nfsd4: reshuffle lease-setting code to allow reuse
[safe/jmp/linux-2.6] / fs / ecryptfs / keystore.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
42 static int process_request_key_err(long err_code)
43 {
44         int rc = 0;
45
46         switch (err_code) {
47         case -ENOKEY:
48                 ecryptfs_printk(KERN_WARNING, "No key\n");
49                 rc = -ENOENT;
50                 break;
51         case -EKEYEXPIRED:
52                 ecryptfs_printk(KERN_WARNING, "Key expired\n");
53                 rc = -ETIME;
54                 break;
55         case -EKEYREVOKED:
56                 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57                 rc = -EINVAL;
58                 break;
59         default:
60                 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61                                 "[0x%.16x]\n", err_code);
62                 rc = -EINVAL;
63         }
64         return rc;
65 }
66
67 /**
68  * ecryptfs_parse_packet_length
69  * @data: Pointer to memory containing length at offset
70  * @size: This function writes the decoded size to this memory
71  *        address; zero on error
72  * @length_size: The number of bytes occupied by the encoded length
73  *
74  * Returns zero on success; non-zero on error
75  */
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77                                  size_t *length_size)
78 {
79         int rc = 0;
80
81         (*length_size) = 0;
82         (*size) = 0;
83         if (data[0] < 192) {
84                 /* One-byte length */
85                 (*size) = (unsigned char)data[0];
86                 (*length_size) = 1;
87         } else if (data[0] < 224) {
88                 /* Two-byte length */
89                 (*size) = (((unsigned char)(data[0]) - 192) * 256);
90                 (*size) += ((unsigned char)(data[1]) + 192);
91                 (*length_size) = 2;
92         } else if (data[0] == 255) {
93                 /* Five-byte length; we're not supposed to see this */
94                 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95                                 "supported\n");
96                 rc = -EINVAL;
97                 goto out;
98         } else {
99                 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100                 rc = -EINVAL;
101                 goto out;
102         }
103 out:
104         return rc;
105 }
106
107 /**
108  * ecryptfs_write_packet_length
109  * @dest: The byte array target into which to write the length. Must
110  *        have at least 5 bytes allocated.
111  * @size: The length to write.
112  * @packet_size_length: The number of bytes used to encode the packet
113  *                      length is written to this address.
114  *
115  * Returns zero on success; non-zero on error.
116  */
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118                                  size_t *packet_size_length)
119 {
120         int rc = 0;
121
122         if (size < 192) {
123                 dest[0] = size;
124                 (*packet_size_length) = 1;
125         } else if (size < 65536) {
126                 dest[0] = (((size - 192) / 256) + 192);
127                 dest[1] = ((size - 192) % 256);
128                 (*packet_size_length) = 2;
129         } else {
130                 rc = -EINVAL;
131                 ecryptfs_printk(KERN_WARNING,
132                                 "Unsupported packet size: [%d]\n", size);
133         }
134         return rc;
135 }
136
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139                     char **packet, size_t *packet_len)
140 {
141         size_t i = 0;
142         size_t data_len;
143         size_t packet_size_len;
144         char *message;
145         int rc;
146
147         /*
148          *              ***** TAG 64 Packet Format *****
149          *    | Content Type                       | 1 byte       |
150          *    | Key Identifier Size                | 1 or 2 bytes |
151          *    | Key Identifier                     | arbitrary    |
152          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
153          *    | Encrypted File Encryption Key      | arbitrary    |
154          */
155         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156                     + session_key->encrypted_key_size);
157         *packet = kmalloc(data_len, GFP_KERNEL);
158         message = *packet;
159         if (!message) {
160                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161                 rc = -ENOMEM;
162                 goto out;
163         }
164         message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166                                           &packet_size_len);
167         if (rc) {
168                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169                                 "header; cannot generate packet length\n");
170                 goto out;
171         }
172         i += packet_size_len;
173         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174         i += ECRYPTFS_SIG_SIZE_HEX;
175         rc = ecryptfs_write_packet_length(&message[i],
176                                           session_key->encrypted_key_size,
177                                           &packet_size_len);
178         if (rc) {
179                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180                                 "header; cannot generate packet length\n");
181                 goto out;
182         }
183         i += packet_size_len;
184         memcpy(&message[i], session_key->encrypted_key,
185                session_key->encrypted_key_size);
186         i += session_key->encrypted_key_size;
187         *packet_len = i;
188 out:
189         return rc;
190 }
191
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194                     struct ecryptfs_message *msg)
195 {
196         size_t i = 0;
197         char *data;
198         size_t data_len;
199         size_t m_size;
200         size_t message_len;
201         u16 checksum = 0;
202         u16 expected_checksum = 0;
203         int rc;
204
205         /*
206          *              ***** TAG 65 Packet Format *****
207          *         | Content Type             | 1 byte       |
208          *         | Status Indicator         | 1 byte       |
209          *         | File Encryption Key Size | 1 or 2 bytes |
210          *         | File Encryption Key      | arbitrary    |
211          */
212         message_len = msg->data_len;
213         data = msg->data;
214         if (message_len < 4) {
215                 rc = -EIO;
216                 goto out;
217         }
218         if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219                 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220                 rc = -EIO;
221                 goto out;
222         }
223         if (data[i++]) {
224                 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225                                 "[%d]\n", data[i-1]);
226                 rc = -EIO;
227                 goto out;
228         }
229         rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230         if (rc) {
231                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232                                 "rc = [%d]\n", rc);
233                 goto out;
234         }
235         i += data_len;
236         if (message_len < (i + m_size)) {
237                 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238                                 "is shorter than expected\n");
239                 rc = -EIO;
240                 goto out;
241         }
242         if (m_size < 3) {
243                 ecryptfs_printk(KERN_ERR,
244                                 "The decrypted key is not long enough to "
245                                 "include a cipher code and checksum\n");
246                 rc = -EIO;
247                 goto out;
248         }
249         *cipher_code = data[i++];
250         /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251         session_key->decrypted_key_size = m_size - 3;
252         if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253                 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254                                 "the maximum key size [%d]\n",
255                                 session_key->decrypted_key_size,
256                                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257                 rc = -EIO;
258                 goto out;
259         }
260         memcpy(session_key->decrypted_key, &data[i],
261                session_key->decrypted_key_size);
262         i += session_key->decrypted_key_size;
263         expected_checksum += (unsigned char)(data[i++]) << 8;
264         expected_checksum += (unsigned char)(data[i++]);
265         for (i = 0; i < session_key->decrypted_key_size; i++)
266                 checksum += session_key->decrypted_key[i];
267         if (expected_checksum != checksum) {
268                 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269                                 "encryption  key; expected [%x]; calculated "
270                                 "[%x]\n", expected_checksum, checksum);
271                 rc = -EIO;
272         }
273 out:
274         return rc;
275 }
276
277
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280                     struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281                     size_t *packet_len)
282 {
283         size_t i = 0;
284         size_t j;
285         size_t data_len;
286         size_t checksum = 0;
287         size_t packet_size_len;
288         char *message;
289         int rc;
290
291         /*
292          *              ***** TAG 66 Packet Format *****
293          *         | Content Type             | 1 byte       |
294          *         | Key Identifier Size      | 1 or 2 bytes |
295          *         | Key Identifier           | arbitrary    |
296          *         | File Encryption Key Size | 1 or 2 bytes |
297          *         | File Encryption Key      | arbitrary    |
298          */
299         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300         *packet = kmalloc(data_len, GFP_KERNEL);
301         message = *packet;
302         if (!message) {
303                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304                 rc = -ENOMEM;
305                 goto out;
306         }
307         message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309                                           &packet_size_len);
310         if (rc) {
311                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312                                 "header; cannot generate packet length\n");
313                 goto out;
314         }
315         i += packet_size_len;
316         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317         i += ECRYPTFS_SIG_SIZE_HEX;
318         /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319         rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320                                           &packet_size_len);
321         if (rc) {
322                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323                                 "header; cannot generate packet length\n");
324                 goto out;
325         }
326         i += packet_size_len;
327         message[i++] = cipher_code;
328         memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329         i += crypt_stat->key_size;
330         for (j = 0; j < crypt_stat->key_size; j++)
331                 checksum += crypt_stat->key[j];
332         message[i++] = (checksum / 256) % 256;
333         message[i++] = (checksum % 256);
334         *packet_len = i;
335 out:
336         return rc;
337 }
338
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341                     struct ecryptfs_message *msg)
342 {
343         size_t i = 0;
344         char *data;
345         size_t data_len;
346         size_t message_len;
347         int rc;
348
349         /*
350          *              ***** TAG 65 Packet Format *****
351          *    | Content Type                       | 1 byte       |
352          *    | Status Indicator                   | 1 byte       |
353          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
354          *    | Encrypted File Encryption Key      | arbitrary    |
355          */
356         message_len = msg->data_len;
357         data = msg->data;
358         /* verify that everything through the encrypted FEK size is present */
359         if (message_len < 4) {
360                 rc = -EIO;
361                 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362                        "message length is [%d]\n", __func__, message_len, 4);
363                 goto out;
364         }
365         if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366                 rc = -EIO;
367                 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368                        __func__);
369                 goto out;
370         }
371         if (data[i++]) {
372                 rc = -EIO;
373                 printk(KERN_ERR "%s: Status indicator has non zero "
374                        "value [%d]\n", __func__, data[i-1]);
375
376                 goto out;
377         }
378         rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379                                           &data_len);
380         if (rc) {
381                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382                                 "rc = [%d]\n", rc);
383                 goto out;
384         }
385         i += data_len;
386         if (message_len < (i + key_rec->enc_key_size)) {
387                 rc = -EIO;
388                 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389                        __func__, message_len, (i + key_rec->enc_key_size));
390                 goto out;
391         }
392         if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393                 rc = -EIO;
394                 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395                        "the maximum key size [%d]\n", __func__,
396                        key_rec->enc_key_size,
397                        ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398                 goto out;
399         }
400         memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402         return rc;
403 }
404
405 static int
406 ecryptfs_find_global_auth_tok_for_sig(
407         struct ecryptfs_global_auth_tok **global_auth_tok,
408         struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
409 {
410         struct ecryptfs_global_auth_tok *walker;
411         int rc = 0;
412
413         (*global_auth_tok) = NULL;
414         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
415         list_for_each_entry(walker,
416                             &mount_crypt_stat->global_auth_tok_list,
417                             mount_crypt_stat_list) {
418                 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
419                         rc = key_validate(walker->global_auth_tok_key);
420                         if (!rc)
421                                 (*global_auth_tok) = walker;
422                         goto out;
423                 }
424         }
425         rc = -EINVAL;
426 out:
427         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
428         return rc;
429 }
430
431 /**
432  * ecryptfs_find_auth_tok_for_sig
433  * @auth_tok: Set to the matching auth_tok; NULL if not found
434  * @crypt_stat: inode crypt_stat crypto context
435  * @sig: Sig of auth_tok to find
436  *
437  * For now, this function simply looks at the registered auth_tok's
438  * linked off the mount_crypt_stat, so all the auth_toks that can be
439  * used must be registered at mount time. This function could
440  * potentially try a lot harder to find auth_tok's (e.g., by calling
441  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
442  * that static registration of auth_tok's will no longer be necessary.
