mm: change anon_vma linking to fix multi-process server scalability issue
[safe/jmp/linux-2.6] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76         if (!fmt)
77                 return -EINVAL;
78         write_lock(&binfmt_lock);
79         insert ? list_add(&fmt->lh, &formats) :
80                  list_add_tail(&fmt->lh, &formats);
81         write_unlock(&binfmt_lock);
82         return 0;       
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89         write_lock(&binfmt_lock);
90         list_del(&fmt->lh);
91         write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98         module_put(fmt->module);
99 }
100
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109         struct file *file;
110         char *tmp = getname(library);
111         int error = PTR_ERR(tmp);
112
113         if (IS_ERR(tmp))
114                 goto out;
115
116         file = do_filp_open(AT_FDCWD, tmp,
117                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118                                 MAY_READ | MAY_EXEC | MAY_OPEN);
119         putname(tmp);
120         error = PTR_ERR(file);
121         if (IS_ERR(file))
122                 goto out;
123
124         error = -EINVAL;
125         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126                 goto exit;
127
128         error = -EACCES;
129         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130                 goto exit;
131
132         fsnotify_open(file->f_path.dentry);
133
134         error = -ENOEXEC;
135         if(file->f_op) {
136                 struct linux_binfmt * fmt;
137
138                 read_lock(&binfmt_lock);
139                 list_for_each_entry(fmt, &formats, lh) {
140                         if (!fmt->load_shlib)
141                                 continue;
142                         if (!try_module_get(fmt->module))
143                                 continue;
144                         read_unlock(&binfmt_lock);
145                         error = fmt->load_shlib(file);
146                         read_lock(&binfmt_lock);
147                         put_binfmt(fmt);
148                         if (error != -ENOEXEC)
149                                 break;
150                 }
151                 read_unlock(&binfmt_lock);
152         }
153 exit:
154         fput(file);
155 out:
156         return error;
157 }
158
159 #ifdef CONFIG_MMU
160
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162                 int write)
163 {
164         struct page *page;
165         int ret;
166
167 #ifdef CONFIG_STACK_GROWSUP
168         if (write) {
169                 ret = expand_stack_downwards(bprm->vma, pos);
170                 if (ret < 0)
171                         return NULL;
172         }
173 #endif
174         ret = get_user_pages(current, bprm->mm, pos,
175                         1, write, 1, &page, NULL);
176         if (ret <= 0)
177                 return NULL;
178
179         if (write) {
180                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181                 struct rlimit *rlim;
182
183                 /*
184                  * We've historically supported up to 32 pages (ARG_MAX)
185                  * of argument strings even with small stacks
186                  */
187                 if (size <= ARG_MAX)
188                         return page;
189
190                 /*
191                  * Limit to 1/4-th the stack size for the argv+env strings.
192                  * This ensures that:
193                  *  - the remaining binfmt code will not run out of stack space,
194                  *  - the program will have a reasonable amount of stack left
195                  *    to work from.
196                  */
197                 rlim = current->signal->rlim;
198                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
199                         put_page(page);
200                         return NULL;
201                 }
202         }
203
204         return page;
205 }
206
207 static void put_arg_page(struct page *page)
208 {
209         put_page(page);
210 }
211
212 static void free_arg_page(struct linux_binprm *bprm, int i)
213 {
214 }
215
216 static void free_arg_pages(struct linux_binprm *bprm)
217 {
218 }
219
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221                 struct page *page)
222 {
223         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
224 }
225
226 static int __bprm_mm_init(struct linux_binprm *bprm)
227 {
228         int err;
229         struct vm_area_struct *vma = NULL;
230         struct mm_struct *mm = bprm->mm;
231
232         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233         if (!vma)
234                 return -ENOMEM;
235
236         down_write(&mm->mmap_sem);
237         vma->vm_mm = mm;
238
239         /*
240          * Place the stack at the largest stack address the architecture
241          * supports. Later, we'll move this to an appropriate place. We don't
242          * use STACK_TOP because that can depend on attributes which aren't
243          * configured yet.
244          */
245         vma->vm_end = STACK_TOP_MAX;
246         vma->vm_start = vma->vm_end - PAGE_SIZE;
247         vma->vm_flags = VM_STACK_FLAGS;
248         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249         INIT_LIST_HEAD(&vma->anon_vma_chain);
250         err = insert_vm_struct(mm, vma);
251         if (err)
252                 goto err;
253
254         mm->stack_vm = mm->total_vm = 1;
255         up_write(&mm->mmap_sem);
256         bprm->p = vma->vm_end - sizeof(void *);
257         return 0;
258 err:
259         up_write(&mm->mmap_sem);
260         bprm->vma = NULL;
261         kmem_cache_free(vm_area_cachep, vma);
262         return err;
263 }
264
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267         return len <= MAX_ARG_STRLEN;
268 }
269
270 #else
271
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273                 int write)
274 {
275         struct page *page;
276
277         page = bprm->page[pos / PAGE_SIZE];
278         if (!page && write) {
279                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280                 if (!page)
281                         return NULL;
282                 bprm->page[pos / PAGE_SIZE] = page;
283         }
284
285         return page;
286 }
287
288 static void put_arg_page(struct page *page)
289 {
290 }
291
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294         if (bprm->page[i]) {
295                 __free_page(bprm->page[i]);
296                 bprm->page[i] = NULL;
297         }
298 }
299
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302         int i;
303
304         for (i = 0; i < MAX_ARG_PAGES; i++)
305                 free_arg_page(bprm, i);
306 }
307
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309                 struct page *page)
310 {
311 }
312
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316         return 0;
317 }
318
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321         return len <= bprm->p;
322 }
323
324 #endif /* CONFIG_MMU */
325
326 /*
327  * Create a new mm_struct and populate it with a temporary stack
328  * vm_area_struct.  We don't have enough context at this point to set the stack
329  * flags, permissions, and offset, so we use temporary values.  We'll update
330  * them later in setup_arg_pages().
331  */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334         int err;
335         struct mm_struct *mm = NULL;
336
337         bprm->mm = mm = mm_alloc();
338         err = -ENOMEM;
339         if (!mm)
340                 goto err;
341
342         err = init_new_context(current, mm);
343         if (err)
344                 goto err;
345
346         err = __bprm_mm_init(bprm);
347         if (err)
348                 goto err;
349
350         return 0;
351
352 err:
353         if (mm) {
354                 bprm->mm = NULL;
355                 mmdrop(mm);
356         }
357
358         return err;
359 }
360
361 /*
362  * count() counts the number of strings in array ARGV.
363  */
364 static int count(char __user * __user * argv, int max)
365 {
366         int i = 0;
367
368         if (argv != NULL) {
369                 for (;;) {
370                         char __user * p;
371
372                         if (get_user(p, argv))
373                                 return -EFAULT;
374                         if (!p)
375                                 break;
376                         argv++;
377                         if (i++ >= max)
378                                 return -E2BIG;
379                         cond_resched();
380                 }
381         }
382         return i;
383 }
384
385 /*
386  * 'copy_strings()' copies argument/environment strings from the old
387  * processes's memory to the new process's stack.  The call to get_user_pages()
388  * ensures the destination page is created and not swapped out.
