dquot: move dquot initialization responsibility into the filesystem
[safe/jmp/linux-2.6] / fs / ext2 / inode.c
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/namei.h>
36 #include "ext2.h"
37 #include "acl.h"
38 #include "xip.h"
39
40 MODULE_AUTHOR("Remy Card and others");
41 MODULE_DESCRIPTION("Second Extended Filesystem");
42 MODULE_LICENSE("GPL");
43
44 /*
45  * Test whether an inode is a fast symlink.
46  */
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48 {
49         int ea_blocks = EXT2_I(inode)->i_file_acl ?
50                 (inode->i_sb->s_blocksize >> 9) : 0;
51
52         return (S_ISLNK(inode->i_mode) &&
53                 inode->i_blocks - ea_blocks == 0);
54 }
55
56 /*
57  * Called at the last iput() if i_nlink is zero.
58  */
59 void ext2_delete_inode (struct inode * inode)
60 {
61         if (!is_bad_inode(inode))
62                 vfs_dq_init(inode);
63         truncate_inode_pages(&inode->i_data, 0);
64
65         if (is_bad_inode(inode))
66                 goto no_delete;
67         EXT2_I(inode)->i_dtime  = get_seconds();
68         mark_inode_dirty(inode);
69         ext2_write_inode(inode, inode_needs_sync(inode));
70
71         inode->i_size = 0;
72         if (inode->i_blocks)
73                 ext2_truncate (inode);
74         ext2_free_inode (inode);
75
76         return;
77 no_delete:
78         clear_inode(inode);     /* We must guarantee clearing of inode... */
79 }
80
81 typedef struct {
82         __le32  *p;
83         __le32  key;
84         struct buffer_head *bh;
85 } Indirect;
86
87 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
88 {
89         p->key = *(p->p = v);
90         p->bh = bh;
91 }
92
93 static inline int verify_chain(Indirect *from, Indirect *to)
94 {
95         while (from <= to && from->key == *from->p)
96                 from++;
97         return (from > to);
98 }
99
100 /**
101  *      ext2_block_to_path - parse the block number into array of offsets
102  *      @inode: inode in question (we are only interested in its superblock)
103  *      @i_block: block number to be parsed
104  *      @offsets: array to store the offsets in
105  *      @boundary: set this non-zero if the referred-to block is likely to be
106  *             followed (on disk) by an indirect block.
107  *      To store the locations of file's data ext2 uses a data structure common
108  *      for UNIX filesystems - tree of pointers anchored in the inode, with
109  *      data blocks at leaves and indirect blocks in intermediate nodes.
110  *      This function translates the block number into path in that tree -
111  *      return value is the path length and @offsets[n] is the offset of
112  *      pointer to (n+1)th node in the nth one. If @block is out of range
113  *      (negative or too large) warning is printed and zero returned.
114  *
115  *      Note: function doesn't find node addresses, so no IO is needed. All
116  *      we need to know is the capacity of indirect blocks (taken from the
117  *      inode->i_sb).
118  */
119
120 /*
121  * Portability note: the last comparison (check that we fit into triple
122  * indirect block) is spelled differently, because otherwise on an
123  * architecture with 32-bit longs and 8Kb pages we might get into trouble
124  * if our filesystem had 8Kb blocks. We might use long long, but that would
125  * kill us on x86. Oh, well, at least the sign propagation does not matter -
126  * i_block would have to be negative in the very beginning, so we would not
127  * get there at all.
128  */
129
130 static int ext2_block_to_path(struct inode *inode,
131                         long i_block, int offsets[4], int *boundary)
132 {
133         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
134         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
135         const long direct_blocks = EXT2_NDIR_BLOCKS,
136                 indirect_blocks = ptrs,
137                 double_blocks = (1 << (ptrs_bits * 2));
138         int n = 0;
139         int final = 0;
140
141         if (i_block < 0) {
142                 ext2_msg(inode->i_sb, KERN_WARNING,
143                         "warning: %s: block < 0", __func__);
144         } else if (i_block < direct_blocks) {
145                 offsets[n++] = i_block;
146                 final = direct_blocks;
147         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
148                 offsets[n++] = EXT2_IND_BLOCK;
149                 offsets[n++] = i_block;
150                 final = ptrs;
151         } else if ((i_block -= indirect_blocks) < double_blocks) {
152                 offsets[n++] = EXT2_DIND_BLOCK;
153                 offsets[n++] = i_block >> ptrs_bits;
154                 offsets[n++] = i_block & (ptrs - 1);
155                 final = ptrs;
156         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
157                 offsets[n++] = EXT2_TIND_BLOCK;
158                 offsets[n++] = i_block >> (ptrs_bits * 2);
159                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
160                 offsets[n++] = i_block & (ptrs - 1);
161                 final = ptrs;
162         } else {
163                 ext2_msg(inode->i_sb, KERN_WARNING,
164                         "warning: %s: block is too big", __func__);
165         }
166         if (boundary)
167                 *boundary = final - 1 - (i_block & (ptrs - 1));
168
169         return n;
170 }
171
172 /**
173  *      ext2_get_branch - read the chain of indirect blocks leading to data
174  *      @inode: inode in question
175  *      @depth: depth of the chain (1 - direct pointer, etc.)
176  *      @offsets: offsets of pointers in inode/indirect blocks
177  *      @chain: place to store the result
178  *      @err: here we store the error value
179  *
180  *      Function fills the array of triples <key, p, bh> and returns %NULL
181  *      if everything went OK or the pointer to the last filled triple
182  *      (incomplete one) otherwise. Upon the return chain[i].key contains
183  *      the number of (i+1)-th block in the chain (as it is stored in memory,
184  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
185  *      number (it points into struct inode for i==0 and into the bh->b_data
186  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
187  *      block for i>0 and NULL for i==0. In other words, it holds the block
188  *      numbers of the chain, addresses they were taken from (and where we can
189  *      verify that chain did not change) and buffer_heads hosting these
190  *      numbers.
