527c46d9bc1f035148ab5cb8598954feac481ede
[safe/jmp/linux-2.6] / fs / ext2 / inode.c
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/module.h>
30 #include <linux/writeback.h>
31 #include <linux/buffer_head.h>
32 #include <linux/mpage.h>
33 #include <linux/fiemap.h>
34 #include <linux/namei.h>
35 #include "ext2.h"
36 #include "acl.h"
37 #include "xip.h"
38
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
42
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45 /*
46  * Test whether an inode is a fast symlink.
47  */
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 {
50         int ea_blocks = EXT2_I(inode)->i_file_acl ?
51                 (inode->i_sb->s_blocksize >> 9) : 0;
52
53         return (S_ISLNK(inode->i_mode) &&
54                 inode->i_blocks - ea_blocks == 0);
55 }
56
57 /*
58  * Called at the last iput() if i_nlink is zero.
59  */
60 void ext2_delete_inode (struct inode * inode)
61 {
62         if (!is_bad_inode(inode))
63                 dquot_initialize(inode);
64         truncate_inode_pages(&inode->i_data, 0);
65
66         if (is_bad_inode(inode))
67                 goto no_delete;
68         EXT2_I(inode)->i_dtime  = get_seconds();
69         mark_inode_dirty(inode);
70         __ext2_write_inode(inode, inode_needs_sync(inode));
71
72         inode->i_size = 0;
73         if (inode->i_blocks)
74                 ext2_truncate (inode);
75         ext2_free_inode (inode);
76
77         return;
78 no_delete:
79         clear_inode(inode);     /* We must guarantee clearing of inode... */
80 }
81
82 typedef struct {
83         __le32  *p;
84         __le32  key;
85         struct buffer_head *bh;
86 } Indirect;
87
88 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
89 {
90         p->key = *(p->p = v);
91         p->bh = bh;
92 }
93
94 static inline int verify_chain(Indirect *from, Indirect *to)
95 {
96         while (from <= to && from->key == *from->p)
97                 from++;
98         return (from > to);
99 }
100
101 /**
102  *      ext2_block_to_path - parse the block number into array of offsets
103  *      @inode: inode in question (we are only interested in its superblock)
104  *      @i_block: block number to be parsed
105  *      @offsets: array to store the offsets in
106  *      @boundary: set this non-zero if the referred-to block is likely to be
107  *             followed (on disk) by an indirect block.
108  *      To store the locations of file's data ext2 uses a data structure common
109  *      for UNIX filesystems - tree of pointers anchored in the inode, with
110  *      data blocks at leaves and indirect blocks in intermediate nodes.
111  *      This function translates the block number into path in that tree -
112  *      return value is the path length and @offsets[n] is the offset of
113  *      pointer to (n+1)th node in the nth one. If @block is out of range
114  *      (negative or too large) warning is printed and zero returned.
115  *
116  *      Note: function doesn't find node addresses, so no IO is needed. All
117  *      we need to know is the capacity of indirect blocks (taken from the
118  *      inode->i_sb).
119  */
120
121 /*
122  * Portability note: the last comparison (check that we fit into triple
123  * indirect block) is spelled differently, because otherwise on an
124  * architecture with 32-bit longs and 8Kb pages we might get into trouble
125  * if our filesystem had 8Kb blocks. We might use long long, but that would
126  * kill us on x86. Oh, well, at least the sign propagation does not matter -
127  * i_block would have to be negative in the very beginning, so we would not
128  * get there at all.
129  */
130
131 static int ext2_block_to_path(struct inode *inode,
132                         long i_block, int offsets[4], int *boundary)
133 {
134         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
135         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
136         const long direct_blocks = EXT2_NDIR_BLOCKS,
137                 indirect_blocks = ptrs,
138                 double_blocks = (1 << (ptrs_bits * 2));
139         int n = 0;
140         int final = 0;
141
142         if (i_block < 0) {
143                 ext2_msg(inode->i_sb, KERN_WARNING,
144                         "warning: %s: block < 0", __func__);
145         } else if (i_block < direct_blocks) {
146                 offsets[n++] = i_block;
147                 final = direct_blocks;
148         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
149                 offsets[n++] = EXT2_IND_BLOCK;
150                 offsets[n++] = i_block;
151                 final = ptrs;
152         } else if ((i_block -= indirect_blocks) < double_blocks) {
153                 offsets[n++] = EXT2_DIND_BLOCK;
154                 offsets[n++] = i_block >> ptrs_bits;
155                 offsets[n++] = i_block & (ptrs - 1);
156                 final = ptrs;
157         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
158                 offsets[n++] = EXT2_TIND_BLOCK;
159                 offsets[n++] = i_block >> (ptrs_bits * 2);
160                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
161                 offsets[n++] = i_block & (ptrs - 1);
162                 final = ptrs;
163         } else {
164                 ext2_msg(inode->i_sb, KERN_WARNING,
165                         "warning: %s: block is too big", __func__);
166         }
167         if (boundary)
168                 *boundary = final - 1 - (i_block & (ptrs - 1));
169
170         return n;
171 }
172
173 /**
174  *      ext2_get_branch - read the chain of indirect blocks leading to data
175  *      @inode: inode in question
176  *      @depth: depth of the chain (1 - direct pointer, etc.)
177  *      @offsets: offsets of pointers in inode/indirect blocks
178  *      @chain: place to store the result
179  *      @err: here we store the error value
180  *
181  *      Function fills the array of triples <key, p, bh> and returns %NULL
182  *      if everything went OK or the pointer to the last filled triple
183  *      (incomplete one) otherwise. Upon the return chain[i].key contains
184  *      the number of (i+1)-th block in the chain (as it is stored in memory,
185  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
186  *      number (it points into struct inode for i==0 and into the bh->b_data
187  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
188  *      block for i>0 and NULL for i==0. In other words, it holds the block
189  *      numbers of the chain, addresses they were taken from (and where we can
190  *      verify that chain did not change) and buffer_heads hosting these
191  *      numbers.
