3cfcfd9a131acefd31bd9b8aedd5578042fb2422
[safe/jmp/linux-2.6] / fs / ext2 / inode.c
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/namei.h>
36 #include "ext2.h"
37 #include "acl.h"
38 #include "xip.h"
39
40 MODULE_AUTHOR("Remy Card and others");
41 MODULE_DESCRIPTION("Second Extended Filesystem");
42 MODULE_LICENSE("GPL");
43
44 /*
45  * Test whether an inode is a fast symlink.
46  */
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48 {
49         int ea_blocks = EXT2_I(inode)->i_file_acl ?
50                 (inode->i_sb->s_blocksize >> 9) : 0;
51
52         return (S_ISLNK(inode->i_mode) &&
53                 inode->i_blocks - ea_blocks == 0);
54 }
55
56 /*
57  * Called at the last iput() if i_nlink is zero.
58  */
59 void ext2_delete_inode (struct inode * inode)
60 {
61         truncate_inode_pages(&inode->i_data, 0);
62
63         if (is_bad_inode(inode))
64                 goto no_delete;
65         EXT2_I(inode)->i_dtime  = get_seconds();
66         mark_inode_dirty(inode);
67         ext2_write_inode(inode, inode_needs_sync(inode));
68
69         inode->i_size = 0;
70         if (inode->i_blocks)
71                 ext2_truncate (inode);
72         ext2_free_inode (inode);
73
74         return;
75 no_delete:
76         clear_inode(inode);     /* We must guarantee clearing of inode... */
77 }
78
79 typedef struct {
80         __le32  *p;
81         __le32  key;
82         struct buffer_head *bh;
83 } Indirect;
84
85 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
86 {
87         p->key = *(p->p = v);
88         p->bh = bh;
89 }
90
91 static inline int verify_chain(Indirect *from, Indirect *to)
92 {
93         while (from <= to && from->key == *from->p)
94                 from++;
95         return (from > to);
96 }
97
98 /**
99  *      ext2_block_to_path - parse the block number into array of offsets
100  *      @inode: inode in question (we are only interested in its superblock)
101  *      @i_block: block number to be parsed
102  *      @offsets: array to store the offsets in
103  *      @boundary: set this non-zero if the referred-to block is likely to be
104  *             followed (on disk) by an indirect block.
105  *      To store the locations of file's data ext2 uses a data structure common
106  *      for UNIX filesystems - tree of pointers anchored in the inode, with
107  *      data blocks at leaves and indirect blocks in intermediate nodes.
108  *      This function translates the block number into path in that tree -
109  *      return value is the path length and @offsets[n] is the offset of
110  *      pointer to (n+1)th node in the nth one. If @block is out of range
111  *      (negative or too large) warning is printed and zero returned.
112  *
113  *      Note: function doesn't find node addresses, so no IO is needed. All
114  *      we need to know is the capacity of indirect blocks (taken from the
115  *      inode->i_sb).
116  */
117
118 /*
119  * Portability note: the last comparison (check that we fit into triple
120  * indirect block) is spelled differently, because otherwise on an
121  * architecture with 32-bit longs and 8Kb pages we might get into trouble
122  * if our filesystem had 8Kb blocks. We might use long long, but that would
123  * kill us on x86. Oh, well, at least the sign propagation does not matter -
124  * i_block would have to be negative in the very beginning, so we would not
125  * get there at all.
126  */
127
128 static int ext2_block_to_path(struct inode *inode,
129                         long i_block, int offsets[4], int *boundary)
130 {
131         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
132         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
133         const long direct_blocks = EXT2_NDIR_BLOCKS,
134                 indirect_blocks = ptrs,
135                 double_blocks = (1 << (ptrs_bits * 2));
136         int n = 0;
137         int final = 0;
138
139         if (i_block < 0) {
140                 ext2_msg(inode->i_sb, KERN_WARNING,
141                         "warning: %s: block < 0", __func__);
142         } else if (i_block < direct_blocks) {
143                 offsets[n++] = i_block;
144                 final = direct_blocks;
145         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
146                 offsets[n++] = EXT2_IND_BLOCK;
147                 offsets[n++] = i_block;
148                 final = ptrs;
149         } else if ((i_block -= indirect_blocks) < double_blocks) {
150                 offsets[n++] = EXT2_DIND_BLOCK;
151                 offsets[n++] = i_block >> ptrs_bits;
152                 offsets[n++] = i_block & (ptrs - 1);
153                 final = ptrs;
154         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
155                 offsets[n++] = EXT2_TIND_BLOCK;
156                 offsets[n++] = i_block >> (ptrs_bits * 2);
157                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
158                 offsets[n++] = i_block & (ptrs - 1);
159                 final = ptrs;
160         } else {
161                 ext2_msg(inode->i_sb, KERN_WARNING,
162                         "warning: %s: block is too big", __func__);
163         }
164         if (boundary)
165                 *boundary = final - 1 - (i_block & (ptrs - 1));
166
167         return n;
168 }
169
170 /**
171  *      ext2_get_branch - read the chain of indirect blocks leading to data
172  *      @inode: inode in question
173  *      @depth: depth of the chain (1 - direct pointer, etc.)
174  *      @offsets: offsets of pointers in inode/indirect blocks
175  *      @chain: place to store the result
176  *      @err: here we store the error value
177  *
178  *      Function fills the array of triples <key, p, bh> and returns %NULL
179  *      if everything went OK or the pointer to the last filled triple
180  *      (incomplete one) otherwise. Upon the return chain[i].key contains
181  *      the number of (i+1)-th block in the chain (as it is stored in memory,
182  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
183  *      number (it points into struct inode for i==0 and into the bh->b_data
184  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
185  *      block for i>0 and NULL for i==0. In other words, it holds the block
186  *      numbers of the chain, addresses they were taken from (and where we can
187  *      verify that chain did not change) and buffer_heads hosting these
188  *      numbers.