389  */
390 static int copy_strings(int argc, char __user * __user * argv,
391                         struct linux_binprm *bprm)
392 {
393         struct page *kmapped_page = NULL;
394         char *kaddr = NULL;
395         unsigned long kpos = 0;
396         int ret;
397
398         while (argc-- > 0) {
399                 char __user *str;
400                 int len;
401                 unsigned long pos;
402
403                 if (get_user(str, argv+argc) ||
404                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405                         ret = -EFAULT;
406                         goto out;
407                 }
408
409                 if (!valid_arg_len(bprm, len)) {
410                         ret = -E2BIG;
411                         goto out;
412                 }
413
414                 /* We're going to work our way backwords. */
415                 pos = bprm->p;
416                 str += len;
417                 bprm->p -= len;
418
419                 while (len > 0) {
420                         int offset, bytes_to_copy;
421
422                         offset = pos % PAGE_SIZE;
423                         if (offset == 0)
424                                 offset = PAGE_SIZE;
425
426                         bytes_to_copy = offset;
427                         if (bytes_to_copy > len)
428                                 bytes_to_copy = len;
429
430                         offset -= bytes_to_copy;
431                         pos -= bytes_to_copy;
432                         str -= bytes_to_copy;
433                         len -= bytes_to_copy;
434
435                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436                                 struct page *page;
437
438                                 page = get_arg_page(bprm, pos, 1);
439                                 if (!page) {
440                                         ret = -E2BIG;
441                                         goto out;
442                                 }
443
444                                 if (kmapped_page) {
445                                         flush_kernel_dcache_page(kmapped_page);
446                                         kunmap(kmapped_page);
447                                         put_arg_page(kmapped_page);
448                                 }
449                                 kmapped_page = page;
450                                 kaddr = kmap(kmapped_page);
451                                 kpos = pos & PAGE_MASK;
452                                 flush_arg_page(bprm, kpos, kmapped_page);
453                         }
454                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455                                 ret = -EFAULT;
456                                 goto out;
457                         }
458                 }
459         }
460         ret = 0;
461 out:
462         if (kmapped_page) {
463                 flush_kernel_dcache_page(kmapped_page);
464                 kunmap(kmapped_page);
465                 put_arg_page(kmapped_page);
466         }
467         return ret;
468 }
469
470 /*
471  * Like copy_strings, but get argv and its values from kernel memory.
472  */
473 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
474 {
475         int r;
476         mm_segment_t oldfs = get_fs();
477         set_fs(KERNEL_DS);
478         r = copy_strings(argc, (char __user * __user *)argv, bprm);
479         set_fs(oldfs);
480         return r;
481 }
482 EXPORT_SYMBOL(copy_strings_kernel);
483
484 #ifdef CONFIG_MMU
485
486 /*
487  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
488  * the binfmt code determines where the new stack should reside, we shift it to
489  * its final location.  The process proceeds as follows:
490  *
491  * 1) Use shift to calculate the new vma endpoints.
492  * 2) Extend vma to cover both the old and new ranges.  This ensures the
493  *    arguments passed to subsequent functions are consistent.
494  * 3) Move vma's page tables to the new range.
495  * 4) Free up any cleared pgd range.
496  * 5) Shrink the vma to cover only the new range.
497  */
498 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
499 {
500         struct mm_struct *mm = vma->vm_mm;
501         unsigned long old_start = vma->vm_start;
502         unsigned long old_end = vma->vm_end;
503         unsigned long length = old_end - old_start;
504         unsigned long new_start = old_start - shift;
505         unsigned long new_end = old_end - shift;
506         struct mmu_gather *tlb;
507
508         BUG_ON(new_start > new_end);
509
510         /*
511          * ensure there are no vmas between where we want to go
512          * and where we are
513          */
514         if (vma != find_vma(mm, new_start))
515                 return -EFAULT;
516
517         /*
518          * cover the whole range: [new_start, old_end)
519          */
520         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
521                 return -ENOMEM;
522
523         /*
524          * move the page tables downwards, on failure we rely on
525          * process cleanup to remove whatever mess we made.
526          */
527         if (length != move_page_tables(vma, old_start,
528                                        vma, new_start, length))
529                 return -ENOMEM;
530
531         lru_add_drain();
532         tlb = tlb_gather_mmu(mm, 0);
533         if (new_end > old_start) {
534                 /*
535                  * when the old and new regions overlap clear from new_end.
536                  */
537                 free_pgd_range(tlb, new_end, old_end, new_end,
538                         vma->vm_next ? vma->vm_next->vm_start : 0);
539         } else {
540                 /*
541                  * otherwise, clean from old_start; this is done to not touch
542                  * the address space in [new_end, old_start) some architectures
543                  * have constraints on va-space that make this illegal (IA64) -
544                  * for the others its just a little faster.
545                  */
546                 free_pgd_range(tlb, old_start, old_end, new_end,
547                         vma->vm_next ? vma->vm_next->vm_start : 0);
548         }
549         tlb_finish_mmu(tlb, new_end, old_end);
550
551         /*
552          * Shrink the vma to just the new range.  Always succeeds.
553          */
554         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
555
556         return 0;
557 }
558
559 #define EXTRA_STACK_VM_PAGES    20      /* random */
560
561 /*
562  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
563  * the stack is optionally relocated, and some extra space is added.
564  */
565 int setup_arg_pages(struct linux_binprm *bprm,
566                     unsigned long stack_top,
567                     int executable_stack)
568 {
569         unsigned long ret;
570         unsigned long stack_shift;
571         struct mm_struct *mm = current->mm;
572         struct vm_area_struct *vma = bprm->vma;
573         struct vm_area_struct *prev = NULL;
574         unsigned long vm_flags;
575         unsigned long stack_base;
576         unsigned long stack_size;
577         unsigned long stack_expand;
578         unsigned long rlim_stack;
579
580 #ifdef CONFIG_STACK_GROWSUP
581         /* Limit stack size to 1GB */
582         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
583         if (stack_base > (1 << 30))
584                 stack_base = 1 << 30;
585
586         /* Make sure we didn't let the argument array grow too large. */
587         if (vma->vm_end - vma->vm_start > stack_base)
588                 return -ENOMEM;
589
590         stack_base = PAGE_ALIGN(stack_top - stack_base);
591
592         stack_shift = vma->vm_start - stack_base;
593         mm->arg_start = bprm->p - stack_shift;
594         bprm->p = vma->vm_end - stack_shift;
595 #else
596         stack_top = arch_align_stack(stack_top);
597         stack_top = PAGE_ALIGN(stack_top);
598         stack_shift = vma->vm_end - stack_top;
599
600         bprm->p -= stack_shift;
601         mm->arg_start = bprm->p;
602 #endif
603
604         if (bprm->loader)
605                 bprm->loader -= stack_shift;
606         bprm->exec -= stack_shift;
607
608         down_write(&mm->mmap_sem);
609         vm_flags = VM_STACK_FLAGS;
610
611         /*
612          * Adjust stack execute permissions; explicitly enable for
613          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
614          * (arch default) otherwise.