443  *
444  * Returns zero on no error; non-zero on error
445  */
446 static int
447 ecryptfs_find_auth_tok_for_sig(
448         struct ecryptfs_auth_tok **auth_tok,
449         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
450         char *sig)
451 {
452         struct ecryptfs_global_auth_tok *global_auth_tok;
453         int rc = 0;
454
455         (*auth_tok) = NULL;
456         if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
457                                                   mount_crypt_stat, sig)) {
458                 struct key *auth_tok_key;
459
460                 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
461                                                        sig);
462         } else
463                 (*auth_tok) = global_auth_tok->global_auth_tok;
464         return rc;
465 }
466
467 /**
468  * write_tag_70_packet can gobble a lot of stack space. We stuff most
469  * of the function's parameters in a kmalloc'd struct to help reduce
470  * eCryptfs' overall stack usage.
471  */
472 struct ecryptfs_write_tag_70_packet_silly_stack {
473         u8 cipher_code;
474         size_t max_packet_size;
475         size_t packet_size_len;
476         size_t block_aligned_filename_size;
477         size_t block_size;
478         size_t i;
479         size_t j;
480         size_t num_rand_bytes;
481         struct mutex *tfm_mutex;
482         char *block_aligned_filename;
483         struct ecryptfs_auth_tok *auth_tok;
484         struct scatterlist src_sg;
485         struct scatterlist dst_sg;
486         struct blkcipher_desc desc;
487         char iv[ECRYPTFS_MAX_IV_BYTES];
488         char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
489         char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
490         struct hash_desc hash_desc;
491         struct scatterlist hash_sg;
492 };
493
494 /**
495  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
496  * @filename: NULL-terminated filename string
497  *
498  * This is the simplest mechanism for achieving filename encryption in
499  * eCryptfs. It encrypts the given filename with the mount-wide
500  * filename encryption key (FNEK) and stores it in a packet to @dest,
501  * which the callee will encode and write directly into the dentry
502  * name.
503  */
504 int
505 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
506                              size_t *packet_size,
507                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
508                              char *filename, size_t filename_size)
509 {
510         struct ecryptfs_write_tag_70_packet_silly_stack *s;
511         int rc = 0;
512
513         s = kmalloc(sizeof(*s), GFP_KERNEL);
514         if (!s) {
515                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
516                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
517                 goto out;
518         }
519         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
520         (*packet_size) = 0;
521         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
522                 &s->desc.tfm,
523                 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
524         if (unlikely(rc)) {
525                 printk(KERN_ERR "Internal error whilst attempting to get "
526                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
527                        mount_crypt_stat->global_default_fn_cipher_name, rc);
528                 goto out;
529         }
530         mutex_lock(s->tfm_mutex);
531         s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
532         /* Plus one for the \0 separator between the random prefix
533          * and the plaintext filename */
534         s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
535         s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
536         if ((s->block_aligned_filename_size % s->block_size) != 0) {
537                 s->num_rand_bytes += (s->block_size
538                                       - (s->block_aligned_filename_size
539                                          % s->block_size));
540                 s->block_aligned_filename_size = (s->num_rand_bytes
541                                                   + filename_size);
542         }
543         /* Octet 0: Tag 70 identifier
544          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
545          *              and block-aligned encrypted filename size)
546          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
547          * Octet N2-N3: Cipher identifier (1 octet)
548          * Octets N3-N4: Block-aligned encrypted filename
549          *  - Consists of a minimum number of random characters, a \0
550          *    separator, and then the filename */
551         s->max_packet_size = (1                   /* Tag 70 identifier */
552                               + 3                 /* Max Tag 70 packet size */
553                               + ECRYPTFS_SIG_SIZE /* FNEK sig */
554                               + 1                 /* Cipher identifier */
555                               + s->block_aligned_filename_size);
556         if (dest == NULL) {
557                 (*packet_size) = s->max_packet_size;
558                 goto out_unlock;
559         }
560         if (s->max_packet_size > (*remaining_bytes)) {
561                 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
562                        "[%zd] available\n", __func__, s->max_packet_size,
563                        (*remaining_bytes));
564                 rc = -EINVAL;
565                 goto out_unlock;
566         }
567         s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
568                                             GFP_KERNEL);
569         if (!s->block_aligned_filename) {
570                 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
571                        "kzalloc [%zd] bytes\n", __func__,
572                        s->block_aligned_filename_size);
573                 rc = -ENOMEM;
574                 goto out_unlock;
575         }
576         s->i = 0;
577         dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
578         rc = ecryptfs_write_packet_length(&dest[s->i],
579                                           (ECRYPTFS_SIG_SIZE
580                                            + 1 /* Cipher code */
581                                            + s->block_aligned_filename_size),
582                                           &s->packet_size_len);
583         if (rc) {
584                 printk(KERN_ERR "%s: Error generating tag 70 packet "
585                        "header; cannot generate packet length; rc = [%d]\n",
586                        __func__, rc);
587                 goto out_free_unlock;
588         }
589         s->i += s->packet_size_len;
590         ecryptfs_from_hex(&dest[s->i],
591                           mount_crypt_stat->global_default_fnek_sig,
592                           ECRYPTFS_SIG_SIZE);
593         s->i += ECRYPTFS_SIG_SIZE;
594         s->cipher_code = ecryptfs_code_for_cipher_string(
595                 mount_crypt_stat->global_default_fn_cipher_name,
596                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
597         if (s->cipher_code == 0) {
598                 printk(KERN_WARNING "%s: Unable to generate code for "
599                        "cipher [%s] with key bytes [%zd]\n", __func__,
600                        mount_crypt_stat->global_default_fn_cipher_name,
601                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
602                 rc = -EINVAL;
603                 goto out_free_unlock;
604         }
605         dest[s->i++] = s->cipher_code;
606         rc = ecryptfs_find_auth_tok_for_sig(
607                 &s->auth_tok, mount_crypt_stat,
608                 mount_crypt_stat->global_default_fnek_sig);
609         if (rc) {
610                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
611                        "fnek sig [%s]; rc = [%d]\n", __func__,
612                        mount_crypt_stat->global_default_fnek_sig, rc);
613                 goto out_free_unlock;
614         }
615         /* TODO: Support other key modules than passphrase for
616          * filename encryption */
617         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
618                 rc = -EOPNOTSUPP;
619                 printk(KERN_INFO "%s: Filename encryption only supports "
620                        "password tokens\n", __func__);
621                 goto out_free_unlock;
622         }
623         sg_init_one(
624                 &s->hash_sg,
625                 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
626                 s->auth_tok->token.password.session_key_encryption_key_bytes);
627         s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
628         s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
629                                              CRYPTO_ALG_ASYNC);
630         if (IS_ERR(s->hash_desc.tfm)) {
631                         rc = PTR_ERR(s->hash_desc.tfm);
632                         printk(KERN_ERR "%s: Error attempting to "
633                                "allocate hash crypto context; rc = [%d]\n",
634                                __func__, rc);
635                         goto out_free_unlock;
636         }
637         rc = crypto_hash_init(&s->hash_desc);
638         if (rc) {
639                 printk(KERN_ERR
640                        "%s: Error initializing crypto hash; rc = [%d]\n",
641                        __func__, rc);
642                 goto out_release_free_unlock;
643         }
644         rc = crypto_hash_update(
645                 &s->hash_desc, &s->hash_sg,
646                 s->auth_tok->token.password.session_key_encryption_key_bytes);
647         if (rc) {
648                 printk(KERN_ERR
649                        "%s: Error updating crypto hash; rc = [%d]\n",
650                        __func__, rc);
651                 goto out_release_free_unlock;
652         }
653         rc = crypto_hash_final(&s->hash_desc, s->hash);
654         if (rc) {
655                 printk(KERN_ERR
656                        "%s: Error finalizing crypto hash; rc = [%d]\n",
657                        __func__, rc);
658                 goto out_release_free_unlock;
659         }
660         for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
661                 s->block_aligned_filename[s->j] =
662                         s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
663                 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
664                     == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
665                         sg_init_one(&s->hash_sg, (u8 *)s->hash,
666                                     ECRYPTFS_TAG_70_DIGEST_SIZE);
667                         rc = crypto_hash_init(&s->hash_desc);
668                         if (rc) {
669                                 printk(KERN_ERR
670                                        "%s: Error initializing crypto hash; "
671                                        "rc = [%d]\n", __func__, rc);
672                                 goto out_release_free_unlock;
673                         }
674                         rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
675                                                 ECRYPTFS_TAG_70_DIGEST_SIZE);
676                         if (rc) {
677                                 printk(KERN_ERR
678                                        "%s: Error updating crypto hash; "
679                                        "rc = [%d]\n", __func__, rc);
680                                 goto out_release_free_unlock;
681                         }
682                         rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
683                         if (rc) {
684                                 printk(KERN_ERR
685                                        "%s: Error finalizing crypto hash; "
686                                        "rc = [%d]\n", __func__, rc);
687                                 goto out_release_free_unlock;
688                         }
689                         memcpy(s->hash, s->tmp_hash,
690                                ECRYPTFS_TAG_70_DIGEST_SIZE);
691                 }
692                 if (s->block_aligned_filename[s->j] == '\0')
693                         s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
694         }
695         memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
696                filename_size);
697         rc = virt_to_scatterlist(s->block_aligned_filename,
698                                  s->block_aligned_filename_size, &s->src_sg, 1);
699         if (rc != 1) {
700                 printk(KERN_ERR "%s: Internal error whilst attempting to "
701                        "convert filename memory to scatterlist; "
702                        "expected rc = 1; got rc = [%d]. "
703                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
704                        s->block_aligned_filename_size);
705                 goto out_release_free_unlock;
706         }
707         rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
708                                  &s->dst_sg, 1);
709         if (rc != 1) {
710                 printk(KERN_ERR "%s: Internal error whilst attempting to "
711                        "convert encrypted filename memory to scatterlist; "
712                        "expected rc = 1; got rc = [%d]. "
713                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
714                        s->block_aligned_filename_size);
715                 goto out_release_free_unlock;
716         }
717         /* The characters in the first block effectively do the job
718          * of the IV here, so we just use 0's for the IV. Note the
719          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
