remove CONFIG_KMOD from fs
[safe/jmp/linux-2.6] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58
59 #ifdef __alpha__
60 /* for /sbin/loader handling in search_binary_handler() */
61 #include <linux/a.out.h>
62 #endif
63
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75         if (!fmt)
76                 return -EINVAL;
77         write_lock(&binfmt_lock);
78         list_add(&fmt->lh, &formats);
79         write_unlock(&binfmt_lock);
80         return 0;       
81 }
82
83 EXPORT_SYMBOL(register_binfmt);
84
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87         write_lock(&binfmt_lock);
88         list_del(&fmt->lh);
89         write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(unregister_binfmt);
93
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96         module_put(fmt->module);
97 }
98
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107         struct file *file;
108         struct nameidata nd;
109         char *tmp = getname(library);
110         int error = PTR_ERR(tmp);
111
112         if (!IS_ERR(tmp)) {
113                 error = path_lookup_open(AT_FDCWD, tmp,
114                                          LOOKUP_FOLLOW, &nd,
115                                          FMODE_READ|FMODE_EXEC);
116                 putname(tmp);
117         }
118         if (error)
119                 goto out;
120
121         error = -EINVAL;
122         if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
123                 goto exit;
124
125         error = -EACCES;
126         if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
127                 goto exit;
128
129         error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
130         if (error)
131                 goto exit;
132
133         file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
134         error = PTR_ERR(file);
135         if (IS_ERR(file))
136                 goto out;
137
138         error = -ENOEXEC;
139         if(file->f_op) {
140                 struct linux_binfmt * fmt;
141
142                 read_lock(&binfmt_lock);
143                 list_for_each_entry(fmt, &formats, lh) {
144                         if (!fmt->load_shlib)
145                                 continue;
146                         if (!try_module_get(fmt->module))
147                                 continue;
148                         read_unlock(&binfmt_lock);
149                         error = fmt->load_shlib(file);
150                         read_lock(&binfmt_lock);
151                         put_binfmt(fmt);
152                         if (error != -ENOEXEC)
153                                 break;
154                 }
155                 read_unlock(&binfmt_lock);
156         }
157         fput(file);
158 out:
159         return error;
160 exit:
161         release_open_intent(&nd);
162         path_put(&nd.path);
163         goto out;
164 }
165
166 #ifdef CONFIG_MMU
167
168 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
169                 int write)
170 {
171         struct page *page;
172         int ret;
173
174 #ifdef CONFIG_STACK_GROWSUP
175         if (write) {
176                 ret = expand_stack_downwards(bprm->vma, pos);
177                 if (ret < 0)
178                         return NULL;
179         }
180 #endif
181         ret = get_user_pages(current, bprm->mm, pos,
182                         1, write, 1, &page, NULL);
183         if (ret <= 0)
184                 return NULL;
185
186         if (write) {
187                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
188                 struct rlimit *rlim;
189
190                 /*
191                  * We've historically supported up to 32 pages (ARG_MAX)
192                  * of argument strings even with small stacks
193                  */
194                 if (size <= ARG_MAX)
195                         return page;
196
197                 /*
198                  * Limit to 1/4-th the stack size for the argv+env strings.
199                  * This ensures that:
200                  *  - the remaining binfmt code will not run out of stack space,
201                  *  - the program will have a reasonable amount of stack left
202                  *    to work from.
203                  */
204                 rlim = current->signal->rlim;
205                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
206                         put_page(page);
207                         return NULL;
208                 }
209         }
210
211         return page;
212 }
213
214 static void put_arg_page(struct page *page)
215 {
216         put_page(page);
217 }
218
219 static void free_arg_page(struct linux_binprm *bprm, int i)
220 {
221 }
222
223 static void free_arg_pages(struct linux_binprm *bprm)
224 {
225 }
226
227 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
228                 struct page *page)
229 {
230         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
231 }
232
233 static int __bprm_mm_init(struct linux_binprm *bprm)
234 {
235         int err = -ENOMEM;
236         struct vm_area_struct *vma = NULL;
237         struct mm_struct *mm = bprm->mm;
238
239         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
240         if (!vma)
241                 goto err;
242
243         down_write(&mm->mmap_sem);
244         vma->vm_mm = mm;
245
246         /*
247          * Place the stack at the largest stack address the architecture
248          * supports. Later, we'll move this to an appropriate place. We don't
249          * use STACK_TOP because that can depend on attributes which aren't
250          * configured yet.
251          */
252         vma->vm_end = STACK_TOP_MAX;
253         vma->vm_start = vma->vm_end - PAGE_SIZE;
254
255         vma->vm_flags = VM_STACK_FLAGS;
256         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
257         err = insert_vm_struct(mm, vma);
258         if (err) {
259                 up_write(&mm->mmap_sem);
260                 goto err;
261         }
262
263         mm->stack_vm = mm->total_vm = 1;
264         up_write(&mm->mmap_sem);
265
266         bprm->p = vma->vm_end - sizeof(void *);
267
268         return 0;
269
270 err:
271         if (vma) {
272                 bprm->vma = NULL;
273                 kmem_cache_free(vm_area_cachep, vma);
274         }
275
276         return err;
277 }
278
279 static bool valid_arg_len(struct linux_binprm *bprm, long len)
280 {
281         return len <= MAX_ARG_STRLEN;
282 }
283
284 #else
285
286 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
287                 int write)
288 {
289         struct page *page;
290
291         page = bprm->page[pos / PAGE_SIZE];
292         if (!page && write) {
293                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
294                 if (!page)
295                         return NULL;
296                 bprm->page[pos / PAGE_SIZE] = page;
297         }
298
299         return page;
300 }
301
302 static void put_arg_page(struct page *page)
303 {
304 }
305
306 static void free_arg_page(struct linux_binprm *bprm, int i)
307 {
308         if (bprm->page[i]) {
309                 __free_page(bprm->page[i]);
310                 bprm->page[i] = NULL;
311         }
312 }
313
314 static void free_arg_pages(struct linux_binprm *bprm)
315 {
316         int i;
317
318         for (i = 0; i < MAX_ARG_PAGES; i++)
319                 free_arg_page(bprm, i);
320 }
321
322 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
323                 struct page *page)
324 {
325 }
326
327 static int __bprm_mm_init(struct linux_binprm *bprm)
328 {
329         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
330         return 0;
331 }
332
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
334 {
335         return len <= bprm->p;
336 }
337
338 #endif /* CONFIG_MMU */
339
340 /*
341  * Create a new mm_struct and populate it with a temporary stack
342  * vm_area_struct.  We don't have enough context at this point to set the stack
343  * flags, permissions, and offset, so we use temporary values.  We'll update
344  * them later in setup_arg_pages().