615          */
616         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
617                 vm_flags |= VM_EXEC;
618         else if (executable_stack == EXSTACK_DISABLE_X)
619                 vm_flags &= ~VM_EXEC;
620         vm_flags |= mm->def_flags;
621
622         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623                         vm_flags);
624         if (ret)
625                 goto out_unlock;
626         BUG_ON(prev != vma);
627
628         /* Move stack pages down in memory. */
629         if (stack_shift) {
630                 ret = shift_arg_pages(vma, stack_shift);
631                 if (ret)
632                         goto out_unlock;
633         }
634
635         stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
636         stack_size = vma->vm_end - vma->vm_start;
637         /*
638          * Align this down to a page boundary as expand_stack
639          * will align it up.
640          */
641         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
642 #ifdef CONFIG_STACK_GROWSUP
643         if (stack_size + stack_expand > rlim_stack)
644                 stack_base = vma->vm_start + rlim_stack;
645         else
646                 stack_base = vma->vm_end + stack_expand;
647 #else
648         if (stack_size + stack_expand > rlim_stack)
649                 stack_base = vma->vm_end - rlim_stack;
650         else
651                 stack_base = vma->vm_start - stack_expand;
652 #endif
653         ret = expand_stack(vma, stack_base);
654         if (ret)
655                 ret = -EFAULT;
656
657 out_unlock:
658         up_write(&mm->mmap_sem);
659         return ret;
660 }
661 EXPORT_SYMBOL(setup_arg_pages);
662
663 #endif /* CONFIG_MMU */
664
665 struct file *open_exec(const char *name)
666 {
667         struct file *file;
668         int err;
669
670         file = do_filp_open(AT_FDCWD, name,
671                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
672                                 MAY_EXEC | MAY_OPEN);
673         if (IS_ERR(file))
674                 goto out;
675
676         err = -EACCES;
677         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
678                 goto exit;
679
680         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
681                 goto exit;
682
683         fsnotify_open(file->f_path.dentry);
684
685         err = deny_write_access(file);
686         if (err)
687                 goto exit;
688
689 out:
690         return file;
691
692 exit:
693         fput(file);
694         return ERR_PTR(err);
695 }
696 EXPORT_SYMBOL(open_exec);
697
698 int kernel_read(struct file *file, loff_t offset,
699                 char *addr, unsigned long count)
700 {
701         mm_segment_t old_fs;
702         loff_t pos = offset;
703         int result;
704
705         old_fs = get_fs();
706         set_fs(get_ds());
707         /* The cast to a user pointer is valid due to the set_fs() */
708         result = vfs_read(file, (void __user *)addr, count, &pos);
709         set_fs(old_fs);
710         return result;
711 }
712
713 EXPORT_SYMBOL(kernel_read);
714
715 static int exec_mmap(struct mm_struct *mm)
716 {
717         struct task_struct *tsk;
718         struct mm_struct * old_mm, *active_mm;
719
720         /* Notify parent that we're no longer interested in the old VM */
721         tsk = current;
722         old_mm = current->mm;
723         sync_mm_rss(tsk, old_mm);
724         mm_release(tsk, old_mm);
725
726         if (old_mm) {
727                 /*
728                  * Make sure that if there is a core dump in progress
729                  * for the old mm, we get out and die instead of going
730                  * through with the exec.  We must hold mmap_sem around
731                  * checking core_state and changing tsk->mm.
732                  */
733                 down_read(&old_mm->mmap_sem);
734                 if (unlikely(old_mm->core_state)) {
735                         up_read(&old_mm->mmap_sem);
736                         return -EINTR;
737                 }
738         }
739         task_lock(tsk);
740         active_mm = tsk->active_mm;
741         tsk->mm = mm;
742         tsk->active_mm = mm;
743         activate_mm(active_mm, mm);
744         task_unlock(tsk);
745         arch_pick_mmap_layout(mm);
746         if (old_mm) {
747                 up_read(&old_mm->mmap_sem);
748                 BUG_ON(active_mm != old_mm);
749                 mm_update_next_owner(old_mm);
750                 mmput(old_mm);
751                 return 0;
752         }
753         mmdrop(active_mm);
754         return 0;
755 }
756
757 /*
758  * This function makes sure the current process has its own signal table,
759  * so that flush_signal_handlers can later reset the handlers without
760  * disturbing other processes.  (Other processes might share the signal
761  * table via the CLONE_SIGHAND option to clone().)
762  */
763 static int de_thread(struct task_struct *tsk)
764 {
765         struct signal_struct *sig = tsk->signal;
766         struct sighand_struct *oldsighand = tsk->sighand;
767         spinlock_t *lock = &oldsighand->siglock;
768         int count;
769
770         if (thread_group_empty(tsk))
771                 goto no_thread_group;
772
773         /*
774          * Kill all other threads in the thread group.
775          */
776         spin_lock_irq(lock);
777         if (signal_group_exit(sig)) {
778                 /*
779                  * Another group action in progress, just
780                  * return so that the signal is processed.
781                  */
782                 spin_unlock_irq(lock);
783                 return -EAGAIN;
784         }
785         sig->group_exit_task = tsk;
786         zap_other_threads(tsk);
787
788         /* Account for the thread group leader hanging around: */
789         count = thread_group_leader(tsk) ? 1 : 2;
790         sig->notify_count = count;
791         while (atomic_read(&sig->count) > count) {
792                 __set_current_state(TASK_UNINTERRUPTIBLE);
793                 spin_unlock_irq(lock);
794                 schedule();
795                 spin_lock_irq(lock);
796         }
797         spin_unlock_irq(lock);
798
799         /*
800          * At this point all other threads have exited, all we have to
801          * do is to wait for the thread group leader to become inactive,
802          * and to assume its PID:
803          */
804         if (!thread_group_leader(tsk)) {
805                 struct task_struct *leader = tsk->group_leader;
806
807                 sig->notify_count = -1; /* for exit_notify() */
808                 for (;;) {
809                         write_lock_irq(&tasklist_lock);
810                         if (likely(leader->exit_state))
811                                 break;
812                         __set_current_state(TASK_UNINTERRUPTIBLE);
813                         write_unlock_irq(&tasklist_lock);
814                         schedule();
815                 }
816
817                 /*
818                  * The only record we have of the real-time age of a
819                  * process, regardless of execs it's done, is start_time.
820                  * All the past CPU time is accumulated in signal_struct
821                  * from sister threads now dead.  But in this non-leader
822                  * exec, nothing survives from the original leader thread,
823                  * whose birth marks the true age of this process now.
824                  * When we take on its identity by switching to its PID, we
825                  * also take its birthdate (always earlier than our own).
826                  */
827                 tsk->start_time = leader->start_time;
828
829                 BUG_ON(!same_thread_group(leader, tsk));
830                 BUG_ON(has_group_leader_pid(tsk));
831                 /*
832                  * An exec() starts a new thread group with the
833                  * TGID of the previous thread group. Rehash the
834                  * two threads with a switched PID, and release
835                  * the former thread group leader:
836                  */
837
838                 /* Become a process group leader with the old leader's pid.
839                  * The old leader becomes a thread of the this thread group.
840                  * Note: The old leader also uses this pid until release_task
841                  *       is called.  Odd but simple and correct.
