vfs: introduce noop_llseek()
[safe/jmp/linux-2.6] / fs / ecryptfs / keystore.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45         int rc = 0;
46
47         switch (err_code) {
48         case -ENOKEY:
49                 ecryptfs_printk(KERN_WARNING, "No key\n");
50                 rc = -ENOENT;
51                 break;
52         case -EKEYEXPIRED:
53                 ecryptfs_printk(KERN_WARNING, "Key expired\n");
54                 rc = -ETIME;
55                 break;
56         case -EKEYREVOKED:
57                 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58                 rc = -EINVAL;
59                 break;
60         default:
61                 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62                                 "[0x%.16x]\n", err_code);
63                 rc = -EINVAL;
64         }
65         return rc;
66 }
67
68 /**
69  * ecryptfs_parse_packet_length
70  * @data: Pointer to memory containing length at offset
71  * @size: This function writes the decoded size to this memory
72  *        address; zero on error
73  * @length_size: The number of bytes occupied by the encoded length
74  *
75  * Returns zero on success; non-zero on error
76  */
77 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
78                                  size_t *length_size)
79 {
80         int rc = 0;
81
82         (*length_size) = 0;
83         (*size) = 0;
84         if (data[0] < 192) {
85                 /* One-byte length */
86                 (*size) = (unsigned char)data[0];
87                 (*length_size) = 1;
88         } else if (data[0] < 224) {
89                 /* Two-byte length */
90                 (*size) = (((unsigned char)(data[0]) - 192) * 256);
91                 (*size) += ((unsigned char)(data[1]) + 192);
92                 (*length_size) = 2;
93         } else if (data[0] == 255) {
94                 /* Five-byte length; we're not supposed to see this */
95                 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
96                                 "supported\n");
97                 rc = -EINVAL;
98                 goto out;
99         } else {
100                 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
101                 rc = -EINVAL;
102                 goto out;
103         }
104 out:
105         return rc;
106 }
107
108 /**
109  * ecryptfs_write_packet_length
110  * @dest: The byte array target into which to write the length. Must
111  *        have at least 5 bytes allocated.
112  * @size: The length to write.
113  * @packet_size_length: The number of bytes used to encode the packet
114  *                      length is written to this address.
115  *
116  * Returns zero on success; non-zero on error.
117  */
118 int ecryptfs_write_packet_length(char *dest, size_t size,
119                                  size_t *packet_size_length)
120 {
121         int rc = 0;
122
123         if (size < 192) {
124                 dest[0] = size;
125                 (*packet_size_length) = 1;
126         } else if (size < 65536) {
127                 dest[0] = (((size - 192) / 256) + 192);
128                 dest[1] = ((size - 192) % 256);
129                 (*packet_size_length) = 2;
130         } else {
131                 rc = -EINVAL;
132                 ecryptfs_printk(KERN_WARNING,
133                                 "Unsupported packet size: [%d]\n", size);
134         }
135         return rc;
136 }
137
138 static int
139 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
140                     char **packet, size_t *packet_len)
141 {
142         size_t i = 0;
143         size_t data_len;
144         size_t packet_size_len;
145         char *message;
146         int rc;
147
148         /*
149          *              ***** TAG 64 Packet Format *****
150          *    | Content Type                       | 1 byte       |
151          *    | Key Identifier Size                | 1 or 2 bytes |
152          *    | Key Identifier                     | arbitrary    |
153          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
154          *    | Encrypted File Encryption Key      | arbitrary    |
155          */
156         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
157                     + session_key->encrypted_key_size);
158         *packet = kmalloc(data_len, GFP_KERNEL);
159         message = *packet;
160         if (!message) {
161                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
162                 rc = -ENOMEM;
163                 goto out;
164         }
165         message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
166         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
167                                           &packet_size_len);
168         if (rc) {
169                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
170                                 "header; cannot generate packet length\n");
171                 goto out;
172         }
173         i += packet_size_len;
174         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
175         i += ECRYPTFS_SIG_SIZE_HEX;
176         rc = ecryptfs_write_packet_length(&message[i],
177                                           session_key->encrypted_key_size,
178                                           &packet_size_len);
179         if (rc) {
180                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
181                                 "header; cannot generate packet length\n");
182                 goto out;
183         }
184         i += packet_size_len;
185         memcpy(&message[i], session_key->encrypted_key,
186                session_key->encrypted_key_size);
187         i += session_key->encrypted_key_size;
188         *packet_len = i;
189 out:
190         return rc;
191 }
192
193 static int
194 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
195                     struct ecryptfs_message *msg)
196 {
197         size_t i = 0;
198         char *data;
199         size_t data_len;
200         size_t m_size;
201         size_t message_len;
202         u16 checksum = 0;
203         u16 expected_checksum = 0;
204         int rc;
205
206         /*
207          *              ***** TAG 65 Packet Format *****
208          *         | Content Type             | 1 byte       |
209          *         | Status Indicator         | 1 byte       |
210          *         | File Encryption Key Size | 1 or 2 bytes |
211          *         | File Encryption Key      | arbitrary    |
212          */
213         message_len = msg->data_len;
214         data = msg->data;
215         if (message_len < 4) {
216                 rc = -EIO;
217                 goto out;
218         }
219         if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
220                 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
221                 rc = -EIO;
222                 goto out;
223         }
224         if (data[i++]) {
225                 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
226                                 "[%d]\n", data[i-1]);
227                 rc = -EIO;
228                 goto out;
229         }
230         rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
231         if (rc) {
232                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
233                                 "rc = [%d]\n", rc);
234                 goto out;
235         }
236         i += data_len;
237         if (message_len < (i + m_size)) {
238                 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
239                                 "is shorter than expected\n");
240                 rc = -EIO;
241                 goto out;
242         }
243         if (m_size < 3) {
244                 ecryptfs_printk(KERN_ERR,
245                                 "The decrypted key is not long enough to "
246                                 "include a cipher code and checksum\n");
247                 rc = -EIO;
248                 goto out;
249         }
250         *cipher_code = data[i++];
251         /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
252         session_key->decrypted_key_size = m_size - 3;
253         if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
254                 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
255                                 "the maximum key size [%d]\n",
256                                 session_key->decrypted_key_size,
257                                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
258                 rc = -EIO;
259                 goto out;
260         }
261         memcpy(session_key->decrypted_key, &data[i],
262                session_key->decrypted_key_size);
263         i += session_key->decrypted_key_size;
264         expected_checksum += (unsigned char)(data[i++]) << 8;
265         expected_checksum += (unsigned char)(data[i++]);
266         for (i = 0; i < session_key->decrypted_key_size; i++)
267                 checksum += session_key->decrypted_key[i];
268         if (expected_checksum != checksum) {
269                 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
270                                 "encryption  key; expected [%x]; calculated "
271                                 "[%x]\n", expected_checksum, checksum);
272                 rc = -EIO;
273         }
274 out:
275         return rc;
276 }
277
278
279 static int
280 write_tag_66_packet(char *signature, u8 cipher_code,
281                     struct ecryptfs_crypt_stat *crypt_stat, char **packet,
282                     size_t *packet_len)
283 {
284         size_t i = 0;
285         size_t j;
286         size_t data_len;
287         size_t checksum = 0;
288         size_t packet_size_len;
289         char *message;
290         int rc;
291
292         /*
293          *              ***** TAG 66 Packet Format *****
294          *         | Content Type             | 1 byte       |
295          *         | Key Identifier Size      | 1 or 2 bytes |
296          *         | Key Identifier           | arbitrary    |
297          *         | File Encryption Key Size | 1 or 2 bytes |
298          *         | File Encryption Key      | arbitrary    |
299          */
300         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
301         *packet = kmalloc(data_len, GFP_KERNEL);
302         message = *packet;
303         if (!message) {
304                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
305                 rc = -ENOMEM;
306                 goto out;
307         }
308         message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
309         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
310                                           &packet_size_len);
311         if (rc) {
312                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
313                                 "header; cannot generate packet length\n");
314                 goto out;
315         }
316         i += packet_size_len;
317         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
318         i += ECRYPTFS_SIG_SIZE_HEX;
319         /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
320         rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
321                                           &packet_size_len);
322         if (rc) {
323                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
324                                 "header; cannot generate packet length\n");
325                 goto out;
326         }
327         i += packet_size_len;
328         message[i++] = cipher_code;
329         memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
330         i += crypt_stat->key_size;
331         for (j = 0; j < crypt_stat->key_size; j++)
332                 checksum += crypt_stat->key[j];
333         message[i++] = (checksum / 256) % 256;
334         message[i++] = (checksum % 256);
335         *packet_len = i;
336 out:
337         return rc;
338 }
339
340 static int
341 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
342                     struct ecryptfs_message *msg)
343 {
344         size_t i = 0;
345         char *data;
346         size_t data_len;
347         size_t message_len;
348         int rc;
349
350         /*
351          *              ***** TAG 65 Packet Format *****
352          *    | Content Type                       | 1 byte       |
353          *    | Status Indicator                   | 1 byte       |
354          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
355          *    | Encrypted File Encryption Key      | arbitrary    |
356          */
357         message_len = msg->data_len;
358         data = msg->data;
359         /* verify that everything through the encrypted FEK size is present */
360         if (message_len < 4) {
361                 rc = -EIO;
362                 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
363                        "message length is [%d]\n", __func__, message_len, 4);
364                 goto out;
365         }
366         if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
367                 rc = -EIO;
368                 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
369                        __func__);
370                 goto out;
371         }
372         if (data[i++]) {
373                 rc = -EIO;
374                 printk(KERN_ERR "%s: Status indicator has non zero "
375                        "value [%d]\n", __func__, data[i-1]);
376
377                 goto out;
378         }
379         rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
380                                           &data_len);
381         if (rc) {
382                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
383                                 "rc = [%d]\n", rc);
384                 goto out;
385         }
386         i += data_len;
387         if (message_len < (i + key_rec->enc_key_size)) {
388                 rc = -EIO;
389                 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
390                        __func__, message_len, (i + key_rec->enc_key_size));
391                 goto out;
392         }
393         if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
394                 rc = -EIO;
395                 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
396                        "the maximum key size [%d]\n", __func__,
397                        key_rec->enc_key_size,
398                        ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
399                 goto out;
400         }
401         memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
402 out:
403         return rc;
404 }
405
406 static int
407 ecryptfs_find_global_auth_tok_for_sig(
408         struct ecryptfs_global_auth_tok **global_auth_tok,
409         struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
410 {
411         struct ecryptfs_global_auth_tok *walker;
412         int rc = 0;
413
414         (*global_auth_tok) = NULL;
415         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
416         list_for_each_entry(walker,
417                             &mount_crypt_stat->global_auth_tok_list,
418                             mount_crypt_stat_list) {
419                 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
420                         rc = key_validate(walker->global_auth_tok_key);
421                         if (!rc)
422                                 (*global_auth_tok) = walker;
423                         goto out;
424                 }
425         }
426         rc = -EINVAL;
427 out:
428         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
429         return rc;
430 }
431
432 /**
433  * ecryptfs_find_auth_tok_for_sig
434  * @auth_tok: Set to the matching auth_tok; NULL if not found
435  * @crypt_stat: inode crypt_stat crypto context
436  * @sig: Sig of auth_tok to find
437  *
438  * For now, this function simply looks at the registered auth_tok's
439  * linked off the mount_crypt_stat, so all the auth_toks that can be
440  * used must be registered at mount time. This function could
441  * potentially try a lot harder to find auth_tok's (e.g., by calling
442  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
443  * that static registration of auth_tok's will no longer be necessary.