191  *
192  *      Function stops when it stumbles upon zero pointer (absent block)
193  *              (pointer to last triple returned, *@err == 0)
194  *      or when it gets an IO error reading an indirect block
195  *              (ditto, *@err == -EIO)
196  *      or when it notices that chain had been changed while it was reading
197  *              (ditto, *@err == -EAGAIN)
198  *      or when it reads all @depth-1 indirect blocks successfully and finds
199  *      the whole chain, all way to the data (returns %NULL, *err == 0).
200  */
201 static Indirect *ext2_get_branch(struct inode *inode,
202                                  int depth,
203                                  int *offsets,
204                                  Indirect chain[4],
205                                  int *err)
206 {
207         struct super_block *sb = inode->i_sb;
208         Indirect *p = chain;
209         struct buffer_head *bh;
210
211         *err = 0;
212         /* i_data is not going away, no lock needed */
213         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
214         if (!p->key)
215                 goto no_block;
216         while (--depth) {
217                 bh = sb_bread(sb, le32_to_cpu(p->key));
218                 if (!bh)
219                         goto failure;
220                 read_lock(&EXT2_I(inode)->i_meta_lock);
221                 if (!verify_chain(chain, p))
222                         goto changed;
223                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
224                 read_unlock(&EXT2_I(inode)->i_meta_lock);
225                 if (!p->key)
226                         goto no_block;
227         }
228         return NULL;
229
230 changed:
231         read_unlock(&EXT2_I(inode)->i_meta_lock);
232         brelse(bh);
233         *err = -EAGAIN;
234         goto no_block;
235 failure:
236         *err = -EIO;
237 no_block:
238         return p;
239 }
240
241 /**
242  *      ext2_find_near - find a place for allocation with sufficient locality
243  *      @inode: owner
244  *      @ind: descriptor of indirect block.
245  *
246  *      This function returns the preferred place for block allocation.
247  *      It is used when heuristic for sequential allocation fails.
248  *      Rules are:
249  *        + if there is a block to the left of our position - allocate near it.
250  *        + if pointer will live in indirect block - allocate near that block.
251  *        + if pointer will live in inode - allocate in the same cylinder group.
252  *
253  * In the latter case we colour the starting block by the callers PID to
254  * prevent it from clashing with concurrent allocations for a different inode
255  * in the same block group.   The PID is used here so that functionally related
256  * files will be close-by on-disk.
257  *
258  *      Caller must make sure that @ind is valid and will stay that way.
259  */
260
261 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
262 {
263         struct ext2_inode_info *ei = EXT2_I(inode);
264         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
265         __le32 *p;
266         ext2_fsblk_t bg_start;
267         ext2_fsblk_t colour;
268
269         /* Try to find previous block */
270         for (p = ind->p - 1; p >= start; p--)
271                 if (*p)
272                         return le32_to_cpu(*p);
273
274         /* No such thing, so let's try location of indirect block */
275         if (ind->bh)
276                 return ind->bh->b_blocknr;
277
278         /*
279          * It is going to be refered from inode itself? OK, just put it into
280          * the same cylinder group then.
281          */
282         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
283         colour = (current->pid % 16) *
284                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
285         return bg_start + colour;
286 }
287
288 /**
289  *      ext2_find_goal - find a preferred place for allocation.
290  *      @inode: owner
291  *      @block:  block we want
292  *      @partial: pointer to the last triple within a chain
293  *
294  *      Returns preferred place for a block (the goal).
295  */
296
297 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
298                                           Indirect *partial)
299 {
300         struct ext2_block_alloc_info *block_i;
301
302         block_i = EXT2_I(inode)->i_block_alloc_info;
303
304         /*
305          * try the heuristic for sequential allocation,
306          * failing that at least try to get decent locality.
307          */
308         if (block_i && (block == block_i->last_alloc_logical_block + 1)
309                 && (block_i->last_alloc_physical_block != 0)) {
310                 return block_i->last_alloc_physical_block + 1;
311         }
312
313         return ext2_find_near(inode, partial);
314 }
315
316 /**
317  *      ext2_blks_to_allocate: Look up the block map and count the number
318  *      of direct blocks need to be allocated for the given branch.
319  *
320  *      @branch: chain of indirect blocks
321  *      @k: number of blocks need for indirect blocks
322  *      @blks: number of data blocks to be mapped.
323  *      @blocks_to_boundary:  the offset in the indirect block
324  *
325  *      return the total number of blocks to be allocate, including the
326  *      direct and indirect blocks.
327  */
328 static int
329 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
330                 int blocks_to_boundary)
331 {
332         unsigned long count = 0;
333
334         /*
335          * Simple case, [t,d]Indirect block(s) has not allocated yet
336          * then it's clear blocks on that path have not allocated
337          */
338         if (k > 0) {
339                 /* right now don't hanel cross boundary allocation */
340                 if (blks < blocks_to_boundary + 1)
341                         count += blks;
342                 else
343                         count += blocks_to_boundary + 1;
344                 return count;
345         }
346
347         count++;
348         while (count < blks && count <= blocks_to_boundary
349                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
350                 count++;
351         }
352         return count;
353 }
354
355 /**
356  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
357  *      @indirect_blks: the number of blocks need to allocate for indirect
358  *                      blocks
359  *
360  *      @new_blocks: on return it will store the new block numbers for
361  *      the indirect blocks(if needed) and the first direct block,
362  *      @blks:  on return it will store the total number of allocated
363  *              direct blocks
364  */
365 static int ext2_alloc_blocks(struct inode *inode,
366                         ext2_fsblk_t goal, int indirect_blks, int blks,
367                         ext2_fsblk_t new_blocks[4], int *err)
368 {
369         int target, i;
370         unsigned long count = 0;
371         int index = 0;
372         ext2_fsblk_t current_block = 0;
373         int ret = 0;
374
375         /*
376          * Here we try to allocate the requested multiple blocks at once,
377          * on a best-effort basis.