842                  */
843                 detach_pid(tsk, PIDTYPE_PID);
844                 tsk->pid = leader->pid;
845                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
846                 transfer_pid(leader, tsk, PIDTYPE_PGID);
847                 transfer_pid(leader, tsk, PIDTYPE_SID);
848
849                 list_replace_rcu(&leader->tasks, &tsk->tasks);
850                 list_replace_init(&leader->sibling, &tsk->sibling);
851
852                 tsk->group_leader = tsk;
853                 leader->group_leader = tsk;
854
855                 tsk->exit_signal = SIGCHLD;
856
857                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
858                 leader->exit_state = EXIT_DEAD;
859                 write_unlock_irq(&tasklist_lock);
860
861                 release_task(leader);
862         }
863
864         sig->group_exit_task = NULL;
865         sig->notify_count = 0;
866
867 no_thread_group:
868         if (current->mm)
869                 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
870
871         exit_itimers(sig);
872         flush_itimer_signals();
873
874         if (atomic_read(&oldsighand->count) != 1) {
875                 struct sighand_struct *newsighand;
876                 /*
877                  * This ->sighand is shared with the CLONE_SIGHAND
878                  * but not CLONE_THREAD task, switch to the new one.
879                  */
880                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
881                 if (!newsighand)
882                         return -ENOMEM;
883
884                 atomic_set(&newsighand->count, 1);
885                 memcpy(newsighand->action, oldsighand->action,
886                        sizeof(newsighand->action));
887
888                 write_lock_irq(&tasklist_lock);
889                 spin_lock(&oldsighand->siglock);
890                 rcu_assign_pointer(tsk->sighand, newsighand);
891                 spin_unlock(&oldsighand->siglock);
892                 write_unlock_irq(&tasklist_lock);
893
894                 __cleanup_sighand(oldsighand);
895         }
896
897         BUG_ON(!thread_group_leader(tsk));
898         return 0;
899 }
900
901 /*
902  * These functions flushes out all traces of the currently running executable
903  * so that a new one can be started
904  */
905 static void flush_old_files(struct files_struct * files)
906 {
907         long j = -1;
908         struct fdtable *fdt;
909
910         spin_lock(&files->file_lock);
911         for (;;) {
912                 unsigned long set, i;
913
914                 j++;
915                 i = j * __NFDBITS;
916                 fdt = files_fdtable(files);
917                 if (i >= fdt->max_fds)
918                         break;
919                 set = fdt->close_on_exec->fds_bits[j];
920                 if (!set)
921                         continue;
922                 fdt->close_on_exec->fds_bits[j] = 0;
923                 spin_unlock(&files->file_lock);
924                 for ( ; set ; i++,set >>= 1) {
925                         if (set & 1) {
926                                 sys_close(i);
927                         }
928                 }
929                 spin_lock(&files->file_lock);
930
931         }
932         spin_unlock(&files->file_lock);
933 }
934
935 char *get_task_comm(char *buf, struct task_struct *tsk)
936 {
937         /* buf must be at least sizeof(tsk->comm) in size */
938         task_lock(tsk);
939         strncpy(buf, tsk->comm, sizeof(tsk->comm));
940         task_unlock(tsk);
941         return buf;
942 }
943
944 void set_task_comm(struct task_struct *tsk, char *buf)
945 {
946         task_lock(tsk);
947
948         /*
949          * Threads may access current->comm without holding
950          * the task lock, so write the string carefully.
951          * Readers without a lock may see incomplete new
952          * names but are safe from non-terminating string reads.
953          */
954         memset(tsk->comm, 0, TASK_COMM_LEN);
955         wmb();
956         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
957         task_unlock(tsk);
958         perf_event_comm(tsk);
959 }
960
961 int flush_old_exec(struct linux_binprm * bprm)
962 {
963         int retval;
964
965         /*
966          * Make sure we have a private signal table and that
967          * we are unassociated from the previous thread group.
968          */
969         retval = de_thread(current);
970         if (retval)
971                 goto out;
972
973         set_mm_exe_file(bprm->mm, bprm->file);
974
975         /*
976          * Release all of the old mmap stuff
977          */
978         retval = exec_mmap(bprm->mm);
979         if (retval)
980                 goto out;
981
982         bprm->mm = NULL;                /* We're using it now */
983
984         current->flags &= ~PF_RANDOMIZE;
985         flush_thread();
986         current->personality &= ~bprm->per_clear;
987
988         return 0;
989
990 out:
991         return retval;
992 }
993 EXPORT_SYMBOL(flush_old_exec);
994
995 void setup_new_exec(struct linux_binprm * bprm)
996 {
997         int i, ch;
998         char * name;
999         char tcomm[sizeof(current->comm)];
1000
1001         arch_pick_mmap_layout(current->mm);
1002
1003         /* This is the point of no return */
1004         current->sas_ss_sp = current->sas_ss_size = 0;
1005
1006         if (current_euid() == current_uid() && current_egid() == current_gid())
1007                 set_dumpable(current->mm, 1);
1008         else
1009                 set_dumpable(current->mm, suid_dumpable);
1010
1011         name = bprm->filename;
1012
1013         /* Copies the binary name from after last slash */
1014         for (i=0; (ch = *(name++)) != '\0';) {
1015                 if (ch == '/')
1016                         i = 0; /* overwrite what we wrote */
1017                 else
1018                         if (i < (sizeof(tcomm) - 1))
1019                                 tcomm[i++] = ch;
1020         }
1021         tcomm[i] = '\0';
1022         set_task_comm(current, tcomm);
1023
1024         /* Set the new mm task size. We have to do that late because it may
1025          * depend on TIF_32BIT which is only updated in flush_thread() on
1026          * some architectures like powerpc
1027          */
1028         current->mm->task_size = TASK_SIZE;
1029
1030         /* install the new credentials */
1031         if (bprm->cred->uid != current_euid() ||
1032             bprm->cred->gid != current_egid()) {
1033                 current->pdeath_signal = 0;
1034         } else if (file_permission(bprm->file, MAY_READ) ||
1035                    bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1036                 set_dumpable(current->mm, suid_dumpable);
1037         }
1038
1039         /*
1040          * Flush performance counters when crossing a
1041          * security domain:
1042          */
1043         if (!get_dumpable(current->mm))
1044                 perf_event_exit_task(current);
1045
1046         /* An exec changes our domain. We are no longer part of the thread
1047            group */
1048
1049         current->self_exec_id++;
1050                         
1051         flush_signal_handlers(current, 0);
1052         flush_old_files(current->files);
1053 }
1054 EXPORT_SYMBOL(setup_new_exec);
1055
1056 /*
1057  * Prepare credentials and lock ->cred_guard_mutex.
1058  * install_exec_creds() commits the new creds and drops the lock.
1059  * Or, if exec fails before, free_bprm() should release ->cred and
1060  * and unlock.