189  *
190  *      Function stops when it stumbles upon zero pointer (absent block)
191  *              (pointer to last triple returned, *@err == 0)
192  *      or when it gets an IO error reading an indirect block
193  *              (ditto, *@err == -EIO)
194  *      or when it notices that chain had been changed while it was reading
195  *              (ditto, *@err == -EAGAIN)
196  *      or when it reads all @depth-1 indirect blocks successfully and finds
197  *      the whole chain, all way to the data (returns %NULL, *err == 0).
198  */
199 static Indirect *ext2_get_branch(struct inode *inode,
200                                  int depth,
201                                  int *offsets,
202                                  Indirect chain[4],
203                                  int *err)
204 {
205         struct super_block *sb = inode->i_sb;
206         Indirect *p = chain;
207         struct buffer_head *bh;
208
209         *err = 0;
210         /* i_data is not going away, no lock needed */
211         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
212         if (!p->key)
213                 goto no_block;
214         while (--depth) {
215                 bh = sb_bread(sb, le32_to_cpu(p->key));
216                 if (!bh)
217                         goto failure;
218                 read_lock(&EXT2_I(inode)->i_meta_lock);
219                 if (!verify_chain(chain, p))
220                         goto changed;
221                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
222                 read_unlock(&EXT2_I(inode)->i_meta_lock);
223                 if (!p->key)
224                         goto no_block;
225         }
226         return NULL;
227
228 changed:
229         read_unlock(&EXT2_I(inode)->i_meta_lock);
230         brelse(bh);
231         *err = -EAGAIN;
232         goto no_block;
233 failure:
234         *err = -EIO;
235 no_block:
236         return p;
237 }
238
239 /**
240  *      ext2_find_near - find a place for allocation with sufficient locality
241  *      @inode: owner
242  *      @ind: descriptor of indirect block.
243  *
244  *      This function returns the preferred place for block allocation.
245  *      It is used when heuristic for sequential allocation fails.
246  *      Rules are:
247  *        + if there is a block to the left of our position - allocate near it.
248  *        + if pointer will live in indirect block - allocate near that block.
249  *        + if pointer will live in inode - allocate in the same cylinder group.
250  *
251  * In the latter case we colour the starting block by the callers PID to
252  * prevent it from clashing with concurrent allocations for a different inode
253  * in the same block group.   The PID is used here so that functionally related
254  * files will be close-by on-disk.
255  *
256  *      Caller must make sure that @ind is valid and will stay that way.
257  */
258
259 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
260 {
261         struct ext2_inode_info *ei = EXT2_I(inode);
262         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
263         __le32 *p;
264         ext2_fsblk_t bg_start;
265         ext2_fsblk_t colour;
266
267         /* Try to find previous block */
268         for (p = ind->p - 1; p >= start; p--)
269                 if (*p)
270                         return le32_to_cpu(*p);
271
272         /* No such thing, so let's try location of indirect block */
273         if (ind->bh)
274                 return ind->bh->b_blocknr;
275
276         /*
277          * It is going to be refered from inode itself? OK, just put it into
278          * the same cylinder group then.
279          */
280         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
281         colour = (current->pid % 16) *
282                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
283         return bg_start + colour;
284 }
285
286 /**
287  *      ext2_find_goal - find a preferred place for allocation.
288  *      @inode: owner
289  *      @block:  block we want
290  *      @partial: pointer to the last triple within a chain
291  *
292  *      Returns preferred place for a block (the goal).
293  */
294
295 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
296                                           Indirect *partial)
297 {
298         struct ext2_block_alloc_info *block_i;
299
300         block_i = EXT2_I(inode)->i_block_alloc_info;
301
302         /*
303          * try the heuristic for sequential allocation,
304          * failing that at least try to get decent locality.
305          */
306         if (block_i && (block == block_i->last_alloc_logical_block + 1)
307                 && (block_i->last_alloc_physical_block != 0)) {
308                 return block_i->last_alloc_physical_block + 1;
309         }
310
311         return ext2_find_near(inode, partial);
312 }
313
314 /**
315  *      ext2_blks_to_allocate: Look up the block map and count the number
316  *      of direct blocks need to be allocated for the given branch.
317  *
318  *      @branch: chain of indirect blocks
319  *      @k: number of blocks need for indirect blocks
320  *      @blks: number of data blocks to be mapped.
321  *      @blocks_to_boundary:  the offset in the indirect block
322  *
323  *      return the total number of blocks to be allocate, including the
324  *      direct and indirect blocks.
325  */
326 static int
327 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
328                 int blocks_to_boundary)
329 {
330         unsigned long count = 0;
331
332         /*
333          * Simple case, [t,d]Indirect block(s) has not allocated yet
334          * then it's clear blocks on that path have not allocated
335          */
336         if (k > 0) {
337                 /* right now don't hanel cross boundary allocation */
338                 if (blks < blocks_to_boundary + 1)
339                         count += blks;
340                 else
341                         count += blocks_to_boundary + 1;
342                 return count;
343         }
344
345         count++;
346         while (count < blks && count <= blocks_to_boundary
347                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
348                 count++;
349         }
350         return count;
351 }
352
353 /**
354  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
355  *      @indirect_blks: the number of blocks need to allocate for indirect
356  *                      blocks
357  *
358  *      @new_blocks: on return it will store the new block numbers for
359  *      the indirect blocks(if needed) and the first direct block,
360  *      @blks:  on return it will store the total number of allocated
361  *              direct blocks
362  */
363 static int ext2_alloc_blocks(struct inode *inode,
364                         ext2_fsblk_t goal, int indirect_blks, int blks,
365                         ext2_fsblk_t new_blocks[4], int *err)
366 {
367         int target, i;
368         unsigned long count = 0;
369         int index = 0;
370         ext2_fsblk_t current_block = 0;
371         int ret = 0;
372
373         /*
374          * Here we try to allocate the requested multiple blocks at once,
375          * on a best-effort basis.