378          * To build a branch, we should allocate blocks for
379          * the indirect blocks(if not allocated yet), and at least
380          * the first direct block of this branch.  That's the
381          * minimum number of blocks need to allocate(required)
382          */
383         target = blks + indirect_blks;
384
385         while (1) {
386                 count = target;
387                 /* allocating blocks for indirect blocks and direct blocks */
388                 current_block = ext2_new_blocks(inode,goal,&count,err);
389                 if (*err)
390                         goto failed_out;
391
392                 target -= count;
393                 /* allocate blocks for indirect blocks */
394                 while (index < indirect_blks && count) {
395                         new_blocks[index++] = current_block++;
396                         count--;
397                 }
398
399                 if (count > 0)
400                         break;
401         }
402
403         /* save the new block number for the first direct block */
404         new_blocks[index] = current_block;
405
406         /* total number of blocks allocated for direct blocks */
407         ret = count;
408         *err = 0;
409         return ret;
410 failed_out:
411         for (i = 0; i <index; i++)
412                 ext2_free_blocks(inode, new_blocks[i], 1);
413         return ret;
414 }
415
416 /**
417  *      ext2_alloc_branch - allocate and set up a chain of blocks.
418  *      @inode: owner
419  *      @num: depth of the chain (number of blocks to allocate)
420  *      @offsets: offsets (in the blocks) to store the pointers to next.
421  *      @branch: place to store the chain in.
422  *
423  *      This function allocates @num blocks, zeroes out all but the last one,
424  *      links them into chain and (if we are synchronous) writes them to disk.
425  *      In other words, it prepares a branch that can be spliced onto the
426  *      inode. It stores the information about that chain in the branch[], in
427  *      the same format as ext2_get_branch() would do. We are calling it after
428  *      we had read the existing part of chain and partial points to the last
429  *      triple of that (one with zero ->key). Upon the exit we have the same
430  *      picture as after the successful ext2_get_block(), excpet that in one
431  *      place chain is disconnected - *branch->p is still zero (we did not
432  *      set the last link), but branch->key contains the number that should
433  *      be placed into *branch->p to fill that gap.
434  *
435  *      If allocation fails we free all blocks we've allocated (and forget
436  *      their buffer_heads) and return the error value the from failed
437  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
438  *      as described above and return 0.
439  */
440
441 static int ext2_alloc_branch(struct inode *inode,
442                         int indirect_blks, int *blks, ext2_fsblk_t goal,
443                         int *offsets, Indirect *branch)
444 {
445         int blocksize = inode->i_sb->s_blocksize;
446         int i, n = 0;
447         int err = 0;
448         struct buffer_head *bh;
449         int num;
450         ext2_fsblk_t new_blocks[4];
451         ext2_fsblk_t current_block;
452
453         num = ext2_alloc_blocks(inode, goal, indirect_blks,
454                                 *blks, new_blocks, &err);
455         if (err)
456                 return err;
457
458         branch[0].key = cpu_to_le32(new_blocks[0]);
459         /*
460          * metadata blocks and data blocks are allocated.
461          */
462         for (n = 1; n <= indirect_blks;  n++) {
463                 /*
464                  * Get buffer_head for parent block, zero it out
465                  * and set the pointer to new one, then send
466                  * parent to disk.
467                  */
468                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
469                 branch[n].bh = bh;
470                 lock_buffer(bh);
471                 memset(bh->b_data, 0, blocksize);
472                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
473                 branch[n].key = cpu_to_le32(new_blocks[n]);
474                 *branch[n].p = branch[n].key;
475                 if ( n == indirect_blks) {
476                         current_block = new_blocks[n];
477                         /*
478                          * End of chain, update the last new metablock of
479                          * the chain to point to the new allocated
480                          * data blocks numbers
481                          */
482                         for (i=1; i < num; i++)
483                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
484                 }
485                 set_buffer_uptodate(bh);
486                 unlock_buffer(bh);
487                 mark_buffer_dirty_inode(bh, inode);
488                 /* We used to sync bh here if IS_SYNC(inode).
489                  * But we now rely upon generic_write_sync()
490                  * and b_inode_buffers.  But not for directories.
491                  */
492                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
493                         sync_dirty_buffer(bh);
494         }
495         *blks = num;
496         return err;
497 }
498
499 /**
500  * ext2_splice_branch - splice the allocated branch onto inode.
501  * @inode: owner
502  * @block: (logical) number of block we are adding
503  * @where: location of missing link
504  * @num:   number of indirect blocks we are adding
505  * @blks:  number of direct blocks we are adding
506  *
507  * This function fills the missing link and does all housekeeping needed in
508  * inode (->i_blocks, etc.). In case of success we end up with the full
509  * chain to new block and return 0.
510  */
511 static void ext2_splice_branch(struct inode *inode,
512                         long block, Indirect *where, int num, int blks)
513 {
514         int i;
515         struct ext2_block_alloc_info *block_i;
516         ext2_fsblk_t current_block;
517
518         block_i = EXT2_I(inode)->i_block_alloc_info;
519
520         /* XXX LOCKING probably should have i_meta_lock ?*/
521         /* That's it */
522
523         *where->p = where->key;
524
525         /*
526          * Update the host buffer_head or inode to point to more just allocated
527          * direct blocks blocks
528          */
529         if (num == 0 && blks > 1) {
530                 current_block = le32_to_cpu(where->key) + 1;
531                 for (i = 1; i < blks; i++)
532                         *(where->p + i ) = cpu_to_le32(current_block++);
533         }
534
535         /*
536          * update the most recently allocated logical & physical block
537          * in i_block_alloc_info, to assist find the proper goal block for next
538          * allocation
539          */
540         if (block_i) {
541                 block_i->last_alloc_logical_block = block + blks - 1;
542                 block_i->last_alloc_physical_block =
543                                 le32_to_cpu(where[num].key) + blks - 1;
544         }
545
546         /* We are done with atomic stuff, now do the rest of housekeeping */
547
548         /* had we spliced it onto indirect block? */
549         if (where->bh)
550                 mark_buffer_dirty_inode(where->bh, inode);
551
552         inode->i_ctime = CURRENT_TIME_SEC;
553         mark_inode_dirty(inode);
554 }
555
556 /*
557  * Allocation strategy is simple: if we have to allocate something, we will
558  * have to go the whole way to leaf. So let's do it before attaching anything
559  * to tree, set linkage between the newborn blocks, write them if sync is
560  * required, recheck the path, free and repeat if check fails, otherwise
561  * set the last missing link (that will protect us from any truncate-generated
562  * removals - all blocks on the path are immune now) and possibly force the
563  * write on the parent block.
