b_state = bh->b_state & BH_FLAGS;
2019                 return;
2020         }
2021
2022         next = lbh->b_blocknr + nrblocks;
2023         /*
2024          * Can we merge the block to our big extent?
2025          */
2026         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2027                 lbh->b_size += b_size;
2028                 return;
2029         }
2030
2031 flush_it:
2032         /*
2033          * We couldn't merge the block to our extent, so we
2034          * need to flush current  extent and start new one
2035          */
2036         if (mpage_da_map_blocks(mpd) == 0)
2037                 mpage_da_submit_io(mpd);
2038         mpd->io_done = 1;
2039         return;
2040 }
2041
2042 /*
2043  * __mpage_da_writepage - finds extent of pages and blocks
2044  *
2045  * @page: page to consider
2046  * @wbc: not used, we just follow rules
2047  * @data: context
2048  *
2049  * The function finds extents of pages and scan them for all blocks.
2050  */
2051 static int __mpage_da_writepage(struct page *page,
2052                                 struct writeback_control *wbc, void *data)
2053 {
2054         struct mpage_da_data *mpd = data;
2055         struct inode *inode = mpd->inode;
2056         struct buffer_head *bh, *head, fake;
2057         sector_t logical;
2058
2059         if (mpd->io_done) {
2060                 /*
2061                  * Rest of the page in the page_vec
2062                  * redirty then and skip then. We will
2063                  * try to to write them again after
2064                  * starting a new transaction
2065                  */
2066                 redirty_page_for_writepage(wbc, page);
2067                 unlock_page(page);
2068                 return MPAGE_DA_EXTENT_TAIL;
2069         }
2070         /*
2071          * Can we merge this page to current extent?
2072          */
2073         if (mpd->next_page != page->index) {
2074                 /*
2075                  * Nope, we can't. So, we map non-allocated blocks
2076                  * and start IO on them using writepage()
2077                  */
2078                 if (mpd->next_page != mpd->first_page) {
2079                         if (mpage_da_map_blocks(mpd) == 0)
2080                                 mpage_da_submit_io(mpd);
2081                         /*
2082                          * skip rest of the page in the page_vec
2083                          */
2084                         mpd->io_done = 1;
2085                         redirty_page_for_writepage(wbc, page);
2086                         unlock_page(page);
2087                         return MPAGE_DA_EXTENT_TAIL;
2088                 }
2089
2090                 /*
2091                  * Start next extent of pages ...
2092                  */
2093                 mpd->first_page = page->index;
2094
2095                 /*
2096                  * ... and blocks
2097                  */
2098                 mpd->lbh.b_size = 0;
2099                 mpd->lbh.b_state = 0;
2100                 mpd->lbh.b_blocknr = 0;
2101         }
2102
2103         mpd->next_page = page->index + 1;
2104         logical = (sector_t) page->index <<
2105                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2106
2107         if (!page_has_buffers(page)) {
2108                 /*
2109                  * There is no attached buffer heads yet (mmap?)
2110                  * we treat the page asfull of dirty blocks
2111                  */
2112                 bh = &fake;
2113                 bh->b_size = PAGE_CACHE_SIZE;
2114                 bh->b_state = 0;
2115                 set_buffer_dirty(bh);
2116                 set_buffer_uptodate(bh);
2117                 mpage_add_bh_to_extent(mpd, logical, bh);
2118                 if (mpd->io_done)
2119                         return MPAGE_DA_EXTENT_TAIL;
2120         } else {
2121                 /*
2122                  * Page with regular buffer heads, just add all dirty ones
2123                  */
2124                 head = page_buffers(page);
2125                 bh = head;
2126                 do {
2127                         BUG_ON(buffer_locked(bh));
2128                         /*
2129                          * We need to try to allocate
2130                          * unmapped blocks in the same page.
2131                          * Otherwise we won't make progress
2132                          * with the page in ext4_da_writepage
2133                          */
2134                         if (buffer_dirty(bh) &&
2135                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2136                                 mpage_add_bh_to_extent(mpd, logical, bh);
2137                                 if (mpd->io_done)
2138                                         return MPAGE_DA_EXTENT_TAIL;
2139                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2140                                 /*
2141                                  * mapped dirty buffer. We need to update
2142                                  * the b_state because we look at
2143                                  * b_state in mpage_da_map_blocks. We don't
2144                                  * update b_size because if we find an
2145                                  * unmapped buffer_head later we need to
2146                                  * use the b_state flag of that buffer_head.
2147                                  */
2148                                 if (mpd->lbh.b_size == 0)
2149                                         mpd->lbh.b_state =
2150                                                 bh->b_state & BH_FLAGS;
2151                         }
2152                         logical++;
2153                 } while ((bh = bh->b_this_page) != head);
2154         }
2155
2156         return 0;
2157 }
2158
2159 /*
2160  * mpage_da_writepages - walk the list of dirty pages of the given
2161  * address space, allocates non-allocated blocks, maps newly-allocated
2162  * blocks to existing bhs and issue IO them
2163  *
2164  * @mapping: address space structure to write
2165  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2166  * @get_block: the filesystem's block mapper function.
2167  *
2168  * This is a library function, which implements the writepages()
2169  * address_space_operation.
2170  */
2171 static int mpage_da_writepages(struct address_space *mapping,
2172                                struct writeback_control *wbc,
2173                                struct mpage_da_data *mpd)
2174 {
2175         int ret;
2176
2177         if (!mpd->get_block)
2178                 return generic_writepages(mapping, wbc);
2179
2180         mpd->lbh.b_size = 0;
2181         mpd->lbh.b_state = 0;
2182         mpd->lbh.b_blocknr = 0;
2183         mpd->first_page = 0;
2184         mpd->next_page = 0;
2185         mpd->io_done = 0;
2186         mpd->pages_written = 0;
2187         mpd->retval = 0;
2188
2189         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2190         /*
2191          * Handle last extent of pages
2192          */
2193         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2194                 if (mpage_da_map_blocks(mpd) == 0)
2195                         mpage_da_submit_io(mpd);
2196
2197                 mpd->io_done = 1;
2198                 ret = MPAGE_DA_EXTENT_TAIL;
2199         }
2200         wbc->nr_to_write -= mpd->pages_written;
2201         return ret;
2202 }
2203
2204 /*
2205  * this is a special callback for ->write_begin() only
2206  * it's intention is to return mapped block or reserve space
2207  */
2208 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2209                                   struct buffer_head *bh_result, int create)
2210 {
2211         int ret = 0;
2212
2213         BUG_ON(create == 0);
2214         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2215
2216         /*
2217          * first, we need to know whether the block is allocated already
2218          * preallocated blocks are unmapped but should treated
2219          * the same as allocated blocks.
2220          */
2221         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2222         if ((ret == 0) && !buffer_delay(bh_result)) {
2223                 /* the block isn't (pre)allocated yet, let's reserve space */
2224                 /*
2225                  * XXX: __block_prepare_write() unmaps passed block,
2226                  * is it OK?
2227                  */
2228                 ret = ext4_da_reserve_space(inode, 1);
2229                 if (ret)
2230                         /* not enough space to reserve */
2231                         return ret;
2232
2233                 map_bh(bh_result, inode->i_sb, 0);
2234                 set_buffer_new(bh_result);
2235                 set_buffer_delay(bh_result);
2236         } else if (ret > 0) {
2237                 bh_result->b_size = (ret << inode->i_blkbits);
2238                 ret = 0;
2239         }
2240
2241         return ret;
2242 }
2243 #define         EXT4_DELALLOC_RSVED     1
2244 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2245                                    struct buffer_head *bh_result, int create)
2246 {
2247         int ret;
2248         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2249         loff_t disksize = EXT4_I(inode)->i_disksize;
2250         handle_t *handle = NULL;
2251
2252         handle = ext4_journal_current_handle();
2253         BUG_ON(!handle);
2254         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2255                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2256         if (ret > 0) {
2257
2258                 bh_result->b_size = (ret << inode->i_blkbits);
2259
2260                 if (ext4_should_order_data(inode)) {
2261                         int retval;
2262                         retval = ext4_jbd2_file_inode(handle, inode);
2263                         if (retval)
2264                                 /*
2265                                  * Failed to add inode for ordered
2266                                  * mode. Don't update file size
2267                                  */
2268                                 return retval;
2269                 }
2270
2271                 /*
2272                  * Update on-disk size along with block allocation
2273                  * we don't use 'extend_disksize' as size may change
2274                  * within already allocated block -bzzz
2275                  */
2276                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2277                 if (disksize > i_size_read(inode))
2278                         disksize = i_size_read(inode);
2279                 if (disksize > EXT4_I(inode)->i_disksize) {
2280                         ext4_update_i_disksize(inode, disksize);
2281                         ret = ext4_mark_inode_dirty(handle, inode);
2282                         return ret;
2283                 }
2284                 ret = 0;
2285         }
2286         return ret;
2287 }
2288
2289 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2290 {
2291         /*
2292          * unmapped buffer is possible for holes.
2293          * delay buffer is possible with delayed allocation
2294          */
2295         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2296 }
2297
2298 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2299                                    struct buffer_head *bh_result, int create)
2300 {
2301         int ret = 0;
2302         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2303
2304         /*
2305          * we don't want to do block allocation in writepage
2306          * so call get_block_wrap with create = 0
2307          */
2308         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2309                                    bh_result, 0, 0, 0);
2310         if (ret > 0) {
2311                 bh_result->b_size = (ret << inode->i_blkbits);
2312                 ret = 0;
2313         }
2314         return ret;
2315 }
2316
2317 /*
2318  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2319  * get called via journal_submit_inode_data_buffers (no journal handle)
2320  * get called via shrink_page_list via pdflush (no journal handle)
2321  * or grab_page_cache when doing write_begin (have journal handle)
2322  */
2323 static int ext4_da_writepage(struct page *page,
2324                                 struct writeback_control *wbc)
2325 {
2326         int ret = 0;
2327         loff_t size;
2328         unsigned int len;
2329         struct buffer_head *page_bufs;
2330         struct inode *inode = page->mapping->host;
2331
2332         trace_mark(ext4_da_writepage,
2333                    "dev %s ino %lu page_index %lu",
2334                    inode->i_sb->s_id, inode->i_ino, page->index);
2335         size = i_size_read(inode);
2336         if (page->index == size >> PAGE_CACHE_SHIFT)
2337                 len = size & ~PAGE_CACHE_MASK;
2338         else
2339                 len = PAGE_CACHE_SIZE;
2340
2341         if (page_has_buffers(page)) {
2342                 page_bufs = page_buffers(page);
2343                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2344                                         ext4_bh_unmapped_or_delay)) {
2345                         /*
2346                          * We don't want to do  block allocation
2347                          * So redirty the page and return
2348                          * We may reach here when we do a journal commit
2349                          * via journal_submit_inode_data_buffers.
2350                          * If we don't have mapping block we just ignore
2351                          * them. We can also reach here via shrink_page_list
2352                          */
2353                         redirty_page_for_writepage(wbc, page);
2354                         unlock_page(page);
2355                         return 0;
2356                 }
2357         } else {
2358                 /*
2359                  * The test for page_has_buffers() is subtle:
2360                  * We know the page is dirty but it lost buffers. That means
2361                  * that at some moment in time after write_begin()/write_end()
2362                  * has been called all buffers have been clean and thus they
2363                  * must have been written at least once. So they are all
2364                  * mapped and we can happily proceed with mapping them
2365                  * and writing the page.
2366                  *
2367                  * Try to initialize the buffer_heads and check whether
2368                  * all are mapped and non delay. We don't want to
2369                  * do block allocation here.
2370                  */
2371                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2372                                                 ext4_normal_get_block_write);
2373                 if (!ret) {
2374                         page_bufs = page_buffers(page);
2375                         /* check whether all are mapped and non delay */
2376                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2377                                                 ext4_bh_unmapped_or_delay)) {
2378                                 redirty_page_for_writepage(wbc, page);
2379                                 unlock_page(page);
2380                                 return 0;
2381                         }
2382                 } else {
2383                         /*
2384                          * We can't do block allocation here
2385                          * so just redity the page and unlock
2386                          * and return
2387                          */
2388                         redirty_page_for_writepage(wbc, page);
2389                         unlock_page(page);
2390                         return 0;
2391                 }
2392                 /* now mark the buffer_heads as dirty and uptodate */
2393                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2394         }
2395
2396         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2397                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2398         else
2399                 ret = block_write_full_page(page,
2400                                                 ext4_normal_get_block_write,
2401                                                 wbc);
2402
2403         return ret;
2404 }
2405
2406 /*
2407  * This is called via ext4_da_writepages() to
2408  * calulate the total number of credits to reserve to fit
2409  * a single extent allocation into a single transaction,
2410  * ext4_da_writpeages() will loop calling this before
2411  * the block allocation.