444  *
445  * Returns zero on no error; non-zero on error
446  */
447 static int
448 ecryptfs_find_auth_tok_for_sig(
449         struct ecryptfs_auth_tok **auth_tok,
450         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
451         char *sig)
452 {
453         struct ecryptfs_global_auth_tok *global_auth_tok;
454         int rc = 0;
455
456         (*auth_tok) = NULL;
457         if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
458                                                   mount_crypt_stat, sig)) {
459                 struct key *auth_tok_key;
460
461                 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
462                                                        sig);
463         } else
464                 (*auth_tok) = global_auth_tok->global_auth_tok;
465         return rc;
466 }
467
468 /**
469  * write_tag_70_packet can gobble a lot of stack space. We stuff most
470  * of the function's parameters in a kmalloc'd struct to help reduce
471  * eCryptfs' overall stack usage.
472  */
473 struct ecryptfs_write_tag_70_packet_silly_stack {
474         u8 cipher_code;
475         size_t max_packet_size;
476         size_t packet_size_len;
477         size_t block_aligned_filename_size;
478         size_t block_size;
479         size_t i;
480         size_t j;
481         size_t num_rand_bytes;
482         struct mutex *tfm_mutex;
483         char *block_aligned_filename;
484         struct ecryptfs_auth_tok *auth_tok;
485         struct scatterlist src_sg;
486         struct scatterlist dst_sg;
487         struct blkcipher_desc desc;
488         char iv[ECRYPTFS_MAX_IV_BYTES];
489         char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
490         char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
491         struct hash_desc hash_desc;
492         struct scatterlist hash_sg;
493 };
494
495 /**
496  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
497  * @filename: NULL-terminated filename string
498  *
499  * This is the simplest mechanism for achieving filename encryption in
500  * eCryptfs. It encrypts the given filename with the mount-wide
501  * filename encryption key (FNEK) and stores it in a packet to @dest,
502  * which the callee will encode and write directly into the dentry
503  * name.
504  */
505 int
506 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
507                              size_t *packet_size,
508                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
509                              char *filename, size_t filename_size)
510 {
511         struct ecryptfs_write_tag_70_packet_silly_stack *s;
512         int rc = 0;
513
514         s = kmalloc(sizeof(*s), GFP_KERNEL);
515         if (!s) {
516                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
517                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
518                 goto out;
519         }
520         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
521         (*packet_size) = 0;
522         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
523                 &s->desc.tfm,
524                 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
525         if (unlikely(rc)) {
526                 printk(KERN_ERR "Internal error whilst attempting to get "
527                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
528                        mount_crypt_stat->global_default_fn_cipher_name, rc);
529                 goto out;
530         }
531         mutex_lock(s->tfm_mutex);
532         s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
533         /* Plus one for the \0 separator between the random prefix
534          * and the plaintext filename */
535         s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
536         s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
537         if ((s->block_aligned_filename_size % s->block_size) != 0) {
538                 s->num_rand_bytes += (s->block_size
539                                       - (s->block_aligned_filename_size
540                                          % s->block_size));
541                 s->block_aligned_filename_size = (s->num_rand_bytes
542                                                   + filename_size);
543         }
544         /* Octet 0: Tag 70 identifier
545          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
546          *              and block-aligned encrypted filename size)
547          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
548          * Octet N2-N3: Cipher identifier (1 octet)
549          * Octets N3-N4: Block-aligned encrypted filename
550          *  - Consists of a minimum number of random characters, a \0
551          *    separator, and then the filename */
552         s->max_packet_size = (1                   /* Tag 70 identifier */
553                               + 3                 /* Max Tag 70 packet size */
554                               + ECRYPTFS_SIG_SIZE /* FNEK sig */
555                               + 1                 /* Cipher identifier */
556                               + s->block_aligned_filename_size);
557         if (dest == NULL) {
558                 (*packet_size) = s->max_packet_size;
559                 goto out_unlock;
560         }
561         if (s->max_packet_size > (*remaining_bytes)) {
562                 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
563                        "[%zd] available\n", __func__, s->max_packet_size,
564                        (*remaining_bytes));
565                 rc = -EINVAL;
566                 goto out_unlock;
567         }
568         s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
569                                             GFP_KERNEL);
570         if (!s->block_aligned_filename) {
571                 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
572                        "kzalloc [%zd] bytes\n", __func__,
573                        s->block_aligned_filename_size);
574                 rc = -ENOMEM;
575                 goto out_unlock;
576         }
577         s->i = 0;
578         dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
579         rc = ecryptfs_write_packet_length(&dest[s->i],
580                                           (ECRYPTFS_SIG_SIZE
581                                            + 1 /* Cipher code */
582                                            + s->block_aligned_filename_size),
583                                           &s->packet_size_len);
584         if (rc) {
585                 printk(KERN_ERR "%s: Error generating tag 70 packet "
586                        "header; cannot generate packet length; rc = [%d]\n",
587                        __func__, rc);
588                 goto out_free_unlock;
589         }
590         s->i += s->packet_size_len;
591         ecryptfs_from_hex(&dest[s->i],
592                           mount_crypt_stat->global_default_fnek_sig,
593                           ECRYPTFS_SIG_SIZE);
594         s->i += ECRYPTFS_SIG_SIZE;
595         s->cipher_code = ecryptfs_code_for_cipher_string(
596                 mount_crypt_stat->global_default_fn_cipher_name,
597                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
598         if (s->cipher_code == 0) {
599                 printk(KERN_WARNING "%s: Unable to generate code for "
600                        "cipher [%s] with key bytes [%zd]\n", __func__,
601                        mount_crypt_stat->global_default_fn_cipher_name,
602                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
603                 rc = -EINVAL;
604                 goto out_free_unlock;
605         }
606         dest[s->i++] = s->cipher_code;
607         rc = ecryptfs_find_auth_tok_for_sig(
608                 &s->auth_tok, mount_crypt_stat,
609                 mount_crypt_stat->global_default_fnek_sig);
610         if (rc) {
611                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
612                        "fnek sig [%s]; rc = [%d]\n", __func__,
613                        mount_crypt_stat->global_default_fnek_sig, rc);
614                 goto out_free_unlock;
615         }
616         /* TODO: Support other key modules than passphrase for
617          * filename encryption */
618         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
619                 rc = -EOPNOTSUPP;
620                 printk(KERN_INFO "%s: Filename encryption only supports "
621                        "password tokens\n", __func__);
622                 goto out_free_unlock;
623         }
624         sg_init_one(
625                 &s->hash_sg,
626                 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
627                 s->auth_tok->token.password.session_key_encryption_key_bytes);
628         s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
629         s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
630                                              CRYPTO_ALG_ASYNC);
631         if (IS_ERR(s->hash_desc.tfm)) {
632                         rc = PTR_ERR(s->hash_desc.tfm);
633                         printk(KERN_ERR "%s: Error attempting to "
634                                "allocate hash crypto context; rc = [%d]\n",
635                                __func__, rc);
636                         goto out_free_unlock;
637         }
638         rc = crypto_hash_init(&s->hash_desc);
639         if (rc) {
640                 printk(KERN_ERR
641                        "%s: Error initializing crypto hash; rc = [%d]\n",
642                        __func__, rc);
643                 goto out_release_free_unlock;
644         }
645         rc = crypto_hash_update(
646                 &s->hash_desc, &s->hash_sg,
647                 s->auth_tok->token.password.session_key_encryption_key_bytes);
648         if (rc) {
649                 printk(KERN_ERR
650                        "%s: Error updating crypto hash; rc = [%d]\n",
651                        __func__, rc);
652                 goto out_release_free_unlock;
653         }
654         rc = crypto_hash_final(&s->hash_desc, s->hash);
655         if (rc) {
656                 printk(KERN_ERR
657                        "%s: Error finalizing crypto hash; rc = [%d]\n",
658                        __func__, rc);
659                 goto out_release_free_unlock;
660         }
661         for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
662                 s->block_aligned_filename[s->j] =
663                         s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
664                 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
665                     == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
666                         sg_init_one(&s->hash_sg, (u8 *)s->hash,
667                                     ECRYPTFS_TAG_70_DIGEST_SIZE);
668                         rc = crypto_hash_init(&s->hash_desc);
669                         if (rc) {
670                                 printk(KERN_ERR
671                                        "%s: Error initializing crypto hash; "
672                                        "rc = [%d]\n", __func__, rc);
673                                 goto out_release_free_unlock;
674                         }
675                         rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
676                                                 ECRYPTFS_TAG_70_DIGEST_SIZE);
677                         if (rc) {
678                                 printk(KERN_ERR
679                                        "%s: Error updating crypto hash; "
680                                        "rc = [%d]\n", __func__, rc);
681                                 goto out_release_free_unlock;
682                         }
683                         rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
684                         if (rc) {
685                                 printk(KERN_ERR
686                                        "%s: Error finalizing crypto hash; "
687                                        "rc = [%d]\n", __func__, rc);
688                                 goto out_release_free_unlock;
689                         }
690                         memcpy(s->hash, s->tmp_hash,
691                                ECRYPTFS_TAG_70_DIGEST_SIZE);
692                 }
693                 if (s->block_aligned_filename[s->j] == '\0')
694                         s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
695         }
696         memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
697                filename_size);
698         rc = virt_to_scatterlist(s->block_aligned_filename,
699                                  s->block_aligned_filename_size, &s->src_sg, 1);
700         if (rc != 1) {
701                 printk(KERN_ERR "%s: Internal error whilst attempting to "
702                        "convert filename memory to scatterlist; "
703                        "expected rc = 1; got rc = [%d]. "
704                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
705                        s->block_aligned_filename_size);
706                 goto out_release_free_unlock;
707         }
708         rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
709                                  &s->dst_sg, 1);
710         if (rc != 1) {
711                 printk(KERN_ERR "%s: Internal error whilst attempting to "
712                        "convert encrypted filename memory to scatterlist; "
713                        "expected rc = 1; got rc = [%d]. "
714                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
715                        s->block_aligned_filename_size);
716                 goto out_release_free_unlock;
717         }
718         /* The characters in the first block effectively do the job
719          * of the IV here, so we just use 0's for the IV. Note the
720          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