720          * >= ECRYPTFS_MAX_IV_BYTES. */
721         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
722         s->desc.info = s->iv;
723         rc = crypto_blkcipher_setkey(
724                 s->desc.tfm,
725                 s->auth_tok->token.password.session_key_encryption_key,
726                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
727         if (rc < 0) {
728                 printk(KERN_ERR "%s: Error setting key for crypto context; "
729                        "rc = [%d]. s->auth_tok->token.password.session_key_"
730                        "encryption_key = [0x%p]; mount_crypt_stat->"
731                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
732                        rc,
733                        s->auth_tok->token.password.session_key_encryption_key,
734                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
735                 goto out_release_free_unlock;
736         }
737         rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
738                                          s->block_aligned_filename_size);
739         if (rc) {
740                 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
741                        "rc = [%d]\n", __func__, rc);
742                 goto out_release_free_unlock;
743         }
744         s->i += s->block_aligned_filename_size;
745         (*packet_size) = s->i;
746         (*remaining_bytes) -= (*packet_size);
747 out_release_free_unlock:
748         crypto_free_hash(s->hash_desc.tfm);
749 out_free_unlock:
750         kzfree(s->block_aligned_filename);
751 out_unlock:
752         mutex_unlock(s->tfm_mutex);
753 out:
754         kfree(s);
755         return rc;
756 }
757
758 struct ecryptfs_parse_tag_70_packet_silly_stack {
759         u8 cipher_code;
760         size_t max_packet_size;
761         size_t packet_size_len;
762         size_t parsed_tag_70_packet_size;
763         size_t block_aligned_filename_size;
764         size_t block_size;
765         size_t i;
766         struct mutex *tfm_mutex;
767         char *decrypted_filename;
768         struct ecryptfs_auth_tok *auth_tok;
769         struct scatterlist src_sg;
770         struct scatterlist dst_sg;
771         struct blkcipher_desc desc;
772         char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
773         char iv[ECRYPTFS_MAX_IV_BYTES];
774         char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
775 };
776
777 /**
778  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
779  * @filename: This function kmalloc's the memory for the filename
780  * @filename_size: This function sets this to the amount of memory
781  *                 kmalloc'd for the filename
782  * @packet_size: This function sets this to the the number of octets
783  *               in the packet parsed
784  * @mount_crypt_stat: The mount-wide cryptographic context
785  * @data: The memory location containing the start of the tag 70
786  *        packet
787  * @max_packet_size: The maximum legal size of the packet to be parsed
788  *                   from @data
789  *
790  * Returns zero on success; non-zero otherwise
791  */
792 int
793 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
794                              size_t *packet_size,
795                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
796                              char *data, size_t max_packet_size)
797 {
798         struct ecryptfs_parse_tag_70_packet_silly_stack *s;
799         int rc = 0;
800
801         (*packet_size) = 0;
802         (*filename_size) = 0;
803         (*filename) = NULL;
804         s = kmalloc(sizeof(*s), GFP_KERNEL);
805         if (!s) {
806                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
807                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
808                 goto out;
809         }
810         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
811         if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
812                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
813                        "at least [%d]\n", __func__, max_packet_size,
814                         (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
815                 rc = -EINVAL;
816                 goto out;
817         }
818         /* Octet 0: Tag 70 identifier
819          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
820          *              and block-aligned encrypted filename size)
821          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
822          * Octet N2-N3: Cipher identifier (1 octet)
823          * Octets N3-N4: Block-aligned encrypted filename
824          *  - Consists of a minimum number of random numbers, a \0
825          *    separator, and then the filename */
826         if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
827                 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
828                        "tag [0x%.2x]\n", __func__,
829                        data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
830                 rc = -EINVAL;
831                 goto out;
832         }
833         rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
834                                           &s->parsed_tag_70_packet_size,
835                                           &s->packet_size_len);
836         if (rc) {
837                 printk(KERN_WARNING "%s: Error parsing packet length; "
838                        "rc = [%d]\n", __func__, rc);
839                 goto out;
840         }
841         s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
842                                           - ECRYPTFS_SIG_SIZE - 1);
843         if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
844             > max_packet_size) {
845                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
846                        "size is [%zd]\n", __func__, max_packet_size,
847                        (1 + s->packet_size_len + 1
848                         + s->block_aligned_filename_size));
849                 rc = -EINVAL;
850                 goto out;
851         }
852         (*packet_size) += s->packet_size_len;
853         ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
854                         ECRYPTFS_SIG_SIZE);
855         s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
856         (*packet_size) += ECRYPTFS_SIG_SIZE;
857         s->cipher_code = data[(*packet_size)++];
858         rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
859         if (rc) {
860                 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
861                        __func__, s->cipher_code);
862                 goto out;
863         }
864         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
865                                                         &s->tfm_mutex,
866                                                         s->cipher_string);
867         if (unlikely(rc)) {
868                 printk(KERN_ERR "Internal error whilst attempting to get "
869                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
870                        s->cipher_string, rc);
871                 goto out;
872         }
873         mutex_lock(s->tfm_mutex);
874         rc = virt_to_scatterlist(&data[(*packet_size)],
875                                  s->block_aligned_filename_size, &s->src_sg, 1);
876         if (rc != 1) {
877                 printk(KERN_ERR "%s: Internal error whilst attempting to "
878                        "convert encrypted filename memory to scatterlist; "
879                        "expected rc = 1; got rc = [%d]. "
880                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
881                        s->block_aligned_filename_size);
882                 goto out_unlock;
883         }
884         (*packet_size) += s->block_aligned_filename_size;
885         s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
886                                         GFP_KERNEL);
887         if (!s->decrypted_filename) {
888                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
889                        "kmalloc [%zd] bytes\n", __func__,
890                        s->block_aligned_filename_size);
891                 rc = -ENOMEM;
892                 goto out_unlock;
893         }
894         rc = virt_to_scatterlist(s->decrypted_filename,
895                                  s->block_aligned_filename_size, &s->dst_sg, 1);
896         if (rc != 1) {
897                 printk(KERN_ERR "%s: Internal error whilst attempting to "
898                        "convert decrypted filename memory to scatterlist; "
899                        "expected rc = 1; got rc = [%d]. "
900                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
901                        s->block_aligned_filename_size);
902                 goto out_free_unlock;
903         }
904         /* The characters in the first block effectively do the job of
905          * the IV here, so we just use 0's for the IV. Note the
906          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
907          * >= ECRYPTFS_MAX_IV_BYTES. */
908         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
909         s->desc.info = s->iv;
910         rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
911                                             s->fnek_sig_hex);
912         if (rc) {
913                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
914                        "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
915                        rc);
916                 goto out_free_unlock;
917         }
918         /* TODO: Support other key modules than passphrase for
919          * filename encryption */
920         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
921                 rc = -EOPNOTSUPP;
922                 printk(KERN_INFO "%s: Filename encryption only supports "
923                        "password tokens\n", __func__);
924                 goto out_free_unlock;
925         }
926         rc = crypto_blkcipher_setkey(
927                 s->desc.tfm,
928                 s->auth_tok->token.password.session_key_encryption_key,
929                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
930         if (rc < 0) {
931                 printk(KERN_ERR "%s: Error setting key for crypto context; "
932                        "rc = [%d]. s->auth_tok->token.password.session_key_"
933                        "encryption_key = [0x%p]; mount_crypt_stat->"
934                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
935                        rc,
936                        s->auth_tok->token.password.session_key_encryption_key,
937                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
938                 goto out_free_unlock;
939         }
940         rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
941                                          s->block_aligned_filename_size);
942         if (rc) {
943                 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
944                        "rc = [%d]\n", __func__, rc);
945                 goto out_free_unlock;
946         }
947         s->i = 0;
948         while (s->decrypted_filename[s->i] != '\0'
949                && s->i < s->block_aligned_filename_size)
950                 s->i++;
951         if (s->i == s->block_aligned_filename_size) {
952                 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
953                        "find valid separator between random characters and "
954                        "the filename\n", __func__);
955                 rc = -EINVAL;
956                 goto out_free_unlock;
957         }
958         s->i++;
959         (*filename_size) = (s->block_aligned_filename_size - s->i);
960         if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
961                 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
962                        "invalid\n", __func__, (*filename_size));
963                 rc = -EINVAL;
964                 goto out_free_unlock;
965         }
966         (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
967         if (!(*filename)) {
968                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
969                        "kmalloc [%zd] bytes\n", __func__,
970                        ((*filename_size) + 1));
971                 rc = -ENOMEM;
972                 goto out_free_unlock;
973         }
974         memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
975         (*filename)[(*filename_size)] = '\0';
976 out_free_unlock:
977         kfree(s->decrypted_filename);
978 out_unlock:
979         mutex_unlock(s->tfm_mutex);
980 out:
981         if (rc) {
982                 (*packet_size) = 0;
983                 (*filename_size) = 0;
984                 (*filename) = NULL;
985         }
986         kfree(s);
987         return rc;
988 }
989
990 static int
991 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
992 {
993         int rc = 0;
994
995         (*sig) = NULL;
996         switch (auth_tok->token_type) {
997         case ECRYPTFS_PASSWORD:
998                 (*sig) = auth_tok->token.password.signature;
999                 break;
1000         case ECRYPTFS_PRIVATE_KEY:
1001                 (*sig) = auth_tok->token.private_key.signature;
1002                 break;
1003         default:
1004                 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1005                        auth_tok->token_type);
1006                 rc = -EINVAL;
1007         }
1008         return rc;
1009 }
1010
1011 /**
1012  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1013  * @auth_tok: The key authentication token used to decrypt the session key
1014  * @crypt_stat: The cryptographic context
1015  *
1016  * Returns zero on success; non-zero error otherwise.