2412  */
2413
2414 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2415 {
2416         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2417
2418         /*
2419          * With non-extent format the journal credit needed to
2420          * insert nrblocks contiguous block is dependent on
2421          * number of contiguous block. So we will limit
2422          * number of contiguous block to a sane value
2423          */
2424         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2425             (max_blocks > EXT4_MAX_TRANS_DATA))
2426                 max_blocks = EXT4_MAX_TRANS_DATA;
2427
2428         return ext4_chunk_trans_blocks(inode, max_blocks);
2429 }
2430
2431 static int ext4_da_writepages(struct address_space *mapping,
2432                               struct writeback_control *wbc)
2433 {
2434         pgoff_t index;
2435         int range_whole = 0;
2436         handle_t *handle = NULL;
2437         struct mpage_da_data mpd;
2438         struct inode *inode = mapping->host;
2439         int no_nrwrite_index_update;
2440         int pages_written = 0;
2441         long pages_skipped;
2442         int needed_blocks, ret = 0, nr_to_writebump = 0;
2443         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2444
2445         trace_mark(ext4_da_writepages,
2446                    "dev %s ino %lu nr_t_write %ld "
2447                    "pages_skipped %ld range_start %llu "
2448                    "range_end %llu nonblocking %d "
2449                    "for_kupdate %d for_reclaim %d "
2450                    "for_writepages %d range_cyclic %d",
2451                    inode->i_sb->s_id, inode->i_ino,
2452                    wbc->nr_to_write, wbc->pages_skipped,
2453                    (unsigned long long) wbc->range_start,
2454                    (unsigned long long) wbc->range_end,
2455                    wbc->nonblocking, wbc->for_kupdate,
2456                    wbc->for_reclaim, wbc->for_writepages,
2457                    wbc->range_cyclic);
2458
2459         /*
2460          * No pages to write? This is mainly a kludge to avoid starting
2461          * a transaction for special inodes like journal inode on last iput()
2462          * because that could violate lock ordering on umount
2463          */
2464         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2465                 return 0;
2466
2467         /*
2468          * If the filesystem has aborted, it is read-only, so return
2469          * right away instead of dumping stack traces later on that
2470          * will obscure the real source of the problem.  We test
2471          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2472          * the latter could be true if the filesystem is mounted
2473          * read-only, and in that case, ext4_da_writepages should
2474          * *never* be called, so if that ever happens, we would want
2475          * the stack trace.
2476          */
2477         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2478                 return -EROFS;
2479
2480         /*
2481          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2482          * This make sure small files blocks are allocated in
2483          * single attempt. This ensure that small files
2484          * get less fragmented.
2485          */
2486         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2487                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2488                 wbc->nr_to_write = sbi->s_mb_stream_request;
2489         }
2490         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2491                 range_whole = 1;
2492
2493         if (wbc->range_cyclic)
2494                 index = mapping->writeback_index;
2495         else
2496                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2497
2498         mpd.wbc = wbc;
2499         mpd.inode = mapping->host;
2500
2501         /*
2502          * we don't want write_cache_pages to update
2503          * nr_to_write and writeback_index
2504          */
2505         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2506         wbc->no_nrwrite_index_update = 1;
2507         pages_skipped = wbc->pages_skipped;
2508
2509         while (!ret && wbc->nr_to_write > 0) {
2510
2511                 /*
2512                  * we  insert one extent at a time. So we need
2513                  * credit needed for single extent allocation.
2514                  * journalled mode is currently not supported
2515                  * by delalloc
2516                  */
2517                 BUG_ON(ext4_should_journal_data(inode));
2518                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2519
2520                 /* start a new transaction*/
2521                 handle = ext4_journal_start(inode, needed_blocks);
2522                 if (IS_ERR(handle)) {
2523                         ret = PTR_ERR(handle);
2524                         printk(KERN_CRIT "%s: jbd2_start: "
2525                                "%ld pages, ino %lu; err %d\n", __func__,
2526                                 wbc->nr_to_write, inode->i_ino, ret);
2527                         dump_stack();
2528                         goto out_writepages;
2529                 }
2530                 mpd.get_block = ext4_da_get_block_write;
2531                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2532
2533                 ext4_journal_stop(handle);
2534
2535                 if (mpd.retval == -ENOSPC) {
2536                         /* commit the transaction which would
2537                          * free blocks released in the transaction
2538                          * and try again
2539                          */
2540                         jbd2_journal_force_commit_nested(sbi->s_journal);
2541                         wbc->pages_skipped = pages_skipped;
2542                         ret = 0;
2543                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2544                         /*
2545                          * got one extent now try with
2546                          * rest of the pages
2547                          */
2548                         pages_written += mpd.pages_written;
2549                         wbc->pages_skipped = pages_skipped;
2550                         ret = 0;
2551                 } else if (wbc->nr_to_write)
2552                         /*
2553                          * There is no more writeout needed
2554                          * or we requested for a noblocking writeout
2555                          * and we found the device congested
2556                          */
2557                         break;
2558         }
2559         if (pages_skipped != wbc->pages_skipped)
2560                 printk(KERN_EMERG "This should not happen leaving %s "
2561                                 "with nr_to_write = %ld ret = %d\n",
2562                                 __func__, wbc->nr_to_write, ret);
2563
2564         /* Update index */
2565         index += pages_written;
2566         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2567                 /*
2568                  * set the writeback_index so that range_cyclic
2569                  * mode will write it back later
2570                  */
2571                 mapping->writeback_index = index;
2572
2573 out_writepages:
2574         if (!no_nrwrite_index_update)
2575                 wbc->no_nrwrite_index_update = 0;
2576         wbc->nr_to_write -= nr_to_writebump;
2577         trace_mark(ext4_da_writepage_result,
2578                    "dev %s ino %lu ret %d pages_written %d "
2579                    "pages_skipped %ld congestion %d "
2580                    "more_io %d no_nrwrite_index_update %d",
2581                    inode->i_sb->s_id, inode->i_ino, ret,
2582                    pages_written, wbc->pages_skipped,
2583                    wbc->encountered_congestion, wbc->more_io,
2584                    wbc->no_nrwrite_index_update);
2585         return ret;
2586 }
2587
2588 #define FALL_BACK_TO_NONDELALLOC 1
2589 static int ext4_nonda_switch(struct super_block *sb)
2590 {
2591         s64 free_blocks, dirty_blocks;
2592         struct ext4_sb_info *sbi = EXT4_SB(sb);
2593
2594         /*
2595          * switch to non delalloc mode if we are running low
2596          * on free block. The free block accounting via percpu
2597          * counters can get slightly wrong with percpu_counter_batch getting
2598          * accumulated on each CPU without updating global counters
2599          * Delalloc need an accurate free block accounting. So switch
2600          * to non delalloc when we are near to error range.
2601          */
2602         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2603         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2604         if (2 * free_blocks < 3 * dirty_blocks ||
2605                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2606                 /*
2607                  * free block count is less that 150% of dirty blocks
2608                  * or free blocks is less that watermark
2609                  */
2610                 return 1;
2611         }
2612         return 0;
2613 }
2614
2615 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2616                                 loff_t pos, unsigned len, unsigned flags,
2617                                 struct page **pagep, void **fsdata)
2618 {
2619         int ret, retries = 0;
2620         struct page *page;
2621         pgoff_t index;
2622         unsigned from, to;
2623         struct inode *inode = mapping->host;
2624         handle_t *handle;
2625
2626         index = pos >> PAGE_CACHE_SHIFT;
2627         from = pos & (PAGE_CACHE_SIZE - 1);
2628         to = from + len;
2629
2630         if (ext4_nonda_switch(inode->i_sb)) {
2631                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2632                 return ext4_write_begin(file, mapping, pos,
2633                                         len, flags, pagep, fsdata);
2634         }
2635         *fsdata = (void *)0;
2636
2637         trace_mark(ext4_da_write_begin,
2638                    "dev %s ino %lu pos %llu len %u flags %u",
2639                    inode->i_sb->s_id, inode->i_ino,
2640                    (unsigned long long) pos, len, flags);
2641 retry:
2642         /*
2643          * With delayed allocation, we don't log the i_disksize update
2644          * if there is delayed block allocation. But we still need
2645          * to journalling the i_disksize update if writes to the end
2646          * of file which has an already mapped buffer.
2647          */
2648         handle = ext4_journal_start(inode, 1);
2649         if (IS_ERR(handle)) {
2650                 ret = PTR_ERR(handle);
2651                 goto out;
2652         }
2653
2654         page = grab_cache_page_write_begin(mapping, index, flags);
2655         if (!page) {
2656                 ext4_journal_stop(handle);
2657                 ret = -ENOMEM;
2658                 goto out;
2659         }
2660         *pagep = page;
2661
2662         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2663                                                         ext4_da_get_block_prep);
2664         if (ret < 0) {
2665                 unlock_page(page);
2666                 ext4_journal_stop(handle);
2667                 page_cache_release(page);
2668                 /*
2669                  * block_write_begin may have instantiated a few blocks
2670                  * outside i_size.  Trim these off again. Don't need
2671                  * i_size_read because we hold i_mutex.
2672                  */
2673                 if (pos + len > inode->i_size)
2674                         vmtruncate(inode, inode->i_size);
2675         }
2676
2677         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2678                 goto retry;
2679 out:
2680         return ret;
2681 }
2682
2683 /*
2684  * Check if we should update i_disksize
2685  * when write to the end of file but not require block allocation
2686  */
2687 static int ext4_da_should_update_i_disksize(struct page *page,
2688                                          unsigned long offset)
2689 {
2690         struct buffer_head *bh;
2691         struct inode *inode = page->mapping->host;
2692         unsigned int idx;
2693         int i;
2694
2695         bh = page_buffers(page);
2696         idx = offset >> inode->i_blkbits;
2697
2698         for (i = 0; i < idx; i++)
2699                 bh = bh->b_this_page;
2700
2701         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2702                 return 0;
2703         return 1;
2704 }
2705
2706 static int ext4_da_write_end(struct file *file,
2707                                 struct address_space *mapping,
2708                                 loff_t pos, unsigned len, unsigned copied,
2709                                 struct page *page, void *fsdata)
2710 {
2711         struct inode *inode = mapping->host;
2712         int ret = 0, ret2;
2713         handle_t *handle = ext4_journal_current_handle();
2714         loff_t new_i_size;
2715         unsigned long start, end;
2716         int write_mode = (int)(unsigned long)fsdata;
2717
2718         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2719                 if (ext4_should_order_data(inode)) {
2720                         return ext4_ordered_write_end(file, mapping, pos,
2721                                         len, copied, page, fsdata);
2722                 } else if (ext4_should_writeback_data(inode)) {
2723                         return ext4_writeback_write_end(file, mapping, pos,
2724                                         len, copied, page, fsdata);
2725                 } else {
2726                         BUG();
2727                 }
2728         }
2729
2730         trace_mark(ext4_da_write_end,
2731                    "dev %s ino %lu pos %llu len %u copied %u",
2732                    inode->i_sb->s_id, inode->i_ino,
2733                    (unsigned long long) pos, len, copied);
2734         start = pos & (PAGE_CACHE_SIZE - 1);
2735         end = start + copied - 1;
2736
2737         /*
2738          * generic_write_end() will run mark_inode_dirty() if i_size
2739          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2740          * into that.
2741          */
2742
2743         new_i_size = pos + copied;
2744         if (new_i_size > EXT4_I(inode)->i_disksize) {
2745                 if (ext4_da_should_update_i_disksize(page, end)) {
2746                         down_write(&EXT4_I(inode)->i_data_sem);
2747                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2748                                 /*
2749                                  * Updating i_disksize when extending file
2750                                  * without needing block allocation
2751                                  */
2752                                 if (ext4_should_order_data(inode))
2753                                         ret = ext4_jbd2_file_inode(handle,
2754                                                                    inode);
2755
2756                                 EXT4_I(inode)->i_disksize = new_i_size;
2757                         }
2758                         up_write(&EXT4_I(inode)->i_data_sem);
2759                         /* We need to mark inode dirty even if
2760                          * new_i_size is less that inode->i_size
2761                          * bu greater than i_disksize.(hint delalloc)
2762                          */
2763                         ext4_mark_inode_dirty(handle, inode);
2764                 }
2765         }
2766         ret2 = generic_write_end(file, mapping, pos, len, copied,
2767                                                         page, fsdata);
2768         copied = ret2;
2769         if (ret2 < 0)
2770                 ret = ret2;
2771         ret2 = ext4_journal_stop(handle);
2772         if (!ret)
2773                 ret = ret2;
2774
2775         return ret ? ret : copied;
2776 }
2777
2778 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2779 {
2780         /*
2781          * Drop reserved blocks
2782          */
2783         BUG_ON(!PageLocked(page));
2784         if (!page_has_buffers(page))
2785                 goto out;
2786
2787         ext4_da_page_release_reservation(page, offset);
2788
2789 out:
2790         ext4_invalidatepage(page, offset);
2791
2792         return;
2793 }
2794
2795
2796 /*
2797  * bmap() is special.  It gets used by applications such as lilo and by
2798  * the swapper to find the on-disk block of a specific piece of data.