1061  */
1062 int prepare_bprm_creds(struct linux_binprm *bprm)
1063 {
1064         if (mutex_lock_interruptible(&current->cred_guard_mutex))
1065                 return -ERESTARTNOINTR;
1066
1067         bprm->cred = prepare_exec_creds();
1068         if (likely(bprm->cred))
1069                 return 0;
1070
1071         mutex_unlock(&current->cred_guard_mutex);
1072         return -ENOMEM;
1073 }
1074
1075 void free_bprm(struct linux_binprm *bprm)
1076 {
1077         free_arg_pages(bprm);
1078         if (bprm->cred) {
1079                 mutex_unlock(&current->cred_guard_mutex);
1080                 abort_creds(bprm->cred);
1081         }
1082         kfree(bprm);
1083 }
1084
1085 /*
1086  * install the new credentials for this executable
1087  */
1088 void install_exec_creds(struct linux_binprm *bprm)
1089 {
1090         security_bprm_committing_creds(bprm);
1091
1092         commit_creds(bprm->cred);
1093         bprm->cred = NULL;
1094         /*
1095          * cred_guard_mutex must be held at least to this point to prevent
1096          * ptrace_attach() from altering our determination of the task's
1097          * credentials; any time after this it may be unlocked.
1098          */
1099         security_bprm_committed_creds(bprm);
1100         mutex_unlock(&current->cred_guard_mutex);
1101 }
1102 EXPORT_SYMBOL(install_exec_creds);
1103
1104 /*
1105  * determine how safe it is to execute the proposed program
1106  * - the caller must hold current->cred_guard_mutex to protect against
1107  *   PTRACE_ATTACH
1108  */
1109 int check_unsafe_exec(struct linux_binprm *bprm)
1110 {
1111         struct task_struct *p = current, *t;
1112         unsigned n_fs;
1113         int res = 0;
1114
1115         bprm->unsafe = tracehook_unsafe_exec(p);
1116
1117         n_fs = 1;
1118         write_lock(&p->fs->lock);
1119         rcu_read_lock();
1120         for (t = next_thread(p); t != p; t = next_thread(t)) {
1121                 if (t->fs == p->fs)
1122                         n_fs++;
1123         }
1124         rcu_read_unlock();
1125
1126         if (p->fs->users > n_fs) {
1127                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1128         } else {
1129                 res = -EAGAIN;
1130                 if (!p->fs->in_exec) {
1131                         p->fs->in_exec = 1;
1132                         res = 1;
1133                 }
1134         }
1135         write_unlock(&p->fs->lock);
1136
1137         return res;
1138 }
1139
1140 /* 
1141  * Fill the binprm structure from the inode. 
1142  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1143  *
1144  * This may be called multiple times for binary chains (scripts for example).
1145  */
1146 int prepare_binprm(struct linux_binprm *bprm)
1147 {
1148         umode_t mode;
1149         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1150         int retval;
1151
1152         mode = inode->i_mode;
1153         if (bprm->file->f_op == NULL)
1154                 return -EACCES;
1155
1156         /* clear any previous set[ug]id data from a previous binary */
1157         bprm->cred->euid = current_euid();
1158         bprm->cred->egid = current_egid();
1159
1160         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1161                 /* Set-uid? */
1162                 if (mode & S_ISUID) {
1163                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1164                         bprm->cred->euid = inode->i_uid;
1165                 }
1166
1167                 /* Set-gid? */
1168                 /*
1169                  * If setgid is set but no group execute bit then this
1170                  * is a candidate for mandatory locking, not a setgid
1171                  * executable.
1172                  */
1173                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1174                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1175                         bprm->cred->egid = inode->i_gid;
1176                 }
1177         }
1178
1179         /* fill in binprm security blob */
1180         retval = security_bprm_set_creds(bprm);
1181         if (retval)
1182                 return retval;
1183         bprm->cred_prepared = 1;
1184
1185         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1186         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1187 }
1188
1189 EXPORT_SYMBOL(prepare_binprm);
1190
1191 /*
1192  * Arguments are '\0' separated strings found at the location bprm->p
1193  * points to; chop off the first by relocating brpm->p to right after
1194  * the first '\0' encountered.
1195  */
1196 int remove_arg_zero(struct linux_binprm *bprm)
1197 {
1198         int ret = 0;
1199         unsigned long offset;
1200         char *kaddr;
1201         struct page *page;
1202
1203         if (!bprm->argc)
1204                 return 0;
1205
1206         do {
1207                 offset = bprm->p & ~PAGE_MASK;
1208                 page = get_arg_page(bprm, bprm->p, 0);
1209                 if (!page) {
1210                         ret = -EFAULT;
1211                         goto out;
1212                 }
1213                 kaddr = kmap_atomic(page, KM_USER0);
1214
1215                 for (; offset < PAGE_SIZE && kaddr[offset];
1216                                 offset++, bprm->p++)
1217                         ;
1218
1219                 kunmap_atomic(kaddr, KM_USER0);
1220                 put_arg_page(page);
1221
1222                 if (offset == PAGE_SIZE)
1223                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1224         } while (offset == PAGE_SIZE);
1225
1226         bprm->p++;
1227         bprm->argc--;
1228         ret = 0;
1229
1230 out:
1231         return ret;
1232 }
1233 EXPORT_SYMBOL(remove_arg_zero);
1234
1235 /*
1236  * cycle the list of binary formats handler, until one recognizes the image
1237  */
1238 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1239 {
1240         unsigned int depth = bprm->recursion_depth;
1241         int try,retval;
1242         struct linux_binfmt *fmt;
1243
1244         retval = security_bprm_check(bprm);
1245         if (retval)
1246                 return retval;
1247
1248         /* kernel module loader fixup */
1249         /* so we don't try to load run modprobe in kernel space. */
1250         set_fs(USER_DS);
1251
1252         retval = audit_bprm(bprm);
1253         if (retval)
1254                 return retval;
1255
1256         retval = -ENOENT;
1257         for (try=0; try<2; try++) {
1258                 read_lock(&binfmt_lock);
1259                 list_for_each_entry(fmt, &formats, lh) {
1260                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1261                         if (!fn)
1262                                 continue;
1263                         if (!try_module_get(fmt->module))
1264                                 continue;
1265                         read_unlock(&binfmt_lock);
1266                         retval = fn(bprm, regs);
1267                         /*
1268                          * Restore the depth counter to its starting value
1269                          * in this call, so we don't have to rely on every
1270                          * load_binary function to restore it on return.
1271                          */
1272                         bprm->recursion_depth = depth;
1273                         if (retval >= 0) {
1274                                 if (depth == 0)
1275                                         tracehook_report_exec(fmt, bprm, regs);
1276                                 put_binfmt(fmt);
1277                                 allow_write_access(bprm->file);
1278                                 if (bprm->file)
1279                                         fput(bprm->file);
1280                                 bprm->file = NULL;
1281                                 current->did_exec = 1;
1282                                 proc_exec_connector(current);
1283                                 return retval;
1284                         }
1285                         read_lock(&binfmt_lock);
1286                         put_binfmt(fmt);
1287                         if (retval != -ENOEXEC || bprm->mm == NULL)
1288                                 break;
1289                         if (!bprm->file) {
1290                                 read_unlock(&binfmt_lock);
1291                                 return retval;
1292                         }
1293                 }
1294                 read_unlock(&binfmt_lock);
1295                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1296                         break;
1297 #ifdef CONFIG_MODULES
1298                 } else {
1299 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1300                         if (printable(bprm->buf[0]) &&
1301                             printable(bprm->buf[1]) &&
1302                             printable(bprm->buf[2]) &&
1303                             printable(bprm->buf[3]))
1304                                 break; /* -ENOEXEC */
1305                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1306 #endif
1307                 }
1308         }
1309         return retval;
1310 }
1311
1312 EXPORT_SYMBOL(search_binary_handler);
1313
1314 /*
1315  * sys_execve() executes a new program.