1017  */
1018 static int
1019 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1020                                   struct ecryptfs_crypt_stat *crypt_stat)
1021 {
1022         u8 cipher_code = 0;
1023         struct ecryptfs_msg_ctx *msg_ctx;
1024         struct ecryptfs_message *msg = NULL;
1025         char *auth_tok_sig;
1026         char *payload;
1027         size_t payload_len;
1028         int rc;
1029
1030         rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1031         if (rc) {
1032                 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1033                        auth_tok->token_type);
1034                 goto out;
1035         }
1036         rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1037                                  &payload, &payload_len);
1038         if (rc) {
1039                 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1040                 goto out;
1041         }
1042         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1043         if (rc) {
1044                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1045                                 "ecryptfsd\n");
1046                 goto out;
1047         }
1048         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1049         if (rc) {
1050                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1051                                 "from the user space daemon\n");
1052                 rc = -EIO;
1053                 goto out;
1054         }
1055         rc = parse_tag_65_packet(&(auth_tok->session_key),
1056                                  &cipher_code, msg);
1057         if (rc) {
1058                 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1059                        rc);
1060                 goto out;
1061         }
1062         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1063         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1064                auth_tok->session_key.decrypted_key_size);
1065         crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1066         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1067         if (rc) {
1068                 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1069                                 cipher_code)
1070                 goto out;
1071         }
1072         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1073         if (ecryptfs_verbosity > 0) {
1074                 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1075                 ecryptfs_dump_hex(crypt_stat->key,
1076                                   crypt_stat->key_size);
1077         }
1078 out:
1079         if (msg)
1080                 kfree(msg);
1081         return rc;
1082 }
1083
1084 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1085 {
1086         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1087         struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1088
1089         list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1090                                  auth_tok_list_head, list) {
1091                 list_del(&auth_tok_list_item->list);
1092                 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1093                                 auth_tok_list_item);
1094         }
1095 }
1096
1097 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1098
1099 /**
1100  * parse_tag_1_packet
1101  * @crypt_stat: The cryptographic context to modify based on packet contents
1102  * @data: The raw bytes of the packet.
1103  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1104  *                 a new authentication token will be placed at the
1105  *                 end of this list for this packet.
1106  * @new_auth_tok: Pointer to a pointer to memory that this function
1107  *                allocates; sets the memory address of the pointer to
1108  *                NULL on error. This object is added to the
1109  *                auth_tok_list.
1110  * @packet_size: This function writes the size of the parsed packet
1111  *               into this memory location; zero on error.
1112  * @max_packet_size: The maximum allowable packet size
1113  *
1114  * Returns zero on success; non-zero on error.
1115  */
1116 static int
1117 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1118                    unsigned char *data, struct list_head *auth_tok_list,
1119                    struct ecryptfs_auth_tok **new_auth_tok,
1120                    size_t *packet_size, size_t max_packet_size)
1121 {
1122         size_t body_size;
1123         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1124         size_t length_size;
1125         int rc = 0;
1126
1127         (*packet_size) = 0;
1128         (*new_auth_tok) = NULL;
1129         /**
1130          * This format is inspired by OpenPGP; see RFC 2440
1131          * packet tag 1
1132          *
1133          * Tag 1 identifier (1 byte)
1134          * Max Tag 1 packet size (max 3 bytes)
1135          * Version (1 byte)
1136          * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1137          * Cipher identifier (1 byte)
1138          * Encrypted key size (arbitrary)
1139          *
1140          * 12 bytes minimum packet size
1141          */
1142         if (unlikely(max_packet_size < 12)) {
1143                 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1144                 rc = -EINVAL;
1145                 goto out;
1146         }
1147         if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1148                 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1149                        ECRYPTFS_TAG_1_PACKET_TYPE);
1150                 rc = -EINVAL;
1151                 goto out;
1152         }
1153         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1154          * at end of function upon failure */
1155         auth_tok_list_item =
1156                 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1157                                   GFP_KERNEL);
1158         if (!auth_tok_list_item) {
1159                 printk(KERN_ERR "Unable to allocate memory\n");
1160                 rc = -ENOMEM;
1161                 goto out;
1162         }
1163         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1164         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1165                                           &length_size);
1166         if (rc) {
1167                 printk(KERN_WARNING "Error parsing packet length; "
1168                        "rc = [%d]\n", rc);
1169                 goto out_free;
1170         }
1171         if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1172                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1173                 rc = -EINVAL;
1174                 goto out_free;
1175         }
1176         (*packet_size) += length_size;
1177         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1178                 printk(KERN_WARNING "Packet size exceeds max\n");
1179                 rc = -EINVAL;
1180                 goto out_free;
1181         }
1182         if (unlikely(data[(*packet_size)++] != 0x03)) {
1183                 printk(KERN_WARNING "Unknown version number [%d]\n",
1184                        data[(*packet_size) - 1]);
1185                 rc = -EINVAL;
1186                 goto out_free;
1187         }
1188         ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1189                         &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1190         *packet_size += ECRYPTFS_SIG_SIZE;
1191         /* This byte is skipped because the kernel does not need to
1192          * know which public key encryption algorithm was used */
1193         (*packet_size)++;
1194         (*new_auth_tok)->session_key.encrypted_key_size =
1195                 body_size - (ECRYPTFS_SIG_SIZE + 2);
1196         if ((*new_auth_tok)->session_key.encrypted_key_size
1197             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1198                 printk(KERN_WARNING "Tag 1 packet contains key larger "
1199                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1200                 rc = -EINVAL;
1201                 goto out;
1202         }
1203         memcpy((*new_auth_tok)->session_key.encrypted_key,
1204                &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1205         (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1206         (*new_auth_tok)->session_key.flags &=
1207                 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1208         (*new_auth_tok)->session_key.flags |=
1209                 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1210         (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1211         (*new_auth_tok)->flags = 0;
1212         (*new_auth_tok)->session_key.flags &=
1213                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1214         (*new_auth_tok)->session_key.flags &=
1215                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1216         list_add(&auth_tok_list_item->list, auth_tok_list);
1217         goto out;
1218 out_free:
1219         (*new_auth_tok) = NULL;
1220         memset(auth_tok_list_item, 0,
1221                sizeof(struct ecryptfs_auth_tok_list_item));
1222         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1223                         auth_tok_list_item);
1224 out:
1225         if (rc)
1226                 (*packet_size) = 0;
1227         return rc;
1228 }
1229
1230 /**
1231  * parse_tag_3_packet
1232  * @crypt_stat: The cryptographic context to modify based on packet
1233  *              contents.
1234  * @data: The raw bytes of the packet.
1235  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1236  *                 a new authentication token will be placed at the end
1237  *                 of this list for this packet.
1238  * @new_auth_tok: Pointer to a pointer to memory that this function
1239  *                allocates; sets the memory address of the pointer to
1240  *                NULL on error. This object is added to the
1241  *                auth_tok_list.
1242  * @packet_size: This function writes the size of the parsed packet
1243  *               into this memory location; zero on error.
1244  * @max_packet_size: maximum number of bytes to parse
1245  *
1246  * Returns zero on success; non-zero on error.