192  *
193  *      Function stops when it stumbles upon zero pointer (absent block)
194  *              (pointer to last triple returned, *@err == 0)
195  *      or when it gets an IO error reading an indirect block
196  *              (ditto, *@err == -EIO)
197  *      or when it notices that chain had been changed while it was reading
198  *              (ditto, *@err == -EAGAIN)
199  *      or when it reads all @depth-1 indirect blocks successfully and finds
200  *      the whole chain, all way to the data (returns %NULL, *err == 0).
201  */
202 static Indirect *ext2_get_branch(struct inode *inode,
203                                  int depth,
204                                  int *offsets,
205                                  Indirect chain[4],
206                                  int *err)
207 {
208         struct super_block *sb = inode->i_sb;
209         Indirect *p = chain;
210         struct buffer_head *bh;
211
212         *err = 0;
213         /* i_data is not going away, no lock needed */
214         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
215         if (!p->key)
216                 goto no_block;
217         while (--depth) {
218                 bh = sb_bread(sb, le32_to_cpu(p->key));
219                 if (!bh)
220                         goto failure;
221                 read_lock(&EXT2_I(inode)->i_meta_lock);
222                 if (!verify_chain(chain, p))
223                         goto changed;
224                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
225                 read_unlock(&EXT2_I(inode)->i_meta_lock);
226                 if (!p->key)
227                         goto no_block;
228         }
229         return NULL;
230
231 changed:
232         read_unlock(&EXT2_I(inode)->i_meta_lock);
233         brelse(bh);
234         *err = -EAGAIN;
235         goto no_block;
236 failure:
237         *err = -EIO;
238 no_block:
239         return p;
240 }
241
242 /**
243  *      ext2_find_near - find a place for allocation with sufficient locality
244  *      @inode: owner
245  *      @ind: descriptor of indirect block.
246  *
247  *      This function returns the preferred place for block allocation.
248  *      It is used when heuristic for sequential allocation fails.
249  *      Rules are:
250  *        + if there is a block to the left of our position - allocate near it.
251  *        + if pointer will live in indirect block - allocate near that block.
252  *        + if pointer will live in inode - allocate in the same cylinder group.
253  *
254  * In the latter case we colour the starting block by the callers PID to
255  * prevent it from clashing with concurrent allocations for a different inode
256  * in the same block group.   The PID is used here so that functionally related
257  * files will be close-by on-disk.
258  *
259  *      Caller must make sure that @ind is valid and will stay that way.
260  */
261
262 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
263 {
264         struct ext2_inode_info *ei = EXT2_I(inode);
265         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
266         __le32 *p;
267         ext2_fsblk_t bg_start;
268         ext2_fsblk_t colour;
269
270         /* Try to find previous block */
271         for (p = ind->p - 1; p >= start; p--)
272                 if (*p)
273                         return le32_to_cpu(*p);
274
275         /* No such thing, so let's try location of indirect block */
276         if (ind->bh)
277                 return ind->bh->b_blocknr;
278
279         /*
280          * It is going to be refered from inode itself? OK, just put it into
281          * the same cylinder group then.
282          */
283         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
284         colour = (current->pid % 16) *
285                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
286         return bg_start + colour;
287 }
288
289 /**
290  *      ext2_find_goal - find a preferred place for allocation.
291  *      @inode: owner
292  *      @block:  block we want
293  *      @partial: pointer to the last triple within a chain
294  *
295  *      Returns preferred place for a block (the goal).
296  */
297
298 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
299                                           Indirect *partial)
300 {
301         struct ext2_block_alloc_info *block_i;
302
303         block_i = EXT2_I(inode)->i_block_alloc_info;
304
305         /*
306          * try the heuristic for sequential allocation,
307          * failing that at least try to get decent locality.
308          */
309         if (block_i && (block == block_i->last_alloc_logical_block + 1)
310                 && (block_i->last_alloc_physical_block != 0)) {
311                 return block_i->last_alloc_physical_block + 1;
312         }
313
314         return ext2_find_near(inode, partial);
315 }
316
317 /**
318  *      ext2_blks_to_allocate: Look up the block map and count the number
319  *      of direct blocks need to be allocated for the given branch.
320  *
321  *      @branch: chain of indirect blocks
322  *      @k: number of blocks need for indirect blocks
323  *      @blks: number of data blocks to be mapped.
324  *      @blocks_to_boundary:  the offset in the indirect block
325  *
326  *      return the total number of blocks to be allocate, including the
327  *      direct and indirect blocks.
328  */
329 static int
330 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
331                 int blocks_to_boundary)
332 {
333         unsigned long count = 0;
334
335         /*
336          * Simple case, [t,d]Indirect block(s) has not allocated yet
337          * then it's clear blocks on that path have not allocated
338          */
339         if (k > 0) {
340                 /* right now don't hanel cross boundary allocation */
341                 if (blks < blocks_to_boundary + 1)
342                         count += blks;
343                 else
344                         count += blocks_to_boundary + 1;
345                 return count;
346         }
347
348         count++;
349         while (count < blks && count <= blocks_to_boundary
350                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
351                 count++;
352         }
353         return count;
354 }
355
356 /**
357  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
358  *      @indirect_blks: the number of blocks need to allocate for indirect
359  *                      blocks
360  *
361  *      @new_blocks: on return it will store the new block numbers for
362  *      the indirect blocks(if needed) and the first direct block,
363  *      @blks:  on return it will store the total number of allocated
364  *              direct blocks
365  */
366 static int ext2_alloc_blocks(struct inode *inode,
367                         ext2_fsblk_t goal, int indirect_blks, int blks,
368                         ext2_fsblk_t new_blocks[4], int *err)
369 {
370         int target, i;
371         unsigned long count = 0;
372         int index = 0;
373         ext2_fsblk_t current_block = 0;
374         int ret = 0;
375
376         /*
377          * Here we try to allocate the requested multiple blocks at once,
378          * on a best-effort basis.