721          * >= ECRYPTFS_MAX_IV_BYTES. */
722         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
723         s->desc.info = s->iv;
724         rc = crypto_blkcipher_setkey(
725                 s->desc.tfm,
726                 s->auth_tok->token.password.session_key_encryption_key,
727                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
728         if (rc < 0) {
729                 printk(KERN_ERR "%s: Error setting key for crypto context; "
730                        "rc = [%d]. s->auth_tok->token.password.session_key_"
731                        "encryption_key = [0x%p]; mount_crypt_stat->"
732                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
733                        rc,
734                        s->auth_tok->token.password.session_key_encryption_key,
735                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
736                 goto out_release_free_unlock;
737         }
738         rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
739                                          s->block_aligned_filename_size);
740         if (rc) {
741                 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
742                        "rc = [%d]\n", __func__, rc);
743                 goto out_release_free_unlock;
744         }
745         s->i += s->block_aligned_filename_size;
746         (*packet_size) = s->i;
747         (*remaining_bytes) -= (*packet_size);
748 out_release_free_unlock:
749         crypto_free_hash(s->hash_desc.tfm);
750 out_free_unlock:
751         kzfree(s->block_aligned_filename);
752 out_unlock:
753         mutex_unlock(s->tfm_mutex);
754 out:
755         kfree(s);
756         return rc;
757 }
758
759 struct ecryptfs_parse_tag_70_packet_silly_stack {
760         u8 cipher_code;
761         size_t max_packet_size;
762         size_t packet_size_len;
763         size_t parsed_tag_70_packet_size;
764         size_t block_aligned_filename_size;
765         size_t block_size;
766         size_t i;
767         struct mutex *tfm_mutex;
768         char *decrypted_filename;
769         struct ecryptfs_auth_tok *auth_tok;
770         struct scatterlist src_sg;
771         struct scatterlist dst_sg;
772         struct blkcipher_desc desc;
773         char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
774         char iv[ECRYPTFS_MAX_IV_BYTES];
775         char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
776 };
777
778 /**
779  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
780  * @filename: This function kmalloc's the memory for the filename
781  * @filename_size: This function sets this to the amount of memory
782  *                 kmalloc'd for the filename
783  * @packet_size: This function sets this to the the number of octets
784  *               in the packet parsed
785  * @mount_crypt_stat: The mount-wide cryptographic context
786  * @data: The memory location containing the start of the tag 70
787  *        packet
788  * @max_packet_size: The maximum legal size of the packet to be parsed
789  *                   from @data
790  *
791  * Returns zero on success; non-zero otherwise
792  */
793 int
794 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
795                              size_t *packet_size,
796                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
797                              char *data, size_t max_packet_size)
798 {
799         struct ecryptfs_parse_tag_70_packet_silly_stack *s;
800         int rc = 0;
801
802         (*packet_size) = 0;
803         (*filename_size) = 0;
804         (*filename) = NULL;
805         s = kmalloc(sizeof(*s), GFP_KERNEL);
806         if (!s) {
807                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
808                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
809                 goto out;
810         }
811         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
812         if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
813                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
814                        "at least [%d]\n", __func__, max_packet_size,
815                         (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
816                 rc = -EINVAL;
817                 goto out;
818         }
819         /* Octet 0: Tag 70 identifier
820          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
821          *              and block-aligned encrypted filename size)
822          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
823          * Octet N2-N3: Cipher identifier (1 octet)
824          * Octets N3-N4: Block-aligned encrypted filename
825          *  - Consists of a minimum number of random numbers, a \0
826          *    separator, and then the filename */
827         if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
828                 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
829                        "tag [0x%.2x]\n", __func__,
830                        data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
831                 rc = -EINVAL;
832                 goto out;
833         }
834         rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
835                                           &s->parsed_tag_70_packet_size,
836                                           &s->packet_size_len);
837         if (rc) {
838                 printk(KERN_WARNING "%s: Error parsing packet length; "
839                        "rc = [%d]\n", __func__, rc);
840                 goto out;
841         }
842         s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
843                                           - ECRYPTFS_SIG_SIZE - 1);
844         if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
845             > max_packet_size) {
846                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
847                        "size is [%zd]\n", __func__, max_packet_size,
848                        (1 + s->packet_size_len + 1
849                         + s->block_aligned_filename_size));
850                 rc = -EINVAL;
851                 goto out;
852         }
853         (*packet_size) += s->packet_size_len;
854         ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
855                         ECRYPTFS_SIG_SIZE);
856         s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
857         (*packet_size) += ECRYPTFS_SIG_SIZE;
858         s->cipher_code = data[(*packet_size)++];
859         rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
860         if (rc) {
861                 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
862                        __func__, s->cipher_code);
863                 goto out;
864         }
865         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
866                                                         &s->tfm_mutex,
867                                                         s->cipher_string);
868         if (unlikely(rc)) {
869                 printk(KERN_ERR "Internal error whilst attempting to get "
870                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
871                        s->cipher_string, rc);
872                 goto out;
873         }
874         mutex_lock(s->tfm_mutex);
875         rc = virt_to_scatterlist(&data[(*packet_size)],
876                                  s->block_aligned_filename_size, &s->src_sg, 1);
877         if (rc != 1) {
878                 printk(KERN_ERR "%s: Internal error whilst attempting to "
879                        "convert encrypted filename memory to scatterlist; "
880                        "expected rc = 1; got rc = [%d]. "
881                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
882                        s->block_aligned_filename_size);
883                 goto out_unlock;
884         }
885         (*packet_size) += s->block_aligned_filename_size;
886         s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
887                                         GFP_KERNEL);
888         if (!s->decrypted_filename) {
889                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
890                        "kmalloc [%zd] bytes\n", __func__,
891                        s->block_aligned_filename_size);
892                 rc = -ENOMEM;
893                 goto out_unlock;
894         }
895         rc = virt_to_scatterlist(s->decrypted_filename,
896                                  s->block_aligned_filename_size, &s->dst_sg, 1);
897         if (rc != 1) {
898                 printk(KERN_ERR "%s: Internal error whilst attempting to "
899                        "convert decrypted filename memory to scatterlist; "
900                        "expected rc = 1; got rc = [%d]. "
901                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
902                        s->block_aligned_filename_size);
903                 goto out_free_unlock;
904         }
905         /* The characters in the first block effectively do the job of
906          * the IV here, so we just use 0's for the IV. Note the
907          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
908          * >= ECRYPTFS_MAX_IV_BYTES. */
909         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
910         s->desc.info = s->iv;
911         rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
912                                             s->fnek_sig_hex);
913         if (rc) {
914                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
915                        "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
916                        rc);
917                 goto out_free_unlock;
918         }
919         /* TODO: Support other key modules than passphrase for
920          * filename encryption */
921         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
922                 rc = -EOPNOTSUPP;
923                 printk(KERN_INFO "%s: Filename encryption only supports "
924                        "password tokens\n", __func__);
925                 goto out_free_unlock;
926         }
927         rc = crypto_blkcipher_setkey(
928                 s->desc.tfm,
929                 s->auth_tok->token.password.session_key_encryption_key,
930                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
931         if (rc < 0) {
932                 printk(KERN_ERR "%s: Error setting key for crypto context; "
933                        "rc = [%d]. s->auth_tok->token.password.session_key_"
934                        "encryption_key = [0x%p]; mount_crypt_stat->"
935                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
936                        rc,
937                        s->auth_tok->token.password.session_key_encryption_key,
938                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
939                 goto out_free_unlock;
940         }
941         rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
942                                          s->block_aligned_filename_size);
943         if (rc) {
944                 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
945                        "rc = [%d]\n", __func__, rc);
946                 goto out_free_unlock;
947         }
948         s->i = 0;
949         while (s->decrypted_filename[s->i] != '\0'
950                && s->i < s->block_aligned_filename_size)
951                 s->i++;
952         if (s->i == s->block_aligned_filename_size) {
953                 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
954                        "find valid separator between random characters and "
955                        "the filename\n", __func__);
956                 rc = -EINVAL;
957                 goto out_free_unlock;
958         }
959         s->i++;
960         (*filename_size) = (s->block_aligned_filename_size - s->i);
961         if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
962                 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
963                        "invalid\n", __func__, (*filename_size));
964                 rc = -EINVAL;
965                 goto out_free_unlock;
966         }
967         (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
968         if (!(*filename)) {
969                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
970                        "kmalloc [%zd] bytes\n", __func__,
971                        ((*filename_size) + 1));
972                 rc = -ENOMEM;
973                 goto out_free_unlock;
974         }
975         memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
976         (*filename)[(*filename_size)] = '\0';
977 out_free_unlock:
978         kfree(s->decrypted_filename);
979 out_unlock:
980         mutex_unlock(s->tfm_mutex);
981 out:
982         if (rc) {
983                 (*packet_size) = 0;
984                 (*filename_size) = 0;
985                 (*filename) = NULL;
986         }
987         kfree(s);
988         return rc;
989 }
990
991 static int
992 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
993 {
994         int rc = 0;
995
996         (*sig) = NULL;
997         switch (auth_tok->token_type) {
998         case ECRYPTFS_PASSWORD:
999                 (*sig) = auth_tok->token.password.signature;
1000                 break;
1001         case ECRYPTFS_PRIVATE_KEY:
1002                 (*sig) = auth_tok->token.private_key.signature;
1003                 break;
1004         default:
1005                 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1006                        auth_tok->token_type);
1007                 rc = -EINVAL;
1008         }
1009         return rc;
1010 }
1011
1012 /**
1013  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1014  * @auth_tok: The key authentication token used to decrypt the session key
1015  * @crypt_stat: The cryptographic context
1016  *
1017  * Returns zero on success; non-zero error otherwise.