1247  */
1248 static int
1249 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1250                    unsigned char *data, struct list_head *auth_tok_list,
1251                    struct ecryptfs_auth_tok **new_auth_tok,
1252                    size_t *packet_size, size_t max_packet_size)
1253 {
1254         size_t body_size;
1255         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1256         size_t length_size;
1257         int rc = 0;
1258
1259         (*packet_size) = 0;
1260         (*new_auth_tok) = NULL;
1261         /**
1262          *This format is inspired by OpenPGP; see RFC 2440
1263          * packet tag 3
1264          *
1265          * Tag 3 identifier (1 byte)
1266          * Max Tag 3 packet size (max 3 bytes)
1267          * Version (1 byte)
1268          * Cipher code (1 byte)
1269          * S2K specifier (1 byte)
1270          * Hash identifier (1 byte)
1271          * Salt (ECRYPTFS_SALT_SIZE)
1272          * Hash iterations (1 byte)
1273          * Encrypted key (arbitrary)
1274          *
1275          * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1276          */
1277         if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1278                 printk(KERN_ERR "Max packet size too large\n");
1279                 rc = -EINVAL;
1280                 goto out;
1281         }
1282         if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1283                 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1284                        ECRYPTFS_TAG_3_PACKET_TYPE);
1285                 rc = -EINVAL;
1286                 goto out;
1287         }
1288         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1289          * at end of function upon failure */
1290         auth_tok_list_item =
1291             kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1292         if (!auth_tok_list_item) {
1293                 printk(KERN_ERR "Unable to allocate memory\n");
1294                 rc = -ENOMEM;
1295                 goto out;
1296         }
1297         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1298         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1299                                           &length_size);
1300         if (rc) {
1301                 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1302                        rc);
1303                 goto out_free;
1304         }
1305         if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1306                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1307                 rc = -EINVAL;
1308                 goto out_free;
1309         }
1310         (*packet_size) += length_size;
1311         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1312                 printk(KERN_ERR "Packet size exceeds max\n");
1313                 rc = -EINVAL;
1314                 goto out_free;
1315         }
1316         (*new_auth_tok)->session_key.encrypted_key_size =
1317                 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1318         if ((*new_auth_tok)->session_key.encrypted_key_size
1319             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1320                 printk(KERN_WARNING "Tag 3 packet contains key larger "
1321                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1322                 rc = -EINVAL;
1323                 goto out_free;
1324         }
1325         if (unlikely(data[(*packet_size)++] != 0x04)) {
1326                 printk(KERN_WARNING "Unknown version number [%d]\n",
1327                        data[(*packet_size) - 1]);
1328                 rc = -EINVAL;
1329                 goto out_free;
1330         }
1331         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1332                                             (u16)data[(*packet_size)]);
1333         if (rc)
1334                 goto out_free;
1335         /* A little extra work to differentiate among the AES key
1336          * sizes; see RFC2440 */
1337         switch(data[(*packet_size)++]) {
1338         case RFC2440_CIPHER_AES_192:
1339                 crypt_stat->key_size = 24;
1340                 break;
1341         default:
1342                 crypt_stat->key_size =
1343                         (*new_auth_tok)->session_key.encrypted_key_size;
1344         }
1345         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1346         if (rc)
1347                 goto out_free;
1348         if (unlikely(data[(*packet_size)++] != 0x03)) {
1349                 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1350                 rc = -ENOSYS;
1351                 goto out_free;
1352         }
1353         /* TODO: finish the hash mapping */
1354         switch (data[(*packet_size)++]) {
1355         case 0x01: /* See RFC2440 for these numbers and their mappings */
1356                 /* Choose MD5 */
1357                 memcpy((*new_auth_tok)->token.password.salt,
1358                        &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1359                 (*packet_size) += ECRYPTFS_SALT_SIZE;
1360                 /* This conversion was taken straight from RFC2440 */
1361                 (*new_auth_tok)->token.password.hash_iterations =
1362                         ((u32) 16 + (data[(*packet_size)] & 15))
1363                                 << ((data[(*packet_size)] >> 4) + 6);
1364                 (*packet_size)++;
1365                 /* Friendly reminder:
1366                  * (*new_auth_tok)->session_key.encrypted_key_size =
1367                  *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1368                 memcpy((*new_auth_tok)->session_key.encrypted_key,
1369                        &data[(*packet_size)],
1370                        (*new_auth_tok)->session_key.encrypted_key_size);
1371                 (*packet_size) +=
1372                         (*new_auth_tok)->session_key.encrypted_key_size;
1373                 (*new_auth_tok)->session_key.flags &=
1374                         ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1375                 (*new_auth_tok)->session_key.flags |=
1376                         ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1377                 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1378                 break;
1379         default:
1380                 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1381                                 "[%d]\n", data[(*packet_size) - 1]);
1382                 rc = -ENOSYS;
1383                 goto out_free;
1384         }
1385         (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1386         /* TODO: Parametarize; we might actually want userspace to
1387          * decrypt the session key. */
1388         (*new_auth_tok)->session_key.flags &=
1389                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1390         (*new_auth_tok)->session_key.flags &=
1391                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1392         list_add(&auth_tok_list_item->list, auth_tok_list);
1393         goto out;
1394 out_free:
1395         (*new_auth_tok) = NULL;
1396         memset(auth_tok_list_item, 0,
1397                sizeof(struct ecryptfs_auth_tok_list_item));
1398         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1399                         auth_tok_list_item);
1400 out:
1401         if (rc)
1402                 (*packet_size) = 0;
1403         return rc;
1404 }
1405
1406 /**
1407  * parse_tag_11_packet
1408  * @data: The raw bytes of the packet
1409  * @contents: This function writes the data contents of the literal
1410  *            packet into this memory location
1411  * @max_contents_bytes: The maximum number of bytes that this function
1412  *                      is allowed to write into contents
1413  * @tag_11_contents_size: This function writes the size of the parsed
1414  *                        contents into this memory location; zero on
1415  *                        error
1416  * @packet_size: This function writes the size of the parsed packet
1417  *               into this memory location; zero on error
1418  * @max_packet_size: maximum number of bytes to parse
1419  *
1420  * Returns zero on success; non-zero on error.
1421  */
1422 static int
1423 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1424                     size_t max_contents_bytes, size_t *tag_11_contents_size,
1425                     size_t *packet_size, size_t max_packet_size)
1426 {
1427         size_t body_size;
1428         size_t length_size;
1429         int rc = 0;
1430
1431         (*packet_size) = 0;
1432         (*tag_11_contents_size) = 0;
1433         /* This format is inspired by OpenPGP; see RFC 2440
1434          * packet tag 11
1435          *
1436          * Tag 11 identifier (1 byte)
1437          * Max Tag 11 packet size (max 3 bytes)
1438          * Binary format specifier (1 byte)
1439          * Filename length (1 byte)
1440          * Filename ("_CONSOLE") (8 bytes)
1441          * Modification date (4 bytes)
1442          * Literal data (arbitrary)
1443          *
1444          * We need at least 16 bytes of data for the packet to even be
1445          * valid.
1446          */
1447         if (max_packet_size < 16) {
1448                 printk(KERN_ERR "Maximum packet size too small\n");
1449                 rc = -EINVAL;
1450                 goto out;
1451         }
1452         if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1453                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1454                 rc = -EINVAL;
1455                 goto out;
1456         }
1457         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1458                                           &length_size);
1459         if (rc) {
1460                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1461                 goto out;
1462         }
1463         if (body_size < 14) {
1464                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1465                 rc = -EINVAL;
1466                 goto out;
1467         }
1468         (*packet_size) += length_size;
1469         (*tag_11_contents_size) = (body_size - 14);
1470         if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1471                 printk(KERN_ERR "Packet size exceeds max\n");
1472                 rc = -EINVAL;
1473                 goto out;
1474         }
1475         if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1476                 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1477                        "expected size\n");
1478                 rc = -EINVAL;
1479                 goto out;
1480         }
1481         if (data[(*packet_size)++] != 0x62) {
1482                 printk(KERN_WARNING "Unrecognizable packet\n");
1483                 rc = -EINVAL;
1484                 goto out;
1485         }
1486         if (data[(*packet_size)++] != 0x08) {
1487                 printk(KERN_WARNING "Unrecognizable packet\n");
1488                 rc = -EINVAL;
1489                 goto out;
1490         }
1491         (*packet_size) += 12; /* Ignore filename and modification date */
1492         memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1493         (*packet_size) += (*tag_11_contents_size);
1494 out:
1495         if (rc) {
1496                 (*packet_size) = 0;
1497                 (*tag_11_contents_size) = 0;
1498         }
1499         return rc;
1500 }
1501
1502 /**
1503  * ecryptfs_verify_version
1504  * @version: The version number to confirm
1505  *
1506  * Returns zero on good version; non-zero otherwise
1507  */
1508 static int ecryptfs_verify_version(u16 version)
1509 {
1510         int rc = 0;
1511         unsigned char major;
1512         unsigned char minor;
1513
1514         major = ((version >> 8) & 0xFF);
1515         minor = (version & 0xFF);
1516         if (major != ECRYPTFS_VERSION_MAJOR) {
1517                 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1518                                 "Expected [%d]; got [%d]\n",
1519                                 ECRYPTFS_VERSION_MAJOR, major);
1520                 rc = -EINVAL;
1521                 goto out;
1522         }
1523         if (minor != ECRYPTFS_VERSION_MINOR) {
1524                 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1525                                 "Expected [%d]; got [%d]\n",
1526                                 ECRYPTFS_VERSION_MINOR, minor);
1527                 rc = -EINVAL;
1528                 goto out;
1529         }
1530 out:
1531         return rc;
1532 }
1533
1534 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1535                                       struct ecryptfs_auth_tok **auth_tok,
1536                                       char *sig)
1537 {
1538         int rc = 0;
1539
1540         (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1541         if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1542                 printk(KERN_ERR "Could not find key with description: [%s]\n",
1543                        sig);
1544                 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1545                 goto out;
1546         }
1547         (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1548         if (ecryptfs_verify_version((*auth_tok)->version)) {
1549                 printk(KERN_ERR
1550                        "Data structure version mismatch. "
1551                        "Userspace tools must match eCryptfs "
1552                        "kernel module with major version [%d] "
1553                        "and minor version [%d]\n",
1554                        ECRYPTFS_VERSION_MAJOR,
1555                        ECRYPTFS_VERSION_MINOR);
1556                 rc = -EINVAL;
1557                 goto out;
1558         }
1559         if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1560             && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1561                 printk(KERN_ERR "Invalid auth_tok structure "
1562                        "returned from key query\n");
1563                 rc = -EINVAL;
1564                 goto out;
1565         }
1566 out:
1567         return rc;
1568 }
1569
1570 /**
1571  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1572  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1573  * @crypt_stat: The cryptographic context
1574  *
1575  * Returns zero on success; non-zero error otherwise
1576  */
1577 static int
1578 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1579                                          struct ecryptfs_crypt_stat *crypt_stat)
1580 {
1581         struct scatterlist dst_sg[2];
1582         struct scatterlist src_sg[2];
1583         struct mutex *tfm_mutex;
1584         struct blkcipher_desc desc = {
1585                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1586         };
1587         int rc = 0;
1588
1589         if (unlikely(ecryptfs_verbosity > 0)) {
1590                 ecryptfs_printk(
1591                         KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1592                         auth_tok->token.password.session_key_encryption_key_bytes);
1593                 ecryptfs_dump_hex(
1594                         auth_tok->token.password.session_key_encryption_key,
1595                         auth_tok->token.password.session_key_encryption_key_bytes);
1596         }
1597         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1598                                                         crypt_stat->cipher);
1599         if (unlikely(rc)) {
1600                 printk(KERN_ERR "Internal error whilst attempting to get "
1601                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1602                        crypt_stat->cipher, rc);
1603                 goto out;
1604         }
1605         rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1606                                  auth_tok->session_key.encrypted_key_size,
1607                                  src_sg, 2);
1608         if (rc < 1 || rc > 2) {
1609                 printk(KERN_ERR "Internal error whilst attempting to convert "
1610                         "auth_tok->session_key.encrypted_key to scatterlist; "
1611                         "expected rc = 1; got rc = [%d]. "
1612                        "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1613                         auth_tok->session_key.encrypted_key_size);
1614                 goto out;
1615         }
1616         auth_tok->session_key.decrypted_key_size =
1617                 auth_tok->session_key.encrypted_key_size;
1618         rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1619                                  auth_tok->session_key.decrypted_key_size,
1620                                  dst_sg, 2);
1621         if (rc < 1 || rc > 2) {
1622                 printk(KERN_ERR "Internal error whilst attempting to convert "
1623                         "auth_tok->session_key.decrypted_key to scatterlist; "
1624                         "expected rc = 1; got rc = [%d]\n", rc);
1625                 goto out;
1626         }
1627         mutex_lock(tfm_mutex);
1628         rc = crypto_blkcipher_setkey(
1629                 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1630                 crypt_stat->key_size);
1631         if (unlikely(rc < 0)) {
1632                 mutex_unlock(tfm_mutex);
1633                 printk(KERN_ERR "Error setting key for crypto context\n");
1634                 rc = -EINVAL;
1635                 goto out;
1636         }
1637         rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1638                                       auth_tok->session_key.encrypted_key_size);
1639         mutex_unlock(tfm_mutex);
1640         if (unlikely(rc)) {
1641                 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1642                 goto out;
1643         }
1644         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1645         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1646                auth_tok->session_key.decrypted_key_size);
1647         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1648         if (unlikely(ecryptfs_verbosity > 0)) {
1649                 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1650                                 crypt_stat->key_size);
1651                 ecryptfs_dump_hex(crypt_stat->key,
1652                                   crypt_stat->key_size);
1653         }
1654 out:
1655         return rc;
1656 }
1657
1658 /**
1659  * ecryptfs_parse_packet_set
1660  * @crypt_stat: The cryptographic context
1661  * @src: Virtual address of region of memory containing the packets
1662  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1663  *
1664  * Get crypt_stat to have the file's session key if the requisite key
1665  * is available to decrypt the session key.