379          * To build a branch, we should allocate blocks for
380          * the indirect blocks(if not allocated yet), and at least
381          * the first direct block of this branch.  That's the
382          * minimum number of blocks need to allocate(required)
383          */
384         target = blks + indirect_blks;
385
386         while (1) {
387                 count = target;
388                 /* allocating blocks for indirect blocks and direct blocks */
389                 current_block = ext2_new_blocks(inode,goal,&count,err);
390                 if (*err)
391                         goto failed_out;
392
393                 target -= count;
394                 /* allocate blocks for indirect blocks */
395                 while (index < indirect_blks && count) {
396                         new_blocks[index++] = current_block++;
397                         count--;
398                 }
399
400                 if (count > 0)
401                         break;
402         }
403
404         /* save the new block number for the first direct block */
405         new_blocks[index] = current_block;
406
407         /* total number of blocks allocated for direct blocks */
408         ret = count;
409         *err = 0;
410         return ret;
411 failed_out:
412         for (i = 0; i <index; i++)
413                 ext2_free_blocks(inode, new_blocks[i], 1);
414         return ret;
415 }
416
417 /**
418  *      ext2_alloc_branch - allocate and set up a chain of blocks.
419  *      @inode: owner
420  *      @num: depth of the chain (number of blocks to allocate)
421  *      @offsets: offsets (in the blocks) to store the pointers to next.
422  *      @branch: place to store the chain in.
423  *
424  *      This function allocates @num blocks, zeroes out all but the last one,
425  *      links them into chain and (if we are synchronous) writes them to disk.
426  *      In other words, it prepares a branch that can be spliced onto the
427  *      inode. It stores the information about that chain in the branch[], in
428  *      the same format as ext2_get_branch() would do. We are calling it after
429  *      we had read the existing part of chain and partial points to the last
430  *      triple of that (one with zero ->key). Upon the exit we have the same
431  *      picture as after the successful ext2_get_block(), excpet that in one
432  *      place chain is disconnected - *branch->p is still zero (we did not
433  *      set the last link), but branch->key contains the number that should
434  *      be placed into *branch->p to fill that gap.
435  *
436  *      If allocation fails we free all blocks we've allocated (and forget
437  *      their buffer_heads) and return the error value the from failed
438  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
439  *      as described above and return 0.
440  */
441
442 static int ext2_alloc_branch(struct inode *inode,
443                         int indirect_blks, int *blks, ext2_fsblk_t goal,
444                         int *offsets, Indirect *branch)
445 {
446         int blocksize = inode->i_sb->s_blocksize;
447         int i, n = 0;
448         int err = 0;
449         struct buffer_head *bh;
450         int num;
451         ext2_fsblk_t new_blocks[4];
452         ext2_fsblk_t current_block;
453
454         num = ext2_alloc_blocks(inode, goal, indirect_blks,
455                                 *blks, new_blocks, &err);
456         if (err)
457                 return err;
458
459         branch[0].key = cpu_to_le32(new_blocks[0]);
460         /*
461          * metadata blocks and data blocks are allocated.
462          */
463         for (n = 1; n <= indirect_blks;  n++) {
464                 /*
465                  * Get buffer_head for parent block, zero it out
466                  * and set the pointer to new one, then send
467                  * parent to disk.
468                  */
469                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
470                 branch[n].bh = bh;
471                 lock_buffer(bh);
472                 memset(bh->b_data, 0, blocksize);
473                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
474                 branch[n].key = cpu_to_le32(new_blocks[n]);
475                 *branch[n].p = branch[n].key;
476                 if ( n == indirect_blks) {
477                         current_block = new_blocks[n];
478                         /*
479                          * End of chain, update the last new metablock of
480                          * the chain to point to the new allocated
481                          * data blocks numbers
482                          */
483                         for (i=1; i < num; i++)
484                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
485                 }
486                 set_buffer_uptodate(bh);
487                 unlock_buffer(bh);
488                 mark_buffer_dirty_inode(bh, inode);
489                 /* We used to sync bh here if IS_SYNC(inode).
490                  * But we now rely upon generic_write_sync()
491                  * and b_inode_buffers.  But not for directories.
492                  */
493                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
494                         sync_dirty_buffer(bh);
495         }
496         *blks = num;
497         return err;
498 }
499
500 /**
501  * ext2_splice_branch - splice the allocated branch onto inode.
502  * @inode: owner
503  * @block: (logical) number of block we are adding
504  * @where: location of missing link
505  * @num:   number of indirect blocks we are adding
506  * @blks:  number of direct blocks we are adding
507  *
508  * This function fills the missing link and does all housekeeping needed in
509  * inode (->i_blocks, etc.). In case of success we end up with the full
510  * chain to new block and return 0.
511  */
512 static void ext2_splice_branch(struct inode *inode,
513                         long block, Indirect *where, int num, int blks)
514 {
515         int i;
516         struct ext2_block_alloc_info *block_i;
517         ext2_fsblk_t current_block;
518
519         block_i = EXT2_I(inode)->i_block_alloc_info;
520
521         /* XXX LOCKING probably should have i_meta_lock ?*/
522         /* That's it */
523
524         *where->p = where->key;
525
526         /*
527          * Update the host buffer_head or inode to point to more just allocated
528          * direct blocks blocks
529          */
530         if (num == 0 && blks > 1) {
531                 current_block = le32_to_cpu(where->key) + 1;
532                 for (i = 1; i < blks; i++)
533                         *(where->p + i ) = cpu_to_le32(current_block++);
534         }
535
536         /*
537          * update the most recently allocated logical & physical block
538          * in i_block_alloc_info, to assist find the proper goal block for next
539          * allocation
540          */
541         if (block_i) {
542                 block_i->last_alloc_logical_block = block + blks - 1;
543                 block_i->last_alloc_physical_block =
544                                 le32_to_cpu(where[num].key) + blks - 1;
545         }
546
547         /* We are done with atomic stuff, now do the rest of housekeeping */
548
549         /* had we spliced it onto indirect block? */
550         if (where->bh)
551                 mark_buffer_dirty_inode(where->bh, inode);
552
553         inode->i_ctime = CURRENT_TIME_SEC;
554         mark_inode_dirty(inode);
555 }
556
557 /*
558  * Allocation strategy is simple: if we have to allocate something, we will
559  * have to go the whole way to leaf. So let's do it before attaching anything
560  * to tree, set linkage between the newborn blocks, write them if sync is
561  * required, recheck the path, free and repeat if check fails, otherwise
562  * set the last missing link (that will protect us from any truncate-generated
563  * removals - all blocks on the path are immune now) and possibly force the
564  * write on the parent block.