376          * To build a branch, we should allocate blocks for
377          * the indirect blocks(if not allocated yet), and at least
378          * the first direct block of this branch.  That's the
379          * minimum number of blocks need to allocate(required)
380          */
381         target = blks + indirect_blks;
382
383         while (1) {
384                 count = target;
385                 /* allocating blocks for indirect blocks and direct blocks */
386                 current_block = ext2_new_blocks(inode,goal,&count,err);
387                 if (*err)
388                         goto failed_out;
389
390                 target -= count;
391                 /* allocate blocks for indirect blocks */
392                 while (index < indirect_blks && count) {
393                         new_blocks[index++] = current_block++;
394                         count--;
395                 }
396
397                 if (count > 0)
398                         break;
399         }
400
401         /* save the new block number for the first direct block */
402         new_blocks[index] = current_block;
403
404         /* total number of blocks allocated for direct blocks */
405         ret = count;
406         *err = 0;
407         return ret;
408 failed_out:
409         for (i = 0; i <index; i++)
410                 ext2_free_blocks(inode, new_blocks[i], 1);
411         return ret;
412 }
413
414 /**
415  *      ext2_alloc_branch - allocate and set up a chain of blocks.
416  *      @inode: owner
417  *      @num: depth of the chain (number of blocks to allocate)
418  *      @offsets: offsets (in the blocks) to store the pointers to next.
419  *      @branch: place to store the chain in.
420  *
421  *      This function allocates @num blocks, zeroes out all but the last one,
422  *      links them into chain and (if we are synchronous) writes them to disk.
423  *      In other words, it prepares a branch that can be spliced onto the
424  *      inode. It stores the information about that chain in the branch[], in
425  *      the same format as ext2_get_branch() would do. We are calling it after
426  *      we had read the existing part of chain and partial points to the last
427  *      triple of that (one with zero ->key). Upon the exit we have the same
428  *      picture as after the successful ext2_get_block(), excpet that in one
429  *      place chain is disconnected - *branch->p is still zero (we did not
430  *      set the last link), but branch->key contains the number that should
431  *      be placed into *branch->p to fill that gap.
432  *
433  *      If allocation fails we free all blocks we've allocated (and forget
434  *      their buffer_heads) and return the error value the from failed
435  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
436  *      as described above and return 0.
437  */
438
439 static int ext2_alloc_branch(struct inode *inode,
440                         int indirect_blks, int *blks, ext2_fsblk_t goal,
441                         int *offsets, Indirect *branch)
442 {
443         int blocksize = inode->i_sb->s_blocksize;
444         int i, n = 0;
445         int err = 0;
446         struct buffer_head *bh;
447         int num;
448         ext2_fsblk_t new_blocks[4];
449         ext2_fsblk_t current_block;
450
451         num = ext2_alloc_blocks(inode, goal, indirect_blks,
452                                 *blks, new_blocks, &err);
453         if (err)
454                 return err;
455
456         branch[0].key = cpu_to_le32(new_blocks[0]);
457         /*
458          * metadata blocks and data blocks are allocated.
459          */
460         for (n = 1; n <= indirect_blks;  n++) {
461                 /*
462                  * Get buffer_head for parent block, zero it out
463                  * and set the pointer to new one, then send
464                  * parent to disk.
465                  */
466                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
467                 branch[n].bh = bh;
468                 lock_buffer(bh);
469                 memset(bh->b_data, 0, blocksize);
470                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
471                 branch[n].key = cpu_to_le32(new_blocks[n]);
472                 *branch[n].p = branch[n].key;
473                 if ( n == indirect_blks) {
474                         current_block = new_blocks[n];
475                         /*
476                          * End of chain, update the last new metablock of
477                          * the chain to point to the new allocated
478                          * data blocks numbers
479                          */
480                         for (i=1; i < num; i++)
481                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
482                 }
483                 set_buffer_uptodate(bh);
484                 unlock_buffer(bh);
485                 mark_buffer_dirty_inode(bh, inode);
486                 /* We used to sync bh here if IS_SYNC(inode).
487                  * But we now rely upon generic_write_sync()
488                  * and b_inode_buffers.  But not for directories.
489                  */
490                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
491                         sync_dirty_buffer(bh);
492         }
493         *blks = num;
494         return err;
495 }
496
497 /**
498  * ext2_splice_branch - splice the allocated branch onto inode.
499  * @inode: owner
500  * @block: (logical) number of block we are adding
501  * @where: location of missing link
502  * @num:   number of indirect blocks we are adding
503  * @blks:  number of direct blocks we are adding
504  *
505  * This function fills the missing link and does all housekeeping needed in
506  * inode (->i_blocks, etc.). In case of success we end up with the full
507  * chain to new block and return 0.
508  */
509 static void ext2_splice_branch(struct inode *inode,
510                         long block, Indirect *where, int num, int blks)
511 {
512         int i;
513         struct ext2_block_alloc_info *block_i;
514         ext2_fsblk_t current_block;
515
516         block_i = EXT2_I(inode)->i_block_alloc_info;
517
518         /* XXX LOCKING probably should have i_meta_lock ?*/
519         /* That's it */
520
521         *where->p = where->key;
522
523         /*
524          * Update the host buffer_head or inode to point to more just allocated
525          * direct blocks blocks
526          */
527         if (num == 0 && blks > 1) {
528                 current_block = le32_to_cpu(where->key) + 1;
529                 for (i = 1; i < blks; i++)
530                         *(where->p + i ) = cpu_to_le32(current_block++);
531         }
532
533         /*
534          * update the most recently allocated logical & physical block
535          * in i_block_alloc_info, to assist find the proper goal block for next
536          * allocation
537          */
538         if (block_i) {
539                 block_i->last_alloc_logical_block = block + blks - 1;
540                 block_i->last_alloc_physical_block =
541                                 le32_to_cpu(where[num].key) + blks - 1;
542         }
543
544         /* We are done with atomic stuff, now do the rest of housekeeping */
545
546         /* had we spliced it onto indirect block? */
547         if (where->bh)
548                 mark_buffer_dirty_inode(where->bh, inode);
549
550         inode->i_ctime = CURRENT_TIME_SEC;
551         mark_inode_dirty(inode);
552 }
553
554 /*
555  * Allocation strategy is simple: if we have to allocate something, we will
556  * have to go the whole way to leaf. So let's do it before attaching anything
557  * to tree, set linkage between the newborn blocks, write them if sync is
558  * required, recheck the path, free and repeat if check fails, otherwise
559  * set the last missing link (that will protect us from any truncate-generated
560  * removals - all blocks on the path are immune now) and possibly force the
561  * write on the parent block.