1666  *
1667  * Returns Zero if a valid authentication token was retrieved and
1668  * processed; negative value for file not encrypted or for error
1669  * conditions.
1670  */
1671 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1672                               unsigned char *src,
1673                               struct dentry *ecryptfs_dentry)
1674 {
1675         size_t i = 0;
1676         size_t found_auth_tok;
1677         size_t next_packet_is_auth_tok_packet;
1678         struct list_head auth_tok_list;
1679         struct ecryptfs_auth_tok *matching_auth_tok;
1680         struct ecryptfs_auth_tok *candidate_auth_tok;
1681         char *candidate_auth_tok_sig;
1682         size_t packet_size;
1683         struct ecryptfs_auth_tok *new_auth_tok;
1684         unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1685         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1686         size_t tag_11_contents_size;
1687         size_t tag_11_packet_size;
1688         int rc = 0;
1689
1690         INIT_LIST_HEAD(&auth_tok_list);
1691         /* Parse the header to find as many packets as we can; these will be
1692          * added the our &auth_tok_list */
1693         next_packet_is_auth_tok_packet = 1;
1694         while (next_packet_is_auth_tok_packet) {
1695                 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1696
1697                 switch (src[i]) {
1698                 case ECRYPTFS_TAG_3_PACKET_TYPE:
1699                         rc = parse_tag_3_packet(crypt_stat,
1700                                                 (unsigned char *)&src[i],
1701                                                 &auth_tok_list, &new_auth_tok,
1702                                                 &packet_size, max_packet_size);
1703                         if (rc) {
1704                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1705                                                 "tag 3 packet\n");
1706                                 rc = -EIO;
1707                                 goto out_wipe_list;
1708                         }
1709                         i += packet_size;
1710                         rc = parse_tag_11_packet((unsigned char *)&src[i],
1711                                                  sig_tmp_space,
1712                                                  ECRYPTFS_SIG_SIZE,
1713                                                  &tag_11_contents_size,
1714                                                  &tag_11_packet_size,
1715                                                  max_packet_size);
1716                         if (rc) {
1717                                 ecryptfs_printk(KERN_ERR, "No valid "
1718                                                 "(ecryptfs-specific) literal "
1719                                                 "packet containing "
1720                                                 "authentication token "
1721                                                 "signature found after "
1722                                                 "tag 3 packet\n");
1723                                 rc = -EIO;
1724                                 goto out_wipe_list;
1725                         }
1726                         i += tag_11_packet_size;
1727                         if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1728                                 ecryptfs_printk(KERN_ERR, "Expected "
1729                                                 "signature of size [%d]; "
1730                                                 "read size [%d]\n",
1731                                                 ECRYPTFS_SIG_SIZE,
1732                                                 tag_11_contents_size);
1733                                 rc = -EIO;
1734                                 goto out_wipe_list;
1735                         }
1736                         ecryptfs_to_hex(new_auth_tok->token.password.signature,
1737                                         sig_tmp_space, tag_11_contents_size);
1738                         new_auth_tok->token.password.signature[
1739                                 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1740                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1741                         break;
1742                 case ECRYPTFS_TAG_1_PACKET_TYPE:
1743                         rc = parse_tag_1_packet(crypt_stat,
1744                                                 (unsigned char *)&src[i],
1745                                                 &auth_tok_list, &new_auth_tok,
1746                                                 &packet_size, max_packet_size);
1747                         if (rc) {
1748                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1749                                                 "tag 1 packet\n");
1750                                 rc = -EIO;
1751                                 goto out_wipe_list;
1752                         }
1753                         i += packet_size;
1754                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1755                         break;
1756                 case ECRYPTFS_TAG_11_PACKET_TYPE:
1757                         ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1758                                         "(Tag 11 not allowed by itself)\n");
1759                         rc = -EIO;
1760                         goto out_wipe_list;
1761                         break;
1762                 default:
1763                         ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1764                                         "[%d] of the file header; hex value of "
1765                                         "character is [0x%.2x]\n", i, src[i]);
1766                         next_packet_is_auth_tok_packet = 0;
1767                 }
1768         }
1769         if (list_empty(&auth_tok_list)) {
1770                 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1771                        "eCryptfs file; this is not supported in this version "
1772                        "of the eCryptfs kernel module\n");
1773                 rc = -EINVAL;
1774                 goto out;
1775         }
1776         /* auth_tok_list contains the set of authentication tokens
1777          * parsed from the metadata. We need to find a matching
1778          * authentication token that has the secret component(s)
1779          * necessary to decrypt the EFEK in the auth_tok parsed from
1780          * the metadata. There may be several potential matches, but
1781          * just one will be sufficient to decrypt to get the FEK. */
1782 find_next_matching_auth_tok:
1783         found_auth_tok = 0;
1784         list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1785                 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1786                 if (unlikely(ecryptfs_verbosity > 0)) {
1787                         ecryptfs_printk(KERN_DEBUG,
1788                                         "Considering cadidate auth tok:\n");
1789                         ecryptfs_dump_auth_tok(candidate_auth_tok);
1790                 }
1791                 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1792                                                candidate_auth_tok);
1793                 if (rc) {
1794                         printk(KERN_ERR
1795                                "Unrecognized candidate auth tok type: [%d]\n",
1796                                candidate_auth_tok->token_type);
1797                         rc = -EINVAL;
1798                         goto out_wipe_list;
1799                 }
1800                 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1801                                                crypt_stat->mount_crypt_stat,
1802                                                candidate_auth_tok_sig);
1803                 if (matching_auth_tok) {
1804                         found_auth_tok = 1;
1805                         goto found_matching_auth_tok;
1806                 }
1807         }
1808         if (!found_auth_tok) {
1809                 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1810                                 "authentication token\n");
1811                 rc = -EIO;
1812                 goto out_wipe_list;
1813         }
1814 found_matching_auth_tok:
1815         if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1816                 memcpy(&(candidate_auth_tok->token.private_key),
1817                        &(matching_auth_tok->token.private_key),
1818                        sizeof(struct ecryptfs_private_key));
1819                 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1820                                                        crypt_stat);
1821         } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1822                 memcpy(&(candidate_auth_tok->token.password),
1823                        &(matching_auth_tok->token.password),
1824                        sizeof(struct ecryptfs_password));
1825                 rc = decrypt_passphrase_encrypted_session_key(
1826                         candidate_auth_tok, crypt_stat);
1827         }
1828         if (rc) {
1829                 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1830
1831                 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1832                                 "session key for authentication token with sig "
1833                                 "[%.*s]; rc = [%d]. Removing auth tok "
1834                                 "candidate from the list and searching for "
1835                                 "the next match.\n", candidate_auth_tok_sig,
1836                                 ECRYPTFS_SIG_SIZE_HEX, rc);
1837                 list_for_each_entry_safe(auth_tok_list_item,
1838                                          auth_tok_list_item_tmp,
1839                                          &auth_tok_list, list) {
1840                         if (candidate_auth_tok
1841                             == &auth_tok_list_item->auth_tok) {
1842                                 list_del(&auth_tok_list_item->list);
1843                                 kmem_cache_free(
1844                                         ecryptfs_auth_tok_list_item_cache,
1845                                         auth_tok_list_item);
1846                                 goto find_next_matching_auth_tok;
1847                         }
1848                 }
1849                 BUG();
1850         }
1851         rc = ecryptfs_compute_root_iv(crypt_stat);
1852         if (rc) {
1853                 ecryptfs_printk(KERN_ERR, "Error computing "
1854                                 "the root IV\n");
1855                 goto out_wipe_list;
1856         }
1857         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1858         if (rc) {
1859                 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1860                                 "context for cipher [%s]; rc = [%d]\n",
1861                                 crypt_stat->cipher, rc);
1862         }
1863 out_wipe_list:
1864         wipe_auth_tok_list(&auth_tok_list);
1865 out:
1866         return rc;
1867 }
1868
1869 static int
1870 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1871                         struct ecryptfs_crypt_stat *crypt_stat,
1872                         struct ecryptfs_key_record *key_rec)
1873 {
1874         struct ecryptfs_msg_ctx *msg_ctx = NULL;
1875         char *payload = NULL;
1876         size_t payload_len;
1877         struct ecryptfs_message *msg;
1878         int rc;
1879
1880         rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1881                                  ecryptfs_code_for_cipher_string(
1882                                          crypt_stat->cipher,
1883                                          crypt_stat->key_size),
1884                                  crypt_stat, &payload, &payload_len);
1885         if (rc) {
1886                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1887                 goto out;
1888         }
1889         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1890         if (rc) {
1891                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1892                                 "ecryptfsd\n");
1893                 goto out;
1894         }
1895         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1896         if (rc) {
1897                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1898                                 "from the user space daemon\n");
1899                 rc = -EIO;
1900                 goto out;
1901         }
1902         rc = parse_tag_67_packet(key_rec, msg);
1903         if (rc)
1904                 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1905         kfree(msg);
1906 out:
1907         kfree(payload);
1908         return rc;
1909 }
1910 /**
1911  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1912  * @dest: Buffer into which to write the packet
1913  * @remaining_bytes: Maximum number of bytes that can be writtn
1914  * @auth_tok: The authentication token used for generating the tag 1 packet
1915  * @crypt_stat: The cryptographic context
1916  * @key_rec: The key record struct for the tag 1 packet
1917  * @packet_size: This function will write the number of bytes that end
1918  *               up constituting the packet; set to zero on error
1919  *
1920  * Returns zero on success; non-zero on error.