565  * That has a nice additional property: no special recovery from the failed
566  * allocations is needed - we simply release blocks and do not touch anything
567  * reachable from inode.
568  *
569  * `handle' can be NULL if create == 0.
570  *
571  * return > 0, # of blocks mapped or allocated.
572  * return = 0, if plain lookup failed.
573  * return < 0, error case.
574  */
575 static int ext2_get_blocks(struct inode *inode,
576                            sector_t iblock, unsigned long maxblocks,
577                            struct buffer_head *bh_result,
578                            int create)
579 {
580         int err = -EIO;
581         int offsets[4];
582         Indirect chain[4];
583         Indirect *partial;
584         ext2_fsblk_t goal;
585         int indirect_blks;
586         int blocks_to_boundary = 0;
587         int depth;
588         struct ext2_inode_info *ei = EXT2_I(inode);
589         int count = 0;
590         ext2_fsblk_t first_block = 0;
591
592         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
593
594         if (depth == 0)
595                 return (err);
596
597         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
598         /* Simplest case - block found, no allocation needed */
599         if (!partial) {
600                 first_block = le32_to_cpu(chain[depth - 1].key);
601                 clear_buffer_new(bh_result); /* What's this do? */
602                 count++;
603                 /*map more blocks*/
604                 while (count < maxblocks && count <= blocks_to_boundary) {
605                         ext2_fsblk_t blk;
606
607                         if (!verify_chain(chain, chain + depth - 1)) {
608                                 /*
609                                  * Indirect block might be removed by
610                                  * truncate while we were reading it.
611                                  * Handling of that case: forget what we've
612                                  * got now, go to reread.
613                                  */
614                                 err = -EAGAIN;
615                                 count = 0;
616                                 break;
617                         }
618                         blk = le32_to_cpu(*(chain[depth-1].p + count));
619                         if (blk == first_block + count)
620                                 count++;
621                         else
622                                 break;
623                 }
624                 if (err != -EAGAIN)
625                         goto got_it;
626         }
627
628         /* Next simple case - plain lookup or failed read of indirect block */
629         if (!create || err == -EIO)
630                 goto cleanup;
631
632         mutex_lock(&ei->truncate_mutex);
633         /*
634          * If the indirect block is missing while we are reading
635          * the chain(ext3_get_branch() returns -EAGAIN err), or
636          * if the chain has been changed after we grab the semaphore,
637          * (either because another process truncated this branch, or
638          * another get_block allocated this branch) re-grab the chain to see if
639          * the request block has been allocated or not.
640          *
641          * Since we already block the truncate/other get_block
642          * at this point, we will have the current copy of the chain when we
643          * splice the branch into the tree.
644          */
645         if (err == -EAGAIN || !verify_chain(chain, partial)) {
646                 while (partial > chain) {
647                         brelse(partial->bh);
648                         partial--;
649                 }
650                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
651                 if (!partial) {
652                         count++;
653                         mutex_unlock(&ei->truncate_mutex);
654                         if (err)
655                                 goto cleanup;
656                         clear_buffer_new(bh_result);
657                         goto got_it;
658                 }
659         }
660
661         /*
662          * Okay, we need to do block allocation.  Lazily initialize the block
663          * allocation info here if necessary
664         */
665         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
666                 ext2_init_block_alloc_info(inode);
667
668         goal = ext2_find_goal(inode, iblock, partial);
669
670         /* the number of blocks need to allocate for [d,t]indirect blocks */
671         indirect_blks = (chain + depth) - partial - 1;
672         /*
673          * Next look up the indirect map to count the totoal number of
674          * direct blocks to allocate for this branch.
675          */
676         count = ext2_blks_to_allocate(partial, indirect_blks,
677                                         maxblocks, blocks_to_boundary);
678         /*
679          * XXX ???? Block out ext2_truncate while we alter the tree
680          */
681         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
682                                 offsets + (partial - chain), partial);
683
684         if (err) {
685                 mutex_unlock(&ei->truncate_mutex);
686                 goto cleanup;
687         }
688
689         if (ext2_use_xip(inode->i_sb)) {
690                 /*
691                  * we need to clear the block
692                  */
693                 err = ext2_clear_xip_target (inode,
694                         le32_to_cpu(chain[depth-1].key));
695                 if (err) {
696                         mutex_unlock(&ei->truncate_mutex);
697                         goto cleanup;
698                 }
699         }
700
701         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
702         mutex_unlock(&ei->truncate_mutex);
703         set_buffer_new(bh_result);
704 got_it:
705         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
706         if (count > blocks_to_boundary)
707                 set_buffer_boundary(bh_result);
708         err = count;
709         /* Clean up and exit */
710         partial = chain + depth - 1;    /* the whole chain */
711 cleanup:
712         while (partial > chain) {
713                 brelse(partial->bh);
714                 partial--;
715         }
716         return err;
717 }
718
719 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
720 {
721         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
722         int ret = ext2_get_blocks(inode, iblock, max_blocks,
723                               bh_result, create);
724         if (ret > 0) {
725                 bh_result->b_size = (ret << inode->i_blkbits);
726                 ret = 0;
727         }
728         return ret;
729
730 }
731
732 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
733                 u64 start, u64 len)
734 {
735         return generic_block_fiemap(inode, fieinfo, start, len,
736                                     ext2_get_block);
737 }
738
739 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
740 {
741         return block_write_full_page(page, ext2_get_block, wbc);
742 }
743
744 static int ext2_readpage(struct file *file, struct page *page)
745 {
746         return mpage_readpage(page, ext2_get_block);
747 }
748
749 static int
750 ext2_readpages(struct file *file, struct address_space *mapping,
751                 struct list_head *pages, unsigned nr_pages)
752 {
753         return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
754 }
755
756 int __ext2_write_begin(struct file *file, struct address_space *mapping,
757                 loff_t pos, unsigned len, unsigned flags,
758                 struct page **pagep, void **fsdata)
759 {
760         return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
761                                                         ext2_get_block);
762 }
763
764 static int
765 ext2_write_begin(struct file *file, struct address_space *mapping,
766                 loff_t pos, unsigned len, unsigned flags,
767                 struct page **pagep, void **fsdata)
768 {
769         *pagep = NULL;
770         return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
771 }
772
773 static int
774 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
775                 loff_t pos, unsigned len, unsigned flags,
776                 struct page **pagep, void **fsdata)
777 {
778         /*
779          * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
780          * directory handling code to pass around offsets rather than struct
781          * pages in order to make this work easily.