1018  */
1019 static int
1020 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1021                                   struct ecryptfs_crypt_stat *crypt_stat)
1022 {
1023         u8 cipher_code = 0;
1024         struct ecryptfs_msg_ctx *msg_ctx;
1025         struct ecryptfs_message *msg = NULL;
1026         char *auth_tok_sig;
1027         char *payload;
1028         size_t payload_len;
1029         int rc;
1030
1031         rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1032         if (rc) {
1033                 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1034                        auth_tok->token_type);
1035                 goto out;
1036         }
1037         rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1038                                  &payload, &payload_len);
1039         if (rc) {
1040                 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1041                 goto out;
1042         }
1043         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1044         if (rc) {
1045                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1046                                 "ecryptfsd\n");
1047                 goto out;
1048         }
1049         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1050         if (rc) {
1051                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1052                                 "from the user space daemon\n");
1053                 rc = -EIO;
1054                 goto out;
1055         }
1056         rc = parse_tag_65_packet(&(auth_tok->session_key),
1057                                  &cipher_code, msg);
1058         if (rc) {
1059                 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1060                        rc);
1061                 goto out;
1062         }
1063         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1064         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1065                auth_tok->session_key.decrypted_key_size);
1066         crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1067         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1068         if (rc) {
1069                 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1070                                 cipher_code)
1071                 goto out;
1072         }
1073         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1074         if (ecryptfs_verbosity > 0) {
1075                 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1076                 ecryptfs_dump_hex(crypt_stat->key,
1077                                   crypt_stat->key_size);
1078         }
1079 out:
1080         if (msg)
1081                 kfree(msg);
1082         return rc;
1083 }
1084
1085 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1086 {
1087         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1088         struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1089
1090         list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1091                                  auth_tok_list_head, list) {
1092                 list_del(&auth_tok_list_item->list);
1093                 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1094                                 auth_tok_list_item);
1095         }
1096 }
1097
1098 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1099
1100 /**
1101  * parse_tag_1_packet
1102  * @crypt_stat: The cryptographic context to modify based on packet contents
1103  * @data: The raw bytes of the packet.
1104  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1105  *                 a new authentication token will be placed at the
1106  *                 end of this list for this packet.
1107  * @new_auth_tok: Pointer to a pointer to memory that this function
1108  *                allocates; sets the memory address of the pointer to
1109  *                NULL on error. This object is added to the
1110  *                auth_tok_list.
1111  * @packet_size: This function writes the size of the parsed packet
1112  *               into this memory location; zero on error.
1113  * @max_packet_size: The maximum allowable packet size
1114  *
1115  * Returns zero on success; non-zero on error.
1116  */
1117 static int
1118 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1119                    unsigned char *data, struct list_head *auth_tok_list,
1120                    struct ecryptfs_auth_tok **new_auth_tok,
1121                    size_t *packet_size, size_t max_packet_size)
1122 {
1123         size_t body_size;
1124         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1125         size_t length_size;
1126         int rc = 0;
1127
1128         (*packet_size) = 0;
1129         (*new_auth_tok) = NULL;
1130         /**
1131          * This format is inspired by OpenPGP; see RFC 2440
1132          * packet tag 1
1133          *
1134          * Tag 1 identifier (1 byte)
1135          * Max Tag 1 packet size (max 3 bytes)
1136          * Version (1 byte)
1137          * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1138          * Cipher identifier (1 byte)
1139          * Encrypted key size (arbitrary)
1140          *
1141          * 12 bytes minimum packet size
1142          */
1143         if (unlikely(max_packet_size < 12)) {
1144                 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1145                 rc = -EINVAL;
1146                 goto out;
1147         }
1148         if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1149                 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1150                        ECRYPTFS_TAG_1_PACKET_TYPE);
1151                 rc = -EINVAL;
1152                 goto out;
1153         }
1154         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1155          * at end of function upon failure */
1156         auth_tok_list_item =
1157                 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1158                                   GFP_KERNEL);
1159         if (!auth_tok_list_item) {
1160                 printk(KERN_ERR "Unable to allocate memory\n");
1161                 rc = -ENOMEM;
1162                 goto out;
1163         }
1164         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1165         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1166                                           &length_size);
1167         if (rc) {
1168                 printk(KERN_WARNING "Error parsing packet length; "
1169                        "rc = [%d]\n", rc);
1170                 goto out_free;
1171         }
1172         if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1173                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1174                 rc = -EINVAL;
1175                 goto out_free;
1176         }
1177         (*packet_size) += length_size;
1178         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1179                 printk(KERN_WARNING "Packet size exceeds max\n");
1180                 rc = -EINVAL;
1181                 goto out_free;
1182         }
1183         if (unlikely(data[(*packet_size)++] != 0x03)) {
1184                 printk(KERN_WARNING "Unknown version number [%d]\n",
1185                        data[(*packet_size) - 1]);
1186                 rc = -EINVAL;
1187                 goto out_free;
1188         }
1189         ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1190                         &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1191         *packet_size += ECRYPTFS_SIG_SIZE;
1192         /* This byte is skipped because the kernel does not need to
1193          * know which public key encryption algorithm was used */
1194         (*packet_size)++;
1195         (*new_auth_tok)->session_key.encrypted_key_size =
1196                 body_size - (ECRYPTFS_SIG_SIZE + 2);
1197         if ((*new_auth_tok)->session_key.encrypted_key_size
1198             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1199                 printk(KERN_WARNING "Tag 1 packet contains key larger "
1200                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1201                 rc = -EINVAL;
1202                 goto out;
1203         }
1204         memcpy((*new_auth_tok)->session_key.encrypted_key,
1205                &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1206         (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1207         (*new_auth_tok)->session_key.flags &=
1208                 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1209         (*new_auth_tok)->session_key.flags |=
1210                 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1211         (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1212         (*new_auth_tok)->flags = 0;
1213         (*new_auth_tok)->session_key.flags &=
1214                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1215         (*new_auth_tok)->session_key.flags &=
1216                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1217         list_add(&auth_tok_list_item->list, auth_tok_list);
1218         goto out;
1219 out_free:
1220         (*new_auth_tok) = NULL;
1221         memset(auth_tok_list_item, 0,
1222                sizeof(struct ecryptfs_auth_tok_list_item));
1223         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1224                         auth_tok_list_item);
1225 out:
1226         if (rc)
1227                 (*packet_size) = 0;
1228         return rc;
1229 }
1230
1231 /**
1232  * parse_tag_3_packet
1233  * @crypt_stat: The cryptographic context to modify based on packet
1234  *              contents.
1235  * @data: The raw bytes of the packet.
1236  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1237  *                 a new authentication token will be placed at the end
1238  *                 of this list for this packet.
1239  * @new_auth_tok: Pointer to a pointer to memory that this function
1240  *                allocates; sets the memory address of the pointer to
1241  *                NULL on error. This object is added to the
1242  *                auth_tok_list.
1243  * @packet_size: This function writes the size of the parsed packet
1244  *               into this memory location; zero on error.
1245  * @max_packet_size: maximum number of bytes to parse
1246  *
1247  * Returns zero on success; non-zero on error.