345  */
346 int bprm_mm_init(struct linux_binprm *bprm)
347 {
348         int err;
349         struct mm_struct *mm = NULL;
350
351         bprm->mm = mm = mm_alloc();
352         err = -ENOMEM;
353         if (!mm)
354                 goto err;
355
356         err = init_new_context(current, mm);
357         if (err)
358                 goto err;
359
360         err = __bprm_mm_init(bprm);
361         if (err)
362                 goto err;
363
364         return 0;
365
366 err:
367         if (mm) {
368                 bprm->mm = NULL;
369                 mmdrop(mm);
370         }
371
372         return err;
373 }
374
375 /*
376  * count() counts the number of strings in array ARGV.
377  */
378 static int count(char __user * __user * argv, int max)
379 {
380         int i = 0;
381
382         if (argv != NULL) {
383                 for (;;) {
384                         char __user * p;
385
386                         if (get_user(p, argv))
387                                 return -EFAULT;
388                         if (!p)
389                                 break;
390                         argv++;
391                         if(++i > max)
392                                 return -E2BIG;
393                         cond_resched();
394                 }
395         }
396         return i;
397 }
398
399 /*
400  * 'copy_strings()' copies argument/environment strings from the old
401  * processes's memory to the new process's stack.  The call to get_user_pages()
402  * ensures the destination page is created and not swapped out.
403  */
404 static int copy_strings(int argc, char __user * __user * argv,
405                         struct linux_binprm *bprm)
406 {
407         struct page *kmapped_page = NULL;
408         char *kaddr = NULL;
409         unsigned long kpos = 0;
410         int ret;
411
412         while (argc-- > 0) {
413                 char __user *str;
414                 int len;
415                 unsigned long pos;
416
417                 if (get_user(str, argv+argc) ||
418                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
419                         ret = -EFAULT;
420                         goto out;
421                 }
422
423                 if (!valid_arg_len(bprm, len)) {
424                         ret = -E2BIG;
425                         goto out;
426                 }
427
428                 /* We're going to work our way backwords. */
429                 pos = bprm->p;
430                 str += len;
431                 bprm->p -= len;
432
433                 while (len > 0) {
434                         int offset, bytes_to_copy;
435
436                         offset = pos % PAGE_SIZE;
437                         if (offset == 0)
438                                 offset = PAGE_SIZE;
439
440                         bytes_to_copy = offset;
441                         if (bytes_to_copy > len)
442                                 bytes_to_copy = len;
443
444                         offset -= bytes_to_copy;
445                         pos -= bytes_to_copy;
446                         str -= bytes_to_copy;
447                         len -= bytes_to_copy;
448
449                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
450                                 struct page *page;
451
452                                 page = get_arg_page(bprm, pos, 1);
453                                 if (!page) {
454                                         ret = -E2BIG;
455                                         goto out;
456                                 }
457
458                                 if (kmapped_page) {
459                                         flush_kernel_dcache_page(kmapped_page);
460                                         kunmap(kmapped_page);
461                                         put_arg_page(kmapped_page);
462                                 }
463                                 kmapped_page = page;
464                                 kaddr = kmap(kmapped_page);
465                                 kpos = pos & PAGE_MASK;
466                                 flush_arg_page(bprm, kpos, kmapped_page);
467                         }
468                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
469                                 ret = -EFAULT;
470                                 goto out;
471                         }
472                 }
473         }
474         ret = 0;
475 out:
476         if (kmapped_page) {
477                 flush_kernel_dcache_page(kmapped_page);
478                 kunmap(kmapped_page);
479                 put_arg_page(kmapped_page);
480         }
481         return ret;
482 }
483
484 /*
485  * Like copy_strings, but get argv and its values from kernel memory.
486  */
487 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
488 {
489         int r;
490         mm_segment_t oldfs = get_fs();
491         set_fs(KERNEL_DS);
492         r = copy_strings(argc, (char __user * __user *)argv, bprm);
493         set_fs(oldfs);
494         return r;
495 }
496 EXPORT_SYMBOL(copy_strings_kernel);
497
498 #ifdef CONFIG_MMU
499
500 /*
501  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
502  * the binfmt code determines where the new stack should reside, we shift it to
503  * its final location.  The process proceeds as follows:
504  *
505  * 1) Use shift to calculate the new vma endpoints.
506  * 2) Extend vma to cover both the old and new ranges.  This ensures the
507  *    arguments passed to subsequent functions are consistent.
508  * 3) Move vma's page tables to the new range.
509  * 4) Free up any cleared pgd range.
510  * 5) Shrink the vma to cover only the new range.
511  */
512 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
513 {
514         struct mm_struct *mm = vma->vm_mm;
515         unsigned long old_start = vma->vm_start;
516         unsigned long old_end = vma->vm_end;
517         unsigned long length = old_end - old_start;
518         unsigned long new_start = old_start - shift;
519         unsigned long new_end = old_end - shift;
520         struct mmu_gather *tlb;
521
522         BUG_ON(new_start > new_end);
523
524         /*
525          * ensure there are no vmas between where we want to go
526          * and where we are
527          */
528         if (vma != find_vma(mm, new_start))
529                 return -EFAULT;
530
531         /*
532          * cover the whole range: [new_start, old_end)
533          */
534         vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
535
536         /*
537          * move the page tables downwards, on failure we rely on
538          * process cleanup to remove whatever mess we made.
539          */
540         if (length != move_page_tables(vma, old_start,
541                                        vma, new_start, length))
542                 return -ENOMEM;
543
544         lru_add_drain();
545         tlb = tlb_gather_mmu(mm, 0);
546         if (new_end > old_start) {
547                 /*
548                  * when the old and new regions overlap clear from new_end.
549                  */
550                 free_pgd_range(tlb, new_end, old_end, new_end,
551                         vma->vm_next ? vma->vm_next->vm_start : 0);
552         } else {
553                 /*
554                  * otherwise, clean from old_start; this is done to not touch
555                  * the address space in [new_end, old_start) some architectures
556                  * have constraints on va-space that make this illegal (IA64) -
557                  * for the others its just a little faster.
558                  */
559                 free_pgd_range(tlb, old_start, old_end, new_end,
560                         vma->vm_next ? vma->vm_next->vm_start : 0);
561         }
562         tlb_finish_mmu(tlb, new_end, old_end);
563
564         /*
565          * shrink the vma to just the new range.
566          */
567         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
568
569         return 0;
570 }
571
572 #define EXTRA_STACK_VM_PAGES    20      /* random */
573
574 /*
575  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
576  * the stack is optionally relocated, and some extra space is added.