1921  */
1922 static int
1923 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1924                    struct ecryptfs_auth_tok *auth_tok,
1925                    struct ecryptfs_crypt_stat *crypt_stat,
1926                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
1927 {
1928         size_t i;
1929         size_t encrypted_session_key_valid = 0;
1930         size_t packet_size_length;
1931         size_t max_packet_size;
1932         int rc = 0;
1933
1934         (*packet_size) = 0;
1935         ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1936                           ECRYPTFS_SIG_SIZE);
1937         encrypted_session_key_valid = 0;
1938         for (i = 0; i < crypt_stat->key_size; i++)
1939                 encrypted_session_key_valid |=
1940                         auth_tok->session_key.encrypted_key[i];
1941         if (encrypted_session_key_valid) {
1942                 memcpy(key_rec->enc_key,
1943                        auth_tok->session_key.encrypted_key,
1944                        auth_tok->session_key.encrypted_key_size);
1945                 goto encrypted_session_key_set;
1946         }
1947         if (auth_tok->session_key.encrypted_key_size == 0)
1948                 auth_tok->session_key.encrypted_key_size =
1949                         auth_tok->token.private_key.key_size;
1950         rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1951         if (rc) {
1952                 printk(KERN_ERR "Failed to encrypt session key via a key "
1953                        "module; rc = [%d]\n", rc);
1954                 goto out;
1955         }
1956         if (ecryptfs_verbosity > 0) {
1957                 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1958                 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1959         }
1960 encrypted_session_key_set:
1961         /* This format is inspired by OpenPGP; see RFC 2440
1962          * packet tag 1 */
1963         max_packet_size = (1                         /* Tag 1 identifier */
1964                            + 3                       /* Max Tag 1 packet size */
1965                            + 1                       /* Version */
1966                            + ECRYPTFS_SIG_SIZE       /* Key identifier */
1967                            + 1                       /* Cipher identifier */
1968                            + key_rec->enc_key_size); /* Encrypted key size */
1969         if (max_packet_size > (*remaining_bytes)) {
1970                 printk(KERN_ERR "Packet length larger than maximum allowable; "
1971                        "need up to [%td] bytes, but there are only [%td] "
1972                        "available\n", max_packet_size, (*remaining_bytes));
1973                 rc = -EINVAL;
1974                 goto out;
1975         }
1976         dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1977         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1978                                           (max_packet_size - 4),
1979                                           &packet_size_length);
1980         if (rc) {
1981                 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1982                                 "header; cannot generate packet length\n");
1983                 goto out;
1984         }
1985         (*packet_size) += packet_size_length;
1986         dest[(*packet_size)++] = 0x03; /* version 3 */
1987         memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1988         (*packet_size) += ECRYPTFS_SIG_SIZE;
1989         dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1990         memcpy(&dest[(*packet_size)], key_rec->enc_key,
1991                key_rec->enc_key_size);
1992         (*packet_size) += key_rec->enc_key_size;
1993 out:
1994         if (rc)
1995                 (*packet_size) = 0;
1996         else
1997                 (*remaining_bytes) -= (*packet_size);
1998         return rc;
1999 }
2000
2001 /**
2002  * write_tag_11_packet
2003  * @dest: Target into which Tag 11 packet is to be written
2004  * @remaining_bytes: Maximum packet length
2005  * @contents: Byte array of contents to copy in
2006  * @contents_length: Number of bytes in contents
2007  * @packet_length: Length of the Tag 11 packet written; zero on error
2008  *
2009  * Returns zero on success; non-zero on error.
2010  */
2011 static int
2012 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2013                     size_t contents_length, size_t *packet_length)
2014 {
2015         size_t packet_size_length;
2016         size_t max_packet_size;
2017         int rc = 0;
2018
2019         (*packet_length) = 0;
2020         /* This format is inspired by OpenPGP; see RFC 2440
2021          * packet tag 11 */
2022         max_packet_size = (1                   /* Tag 11 identifier */
2023                            + 3                 /* Max Tag 11 packet size */
2024                            + 1                 /* Binary format specifier */
2025                            + 1                 /* Filename length */
2026                            + 8                 /* Filename ("_CONSOLE") */
2027                            + 4                 /* Modification date */
2028                            + contents_length); /* Literal data */
2029         if (max_packet_size > (*remaining_bytes)) {
2030                 printk(KERN_ERR "Packet length larger than maximum allowable; "
2031                        "need up to [%td] bytes, but there are only [%td] "
2032                        "available\n", max_packet_size, (*remaining_bytes));
2033                 rc = -EINVAL;
2034                 goto out;
2035         }
2036         dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2037         rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2038                                           (max_packet_size - 4),
2039                                           &packet_size_length);
2040         if (rc) {
2041                 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2042                        "generate packet length. rc = [%d]\n", rc);
2043                 goto out;
2044         }
2045         (*packet_length) += packet_size_length;
2046         dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2047         dest[(*packet_length)++] = 8;
2048         memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2049         (*packet_length) += 8;
2050         memset(&dest[(*packet_length)], 0x00, 4);
2051         (*packet_length) += 4;
2052         memcpy(&dest[(*packet_length)], contents, contents_length);
2053         (*packet_length) += contents_length;
2054  out:
2055         if (rc)
2056                 (*packet_length) = 0;
2057         else
2058                 (*remaining_bytes) -= (*packet_length);
2059         return rc;
2060 }
2061
2062 /**
2063  * write_tag_3_packet
2064  * @dest: Buffer into which to write the packet
2065  * @remaining_bytes: Maximum number of bytes that can be written
2066  * @auth_tok: Authentication token
2067  * @crypt_stat: The cryptographic context
2068  * @key_rec: encrypted key
2069  * @packet_size: This function will write the number of bytes that end
2070  *               up constituting the packet; set to zero on error
2071  *
2072  * Returns zero on success; non-zero on error.
2073  */
2074 static int
2075 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2076                    struct ecryptfs_auth_tok *auth_tok,
2077                    struct ecryptfs_crypt_stat *crypt_stat,
2078                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
2079 {
2080         size_t i;
2081         size_t encrypted_session_key_valid = 0;
2082         char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2083         struct scatterlist dst_sg[2];
2084         struct scatterlist src_sg[2];
2085         struct mutex *tfm_mutex = NULL;
2086         u8 cipher_code;
2087         size_t packet_size_length;
2088         size_t max_packet_size;
2089         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2090                 crypt_stat->mount_crypt_stat;
2091         struct blkcipher_desc desc = {
2092                 .tfm = NULL,
2093                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2094         };
2095         int rc = 0;
2096
2097         (*packet_size) = 0;
2098         ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2099                           ECRYPTFS_SIG_SIZE);
2100         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2101                                                         crypt_stat->cipher);
2102         if (unlikely(rc)) {
2103                 printk(KERN_ERR "Internal error whilst attempting to get "
2104                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2105                        crypt_stat->cipher, rc);
2106                 goto out;
2107         }
2108         if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2109                 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2110
2111                 printk(KERN_WARNING "No key size specified at mount; "
2112                        "defaulting to [%d]\n", alg->max_keysize);
2113                 mount_crypt_stat->global_default_cipher_key_size =
2114                         alg->max_keysize;
2115         }
2116         if (crypt_stat->key_size == 0)
2117                 crypt_stat->key_size =
2118                         mount_crypt_stat->global_default_cipher_key_size;
2119         if (auth_tok->session_key.encrypted_key_size == 0)
2120                 auth_tok->session_key.encrypted_key_size =
2121                         crypt_stat->key_size;
2122         if (crypt_stat->key_size == 24
2123             && strcmp("aes", crypt_stat->cipher) == 0) {
2124                 memset((crypt_stat->key + 24), 0, 8);
2125                 auth_tok->session_key.encrypted_key_size = 32;
2126         } else
2127                 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2128         key_rec->enc_key_size =
2129                 auth_tok->session_key.encrypted_key_size;
2130         encrypted_session_key_valid = 0;
2131         for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2132                 encrypted_session_key_valid |=
2133                         auth_tok->session_key.encrypted_key[i];
2134         if (encrypted_session_key_valid) {
2135                 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2136                                 "using auth_tok->session_key.encrypted_key, "
2137                                 "where key_rec->enc_key_size = [%d]\n",
2138                                 key_rec->enc_key_size);
2139                 memcpy(key_rec->enc_key,
2140                        auth_tok->session_key.encrypted_key,
2141                        key_rec->enc_key_size);
2142                 goto encrypted_session_key_set;
2143         }
2144         if (auth_tok->token.password.flags &
2145             ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2146                 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2147                                 "session key encryption key of size [%d]\n",
2148                                 auth_tok->token.password.