1248  */
1249 static int
1250 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1251                    unsigned char *data, struct list_head *auth_tok_list,
1252                    struct ecryptfs_auth_tok **new_auth_tok,
1253                    size_t *packet_size, size_t max_packet_size)
1254 {
1255         size_t body_size;
1256         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1257         size_t length_size;
1258         int rc = 0;
1259
1260         (*packet_size) = 0;
1261         (*new_auth_tok) = NULL;
1262         /**
1263          *This format is inspired by OpenPGP; see RFC 2440
1264          * packet tag 3
1265          *
1266          * Tag 3 identifier (1 byte)
1267          * Max Tag 3 packet size (max 3 bytes)
1268          * Version (1 byte)
1269          * Cipher code (1 byte)
1270          * S2K specifier (1 byte)
1271          * Hash identifier (1 byte)
1272          * Salt (ECRYPTFS_SALT_SIZE)
1273          * Hash iterations (1 byte)
1274          * Encrypted key (arbitrary)
1275          *
1276          * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1277          */
1278         if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1279                 printk(KERN_ERR "Max packet size too large\n");
1280                 rc = -EINVAL;
1281                 goto out;
1282         }
1283         if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1284                 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1285                        ECRYPTFS_TAG_3_PACKET_TYPE);
1286                 rc = -EINVAL;
1287                 goto out;
1288         }
1289         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1290          * at end of function upon failure */
1291         auth_tok_list_item =
1292             kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1293         if (!auth_tok_list_item) {
1294                 printk(KERN_ERR "Unable to allocate memory\n");
1295                 rc = -ENOMEM;
1296                 goto out;
1297         }
1298         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1299         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1300                                           &length_size);
1301         if (rc) {
1302                 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1303                        rc);
1304                 goto out_free;
1305         }
1306         if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1307                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1308                 rc = -EINVAL;
1309                 goto out_free;
1310         }
1311         (*packet_size) += length_size;
1312         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1313                 printk(KERN_ERR "Packet size exceeds max\n");
1314                 rc = -EINVAL;
1315                 goto out_free;
1316         }
1317         (*new_auth_tok)->session_key.encrypted_key_size =
1318                 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1319         if ((*new_auth_tok)->session_key.encrypted_key_size
1320             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1321                 printk(KERN_WARNING "Tag 3 packet contains key larger "
1322                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1323                 rc = -EINVAL;
1324                 goto out_free;
1325         }
1326         if (unlikely(data[(*packet_size)++] != 0x04)) {
1327                 printk(KERN_WARNING "Unknown version number [%d]\n",
1328                        data[(*packet_size) - 1]);
1329                 rc = -EINVAL;
1330                 goto out_free;
1331         }
1332         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1333                                             (u16)data[(*packet_size)]);
1334         if (rc)
1335                 goto out_free;
1336         /* A little extra work to differentiate among the AES key
1337          * sizes; see RFC2440 */
1338         switch(data[(*packet_size)++]) {
1339         case RFC2440_CIPHER_AES_192:
1340                 crypt_stat->key_size = 24;
1341                 break;
1342         default:
1343                 crypt_stat->key_size =
1344                         (*new_auth_tok)->session_key.encrypted_key_size;
1345         }
1346         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1347         if (rc)
1348                 goto out_free;
1349         if (unlikely(data[(*packet_size)++] != 0x03)) {
1350                 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1351                 rc = -ENOSYS;
1352                 goto out_free;
1353         }
1354         /* TODO: finish the hash mapping */
1355         switch (data[(*packet_size)++]) {
1356         case 0x01: /* See RFC2440 for these numbers and their mappings */
1357                 /* Choose MD5 */
1358                 memcpy((*new_auth_tok)->token.password.salt,
1359                        &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1360                 (*packet_size) += ECRYPTFS_SALT_SIZE;
1361                 /* This conversion was taken straight from RFC2440 */
1362                 (*new_auth_tok)->token.password.hash_iterations =
1363                         ((u32) 16 + (data[(*packet_size)] & 15))
1364                                 << ((data[(*packet_size)] >> 4) + 6);
1365                 (*packet_size)++;
1366                 /* Friendly reminder:
1367                  * (*new_auth_tok)->session_key.encrypted_key_size =
1368                  *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1369                 memcpy((*new_auth_tok)->session_key.encrypted_key,
1370                        &data[(*packet_size)],
1371                        (*new_auth_tok)->session_key.encrypted_key_size);
1372                 (*packet_size) +=
1373                         (*new_auth_tok)->session_key.encrypted_key_size;
1374                 (*new_auth_tok)->session_key.flags &=
1375                         ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1376                 (*new_auth_tok)->session_key.flags |=
1377                         ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1378                 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1379                 break;
1380         default:
1381                 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1382                                 "[%d]\n", data[(*packet_size) - 1]);
1383                 rc = -ENOSYS;
1384                 goto out_free;
1385         }
1386         (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1387         /* TODO: Parametarize; we might actually want userspace to
1388          * decrypt the session key. */
1389         (*new_auth_tok)->session_key.flags &=
1390                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1391         (*new_auth_tok)->session_key.flags &=
1392                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1393         list_add(&auth_tok_list_item->list, auth_tok_list);
1394         goto out;
1395 out_free:
1396         (*new_auth_tok) = NULL;
1397         memset(auth_tok_list_item, 0,
1398                sizeof(struct ecryptfs_auth_tok_list_item));
1399         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1400                         auth_tok_list_item);
1401 out:
1402         if (rc)
1403                 (*packet_size) = 0;
1404         return rc;
1405 }
1406
1407 /**
1408  * parse_tag_11_packet
1409  * @data: The raw bytes of the packet
1410  * @contents: This function writes the data contents of the literal
1411  *            packet into this memory location
1412  * @max_contents_bytes: The maximum number of bytes that this function
1413  *                      is allowed to write into contents
1414  * @tag_11_contents_size: This function writes the size of the parsed
1415  *                        contents into this memory location; zero on
1416  *                        error
1417  * @packet_size: This function writes the size of the parsed packet
1418  *               into this memory location; zero on error
1419  * @max_packet_size: maximum number of bytes to parse
1420  *
1421  * Returns zero on success; non-zero on error.
1422  */
1423 static int
1424 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1425                     size_t max_contents_bytes, size_t *tag_11_contents_size,
1426                     size_t *packet_size, size_t max_packet_size)
1427 {
1428         size_t body_size;
1429         size_t length_size;
1430         int rc = 0;
1431
1432         (*packet_size) = 0;
1433         (*tag_11_contents_size) = 0;
1434         /* This format is inspired by OpenPGP; see RFC 2440
1435          * packet tag 11
1436          *
1437          * Tag 11 identifier (1 byte)
1438          * Max Tag 11 packet size (max 3 bytes)
1439          * Binary format specifier (1 byte)
1440          * Filename length (1 byte)
1441          * Filename ("_CONSOLE") (8 bytes)
1442          * Modification date (4 bytes)
1443          * Literal data (arbitrary)
1444          *
1445          * We need at least 16 bytes of data for the packet to even be
1446          * valid.
1447          */
1448         if (max_packet_size < 16) {
1449                 printk(KERN_ERR "Maximum packet size too small\n");
1450                 rc = -EINVAL;
1451                 goto out;
1452         }
1453         if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1454                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1455                 rc = -EINVAL;
1456                 goto out;
1457         }
1458         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1459                                           &length_size);
1460         if (rc) {
1461                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1462                 goto out;
1463         }
1464         if (body_size < 14) {
1465                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1466                 rc = -EINVAL;
1467                 goto out;
1468         }
1469         (*packet_size) += length_size;
1470         (*tag_11_contents_size) = (body_size - 14);
1471         if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1472                 printk(KERN_ERR "Packet size exceeds max\n");
1473                 rc = -EINVAL;
1474                 goto out;
1475         }
1476         if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1477                 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1478                        "expected size\n");
1479                 rc = -EINVAL;
1480                 goto out;
1481         }
1482         if (data[(*packet_size)++] != 0x62) {
1483                 printk(KERN_WARNING "Unrecognizable packet\n");
1484                 rc = -EINVAL;
1485                 goto out;
1486         }
1487         if (data[(*packet_size)++] != 0x08) {
1488                 printk(KERN_WARNING "Unrecognizable packet\n");
1489                 rc = -EINVAL;
1490                 goto out;
1491         }
1492         (*packet_size) += 12; /* Ignore filename and modification date */
1493         memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1494         (*packet_size) += (*tag_11_contents_size);
1495 out:
1496         if (rc) {
1497                 (*packet_size) = 0;
1498                 (*tag_11_contents_size) = 0;
1499         }
1500         return rc;
1501 }
1502
1503 /**
1504  * ecryptfs_verify_version
1505  * @version: The version number to confirm
1506  *
1507  * Returns zero on good version; non-zero otherwise
1508  */
1509 static int ecryptfs_verify_version(u16 version)
1510 {
1511         int rc = 0;
1512         unsigned char major;
1513         unsigned char minor;
1514
1515         major = ((version >> 8) & 0xFF);
1516         minor = (version & 0xFF);
1517         if (major != ECRYPTFS_VERSION_MAJOR) {
1518                 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1519                                 "Expected [%d]; got [%d]\n",
1520                                 ECRYPTFS_VERSION_MAJOR, major);
1521                 rc = -EINVAL;
1522                 goto out;
1523         }
1524         if (minor != ECRYPTFS_VERSION_MINOR) {
1525                 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1526                                 "Expected [%d]; got [%d]\n",
1527                                 ECRYPTFS_VERSION_MINOR, minor);
1528                 rc = -EINVAL;
1529                 goto out;
1530         }
1531 out:
1532         return rc;
1533 }
1534
1535 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1536                                       struct ecryptfs_auth_tok **auth_tok,
1537                                       char *sig)
1538 {
1539         int rc = 0;
1540
1541         (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1542         if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1543                 printk(KERN_ERR "Could not find key with description: [%s]\n",
1544                        sig);
1545                 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1546                 goto out;
1547         }
1548         (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1549         if (ecryptfs_verify_version((*auth_tok)->version)) {
1550                 printk(KERN_ERR
1551                        "Data structure version mismatch. "
1552                        "Userspace tools must match eCryptfs "
1553                        "kernel module with major version [%d] "
1554                        "and minor version [%d]\n",
1555                        ECRYPTFS_VERSION_MAJOR,
1556                        ECRYPTFS_VERSION_MINOR);
1557                 rc = -EINVAL;
1558                 goto out;
1559         }
1560         if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1561             && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1562                 printk(KERN_ERR "Invalid auth_tok structure "
1563                        "returned from key query\n");
1564                 rc = -EINVAL;
1565                 goto out;
1566         }
1567 out:
1568         return rc;
1569 }
1570
1571 /**
1572  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1573  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1574  * @crypt_stat: The cryptographic context
1575  *
1576  * Returns zero on success; non-zero error otherwise
1577  */
1578 static int
1579 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1580                                          struct ecryptfs_crypt_stat *crypt_stat)
1581 {
1582         struct scatterlist dst_sg[2];
1583         struct scatterlist src_sg[2];
1584         struct mutex *tfm_mutex;
1585         struct blkcipher_desc desc = {
1586                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1587         };
1588         int rc = 0;
1589
1590         if (unlikely(ecryptfs_verbosity > 0)) {
1591                 ecryptfs_printk(
1592                         KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1593                         auth_tok->token.password.session_key_encryption_key_bytes);
1594                 ecryptfs_dump_hex(
1595                         auth_tok->token.password.session_key_encryption_key,
1596                         auth_tok->token.password.session_key_encryption_key_bytes);
1597         }
1598         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1599                                                         crypt_stat->cipher);
1600         if (unlikely(rc)) {
1601                 printk(KERN_ERR "Internal error whilst attempting to get "
1602                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1603                        crypt_stat->cipher, rc);
1604                 goto out;
1605         }
1606         rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1607                                  auth_tok->session_key.encrypted_key_size,
1608                                  src_sg, 2);
1609         if (rc < 1 || rc > 2) {
1610                 printk(KERN_ERR "Internal error whilst attempting to convert "
1611                         "auth_tok->session_key.encrypted_key to scatterlist; "
1612                         "expected rc = 1; got rc = [%d]. "
1613                        "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1614                         auth_tok->session_key.encrypted_key_size);
1615                 goto out;
1616         }
1617         auth_tok->session_key.decrypted_key_size =
1618                 auth_tok->session_key.encrypted_key_size;
1619         rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1620                                  auth_tok->session_key.decrypted_key_size,
1621                                  dst_sg, 2);
1622         if (rc < 1 || rc > 2) {
1623                 printk(KERN_ERR "Internal error whilst attempting to convert "
1624                         "auth_tok->session_key.decrypted_key to scatterlist; "
1625                         "expected rc = 1; got rc = [%d]\n", rc);
1626                 goto out;
1627         }
1628         mutex_lock(tfm_mutex);
1629         rc = crypto_blkcipher_setkey(
1630                 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1631                 crypt_stat->key_size);
1632         if (unlikely(rc < 0)) {
1633                 mutex_unlock(tfm_mutex);
1634                 printk(KERN_ERR "Error setting key for crypto context\n");
1635                 rc = -EINVAL;
1636                 goto out;
1637         }
1638         rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1639                                       auth_tok->session_key.encrypted_key_size);
1640         mutex_unlock(tfm_mutex);
1641         if (unlikely(rc)) {
1642                 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1643                 goto out;
1644         }
1645         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1646         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1647                auth_tok->session_key.decrypted_key_size);
1648         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1649         if (unlikely(ecryptfs_verbosity > 0)) {
1650                 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1651                                 crypt_stat->key_size);
1652                 ecryptfs_dump_hex(crypt_stat->key,
1653                                   crypt_stat->key_size);
1654         }
1655 out:
1656         return rc;
1657 }
1658
1659 /**
1660  * ecryptfs_parse_packet_set
1661  * @crypt_stat: The cryptographic context
1662  * @src: Virtual address of region of memory containing the packets
1663  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1664  *
1665  * Get crypt_stat to have the file's session key if the requisite key
1666  * is available to decrypt the session key.