562  * That has a nice additional property: no special recovery from the failed
563  * allocations is needed - we simply release blocks and do not touch anything
564  * reachable from inode.
565  *
566  * `handle' can be NULL if create == 0.
567  *
568  * return > 0, # of blocks mapped or allocated.
569  * return = 0, if plain lookup failed.
570  * return < 0, error case.
571  */
572 static int ext2_get_blocks(struct inode *inode,
573                            sector_t iblock, unsigned long maxblocks,
574                            struct buffer_head *bh_result,
575                            int create)
576 {
577         int err = -EIO;
578         int offsets[4];
579         Indirect chain[4];
580         Indirect *partial;
581         ext2_fsblk_t goal;
582         int indirect_blks;
583         int blocks_to_boundary = 0;
584         int depth;
585         struct ext2_inode_info *ei = EXT2_I(inode);
586         int count = 0;
587         ext2_fsblk_t first_block = 0;
588
589         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
590
591         if (depth == 0)
592                 return (err);
593
594         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
595         /* Simplest case - block found, no allocation needed */
596         if (!partial) {
597                 first_block = le32_to_cpu(chain[depth - 1].key);
598                 clear_buffer_new(bh_result); /* What's this do? */
599                 count++;
600                 /*map more blocks*/
601                 while (count < maxblocks && count <= blocks_to_boundary) {
602                         ext2_fsblk_t blk;
603
604                         if (!verify_chain(chain, chain + depth - 1)) {
605                                 /*
606                                  * Indirect block might be removed by
607                                  * truncate while we were reading it.
608                                  * Handling of that case: forget what we've
609                                  * got now, go to reread.
610                                  */
611                                 err = -EAGAIN;
612                                 count = 0;
613                                 break;
614                         }
615                         blk = le32_to_cpu(*(chain[depth-1].p + count));
616                         if (blk == first_block + count)
617                                 count++;
618                         else
619                                 break;
620                 }
621                 if (err != -EAGAIN)
622                         goto got_it;
623         }
624
625         /* Next simple case - plain lookup or failed read of indirect block */
626         if (!create || err == -EIO)
627                 goto cleanup;
628
629         mutex_lock(&ei->truncate_mutex);
630         /*
631          * If the indirect block is missing while we are reading
632          * the chain(ext3_get_branch() returns -EAGAIN err), or
633          * if the chain has been changed after we grab the semaphore,
634          * (either because another process truncated this branch, or
635          * another get_block allocated this branch) re-grab the chain to see if
636          * the request block has been allocated or not.
637          *
638          * Since we already block the truncate/other get_block
639          * at this point, we will have the current copy of the chain when we
640          * splice the branch into the tree.
641          */
642         if (err == -EAGAIN || !verify_chain(chain, partial)) {
643                 while (partial > chain) {
644                         brelse(partial->bh);
645                         partial--;
646                 }
647                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
648                 if (!partial) {
649                         count++;
650                         mutex_unlock(&ei->truncate_mutex);
651                         if (err)
652                                 goto cleanup;
653                         clear_buffer_new(bh_result);
654                         goto got_it;
655                 }
656         }
657
658         /*
659          * Okay, we need to do block allocation.  Lazily initialize the block
660          * allocation info here if necessary
661         */
662         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
663                 ext2_init_block_alloc_info(inode);
664
665         goal = ext2_find_goal(inode, iblock, partial);
666
667         /* the number of blocks need to allocate for [d,t]indirect blocks */
668         indirect_blks = (chain + depth) - partial - 1;
669         /*
670          * Next look up the indirect map to count the totoal number of
671          * direct blocks to allocate for this branch.
672          */
673         count = ext2_blks_to_allocate(partial, indirect_blks,
674                                         maxblocks, blocks_to_boundary);
675         /*
676          * XXX ???? Block out ext2_truncate while we alter the tree
677          */
678         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
679                                 offsets + (partial - chain), partial);
680
681         if (err) {
682                 mutex_unlock(&ei->truncate_mutex);
683                 goto cleanup;
684         }
685
686         if (ext2_use_xip(inode->i_sb)) {
687                 /*
688                  * we need to clear the block
689                  */
690                 err = ext2_clear_xip_target (inode,
691                         le32_to_cpu(chain[depth-1].key));
692                 if (err) {
693                         mutex_unlock(&ei->truncate_mutex);
694                         goto cleanup;
695                 }
696         }
697
698         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
699         mutex_unlock(&ei->truncate_mutex);
700         set_buffer_new(bh_result);
701 got_it:
702         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
703         if (count > blocks_to_boundary)
704                 set_buffer_boundary(bh_result);
705         err = count;
706         /* Clean up and exit */
707         partial = chain + depth - 1;    /* the whole chain */
708 cleanup:
709         while (partial > chain) {
710                 brelse(partial->bh);
711                 partial--;
712         }
713         return err;
714 }
715
716 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
717 {
718         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
719         int ret = ext2_get_blocks(inode, iblock, max_blocks,
720                               bh_result, create);
721         if (ret > 0) {
722                 bh_result->b_size = (ret << inode->i_blkbits);
723                 ret = 0;
724         }
725         return ret;
726
727 }
728
729 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
730                 u64 start, u64 len)
731 {
732         return generic_block_fiemap(inode, fieinfo, start, len,
733                                     ext2_get_block);
734 }
735
736 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
737 {
738         return block_write_full_page(page, ext2_get_block, wbc);
739 }
740
741 static int ext2_readpage(struct file *file, struct page *page)
742 {
743         return mpage_readpage(page, ext2_get_block);
744 }
745
746 static int
747 ext2_readpages(struct file *file, struct address_space *mapping,
748                 struct list_head *pages, unsigned nr_pages)
749 {
750         return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
751 }
752
753 int __ext2_write_begin(struct file *file, struct address_space *mapping,
754                 loff_t pos, unsigned len, unsigned flags,
755                 struct page **pagep, void **fsdata)
756 {
757         return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
758                                                         ext2_get_block);
759 }
760
761 static int
762 ext2_write_begin(struct file *file, struct address_space *mapping,
763                 loff_t pos, unsigned len, unsigned flags,
764                 struct page **pagep, void **fsdata)
765 {
766         *pagep = NULL;
767         return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
768 }
769
770 static int
771 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
772                 loff_t pos, unsigned len, unsigned flags,
773                 struct page **pagep, void **fsdata)
774 {
775         /*
776          * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
777          * directory handling code to pass around offsets rather than struct
778          * pages in order to make this work easily.