564  * That has a nice additional property: no special recovery from the failed
565  * allocations is needed - we simply release blocks and do not touch anything
566  * reachable from inode.
567  *
568  * `handle' can be NULL if create == 0.
569  *
570  * return > 0, # of blocks mapped or allocated.
571  * return = 0, if plain lookup failed.
572  * return < 0, error case.
573  */
574 static int ext2_get_blocks(struct inode *inode,
575                            sector_t iblock, unsigned long maxblocks,
576                            struct buffer_head *bh_result,
577                            int create)
578 {
579         int err = -EIO;
580         int offsets[4];
581         Indirect chain[4];
582         Indirect *partial;
583         ext2_fsblk_t goal;
584         int indirect_blks;
585         int blocks_to_boundary = 0;
586         int depth;
587         struct ext2_inode_info *ei = EXT2_I(inode);
588         int count = 0;
589         ext2_fsblk_t first_block = 0;
590
591         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
592
593         if (depth == 0)
594                 return (err);
595
596         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
597         /* Simplest case - block found, no allocation needed */
598         if (!partial) {
599                 first_block = le32_to_cpu(chain[depth - 1].key);
600                 clear_buffer_new(bh_result); /* What's this do? */
601                 count++;
602                 /*map more blocks*/
603                 while (count < maxblocks && count <= blocks_to_boundary) {
604                         ext2_fsblk_t blk;
605
606                         if (!verify_chain(chain, chain + depth - 1)) {
607                                 /*
608                                  * Indirect block might be removed by
609                                  * truncate while we were reading it.
610                                  * Handling of that case: forget what we've
611                                  * got now, go to reread.
612                                  */
613                                 err = -EAGAIN;
614                                 count = 0;
615                                 break;
616                         }
617                         blk = le32_to_cpu(*(chain[depth-1].p + count));
618                         if (blk == first_block + count)
619                                 count++;
620                         else
621                                 break;
622                 }
623                 if (err != -EAGAIN)
624                         goto got_it;
625         }
626
627         /* Next simple case - plain lookup or failed read of indirect block */
628         if (!create || err == -EIO)
629                 goto cleanup;
630
631         mutex_lock(&ei->truncate_mutex);
632         /*
633          * If the indirect block is missing while we are reading
634          * the chain(ext3_get_branch() returns -EAGAIN err), or
635          * if the chain has been changed after we grab the semaphore,
636          * (either because another process truncated this branch, or
637          * another get_block allocated this branch) re-grab the chain to see if
638          * the request block has been allocated or not.
639          *
640          * Since we already block the truncate/other get_block
641          * at this point, we will have the current copy of the chain when we
642          * splice the branch into the tree.
643          */
644         if (err == -EAGAIN || !verify_chain(chain, partial)) {
645                 while (partial > chain) {
646                         brelse(partial->bh);
647                         partial--;
648                 }
649                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
650                 if (!partial) {
651                         count++;
652                         mutex_unlock(&ei->truncate_mutex);
653                         if (err)
654                                 goto cleanup;
655                         clear_buffer_new(bh_result);
656                         goto got_it;
657                 }
658         }
659
660         /*
661          * Okay, we need to do block allocation.  Lazily initialize the block
662          * allocation info here if necessary
663         */
664         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
665                 ext2_init_block_alloc_info(inode);
666
667         goal = ext2_find_goal(inode, iblock, partial);
668
669         /* the number of blocks need to allocate for [d,t]indirect blocks */
670         indirect_blks = (chain + depth) - partial - 1;
671         /*
672          * Next look up the indirect map to count the totoal number of
673          * direct blocks to allocate for this branch.
674          */
675         count = ext2_blks_to_allocate(partial, indirect_blks,
676                                         maxblocks, blocks_to_boundary);
677         /*
678          * XXX ???? Block out ext2_truncate while we alter the tree
679          */
680         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
681                                 offsets + (partial - chain), partial);
682
683         if (err) {
684                 mutex_unlock(&ei->truncate_mutex);
685                 goto cleanup;
686         }
687
688         if (ext2_use_xip(inode->i_sb)) {
689                 /*
690                  * we need to clear the block
691                  */
692                 err = ext2_clear_xip_target (inode,
693                         le32_to_cpu(chain[depth-1].key));
694                 if (err) {
695                         mutex_unlock(&ei->truncate_mutex);
696                         goto cleanup;
697                 }
698         }
699
700         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
701         mutex_unlock(&ei->truncate_mutex);
702         set_buffer_new(bh_result);
703 got_it:
704         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
705         if (count > blocks_to_boundary)
706                 set_buffer_boundary(bh_result);
707         err = count;
708         /* Clean up and exit */
709         partial = chain + depth - 1;    /* the whole chain */
710 cleanup:
711         while (partial > chain) {
712                 brelse(partial->bh);
713                 partial--;
714         }
715         return err;
716 }
717
718 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
719 {
720         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
721         int ret = ext2_get_blocks(inode, iblock, max_blocks,
722                               bh_result, create);
723         if (ret > 0) {
724                 bh_result->b_size = (ret << inode->i_blkbits);
725                 ret = 0;
726         }
727         return ret;
728
729 }
730
731 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
732                 u64 start, u64 len)
733 {
734         return generic_block_fiemap(inode, fieinfo, start, len,
735                                     ext2_get_block);
736 }
737
738 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
739 {
740         return block_write_full_page(page, ext2_get_block, wbc);
741 }
742
743 static int ext2_readpage(struct file *file, struct page *page)
744 {
745         return mpage_readpage(page, ext2_get_block);
746 }
747
748 static int
749 ext2_readpages(struct file *file, struct address_space *mapping,
750                 struct list_head *pages, unsigned nr_pages)
751 {
752         return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
753 }
754
755 int __ext2_write_begin(struct file *file, struct address_space *mapping,
756                 loff_t pos, unsigned len, unsigned flags,
757                 struct page **pagep, void **fsdata)
758 {
759         return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
760                                                         ext2_get_block);
761 }
762
763 static int
764 ext2_write_begin(struct file *file, struct address_space *mapping,
765                 loff_t pos, unsigned len, unsigned flags,
766                 struct page **pagep, void **fsdata)
767 {
768         *pagep = NULL;
769         return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
770 }
771
772 static int
773 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
774                 loff_t pos, unsigned len, unsigned flags,
775                 struct page **pagep, void **fsdata)
776 {
777         /*
778          * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
779          * directory handling code to pass around offsets rather than struct
780          * pages in order to make this work easily.