2799  *
2800  * Naturally, this is dangerous if the block concerned is still in the
2801  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2802  * filesystem and enables swap, then they may get a nasty shock when the
2803  * data getting swapped to that swapfile suddenly gets overwritten by
2804  * the original zero's written out previously to the journal and
2805  * awaiting writeback in the kernel's buffer cache.
2806  *
2807  * So, if we see any bmap calls here on a modified, data-journaled file,
2808  * take extra steps to flush any blocks which might be in the cache.
2809  */
2810 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2811 {
2812         struct inode *inode = mapping->host;
2813         journal_t *journal;
2814         int err;
2815
2816         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2817                         test_opt(inode->i_sb, DELALLOC)) {
2818                 /*
2819                  * With delalloc we want to sync the file
2820                  * so that we can make sure we allocate
2821                  * blocks for file
2822                  */
2823                 filemap_write_and_wait(mapping);
2824         }
2825
2826         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2827                 /*
2828                  * This is a REALLY heavyweight approach, but the use of
2829                  * bmap on dirty files is expected to be extremely rare:
2830                  * only if we run lilo or swapon on a freshly made file
2831                  * do we expect this to happen.
2832                  *
2833                  * (bmap requires CAP_SYS_RAWIO so this does not
2834                  * represent an unprivileged user DOS attack --- we'd be
2835                  * in trouble if mortal users could trigger this path at
2836                  * will.)
2837                  *
2838                  * NB. EXT4_STATE_JDATA is not set on files other than
2839                  * regular files.  If somebody wants to bmap a directory
2840                  * or symlink and gets confused because the buffer
2841                  * hasn't yet been flushed to disk, they deserve
2842                  * everything they get.
2843                  */
2844
2845                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2846                 journal = EXT4_JOURNAL(inode);
2847                 jbd2_journal_lock_updates(journal);
2848                 err = jbd2_journal_flush(journal);
2849                 jbd2_journal_unlock_updates(journal);
2850
2851                 if (err)
2852                         return 0;
2853         }
2854
2855         return generic_block_bmap(mapping, block, ext4_get_block);
2856 }
2857
2858 static int bget_one(handle_t *handle, struct buffer_head *bh)
2859 {
2860         get_bh(bh);
2861         return 0;
2862 }
2863
2864 static int bput_one(handle_t *handle, struct buffer_head *bh)
2865 {
2866         put_bh(bh);
2867         return 0;
2868 }
2869
2870 /*
2871  * Note that we don't need to start a transaction unless we're journaling data
2872  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2873  * need to file the inode to the transaction's list in ordered mode because if
2874  * we are writing back data added by write(), the inode is already there and if
2875  * we are writing back data modified via mmap(), noone guarantees in which
2876  * transaction the data will hit the disk. In case we are journaling data, we
2877  * cannot start transaction directly because transaction start ranks above page
2878  * lock so we have to do some magic.
2879  *
2880  * In all journaling modes block_write_full_page() will start the I/O.
2881  *
2882  * Problem:
2883  *
2884  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2885  *              ext4_writepage()
2886  *
2887  * Similar for:
2888  *
2889  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2890  *
2891  * Same applies to ext4_get_block().  We will deadlock on various things like
2892  * lock_journal and i_data_sem
2893  *
2894  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2895  * allocations fail.
2896  *
2897  * 16May01: If we're reentered then journal_current_handle() will be
2898  *          non-zero. We simply *return*.
2899  *
2900  * 1 July 2001: @@@ FIXME:
2901  *   In journalled data mode, a data buffer may be metadata against the
2902  *   current transaction.  But the same file is part of a shared mapping
2903  *   and someone does a writepage() on it.
2904  *
2905  *   We will move the buffer onto the async_data list, but *after* it has
2906  *   been dirtied. So there's a small window where we have dirty data on
2907  *   BJ_Metadata.
2908  *
2909  *   Note that this only applies to the last partial page in the file.  The
2910  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2911  *   broken code anyway: it's wrong for msync()).
2912  *
2913  *   It's a rare case: affects the final partial page, for journalled data
2914  *   where the file is subject to bith write() and writepage() in the same
2915  *   transction.  To fix it we'll need a custom block_write_full_page().
2916  *   We'll probably need that anyway for journalling writepage() output.
2917  *
2918  * We don't honour synchronous mounts for writepage().  That would be
2919  * disastrous.  Any write() or metadata operation will sync the fs for
2920  * us.
2921  *
2922  */
2923 static int __ext4_normal_writepage(struct page *page,
2924                                 struct writeback_control *wbc)
2925 {
2926         struct inode *inode = page->mapping->host;
2927
2928         if (test_opt(inode->i_sb, NOBH))
2929                 return nobh_writepage(page,
2930                                         ext4_normal_get_block_write, wbc);
2931         else
2932                 return block_write_full_page(page,
2933                                                 ext4_normal_get_block_write,
2934                                                 wbc);
2935 }
2936
2937 static int ext4_normal_writepage(struct page *page,
2938                                 struct writeback_control *wbc)
2939 {
2940         struct inode *inode = page->mapping->host;
2941         loff_t size = i_size_read(inode);
2942         loff_t len;
2943
2944         trace_mark(ext4_normal_writepage,
2945                    "dev %s ino %lu page_index %lu",
2946                    inode->i_sb->s_id, inode->i_ino, page->index);
2947         J_ASSERT(PageLocked(page));
2948         if (page->index == size >> PAGE_CACHE_SHIFT)
2949                 len = size & ~PAGE_CACHE_MASK;
2950         else
2951                 len = PAGE_CACHE_SIZE;
2952
2953         if (page_has_buffers(page)) {
2954                 /* if page has buffers it should all be mapped
2955                  * and allocated. If there are not buffers attached
2956                  * to the page we know the page is dirty but it lost
2957                  * buffers. That means that at some moment in time
2958                  * after write_begin() / write_end() has been called
2959                  * all buffers have been clean and thus they must have been
2960                  * written at least once. So they are all mapped and we can
2961                  * happily proceed with mapping them and writing the page.
2962                  */
2963                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2964                                         ext4_bh_unmapped_or_delay));
2965         }
2966
2967         if (!ext4_journal_current_handle())
2968                 return __ext4_normal_writepage(page, wbc);
2969
2970         redirty_page_for_writepage(wbc, page);
2971         unlock_page(page);
2972         return 0;
2973 }
2974
2975 static int __ext4_journalled_writepage(struct page *page,
2976                                 struct writeback_control *wbc)
2977 {
2978         struct address_space *mapping = page->mapping;
2979         struct inode *inode = mapping->host;
2980         struct buffer_head *page_bufs;
2981         handle_t *handle = NULL;
2982         int ret = 0;
2983         int err;
2984
2985         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2986                                         ext4_normal_get_block_write);
2987         if (ret != 0)
2988                 goto out_unlock;
2989
2990         page_bufs = page_buffers(page);
2991         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2992                                                                 bget_one);
2993         /* As soon as we unlock the page, it can go away, but we have
2994          * references to buffers so we are safe */
2995         unlock_page(page);
2996
2997         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2998         if (IS_ERR(handle)) {
2999                 ret = PTR_ERR(handle);
3000                 goto out;
3001         }
3002
3003         ret = walk_page_buffers(handle, page_bufs, 0,
3004                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3005
3006         err = walk_page_buffers(handle, page_bufs, 0,
3007                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3008         if (ret == 0)
3009                 ret = err;
3010         err = ext4_journal_stop(handle);
3011         if (!ret)
3012                 ret = err;
3013
3014         walk_page_buffers(handle, page_bufs, 0,
3015                                 PAGE_CACHE_SIZE, NULL, bput_one);
3016         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3017         goto out;
3018
3019 out_unlock:
3020         unlock_page(page);
3021 out:
3022         return ret;
3023 }
3024
3025 static int ext4_journalled_writepage(struct page *page,
3026                                 struct writeback_control *wbc)
3027 {
3028         struct inode *inode = page->mapping->host;
3029         loff_t size = i_size_read(inode);
3030         loff_t len;
3031
3032         trace_mark(ext4_journalled_writepage,
3033                    "dev %s ino %lu page_index %lu",
3034                    inode->i_sb->s_id, inode->i_ino, page->index);
3035         J_ASSERT(PageLocked(page));
3036         if (page->index == size >> PAGE_CACHE_SHIFT)
3037                 len = size & ~PAGE_CACHE_MASK;
3038         else
3039                 len = PAGE_CACHE_SIZE;
3040
3041         if (page_has_buffers(page)) {
3042                 /* if page has buffers it should all be mapped
3043                  * and allocated. If there are not buffers attached
3044                  * to the page we know the page is dirty but it lost
3045                  * buffers. That means that at some moment in time
3046                  * after write_begin() / write_end() has been called
3047                  * all buffers have been clean and thus they must have been
3048                  * written at least once. So they are all mapped and we can
3049                  * happily proceed with mapping them and writing the page.
3050                  */
3051                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3052                                         ext4_bh_unmapped_or_delay));
3053         }
3054
3055         if (ext4_journal_current_handle())
3056                 goto no_write;
3057
3058         if (PageChecked(page)) {
3059                 /*
3060                  * It's mmapped pagecache.  Add buffers and journal it.  There
3061                  * doesn't seem much point in redirtying the page here.
3062                  */
3063                 ClearPageChecked(page);
3064                 return __ext4_journalled_writepage(page, wbc);
3065         } else {
3066                 /*
3067                  * It may be a page full of checkpoint-mode buffers.  We don't
3068                  * really know unless we go poke around in the buffer_heads.
3069                  * But block_write_full_page will do the right thing.
3070                  */
3071                 return block_write_full_page(page,
3072                                                 ext4_normal_get_block_write,
3073                                                 wbc);
3074         }
3075 no_write:
3076         redirty_page_for_writepage(wbc, page);
3077         unlock_page(page);
3078         return 0;
3079 }
3080
3081 static int ext4_readpage(struct file *file, struct page *page)
3082 {
3083         return mpage_readpage(page, ext4_get_block);
3084 }
3085
3086 static int
3087 ext4_readpages(struct file *file, struct address_space *mapping,
3088                 struct list_head *pages, unsigned nr_pages)
3089 {
3090         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3091 }
3092
3093 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3094 {
3095         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3096
3097         /*
3098          * If it's a full truncate we just forget about the pending dirtying
3099          */
3100         if (offset == 0)
3101                 ClearPageChecked(page);
3102
3103         if (journal)
3104                 jbd2_journal_invalidatepage(journal, page, offset);
3105         else
3106                 block_invalidatepage(page, offset);
3107 }
3108
3109 static int ext4_releasepage(struct page *page, gfp_t wait)
3110 {
3111         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3112
3113         WARN_ON(PageChecked(page));
3114         if (!page_has_buffers(page))
3115                 return 0;
3116         if (journal)
3117                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3118         else
3119                 return try_to_free_buffers(page);
3120 }
3121
3122 /*
3123  * If the O_DIRECT write will extend the file then add this inode to the
3124  * orphan list.  So recovery will truncate it back to the original size
3125  * if the machine crashes during the write.
3126  *
3127  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3128  * crashes then stale disk data _may_ be exposed inside the file. But current
3129  * VFS code falls back into buffered path in that case so we are safe.
3130  */
3131 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3132                         const struct iovec *iov, loff_t offset,
3133                         unsigned long nr_segs)
3134 {
3135         struct file *file = iocb->ki_filp;
3136         struct inode *inode = file->f_mapping->host;
3137         struct ext4_inode_info *ei = EXT4_I(inode);
3138         handle_t *handle;
3139         ssize_t ret;
3140         int orphan = 0;
3141         size_t count = iov_length(iov, nr_segs);
3142
3143         if (rw == WRITE) {
3144                 loff_t final_size = offset + count;
3145
3146                 if (final_size > inode->i_size) {
3147                         /* Credits for sb + inode write */
3148                         handle = ext4_journal_start(inode, 2);
3149                         if (IS_ERR(handle)) {
3150                                 ret = PTR_ERR(handle);
3151                                 goto out;
3152                         }
3153                         ret = ext4_orphan_add(handle, inode);
3154                         if (ret) {
3155                                 ext4_journal_stop(handle);
3156                                 goto out;
3157                         }
3158                         orphan = 1;
3159                         ei->i_disksize = inode->i_size;
3160                         ext4_journal_stop(handle);
3161                 }
3162         }
3163
3164         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3165                                  offset, nr_segs,
3166                                  ext4_get_block, NULL);
3167
3168         if (orphan) {
3169                 int err;
3170
3171                 /* Credits for sb + inode write */
3172                 handle = ext4_journal_start(inode, 2);
3173                 if (IS_ERR(handle)) {
3174                         /* This is really bad luck. We've written the data
3175                          * but cannot extend i_size. Bail out and pretend
3176                          * the write failed... */
3177                         ret = PTR_ERR(handle);
3178                         goto out;
3179                 }
3180                 if (inode->i_nlink)
3181                         ext4_orphan_del(handle, inode);
3182                 if (ret > 0) {
3183                         loff_t end = offset + ret;
3184                         if (end > inode->i_size) {
3185                                 ei->i_disksize = end;
3186                                 i_size_write(inode, end);
3187                                 /*
3188                                  * We're going to return a positive `ret'
3189                                  * here due to non-zero-length I/O, so there's
3190                                  * no way of reporting error returns from
3191                                  * ext4_mark_inode_dirty() to userspace.  So
3192                                  * ignore it.