779          */
780         return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
781                                                         ext2_get_block);
782 }
783
784 static int ext2_nobh_writepage(struct page *page,
785                         struct writeback_control *wbc)
786 {
787         return nobh_writepage(page, ext2_get_block, wbc);
788 }
789
790 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
791 {
792         return generic_block_bmap(mapping,block,ext2_get_block);
793 }
794
795 static ssize_t
796 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
797                         loff_t offset, unsigned long nr_segs)
798 {
799         struct file *file = iocb->ki_filp;
800         struct inode *inode = file->f_mapping->host;
801
802         return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
803                                 offset, nr_segs, ext2_get_block, NULL);
804 }
805
806 static int
807 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
808 {
809         return mpage_writepages(mapping, wbc, ext2_get_block);
810 }
811
812 const struct address_space_operations ext2_aops = {
813         .readpage               = ext2_readpage,
814         .readpages              = ext2_readpages,
815         .writepage              = ext2_writepage,
816         .sync_page              = block_sync_page,
817         .write_begin            = ext2_write_begin,
818         .write_end              = generic_write_end,
819         .bmap                   = ext2_bmap,
820         .direct_IO              = ext2_direct_IO,
821         .writepages             = ext2_writepages,
822         .migratepage            = buffer_migrate_page,
823         .is_partially_uptodate  = block_is_partially_uptodate,
824         .error_remove_page      = generic_error_remove_page,
825 };
826
827 const struct address_space_operations ext2_aops_xip = {
828         .bmap                   = ext2_bmap,
829         .get_xip_mem            = ext2_get_xip_mem,
830 };
831
832 const struct address_space_operations ext2_nobh_aops = {
833         .readpage               = ext2_readpage,
834         .readpages              = ext2_readpages,
835         .writepage              = ext2_nobh_writepage,
836         .sync_page              = block_sync_page,
837         .write_begin            = ext2_nobh_write_begin,
838         .write_end              = nobh_write_end,
839         .bmap                   = ext2_bmap,
840         .direct_IO              = ext2_direct_IO,
841         .writepages             = ext2_writepages,
842         .migratepage            = buffer_migrate_page,
843         .error_remove_page      = generic_error_remove_page,
844 };
845
846 /*
847  * Probably it should be a library function... search for first non-zero word
848  * or memcmp with zero_page, whatever is better for particular architecture.
849  * Linus?
850  */
851 static inline int all_zeroes(__le32 *p, __le32 *q)
852 {
853         while (p < q)
854                 if (*p++)
855                         return 0;
856         return 1;
857 }
858
859 /**
860  *      ext2_find_shared - find the indirect blocks for partial truncation.
861  *      @inode:   inode in question
862  *      @depth:   depth of the affected branch
863  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
864  *      @chain:   place to store the pointers to partial indirect blocks
865  *      @top:     place to the (detached) top of branch
866  *
867  *      This is a helper function used by ext2_truncate().
868  *
869  *      When we do truncate() we may have to clean the ends of several indirect
870  *      blocks but leave the blocks themselves alive. Block is partially
871  *      truncated if some data below the new i_size is refered from it (and
872  *      it is on the path to the first completely truncated data block, indeed).
873  *      We have to free the top of that path along with everything to the right
874  *      of the path. Since no allocation past the truncation point is possible
875  *      until ext2_truncate() finishes, we may safely do the latter, but top
876  *      of branch may require special attention - pageout below the truncation
877  *      point might try to populate it.
878  *
879  *      We atomically detach the top of branch from the tree, store the block
880  *      number of its root in *@top, pointers to buffer_heads of partially
881  *      truncated blocks - in @chain[].bh and pointers to their last elements
882  *      that should not be removed - in @chain[].p. Return value is the pointer
883  *      to last filled element of @chain.
884  *
885  *      The work left to caller to do the actual freeing of subtrees:
886  *              a) free the subtree starting from *@top
887  *              b) free the subtrees whose roots are stored in
888  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
889  *              c) free the subtrees growing from the inode past the @chain[0].p
890  *                      (no partially truncated stuff there).
891  */
892
893 static Indirect *ext2_find_shared(struct inode *inode,
894                                 int depth,
895                                 int offsets[4],
896                                 Indirect chain[4],
897                                 __le32 *top)
898 {
899         Indirect *partial, *p;
900         int k, err;
901
902         *top = 0;
903         for (k = depth; k > 1 && !offsets[k-1]; k--)
904                 ;
905         partial = ext2_get_branch(inode, k, offsets, chain, &err);
906         if (!partial)
907                 partial = chain + k-1;
908         /*
909          * If the branch acquired continuation since we've looked at it -
910          * fine, it should all survive and (new) top doesn't belong to us.
911          */
912         write_lock(&EXT2_I(inode)->i_meta_lock);
913         if (!partial->key && *partial->p) {
914                 write_unlock(&EXT2_I(inode)->i_meta_lock);
915                 goto no_top;
916         }
917         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
918                 ;
919         /*
920          * OK, we've found the last block that must survive. The rest of our
921          * branch should be detached before unlocking. However, if that rest
922          * of branch is all ours and does not grow immediately from the inode
923          * it's easier to cheat and just decrement partial->p.