781          */
782         return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
783                                                         ext2_get_block);
784 }
785
786 static int ext2_nobh_writepage(struct page *page,
787                         struct writeback_control *wbc)
788 {
789         return nobh_writepage(page, ext2_get_block, wbc);
790 }
791
792 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
793 {
794         return generic_block_bmap(mapping,block,ext2_get_block);
795 }
796
797 static ssize_t
798 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
799                         loff_t offset, unsigned long nr_segs)
800 {
801         struct file *file = iocb->ki_filp;
802         struct inode *inode = file->f_mapping->host;
803
804         return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
805                                 offset, nr_segs, ext2_get_block, NULL);
806 }
807
808 static int
809 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
810 {
811         return mpage_writepages(mapping, wbc, ext2_get_block);
812 }
813
814 const struct address_space_operations ext2_aops = {
815         .readpage               = ext2_readpage,
816         .readpages              = ext2_readpages,
817         .writepage              = ext2_writepage,
818         .sync_page              = block_sync_page,
819         .write_begin            = ext2_write_begin,
820         .write_end              = generic_write_end,
821         .bmap                   = ext2_bmap,
822         .direct_IO              = ext2_direct_IO,
823         .writepages             = ext2_writepages,
824         .migratepage            = buffer_migrate_page,
825         .is_partially_uptodate  = block_is_partially_uptodate,
826         .error_remove_page      = generic_error_remove_page,
827 };
828
829 const struct address_space_operations ext2_aops_xip = {
830         .bmap                   = ext2_bmap,
831         .get_xip_mem            = ext2_get_xip_mem,
832 };
833
834 const struct address_space_operations ext2_nobh_aops = {
835         .readpage               = ext2_readpage,
836         .readpages              = ext2_readpages,
837         .writepage              = ext2_nobh_writepage,
838         .sync_page              = block_sync_page,
839         .write_begin            = ext2_nobh_write_begin,
840         .write_end              = nobh_write_end,
841         .bmap                   = ext2_bmap,
842         .direct_IO              = ext2_direct_IO,
843         .writepages             = ext2_writepages,
844         .migratepage            = buffer_migrate_page,
845         .error_remove_page      = generic_error_remove_page,
846 };
847
848 /*
849  * Probably it should be a library function... search for first non-zero word
850  * or memcmp with zero_page, whatever is better for particular architecture.
851  * Linus?
852  */
853 static inline int all_zeroes(__le32 *p, __le32 *q)
854 {
855         while (p < q)
856                 if (*p++)
857                         return 0;
858         return 1;
859 }
860
861 /**
862  *      ext2_find_shared - find the indirect blocks for partial truncation.
863  *      @inode:   inode in question
864  *      @depth:   depth of the affected branch
865  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
866  *      @chain:   place to store the pointers to partial indirect blocks
867  *      @top:     place to the (detached) top of branch
868  *
869  *      This is a helper function used by ext2_truncate().
870  *
871  *      When we do truncate() we may have to clean the ends of several indirect
872  *      blocks but leave the blocks themselves alive. Block is partially
873  *      truncated if some data below the new i_size is refered from it (and
874  *      it is on the path to the first completely truncated data block, indeed).
875  *      We have to free the top of that path along with everything to the right
876  *      of the path. Since no allocation past the truncation point is possible
877  *      until ext2_truncate() finishes, we may safely do the latter, but top
878  *      of branch may require special attention - pageout below the truncation
879  *      point might try to populate it.
880  *
881  *      We atomically detach the top of branch from the tree, store the block
882  *      number of its root in *@top, pointers to buffer_heads of partially
883  *      truncated blocks - in @chain[].bh and pointers to their last elements
884  *      that should not be removed - in @chain[].p. Return value is the pointer
885  *      to last filled element of @chain.
886  *
887  *      The work left to caller to do the actual freeing of subtrees:
888  *              a) free the subtree starting from *@top
889  *              b) free the subtrees whose roots are stored in
890  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
891  *              c) free the subtrees growing from the inode past the @chain[0].p
892  *                      (no partially truncated stuff there).
893  */
894
895 static Indirect *ext2_find_shared(struct inode *inode,
896                                 int depth,
897                                 int offsets[4],
898                                 Indirect chain[4],
899                                 __le32 *top)
900 {
901         Indirect *partial, *p;
902         int k, err;
903
904         *top = 0;
905         for (k = depth; k > 1 && !offsets[k-1]; k--)
906                 ;
907         partial = ext2_get_branch(inode, k, offsets, chain, &err);
908         if (!partial)
909                 partial = chain + k-1;
910         /*
911          * If the branch acquired continuation since we've looked at it -
912          * fine, it should all survive and (new) top doesn't belong to us.
913          */
914         write_lock(&EXT2_I(inode)->i_meta_lock);
915         if (!partial->key && *partial->p) {
916                 write_unlock(&EXT2_I(inode)->i_meta_lock);
917                 goto no_top;
918         }
919         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
920                 ;
921         /*
922          * OK, we've found the last block that must survive. The rest of our
923          * branch should be detached before unlocking. However, if that rest
924          * of branch is all ours and does not grow immediately from the inode
925          * it's easier to cheat and just decrement partial->p.