3193                                  */
3194                                 ext4_mark_inode_dirty(handle, inode);
3195                         }
3196                 }
3197                 err = ext4_journal_stop(handle);
3198                 if (ret == 0)
3199                         ret = err;
3200         }
3201 out:
3202         return ret;
3203 }
3204
3205 /*
3206  * Pages can be marked dirty completely asynchronously from ext4's journalling
3207  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3208  * much here because ->set_page_dirty is called under VFS locks.  The page is
3209  * not necessarily locked.
3210  *
3211  * We cannot just dirty the page and leave attached buffers clean, because the
3212  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3213  * or jbddirty because all the journalling code will explode.
3214  *
3215  * So what we do is to mark the page "pending dirty" and next time writepage
3216  * is called, propagate that into the buffers appropriately.
3217  */
3218 static int ext4_journalled_set_page_dirty(struct page *page)
3219 {
3220         SetPageChecked(page);
3221         return __set_page_dirty_nobuffers(page);
3222 }
3223
3224 static const struct address_space_operations ext4_ordered_aops = {
3225         .readpage               = ext4_readpage,
3226         .readpages              = ext4_readpages,
3227         .writepage              = ext4_normal_writepage,
3228         .sync_page              = block_sync_page,
3229         .write_begin            = ext4_write_begin,
3230         .write_end              = ext4_ordered_write_end,
3231         .bmap                   = ext4_bmap,
3232         .invalidatepage         = ext4_invalidatepage,
3233         .releasepage            = ext4_releasepage,
3234         .direct_IO              = ext4_direct_IO,
3235         .migratepage            = buffer_migrate_page,
3236         .is_partially_uptodate  = block_is_partially_uptodate,
3237 };
3238
3239 static const struct address_space_operations ext4_writeback_aops = {
3240         .readpage               = ext4_readpage,
3241         .readpages              = ext4_readpages,
3242         .writepage              = ext4_normal_writepage,
3243         .sync_page              = block_sync_page,
3244         .write_begin            = ext4_write_begin,
3245         .write_end              = ext4_writeback_write_end,
3246         .bmap                   = ext4_bmap,
3247         .invalidatepage         = ext4_invalidatepage,
3248         .releasepage            = ext4_releasepage,
3249         .direct_IO              = ext4_direct_IO,
3250         .migratepage            = buffer_migrate_page,
3251         .is_partially_uptodate  = block_is_partially_uptodate,
3252 };
3253
3254 static const struct address_space_operations ext4_journalled_aops = {
3255         .readpage               = ext4_readpage,
3256         .readpages              = ext4_readpages,
3257         .writepage              = ext4_journalled_writepage,
3258         .sync_page              = block_sync_page,
3259         .write_begin            = ext4_write_begin,
3260         .write_end              = ext4_journalled_write_end,
3261         .set_page_dirty         = ext4_journalled_set_page_dirty,
3262         .bmap                   = ext4_bmap,
3263         .invalidatepage         = ext4_invalidatepage,
3264         .releasepage            = ext4_releasepage,
3265         .is_partially_uptodate  = block_is_partially_uptodate,
3266 };
3267
3268 static const struct address_space_operations ext4_da_aops = {
3269         .readpage               = ext4_readpage,
3270         .readpages              = ext4_readpages,
3271         .writepage              = ext4_da_writepage,
3272         .writepages             = ext4_da_writepages,
3273         .sync_page              = block_sync_page,
3274         .write_begin            = ext4_da_write_begin,
3275         .write_end              = ext4_da_write_end,
3276         .bmap                   = ext4_bmap,
3277         .invalidatepage         = ext4_da_invalidatepage,
3278         .releasepage            = ext4_releasepage,
3279         .direct_IO              = ext4_direct_IO,
3280         .migratepage            = buffer_migrate_page,
3281         .is_partially_uptodate  = block_is_partially_uptodate,
3282 };
3283
3284 void ext4_set_aops(struct inode *inode)
3285 {
3286         if (ext4_should_order_data(inode) &&
3287                 test_opt(inode->i_sb, DELALLOC))
3288                 inode->i_mapping->a_ops = &ext4_da_aops;
3289         else if (ext4_should_order_data(inode))
3290                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3291         else if (ext4_should_writeback_data(inode) &&
3292                  test_opt(inode->i_sb, DELALLOC))
3293                 inode->i_mapping->a_ops = &ext4_da_aops;
3294         else if (ext4_should_writeback_data(inode))
3295                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3296         else
3297                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3298 }
3299
3300 /*
3301  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3302  * up to the end of the block which corresponds to `from'.
3303  * This required during truncate. We need to physically zero the tail end
3304  * of that block so it doesn't yield old data if the file is later grown.
3305  */
3306 int ext4_block_truncate_page(handle_t *handle,
3307                 struct address_space *mapping, loff_t from)
3308 {
3309         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3310         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3311         unsigned blocksize, length, pos;
3312         ext4_lblk_t iblock;
3313         struct inode *inode = mapping->host;
3314         struct buffer_head *bh;
3315         struct page *page;
3316         int err = 0;
3317
3318         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3319         if (!page)
3320                 return -EINVAL;
3321
3322         blocksize = inode->i_sb->s_blocksize;
3323         length = blocksize - (offset & (blocksize - 1));
3324         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3325
3326         /*
3327          * For "nobh" option,  we can only work if we don't need to
3328          * read-in the page - otherwise we create buffers to do the IO.
3329          */
3330         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3331              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3332                 zero_user(page, offset, length);
3333                 set_page_dirty(page);
3334                 goto unlock;
3335         }
3336
3337         if (!page_has_buffers(page))
3338                 create_empty_buffers(page, blocksize, 0);
3339
3340         /* Find the buffer that contains "offset" */
3341         bh = page_buffers(page);
3342         pos = blocksize;
3343         while (offset >= pos) {
3344                 bh = bh->b_this_page;
3345                 iblock++;
3346                 pos += blocksize;
3347         }
3348
3349         err = 0;
3350         if (buffer_freed(bh)) {
3351                 BUFFER_TRACE(bh, "freed: skip");
3352                 goto unlock;
3353         }
3354
3355         if (!buffer_mapped(bh)) {
3356                 BUFFER_TRACE(bh, "unmapped");
3357                 ext4_get_block(inode, iblock, bh, 0);
3358                 /* unmapped? It's a hole - nothing to do */
3359                 if (!buffer_mapped(bh)) {
3360                         BUFFER_TRACE(bh, "still unmapped");
3361                         goto unlock;
3362                 }
3363         }
3364
3365         /* Ok, it's mapped. Make sure it's up-to-date */
3366         if (PageUptodate(page))
3367                 set_buffer_uptodate(bh);
3368
3369         if (!buffer_uptodate(bh)) {
3370                 err = -EIO;
3371                 ll_rw_block(READ, 1, &bh);
3372                 wait_on_buffer(bh);
3373                 /* Uhhuh. Read error. Complain and punt. */
3374                 if (!buffer_uptodate(bh))
3375                         goto unlock;
3376         }
3377
3378         if (ext4_should_journal_data(inode)) {
3379                 BUFFER_TRACE(bh, "get write access");
3380                 err = ext4_journal_get_write_access(handle, bh);
3381                 if (err)
3382                         goto unlock;
3383         }
3384
3385         zero_user(page, offset, length);
3386
3387         BUFFER_TRACE(bh, "zeroed end of block");
3388
3389         err = 0;
3390         if (ext4_should_journal_data(inode)) {
3391                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3392         } else {
3393                 if (ext4_should_order_data(inode))
3394                         err = ext4_jbd2_file_inode(handle, inode);
3395                 mark_buffer_dirty(bh);
3396         }
3397
3398 unlock:
3399         unlock_page(page);
3400         page_cache_release(page);
3401         return err;
3402 }
3403
3404 /*
3405  * Probably it should be a library function... search for first non-zero word
3406  * or memcmp with zero_page, whatever is better for particular architecture.
3407  * Linus?
3408  */
3409 static inline int all_zeroes(__le32 *p, __le32 *q)
3410 {
3411         while (p < q)
3412                 if (*p++)
3413                         return 0;
3414         return 1;
3415 }
3416
3417 /**
3418  *      ext4_find_shared - find the indirect blocks for partial truncation.
3419  *      @inode:   inode in question
3420  *      @depth:   depth of the affected branch
3421  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3422  *      @chain:   place to store the pointers to partial indirect blocks
3423  *      @top:     place to the (detached) top of branch
3424  *
3425  *      This is a helper function used by ext4_truncate().
3426  *
3427  *      When we do truncate() we may have to clean the ends of several
3428  *      indirect blocks but leave the blocks themselves alive. Block is
3429  *      partially truncated if some data below the new i_size is refered
3430  *      from it (and it is on the path to the first completely truncated
3431  *      data block, indeed).  We have to free the top of that path along
3432  *      with everything to the right of the path. Since no allocation
3433  *      past the truncation point is possible until ext4_truncate()
3434  *      finishes, we may safely do the latter, but top of branch may
3435  *      require special attention - pageout below the truncation point
3436  *      might try to populate it.
3437  *
3438  *      We atomically detach the top of branch from the tree, store the
3439  *      block number of its root in *@top, pointers to buffer_heads of
3440  *      partially truncated blocks - in @chain[].bh and pointers to
3441  *      their last elements that should not be removed - in
3442  *      @chain[].p. Return value is the pointer to last filled element
3443  *      of @chain.
3444  *
3445  *      The work left to caller to do the actual freeing of subtrees:
3446  *              a) free the subtree starting from *@top
3447  *              b) free the subtrees whose roots are stored in
3448  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3449  *              c) free the subtrees growing from the inode past the @chain[0].
3450  *                      (no partially truncated stuff there).  */
3451
3452 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3453                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3454 {
3455         Indirect *partial, *p;
3456         int k, err;
3457
3458         *top = 0;
3459         /* Make k index the deepest non-null offest + 1 */
3460         for (k = depth; k > 1 && !offsets[k-1]; k--)
3461                 ;
3462         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3463         /* Writer: pointers */
3464         if (!partial)
3465                 partial = chain + k-1;
3466         /*
3467          * If the branch acquired continuation since we've looked at it -
3468          * fine, it should all survive and (new) top doesn't belong to us.
3469          */
3470         if (!partial->key && *partial->p)
3471                 /* Writer: end */
3472                 goto no_top;
3473         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3474                 ;
3475         /*
3476          * OK, we've found the last block that must survive. The rest of our
3477          * branch should be detached before unlocking. However, if that rest
3478          * of branch is all ours and does not grow immediately from the inode
3479          * it's easier to cheat and just decrement partial->p.
3480          */
3481         if (p == chain + k - 1 && p > chain) {
3482                 p->p--;
3483         } else {
3484                 *top = *p->p;
3485                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3486 #if 0
3487                 *p->p = 0;
3488 #endif
3489         }
3490         /* Writer: end */
3491
3492         while (partial > p) {
3493                 brelse(partial->bh);
3494                 partial--;
3495         }
3496 no_top:
3497         return partial;
3498 }
3499
3500 /*
3501  * Zero a number of block pointers in either an inode or an indirect block.
3502  * If we restart the transaction we must again get write access to the
3503  * indirect block for further modification.
3504  *
3505  * We release `count' blocks on disk, but (last - first) may be greater
3506  * than `count' because there can be holes in there.
3507  */
3508 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3509                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3510                 unsigned long count, __le32 *first, __le32 *last)
3511 {
3512         __le32 *p;
3513         if (try_to_extend_transaction(handle, inode)) {
3514                 if (bh) {
3515                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3516                         ext4_handle_dirty_metadata(handle, inode, bh);
3517                 }
3518                 ext4_mark_inode_dirty(handle, inode);
3519                 ext4_journal_test_restart(handle, inode);
3520                 if (bh) {
3521                         BUFFER_TRACE(bh, "retaking write access");
3522                         ext4_journal_get_write_access(handle, bh);
3523                 }
3524         }
3525
3526         /*
3527          * Any buffers which are on the journal will be in memory. We find
3528          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3529          * on them.  We've already detached each block from the file, so
3530          * bforget() in jbd2_journal_forget() should be safe.
3531          *
3532          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3533          */
3534         for (p = first; p < last; p++) {
3535                 u32 nr = le32_to_cpu(*p);
3536                 if (nr) {
3537                         struct buffer_head *tbh;
3538
3539                         *p = 0;
3540                         tbh = sb_find_get_block(inode->i_sb, nr);
3541                         ext4_forget(handle, 0, inode, tbh, nr);
3542                 }
3543         }
3544
3545         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3546 }
3547
3548 /**
3549  * ext4_free_data - free a list of data blocks
3550  * @handle:     handle for this transaction
3551  * @inode:      inode we are dealing with
3552  * @this_bh:    indirect buffer_head which contains *@first and *@last
3553  * @first:      array of block numbers
3554  * @last:       points immediately past the end of array
3555  *
3556  * We are freeing all blocks refered from that array (numbers are stored as
3557  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3558  *
3559  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3560  * blocks are contiguous then releasing them at one time will only affect one
3561  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3562  * actually use a lot of journal space.