924          */
925         if (p == chain + k - 1 && p > chain) {
926                 p->p--;
927         } else {
928                 *top = *p->p;
929                 *p->p = 0;
930         }
931         write_unlock(&EXT2_I(inode)->i_meta_lock);
932
933         while(partial > p)
934         {
935                 brelse(partial->bh);
936                 partial--;
937         }
938 no_top:
939         return partial;
940 }
941
942 /**
943  *      ext2_free_data - free a list of data blocks
944  *      @inode: inode we are dealing with
945  *      @p:     array of block numbers
946  *      @q:     points immediately past the end of array
947  *
948  *      We are freeing all blocks refered from that array (numbers are
949  *      stored as little-endian 32-bit) and updating @inode->i_blocks
950  *      appropriately.
951  */
952 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
953 {
954         unsigned long block_to_free = 0, count = 0;
955         unsigned long nr;
956
957         for ( ; p < q ; p++) {
958                 nr = le32_to_cpu(*p);
959                 if (nr) {
960                         *p = 0;
961                         /* accumulate blocks to free if they're contiguous */
962                         if (count == 0)
963                                 goto free_this;
964                         else if (block_to_free == nr - count)
965                                 count++;
966                         else {
967                                 mark_inode_dirty(inode);
968                                 ext2_free_blocks (inode, block_to_free, count);
969                         free_this:
970                                 block_to_free = nr;
971                                 count = 1;
972                         }
973                 }
974         }
975         if (count > 0) {
976                 mark_inode_dirty(inode);
977                 ext2_free_blocks (inode, block_to_free, count);
978         }
979 }
980
981 /**
982  *      ext2_free_branches - free an array of branches
983  *      @inode: inode we are dealing with
984  *      @p:     array of block numbers
985  *      @q:     pointer immediately past the end of array
986  *      @depth: depth of the branches to free
987  *
988  *      We are freeing all blocks refered from these branches (numbers are
989  *      stored as little-endian 32-bit) and updating @inode->i_blocks
990  *      appropriately.
991  */
992 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
993 {
994         struct buffer_head * bh;
995         unsigned long nr;
996
997         if (depth--) {
998                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
999                 for ( ; p < q ; p++) {
1000                         nr = le32_to_cpu(*p);
1001                         if (!nr)
1002                                 continue;
1003                         *p = 0;
1004                         bh = sb_bread(inode->i_sb, nr);
1005                         /*
1006                          * A read failure? Report error and clear slot
1007                          * (should be rare).
1008                          */ 
1009                         if (!bh) {
1010                                 ext2_error(inode->i_sb, "ext2_free_branches",
1011                                         "Read failure, inode=%ld, block=%ld",
1012                                         inode->i_ino, nr);
1013                                 continue;
1014                         }
1015                         ext2_free_branches(inode,
1016                                            (__le32*)bh->b_data,
1017                                            (__le32*)bh->b_data + addr_per_block,
1018                                            depth);
1019                         bforget(bh);
1020                         ext2_free_blocks(inode, nr, 1);
1021                         mark_inode_dirty(inode);
1022                 }
1023         } else
1024                 ext2_free_data(inode, p, q);
1025 }
1026
1027 void ext2_truncate(struct inode *inode)
1028 {
1029         __le32 *i_data = EXT2_I(inode)->i_data;
1030         struct ext2_inode_info *ei = EXT2_I(inode);
1031         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1032         int offsets[4];
1033         Indirect chain[4];
1034         Indirect *partial;
1035         __le32 nr = 0;
1036         int n;
1037         long iblock;
1038         unsigned blocksize;
1039
1040         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1041             S_ISLNK(inode->i_mode)))
1042                 return;
1043         if (ext2_inode_is_fast_symlink(inode))
1044                 return;
1045         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1046                 return;
1047
1048         blocksize = inode->i_sb->s_blocksize;
1049         iblock = (inode->i_size + blocksize-1)
1050                                         >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1051
1052         if (mapping_is_xip(inode->i_mapping))
1053                 xip_truncate_page(inode->i_mapping, inode->i_size);
1054         else if (test_opt(inode->i_sb, NOBH))
1055                 nobh_truncate_page(inode->i_mapping,
1056                                 inode->i_size, ext2_get_block);
1057         else
1058                 block_truncate_page(inode->i_mapping,
1059                                 inode->i_size, ext2_get_block);
1060
1061         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1062         if (n == 0)
1063                 return;
1064
1065         /*
1066          * From here we block out all ext2_get_block() callers who want to
1067          * modify the block allocation tree.