926          */
927         if (p == chain + k - 1 && p > chain) {
928                 p->p--;
929         } else {
930                 *top = *p->p;
931                 *p->p = 0;
932         }
933         write_unlock(&EXT2_I(inode)->i_meta_lock);
934
935         while(partial > p)
936         {
937                 brelse(partial->bh);
938                 partial--;
939         }
940 no_top:
941         return partial;
942 }
943
944 /**
945  *      ext2_free_data - free a list of data blocks
946  *      @inode: inode we are dealing with
947  *      @p:     array of block numbers
948  *      @q:     points immediately past the end of array
949  *
950  *      We are freeing all blocks refered from that array (numbers are
951  *      stored as little-endian 32-bit) and updating @inode->i_blocks
952  *      appropriately.
953  */
954 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
955 {
956         unsigned long block_to_free = 0, count = 0;
957         unsigned long nr;
958
959         for ( ; p < q ; p++) {
960                 nr = le32_to_cpu(*p);
961                 if (nr) {
962                         *p = 0;
963                         /* accumulate blocks to free if they're contiguous */
964                         if (count == 0)
965                                 goto free_this;
966                         else if (block_to_free == nr - count)
967                                 count++;
968                         else {
969                                 mark_inode_dirty(inode);
970                                 ext2_free_blocks (inode, block_to_free, count);
971                         free_this:
972                                 block_to_free = nr;
973                                 count = 1;
974                         }
975                 }
976         }
977         if (count > 0) {
978                 mark_inode_dirty(inode);
979                 ext2_free_blocks (inode, block_to_free, count);
980         }
981 }
982
983 /**
984  *      ext2_free_branches - free an array of branches
985  *      @inode: inode we are dealing with
986  *      @p:     array of block numbers
987  *      @q:     pointer immediately past the end of array
988  *      @depth: depth of the branches to free
989  *
990  *      We are freeing all blocks refered from these branches (numbers are
991  *      stored as little-endian 32-bit) and updating @inode->i_blocks
992  *      appropriately.
993  */
994 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
995 {
996         struct buffer_head * bh;
997         unsigned long nr;
998
999         if (depth--) {
1000                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1001                 for ( ; p < q ; p++) {
1002                         nr = le32_to_cpu(*p);
1003                         if (!nr)
1004                                 continue;
1005                         *p = 0;
1006                         bh = sb_bread(inode->i_sb, nr);
1007                         /*
1008                          * A read failure? Report error and clear slot
1009                          * (should be rare).
1010                          */ 
1011                         if (!bh) {
1012                                 ext2_error(inode->i_sb, "ext2_free_branches",
1013                                         "Read failure, inode=%ld, block=%ld",
1014                                         inode->i_ino, nr);
1015                                 continue;
1016                         }
1017                         ext2_free_branches(inode,
1018                                            (__le32*)bh->b_data,
1019                                            (__le32*)bh->b_data + addr_per_block,
1020                                            depth);
1021                         bforget(bh);
1022                         ext2_free_blocks(inode, nr, 1);
1023                         mark_inode_dirty(inode);
1024                 }
1025         } else
1026                 ext2_free_data(inode, p, q);
1027 }
1028
1029 void ext2_truncate(struct inode *inode)
1030 {
1031         __le32 *i_data = EXT2_I(inode)->i_data;
1032         struct ext2_inode_info *ei = EXT2_I(inode);
1033         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1034         int offsets[4];
1035         Indirect chain[4];
1036         Indirect *partial;
1037         __le32 nr = 0;
1038         int n;
1039         long iblock;
1040         unsigned blocksize;
1041
1042         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1043             S_ISLNK(inode->i_mode)))
1044                 return;
1045         if (ext2_inode_is_fast_symlink(inode))
1046                 return;
1047         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1048                 return;
1049
1050         blocksize = inode->i_sb->s_blocksize;
1051         iblock = (inode->i_size + blocksize-1)
1052                                         >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1053
1054         if (mapping_is_xip(inode->i_mapping))
1055                 xip_truncate_page(inode->i_mapping, inode->i_size);
1056         else if (test_opt(inode->i_sb, NOBH))
1057                 nobh_truncate_page(inode->i_mapping,
1058                                 inode->i_size, ext2_get_block);
1059         else
1060                 block_truncate_page(inode->i_mapping,
1061                                 inode->i_size, ext2_get_block);
1062
1063         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1064         if (n == 0)
1065                 return;
1066
1067         /*
1068          * From here we block out all ext2_get_block() callers who want to
1069          * modify the block allocation tree.