1316  */
1317 int do_execve(char * filename,
1318         char __user *__user *argv,
1319         char __user *__user *envp,
1320         struct pt_regs * regs)
1321 {
1322         struct linux_binprm *bprm;
1323         struct file *file;
1324         struct files_struct *displaced;
1325         bool clear_in_exec;
1326         int retval;
1327
1328         retval = unshare_files(&displaced);
1329         if (retval)
1330                 goto out_ret;
1331
1332         retval = -ENOMEM;
1333         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1334         if (!bprm)
1335                 goto out_files;
1336
1337         retval = prepare_bprm_creds(bprm);
1338         if (retval)
1339                 goto out_free;
1340
1341         retval = check_unsafe_exec(bprm);
1342         if (retval < 0)
1343                 goto out_free;
1344         clear_in_exec = retval;
1345         current->in_execve = 1;
1346
1347         file = open_exec(filename);
1348         retval = PTR_ERR(file);
1349         if (IS_ERR(file))
1350                 goto out_unmark;
1351
1352         sched_exec();
1353
1354         bprm->file = file;
1355         bprm->filename = filename;
1356         bprm->interp = filename;
1357
1358         retval = bprm_mm_init(bprm);
1359         if (retval)
1360                 goto out_file;
1361
1362         bprm->argc = count(argv, MAX_ARG_STRINGS);
1363         if ((retval = bprm->argc) < 0)
1364                 goto out;
1365
1366         bprm->envc = count(envp, MAX_ARG_STRINGS);
1367         if ((retval = bprm->envc) < 0)
1368                 goto out;
1369
1370         retval = prepare_binprm(bprm);
1371         if (retval < 0)
1372                 goto out;
1373
1374         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1375         if (retval < 0)
1376                 goto out;
1377
1378         bprm->exec = bprm->p;
1379         retval = copy_strings(bprm->envc, envp, bprm);
1380         if (retval < 0)
1381                 goto out;
1382
1383         retval = copy_strings(bprm->argc, argv, bprm);
1384         if (retval < 0)
1385                 goto out;
1386
1387         current->flags &= ~PF_KTHREAD;
1388         retval = search_binary_handler(bprm,regs);
1389         if (retval < 0)
1390                 goto out;
1391
1392         current->stack_start = current->mm->start_stack;
1393
1394         /* execve succeeded */
1395         current->fs->in_exec = 0;
1396         current->in_execve = 0;
1397         acct_update_integrals(current);
1398         free_bprm(bprm);
1399         if (displaced)
1400                 put_files_struct(displaced);
1401         return retval;
1402
1403 out:
1404         if (bprm->mm)
1405                 mmput (bprm->mm);
1406
1407 out_file:
1408         if (bprm->file) {
1409                 allow_write_access(bprm->file);
1410                 fput(bprm->file);
1411         }
1412
1413 out_unmark:
1414         if (clear_in_exec)
1415                 current->fs->in_exec = 0;
1416         current->in_execve = 0;
1417
1418 out_free:
1419         free_bprm(bprm);
1420
1421 out_files:
1422         if (displaced)
1423                 reset_files_struct(displaced);
1424 out_ret:
1425         return retval;
1426 }
1427
1428 void set_binfmt(struct linux_binfmt *new)
1429 {
1430         struct mm_struct *mm = current->mm;
1431
1432         if (mm->binfmt)
1433                 module_put(mm->binfmt->module);
1434
1435         mm->binfmt = new;
1436         if (new)
1437                 __module_get(new->module);
1438 }
1439
1440 EXPORT_SYMBOL(set_binfmt);
1441
1442 /* format_corename will inspect the pattern parameter, and output a
1443  * name into corename, which must have space for at least
1444  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1445  */
1446 static int format_corename(char *corename, long signr)
1447 {
1448         const struct cred *cred = current_cred();
1449         const char *pat_ptr = core_pattern;
1450         int ispipe = (*pat_ptr == '|');
1451         char *out_ptr = corename;
1452         char *const out_end = corename + CORENAME_MAX_SIZE;
1453         int rc;
1454         int pid_in_pattern = 0;
1455
1456         /* Repeat as long as we have more pattern to process and more output
1457            space */
1458         while (*pat_ptr) {
1459                 if (*pat_ptr != '%') {
1460                         if (out_ptr == out_end)
1461                                 goto out;
1462                         *out_ptr++ = *pat_ptr++;
1463                 } else {
1464                         switch (*++pat_ptr) {
1465                         case 0:
1466                                 goto out;
1467                         /* Double percent, output one percent */
1468                         case '%':
1469                                 if (out_ptr == out_end)
1470                                         goto out;
1471                                 *out_ptr++ = '%';
1472                                 break;
1473                         /* pid */
1474                         case 'p':
1475                                 pid_in_pattern = 1;
1476                                 rc = snprintf(out_ptr, out_end - out_ptr,
1477                                               "%d", task_tgid_vnr(current));
1478                                 if (rc > out_end - out_ptr)
1479                                         goto out;
1480                                 out_ptr += rc;
1481                                 break;
1482                         /* uid */
1483                         case 'u':
1484                                 rc = snprintf(out_ptr, out_end - out_ptr,
1485                                               "%d", cred->uid);
1486                                 if (rc > out_end - out_ptr)
1487                                         goto out;
1488                                 out_ptr += rc;
1489                                 break;
1490                         /* gid */
1491                         case 'g':
1492                                 rc = snprintf(out_ptr, out_end - out_ptr,
1493                                               "%d", cred->gid);
1494                                 if (rc > out_end - out_ptr)
1495                                         goto out;
1496                                 out_ptr += rc;
1497                                 break;
1498                         /* signal that caused the coredump */
1499                         case 's':
1500                                 rc = snprintf(out_ptr, out_end - out_ptr,
1501                                               "%ld", signr);
1502                                 if (rc > out_end - out_ptr)
1503                                         goto out;
1504                                 out_ptr += rc;
1505                                 break;
1506                         /* UNIX time of coredump */
1507                         case 't': {
1508                                 struct timeval tv;
1509                                 do_gettimeofday(&tv);
1510                                 rc = snprintf(out_ptr, out_end - out_ptr,
1511                                               "%lu", tv.tv_sec);
1512                                 if (rc > out_end - out_ptr)
1513                                         goto out;
1514                                 out_ptr += rc;
1515                                 break;
1516                         }
1517                         /* hostname */
1518                         case 'h':
1519                                 down_read(&uts_sem);
1520                                 rc = snprintf(out_ptr, out_end - out_ptr,
1521                                               "%s", utsname()->nodename);
1522                                 up_read(&uts_sem);
1523                                 if (rc > out_end - out_ptr)
1524                                         goto out;
1525                                 out_ptr += rc;
1526                                 break;
1527                         /* executable */
1528                         case 'e':
1529                                 rc = snprintf(out_ptr, out_end - out_ptr,