3563  *
3564  * @this_bh will be %NULL if @first and @last point into the inode's direct
3565  * block pointers.
3566  */
3567 static void ext4_free_data(handle_t *handle, struct inode *inode,
3568                            struct buffer_head *this_bh,
3569                            __le32 *first, __le32 *last)
3570 {
3571         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3572         unsigned long count = 0;            /* Number of blocks in the run */
3573         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3574                                                corresponding to
3575                                                block_to_free */
3576         ext4_fsblk_t nr;                    /* Current block # */
3577         __le32 *p;                          /* Pointer into inode/ind
3578                                                for current block */
3579         int err;
3580
3581         if (this_bh) {                          /* For indirect block */
3582                 BUFFER_TRACE(this_bh, "get_write_access");
3583                 err = ext4_journal_get_write_access(handle, this_bh);
3584                 /* Important: if we can't update the indirect pointers
3585                  * to the blocks, we can't free them. */
3586                 if (err)
3587                         return;
3588         }
3589
3590         for (p = first; p < last; p++) {
3591                 nr = le32_to_cpu(*p);
3592                 if (nr) {
3593                         /* accumulate blocks to free if they're contiguous */
3594                         if (count == 0) {
3595                                 block_to_free = nr;
3596                                 block_to_free_p = p;
3597                                 count = 1;
3598                         } else if (nr == block_to_free + count) {
3599                                 count++;
3600                         } else {
3601                                 ext4_clear_blocks(handle, inode, this_bh,
3602                                                   block_to_free,
3603                                                   count, block_to_free_p, p);
3604                                 block_to_free = nr;
3605                                 block_to_free_p = p;
3606                                 count = 1;
3607                         }
3608                 }
3609         }
3610
3611         if (count > 0)
3612                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3613                                   count, block_to_free_p, p);
3614
3615         if (this_bh) {
3616                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3617
3618                 /*
3619                  * The buffer head should have an attached journal head at this
3620                  * point. However, if the data is corrupted and an indirect
3621                  * block pointed to itself, it would have been detached when
3622                  * the block was cleared. Check for this instead of OOPSing.
3623                  */
3624                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3625                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3626                 else
3627                         ext4_error(inode->i_sb, __func__,
3628                                    "circular indirect block detected, "
3629                                    "inode=%lu, block=%llu",
3630                                    inode->i_ino,
3631                                    (unsigned long long) this_bh->b_blocknr);
3632         }
3633 }
3634
3635 /**
3636  *      ext4_free_branches - free an array of branches
3637  *      @handle: JBD handle for this transaction
3638  *      @inode: inode we are dealing with
3639  *      @parent_bh: the buffer_head which contains *@first and *@last
3640  *      @first: array of block numbers
3641  *      @last:  pointer immediately past the end of array
3642  *      @depth: depth of the branches to free
3643  *
3644  *      We are freeing all blocks refered from these branches (numbers are
3645  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3646  *      appropriately.
3647  */
3648 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3649                                struct buffer_head *parent_bh,
3650                                __le32 *first, __le32 *last, int depth)
3651 {
3652         ext4_fsblk_t nr;
3653         __le32 *p;
3654
3655         if (ext4_handle_is_aborted(handle))
3656                 return;
3657
3658         if (depth--) {
3659                 struct buffer_head *bh;
3660                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3661                 p = last;
3662                 while (--p >= first) {
3663                         nr = le32_to_cpu(*p);
3664                         if (!nr)
3665                                 continue;               /* A hole */
3666
3667                         /* Go read the buffer for the next level down */
3668                         bh = sb_bread(inode->i_sb, nr);
3669
3670                         /*
3671                          * A read failure? Report error and clear slot
3672                          * (should be rare).
3673                          */
3674                         if (!bh) {
3675                                 ext4_error(inode->i_sb, "ext4_free_branches",
3676                                            "Read failure, inode=%lu, block=%llu",
3677                                            inode->i_ino, nr);
3678                                 continue;
3679                         }
3680
3681                         /* This zaps the entire block.  Bottom up. */
3682                         BUFFER_TRACE(bh, "free child branches");
3683                         ext4_free_branches(handle, inode, bh,
3684                                         (__le32 *) bh->b_data,
3685                                         (__le32 *) bh->b_data + addr_per_block,
3686                                         depth);
3687
3688                         /*
3689                          * We've probably journalled the indirect block several
3690                          * times during the truncate.  But it's no longer
3691                          * needed and we now drop it from the transaction via
3692                          * jbd2_journal_revoke().
3693                          *
3694                          * That's easy if it's exclusively part of this
3695                          * transaction.  But if it's part of the committing
3696                          * transaction then jbd2_journal_forget() will simply
3697                          * brelse() it.  That means that if the underlying
3698                          * block is reallocated in ext4_get_block(),
3699                          * unmap_underlying_metadata() will find this block
3700                          * and will try to get rid of it.  damn, damn.
3701                          *
3702                          * If this block has already been committed to the
3703                          * journal, a revoke record will be written.  And
3704                          * revoke records must be emitted *before* clearing
3705                          * this block's bit in the bitmaps.
3706                          */
3707                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3708
3709                         /*
3710                          * Everything below this this pointer has been
3711                          * released.  Now let this top-of-subtree go.
3712                          *
3713                          * We want the freeing of this indirect block to be
3714                          * atomic in the journal with the updating of the
3715                          * bitmap block which owns it.  So make some room in
3716                          * the journal.
3717                          *
3718                          * We zero the parent pointer *after* freeing its
3719                          * pointee in the bitmaps, so if extend_transaction()
3720                          * for some reason fails to put the bitmap changes and
3721                          * the release into the same transaction, recovery
3722                          * will merely complain about releasing a free block,
3723                          * rather than leaking blocks.
3724                          */
3725                         if (ext4_handle_is_aborted(handle))
3726                                 return;
3727                         if (try_to_extend_transaction(handle, inode)) {
3728                                 ext4_mark_inode_dirty(handle, inode);
3729                                 ext4_journal_test_restart(handle, inode);
3730                         }
3731
3732                         ext4_free_blocks(handle, inode, nr, 1, 1);
3733
3734                         if (parent_bh) {
3735                                 /*
3736                                  * The block which we have just freed is
3737                                  * pointed to by an indirect block: journal it
3738                                  */
3739                                 BUFFER_TRACE(parent_bh, "get_write_access");
3740                                 if (!ext4_journal_get_write_access(handle,
3741                                                                    parent_bh)){
3742                                         *p = 0;
3743                                         BUFFER_TRACE(parent_bh,
3744                                         "call ext4_handle_dirty_metadata");
3745                                         ext4_handle_dirty_metadata(handle,
3746                                                                    inode,
3747                                                                    parent_bh);
3748                                 }
3749                         }
3750                 }
3751         } else {
3752                 /* We have reached the bottom of the tree. */
3753                 BUFFER_TRACE(parent_bh, "free data blocks");
3754                 ext4_free_data(handle, inode, parent_bh, first, last);
3755         }
3756 }
3757
3758 int ext4_can_truncate(struct inode *inode)
3759 {
3760         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3761                 return 0;
3762         if (S_ISREG(inode->i_mode))
3763                 return 1;
3764         if (S_ISDIR(inode->i_mode))
3765                 return 1;
3766         if (S_ISLNK(inode->i_mode))
3767                 return !ext4_inode_is_fast_symlink(inode);
3768         return 0;
3769 }
3770
3771 /*
3772  * ext4_truncate()
3773  *
3774  * We block out ext4_get_block() block instantiations across the entire
3775  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3776  * simultaneously on behalf of the same inode.
3777  *
3778  * As we work through the truncate and commmit bits of it to the journal there
3779  * is one core, guiding principle: the file's tree must always be consistent on
3780  * disk.  We must be able to restart the truncate after a crash.
3781  *
3782  * The file's tree may be transiently inconsistent in memory (although it
3783  * probably isn't), but whenever we close off and commit a journal transaction,
3784  * the contents of (the filesystem + the journal) must be consistent and
3785  * restartable.  It's pretty simple, really: bottom up, right to left (although
3786  * left-to-right works OK too).
3787  *
3788  * Note that at recovery time, journal replay occurs *before* the restart of
3789  * truncate against the orphan inode list.
3790  *
3791  * The committed inode has the new, desired i_size (which is the same as
3792  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3793  * that this inode's truncate did not complete and it will again call
3794  * ext4_truncate() to have another go.  So there will be instantiated blocks
3795  * to the right of the truncation point in a crashed ext4 filesystem.  But
3796  * that's fine - as long as they are linked from the inode, the post-crash
3797  * ext4_truncate() run will find them and release them.
3798  */
3799 void ext4_truncate(struct inode *inode)
3800 {
3801         handle_t *handle;
3802         struct ext4_inode_info *ei = EXT4_I(inode);
3803         __le32 *i_data = ei->i_data;
3804         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3805         struct address_space *mapping = inode->i_mapping;
3806         ext4_lblk_t offsets[4];
3807         Indirect chain[4];
3808         Indirect *partial;
3809         __le32 nr = 0;
3810         int n;
3811         ext4_lblk_t last_block;
3812         unsigned blocksize = inode->i_sb->s_blocksize;
3813
3814         if (!ext4_can_truncate(inode))
3815                 return;
3816
3817         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3818                 ext4_ext_truncate(inode);
3819                 return;
3820         }
3821
3822         handle = start_transaction(inode);
3823         if (IS_ERR(handle))
3824                 return;         /* AKPM: return what? */
3825
3826         last_block = (inode->i_size + blocksize-1)
3827                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3828
3829         if (inode->i_size & (blocksize - 1))
3830                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3831                         goto out_stop;
3832
3833         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3834         if (n == 0)
3835                 goto out_stop;  /* error */
3836
3837         /*
3838          * OK.  This truncate is going to happen.  We add the inode to the
3839          * orphan list, so that if this truncate spans multiple transactions,
3840          * and we crash, we will resume the truncate when the filesystem
3841          * recovers.  It also marks the inode dirty, to catch the new size.
3842          *
3843          * Implication: the file must always be in a sane, consistent
3844          * truncatable state while each transaction commits.
3845          */
3846         if (ext4_orphan_add(handle, inode))
3847                 goto out_stop;
3848
3849         /*
3850          * From here we block out all ext4_get_block() callers who want to
3851          * modify the block allocation tree.
3852          */
3853         down_write(&ei->i_data_sem);
3854
3855         ext4_discard_preallocations(inode);
3856
3857         /*
3858          * The orphan list entry will now protect us from any crash which
3859          * occurs before the truncate completes, so it is now safe to propagate
3860          * the new, shorter inode size (held for now in i_size) into the
3861          * on-disk inode. We do this via i_disksize, which is the value which
3862          * ext4 *really* writes onto the disk inode.
3863          */
3864         ei->i_disksize = inode->i_size;
3865
3866         if (n == 1) {           /* direct blocks */
3867                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3868                                i_data + EXT4_NDIR_BLOCKS);
3869                 goto do_indirects;
3870         }
3871
3872         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3873         /* Kill the top of shared branch (not detached) */
3874         if (nr) {
3875                 if (partial == chain) {
3876                         /* Shared branch grows from the inode */
3877                         ext4_free_branches(handle, inode, NULL,
3878                                            &nr, &nr+1, (chain+n-1) - partial);
3879                         *partial->p = 0;
3880                         /*
3881                          * We mark the inode dirty prior to restart,
3882                          * and prior to stop.  No need for it here.
3883                          */
3884                 } else {
3885                         /* Shared branch grows from an indirect block */
3886                         BUFFER_TRACE(partial->bh, "get_write_access");
3887                         ext4_free_branches(handle, inode, partial->bh,
3888                                         partial->p,
3889                                         partial->p+1, (chain+n-1) - partial);
3890                 }
3891         }
3892         /* Clear the ends of indirect blocks on the shared branch */
3893         while (partial > chain) {
3894                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3895                                    (__le32*)partial->bh->b_data+addr_per_block,
3896                                    (chain+n-1) - partial);
3897                 BUFFER_TRACE(partial->bh, "call brelse");
3898                 brelse (partial->bh);
3899                 partial--;
3900         }
3901 do_indirects:
3902         /* Kill the remaining (whole) subtrees */
3903         switch (offsets[0]) {
3904         default:
3905                 nr = i_data[EXT4_IND_BLOCK];
3906                 if (nr) {
3907                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3908                         i_data[EXT4_IND_BLOCK] = 0;
3909                 }
3910         case EXT4_IND_BLOCK:
3911                 nr = i_data[EXT4_DIND_BLOCK];
3912                 if (nr) {
3913                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3914                         i_data[EXT4_DIND_BLOCK] = 0;
3915                 }
3916         case EXT4_DIND_BLOCK:
3917                 nr = i_data[EXT4_TIND_BLOCK];
3918                 if (nr) {
3919                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3920                         i_data[EXT4_TIND_BLOCK] = 0;
3921                 }
3922         case EXT4_TIND_BLOCK:
3923                 ;
3924         }
3925
3926         up_write(&ei->i_data_sem);
3927         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3928         ext4_mark_inode_dirty(handle, inode);
3929
3930         /*
3931          * In a multi-transaction truncate, we only make the final transaction
3932          * synchronous
3933          */
3934         if (IS_SYNC(inode))
3935                 ext4_handle_sync(handle);
3936 out_stop:
3937         /*
3938          * If this was a simple ftruncate(), and the file will remain alive
3939          * then we need to clear up the orphan record which we created above.