1070          */
1071         mutex_lock(&ei->truncate_mutex);
1072
1073         if (n == 1) {
1074                 ext2_free_data(inode, i_data+offsets[0],
1075                                         i_data + EXT2_NDIR_BLOCKS);
1076                 goto do_indirects;
1077         }
1078
1079         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1080         /* Kill the top of shared branch (already detached) */
1081         if (nr) {
1082                 if (partial == chain)
1083                         mark_inode_dirty(inode);
1084                 else
1085                         mark_buffer_dirty_inode(partial->bh, inode);
1086                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1087         }
1088         /* Clear the ends of indirect blocks on the shared branch */
1089         while (partial > chain) {
1090                 ext2_free_branches(inode,
1091                                    partial->p + 1,
1092                                    (__le32*)partial->bh->b_data+addr_per_block,
1093                                    (chain+n-1) - partial);
1094                 mark_buffer_dirty_inode(partial->bh, inode);
1095                 brelse (partial->bh);
1096                 partial--;
1097         }
1098 do_indirects:
1099         /* Kill the remaining (whole) subtrees */
1100         switch (offsets[0]) {
1101                 default:
1102                         nr = i_data[EXT2_IND_BLOCK];
1103                         if (nr) {
1104                                 i_data[EXT2_IND_BLOCK] = 0;
1105                                 mark_inode_dirty(inode);
1106                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1107                         }
1108                 case EXT2_IND_BLOCK:
1109                         nr = i_data[EXT2_DIND_BLOCK];
1110                         if (nr) {
1111                                 i_data[EXT2_DIND_BLOCK] = 0;
1112                                 mark_inode_dirty(inode);
1113                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1114                         }
1115                 case EXT2_DIND_BLOCK:
1116                         nr = i_data[EXT2_TIND_BLOCK];
1117                         if (nr) {
1118                                 i_data[EXT2_TIND_BLOCK] = 0;
1119                                 mark_inode_dirty(inode);
1120                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1121                         }
1122                 case EXT2_TIND_BLOCK:
1123                         ;
1124         }
1125
1126         ext2_discard_reservation(inode);
1127
1128         mutex_unlock(&ei->truncate_mutex);
1129         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1130         if (inode_needs_sync(inode)) {
1131                 sync_mapping_buffers(inode->i_mapping);
1132                 ext2_sync_inode (inode);
1133         } else {
1134                 mark_inode_dirty(inode);
1135         }
1136 }
1137
1138 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1139                                         struct buffer_head **p)
1140 {
1141         struct buffer_head * bh;
1142         unsigned long block_group;
1143         unsigned long block;
1144         unsigned long offset;
1145         struct ext2_group_desc * gdp;
1146
1147         *p = NULL;
1148         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1149             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1150                 goto Einval;
1151
1152         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1153         gdp = ext2_get_group_desc(sb, block_group, NULL);
1154         if (!gdp)
1155                 goto Egdp;
1156         /*
1157          * Figure out the offset within the block group inode table
1158          */
1159         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1160         block = le32_to_cpu(gdp->bg_inode_table) +
1161                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1162         if (!(bh = sb_bread(sb, block)))
1163                 goto Eio;
1164
1165         *p = bh;
1166         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1167         return (struct ext2_inode *) (bh->b_data + offset);
1168
1169 Einval:
1170         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1171                    (unsigned long) ino);
1172         return ERR_PTR(-EINVAL);
1173 Eio:
1174         ext2_error(sb, "ext2_get_inode",
1175                    "unable to read inode block - inode=%lu, block=%lu",
1176                    (unsigned long) ino, block);
1177 Egdp:
1178         return ERR_PTR(-EIO);
1179 }
1180
1181 void ext2_set_inode_flags(struct inode *inode)
1182 {
1183         unsigned int flags = EXT2_I(inode)->i_flags;
1184
1185         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1186         if (flags & EXT2_SYNC_FL)
1187                 inode->i_flags |= S_SYNC;
1188         if (flags & EXT2_APPEND_FL)
1189                 inode->i_flags |= S_APPEND;
1190         if (flags & EXT2_IMMUTABLE_FL)
1191                 inode->i_flags |= S_IMMUTABLE;
1192         if (flags & EXT2_NOATIME_FL)
1193                 inode->i_flags |= S_NOATIME;
1194         if (flags & EXT2_DIRSYNC_FL)
1195                 inode->i_flags |= S_DIRSYNC;
1196 }
1197
1198 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1199 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1200 {
1201         unsigned int flags = ei->vfs_inode.i_flags;
1202
1203         ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1204                         EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1205         if (flags & S_SYNC)
1206                 ei->i_flags |= EXT2_SYNC_FL;
1207         if (flags & S_APPEND)
1208                 ei->i_flags |= EXT2_APPEND_FL;
1209         if (flags & S_IMMUTABLE)
1210                 ei->i_flags |= EXT2_IMMUTABLE_FL;
1211         if (flags & S_NOATIME)
1212                 ei->i_flags |= EXT2_NOATIME_FL;
1213         if (flags & S_DIRSYNC)
1214                 ei->i_flags |= EXT2_DIRSYNC_FL;
1215 }
1216
1217 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1218 {
1219         struct ext2_inode_info *ei;
1220         struct buffer_head * bh;
1221         struct ext2_inode *raw_inode;
1222         struct inode *inode;
1223         long ret = -EIO;
1224         int n;
1225
1226         inode = iget_locked(sb, ino);
1227         if (!inode)
1228                 return ERR_PTR(-ENOMEM);
1229         if (!(inode->i_state & I_NEW))
1230                 return inode;
1231
1232         ei = EXT2_I(inode);
1233         ei->i_block_alloc_info = NULL;
1234
1235         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1236         if (IS_ERR(raw_inode)) {
1237                 ret = PTR_ERR(raw_inode);
1238                 goto bad_inode;
1239         }
1240
1241         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1242         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1243         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1244         if (!(test_opt (inode->i_sb, NO_UID32))) {
1245                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1246                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1247         }
1248         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1249         inode->i_size = le32_to_cpu(raw_inode->i_size);
1250         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1251         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1252         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1253         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1254         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1255         /* We now have enough fields to check if the inode was active or not.
1256          * This is needed because nfsd might try to access dead inodes
1257          * the test is that same one that e2fsck uses
1258          * NeilBrown 1999oct15
1259          */
1260         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1261                 /* this inode is deleted */
1262                 brelse (bh);
1263                 ret = -ESTALE;
1264                 goto bad_inode;
1265         }
1266         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1267         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1268         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1269         ei->i_frag_no = raw_inode->i_frag;
1270         ei->i_frag_size = raw_inode->i_fsize;
1271         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1272         ei->i_dir_acl = 0;
1273         if (S_ISREG(inode->i_mode))
1274                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1275         else
1276                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1277         ei->i_dtime = 0;
1278         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1279         ei->i_state = 0;
1280         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1281         ei->i_dir_start_lookup = 0;
1282
1283         /*
1284          * NOTE! The in-memory inode i_data array is in little-endian order
1285          * even on big-endian machines: we do NOT byteswap the block numbers!