1530                                               "%s", current->comm);
1531                                 if (rc > out_end - out_ptr)
1532                                         goto out;
1533                                 out_ptr += rc;
1534                                 break;
1535                         /* core limit size */
1536                         case 'c':
1537                                 rc = snprintf(out_ptr, out_end - out_ptr,
1538                                               "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1539                                 if (rc > out_end - out_ptr)
1540                                         goto out;
1541                                 out_ptr += rc;
1542                                 break;
1543                         default:
1544                                 break;
1545                         }
1546                         ++pat_ptr;
1547                 }
1548         }
1549         /* Backward compatibility with core_uses_pid:
1550          *
1551          * If core_pattern does not include a %p (as is the default)
1552          * and core_uses_pid is set, then .%pid will be appended to
1553          * the filename. Do not do this for piped commands. */
1554         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1555                 rc = snprintf(out_ptr, out_end - out_ptr,
1556                               ".%d", task_tgid_vnr(current));
1557                 if (rc > out_end - out_ptr)
1558                         goto out;
1559                 out_ptr += rc;
1560         }
1561 out:
1562         *out_ptr = 0;
1563         return ispipe;
1564 }
1565
1566 static int zap_process(struct task_struct *start)
1567 {
1568         struct task_struct *t;
1569         int nr = 0;
1570
1571         start->signal->flags = SIGNAL_GROUP_EXIT;
1572         start->signal->group_stop_count = 0;
1573
1574         t = start;
1575         do {
1576                 if (t != current && t->mm) {
1577                         sigaddset(&t->pending.signal, SIGKILL);
1578                         signal_wake_up(t, 1);
1579                         nr++;
1580                 }
1581         } while_each_thread(start, t);
1582
1583         return nr;
1584 }
1585
1586 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1587                                 struct core_state *core_state, int exit_code)
1588 {
1589         struct task_struct *g, *p;
1590         unsigned long flags;
1591         int nr = -EAGAIN;
1592
1593         spin_lock_irq(&tsk->sighand->siglock);
1594         if (!signal_group_exit(tsk->signal)) {
1595                 mm->core_state = core_state;
1596                 tsk->signal->group_exit_code = exit_code;
1597                 nr = zap_process(tsk);
1598         }
1599         spin_unlock_irq(&tsk->sighand->siglock);
1600         if (unlikely(nr < 0))
1601                 return nr;
1602
1603         if (atomic_read(&mm->mm_users) == nr + 1)
1604                 goto done;
1605         /*
1606          * We should find and kill all tasks which use this mm, and we should
1607          * count them correctly into ->nr_threads. We don't take tasklist
1608          * lock, but this is safe wrt:
1609          *
1610          * fork:
1611          *      None of sub-threads can fork after zap_process(leader). All
1612          *      processes which were created before this point should be
1613          *      visible to zap_threads() because copy_process() adds the new
1614          *      process to the tail of init_task.tasks list, and lock/unlock
1615          *      of ->siglock provides a memory barrier.
1616          *
1617          * do_exit:
1618          *      The caller holds mm->mmap_sem. This means that the task which
1619          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1620          *      its ->mm.
1621          *
1622          * de_thread:
1623          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1624          *      we must see either old or new leader, this does not matter.
1625          *      However, it can change p->sighand, so lock_task_sighand(p)
1626          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1627          *      it can't fail.
1628          *
1629          *      Note also that "g" can be the old leader with ->mm == NULL
1630          *      and already unhashed and thus removed from ->thread_group.
1631          *      This is OK, __unhash_process()->list_del_rcu() does not
1632          *      clear the ->next pointer, we will find the new leader via
1633          *      next_thread().
1634          */
1635         rcu_read_lock();
1636         for_each_process(g) {
1637                 if (g == tsk->group_leader)
1638                         continue;
1639                 if (g->flags & PF_KTHREAD)
1640                         continue;
1641                 p = g;
1642                 do {
1643                         if (p->mm) {
1644                                 if (unlikely(p->mm == mm)) {
1645                                         lock_task_sighand(p, &flags);
1646                                         nr += zap_process(p);
1647                                         unlock_task_sighand(p, &flags);
1648                                 }
1649                                 break;
1650                         }
1651                 } while_each_thread(g, p);
1652         }
1653         rcu_read_unlock();
1654 done:
1655         atomic_set(&core_state->nr_threads, nr);
1656         return nr;
1657 }
1658
1659 static int coredump_wait(int exit_code, struct core_state *core_state)
1660 {
1661         struct task_struct *tsk = current;
1662         struct mm_struct *mm = tsk->mm;
1663         struct completion *vfork_done;
1664         int core_waiters;
1665
1666         init_completion(&core_state->startup);
1667         core_state->dumper.task = tsk;
1668         core_state->dumper.next = NULL;
1669         core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1670         up_write(&mm->mmap_sem);
1671
1672         if (unlikely(core_waiters < 0))
1673                 goto fail;
1674
1675         /*
1676          * Make sure nobody is waiting for us to release the VM,
1677          * otherwise we can deadlock when we wait on each other
1678          */
1679         vfork_done = tsk->vfork_done;
1680         if (vfork_done) {
1681                 tsk->vfork_done = NULL;
1682                 complete(vfork_done);
1683         }
1684
1685         if (core_waiters)
1686                 wait_for_completion(&core_state->startup);
1687 fail:
1688         return core_waiters;
1689 }
1690
1691 static void coredump_finish(struct mm_struct *mm)
1692 {
1693         struct core_thread *curr, *next;
1694         struct task_struct *task;
1695
1696         next = mm->core_state->dumper.next;
1697         while ((curr = next) != NULL) {
1698                 next = curr->next;
1699                 task = curr->task;
1700                 /*
1701                  * see exit_mm(), curr->task must not see
1702                  * ->task == NULL before we read ->next.
1703                  */
1704                 smp_mb();
1705                 curr->task = NULL;
1706                 wake_up_process(task);
1707         }
1708
1709         mm->core_state = NULL;
1710 }
1711
1712 /*
1713  * set_dumpable converts traditional three-value dumpable to two flags and
1714  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1715  * these bits are not changed atomically.  So get_dumpable can observe the
1716  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1717  * return either old dumpable or new one by paying attention to the order of
1718  * modifying the bits.
1719  *
1720  * dumpable |   mm->flags (binary)
1721  * old  new | initial interim  final
1722  * ---------+-----------------------
1723  *  0    1  |   00      01      01
1724  *  0    2  |   00      10(*)   11
1725  *  1    0  |   01      00      00
1726  *  1    2  |   01      11      11
1727  *  2    0  |   11      10(*)   00
1728  *  2    1  |   11      11      01
1729  *
1730  * (*) get_dumpable regards interim value of 10 as 11.