1667  *
1668  * Returns Zero if a valid authentication token was retrieved and
1669  * processed; negative value for file not encrypted or for error
1670  * conditions.
1671  */
1672 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1673                               unsigned char *src,
1674                               struct dentry *ecryptfs_dentry)
1675 {
1676         size_t i = 0;
1677         size_t found_auth_tok;
1678         size_t next_packet_is_auth_tok_packet;
1679         struct list_head auth_tok_list;
1680         struct ecryptfs_auth_tok *matching_auth_tok;
1681         struct ecryptfs_auth_tok *candidate_auth_tok;
1682         char *candidate_auth_tok_sig;
1683         size_t packet_size;
1684         struct ecryptfs_auth_tok *new_auth_tok;
1685         unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1686         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1687         size_t tag_11_contents_size;
1688         size_t tag_11_packet_size;
1689         int rc = 0;
1690
1691         INIT_LIST_HEAD(&auth_tok_list);
1692         /* Parse the header to find as many packets as we can; these will be
1693          * added the our &auth_tok_list */
1694         next_packet_is_auth_tok_packet = 1;
1695         while (next_packet_is_auth_tok_packet) {
1696                 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1697
1698                 switch (src[i]) {
1699                 case ECRYPTFS_TAG_3_PACKET_TYPE:
1700                         rc = parse_tag_3_packet(crypt_stat,
1701                                                 (unsigned char *)&src[i],
1702                                                 &auth_tok_list, &new_auth_tok,
1703                                                 &packet_size, max_packet_size);
1704                         if (rc) {
1705                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1706                                                 "tag 3 packet\n");
1707                                 rc = -EIO;
1708                                 goto out_wipe_list;
1709                         }
1710                         i += packet_size;
1711                         rc = parse_tag_11_packet((unsigned char *)&src[i],
1712                                                  sig_tmp_space,
1713                                                  ECRYPTFS_SIG_SIZE,
1714                                                  &tag_11_contents_size,
1715                                                  &tag_11_packet_size,
1716                                                  max_packet_size);
1717                         if (rc) {
1718                                 ecryptfs_printk(KERN_ERR, "No valid "
1719                                                 "(ecryptfs-specific) literal "
1720                                                 "packet containing "
1721                                                 "authentication token "
1722                                                 "signature found after "
1723                                                 "tag 3 packet\n");
1724                                 rc = -EIO;
1725                                 goto out_wipe_list;
1726                         }
1727                         i += tag_11_packet_size;
1728                         if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1729                                 ecryptfs_printk(KERN_ERR, "Expected "
1730                                                 "signature of size [%d]; "
1731                                                 "read size [%d]\n",
1732                                                 ECRYPTFS_SIG_SIZE,
1733                                                 tag_11_contents_size);
1734                                 rc = -EIO;
1735                                 goto out_wipe_list;
1736                         }
1737                         ecryptfs_to_hex(new_auth_tok->token.password.signature,
1738                                         sig_tmp_space, tag_11_contents_size);
1739                         new_auth_tok->token.password.signature[
1740                                 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1741                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1742                         break;
1743                 case ECRYPTFS_TAG_1_PACKET_TYPE:
1744                         rc = parse_tag_1_packet(crypt_stat,
1745                                                 (unsigned char *)&src[i],
1746                                                 &auth_tok_list, &new_auth_tok,
1747                                                 &packet_size, max_packet_size);
1748                         if (rc) {
1749                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1750                                                 "tag 1 packet\n");
1751                                 rc = -EIO;
1752                                 goto out_wipe_list;
1753                         }
1754                         i += packet_size;
1755                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1756                         break;
1757                 case ECRYPTFS_TAG_11_PACKET_TYPE:
1758                         ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1759                                         "(Tag 11 not allowed by itself)\n");
1760                         rc = -EIO;
1761                         goto out_wipe_list;
1762                         break;
1763                 default:
1764                         ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1765                                         "[%d] of the file header; hex value of "
1766                                         "character is [0x%.2x]\n", i, src[i]);
1767                         next_packet_is_auth_tok_packet = 0;
1768                 }
1769         }
1770         if (list_empty(&auth_tok_list)) {
1771                 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1772                        "eCryptfs file; this is not supported in this version "
1773                        "of the eCryptfs kernel module\n");
1774                 rc = -EINVAL;
1775                 goto out;
1776         }
1777         /* auth_tok_list contains the set of authentication tokens
1778          * parsed from the metadata. We need to find a matching
1779          * authentication token that has the secret component(s)
1780          * necessary to decrypt the EFEK in the auth_tok parsed from
1781          * the metadata. There may be several potential matches, but
1782          * just one will be sufficient to decrypt to get the FEK. */
1783 find_next_matching_auth_tok:
1784         found_auth_tok = 0;
1785         list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1786                 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1787                 if (unlikely(ecryptfs_verbosity > 0)) {
1788                         ecryptfs_printk(KERN_DEBUG,
1789                                         "Considering cadidate auth tok:\n");
1790                         ecryptfs_dump_auth_tok(candidate_auth_tok);
1791                 }
1792                 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1793                                                candidate_auth_tok);
1794                 if (rc) {
1795                         printk(KERN_ERR
1796                                "Unrecognized candidate auth tok type: [%d]\n",
1797                                candidate_auth_tok->token_type);
1798                         rc = -EINVAL;
1799                         goto out_wipe_list;
1800                 }
1801                 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1802                                                crypt_stat->mount_crypt_stat,
1803                                                candidate_auth_tok_sig);
1804                 if (matching_auth_tok) {
1805                         found_auth_tok = 1;
1806                         goto found_matching_auth_tok;
1807                 }
1808         }
1809         if (!found_auth_tok) {
1810                 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1811                                 "authentication token\n");
1812                 rc = -EIO;
1813                 goto out_wipe_list;
1814         }
1815 found_matching_auth_tok:
1816         if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1817                 memcpy(&(candidate_auth_tok->token.private_key),
1818                        &(matching_auth_tok->token.private_key),
1819                        sizeof(struct ecryptfs_private_key));
1820                 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1821                                                        crypt_stat);
1822         } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1823                 memcpy(&(candidate_auth_tok->token.password),
1824                        &(matching_auth_tok->token.password),
1825                        sizeof(struct ecryptfs_password));
1826                 rc = decrypt_passphrase_encrypted_session_key(
1827                         candidate_auth_tok, crypt_stat);
1828         }
1829         if (rc) {
1830                 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1831
1832                 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1833                                 "session key for authentication token with sig "
1834                                 "[%.*s]; rc = [%d]. Removing auth tok "
1835                                 "candidate from the list and searching for "
1836                                 "the next match.\n", candidate_auth_tok_sig,
1837                                 ECRYPTFS_SIG_SIZE_HEX, rc);
1838                 list_for_each_entry_safe(auth_tok_list_item,
1839                                          auth_tok_list_item_tmp,
1840                                          &auth_tok_list, list) {
1841                         if (candidate_auth_tok
1842                             == &auth_tok_list_item->auth_tok) {
1843                                 list_del(&auth_tok_list_item->list);
1844                                 kmem_cache_free(
1845                                         ecryptfs_auth_tok_list_item_cache,
1846                                         auth_tok_list_item);
1847                                 goto find_next_matching_auth_tok;
1848                         }
1849                 }
1850                 BUG();
1851         }
1852         rc = ecryptfs_compute_root_iv(crypt_stat);
1853         if (rc) {
1854                 ecryptfs_printk(KERN_ERR, "Error computing "
1855                                 "the root IV\n");
1856                 goto out_wipe_list;
1857         }
1858         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1859         if (rc) {
1860                 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1861                                 "context for cipher [%s]; rc = [%d]\n",
1862                                 crypt_stat->cipher, rc);
1863         }
1864 out_wipe_list:
1865         wipe_auth_tok_list(&auth_tok_list);
1866 out:
1867         return rc;
1868 }
1869
1870 static int
1871 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1872                         struct ecryptfs_crypt_stat *crypt_stat,
1873                         struct ecryptfs_key_record *key_rec)
1874 {
1875         struct ecryptfs_msg_ctx *msg_ctx = NULL;
1876         char *payload = NULL;
1877         size_t payload_len;
1878         struct ecryptfs_message *msg;
1879         int rc;
1880
1881         rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1882                                  ecryptfs_code_for_cipher_string(
1883                                          crypt_stat->cipher,
1884                                          crypt_stat->key_size),
1885                                  crypt_stat, &payload, &payload_len);
1886         if (rc) {
1887                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1888                 goto out;
1889         }
1890         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1891         if (rc) {
1892                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1893                                 "ecryptfsd\n");
1894                 goto out;
1895         }
1896         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1897         if (rc) {
1898                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1899                                 "from the user space daemon\n");
1900                 rc = -EIO;
1901                 goto out;
1902         }
1903         rc = parse_tag_67_packet(key_rec, msg);
1904         if (rc)
1905                 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1906         kfree(msg);
1907 out:
1908         kfree(payload);
1909         return rc;
1910 }
1911 /**
1912  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1913  * @dest: Buffer into which to write the packet
1914  * @remaining_bytes: Maximum number of bytes that can be writtn
1915  * @auth_tok: The authentication token used for generating the tag 1 packet
1916  * @crypt_stat: The cryptographic context
1917  * @key_rec: The key record struct for the tag 1 packet
1918  * @packet_size: This function will write the number of bytes that end
1919  *               up constituting the packet; set to zero on error
1920  *
1921  * Returns zero on success; non-zero on error.