1068          */
1069         mutex_lock(&ei->truncate_mutex);
1070
1071         if (n == 1) {
1072                 ext2_free_data(inode, i_data+offsets[0],
1073                                         i_data + EXT2_NDIR_BLOCKS);
1074                 goto do_indirects;
1075         }
1076
1077         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1078         /* Kill the top of shared branch (already detached) */
1079         if (nr) {
1080                 if (partial == chain)
1081                         mark_inode_dirty(inode);
1082                 else
1083                         mark_buffer_dirty_inode(partial->bh, inode);
1084                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1085         }
1086         /* Clear the ends of indirect blocks on the shared branch */
1087         while (partial > chain) {
1088                 ext2_free_branches(inode,
1089                                    partial->p + 1,
1090                                    (__le32*)partial->bh->b_data+addr_per_block,
1091                                    (chain+n-1) - partial);
1092                 mark_buffer_dirty_inode(partial->bh, inode);
1093                 brelse (partial->bh);
1094                 partial--;
1095         }
1096 do_indirects:
1097         /* Kill the remaining (whole) subtrees */
1098         switch (offsets[0]) {
1099                 default:
1100                         nr = i_data[EXT2_IND_BLOCK];
1101                         if (nr) {
1102                                 i_data[EXT2_IND_BLOCK] = 0;
1103                                 mark_inode_dirty(inode);
1104                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1105                         }
1106                 case EXT2_IND_BLOCK:
1107                         nr = i_data[EXT2_DIND_BLOCK];
1108                         if (nr) {
1109                                 i_data[EXT2_DIND_BLOCK] = 0;
1110                                 mark_inode_dirty(inode);
1111                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1112                         }
1113                 case EXT2_DIND_BLOCK:
1114                         nr = i_data[EXT2_TIND_BLOCK];
1115                         if (nr) {
1116                                 i_data[EXT2_TIND_BLOCK] = 0;
1117                                 mark_inode_dirty(inode);
1118                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1119                         }
1120                 case EXT2_TIND_BLOCK:
1121                         ;
1122         }
1123
1124         ext2_discard_reservation(inode);
1125
1126         mutex_unlock(&ei->truncate_mutex);
1127         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1128         if (inode_needs_sync(inode)) {
1129                 sync_mapping_buffers(inode->i_mapping);
1130                 ext2_sync_inode (inode);
1131         } else {
1132                 mark_inode_dirty(inode);
1133         }
1134 }
1135
1136 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1137                                         struct buffer_head **p)
1138 {
1139         struct buffer_head * bh;
1140         unsigned long block_group;
1141         unsigned long block;
1142         unsigned long offset;
1143         struct ext2_group_desc * gdp;
1144
1145         *p = NULL;
1146         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1147             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1148                 goto Einval;
1149
1150         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1151         gdp = ext2_get_group_desc(sb, block_group, NULL);
1152         if (!gdp)
1153                 goto Egdp;
1154         /*
1155          * Figure out the offset within the block group inode table
1156          */
1157         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1158         block = le32_to_cpu(gdp->bg_inode_table) +
1159                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1160         if (!(bh = sb_bread(sb, block)))
1161                 goto Eio;
1162
1163         *p = bh;
1164         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1165         return (struct ext2_inode *) (bh->b_data + offset);
1166
1167 Einval:
1168         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1169                    (unsigned long) ino);
1170         return ERR_PTR(-EINVAL);
1171 Eio:
1172         ext2_error(sb, "ext2_get_inode",
1173                    "unable to read inode block - inode=%lu, block=%lu",
1174                    (unsigned long) ino, block);
1175 Egdp:
1176         return ERR_PTR(-EIO);
1177 }
1178
1179 void ext2_set_inode_flags(struct inode *inode)
1180 {
1181         unsigned int flags = EXT2_I(inode)->i_flags;
1182
1183         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1184         if (flags & EXT2_SYNC_FL)
1185                 inode->i_flags |= S_SYNC;
1186         if (flags & EXT2_APPEND_FL)
1187                 inode->i_flags |= S_APPEND;
1188         if (flags & EXT2_IMMUTABLE_FL)
1189                 inode->i_flags |= S_IMMUTABLE;
1190         if (flags & EXT2_NOATIME_FL)
1191                 inode->i_flags |= S_NOATIME;
1192         if (flags & EXT2_DIRSYNC_FL)
1193                 inode->i_flags |= S_DIRSYNC;
1194 }
1195
1196 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1197 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1198 {
1199         unsigned int flags = ei->vfs_inode.i_flags;
1200
1201         ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1202                         EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1203         if (flags & S_SYNC)
1204                 ei->i_flags |= EXT2_SYNC_FL;
1205         if (flags & S_APPEND)
1206                 ei->i_flags |= EXT2_APPEND_FL;
1207         if (flags & S_IMMUTABLE)
1208                 ei->i_flags |= EXT2_IMMUTABLE_FL;
1209         if (flags & S_NOATIME)
1210                 ei->i_flags |= EXT2_NOATIME_FL;
1211         if (flags & S_DIRSYNC)
1212                 ei->i_flags |= EXT2_DIRSYNC_FL;
1213 }
1214
1215 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1216 {
1217         struct ext2_inode_info *ei;
1218         struct buffer_head * bh;
1219         struct ext2_inode *raw_inode;
1220         struct inode *inode;
1221         long ret = -EIO;
1222         int n;
1223
1224         inode = iget_locked(sb, ino);
1225         if (!inode)
1226                 return ERR_PTR(-ENOMEM);
1227         if (!(inode->i_state & I_NEW))
1228                 return inode;
1229
1230         ei = EXT2_I(inode);
1231         ei->i_block_alloc_info = NULL;
1232
1233         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1234         if (IS_ERR(raw_inode)) {
1235                 ret = PTR_ERR(raw_inode);
1236                 goto bad_inode;
1237         }
1238
1239         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1240         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1241         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1242         if (!(test_opt (inode->i_sb, NO_UID32))) {
1243                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1244                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1245         }
1246         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1247         inode->i_size = le32_to_cpu(raw_inode->i_size);
1248         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1249         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1250         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1251         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1252         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1253         /* We now have enough fields to check if the inode was active or not.
1254          * This is needed because nfsd might try to access dead inodes
1255          * the test is that same one that e2fsck uses
1256          * NeilBrown 1999oct15
1257          */
1258         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1259                 /* this inode is deleted */
1260                 brelse (bh);
1261                 ret = -ESTALE;
1262                 goto bad_inode;
1263         }
1264         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1265         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1266         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1267         ei->i_frag_no = raw_inode->i_frag;
1268         ei->i_frag_size = raw_inode->i_fsize;
1269         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1270         ei->i_dir_acl = 0;
1271         if (S_ISREG(inode->i_mode))
1272                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1273         else
1274                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1275         ei->i_dtime = 0;
1276         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1277         ei->i_state = 0;
1278         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1279         ei->i_dir_start_lookup = 0;
1280
1281         /*
1282          * NOTE! The in-memory inode i_data array is in little-endian order
1283          * even on big-endian machines: we do NOT byteswap the block numbers!