782          */
783         return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
784                                                         ext2_get_block);
785 }
786
787 static int ext2_nobh_writepage(struct page *page,
788                         struct writeback_control *wbc)
789 {
790         return nobh_writepage(page, ext2_get_block, wbc);
791 }
792
793 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
794 {
795         return generic_block_bmap(mapping,block,ext2_get_block);
796 }
797
798 static ssize_t
799 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
800                         loff_t offset, unsigned long nr_segs)
801 {
802         struct file *file = iocb->ki_filp;
803         struct inode *inode = file->f_mapping->host;
804
805         return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
806                                 offset, nr_segs, ext2_get_block, NULL);
807 }
808
809 static int
810 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
811 {
812         return mpage_writepages(mapping, wbc, ext2_get_block);
813 }
814
815 const struct address_space_operations ext2_aops = {
816         .readpage               = ext2_readpage,
817         .readpages              = ext2_readpages,
818         .writepage              = ext2_writepage,
819         .sync_page              = block_sync_page,
820         .write_begin            = ext2_write_begin,
821         .write_end              = generic_write_end,
822         .bmap                   = ext2_bmap,
823         .direct_IO              = ext2_direct_IO,
824         .writepages             = ext2_writepages,
825         .migratepage            = buffer_migrate_page,
826         .is_partially_uptodate  = block_is_partially_uptodate,
827         .error_remove_page      = generic_error_remove_page,
828 };
829
830 const struct address_space_operations ext2_aops_xip = {
831         .bmap                   = ext2_bmap,
832         .get_xip_mem            = ext2_get_xip_mem,
833 };
834
835 const struct address_space_operations ext2_nobh_aops = {
836         .readpage               = ext2_readpage,
837         .readpages              = ext2_readpages,
838         .writepage              = ext2_nobh_writepage,
839         .sync_page              = block_sync_page,
840         .write_begin            = ext2_nobh_write_begin,
841         .write_end              = nobh_write_end,
842         .bmap                   = ext2_bmap,
843         .direct_IO              = ext2_direct_IO,
844         .writepages             = ext2_writepages,
845         .migratepage            = buffer_migrate_page,
846         .error_remove_page      = generic_error_remove_page,
847 };
848
849 /*
850  * Probably it should be a library function... search for first non-zero word
851  * or memcmp with zero_page, whatever is better for particular architecture.
852  * Linus?
853  */
854 static inline int all_zeroes(__le32 *p, __le32 *q)
855 {
856         while (p < q)
857                 if (*p++)
858                         return 0;
859         return 1;
860 }
861
862 /**
863  *      ext2_find_shared - find the indirect blocks for partial truncation.
864  *      @inode:   inode in question
865  *      @depth:   depth of the affected branch
866  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
867  *      @chain:   place to store the pointers to partial indirect blocks
868  *      @top:     place to the (detached) top of branch
869  *
870  *      This is a helper function used by ext2_truncate().
871  *
872  *      When we do truncate() we may have to clean the ends of several indirect
873  *      blocks but leave the blocks themselves alive. Block is partially
874  *      truncated if some data below the new i_size is refered from it (and
875  *      it is on the path to the first completely truncated data block, indeed).
876  *      We have to free the top of that path along with everything to the right
877  *      of the path. Since no allocation past the truncation point is possible
878  *      until ext2_truncate() finishes, we may safely do the latter, but top
879  *      of branch may require special attention - pageout below the truncation
880  *      point might try to populate it.
881  *
882  *      We atomically detach the top of branch from the tree, store the block
883  *      number of its root in *@top, pointers to buffer_heads of partially
884  *      truncated blocks - in @chain[].bh and pointers to their last elements
885  *      that should not be removed - in @chain[].p. Return value is the pointer
886  *      to last filled element of @chain.
887  *
888  *      The work left to caller to do the actual freeing of subtrees:
889  *              a) free the subtree starting from *@top
890  *              b) free the subtrees whose roots are stored in
891  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
892  *              c) free the subtrees growing from the inode past the @chain[0].p
893  *                      (no partially truncated stuff there).
894  */
895
896 static Indirect *ext2_find_shared(struct inode *inode,
897                                 int depth,
898                                 int offsets[4],
899                                 Indirect chain[4],
900                                 __le32 *top)
901 {
902         Indirect *partial, *p;
903         int k, err;
904
905         *top = 0;
906         for (k = depth; k > 1 && !offsets[k-1]; k--)
907                 ;
908         partial = ext2_get_branch(inode, k, offsets, chain, &err);
909         if (!partial)
910                 partial = chain + k-1;
911         /*
912          * If the branch acquired continuation since we've looked at it -
913          * fine, it should all survive and (new) top doesn't belong to us.
914          */
915         write_lock(&EXT2_I(inode)->i_meta_lock);
916         if (!partial->key && *partial->p) {
917                 write_unlock(&EXT2_I(inode)->i_meta_lock);
918                 goto no_top;
919         }
920         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
921                 ;
922         /*
923          * OK, we've found the last block that must survive. The rest of our
924          * branch should be detached before unlocking. However, if that rest
925          * of branch is all ours and does not grow immediately from the inode
926          * it's easier to cheat and just decrement partial->p.