1922  */
1923 static int
1924 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1925                    struct ecryptfs_auth_tok *auth_tok,
1926                    struct ecryptfs_crypt_stat *crypt_stat,
1927                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
1928 {
1929         size_t i;
1930         size_t encrypted_session_key_valid = 0;
1931         size_t packet_size_length;
1932         size_t max_packet_size;
1933         int rc = 0;
1934
1935         (*packet_size) = 0;
1936         ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1937                           ECRYPTFS_SIG_SIZE);
1938         encrypted_session_key_valid = 0;
1939         for (i = 0; i < crypt_stat->key_size; i++)
1940                 encrypted_session_key_valid |=
1941                         auth_tok->session_key.encrypted_key[i];
1942         if (encrypted_session_key_valid) {
1943                 memcpy(key_rec->enc_key,
1944                        auth_tok->session_key.encrypted_key,
1945                        auth_tok->session_key.encrypted_key_size);
1946                 goto encrypted_session_key_set;
1947         }
1948         if (auth_tok->session_key.encrypted_key_size == 0)
1949                 auth_tok->session_key.encrypted_key_size =
1950                         auth_tok->token.private_key.key_size;
1951         rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1952         if (rc) {
1953                 printk(KERN_ERR "Failed to encrypt session key via a key "
1954                        "module; rc = [%d]\n", rc);
1955                 goto out;
1956         }
1957         if (ecryptfs_verbosity > 0) {
1958                 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1959                 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1960         }
1961 encrypted_session_key_set:
1962         /* This format is inspired by OpenPGP; see RFC 2440
1963          * packet tag 1 */
1964         max_packet_size = (1                         /* Tag 1 identifier */
1965                            + 3                       /* Max Tag 1 packet size */
1966                            + 1                       /* Version */
1967                            + ECRYPTFS_SIG_SIZE       /* Key identifier */
1968                            + 1                       /* Cipher identifier */
1969                            + key_rec->enc_key_size); /* Encrypted key size */
1970         if (max_packet_size > (*remaining_bytes)) {
1971                 printk(KERN_ERR "Packet length larger than maximum allowable; "
1972                        "need up to [%td] bytes, but there are only [%td] "
1973                        "available\n", max_packet_size, (*remaining_bytes));
1974                 rc = -EINVAL;
1975                 goto out;
1976         }
1977         dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1978         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1979                                           (max_packet_size - 4),
1980                                           &packet_size_length);
1981         if (rc) {
1982                 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1983                                 "header; cannot generate packet length\n");
1984                 goto out;
1985         }
1986         (*packet_size) += packet_size_length;
1987         dest[(*packet_size)++] = 0x03; /* version 3 */
1988         memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1989         (*packet_size) += ECRYPTFS_SIG_SIZE;
1990         dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1991         memcpy(&dest[(*packet_size)], key_rec->enc_key,
1992                key_rec->enc_key_size);
1993         (*packet_size) += key_rec->enc_key_size;
1994 out:
1995         if (rc)
1996                 (*packet_size) = 0;
1997         else
1998                 (*remaining_bytes) -= (*packet_size);
1999         return rc;
2000 }
2001
2002 /**
2003  * write_tag_11_packet
2004  * @dest: Target into which Tag 11 packet is to be written
2005  * @remaining_bytes: Maximum packet length
2006  * @contents: Byte array of contents to copy in
2007  * @contents_length: Number of bytes in contents
2008  * @packet_length: Length of the Tag 11 packet written; zero on error
2009  *
2010  * Returns zero on success; non-zero on error.
2011  */
2012 static int
2013 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2014                     size_t contents_length, size_t *packet_length)
2015 {
2016         size_t packet_size_length;
2017         size_t max_packet_size;
2018         int rc = 0;
2019
2020         (*packet_length) = 0;
2021         /* This format is inspired by OpenPGP; see RFC 2440
2022          * packet tag 11 */
2023         max_packet_size = (1                   /* Tag 11 identifier */
2024                            + 3                 /* Max Tag 11 packet size */
2025                            + 1                 /* Binary format specifier */
2026                            + 1                 /* Filename length */
2027                            + 8                 /* Filename ("_CONSOLE") */
2028                            + 4                 /* Modification date */
2029                            + contents_length); /* Literal data */
2030         if (max_packet_size > (*remaining_bytes)) {
2031                 printk(KERN_ERR "Packet length larger than maximum allowable; "
2032                        "need up to [%td] bytes, but there are only [%td] "
2033                        "available\n", max_packet_size, (*remaining_bytes));
2034                 rc = -EINVAL;
2035                 goto out;
2036         }
2037         dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2038         rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2039                                           (max_packet_size - 4),
2040                                           &packet_size_length);
2041         if (rc) {
2042                 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2043                        "generate packet length. rc = [%d]\n", rc);
2044                 goto out;
2045         }
2046         (*packet_length) += packet_size_length;
2047         dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2048         dest[(*packet_length)++] = 8;
2049         memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2050         (*packet_length) += 8;
2051         memset(&dest[(*packet_length)], 0x00, 4);
2052         (*packet_length) += 4;
2053         memcpy(&dest[(*packet_length)], contents, contents_length);
2054         (*packet_length) += contents_length;
2055  out:
2056         if (rc)
2057                 (*packet_length) = 0;
2058         else
2059                 (*remaining_bytes) -= (*packet_length);
2060         return rc;
2061 }
2062
2063 /**
2064  * write_tag_3_packet
2065  * @dest: Buffer into which to write the packet
2066  * @remaining_bytes: Maximum number of bytes that can be written
2067  * @auth_tok: Authentication token
2068  * @crypt_stat: The cryptographic context
2069  * @key_rec: encrypted key
2070  * @packet_size: This function will write the number of bytes that end
2071  *               up constituting the packet; set to zero on error
2072  *
2073  * Returns zero on success; non-zero on error.
2074  */
2075 static int
2076 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2077                    struct ecryptfs_auth_tok *auth_tok,
2078                    struct ecryptfs_crypt_stat *crypt_stat,
2079                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
2080 {
2081         size_t i;
2082         size_t encrypted_session_key_valid = 0;
2083         char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2084         struct scatterlist dst_sg[2];
2085         struct scatterlist src_sg[2];
2086         struct mutex *tfm_mutex = NULL;
2087         u8 cipher_code;
2088         size_t packet_size_length;
2089         size_t max_packet_size;
2090         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2091                 crypt_stat->mount_crypt_stat;
2092         struct blkcipher_desc desc = {
2093                 .tfm = NULL,
2094                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2095         };
2096         int rc = 0;
2097
2098         (*packet_size) = 0;
2099         ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2100                           ECRYPTFS_SIG_SIZE);
2101         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2102                                                         crypt_stat->cipher);
2103         if (unlikely(rc)) {
2104                 printk(KERN_ERR "Internal error whilst attempting to get "
2105                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2106                        crypt_stat->cipher, rc);
2107                 goto out;
2108         }
2109         if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2110                 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2111
2112                 printk(KERN_WARNING "No key size specified at mount; "
2113                        "defaulting to [%d]\n", alg->max_keysize);
2114                 mount_crypt_stat->global_default_cipher_key_size =
2115                         alg->max_keysize;
2116         }
2117         if (crypt_stat->key_size == 0)
2118                 crypt_stat->key_size =
2119                         mount_crypt_stat->global_default_cipher_key_size;
2120         if (auth_tok->session_key.encrypted_key_size == 0)
2121                 auth_tok->session_key.encrypted_key_size =
2122                         crypt_stat->key_size;
2123         if (crypt_stat->key_size == 24
2124             && strcmp("aes", crypt_stat->cipher) == 0) {
2125                 memset((crypt_stat->key + 24), 0, 8);
2126                 auth_tok->session_key.encrypted_key_size = 32;
2127         } else
2128                 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2129         key_rec->enc_key_size =
2130                 auth_tok->session_key.encrypted_key_size;
2131         encrypted_session_key_valid = 0;
2132         for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2133                 encrypted_session_key_valid |=
2134                         auth_tok->session_key.encrypted_key[i];
2135         if (encrypted_session_key_valid) {
2136                 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2137                                 "using auth_tok->session_key.encrypted_key, "
2138                                 "where key_rec->enc_key_size = [%d]\n",
2139                                 key_rec->enc_key_size);
2140                 memcpy(key_rec->enc_key,
2141                        auth_tok->session_key.encrypted_key,
2142                        key_rec->enc_key_size);
2143                 goto encrypted_session_key_set;
2144         }
2145         if (auth_tok->token.password.flags &
2146             ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2147                 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2148                                 "session key encryption key of size [%d]\n",
2149                                 auth_tok->token.password.