577  */
578 int setup_arg_pages(struct linux_binprm *bprm,
579                     unsigned long stack_top,
580                     int executable_stack)
581 {
582         unsigned long ret;
583         unsigned long stack_shift;
584         struct mm_struct *mm = current->mm;
585         struct vm_area_struct *vma = bprm->vma;
586         struct vm_area_struct *prev = NULL;
587         unsigned long vm_flags;
588         unsigned long stack_base;
589
590 #ifdef CONFIG_STACK_GROWSUP
591         /* Limit stack size to 1GB */
592         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
593         if (stack_base > (1 << 30))
594                 stack_base = 1 << 30;
595
596         /* Make sure we didn't let the argument array grow too large. */
597         if (vma->vm_end - vma->vm_start > stack_base)
598                 return -ENOMEM;
599
600         stack_base = PAGE_ALIGN(stack_top - stack_base);
601
602         stack_shift = vma->vm_start - stack_base;
603         mm->arg_start = bprm->p - stack_shift;
604         bprm->p = vma->vm_end - stack_shift;
605 #else
606         stack_top = arch_align_stack(stack_top);
607         stack_top = PAGE_ALIGN(stack_top);
608         stack_shift = vma->vm_end - stack_top;
609
610         bprm->p -= stack_shift;
611         mm->arg_start = bprm->p;
612 #endif
613
614         if (bprm->loader)
615                 bprm->loader -= stack_shift;
616         bprm->exec -= stack_shift;
617
618         down_write(&mm->mmap_sem);
619         vm_flags = VM_STACK_FLAGS;
620
621         /*
622          * Adjust stack execute permissions; explicitly enable for
623          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
624          * (arch default) otherwise.
625          */
626         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
627                 vm_flags |= VM_EXEC;
628         else if (executable_stack == EXSTACK_DISABLE_X)
629                 vm_flags &= ~VM_EXEC;
630         vm_flags |= mm->def_flags;
631
632         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
633                         vm_flags);
634         if (ret)
635                 goto out_unlock;
636         BUG_ON(prev != vma);
637
638         /* Move stack pages down in memory. */
639         if (stack_shift) {
640                 ret = shift_arg_pages(vma, stack_shift);
641                 if (ret) {
642                         up_write(&mm->mmap_sem);
643                         return ret;
644                 }
645         }
646
647 #ifdef CONFIG_STACK_GROWSUP
648         stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
649 #else
650         stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
651 #endif
652         ret = expand_stack(vma, stack_base);
653         if (ret)
654                 ret = -EFAULT;
655
656 out_unlock:
657         up_write(&mm->mmap_sem);
658         return 0;
659 }
660 EXPORT_SYMBOL(setup_arg_pages);
661
662 #endif /* CONFIG_MMU */
663
664 struct file *open_exec(const char *name)
665 {
666         struct nameidata nd;
667         struct file *file;
668         int err;
669
670         err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
671                                 FMODE_READ|FMODE_EXEC);
672         if (err)
673                 goto out;
674
675         err = -EACCES;
676         if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
677                 goto out_path_put;
678
679         if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
680                 goto out_path_put;
681
682         err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
683         if (err)
684                 goto out_path_put;
685
686         file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
687         if (IS_ERR(file))
688                 return file;
689
690         err = deny_write_access(file);
691         if (err) {
692                 fput(file);
693                 goto out;
694         }
695
696         return file;
697
698  out_path_put:
699         release_open_intent(&nd);
700         path_put(&nd.path);
701  out:
702         return ERR_PTR(err);
703 }
704 EXPORT_SYMBOL(open_exec);
705
706 int kernel_read(struct file *file, unsigned long offset,
707         char *addr, unsigned long count)
708 {
709         mm_segment_t old_fs;
710         loff_t pos = offset;
711         int result;
712
713         old_fs = get_fs();
714         set_fs(get_ds());
715         /* The cast to a user pointer is valid due to the set_fs() */
716         result = vfs_read(file, (void __user *)addr, count, &pos);
717         set_fs(old_fs);
718         return result;
719 }
720
721 EXPORT_SYMBOL(kernel_read);
722
723 static int exec_mmap(struct mm_struct *mm)
724 {
725         struct task_struct *tsk;
726         struct mm_struct * old_mm, *active_mm;
727
728         /* Notify parent that we're no longer interested in the old VM */
729         tsk = current;
730         old_mm = current->mm;
731         mm_release(tsk, old_mm);
732
733         if (old_mm) {
734                 /*
735                  * Make sure that if there is a core dump in progress
736                  * for the old mm, we get out and die instead of going
737                  * through with the exec.  We must hold mmap_sem around
738                  * checking core_state and changing tsk->mm.
739                  */
740                 down_read(&old_mm->mmap_sem);
741                 if (unlikely(old_mm->core_state)) {
742                         up_read(&old_mm->mmap_sem);
743                         return -EINTR;
744                 }
745         }
746         task_lock(tsk);
747         active_mm = tsk->active_mm;
748         tsk->mm = mm;
749         tsk->active_mm = mm;
750         activate_mm(active_mm, mm);
751         task_unlock(tsk);
752         arch_pick_mmap_layout(mm);
753         if (old_mm) {
754                 up_read(&old_mm->mmap_sem);
755                 BUG_ON(active_mm != old_mm);
756                 mm_update_next_owner(old_mm);
757                 mmput(old_mm);
758                 return 0;
759         }
760         mmdrop(active_mm);
761         return 0;
762 }
763
764 /*
765  * This function makes sure the current process has its own signal table,
766  * so that flush_signal_handlers can later reset the handlers without
767  * disturbing other processes.  (Other processes might share the signal
768  * table via the CLONE_SIGHAND option to clone().)
769  */
770 static int de_thread(struct task_struct *tsk)
771 {
772         struct signal_struct *sig = tsk->signal;
773         struct sighand_struct *oldsighand = tsk->sighand;
774         spinlock_t *lock = &oldsighand->siglock;
775         struct task_struct *leader = NULL;
776         int count;
777
778         if (thread_group_empty(tsk))
779                 goto no_thread_group;
780
781         /*
782          * Kill all other threads in the thread group.
783          */
784         spin_lock_irq(lock);
785         if (signal_group_exit(sig)) {
786                 /*
787                  * Another group action in progress, just
788                  * return so that the signal is processed.