3940          * However, if this was a real unlink then we were called by
3941          * ext4_delete_inode(), and we allow that function to clean up the
3942          * orphan info for us.
3943          */
3944         if (inode->i_nlink)
3945                 ext4_orphan_del(handle, inode);
3946
3947         ext4_journal_stop(handle);
3948 }
3949
3950 /*
3951  * ext4_get_inode_loc returns with an extra refcount against the inode's
3952  * underlying buffer_head on success. If 'in_mem' is true, we have all
3953  * data in memory that is needed to recreate the on-disk version of this
3954  * inode.
3955  */
3956 static int __ext4_get_inode_loc(struct inode *inode,
3957                                 struct ext4_iloc *iloc, int in_mem)
3958 {
3959         struct ext4_group_desc  *gdp;
3960         struct buffer_head      *bh;
3961         struct super_block      *sb = inode->i_sb;
3962         ext4_fsblk_t            block;
3963         int                     inodes_per_block, inode_offset;
3964
3965         iloc->bh = NULL;
3966         if (!ext4_valid_inum(sb, inode->i_ino))
3967                 return -EIO;
3968
3969         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3970         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3971         if (!gdp)
3972                 return -EIO;
3973
3974         /*
3975          * Figure out the offset within the block group inode table
3976          */
3977         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3978         inode_offset = ((inode->i_ino - 1) %
3979                         EXT4_INODES_PER_GROUP(sb));
3980         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3981         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3982
3983         bh = sb_getblk(sb, block);
3984         if (!bh) {
3985                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3986                            "inode block - inode=%lu, block=%llu",
3987                            inode->i_ino, block);
3988                 return -EIO;
3989         }
3990         if (!buffer_uptodate(bh)) {
3991                 lock_buffer(bh);
3992
3993                 /*
3994                  * If the buffer has the write error flag, we have failed
3995                  * to write out another inode in the same block.  In this
3996                  * case, we don't have to read the block because we may
3997                  * read the old inode data successfully.
3998                  */
3999                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4000                         set_buffer_uptodate(bh);
4001
4002                 if (buffer_uptodate(bh)) {
4003                         /* someone brought it uptodate while we waited */
4004                         unlock_buffer(bh);
4005                         goto has_buffer;
4006                 }
4007
4008                 /*
4009                  * If we have all information of the inode in memory and this
4010                  * is the only valid inode in the block, we need not read the
4011                  * block.
4012                  */
4013                 if (in_mem) {
4014                         struct buffer_head *bitmap_bh;
4015                         int i, start;
4016
4017                         start = inode_offset & ~(inodes_per_block - 1);
4018
4019                         /* Is the inode bitmap in cache? */
4020                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4021                         if (!bitmap_bh)
4022                                 goto make_io;
4023
4024                         /*
4025                          * If the inode bitmap isn't in cache then the
4026                          * optimisation may end up performing two reads instead
4027                          * of one, so skip it.
4028                          */
4029                         if (!buffer_uptodate(bitmap_bh)) {
4030                                 brelse(bitmap_bh);
4031                                 goto make_io;
4032                         }
4033                         for (i = start; i < start + inodes_per_block; i++) {
4034                                 if (i == inode_offset)
4035                                         continue;
4036                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4037                                         break;
4038                         }
4039                         brelse(bitmap_bh);
4040                         if (i == start + inodes_per_block) {
4041                                 /* all other inodes are free, so skip I/O */
4042                                 memset(bh->b_data, 0, bh->b_size);
4043                                 set_buffer_uptodate(bh);
4044                                 unlock_buffer(bh);
4045                                 goto has_buffer;
4046                         }
4047                 }
4048
4049 make_io:
4050                 /*
4051                  * If we need to do any I/O, try to pre-readahead extra
4052                  * blocks from the inode table.
4053                  */
4054                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4055                         ext4_fsblk_t b, end, table;
4056                         unsigned num;
4057
4058                         table = ext4_inode_table(sb, gdp);
4059                         /* Make sure s_inode_readahead_blks is a power of 2 */
4060                         while (EXT4_SB(sb)->s_inode_readahead_blks &
4061                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
4062                                 EXT4_SB(sb)->s_inode_readahead_blks = 
4063                                    (EXT4_SB(sb)->s_inode_readahead_blks &
4064                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
4065                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4066                         if (table > b)
4067                                 b = table;
4068                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4069                         num = EXT4_INODES_PER_GROUP(sb);
4070                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4071                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4072                                 num -= ext4_itable_unused_count(sb, gdp);
4073                         table += num / inodes_per_block;
4074                         if (end > table)
4075                                 end = table;
4076                         while (b <= end)
4077                                 sb_breadahead(sb, b++);
4078                 }
4079
4080                 /*
4081                  * There are other valid inodes in the buffer, this inode
4082                  * has in-inode xattrs, or we don't have this inode in memory.
4083                  * Read the block from disk.
4084                  */
4085                 get_bh(bh);
4086                 bh->b_end_io = end_buffer_read_sync;
4087                 submit_bh(READ_META, bh);
4088                 wait_on_buffer(bh);
4089                 if (!buffer_uptodate(bh)) {
4090                         ext4_error(sb, __func__,
4091                                    "unable to read inode block - inode=%lu, "
4092                                    "block=%llu", inode->i_ino, block);
4093                         brelse(bh);
4094                         return -EIO;
4095                 }
4096         }
4097 has_buffer:
4098         iloc->bh = bh;
4099         return 0;
4100 }
4101
4102 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4103 {
4104         /* We have all inode data except xattrs in memory here. */
4105         return __ext4_get_inode_loc(inode, iloc,
4106                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4107 }
4108
4109 void ext4_set_inode_flags(struct inode *inode)
4110 {
4111         unsigned int flags = EXT4_I(inode)->i_flags;
4112
4113         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4114         if (flags & EXT4_SYNC_FL)
4115                 inode->i_flags |= S_SYNC;
4116         if (flags & EXT4_APPEND_FL)
4117                 inode->i_flags |= S_APPEND;
4118         if (flags & EXT4_IMMUTABLE_FL)
4119                 inode->i_flags |= S_IMMUTABLE;
4120         if (flags & EXT4_NOATIME_FL)
4121                 inode->i_flags |= S_NOATIME;
4122         if (flags & EXT4_DIRSYNC_FL)
4123                 inode->i_flags |= S_DIRSYNC;
4124 }
4125
4126 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4127 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4128 {
4129         unsigned int flags = ei->vfs_inode.i_flags;
4130
4131         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4132                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4133         if (flags & S_SYNC)
4134                 ei->i_flags |= EXT4_SYNC_FL;
4135         if (flags & S_APPEND)
4136                 ei->i_flags |= EXT4_APPEND_FL;
4137         if (flags & S_IMMUTABLE)
4138                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4139         if (flags & S_NOATIME)
4140                 ei->i_flags |= EXT4_NOATIME_FL;
4141         if (flags & S_DIRSYNC)
4142                 ei->i_flags |= EXT4_DIRSYNC_FL;
4143 }
4144 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4145                                         struct ext4_inode_info *ei)
4146 {
4147         blkcnt_t i_blocks ;
4148         struct inode *inode = &(ei->vfs_inode);
4149         struct super_block *sb = inode->i_sb;
4150
4151         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4152                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4153                 /* we are using combined 48 bit field */
4154                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4155                                         le32_to_cpu(raw_inode->i_blocks_lo);
4156                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4157                         /* i_blocks represent file system block size */
4158                         return i_blocks  << (inode->i_blkbits - 9);
4159                 } else {
4160                         return i_blocks;
4161                 }
4162         } else {
4163                 return le32_to_cpu(raw_inode->i_blocks_lo);
4164         }
4165 }
4166
4167 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4168 {
4169         struct ext4_iloc iloc;
4170         struct ext4_inode *raw_inode;
4171         struct ext4_inode_info *ei;
4172         struct buffer_head *bh;
4173         struct inode *inode;
4174         long ret;
4175         int block;
4176
4177         inode = iget_locked(sb, ino);
4178         if (!inode)
4179                 return ERR_PTR(-ENOMEM);
4180         if (!(inode->i_state & I_NEW))
4181                 return inode;
4182
4183         ei = EXT4_I(inode);
4184 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4185         ei->i_acl = EXT4_ACL_NOT_CACHED;
4186         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4187 #endif
4188
4189         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4190         if (ret < 0)
4191                 goto bad_inode;
4192         bh = iloc.bh;
4193         raw_inode = ext4_raw_inode(&iloc);
4194         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4195         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4196         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4197         if (!(test_opt(inode->i_sb, NO_UID32))) {
4198                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4199                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4200         }
4201         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4202
4203         ei->i_state = 0;
4204         ei->i_dir_start_lookup = 0;
4205         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4206         /* We now have enough fields to check if the inode was active or not.
4207          * This is needed because nfsd might try to access dead inodes
4208          * the test is that same one that e2fsck uses
4209          * NeilBrown 1999oct15
4210          */
4211         if (inode->i_nlink == 0) {
4212                 if (inode->i_mode == 0 ||
4213                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4214                         /* this inode is deleted */
4215                         brelse(bh);
4216                         ret = -ESTALE;
4217                         goto bad_inode;
4218                 }
4219                 /* The only unlinked inodes we let through here have
4220                  * valid i_mode and are being read by the orphan
4221                  * recovery code: that's fine, we're about to complete
4222                  * the process of deleting those. */
4223         }
4224         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4225         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4226         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4227         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4228             cpu_to_le32(EXT4_OS_HURD)) {
4229                 ei->i_file_acl |=
4230                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4231         }
4232         inode->i_size = ext4_isize(raw_inode);
4233         ei->i_disksize = inode->i_size;
4234         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4235         ei->i_block_group = iloc.block_group;
4236         /*
4237          * NOTE! The in-memory inode i_data array is in little-endian order
4238          * even on big-endian machines: we do NOT byteswap the block numbers!
4239          */
4240         for (block = 0; block < EXT4_N_BLOCKS; block++)
4241                 ei->i_data[block] = raw_inode->i_block[block];
4242         INIT_LIST_HEAD(&ei->i_orphan);
4243
4244         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4245                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4246                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4247                     EXT4_INODE_SIZE(inode->i_sb)) {
4248                         brelse(bh);
4249                         ret = -EIO;
4250                         goto bad_inode;
4251                 }
4252                 if (ei->i_extra_isize == 0) {
4253                         /* The extra space is currently unused. Use it. */
4254                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4255                                             EXT4_GOOD_OLD_INODE_SIZE;
4256                 } else {
4257                         __le32 *magic = (void *)raw_inode +
4258                                         EXT4_GOOD_OLD_INODE_SIZE +
4259                                         ei->i_extra_isize;
4260                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4261                                  ei->i_state |= EXT4_STATE_XATTR;
4262                 }
4263         } else
4264                 ei->i_extra_isize = 0;
4265
4266         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4267         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4268         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4269         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4270
4271         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4272         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4273                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4274                         inode->i_version |=
4275                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4276         }
4277
4278         if (S_ISREG(inode->i_mode)) {
4279                 inode->i_op = &ext4_file_inode_operations;
4280                 inode->i_fop = &ext4_file_operations;
4281                 ext4_set_aops(inode);
4282         } else if (S_ISDIR(inode->i_mode)) {
4283                 inode->i_op = &ext4_dir_inode_operations;
4284                 inode->i_fop = &ext4_dir_operations;
4285         } else if (S_ISLNK(inode->i_mode)) {
4286                 if (ext4_inode_is_fast_symlink(inode)) {
4287                         inode->i_op = &ext4_fast_symlink_inode_operations;
4288                         nd_terminate_link(ei->i_data, inode->i_size,
4289                                 sizeof(ei->i_data) - 1);
4290                 } else {
4291                         inode->i_op = &ext4_symlink_inode_operations;
4292                         ext4_set_aops(inode);
4293                 }
4294         } else {
4295                 inode->i_op = &ext4_special_inode_operations;
4296                 if (raw_inode->i_block[0])
4297                         init_special_inode(inode, inode->i_mode,
4298                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4299                 else
4300                         init_special_inode(inode, inode->i_mode,
4301                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4302         }
4303         brelse(iloc.bh);
4304         ext4_set_inode_flags(inode);
4305         unlock_new_inode(inode);
4306         return inode;
4307
4308 bad_inode:
4309         iget_failed(inode);
4310         return ERR_PTR(ret);
4311 }
4312
4313 static int ext4_inode_blocks_set(handle_t *handle,
4314                                 struct ext4_inode *raw_inode,
4315                                 struct ext4_inode_info *ei)
4316 {
4317         struct inode *inode = &(ei->vfs_inode);
4318         u64 i_blocks = inode->i_blocks;
4319         struct super_block *sb = inode->i_sb;
4320
4321         if (i_blocks <= ~0U) {
4322                 /*
4323                  * i_blocks can be represnted in a 32 bit variable
4324                  * as multiple of 512 bytes
4325                  */
4326                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4327                 raw_inode->i_blocks_high = 0;
4328                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4329                 return 0;
4330         }
4331         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4332                 return -EFBIG;
4333
4334         if (i_blocks <= 0xffffffffffffULL) {
4335                 /*
4336                  * i_blocks can be represented in a 48 bit variable
4337                  * as multiple of 512 bytes
4338                  */
4339                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4340                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4341                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4342         } else {
4343                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4344                 /* i_block is stored in file system block size */
4345                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4346                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4347                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4348         }
4349         return 0;
4350 }
4351
4352 /*
4353  * Post the struct inode info into an on-disk inode location in the
4354  * buffer-cache.  This gobbles the caller's reference to the
4355  * buffer_head in the inode location struct.