2150                                 session_key_encryption_key_bytes);
2151                 memcpy(session_key_encryption_key,
2152                        auth_tok->token.password.session_key_encryption_key,
2153                        crypt_stat->key_size);
2154                 ecryptfs_printk(KERN_DEBUG,
2155                                 "Cached session key " "encryption key: \n");
2156                 if (ecryptfs_verbosity > 0)
2157                         ecryptfs_dump_hex(session_key_encryption_key, 16);
2158         }
2159         if (unlikely(ecryptfs_verbosity > 0)) {
2160                 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2161                 ecryptfs_dump_hex(session_key_encryption_key, 16);
2162         }
2163         rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2164                                  src_sg, 2);
2165         if (rc < 1 || rc > 2) {
2166                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2167                                 "for crypt_stat session key; expected rc = 1; "
2168                                 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2169                                 rc, key_rec->enc_key_size);
2170                 rc = -ENOMEM;
2171                 goto out;
2172         }
2173         rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2174                                  dst_sg, 2);
2175         if (rc < 1 || rc > 2) {
2176                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2177                                 "for crypt_stat encrypted session key; "
2178                                 "expected rc = 1; got rc = [%d]. "
2179                                 "key_rec->enc_key_size = [%d]\n", rc,
2180                                 key_rec->enc_key_size);
2181                 rc = -ENOMEM;
2182                 goto out;
2183         }
2184         mutex_lock(tfm_mutex);
2185         rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2186                                      crypt_stat->key_size);
2187         if (rc < 0) {
2188                 mutex_unlock(tfm_mutex);
2189                 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2190                                 "context; rc = [%d]\n", rc);
2191                 goto out;
2192         }
2193         rc = 0;
2194         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2195                         crypt_stat->key_size);
2196         rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2197                                       (*key_rec).enc_key_size);
2198         mutex_unlock(tfm_mutex);
2199         if (rc) {
2200                 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2201                 goto out;
2202         }
2203         ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2204         if (ecryptfs_verbosity > 0) {
2205                 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2206                                 key_rec->enc_key_size);
2207                 ecryptfs_dump_hex(key_rec->enc_key,
2208                                   key_rec->enc_key_size);
2209         }
2210 encrypted_session_key_set:
2211         /* This format is inspired by OpenPGP; see RFC 2440
2212          * packet tag 3 */
2213         max_packet_size = (1                         /* Tag 3 identifier */
2214                            + 3                       /* Max Tag 3 packet size */
2215                            + 1                       /* Version */
2216                            + 1                       /* Cipher code */
2217                            + 1                       /* S2K specifier */
2218                            + 1                       /* Hash identifier */
2219                            + ECRYPTFS_SALT_SIZE      /* Salt */
2220                            + 1                       /* Hash iterations */
2221                            + key_rec->enc_key_size); /* Encrypted key size */
2222         if (max_packet_size > (*remaining_bytes)) {
2223                 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2224                        "there are only [%td] available\n", max_packet_size,
2225                        (*remaining_bytes));
2226                 rc = -EINVAL;
2227                 goto out;
2228         }
2229         dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2230         /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2231          * to get the number of octets in the actual Tag 3 packet */
2232         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2233                                           (max_packet_size - 4),
2234                                           &packet_size_length);
2235         if (rc) {
2236                 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2237                        "generate packet length. rc = [%d]\n", rc);
2238                 goto out;
2239         }
2240         (*packet_size) += packet_size_length;
2241         dest[(*packet_size)++] = 0x04; /* version 4 */
2242         /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2243          * specified with strings */
2244         cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2245                                                       crypt_stat->key_size);
2246         if (cipher_code == 0) {
2247                 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2248                                 "cipher [%s]\n", crypt_stat->cipher);
2249                 rc = -EINVAL;
2250                 goto out;
2251         }
2252         dest[(*packet_size)++] = cipher_code;
2253         dest[(*packet_size)++] = 0x03;  /* S2K */
2254         dest[(*packet_size)++] = 0x01;  /* MD5 (TODO: parameterize) */
2255         memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2256                ECRYPTFS_SALT_SIZE);
2257         (*packet_size) += ECRYPTFS_SALT_SIZE;   /* salt */
2258         dest[(*packet_size)++] = 0x60;  /* hash iterations (65536) */
2259         memcpy(&dest[(*packet_size)], key_rec->enc_key,
2260                key_rec->enc_key_size);
2261         (*packet_size) += key_rec->enc_key_size;
2262 out:
2263         if (rc)
2264                 (*packet_size) = 0;
2265         else
2266                 (*remaining_bytes) -= (*packet_size);
2267         return rc;
2268 }
2269
2270 struct kmem_cache *ecryptfs_key_record_cache;
2271
2272 /**
2273  * ecryptfs_generate_key_packet_set
2274  * @dest_base: Virtual address from which to write the key record set
2275  * @crypt_stat: The cryptographic context from which the
2276  *              authentication tokens will be retrieved
2277  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2278  *                   for the global parameters
2279  * @len: The amount written
2280  * @max: The maximum amount of data allowed to be written
2281  *
2282  * Generates a key packet set and writes it to the virtual address
2283  * passed in.
2284  *
2285  * Returns zero on success; non-zero on error.
2286  */
2287 int
2288 ecryptfs_generate_key_packet_set(char *dest_base,
2289                                  struct ecryptfs_crypt_stat *crypt_stat,
2290                                  struct dentry *ecryptfs_dentry, size_t *len,
2291                                  size_t max)
2292 {
2293         struct ecryptfs_auth_tok *auth_tok;
2294         struct ecryptfs_global_auth_tok *global_auth_tok;
2295         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2296                 &ecryptfs_superblock_to_private(
2297                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
2298         size_t written;
2299         struct ecryptfs_key_record *key_rec;
2300         struct ecryptfs_key_sig *key_sig;
2301         int rc = 0;
2302
2303         (*len) = 0;
2304         mutex_lock(&crypt_stat->keysig_list_mutex);
2305         key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2306         if (!key_rec) {
2307                 rc = -ENOMEM;
2308                 goto out;
2309         }
2310         list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2311                             crypt_stat_list) {
2312                 memset(key_rec, 0, sizeof(*key_rec));
2313                 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2314                                                            mount_crypt_stat,
2315                                                            key_sig->keysig);
2316                 if (rc) {
2317                         printk(KERN_ERR "Error attempting to get the global "
2318                                "auth_tok; rc = [%d]\n", rc);
2319                         goto out_free;
2320                 }
2321                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2322                         printk(KERN_WARNING
2323                                "Skipping invalid auth tok with sig = [%s]\n",
2324                                global_auth_tok->sig);
2325                         continue;
2326                 }
2327                 auth_tok = global_auth_tok->global_auth_tok;
2328                 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2329                         rc = write_tag_3_packet((dest_base + (*len)),
2330                                                 &max, auth_tok,
2331                                                 crypt_stat, key_rec,
2332                                                 &written);
2333                         if (rc) {
2334                                 ecryptfs_printk(KERN_WARNING, "Error "
2335                                                 "writing tag 3 packet\n");
2336                                 goto out_free;
2337                         }
2338                         (*len) += written;
2339                         /* Write auth tok signature packet */
2340                         rc = write_tag_11_packet((dest_base + (*len)), &max,
2341                                                  key_rec->sig,
2342                                                  ECRYPTFS_SIG_SIZE, &written);
2343                         if (rc) {
2344                                 ecryptfs_printk(KERN_ERR, "Error writing "
2345                                                 "auth tok signature packet\n");
2346                                 goto out_free;
2347                         }
2348                         (*len) += written;
2349                 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2350                         rc = write_tag_1_packet(dest_base + (*len),
2351                                                 &max, auth_tok,
2352                                                 crypt_stat, key_rec, &written);
2353                         if (rc) {
2354                                 ecryptfs_printk(KERN_WARNING, "Error "
2355                                                 "writing tag 1 packet\n");
2356                                 goto out_free;
2357                         }
2358                         (*len) += written;
2359                 } else {
2360                         ecryptfs_printk(KERN_WARNING, "Unsupported "
2361                                         "authentication token type\n");
2362                         rc = -EINVAL;
2363                         goto out_free;
2364                 }
2365         }
2366         if (likely(max > 0)) {
2367                 dest_base[(*len)] = 0x00;
2368         } else {
2369                 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2370                 rc = -EIO;
2371         }
2372 out_free:
2373         kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2374 out:
2375         if (rc)
2376                 (*len) = 0;
2377         mutex_unlock(&crypt_stat->keysig_list_mutex);
2378         return rc;
2379 }
2380
2381 struct kmem_cache *ecryptfs_key_sig_cache;
2382
2383 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2384 {
2385         struct ecryptfs_key_sig *new_key_sig;
2386
2387         new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2388         if (!new_key_sig) {
2389                 printk(KERN_ERR
2390                        "Error allocating from ecryptfs_key_sig_cache\n");
2391                 return -ENOMEM;
2392         }
2393         memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2394         /* Caller must hold keysig_list_mutex */
2395         list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2396
2397         return 0;
2398 }
2399
2400 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2401
2402 int
2403 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2404                              char *sig, u32 global_auth_tok_flags)
2405 {
2406         struct ecryptfs_global_auth_tok *new_auth_tok;
2407         int rc = 0;
2408
2409         new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2410                                         GFP_KERNEL);
2411         if (!new_auth_tok) {
2412                 rc = -ENOMEM;
2413                 printk(KERN_ERR "Error allocating from "
2414                        "ecryptfs_global_auth_tok_cache\n");
2415                 goto out;
2416         }
2417         memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2418         new_auth_tok->flags = global_auth_tok_flags;
2419         new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2420         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2421         list_add(&new_auth_tok->mount_crypt_stat_list,
2422                  &mount_crypt_stat->global_auth_tok_list);
2423         mount_crypt_stat->num_global_auth_toks++;
2424         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2425 out:
2426         return rc;
2427 }
2428