2149                                 session_key_encryption_key_bytes);
2150                 memcpy(session_key_encryption_key,
2151                        auth_tok->token.password.session_key_encryption_key,
2152                        crypt_stat->key_size);
2153                 ecryptfs_printk(KERN_DEBUG,
2154                                 "Cached session key " "encryption key: \n");
2155                 if (ecryptfs_verbosity > 0)
2156                         ecryptfs_dump_hex(session_key_encryption_key, 16);
2157         }
2158         if (unlikely(ecryptfs_verbosity > 0)) {
2159                 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2160                 ecryptfs_dump_hex(session_key_encryption_key, 16);
2161         }
2162         rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2163                                  src_sg, 2);
2164         if (rc < 1 || rc > 2) {
2165                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2166                                 "for crypt_stat session key; expected rc = 1; "
2167                                 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2168                                 rc, key_rec->enc_key_size);
2169                 rc = -ENOMEM;
2170                 goto out;
2171         }
2172         rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2173                                  dst_sg, 2);
2174         if (rc < 1 || rc > 2) {
2175                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2176                                 "for crypt_stat encrypted session key; "
2177                                 "expected rc = 1; got rc = [%d]. "
2178                                 "key_rec->enc_key_size = [%d]\n", rc,
2179                                 key_rec->enc_key_size);
2180                 rc = -ENOMEM;
2181                 goto out;
2182         }
2183         mutex_lock(tfm_mutex);
2184         rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2185                                      crypt_stat->key_size);
2186         if (rc < 0) {
2187                 mutex_unlock(tfm_mutex);
2188                 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2189                                 "context; rc = [%d]\n", rc);
2190                 goto out;
2191         }
2192         rc = 0;
2193         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2194                         crypt_stat->key_size);
2195         rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2196                                       (*key_rec).enc_key_size);
2197         mutex_unlock(tfm_mutex);
2198         if (rc) {
2199                 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2200                 goto out;
2201         }
2202         ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2203         if (ecryptfs_verbosity > 0) {
2204                 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2205                                 key_rec->enc_key_size);
2206                 ecryptfs_dump_hex(key_rec->enc_key,
2207                                   key_rec->enc_key_size);
2208         }
2209 encrypted_session_key_set:
2210         /* This format is inspired by OpenPGP; see RFC 2440
2211          * packet tag 3 */
2212         max_packet_size = (1                         /* Tag 3 identifier */
2213                            + 3                       /* Max Tag 3 packet size */
2214                            + 1                       /* Version */
2215                            + 1                       /* Cipher code */
2216                            + 1                       /* S2K specifier */
2217                            + 1                       /* Hash identifier */
2218                            + ECRYPTFS_SALT_SIZE      /* Salt */
2219                            + 1                       /* Hash iterations */
2220                            + key_rec->enc_key_size); /* Encrypted key size */
2221         if (max_packet_size > (*remaining_bytes)) {
2222                 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2223                        "there are only [%td] available\n", max_packet_size,
2224                        (*remaining_bytes));
2225                 rc = -EINVAL;
2226                 goto out;
2227         }
2228         dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2229         /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2230          * to get the number of octets in the actual Tag 3 packet */
2231         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2232                                           (max_packet_size - 4),
2233                                           &packet_size_length);
2234         if (rc) {
2235                 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2236                        "generate packet length. rc = [%d]\n", rc);
2237                 goto out;
2238         }
2239         (*packet_size) += packet_size_length;
2240         dest[(*packet_size)++] = 0x04; /* version 4 */
2241         /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2242          * specified with strings */
2243         cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2244                                                       crypt_stat->key_size);
2245         if (cipher_code == 0) {
2246                 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2247                                 "cipher [%s]\n", crypt_stat->cipher);
2248                 rc = -EINVAL;
2249                 goto out;
2250         }
2251         dest[(*packet_size)++] = cipher_code;
2252         dest[(*packet_size)++] = 0x03;  /* S2K */
2253         dest[(*packet_size)++] = 0x01;  /* MD5 (TODO: parameterize) */
2254         memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2255                ECRYPTFS_SALT_SIZE);
2256         (*packet_size) += ECRYPTFS_SALT_SIZE;   /* salt */
2257         dest[(*packet_size)++] = 0x60;  /* hash iterations (65536) */
2258         memcpy(&dest[(*packet_size)], key_rec->enc_key,
2259                key_rec->enc_key_size);
2260         (*packet_size) += key_rec->enc_key_size;
2261 out:
2262         if (rc)
2263                 (*packet_size) = 0;
2264         else
2265                 (*remaining_bytes) -= (*packet_size);
2266         return rc;
2267 }
2268
2269 struct kmem_cache *ecryptfs_key_record_cache;
2270
2271 /**
2272  * ecryptfs_generate_key_packet_set
2273  * @dest_base: Virtual address from which to write the key record set
2274  * @crypt_stat: The cryptographic context from which the
2275  *              authentication tokens will be retrieved
2276  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2277  *                   for the global parameters
2278  * @len: The amount written
2279  * @max: The maximum amount of data allowed to be written
2280  *
2281  * Generates a key packet set and writes it to the virtual address
2282  * passed in.
2283  *
2284  * Returns zero on success; non-zero on error.
2285  */
2286 int
2287 ecryptfs_generate_key_packet_set(char *dest_base,
2288                                  struct ecryptfs_crypt_stat *crypt_stat,
2289                                  struct dentry *ecryptfs_dentry, size_t *len,
2290                                  size_t max)
2291 {
2292         struct ecryptfs_auth_tok *auth_tok;
2293         struct ecryptfs_global_auth_tok *global_auth_tok;
2294         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2295                 &ecryptfs_superblock_to_private(
2296                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
2297         size_t written;
2298         struct ecryptfs_key_record *key_rec;
2299         struct ecryptfs_key_sig *key_sig;
2300         int rc = 0;
2301
2302         (*len) = 0;
2303         mutex_lock(&crypt_stat->keysig_list_mutex);
2304         key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2305         if (!key_rec) {
2306                 rc = -ENOMEM;
2307                 goto out;
2308         }
2309         list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2310                             crypt_stat_list) {
2311                 memset(key_rec, 0, sizeof(*key_rec));
2312                 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2313                                                            mount_crypt_stat,
2314                                                            key_sig->keysig);
2315                 if (rc) {
2316                         printk(KERN_ERR "Error attempting to get the global "
2317                                "auth_tok; rc = [%d]\n", rc);
2318                         goto out_free;
2319                 }
2320                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2321                         printk(KERN_WARNING
2322                                "Skipping invalid auth tok with sig = [%s]\n",
2323                                global_auth_tok->sig);
2324                         continue;
2325                 }
2326                 auth_tok = global_auth_tok->global_auth_tok;
2327                 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2328                         rc = write_tag_3_packet((dest_base + (*len)),
2329                                                 &max, auth_tok,
2330                                                 crypt_stat, key_rec,
2331                                                 &written);
2332                         if (rc) {
2333                                 ecryptfs_printk(KERN_WARNING, "Error "
2334                                                 "writing tag 3 packet\n");
2335                                 goto out_free;
2336                         }
2337                         (*len) += written;
2338                         /* Write auth tok signature packet */
2339                         rc = write_tag_11_packet((dest_base + (*len)), &max,
2340                                                  key_rec->sig,
2341                                                  ECRYPTFS_SIG_SIZE, &written);
2342                         if (rc) {
2343                                 ecryptfs_printk(KERN_ERR, "Error writing "
2344                                                 "auth tok signature packet\n");
2345                                 goto out_free;
2346                         }
2347                         (*len) += written;
2348                 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2349                         rc = write_tag_1_packet(dest_base + (*len),
2350                                                 &max, auth_tok,
2351                                                 crypt_stat, key_rec, &written);
2352                         if (rc) {
2353                                 ecryptfs_printk(KERN_WARNING, "Error "
2354                                                 "writing tag 1 packet\n");
2355                                 goto out_free;
2356                         }
2357                         (*len) += written;
2358                 } else {
2359                         ecryptfs_printk(KERN_WARNING, "Unsupported "
2360                                         "authentication token type\n");
2361                         rc = -EINVAL;
2362                         goto out_free;
2363                 }
2364         }
2365         if (likely(max > 0)) {
2366                 dest_base[(*len)] = 0x00;
2367         } else {
2368                 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2369                 rc = -EIO;
2370         }
2371 out_free:
2372         kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2373 out:
2374         if (rc)
2375                 (*len) = 0;
2376         mutex_unlock(&crypt_stat->keysig_list_mutex);
2377         return rc;
2378 }
2379
2380 struct kmem_cache *ecryptfs_key_sig_cache;
2381
2382 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2383 {
2384         struct ecryptfs_key_sig *new_key_sig;
2385
2386         new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2387         if (!new_key_sig) {
2388                 printk(KERN_ERR
2389                        "Error allocating from ecryptfs_key_sig_cache\n");
2390                 return -ENOMEM;
2391         }
2392         memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2393         /* Caller must hold keysig_list_mutex */
2394         list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2395
2396         return 0;
2397 }
2398
2399 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2400
2401 int
2402 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2403                              char *sig, u32 global_auth_tok_flags)
2404 {
2405         struct ecryptfs_global_auth_tok *new_auth_tok;
2406         int rc = 0;
2407
2408         new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2409                                         GFP_KERNEL);
2410         if (!new_auth_tok) {
2411                 rc = -ENOMEM;
2412                 printk(KERN_ERR "Error allocating from "
2413                        "ecryptfs_global_auth_tok_cache\n");
2414                 goto out;
2415         }
2416         memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2417         new_auth_tok->flags = global_auth_tok_flags;
2418         new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2419         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2420         list_add(&new_auth_tok->mount_crypt_stat_list,
2421                  &mount_crypt_stat->global_auth_tok_list);
2422         mount_crypt_stat->num_global_auth_toks++;
2423         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2424 out:
2425         return rc;
2426 }
2427