789                  */
790                 spin_unlock_irq(lock);
791                 return -EAGAIN;
792         }
793         sig->group_exit_task = tsk;
794         zap_other_threads(tsk);
795
796         /* Account for the thread group leader hanging around: */
797         count = thread_group_leader(tsk) ? 1 : 2;
798         sig->notify_count = count;
799         while (atomic_read(&sig->count) > count) {
800                 __set_current_state(TASK_UNINTERRUPTIBLE);
801                 spin_unlock_irq(lock);
802                 schedule();
803                 spin_lock_irq(lock);
804         }
805         spin_unlock_irq(lock);
806
807         /*
808          * At this point all other threads have exited, all we have to
809          * do is to wait for the thread group leader to become inactive,
810          * and to assume its PID:
811          */
812         if (!thread_group_leader(tsk)) {
813                 leader = tsk->group_leader;
814
815                 sig->notify_count = -1; /* for exit_notify() */
816                 for (;;) {
817                         write_lock_irq(&tasklist_lock);
818                         if (likely(leader->exit_state))
819                                 break;
820                         __set_current_state(TASK_UNINTERRUPTIBLE);
821                         write_unlock_irq(&tasklist_lock);
822                         schedule();
823                 }
824
825                 if (unlikely(task_child_reaper(tsk) == leader))
826                         task_active_pid_ns(tsk)->child_reaper = tsk;
827                 /*
828                  * The only record we have of the real-time age of a
829                  * process, regardless of execs it's done, is start_time.
830                  * All the past CPU time is accumulated in signal_struct
831                  * from sister threads now dead.  But in this non-leader
832                  * exec, nothing survives from the original leader thread,
833                  * whose birth marks the true age of this process now.
834                  * When we take on its identity by switching to its PID, we
835                  * also take its birthdate (always earlier than our own).
836                  */
837                 tsk->start_time = leader->start_time;
838
839                 BUG_ON(!same_thread_group(leader, tsk));
840                 BUG_ON(has_group_leader_pid(tsk));
841                 /*
842                  * An exec() starts a new thread group with the
843                  * TGID of the previous thread group. Rehash the
844                  * two threads with a switched PID, and release
845                  * the former thread group leader:
846                  */
847
848                 /* Become a process group leader with the old leader's pid.
849                  * The old leader becomes a thread of the this thread group.
850                  * Note: The old leader also uses this pid until release_task
851                  *       is called.  Odd but simple and correct.
852                  */
853                 detach_pid(tsk, PIDTYPE_PID);
854                 tsk->pid = leader->pid;
855                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
856                 transfer_pid(leader, tsk, PIDTYPE_PGID);
857                 transfer_pid(leader, tsk, PIDTYPE_SID);
858                 list_replace_rcu(&leader->tasks, &tsk->tasks);
859
860                 tsk->group_leader = tsk;
861                 leader->group_leader = tsk;
862
863                 tsk->exit_signal = SIGCHLD;
864
865                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
866                 leader->exit_state = EXIT_DEAD;
867
868                 write_unlock_irq(&tasklist_lock);
869         }
870
871         sig->group_exit_task = NULL;
872         sig->notify_count = 0;
873
874 no_thread_group:
875         exit_itimers(sig);
876         flush_itimer_signals();
877         if (leader)
878                 release_task(leader);
879
880         if (atomic_read(&oldsighand->count) != 1) {
881                 struct sighand_struct *newsighand;
882                 /*
883                  * This ->sighand is shared with the CLONE_SIGHAND
884                  * but not CLONE_THREAD task, switch to the new one.
885                  */
886                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
887                 if (!newsighand)
888                         return -ENOMEM;
889
890                 atomic_set(&newsighand->count, 1);
891                 memcpy(newsighand->action, oldsighand->action,
892                        sizeof(newsighand->action));
893
894                 write_lock_irq(&tasklist_lock);
895                 spin_lock(&oldsighand->siglock);
896                 rcu_assign_pointer(tsk->sighand, newsighand);
897                 spin_unlock(&oldsighand->siglock);
898                 write_unlock_irq(&tasklist_lock);
899
900                 __cleanup_sighand(oldsighand);
901         }
902
903         BUG_ON(!thread_group_leader(tsk));
904         return 0;
905 }
906
907 /*
908  * These functions flushes out all traces of the currently running executable
909  * so that a new one can be started
910  */
911 static void flush_old_files(struct files_struct * files)
912 {
913         long j = -1;
914         struct fdtable *fdt;
915
916         spin_lock(&files->file_lock);
917         for (;;) {
918                 unsigned long set, i;
919
920                 j++;
921                 i = j * __NFDBITS;
922                 fdt = files_fdtable(files);
923                 if (i >= fdt->max_fds)
924                         break;
925                 set = fdt->close_on_exec->fds_bits[j];
926                 if (!set)
927                         continue;
928                 fdt->close_on_exec->fds_bits[j] = 0;
929                 spin_unlock(&files->file_lock);
930                 for ( ; set ; i++,set >>= 1) {
931                         if (set & 1) {
932                                 sys_close(i);
933                         }
934                 }
935                 spin_lock(&files->file_lock);
936
937         }
938         spin_unlock(&files->file_lock);
939 }
940
941 char *get_task_comm(char *buf, struct task_struct *tsk)
942 {
943         /* buf must be at least sizeof(tsk->comm) in size */
944         task_lock(tsk);
945         strncpy(buf, tsk->comm, sizeof(tsk->comm));
946         task_unlock(tsk);
947         return buf;
948 }
949
950 void set_task_comm(struct task_struct *tsk, char *buf)
951 {
952         task_lock(tsk);
953         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
954         task_unlock(tsk);
955 }
956
957 int flush_old_exec(struct linux_binprm * bprm)
958 {
959         char * name;
960         int i, ch, retval;
961         char tcomm[sizeof(current->comm)];
962
963         /*
964          * Make sure we have a private signal table and that
965          * we are unassociated from the previous thread group.
966          */
967         retval = de_thread(current);
968         if (retval)
969                 goto out;
970
971         set_mm_exe_file(bprm->mm, bprm->file);
972
973         /*
974          * Release all of the old mmap stuff
975          */
976         retval = exec_mmap(bprm->mm);
977         if (retval)
978                 goto out;
979
980         bprm->mm = NULL;                /* We're using it now */
981
982         /* This is the point of no return */
983         current->sas_ss_sp = current->sas_ss_size = 0;
984
985         if (current->euid == current->uid && current->egid == current->gid)
986                 set_dumpable(current->mm, 1);
987         else
988                 set_dumpable(current->mm, suid_dumpable);
989
990         name = bprm->filename;
991
992         /* Copies the binary name from after last slash */
993         for (i=0; (ch = *(name++)) != '\0';) {
994                 if (ch == '/')
995                         i = 0; /* overwrite what we wrote */
996                 else
997                         if (i < (sizeof(tcomm) - 1))
998                                 tcomm[i++] = ch;
999         }
1000         tcomm[i] = '\0';
1001         set_task_comm(current, tcomm);
1002
1003         current->flags &= ~PF_RANDOMIZE;
1004         flush_thread();
1005
1006         /* Set the new mm task size. We have to do that late because it may
1007          * depend on TIF_32BIT which is only updated in flush_thread() on
1008          * some architectures like powerpc
1009          */
1010         current->mm->task_size = TASK_SIZE;
1011
1012         if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1013                 suid_keys(current);
1014                 set_dumpable(current->mm, suid_dumpable);
1015                 current->pdeath_signal = 0;
1016         } else if (file_permission(bprm->file, MAY_READ) ||
1017                         (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1018                 suid_keys(current);
1019                 set_dumpable(current->mm, suid_dumpable);
1020         }
1021
1022         /* An exec changes our domain. We are no longer part of the thread
1023            group */
1024
1025         current->self_exec_id++;
1026                         
1027         flush_signal_handlers(current, 0);
1028         flush_old_files(current->files);
1029
1030         return 0;
1031
1032 out:
1033         return retval;
1034 }
1035
1036 EXPORT_SYMBOL(flush_old_exec);
1037
1038 /* 
1039  * Fill the binprm structure from the inode. 