927          */
928         if (p == chain + k - 1 && p > chain) {
929                 p->p--;
930         } else {
931                 *top = *p->p;
932                 *p->p = 0;
933         }
934         write_unlock(&EXT2_I(inode)->i_meta_lock);
935
936         while(partial > p)
937         {
938                 brelse(partial->bh);
939                 partial--;
940         }
941 no_top:
942         return partial;
943 }
944
945 /**
946  *      ext2_free_data - free a list of data blocks
947  *      @inode: inode we are dealing with
948  *      @p:     array of block numbers
949  *      @q:     points immediately past the end of array
950  *
951  *      We are freeing all blocks refered from that array (numbers are
952  *      stored as little-endian 32-bit) and updating @inode->i_blocks
953  *      appropriately.
954  */
955 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
956 {
957         unsigned long block_to_free = 0, count = 0;
958         unsigned long nr;
959
960         for ( ; p < q ; p++) {
961                 nr = le32_to_cpu(*p);
962                 if (nr) {
963                         *p = 0;
964                         /* accumulate blocks to free if they're contiguous */
965                         if (count == 0)
966                                 goto free_this;
967                         else if (block_to_free == nr - count)
968                                 count++;
969                         else {
970                                 mark_inode_dirty(inode);
971                                 ext2_free_blocks (inode, block_to_free, count);
972                         free_this:
973                                 block_to_free = nr;
974                                 count = 1;
975                         }
976                 }
977         }
978         if (count > 0) {
979                 mark_inode_dirty(inode);
980                 ext2_free_blocks (inode, block_to_free, count);
981         }
982 }
983
984 /**
985  *      ext2_free_branches - free an array of branches
986  *      @inode: inode we are dealing with
987  *      @p:     array of block numbers
988  *      @q:     pointer immediately past the end of array
989  *      @depth: depth of the branches to free
990  *
991  *      We are freeing all blocks refered from these branches (numbers are
992  *      stored as little-endian 32-bit) and updating @inode->i_blocks
993  *      appropriately.
994  */
995 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
996 {
997         struct buffer_head * bh;
998         unsigned long nr;
999
1000         if (depth--) {
1001                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1002                 for ( ; p < q ; p++) {
1003                         nr = le32_to_cpu(*p);
1004                         if (!nr)
1005                                 continue;
1006                         *p = 0;
1007                         bh = sb_bread(inode->i_sb, nr);
1008                         /*
1009                          * A read failure? Report error and clear slot
1010                          * (should be rare).
1011                          */ 
1012                         if (!bh) {
1013                                 ext2_error(inode->i_sb, "ext2_free_branches",
1014                                         "Read failure, inode=%ld, block=%ld",
1015                                         inode->i_ino, nr);
1016                                 continue;
1017                         }
1018                         ext2_free_branches(inode,
1019                                            (__le32*)bh->b_data,
1020                                            (__le32*)bh->b_data + addr_per_block,
1021                                            depth);
1022                         bforget(bh);
1023                         ext2_free_blocks(inode, nr, 1);
1024                         mark_inode_dirty(inode);
1025                 }
1026         } else
1027                 ext2_free_data(inode, p, q);
1028 }
1029
1030 void ext2_truncate(struct inode *inode)
1031 {
1032         __le32 *i_data = EXT2_I(inode)->i_data;
1033         struct ext2_inode_info *ei = EXT2_I(inode);
1034         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1035         int offsets[4];
1036         Indirect chain[4];
1037         Indirect *partial;
1038         __le32 nr = 0;
1039         int n;
1040         long iblock;
1041         unsigned blocksize;
1042
1043         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1044             S_ISLNK(inode->i_mode)))
1045                 return;
1046         if (ext2_inode_is_fast_symlink(inode))
1047                 return;
1048         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1049                 return;
1050
1051         blocksize = inode->i_sb->s_blocksize;
1052         iblock = (inode->i_size + blocksize-1)
1053                                         >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1054
1055         if (mapping_is_xip(inode->i_mapping))
1056                 xip_truncate_page(inode->i_mapping, inode->i_size);
1057         else if (test_opt(inode->i_sb, NOBH))
1058                 nobh_truncate_page(inode->i_mapping,
1059                                 inode->i_size, ext2_get_block);
1060         else
1061                 block_truncate_page(inode->i_mapping,
1062                                 inode->i_size, ext2_get_block);
1063
1064         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1065         if (n == 0)
1066                 return;
1067
1068         /*
1069          * From here we block out all ext2_get_block() callers who want to
1070          * modify the block allocation tree.