4356  *
4357  * The caller must have write access to iloc->bh.
4358  */
4359 static int ext4_do_update_inode(handle_t *handle,
4360                                 struct inode *inode,
4361                                 struct ext4_iloc *iloc)
4362 {
4363         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4364         struct ext4_inode_info *ei = EXT4_I(inode);
4365         struct buffer_head *bh = iloc->bh;
4366         int err = 0, rc, block;
4367
4368         /* For fields not not tracking in the in-memory inode,
4369          * initialise them to zero for new inodes. */
4370         if (ei->i_state & EXT4_STATE_NEW)
4371                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4372
4373         ext4_get_inode_flags(ei);
4374         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4375         if (!(test_opt(inode->i_sb, NO_UID32))) {
4376                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4377                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4378 /*
4379  * Fix up interoperability with old kernels. Otherwise, old inodes get
4380  * re-used with the upper 16 bits of the uid/gid intact
4381  */
4382                 if (!ei->i_dtime) {
4383                         raw_inode->i_uid_high =
4384                                 cpu_to_le16(high_16_bits(inode->i_uid));
4385                         raw_inode->i_gid_high =
4386                                 cpu_to_le16(high_16_bits(inode->i_gid));
4387                 } else {
4388                         raw_inode->i_uid_high = 0;
4389                         raw_inode->i_gid_high = 0;
4390                 }
4391         } else {
4392                 raw_inode->i_uid_low =
4393                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4394                 raw_inode->i_gid_low =
4395                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4396                 raw_inode->i_uid_high = 0;
4397                 raw_inode->i_gid_high = 0;
4398         }
4399         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4400
4401         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4402         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4403         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4404         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4405
4406         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4407                 goto out_brelse;
4408         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4409         /* clear the migrate flag in the raw_inode */
4410         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4411         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4412             cpu_to_le32(EXT4_OS_HURD))
4413                 raw_inode->i_file_acl_high =
4414                         cpu_to_le16(ei->i_file_acl >> 32);
4415         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4416         ext4_isize_set(raw_inode, ei->i_disksize);
4417         if (ei->i_disksize > 0x7fffffffULL) {
4418                 struct super_block *sb = inode->i_sb;
4419                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4420                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4421                                 EXT4_SB(sb)->s_es->s_rev_level ==
4422                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4423                         /* If this is the first large file
4424                          * created, add a flag to the superblock.
4425                          */
4426                         err = ext4_journal_get_write_access(handle,
4427                                         EXT4_SB(sb)->s_sbh);
4428                         if (err)
4429                                 goto out_brelse;
4430                         ext4_update_dynamic_rev(sb);
4431                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4432                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4433                         sb->s_dirt = 1;
4434                         ext4_handle_sync(handle);
4435                         err = ext4_handle_dirty_metadata(handle, inode,
4436                                         EXT4_SB(sb)->s_sbh);
4437                 }
4438         }
4439         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4440         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4441                 if (old_valid_dev(inode->i_rdev)) {
4442                         raw_inode->i_block[0] =
4443                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4444                         raw_inode->i_block[1] = 0;
4445                 } else {
4446                         raw_inode->i_block[0] = 0;
4447                         raw_inode->i_block[1] =
4448                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4449                         raw_inode->i_block[2] = 0;
4450                 }
4451         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4452                 raw_inode->i_block[block] = ei->i_data[block];
4453
4454         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4455         if (ei->i_extra_isize) {
4456                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4457                         raw_inode->i_version_hi =
4458                         cpu_to_le32(inode->i_version >> 32);
4459                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4460         }
4461
4462         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4463         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4464         if (!err)
4465                 err = rc;
4466         ei->i_state &= ~EXT4_STATE_NEW;
4467
4468 out_brelse:
4469         brelse(bh);
4470         ext4_std_error(inode->i_sb, err);
4471         return err;
4472 }
4473
4474 /*
4475  * ext4_write_inode()
4476  *
4477  * We are called from a few places:
4478  *
4479  * - Within generic_file_write() for O_SYNC files.
4480  *   Here, there will be no transaction running. We wait for any running
4481  *   trasnaction to commit.
4482  *
4483  * - Within sys_sync(), kupdate and such.
4484  *   We wait on commit, if tol to.
4485  *
4486  * - Within prune_icache() (PF_MEMALLOC == true)
4487  *   Here we simply return.  We can't afford to block kswapd on the
4488  *   journal commit.
4489  *
4490  * In all cases it is actually safe for us to return without doing anything,
4491  * because the inode has been copied into a raw inode buffer in
4492  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4493  * knfsd.
4494  *
4495  * Note that we are absolutely dependent upon all inode dirtiers doing the
4496  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4497  * which we are interested.
4498  *
4499  * It would be a bug for them to not do this.  The code:
4500  *
4501  *      mark_inode_dirty(inode)
4502  *      stuff();
4503  *      inode->i_size = expr;
4504  *
4505  * is in error because a kswapd-driven write_inode() could occur while
4506  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4507  * will no longer be on the superblock's dirty inode list.
4508  */
4509 int ext4_write_inode(struct inode *inode, int wait)
4510 {
4511         if (current->flags & PF_MEMALLOC)
4512                 return 0;
4513
4514         if (ext4_journal_current_handle()) {
4515                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4516                 dump_stack();
4517                 return -EIO;
4518         }
4519
4520         if (!wait)
4521                 return 0;
4522
4523         return ext4_force_commit(inode->i_sb);
4524 }
4525
4526 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4527 {
4528         int err = 0;
4529
4530         mark_buffer_dirty(bh);
4531         if (inode && inode_needs_sync(inode)) {
4532                 sync_dirty_buffer(bh);
4533                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4534                         ext4_error(inode->i_sb, __func__,
4535                                    "IO error syncing inode, "
4536                                    "inode=%lu, block=%llu",
4537                                    inode->i_ino,
4538                                    (unsigned long long)bh->b_blocknr);
4539                         err = -EIO;
4540                 }
4541         }
4542         return err;
4543 }
4544
4545 /*
4546  * ext4_setattr()
4547  *
4548  * Called from notify_change.
4549  *
4550  * We want to trap VFS attempts to truncate the file as soon as
4551  * possible.  In particular, we want to make sure that when the VFS
4552  * shrinks i_size, we put the inode on the orphan list and modify
4553  * i_disksize immediately, so that during the subsequent flushing of
4554  * dirty pages and freeing of disk blocks, we can guarantee that any
4555  * commit will leave the blocks being flushed in an unused state on
4556  * disk.  (On recovery, the inode will get truncated and the blocks will
4557  * be freed, so we have a strong guarantee that no future commit will
4558  * leave these blocks visible to the user.)
4559  *
4560  * Another thing we have to assure is that if we are in ordered mode
4561  * and inode is still attached to the committing transaction, we must
4562  * we start writeout of all the dirty pages which are being truncated.
4563  * This way we are sure that all the data written in the previous
4564  * transaction are already on disk (truncate waits for pages under
4565  * writeback).
4566  *
4567  * Called with inode->i_mutex down.
4568  */
4569 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4570 {
4571         struct inode *inode = dentry->d_inode;
4572         int error, rc = 0;
4573         const unsigned int ia_valid = attr->ia_valid;
4574
4575         error = inode_change_ok(inode, attr);
4576         if (error)
4577                 return error;
4578
4579         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4580                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4581                 handle_t *handle;
4582
4583                 /* (user+group)*(old+new) structure, inode write (sb,
4584                  * inode block, ? - but truncate inode update has it) */
4585                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4586                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4587                 if (IS_ERR(handle)) {
4588                         error = PTR_ERR(handle);
4589                         goto err_out;
4590                 }
4591                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4592                 if (error) {
4593                         ext4_journal_stop(handle);
4594                         return error;
4595                 }
4596                 /* Update corresponding info in inode so that everything is in
4597                  * one transaction */
4598                 if (attr->ia_valid & ATTR_UID)
4599                         inode->i_uid = attr->ia_uid;
4600                 if (attr->ia_valid & ATTR_GID)
4601                         inode->i_gid = attr->ia_gid;
4602                 error = ext4_mark_inode_dirty(handle, inode);
4603                 ext4_journal_stop(handle);
4604         }
4605
4606         if (attr->ia_valid & ATTR_SIZE) {
4607                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4608                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4609
4610                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4611                                 error = -EFBIG;
4612                                 goto err_out;
4613                         }
4614                 }
4615         }
4616
4617         if (S_ISREG(inode->i_mode) &&
4618             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4619                 handle_t *handle;
4620
4621                 handle = ext4_journal_start(inode, 3);
4622                 if (IS_ERR(handle)) {
4623                         error = PTR_ERR(handle);
4624                         goto err_out;
4625                 }
4626
4627                 error = ext4_orphan_add(handle, inode);
4628                 EXT4_I(inode)->i_disksize = attr->ia_size;
4629                 rc = ext4_mark_inode_dirty(handle, inode);
4630                 if (!error)
4631                         error = rc;
4632                 ext4_journal_stop(handle);
4633
4634                 if (ext4_should_order_data(inode)) {
4635                         error = ext4_begin_ordered_truncate(inode,
4636                                                             attr->ia_size);
4637                         if (error) {
4638                                 /* Do as much error cleanup as possible */
4639                                 handle = ext4_journal_start(inode, 3);
4640                                 if (IS_ERR(handle)) {
4641                                         ext4_orphan_del(NULL, inode);
4642                                         goto err_out;
4643                                 }
4644                                 ext4_orphan_del(handle, inode);
4645                                 ext4_journal_stop(handle);
4646                                 goto err_out;
4647                         }
4648                 }
4649         }
4650
4651         rc = inode_setattr(inode, attr);
4652
4653         /* If inode_setattr's call to ext4_truncate failed to get a
4654          * transaction handle at all, we need to clean up the in-core
4655          * orphan list manually. */
4656         if (inode->i_nlink)
4657                 ext4_orphan_del(NULL, inode);
4658
4659         if (!rc && (ia_valid & ATTR_MODE))
4660                 rc = ext4_acl_chmod(inode);
4661
4662 err_out:
4663         ext4_std_error(inode->i_sb, error);
4664         if (!error)
4665                 error = rc;
4666         return error;
4667 }
4668
4669 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4670                  struct kstat *stat)
4671 {
4672         struct inode *inode;
4673         unsigned long delalloc_blocks;
4674
4675         inode = dentry->d_inode;
4676         generic_fillattr(inode, stat);
4677
4678         /*
4679          * We can't update i_blocks if the block allocation is delayed
4680          * otherwise in the case of system crash before the real block
4681          * allocation is done, we will have i_blocks inconsistent with
4682          * on-disk file blocks.
4683          * We always keep i_blocks updated together with real
4684          * allocation. But to not confuse with user, stat
4685          * will return the blocks that include the delayed allocation
4686          * blocks for this file.
4687          */
4688         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4689         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4690         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4691
4692         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4693         return 0;
4694 }
4695
4696 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4697                                       int chunk)
4698 {
4699         int indirects;
4700
4701         /* if nrblocks are contiguous */
4702         if (chunk) {
4703                 /*
4704                  * With N contiguous data blocks, it need at most
4705                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4706                  * 2 dindirect blocks
4707                  * 1 tindirect block
4708                  */
4709                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4710                 return indirects + 3;
4711         }
4712         /*
4713          * if nrblocks are not contiguous, worse case, each block touch
4714          * a indirect block, and each indirect block touch a double indirect
4715          * block, plus a triple indirect block
4716          */
4717         indirects = nrblocks * 2 + 1;
4718         return indirects;
4719 }
4720
4721 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4722 {
4723         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4724                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4725         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4726 }
4727
4728 /*
4729  * Account for index blocks, block groups bitmaps and block group
4730  * descriptor blocks if modify datablocks and index blocks
4731  * worse case, the indexs blocks spread over different block groups
4732  *
4733  * If datablocks are discontiguous, they are possible to spread over
4734  * different block groups too. If they are contiugous, with flexbg,
4735  * they could still across block group boundary.