1040  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1041  */
1042 int prepare_binprm(struct linux_binprm *bprm)
1043 {
1044         int mode;
1045         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1046         int retval;
1047
1048         mode = inode->i_mode;
1049         if (bprm->file->f_op == NULL)
1050                 return -EACCES;
1051
1052         bprm->e_uid = current->euid;
1053         bprm->e_gid = current->egid;
1054
1055         if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1056                 /* Set-uid? */
1057                 if (mode & S_ISUID) {
1058                         current->personality &= ~PER_CLEAR_ON_SETID;
1059                         bprm->e_uid = inode->i_uid;
1060                 }
1061
1062                 /* Set-gid? */
1063                 /*
1064                  * If setgid is set but no group execute bit then this
1065                  * is a candidate for mandatory locking, not a setgid
1066                  * executable.
1067                  */
1068                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1069                         current->personality &= ~PER_CLEAR_ON_SETID;
1070                         bprm->e_gid = inode->i_gid;
1071                 }
1072         }
1073
1074         /* fill in binprm security blob */
1075         retval = security_bprm_set(bprm);
1076         if (retval)
1077                 return retval;
1078
1079         memset(bprm->buf,0,BINPRM_BUF_SIZE);
1080         return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1081 }
1082
1083 EXPORT_SYMBOL(prepare_binprm);
1084
1085 static int unsafe_exec(struct task_struct *p)
1086 {
1087         int unsafe = tracehook_unsafe_exec(p);
1088
1089         if (atomic_read(&p->fs->count) > 1 ||
1090             atomic_read(&p->files->count) > 1 ||
1091             atomic_read(&p->sighand->count) > 1)
1092                 unsafe |= LSM_UNSAFE_SHARE;
1093
1094         return unsafe;
1095 }
1096
1097 void compute_creds(struct linux_binprm *bprm)
1098 {
1099         int unsafe;
1100
1101         if (bprm->e_uid != current->uid) {
1102                 suid_keys(current);
1103                 current->pdeath_signal = 0;
1104         }
1105         exec_keys(current);
1106
1107         task_lock(current);
1108         unsafe = unsafe_exec(current);
1109         security_bprm_apply_creds(bprm, unsafe);
1110         task_unlock(current);
1111         security_bprm_post_apply_creds(bprm);
1112 }
1113 EXPORT_SYMBOL(compute_creds);
1114
1115 /*
1116  * Arguments are '\0' separated strings found at the location bprm->p
1117  * points to; chop off the first by relocating brpm->p to right after
1118  * the first '\0' encountered.
1119  */
1120 int remove_arg_zero(struct linux_binprm *bprm)
1121 {
1122         int ret = 0;
1123         unsigned long offset;
1124         char *kaddr;
1125         struct page *page;
1126
1127         if (!bprm->argc)
1128                 return 0;
1129
1130         do {
1131                 offset = bprm->p & ~PAGE_MASK;
1132                 page = get_arg_page(bprm, bprm->p, 0);
1133                 if (!page) {
1134                         ret = -EFAULT;
1135                         goto out;
1136                 }
1137                 kaddr = kmap_atomic(page, KM_USER0);
1138
1139                 for (; offset < PAGE_SIZE && kaddr[offset];
1140                                 offset++, bprm->p++)
1141                         ;
1142
1143                 kunmap_atomic(kaddr, KM_USER0);
1144                 put_arg_page(page);
1145
1146                 if (offset == PAGE_SIZE)
1147                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1148         } while (offset == PAGE_SIZE);
1149
1150         bprm->p++;
1151         bprm->argc--;
1152         ret = 0;
1153
1154 out:
1155         return ret;
1156 }
1157 EXPORT_SYMBOL(remove_arg_zero);
1158
1159 /*
1160  * cycle the list of binary formats handler, until one recognizes the image
1161  */
1162 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1163 {
1164         int try,retval;
1165         struct linux_binfmt *fmt;
1166 #ifdef __alpha__
1167         /* handle /sbin/loader.. */
1168         {
1169             struct exec * eh = (struct exec *) bprm->buf;
1170
1171             if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1172                 (eh->fh.f_flags & 0x3000) == 0x3000)
1173             {
1174                 struct file * file;
1175                 unsigned long loader;
1176
1177                 allow_write_access(bprm->file);
1178                 fput(bprm->file);
1179                 bprm->file = NULL;
1180
1181                 loader = bprm->vma->vm_end - sizeof(void *);
1182
1183                 file = open_exec("/sbin/loader");
1184                 retval = PTR_ERR(file);
1185                 if (IS_ERR(file))
1186                         return retval;
1187
1188                 /* Remember if the application is TASO.  */
1189                 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1190
1191                 bprm->file = file;
1192                 bprm->loader = loader;
1193                 retval = prepare_binprm(bprm);
1194                 if (retval<0)
1195                         return retval;
1196                 /* should call search_binary_handler recursively here,
1197                    but it does not matter */
1198             }
1199         }
1200 #endif
1201         retval = security_bprm_check(bprm);
1202         if (retval)
1203                 return retval;
1204
1205         /* kernel module loader fixup */
1206         /* so we don't try to load run modprobe in kernel space. */
1207         set_fs(USER_DS);
1208
1209         retval = audit_bprm(bprm);
1210         if (retval)
1211                 return retval;
1212
1213         retval = -ENOENT;
1214         for (try=0; try<2; try++) {
1215                 read_lock(&binfmt_lock);
1216                 list_for_each_entry(fmt, &formats, lh) {
1217                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1218                         if (!fn)
1219                                 continue;
1220                         if (!try_module_get(fmt->module))
1221                                 continue;
1222                         read_unlock(&binfmt_lock);
1223                         retval = fn(bprm, regs);
1224                         if (retval >= 0) {
1225                                 tracehook_report_exec(fmt, bprm, regs);
1226                                 put_binfmt(fmt);
1227                                 allow_write_access(bprm->file);
1228                                 if (bprm->file)
1229                                         fput(bprm->file);
1230                                 bprm->file = NULL;
1231                                 current->did_exec = 1;
1232                                 proc_exec_connector(current);
1233                                 return retval;
1234                         }
1235                         read_lock(&binfmt_lock);
1236                         put_binfmt(fmt);
1237                         if (retval != -ENOEXEC || bprm->mm == NULL)
1238                                 break;
1239                         if (!bprm->file) {
1240                                 read_unlock(&binfmt_lock);
1241                                 return retval;
1242                         }
1243                 }
1244                 read_unlock(&binfmt_lock);
1245                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1246                         break;
1247 #ifdef CONFIG_MODULES
1248                 } else {
1249 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1250                         if (printable(bprm->buf[0]) &&
1251                             printable(bprm->buf[1]) &&
1252                             printable(bprm->buf[2]) &&
1253                             printable(bprm->buf[3]))
1254                                 break; /* -ENOEXEC */
1255                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1256 #endif
1257                 }
1258         }
1259         return retval;
1260 }
1261
1262 EXPORT_SYMBOL(search_binary_handler);
1263
1264 void free_bprm(struct linux_binprm *bprm)
1265 {
1266         free_arg_pages(bprm);
1267         kfree(bprm);
1268 }
1269
1270 /*
1271  * sys_execve() executes a new program.