1071          */
1072         mutex_lock(&ei->truncate_mutex);
1073
1074         if (n == 1) {
1075                 ext2_free_data(inode, i_data+offsets[0],
1076                                         i_data + EXT2_NDIR_BLOCKS);
1077                 goto do_indirects;
1078         }
1079
1080         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1081         /* Kill the top of shared branch (already detached) */
1082         if (nr) {
1083                 if (partial == chain)
1084                         mark_inode_dirty(inode);
1085                 else
1086                         mark_buffer_dirty_inode(partial->bh, inode);
1087                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1088         }
1089         /* Clear the ends of indirect blocks on the shared branch */
1090         while (partial > chain) {
1091                 ext2_free_branches(inode,
1092                                    partial->p + 1,
1093                                    (__le32*)partial->bh->b_data+addr_per_block,
1094                                    (chain+n-1) - partial);
1095                 mark_buffer_dirty_inode(partial->bh, inode);
1096                 brelse (partial->bh);
1097                 partial--;
1098         }
1099 do_indirects:
1100         /* Kill the remaining (whole) subtrees */
1101         switch (offsets[0]) {
1102                 default:
1103                         nr = i_data[EXT2_IND_BLOCK];
1104                         if (nr) {
1105                                 i_data[EXT2_IND_BLOCK] = 0;
1106                                 mark_inode_dirty(inode);
1107                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1108                         }
1109                 case EXT2_IND_BLOCK:
1110                         nr = i_data[EXT2_DIND_BLOCK];
1111                         if (nr) {
1112                                 i_data[EXT2_DIND_BLOCK] = 0;
1113                                 mark_inode_dirty(inode);
1114                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1115                         }
1116                 case EXT2_DIND_BLOCK:
1117                         nr = i_data[EXT2_TIND_BLOCK];
1118                         if (nr) {
1119                                 i_data[EXT2_TIND_BLOCK] = 0;
1120                                 mark_inode_dirty(inode);
1121                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1122                         }
1123                 case EXT2_TIND_BLOCK:
1124                         ;
1125         }
1126
1127         ext2_discard_reservation(inode);
1128
1129         mutex_unlock(&ei->truncate_mutex);
1130         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1131         if (inode_needs_sync(inode)) {
1132                 sync_mapping_buffers(inode->i_mapping);
1133                 ext2_sync_inode (inode);
1134         } else {
1135                 mark_inode_dirty(inode);
1136         }
1137 }
1138
1139 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1140                                         struct buffer_head **p)
1141 {
1142         struct buffer_head * bh;
1143         unsigned long block_group;
1144         unsigned long block;
1145         unsigned long offset;
1146         struct ext2_group_desc * gdp;
1147
1148         *p = NULL;
1149         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1150             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1151                 goto Einval;
1152
1153         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1154         gdp = ext2_get_group_desc(sb, block_group, NULL);
1155         if (!gdp)
1156                 goto Egdp;
1157         /*
1158          * Figure out the offset within the block group inode table
1159          */
1160         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1161         block = le32_to_cpu(gdp->bg_inode_table) +
1162                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1163         if (!(bh = sb_bread(sb, block)))
1164                 goto Eio;
1165
1166         *p = bh;
1167         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1168         return (struct ext2_inode *) (bh->b_data + offset);
1169
1170 Einval:
1171         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1172                    (unsigned long) ino);
1173         return ERR_PTR(-EINVAL);
1174 Eio:
1175         ext2_error(sb, "ext2_get_inode",
1176                    "unable to read inode block - inode=%lu, block=%lu",
1177                    (unsigned long) ino, block);
1178 Egdp:
1179         return ERR_PTR(-EIO);
1180 }
1181
1182 void ext2_set_inode_flags(struct inode *inode)
1183 {
1184         unsigned int flags = EXT2_I(inode)->i_flags;
1185
1186         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1187         if (flags & EXT2_SYNC_FL)
1188                 inode->i_flags |= S_SYNC;
1189         if (flags & EXT2_APPEND_FL)
1190                 inode->i_flags |= S_APPEND;
1191         if (flags & EXT2_IMMUTABLE_FL)
1192                 inode->i_flags |= S_IMMUTABLE;
1193         if (flags & EXT2_NOATIME_FL)
1194                 inode->i_flags |= S_NOATIME;
1195         if (flags & EXT2_DIRSYNC_FL)
1196                 inode->i_flags |= S_DIRSYNC;
1197 }
1198
1199 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1200 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1201 {
1202         unsigned int flags = ei->vfs_inode.i_flags;
1203
1204         ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1205                         EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1206         if (flags & S_SYNC)
1207                 ei->i_flags |= EXT2_SYNC_FL;
1208         if (flags & S_APPEND)
1209                 ei->i_flags |= EXT2_APPEND_FL;
1210         if (flags & S_IMMUTABLE)
1211                 ei->i_flags |= EXT2_IMMUTABLE_FL;
1212         if (flags & S_NOATIME)
1213                 ei->i_flags |= EXT2_NOATIME_FL;
1214         if (flags & S_DIRSYNC)
1215                 ei->i_flags |= EXT2_DIRSYNC_FL;
1216 }
1217
1218 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1219 {
1220         struct ext2_inode_info *ei;
1221         struct buffer_head * bh;
1222         struct ext2_inode *raw_inode;
1223         struct inode *inode;
1224         long ret = -EIO;
1225         int n;
1226
1227         inode = iget_locked(sb, ino);
1228         if (!inode)
1229                 return ERR_PTR(-ENOMEM);
1230         if (!(inode->i_state & I_NEW))
1231                 return inode;
1232
1233         ei = EXT2_I(inode);
1234         ei->i_block_alloc_info = NULL;
1235
1236         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1237         if (IS_ERR(raw_inode)) {
1238                 ret = PTR_ERR(raw_inode);
1239                 goto bad_inode;
1240         }
1241
1242         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1243         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1244         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1245         if (!(test_opt (inode->i_sb, NO_UID32))) {
1246                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1247                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1248         }
1249         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1250         inode->i_size = le32_to_cpu(raw_inode->i_size);
1251         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1252         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1253         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1254         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1255         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1256         /* We now have enough fields to check if the inode was active or not.
1257          * This is needed because nfsd might try to access dead inodes
1258          * the test is that same one that e2fsck uses
1259          * NeilBrown 1999oct15
1260          */
1261         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1262                 /* this inode is deleted */
1263                 brelse (bh);
1264                 ret = -ESTALE;
1265                 goto bad_inode;
1266         }
1267         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1268         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1269         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1270         ei->i_frag_no = raw_inode->i_frag;
1271         ei->i_frag_size = raw_inode->i_fsize;
1272         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1273         ei->i_dir_acl = 0;
1274         if (S_ISREG(inode->i_mode))
1275                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1276         else
1277                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1278         ei->i_dtime = 0;
1279         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1280         ei->i_state = 0;
1281         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1282         ei->i_dir_start_lookup = 0;
1283
1284         /*
1285          * NOTE! The in-memory inode i_data array is in little-endian order
1286          * even on big-endian machines: we do NOT byteswap the block numbers!