1284          */
1285         for (n = 0; n < EXT2_N_BLOCKS; n++)
1286                 ei->i_data[n] = raw_inode->i_block[n];
1287
1288         if (S_ISREG(inode->i_mode)) {
1289                 inode->i_op = &ext2_file_inode_operations;
1290                 if (ext2_use_xip(inode->i_sb)) {
1291                         inode->i_mapping->a_ops = &ext2_aops_xip;
1292                         inode->i_fop = &ext2_xip_file_operations;
1293                 } else if (test_opt(inode->i_sb, NOBH)) {
1294                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1295                         inode->i_fop = &ext2_file_operations;
1296                 } else {
1297                         inode->i_mapping->a_ops = &ext2_aops;
1298                         inode->i_fop = &ext2_file_operations;
1299                 }
1300         } else if (S_ISDIR(inode->i_mode)) {
1301                 inode->i_op = &ext2_dir_inode_operations;
1302                 inode->i_fop = &ext2_dir_operations;
1303                 if (test_opt(inode->i_sb, NOBH))
1304                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1305                 else
1306                         inode->i_mapping->a_ops = &ext2_aops;
1307         } else if (S_ISLNK(inode->i_mode)) {
1308                 if (ext2_inode_is_fast_symlink(inode)) {
1309                         inode->i_op = &ext2_fast_symlink_inode_operations;
1310                         nd_terminate_link(ei->i_data, inode->i_size,
1311                                 sizeof(ei->i_data) - 1);
1312                 } else {
1313                         inode->i_op = &ext2_symlink_inode_operations;
1314                         if (test_opt(inode->i_sb, NOBH))
1315                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1316                         else
1317                                 inode->i_mapping->a_ops = &ext2_aops;
1318                 }
1319         } else {
1320                 inode->i_op = &ext2_special_inode_operations;
1321                 if (raw_inode->i_block[0])
1322                         init_special_inode(inode, inode->i_mode,
1323                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1324                 else 
1325                         init_special_inode(inode, inode->i_mode,
1326                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1327         }
1328         brelse (bh);
1329         ext2_set_inode_flags(inode);
1330         unlock_new_inode(inode);
1331         return inode;
1332         
1333 bad_inode:
1334         iget_failed(inode);
1335         return ERR_PTR(ret);
1336 }
1337
1338 int ext2_write_inode(struct inode *inode, int do_sync)
1339 {
1340         struct ext2_inode_info *ei = EXT2_I(inode);
1341         struct super_block *sb = inode->i_sb;
1342         ino_t ino = inode->i_ino;
1343         uid_t uid = inode->i_uid;
1344         gid_t gid = inode->i_gid;
1345         struct buffer_head * bh;
1346         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1347         int n;
1348         int err = 0;
1349
1350         if (IS_ERR(raw_inode))
1351                 return -EIO;
1352
1353         /* For fields not not tracking in the in-memory inode,
1354          * initialise them to zero for new inodes. */
1355         if (ei->i_state & EXT2_STATE_NEW)
1356                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1357
1358         ext2_get_inode_flags(ei);
1359         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1360         if (!(test_opt(sb, NO_UID32))) {
1361                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1362                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1363 /*
1364  * Fix up interoperability with old kernels. Otherwise, old inodes get
1365  * re-used with the upper 16 bits of the uid/gid intact
1366  */
1367                 if (!ei->i_dtime) {
1368                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1369                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1370                 } else {
1371                         raw_inode->i_uid_high = 0;
1372                         raw_inode->i_gid_high = 0;
1373                 }
1374         } else {
1375                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1376                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1377                 raw_inode->i_uid_high = 0;
1378                 raw_inode->i_gid_high = 0;
1379         }
1380         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1381         raw_inode->i_size = cpu_to_le32(inode->i_size);
1382         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1383         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1384         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1385
1386         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1387         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1388         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1389         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1390         raw_inode->i_frag = ei->i_frag_no;
1391         raw_inode->i_fsize = ei->i_frag_size;
1392         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1393         if (!S_ISREG(inode->i_mode))
1394                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1395         else {
1396                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1397                 if (inode->i_size > 0x7fffffffULL) {
1398                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1399                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1400                             EXT2_SB(sb)->s_es->s_rev_level ==
1401                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1402                                /* If this is the first large file
1403                                 * created, add a flag to the superblock.
1404                                 */
1405                                 lock_kernel();
1406                                 ext2_update_dynamic_rev(sb);
1407                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1408                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1409                                 unlock_kernel();
1410                                 ext2_write_super(sb);
1411                         }
1412                 }
1413         }
1414         
1415         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1416         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1417                 if (old_valid_dev(inode->i_rdev)) {
1418                         raw_inode->i_block[0] =
1419                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1420                         raw_inode->i_block[1] = 0;
1421                 } else {
1422                         raw_inode->i_block[0] = 0;
1423                         raw_inode->i_block[1] =
1424                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1425                         raw_inode->i_block[2] = 0;
1426                 }
1427         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1428                 raw_inode->i_block[n] = ei->i_data[n];
1429         mark_buffer_dirty(bh);
1430         if (do_sync) {
1431                 sync_dirty_buffer(bh);
1432                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1433                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1434                                 sb->s_id, (unsigned long) ino);
1435                         err = -EIO;
1436                 }
1437         }
1438         ei->i_state &= ~EXT2_STATE_NEW;
1439         brelse (bh);
1440         return err;
1441 }
1442
1443 int ext2_sync_inode(struct inode *inode)
1444 {
1445         struct writeback_control wbc = {
1446                 .sync_mode = WB_SYNC_ALL,
1447                 .nr_to_write = 0,       /* sys_fsync did this */
1448         };
1449         return sync_inode(inode, &wbc);
1450 }
1451
1452 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1453 {
1454         struct inode *inode = dentry->d_inode;
1455         int error;
1456
1457         error = inode_change_ok(inode, iattr);
1458         if (error)
1459                 return error;
1460         if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1461             (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1462                 error = dquot_transfer(inode, iattr);
1463                 if (error)
1464                         return error;
1465         }
1466         error = inode_setattr(inode, iattr);
1467         if (!error && (iattr->ia_valid & ATTR_MODE))
1468                 error = ext2_acl_chmod(inode);
1469         return error;
1470 }