1272  */
1273 int do_execve(char * filename,
1274         char __user *__user *argv,
1275         char __user *__user *envp,
1276         struct pt_regs * regs)
1277 {
1278         struct linux_binprm *bprm;
1279         struct file *file;
1280         struct files_struct *displaced;
1281         int retval;
1282
1283         retval = unshare_files(&displaced);
1284         if (retval)
1285                 goto out_ret;
1286
1287         retval = -ENOMEM;
1288         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1289         if (!bprm)
1290                 goto out_files;
1291
1292         file = open_exec(filename);
1293         retval = PTR_ERR(file);
1294         if (IS_ERR(file))
1295                 goto out_kfree;
1296
1297         sched_exec();
1298
1299         bprm->file = file;
1300         bprm->filename = filename;
1301         bprm->interp = filename;
1302
1303         retval = bprm_mm_init(bprm);
1304         if (retval)
1305                 goto out_file;
1306
1307         bprm->argc = count(argv, MAX_ARG_STRINGS);
1308         if ((retval = bprm->argc) < 0)
1309                 goto out_mm;
1310
1311         bprm->envc = count(envp, MAX_ARG_STRINGS);
1312         if ((retval = bprm->envc) < 0)
1313                 goto out_mm;
1314
1315         retval = security_bprm_alloc(bprm);
1316         if (retval)
1317                 goto out;
1318
1319         retval = prepare_binprm(bprm);
1320         if (retval < 0)
1321                 goto out;
1322
1323         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1324         if (retval < 0)
1325                 goto out;
1326
1327         bprm->exec = bprm->p;
1328         retval = copy_strings(bprm->envc, envp, bprm);
1329         if (retval < 0)
1330                 goto out;
1331
1332         retval = copy_strings(bprm->argc, argv, bprm);
1333         if (retval < 0)
1334                 goto out;
1335
1336         current->flags &= ~PF_KTHREAD;
1337         retval = search_binary_handler(bprm,regs);
1338         if (retval >= 0) {
1339                 /* execve success */
1340                 security_bprm_free(bprm);
1341                 acct_update_integrals(current);
1342                 free_bprm(bprm);
1343                 if (displaced)
1344                         put_files_struct(displaced);
1345                 return retval;
1346         }
1347
1348 out:
1349         if (bprm->security)
1350                 security_bprm_free(bprm);
1351
1352 out_mm:
1353         if (bprm->mm)
1354                 mmput (bprm->mm);
1355
1356 out_file:
1357         if (bprm->file) {
1358                 allow_write_access(bprm->file);
1359                 fput(bprm->file);
1360         }
1361 out_kfree:
1362         free_bprm(bprm);
1363
1364 out_files:
1365         if (displaced)
1366                 reset_files_struct(displaced);
1367 out_ret:
1368         return retval;
1369 }
1370
1371 int set_binfmt(struct linux_binfmt *new)
1372 {
1373         struct linux_binfmt *old = current->binfmt;
1374
1375         if (new) {
1376                 if (!try_module_get(new->module))
1377                         return -1;
1378         }
1379         current->binfmt = new;
1380         if (old)
1381                 module_put(old->module);
1382         return 0;
1383 }
1384
1385 EXPORT_SYMBOL(set_binfmt);
1386
1387 /* format_corename will inspect the pattern parameter, and output a
1388  * name into corename, which must have space for at least
1389  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1390  */
1391 static int format_corename(char *corename, int nr_threads, long signr)
1392 {
1393         const char *pat_ptr = core_pattern;
1394         int ispipe = (*pat_ptr == '|');
1395         char *out_ptr = corename;
1396         char *const out_end = corename + CORENAME_MAX_SIZE;
1397         int rc;
1398         int pid_in_pattern = 0;
1399
1400         /* Repeat as long as we have more pattern to process and more output
1401            space */
1402         while (*pat_ptr) {
1403                 if (*pat_ptr != '%') {
1404                         if (out_ptr == out_end)
1405                                 goto out;
1406                         *out_ptr++ = *pat_ptr++;
1407                 } else {
1408                         switch (*++pat_ptr) {
1409                         case 0:
1410                                 goto out;
1411                         /* Double percent, output one percent */
1412                         case '%':
1413                                 if (out_ptr == out_end)
1414                                         goto out;
1415                                 *out_ptr++ = '%';
1416                                 break;
1417                         /* pid */
1418                         case 'p':
1419                                 pid_in_pattern = 1;
1420                                 rc = snprintf(out_ptr, out_end - out_ptr,
1421                                               "%d", task_tgid_vnr(current));
1422                                 if (rc > out_end - out_ptr)
1423                                         goto out;
1424                                 out_ptr += rc;
1425                                 break;
1426                         /* uid */
1427                         case 'u':
1428                                 rc = snprintf(out_ptr, out_end - out_ptr,
1429                                               "%d", current->uid);
1430                                 if (rc > out_end - out_ptr)
1431                                         goto out;
1432                                 out_ptr += rc;
1433                                 break;
1434                         /* gid */
1435                         case 'g':
1436                                 rc = snprintf(out_ptr, out_end - out_ptr,
1437                                               "%d", current->gid);
1438                                 if (rc > out_end - out_ptr)
1439                                         goto out;
1440                                 out_ptr += rc;
1441                                 break;
1442                         /* signal that caused the coredump */
1443                         case 's':
1444                                 rc = snprintf(out_ptr, out_end - out_ptr,
1445                                               "%ld", signr);
1446                                 if (rc > out_end - out_ptr)
1447                                         goto out;
1448                                 out_ptr += rc;
1449                                 break;
1450                         /* UNIX time of coredump */
1451                         case 't': {
1452                                 struct timeval tv;
1453                                 do_gettimeofday(&tv);
1454                                 rc = snprintf(out_ptr, out_end - out_ptr,
1455                                               "%lu", tv.tv_sec);
1456                                 if (rc > out_end - out_ptr)
1457                                         goto out;
1458                                 out_ptr += rc;
1459                                 break;
1460                         }
1461                         /* hostname */
1462                         case 'h':
1463                                 down_read(&uts_sem);
1464                                 rc = snprintf(out_ptr, out_end - out_ptr,
1465                                               "%s", utsname()->nodename);
1466                                 up_read(&uts_sem);