1731  */
1732 void set_dumpable(struct mm_struct *mm, int value)
1733 {
1734         switch (value) {
1735         case 0:
1736                 clear_bit(MMF_DUMPABLE, &mm->flags);
1737                 smp_wmb();
1738                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1739                 break;
1740         case 1:
1741                 set_bit(MMF_DUMPABLE, &mm->flags);
1742                 smp_wmb();
1743                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1744                 break;
1745         case 2:
1746                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1747                 smp_wmb();
1748                 set_bit(MMF_DUMPABLE, &mm->flags);
1749                 break;
1750         }
1751 }
1752
1753 int get_dumpable(struct mm_struct *mm)
1754 {
1755         int ret;
1756
1757         ret = mm->flags & 0x3;
1758         return (ret >= 2) ? 2 : ret;
1759 }
1760
1761 static void wait_for_dump_helpers(struct file *file)
1762 {
1763         struct pipe_inode_info *pipe;
1764
1765         pipe = file->f_path.dentry->d_inode->i_pipe;
1766
1767         pipe_lock(pipe);
1768         pipe->readers++;
1769         pipe->writers--;
1770
1771         while ((pipe->readers > 1) && (!signal_pending(current))) {
1772                 wake_up_interruptible_sync(&pipe->wait);
1773                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1774                 pipe_wait(pipe);
1775         }
1776
1777         pipe->readers--;
1778         pipe->writers++;
1779         pipe_unlock(pipe);
1780
1781 }
1782
1783
1784 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1785 {
1786         struct core_state core_state;
1787         char corename[CORENAME_MAX_SIZE + 1];
1788         struct mm_struct *mm = current->mm;
1789         struct linux_binfmt * binfmt;
1790         struct inode * inode;
1791         const struct cred *old_cred;
1792         struct cred *cred;
1793         int retval = 0;
1794         int flag = 0;
1795         int ispipe = 0;
1796         char **helper_argv = NULL;
1797         int helper_argc = 0;
1798         int dump_count = 0;
1799         static atomic_t core_dump_count = ATOMIC_INIT(0);
1800         struct coredump_params cprm = {
1801                 .signr = signr,
1802                 .regs = regs,
1803                 .limit = current->signal->rlim[RLIMIT_CORE].rlim_cur,
1804         };
1805
1806         audit_core_dumps(signr);
1807
1808         binfmt = mm->binfmt;
1809         if (!binfmt || !binfmt->core_dump)
1810                 goto fail;
1811
1812         cred = prepare_creds();
1813         if (!cred) {
1814                 retval = -ENOMEM;
1815                 goto fail;
1816         }
1817
1818         down_write(&mm->mmap_sem);
1819         /*
1820          * If another thread got here first, or we are not dumpable, bail out.
1821          */
1822         if (mm->core_state || !get_dumpable(mm)) {
1823                 up_write(&mm->mmap_sem);
1824                 put_cred(cred);
1825                 goto fail;
1826         }
1827
1828         /*
1829          *      We cannot trust fsuid as being the "true" uid of the
1830          *      process nor do we know its entire history. We only know it
1831          *      was tainted so we dump it as root in mode 2.
1832          */
1833         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1834                 flag = O_EXCL;          /* Stop rewrite attacks */
1835                 cred->fsuid = 0;        /* Dump root private */
1836         }
1837
1838         retval = coredump_wait(exit_code, &core_state);
1839         if (retval < 0) {
1840                 put_cred(cred);
1841                 goto fail;
1842         }
1843
1844         old_cred = override_creds(cred);
1845
1846         /*
1847          * Clear any false indication of pending signals that might
1848          * be seen by the filesystem code called to write the core file.
1849          */
1850         clear_thread_flag(TIF_SIGPENDING);
1851
1852         /*
1853          * lock_kernel() because format_corename() is controlled by sysctl, which
1854          * uses lock_kernel()
1855          */
1856         lock_kernel();
1857         ispipe = format_corename(corename, signr);
1858         unlock_kernel();
1859
1860         if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
1861                 goto fail_unlock;
1862
1863         if (ispipe) {
1864                 if (cprm.limit == 0) {
1865                         /*
1866                          * Normally core limits are irrelevant to pipes, since
1867                          * we're not writing to the file system, but we use
1868                          * cprm.limit of 0 here as a speacial value. Any
1869                          * non-zero limit gets set to RLIM_INFINITY below, but
1870                          * a limit of 0 skips the dump.  This is a consistent
1871                          * way to catch recursive crashes.  We can still crash
1872                          * if the core_pattern binary sets RLIM_CORE =  !0
1873                          * but it runs as root, and can do lots of stupid things
1874                          * Note that we use task_tgid_vnr here to grab the pid
1875                          * of the process group leader.  That way we get the
1876                          * right pid if a thread in a multi-threaded
1877                          * core_pattern process dies.
1878                          */
1879                         printk(KERN_WARNING
1880                                 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1881                                 task_tgid_vnr(current), current->comm);
1882                         printk(KERN_WARNING "Aborting core\n");
1883                         goto fail_unlock;
1884                 }
1885
1886                 dump_count = atomic_inc_return(&core_dump_count);
1887                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1888                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1889                                task_tgid_vnr(current), current->comm);
1890                         printk(KERN_WARNING "Skipping core dump\n");
1891                         goto fail_dropcount;
1892                 }
1893
1894                 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1895                 if (!helper_argv) {
1896                         printk(KERN_WARNING "%s failed to allocate memory\n",
1897                                __func__);
1898                         goto fail_dropcount;
1899                 }
1900
1901                 cprm.limit = RLIM_INFINITY;
1902
1903                 /* SIGPIPE can happen, but it's just never processed */
1904                 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1905                                 &cprm.file)) {
1906                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1907                                corename);
1908                         goto fail_dropcount;
1909                 }
1910         } else
1911                 cprm.file = filp_open(corename,
1912                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1913                                  0600);
1914         if (IS_ERR(cprm.file))
1915                 goto fail_dropcount;
1916         inode = cprm.file->f_path.dentry->d_inode;
1917         if (inode->i_nlink > 1)
1918                 goto close_fail;        /* multiple links - don't dump */
1919         if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
1920                 goto close_fail;
1921
1922         /* AK: actually i see no reason to not allow this for named pipes etc.,
1923            but keep the previous behaviour for now. */
1924         if (!ispipe && !S_ISREG(inode->i_mode))
1925                 goto close_fail;
1926         /*
1927          * Dont allow local users get cute and trick others to coredump
1928          * into their pre-created files:
1929          */
1930         if (inode->i_uid != current_fsuid())
1931                 goto close_fail;
1932         if (!cprm.file->f_op)
1933                 goto close_fail;
1934         if (!cprm.file->f_op->write)
1935                 goto close_fail;
1936         if (!ispipe &&
1937             do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
1938                 goto close_fail;
1939
1940         retval = binfmt->core_dump(&cprm);
1941
1942         if (retval)
1943                 current->signal->group_exit_code |= 0x80;
1944 close_fail:
1945         if (ispipe && core_pipe_limit)
1946                 wait_for_dump_helpers(cprm.file);
1947         filp_close(cprm.file, NULL);
1948 fail_dropcount:
1949         if (dump_count)
1950                 atomic_dec(&core_dump_count);
1951 fail_unlock:
1952         if (helper_argv)
1953                 argv_free(helper_argv);
1954
1955         revert_creds(old_cred);
1956         put_cred(cred);
1957         coredump_finish(mm);
1958 fail:
1959         return;
1960 }