4736  *
4737  * Also account for superblock, inode, quota and xattr blocks
4738  */
4739 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4740 {
4741         int groups, gdpblocks;
4742         int idxblocks;
4743         int ret = 0;
4744
4745         /*
4746          * How many index blocks need to touch to modify nrblocks?
4747          * The "Chunk" flag indicating whether the nrblocks is
4748          * physically contiguous on disk
4749          *
4750          * For Direct IO and fallocate, they calls get_block to allocate
4751          * one single extent at a time, so they could set the "Chunk" flag
4752          */
4753         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4754
4755         ret = idxblocks;
4756
4757         /*
4758          * Now let's see how many group bitmaps and group descriptors need
4759          * to account
4760          */
4761         groups = idxblocks;
4762         if (chunk)
4763                 groups += 1;
4764         else
4765                 groups += nrblocks;
4766
4767         gdpblocks = groups;
4768         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4769                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4770         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4771                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4772
4773         /* bitmaps and block group descriptor blocks */
4774         ret += groups + gdpblocks;
4775
4776         /* Blocks for super block, inode, quota and xattr blocks */
4777         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4778
4779         return ret;
4780 }
4781
4782 /*
4783  * Calulate the total number of credits to reserve to fit
4784  * the modification of a single pages into a single transaction,
4785  * which may include multiple chunks of block allocations.
4786  *
4787  * This could be called via ext4_write_begin()
4788  *
4789  * We need to consider the worse case, when
4790  * one new block per extent.
4791  */
4792 int ext4_writepage_trans_blocks(struct inode *inode)
4793 {
4794         int bpp = ext4_journal_blocks_per_page(inode);
4795         int ret;
4796
4797         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4798
4799         /* Account for data blocks for journalled mode */
4800         if (ext4_should_journal_data(inode))
4801                 ret += bpp;
4802         return ret;
4803 }
4804
4805 /*
4806  * Calculate the journal credits for a chunk of data modification.
4807  *
4808  * This is called from DIO, fallocate or whoever calling
4809  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4810  *
4811  * journal buffers for data blocks are not included here, as DIO
4812  * and fallocate do no need to journal data buffers.
4813  */
4814 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4815 {
4816         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4817 }
4818
4819 /*
4820  * The caller must have previously called ext4_reserve_inode_write().
4821  * Give this, we know that the caller already has write access to iloc->bh.
4822  */
4823 int ext4_mark_iloc_dirty(handle_t *handle,
4824                 struct inode *inode, struct ext4_iloc *iloc)
4825 {
4826         int err = 0;
4827
4828         if (test_opt(inode->i_sb, I_VERSION))
4829                 inode_inc_iversion(inode);
4830
4831         /* the do_update_inode consumes one bh->b_count */
4832         get_bh(iloc->bh);
4833
4834         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4835         err = ext4_do_update_inode(handle, inode, iloc);
4836         put_bh(iloc->bh);
4837         return err;
4838 }
4839
4840 /*
4841  * On success, We end up with an outstanding reference count against
4842  * iloc->bh.  This _must_ be cleaned up later.
4843  */
4844
4845 int
4846 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4847                          struct ext4_iloc *iloc)
4848 {
4849         int err;
4850
4851         err = ext4_get_inode_loc(inode, iloc);
4852         if (!err) {
4853                 BUFFER_TRACE(iloc->bh, "get_write_access");
4854                 err = ext4_journal_get_write_access(handle, iloc->bh);
4855                 if (err) {
4856                         brelse(iloc->bh);
4857                         iloc->bh = NULL;
4858                 }
4859         }
4860         ext4_std_error(inode->i_sb, err);
4861         return err;
4862 }
4863
4864 /*
4865  * Expand an inode by new_extra_isize bytes.
4866  * Returns 0 on success or negative error number on failure.
4867  */
4868 static int ext4_expand_extra_isize(struct inode *inode,
4869                                    unsigned int new_extra_isize,
4870                                    struct ext4_iloc iloc,
4871                                    handle_t *handle)
4872 {
4873         struct ext4_inode *raw_inode;
4874         struct ext4_xattr_ibody_header *header;
4875         struct ext4_xattr_entry *entry;
4876
4877         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4878                 return 0;
4879
4880         raw_inode = ext4_raw_inode(&iloc);
4881
4882         header = IHDR(inode, raw_inode);
4883         entry = IFIRST(header);
4884
4885         /* No extended attributes present */
4886         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4887                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4888                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4889                         new_extra_isize);
4890                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4891                 return 0;
4892         }
4893
4894         /* try to expand with EAs present */
4895         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4896                                           raw_inode, handle);
4897 }
4898
4899 /*
4900  * What we do here is to mark the in-core inode as clean with respect to inode
4901  * dirtiness (it may still be data-dirty).
4902  * This means that the in-core inode may be reaped by prune_icache
4903  * without having to perform any I/O.  This is a very good thing,
4904  * because *any* task may call prune_icache - even ones which
4905  * have a transaction open against a different journal.
4906  *
4907  * Is this cheating?  Not really.  Sure, we haven't written the
4908  * inode out, but prune_icache isn't a user-visible syncing function.
4909  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4910  * we start and wait on commits.
4911  *
4912  * Is this efficient/effective?  Well, we're being nice to the system
4913  * by cleaning up our inodes proactively so they can be reaped
4914  * without I/O.  But we are potentially leaving up to five seconds'
4915  * worth of inodes floating about which prune_icache wants us to
4916  * write out.  One way to fix that would be to get prune_icache()
4917  * to do a write_super() to free up some memory.  It has the desired
4918  * effect.
4919  */
4920 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4921 {
4922         struct ext4_iloc iloc;
4923         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4924         static unsigned int mnt_count;
4925         int err, ret;
4926
4927         might_sleep();
4928         err = ext4_reserve_inode_write(handle, inode, &iloc);
4929         if (ext4_handle_valid(handle) &&
4930             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4931             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4932                 /*
4933                  * We need extra buffer credits since we may write into EA block
4934                  * with this same handle. If journal_extend fails, then it will
4935                  * only result in a minor loss of functionality for that inode.
4936                  * If this is felt to be critical, then e2fsck should be run to
4937                  * force a large enough s_min_extra_isize.
4938                  */
4939                 if ((jbd2_journal_extend(handle,
4940                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4941                         ret = ext4_expand_extra_isize(inode,
4942                                                       sbi->s_want_extra_isize,
4943                                                       iloc, handle);
4944                         if (ret) {
4945                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4946                                 if (mnt_count !=
4947                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4948                                         ext4_warning(inode->i_sb, __func__,
4949                                         "Unable to expand inode %lu. Delete"
4950                                         " some EAs or run e2fsck.",
4951                                         inode->i_ino);
4952                                         mnt_count =
4953                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4954                                 }
4955                         }
4956                 }
4957         }
4958         if (!err)
4959                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4960         return err;
4961 }
4962
4963 /*
4964  * ext4_dirty_inode() is called from __mark_inode_dirty()
4965  *
4966  * We're really interested in the case where a file is being extended.
4967  * i_size has been changed by generic_commit_write() and we thus need
4968  * to include the updated inode in the current transaction.
4969  *
4970  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4971  * are allocated to the file.
4972  *
4973  * If the inode is marked synchronous, we don't honour that here - doing
4974  * so would cause a commit on atime updates, which we don't bother doing.
4975  * We handle synchronous inodes at the highest possible level.
4976  */
4977 void ext4_dirty_inode(struct inode *inode)
4978 {
4979         handle_t *current_handle = ext4_journal_current_handle();
4980         handle_t *handle;
4981
4982         if (!ext4_handle_valid(current_handle)) {
4983                 ext4_mark_inode_dirty(current_handle, inode);
4984                 return;
4985         }
4986
4987         handle = ext4_journal_start(inode, 2);
4988         if (IS_ERR(handle))
4989                 goto out;
4990         if (current_handle &&
4991                 current_handle->h_transaction != handle->h_transaction) {
4992                 /* This task has a transaction open against a different fs */
4993                 printk(KERN_EMERG "%s: transactions do not match!\n",
4994                        __func__);
4995         } else {
4996                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4997                                 current_handle);
4998                 ext4_mark_inode_dirty(handle, inode);
4999         }
5000         ext4_journal_stop(handle);
5001 out:
5002         return;
5003 }
5004
5005 #if 0
5006 /*
5007  * Bind an inode's backing buffer_head into this transaction, to prevent
5008  * it from being flushed to disk early.  Unlike
5009  * ext4_reserve_inode_write, this leaves behind no bh reference and
5010  * returns no iloc structure, so the caller needs to repeat the iloc
5011  * lookup to mark the inode dirty later.
5012  */
5013 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5014 {
5015         struct ext4_iloc iloc;
5016
5017         int err = 0;
5018         if (handle) {
5019                 err = ext4_get_inode_loc(inode, &iloc);
5020                 if (!err) {
5021                         BUFFER_TRACE(iloc.bh, "get_write_access");
5022                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5023                         if (!err)
5024                                 err = ext4_handle_dirty_metadata(handle,
5025                                                                  inode,
5026                                                                  iloc.bh);
5027                         brelse(iloc.bh);
5028                 }
5029         }
5030         ext4_std_error(inode->i_sb, err);
5031         return err;
5032 }
5033 #endif
5034
5035 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5036 {
5037         journal_t *journal;
5038         handle_t *handle;
5039         int err;
5040
5041         /*
5042          * We have to be very careful here: changing a data block's
5043          * journaling status dynamically is dangerous.  If we write a
5044          * data block to the journal, change the status and then delete
5045          * that block, we risk forgetting to revoke the old log record
5046          * from the journal and so a subsequent replay can corrupt data.
5047          * So, first we make sure that the journal is empty and that
5048          * nobody is changing anything.
5049          */
5050
5051         journal = EXT4_JOURNAL(inode);
5052         if (!journal)
5053                 return 0;
5054         if (is_journal_aborted(journal))
5055                 return -EROFS;
5056
5057         jbd2_journal_lock_updates(journal);
5058         jbd2_journal_flush(journal);
5059
5060         /*
5061          * OK, there are no updates running now, and all cached data is
5062          * synced to disk.  We are now in a completely consistent state
5063          * which doesn't have anything in the journal, and we know that
5064          * no filesystem updates are running, so it is safe to modify
5065          * the inode's in-core data-journaling state flag now.
5066          */
5067
5068         if (val)
5069                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5070         else
5071                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5072         ext4_set_aops(inode);
5073
5074         jbd2_journal_unlock_updates(journal);
5075
5076         /* Finally we can mark the inode as dirty. */
5077
5078         handle = ext4_journal_start(inode, 1);
5079         if (IS_ERR(handle))
5080                 return PTR_ERR(handle);
5081
5082         err = ext4_mark_inode_dirty(handle, inode);
5083         ext4_handle_sync(handle);
5084         ext4_journal_stop(handle);
5085         ext4_std_error(inode->i_sb, err);
5086
5087         return err;
5088 }
5089
5090 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5091 {
5092         return !buffer_mapped(bh);
5093 }
5094
5095 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5096 {
5097         loff_t size;
5098         unsigned long len;
5099         int ret = -EINVAL;
5100         void *fsdata;
5101         struct file *file = vma->vm_file;
5102         struct inode *inode = file->f_path.dentry->d_inode;
5103         struct address_space *mapping = inode->i_mapping;
5104
5105         /*
5106          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5107          * get i_mutex because we are already holding mmap_sem.
5108          */
5109         down_read(&inode->i_alloc_sem);
5110         size = i_size_read(inode);
5111         if (page->mapping != mapping || size <= page_offset(page)
5112             || !PageUptodate(page)) {
5113                 /* page got truncated from under us? */
5114                 goto out_unlock;
5115         }
5116         ret = 0;
5117         if (PageMappedToDisk(page))
5118                 goto out_unlock;
5119
5120         if (page->index == size >> PAGE_CACHE_SHIFT)
5121                 len = size & ~PAGE_CACHE_MASK;
5122         else
5123                 len = PAGE_CACHE_SIZE;
5124
5125         if (page_has_buffers(page)) {
5126                 /* return if we have all the buffers mapped */
5127                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5128                                        ext4_bh_unmapped))
5129                         goto out_unlock;
5130         }
5131         /*
5132          * OK, we need to fill the hole... Do write_begin write_end
5133          * to do block allocation/reservation.We are not holding
5134          * inode.i__mutex here. That allow * parallel write_begin,
5135          * write_end call. lock_page prevent this from happening
5136          * on the same page though
5137          */
5138         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5139                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5140         if (ret < 0)
5141                 goto out_unlock;
5142         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5143                         len, len, page, fsdata);
5144         if (ret < 0)
5145                 goto out_unlock;
5146         ret = 0;
5147 out_unlock:
5148         up_read(&inode->i_alloc_sem);
5149         return ret;
5150 }