1467                                 if (rc > out_end - out_ptr)
1468                                         goto out;
1469                                 out_ptr += rc;
1470                                 break;
1471                         /* executable */
1472                         case 'e':
1473                                 rc = snprintf(out_ptr, out_end - out_ptr,
1474                                               "%s", current->comm);
1475                                 if (rc > out_end - out_ptr)
1476                                         goto out;
1477                                 out_ptr += rc;
1478                                 break;
1479                         /* core limit size */
1480                         case 'c':
1481                                 rc = snprintf(out_ptr, out_end - out_ptr,
1482                                               "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1483                                 if (rc > out_end - out_ptr)
1484                                         goto out;
1485                                 out_ptr += rc;
1486                                 break;
1487                         default:
1488                                 break;
1489                         }
1490                         ++pat_ptr;
1491                 }
1492         }
1493         /* Backward compatibility with core_uses_pid:
1494          *
1495          * If core_pattern does not include a %p (as is the default)
1496          * and core_uses_pid is set, then .%pid will be appended to
1497          * the filename. Do not do this for piped commands. */
1498         if (!ispipe && !pid_in_pattern
1499             && (core_uses_pid || nr_threads)) {
1500                 rc = snprintf(out_ptr, out_end - out_ptr,
1501                               ".%d", task_tgid_vnr(current));
1502                 if (rc > out_end - out_ptr)
1503                         goto out;
1504                 out_ptr += rc;
1505         }
1506 out:
1507         *out_ptr = 0;
1508         return ispipe;
1509 }
1510
1511 static int zap_process(struct task_struct *start)
1512 {
1513         struct task_struct *t;
1514         int nr = 0;
1515
1516         start->signal->flags = SIGNAL_GROUP_EXIT;
1517         start->signal->group_stop_count = 0;
1518
1519         t = start;
1520         do {
1521                 if (t != current && t->mm) {
1522                         sigaddset(&t->pending.signal, SIGKILL);
1523                         signal_wake_up(t, 1);
1524                         nr++;
1525                 }
1526         } while_each_thread(start, t);
1527
1528         return nr;
1529 }
1530
1531 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1532                                 struct core_state *core_state, int exit_code)
1533 {
1534         struct task_struct *g, *p;
1535         unsigned long flags;
1536         int nr = -EAGAIN;
1537
1538         spin_lock_irq(&tsk->sighand->siglock);
1539         if (!signal_group_exit(tsk->signal)) {
1540                 mm->core_state = core_state;
1541                 tsk->signal->group_exit_code = exit_code;
1542                 nr = zap_process(tsk);
1543         }
1544         spin_unlock_irq(&tsk->sighand->siglock);
1545         if (unlikely(nr < 0))
1546                 return nr;
1547
1548         if (atomic_read(&mm->mm_users) == nr + 1)
1549                 goto done;
1550         /*
1551          * We should find and kill all tasks which use this mm, and we should
1552          * count them correctly into ->nr_threads. We don't take tasklist
1553          * lock, but this is safe wrt:
1554          *
1555          * fork:
1556          *      None of sub-threads can fork after zap_process(leader). All
1557          *      processes which were created before this point should be
1558          *      visible to zap_threads() because copy_process() adds the new
1559          *      process to the tail of init_task.tasks list, and lock/unlock
1560          *      of ->siglock provides a memory barrier.
1561          *
1562          * do_exit:
1563          *      The caller holds mm->mmap_sem. This means that the task which
1564          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1565          *      its ->mm.
1566          *
1567          * de_thread:
1568          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1569          *      we must see either old or new leader, this does not matter.
1570          *      However, it can change p->sighand, so lock_task_sighand(p)
1571          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1572          *      it can't fail.
1573          *
1574          *      Note also that "g" can be the old leader with ->mm == NULL
1575          *      and already unhashed and thus removed from ->thread_group.
1576          *      This is OK, __unhash_process()->list_del_rcu() does not
1577          *      clear the ->next pointer, we will find the new leader via
1578          *      next_thread().
1579          */
1580         rcu_read_lock();
1581         for_each_process(g) {
1582                 if (g == tsk->group_leader)
1583                         continue;
1584                 if (g->flags & PF_KTHREAD)
1585                         continue;
1586                 p = g;
1587                 do {
1588                         if (p->mm) {
1589                                 if (unlikely(p->mm == mm)) {
1590                                         lock_task_sighand(p, &flags);
1591                                         nr += zap_process(p);
1592                                         unlock_task_sighand(p, &flags);
1593                                 }
1594                                 break;
1595                         }
1596                 } while_each_thread(g, p);
1597         }
1598         rcu_read_unlock();
1599 done:
1600         atomic_set(&core_state->nr_threads, nr);
1601         return nr;
1602 }
1603
1604 static int coredump_wait(int exit_code, struct core_state *core_state)
1605 {
1606         struct task_struct *tsk = current;
1607         struct mm_struct *mm = tsk->mm;
1608         struct completion *vfork_done;
1609         int core_waiters;
1610
1611         init_completion(&core_state->startup);
1612         core_state->dumper.task = tsk;
1613         core_state->dumper.next = NULL;
1614         core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1615         up_write(&mm->mmap_sem);
1616
1617         if (unlikely(core_waiters < 0))
1618                 goto fail;
1619
1620         /*
1621          * Make sure nobody is waiting for us to release the VM,
1622          * otherwise we can deadlock when we wait on each other
1623          */
1624         vfork_done = tsk->vfork_done;
1625         if (vfork_done) {
1626                 tsk->vfork_done = NULL;
1627                 complete(vfork_done);
1628         }
1629
1630         if (core_waiters)
1631                 wait_for_completion(&core_state->startup);
1632 fail:
1633         return core_waiters;
1634 }
1635
1636 static void coredump_finish(struct mm_struct *mm)
1637 {
1638         struct core_thread *curr, *next;
1639         struct task_struct *task;
1640
1641         next = mm->core_state->dumper.next;
1642         while ((curr = next) != NULL) {
1643                 next = curr->next;
1644                 task = curr->task;
1645                 /*
1646                  * see exit_mm(), curr->task must not see
1647                  * ->task == NULL before we read ->next.