1287          */
1288         for (n = 0; n < EXT2_N_BLOCKS; n++)
1289                 ei->i_data[n] = raw_inode->i_block[n];
1290
1291         if (S_ISREG(inode->i_mode)) {
1292                 inode->i_op = &ext2_file_inode_operations;
1293                 if (ext2_use_xip(inode->i_sb)) {
1294                         inode->i_mapping->a_ops = &ext2_aops_xip;
1295                         inode->i_fop = &ext2_xip_file_operations;
1296                 } else if (test_opt(inode->i_sb, NOBH)) {
1297                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1298                         inode->i_fop = &ext2_file_operations;
1299                 } else {
1300                         inode->i_mapping->a_ops = &ext2_aops;
1301                         inode->i_fop = &ext2_file_operations;
1302                 }
1303         } else if (S_ISDIR(inode->i_mode)) {
1304                 inode->i_op = &ext2_dir_inode_operations;
1305                 inode->i_fop = &ext2_dir_operations;
1306                 if (test_opt(inode->i_sb, NOBH))
1307                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1308                 else
1309                         inode->i_mapping->a_ops = &ext2_aops;
1310         } else if (S_ISLNK(inode->i_mode)) {
1311                 if (ext2_inode_is_fast_symlink(inode)) {
1312                         inode->i_op = &ext2_fast_symlink_inode_operations;
1313                         nd_terminate_link(ei->i_data, inode->i_size,
1314                                 sizeof(ei->i_data) - 1);
1315                 } else {
1316                         inode->i_op = &ext2_symlink_inode_operations;
1317                         if (test_opt(inode->i_sb, NOBH))
1318                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1319                         else
1320                                 inode->i_mapping->a_ops = &ext2_aops;
1321                 }
1322         } else {
1323                 inode->i_op = &ext2_special_inode_operations;
1324                 if (raw_inode->i_block[0])
1325                         init_special_inode(inode, inode->i_mode,
1326                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1327                 else 
1328                         init_special_inode(inode, inode->i_mode,
1329                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1330         }
1331         brelse (bh);
1332         ext2_set_inode_flags(inode);
1333         unlock_new_inode(inode);
1334         return inode;
1335         
1336 bad_inode:
1337         iget_failed(inode);
1338         return ERR_PTR(ret);
1339 }
1340
1341 static int __ext2_write_inode(struct inode *inode, int do_sync)
1342 {
1343         struct ext2_inode_info *ei = EXT2_I(inode);
1344         struct super_block *sb = inode->i_sb;
1345         ino_t ino = inode->i_ino;
1346         uid_t uid = inode->i_uid;
1347         gid_t gid = inode->i_gid;
1348         struct buffer_head * bh;
1349         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1350         int n;
1351         int err = 0;
1352
1353         if (IS_ERR(raw_inode))
1354                 return -EIO;
1355
1356         /* For fields not not tracking in the in-memory inode,
1357          * initialise them to zero for new inodes. */
1358         if (ei->i_state & EXT2_STATE_NEW)
1359                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1360
1361         ext2_get_inode_flags(ei);
1362         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1363         if (!(test_opt(sb, NO_UID32))) {
1364                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1365                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1366 /*
1367  * Fix up interoperability with old kernels. Otherwise, old inodes get
1368  * re-used with the upper 16 bits of the uid/gid intact
1369  */
1370                 if (!ei->i_dtime) {
1371                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1372                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1373                 } else {
1374                         raw_inode->i_uid_high = 0;
1375                         raw_inode->i_gid_high = 0;
1376                 }
1377         } else {
1378                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1379                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1380                 raw_inode->i_uid_high = 0;
1381                 raw_inode->i_gid_high = 0;
1382         }
1383         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1384         raw_inode->i_size = cpu_to_le32(inode->i_size);
1385         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1386         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1387         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1388
1389         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1390         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1391         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1392         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1393         raw_inode->i_frag = ei->i_frag_no;
1394         raw_inode->i_fsize = ei->i_frag_size;
1395         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1396         if (!S_ISREG(inode->i_mode))
1397                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1398         else {
1399                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1400                 if (inode->i_size > 0x7fffffffULL) {
1401                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1402                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1403                             EXT2_SB(sb)->s_es->s_rev_level ==
1404                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1405                                /* If this is the first large file
1406                                 * created, add a flag to the superblock.
1407                                 */
1408                                 spin_lock(&EXT2_SB(sb)->s_lock);
1409                                 ext2_update_dynamic_rev(sb);
1410                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1411                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1412                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1413                                 ext2_write_super(sb);
1414                         }
1415                 }
1416         }
1417         
1418         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1419         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1420                 if (old_valid_dev(inode->i_rdev)) {
1421                         raw_inode->i_block[0] =
1422                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1423                         raw_inode->i_block[1] = 0;
1424                 } else {
1425                         raw_inode->i_block[0] = 0;
1426                         raw_inode->i_block[1] =
1427                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1428                         raw_inode->i_block[2] = 0;
1429                 }
1430         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1431                 raw_inode->i_block[n] = ei->i_data[n];
1432         mark_buffer_dirty(bh);
1433         if (do_sync) {
1434                 sync_dirty_buffer(bh);
1435                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1436                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1437                                 sb->s_id, (unsigned long) ino);
1438                         err = -EIO;
1439                 }
1440         }
1441         ei->i_state &= ~EXT2_STATE_NEW;
1442         brelse (bh);
1443         return err;
1444 }
1445
1446 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1447 {
1448         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1449 }
1450
1451 int ext2_sync_inode(struct inode *inode)
1452 {
1453         struct writeback_control wbc = {
1454                 .sync_mode = WB_SYNC_ALL,
1455                 .nr_to_write = 0,       /* sys_fsync did this */
1456         };
1457         return sync_inode(inode, &wbc);
1458 }
1459
1460 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1461 {
1462         struct inode *inode = dentry->d_inode;
1463         int error;
1464
1465         error = inode_change_ok(inode, iattr);
1466         if (error)
1467                 return error;
1468
1469         if (is_quota_modification(inode, iattr))
1470                 dquot_initialize(inode);
1471         if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1472             (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1473                 error = dquot_transfer(inode, iattr);
1474                 if (error)
1475                         return error;
1476         }
1477         error = inode_setattr(inode, iattr);
1478         if (!error && (iattr->ia_valid & ATTR_MODE))
1479                 error = ext2_acl_chmod(inode);
1480         return error;
1481 }