1286          */
1287         for (n = 0; n < EXT2_N_BLOCKS; n++)
1288                 ei->i_data[n] = raw_inode->i_block[n];
1289
1290         if (S_ISREG(inode->i_mode)) {
1291                 inode->i_op = &ext2_file_inode_operations;
1292                 if (ext2_use_xip(inode->i_sb)) {
1293                         inode->i_mapping->a_ops = &ext2_aops_xip;
1294                         inode->i_fop = &ext2_xip_file_operations;
1295                 } else if (test_opt(inode->i_sb, NOBH)) {
1296                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1297                         inode->i_fop = &ext2_file_operations;
1298                 } else {
1299                         inode->i_mapping->a_ops = &ext2_aops;
1300                         inode->i_fop = &ext2_file_operations;
1301                 }
1302         } else if (S_ISDIR(inode->i_mode)) {
1303                 inode->i_op = &ext2_dir_inode_operations;
1304                 inode->i_fop = &ext2_dir_operations;
1305                 if (test_opt(inode->i_sb, NOBH))
1306                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1307                 else
1308                         inode->i_mapping->a_ops = &ext2_aops;
1309         } else if (S_ISLNK(inode->i_mode)) {
1310                 if (ext2_inode_is_fast_symlink(inode)) {
1311                         inode->i_op = &ext2_fast_symlink_inode_operations;
1312                         nd_terminate_link(ei->i_data, inode->i_size,
1313                                 sizeof(ei->i_data) - 1);
1314                 } else {
1315                         inode->i_op = &ext2_symlink_inode_operations;
1316                         if (test_opt(inode->i_sb, NOBH))
1317                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1318                         else
1319                                 inode->i_mapping->a_ops = &ext2_aops;
1320                 }
1321         } else {
1322                 inode->i_op = &ext2_special_inode_operations;
1323                 if (raw_inode->i_block[0])
1324                         init_special_inode(inode, inode->i_mode,
1325                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1326                 else 
1327                         init_special_inode(inode, inode->i_mode,
1328                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1329         }
1330         brelse (bh);
1331         ext2_set_inode_flags(inode);
1332         unlock_new_inode(inode);
1333         return inode;
1334         
1335 bad_inode:
1336         iget_failed(inode);
1337         return ERR_PTR(ret);
1338 }
1339
1340 int ext2_write_inode(struct inode *inode, int do_sync)
1341 {
1342         struct ext2_inode_info *ei = EXT2_I(inode);
1343         struct super_block *sb = inode->i_sb;
1344         ino_t ino = inode->i_ino;
1345         uid_t uid = inode->i_uid;
1346         gid_t gid = inode->i_gid;
1347         struct buffer_head * bh;
1348         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1349         int n;
1350         int err = 0;
1351
1352         if (IS_ERR(raw_inode))
1353                 return -EIO;
1354
1355         /* For fields not not tracking in the in-memory inode,
1356          * initialise them to zero for new inodes. */
1357         if (ei->i_state & EXT2_STATE_NEW)
1358                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1359
1360         ext2_get_inode_flags(ei);
1361         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1362         if (!(test_opt(sb, NO_UID32))) {
1363                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1364                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1365 /*
1366  * Fix up interoperability with old kernels. Otherwise, old inodes get
1367  * re-used with the upper 16 bits of the uid/gid intact
1368  */
1369                 if (!ei->i_dtime) {
1370                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1371                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1372                 } else {
1373                         raw_inode->i_uid_high = 0;
1374                         raw_inode->i_gid_high = 0;
1375                 }
1376         } else {
1377                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1378                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1379                 raw_inode->i_uid_high = 0;
1380                 raw_inode->i_gid_high = 0;
1381         }
1382         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1383         raw_inode->i_size = cpu_to_le32(inode->i_size);
1384         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1385         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1386         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1387
1388         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1389         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1390         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1391         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1392         raw_inode->i_frag = ei->i_frag_no;
1393         raw_inode->i_fsize = ei->i_frag_size;
1394         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1395         if (!S_ISREG(inode->i_mode))
1396                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1397         else {
1398                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1399                 if (inode->i_size > 0x7fffffffULL) {
1400                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1401                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1402                             EXT2_SB(sb)->s_es->s_rev_level ==
1403                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1404                                /* If this is the first large file
1405                                 * created, add a flag to the superblock.
1406                                 */
1407                                 lock_kernel();
1408                                 ext2_update_dynamic_rev(sb);
1409                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1410                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1411                                 unlock_kernel();
1412                                 ext2_write_super(sb);
1413                         }
1414                 }
1415         }
1416         
1417         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1418         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1419                 if (old_valid_dev(inode->i_rdev)) {
1420                         raw_inode->i_block[0] =
1421                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1422                         raw_inode->i_block[1] = 0;
1423                 } else {
1424                         raw_inode->i_block[0] = 0;
1425                         raw_inode->i_block[1] =
1426                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1427                         raw_inode->i_block[2] = 0;
1428                 }
1429         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1430                 raw_inode->i_block[n] = ei->i_data[n];
1431         mark_buffer_dirty(bh);
1432         if (do_sync) {
1433                 sync_dirty_buffer(bh);
1434                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1435                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1436                                 sb->s_id, (unsigned long) ino);
1437                         err = -EIO;
1438                 }
1439         }
1440         ei->i_state &= ~EXT2_STATE_NEW;
1441         brelse (bh);
1442         return err;
1443 }
1444
1445 int ext2_sync_inode(struct inode *inode)
1446 {
1447         struct writeback_control wbc = {
1448                 .sync_mode = WB_SYNC_ALL,
1449                 .nr_to_write = 0,       /* sys_fsync did this */
1450         };
1451         return sync_inode(inode, &wbc);
1452 }
1453
1454 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1455 {
1456         struct inode *inode = dentry->d_inode;
1457         int error;
1458
1459         error = inode_change_ok(inode, iattr);
1460         if (error)
1461                 return error;
1462
1463         if (iattr->ia_valid & ATTR_SIZE)
1464                 vfs_dq_init(inode);
1465         if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1466             (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1467                 error = dquot_transfer(inode, iattr);
1468                 if (error)
1469                         return error;
1470         }
1471         error = inode_setattr(inode, iattr);
1472         if (!error && (iattr->ia_valid & ATTR_MODE))
1473                 error = ext2_acl_chmod(inode);
1474         return error;
1475 }