1648                  */
1649                 smp_mb();
1650                 curr->task = NULL;
1651                 wake_up_process(task);
1652         }
1653
1654         mm->core_state = NULL;
1655 }
1656
1657 /*
1658  * set_dumpable converts traditional three-value dumpable to two flags and
1659  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1660  * these bits are not changed atomically.  So get_dumpable can observe the
1661  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1662  * return either old dumpable or new one by paying attention to the order of
1663  * modifying the bits.
1664  *
1665  * dumpable |   mm->flags (binary)
1666  * old  new | initial interim  final
1667  * ---------+-----------------------
1668  *  0    1  |   00      01      01
1669  *  0    2  |   00      10(*)   11
1670  *  1    0  |   01      00      00
1671  *  1    2  |   01      11      11
1672  *  2    0  |   11      10(*)   00
1673  *  2    1  |   11      11      01
1674  *
1675  * (*) get_dumpable regards interim value of 10 as 11.
1676  */
1677 void set_dumpable(struct mm_struct *mm, int value)
1678 {
1679         switch (value) {
1680         case 0:
1681                 clear_bit(MMF_DUMPABLE, &mm->flags);
1682                 smp_wmb();
1683                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1684                 break;
1685         case 1:
1686                 set_bit(MMF_DUMPABLE, &mm->flags);
1687                 smp_wmb();
1688                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1689                 break;
1690         case 2:
1691                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1692                 smp_wmb();
1693                 set_bit(MMF_DUMPABLE, &mm->flags);
1694                 break;
1695         }
1696 }
1697
1698 int get_dumpable(struct mm_struct *mm)
1699 {
1700         int ret;
1701
1702         ret = mm->flags & 0x3;
1703         return (ret >= 2) ? 2 : ret;
1704 }
1705
1706 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1707 {
1708         struct core_state core_state;
1709         char corename[CORENAME_MAX_SIZE + 1];
1710         struct mm_struct *mm = current->mm;
1711         struct linux_binfmt * binfmt;
1712         struct inode * inode;
1713         struct file * file;
1714         int retval = 0;
1715         int fsuid = current->fsuid;
1716         int flag = 0;
1717         int ispipe = 0;
1718         unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1719         char **helper_argv = NULL;
1720         int helper_argc = 0;
1721         char *delimit;
1722
1723         audit_core_dumps(signr);
1724
1725         binfmt = current->binfmt;
1726         if (!binfmt || !binfmt->core_dump)
1727                 goto fail;
1728         down_write(&mm->mmap_sem);
1729         /*
1730          * If another thread got here first, or we are not dumpable, bail out.
1731          */
1732         if (mm->core_state || !get_dumpable(mm)) {
1733                 up_write(&mm->mmap_sem);
1734                 goto fail;
1735         }
1736
1737         /*
1738          *      We cannot trust fsuid as being the "true" uid of the
1739          *      process nor do we know its entire history. We only know it
1740          *      was tainted so we dump it as root in mode 2.
1741          */
1742         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1743                 flag = O_EXCL;          /* Stop rewrite attacks */
1744                 current->fsuid = 0;     /* Dump root private */
1745         }
1746
1747         retval = coredump_wait(exit_code, &core_state);
1748         if (retval < 0)
1749                 goto fail;
1750
1751         /*
1752          * Clear any false indication of pending signals that might
1753          * be seen by the filesystem code called to write the core file.
1754          */
1755         clear_thread_flag(TIF_SIGPENDING);
1756
1757         /*
1758          * lock_kernel() because format_corename() is controlled by sysctl, which
1759          * uses lock_kernel()
1760          */
1761         lock_kernel();
1762         ispipe = format_corename(corename, retval, signr);
1763         unlock_kernel();
1764         /*
1765          * Don't bother to check the RLIMIT_CORE value if core_pattern points
1766          * to a pipe.  Since we're not writing directly to the filesystem
1767          * RLIMIT_CORE doesn't really apply, as no actual core file will be
1768          * created unless the pipe reader choses to write out the core file
1769          * at which point file size limits and permissions will be imposed
1770          * as it does with any other process
1771          */
1772         if ((!ispipe) && (core_limit < binfmt->min_coredump))
1773                 goto fail_unlock;
1774
1775         if (ispipe) {
1776                 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1777                 /* Terminate the string before the first option */
1778                 delimit = strchr(corename, ' ');
1779                 if (delimit)
1780                         *delimit = '\0';
1781                 delimit = strrchr(helper_argv[0], '/');
1782                 if (delimit)
1783                         delimit++;
1784                 else
1785                         delimit = helper_argv[0];
1786                 if (!strcmp(delimit, current->comm)) {
1787                         printk(KERN_NOTICE "Recursive core dump detected, "
1788                                         "aborting\n");
1789                         goto fail_unlock;
1790                 }
1791
1792                 core_limit = RLIM_INFINITY;
1793
1794                 /* SIGPIPE can happen, but it's just never processed */
1795                 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1796                                 &file)) {
1797                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1798                                corename);
1799                         goto fail_unlock;
1800                 }
1801         } else
1802                 file = filp_open(corename,
1803                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1804                                  0600);
1805         if (IS_ERR(file))
1806                 goto fail_unlock;
1807         inode = file->f_path.dentry->d_inode;
1808         if (inode->i_nlink > 1)
1809                 goto close_fail;        /* multiple links - don't dump */
1810         if (!ispipe && d_unhashed(file->f_path.dentry))
1811                 goto close_fail;
1812
1813         /* AK: actually i see no reason to not allow this for named pipes etc.,
1814            but keep the previous behaviour for now. */
1815         if (!ispipe && !S_ISREG(inode->i_mode))
1816                 goto close_fail;
1817         /*
1818          * Dont allow local users get cute and trick others to coredump
1819          * into their pre-created files:
1820          */
1821         if (inode->i_uid != current->fsuid)
1822                 goto close_fail;
1823         if (!file->f_op)
1824                 goto close_fail;
1825         if (!file->f_op->write)
1826                 goto close_fail;
1827         if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1828                 goto close_fail;
1829
1830         retval = binfmt->core_dump(signr, regs, file, core_limit);
1831
1832         if (retval)
1833                 current->signal->group_exit_code |= 0x80;
1834 close_fail:
1835         filp_close(file, NULL);
1836 fail_unlock:
1837         if (helper_argv)
1838                 argv_free(helper_argv);
1839
1840         current->fsuid = fsuid;
1841         coredump_finish(mm);
1842 fail:
1843         return retval;
1844 }