block_write_begin(): remove useless goto
[safe/jmp/linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97         ClearPagePrivate(page);
98         set_page_private(page, 0);
99         page_cache_release(page);
100 }
101
102
103 static int quiet_error(struct buffer_head *bh)
104 {
105         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106                 return 0;
107         return 1;
108 }
109
110
111 static void buffer_io_error(struct buffer_head *bh)
112 {
113         char b[BDEVNAME_SIZE];
114         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115                         bdevname(bh->b_bdev, b),
116                         (unsigned long long)bh->b_blocknr);
117 }
118
119 /*
120  * End-of-IO handler helper function which does not touch the bh after
121  * unlocking it.
122  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123  * a race there is benign: unlock_buffer() only use the bh's address for
124  * hashing after unlocking the buffer, so it doesn't actually touch the bh
125  * itself.
126  */
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129         if (uptodate) {
130                 set_buffer_uptodate(bh);
131         } else {
132                 /* This happens, due to failed READA attempts. */
133                 clear_buffer_uptodate(bh);
134         }
135         unlock_buffer(bh);
136 }
137
138 /*
139  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
140  * unlock the buffer. This is what ll_rw_block uses too.
141  */
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144         __end_buffer_read_notouch(bh, uptodate);
145         put_bh(bh);
146 }
147
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150         char b[BDEVNAME_SIZE];
151
152         if (uptodate) {
153                 set_buffer_uptodate(bh);
154         } else {
155                 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156                         buffer_io_error(bh);
157                         printk(KERN_WARNING "lost page write due to "
158                                         "I/O error on %s\n",
159                                        bdevname(bh->b_bdev, b));
160                 }
161                 set_buffer_write_io_error(bh);
162                 clear_buffer_uptodate(bh);
163         }
164         unlock_buffer(bh);
165         put_bh(bh);
166 }
167
168 /*
169  * Write out and wait upon all the dirty data associated with a block
170  * device via its mapping.  Does not take the superblock lock.
171  */
172 int sync_blockdev(struct block_device *bdev)
173 {
174         int ret = 0;
175
176         if (bdev)
177                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
178         return ret;
179 }
180 EXPORT_SYMBOL(sync_blockdev);
181
182 /*
183  * Write out and wait upon all dirty data associated with this
184  * device.   Filesystem data as well as the underlying block
185  * device.  Takes the superblock lock.
186  */
187 int fsync_bdev(struct block_device *bdev)
188 {
189         struct super_block *sb = get_super(bdev);
190         if (sb) {
191                 int res = fsync_super(sb);
192                 drop_super(sb);
193                 return res;
194         }
195         return sync_blockdev(bdev);
196 }
197
198 /**
199  * freeze_bdev  --  lock a filesystem and force it into a consistent state
200  * @bdev:       blockdevice to lock
201  *
202  * This takes the block device bd_mount_sem to make sure no new mounts
203  * happen on bdev until thaw_bdev() is called.
204  * If a superblock is found on this device, we take the s_umount semaphore
205  * on it to make sure nobody unmounts until the snapshot creation is done.
206  */
207 struct super_block *freeze_bdev(struct block_device *bdev)
208 {
209         struct super_block *sb;
210
211         down(&bdev->bd_mount_sem);
212         sb = get_super(bdev);
213         if (sb && !(sb->s_flags & MS_RDONLY)) {
214                 sb->s_frozen = SB_FREEZE_WRITE;
215                 smp_wmb();
216
217                 __fsync_super(sb);
218
219                 sb->s_frozen = SB_FREEZE_TRANS;
220                 smp_wmb();
221
222                 sync_blockdev(sb->s_bdev);
223
224                 if (sb->s_op->write_super_lockfs)
225                         sb->s_op->write_super_lockfs(sb);
226         }
227
228         sync_blockdev(bdev);
229         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
230 }
231 EXPORT_SYMBOL(freeze_bdev);
232
233 /**
234  * thaw_bdev  -- unlock filesystem
235  * @bdev:       blockdevice to unlock
236  * @sb:         associated superblock
237  *
238  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
239  */
240 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
241 {
242         if (sb) {
243                 BUG_ON(sb->s_bdev != bdev);
244
245                 if (sb->s_op->unlockfs)
246                         sb->s_op->unlockfs(sb);
247                 sb->s_frozen = SB_UNFROZEN;
248                 smp_wmb();
249                 wake_up(&sb->s_wait_unfrozen);
250                 drop_super(sb);
251         }
252
253         up(&bdev->bd_mount_sem);
254 }
255 EXPORT_SYMBOL(thaw_bdev);
256
257 /*
258  * Various filesystems appear to want __find_get_block to be non-blocking.
259  * But it's the page lock which protects the buffers.  To get around this,
260  * we get exclusion from try_to_free_buffers with the blockdev mapping's
261  * private_lock.
262  *
263  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
264  * may be quite high.  This code could TryLock the page, and if that
265  * succeeds, there is no need to take private_lock. (But if
266  * private_lock is contended then so is mapping->tree_lock).
267  */
268 static struct buffer_head *
269 __find_get_block_slow(struct block_device *bdev, sector_t block)
270 {
271         struct inode *bd_inode = bdev->bd_inode;
272         struct address_space *bd_mapping = bd_inode->i_mapping;
273         struct buffer_head *ret = NULL;
274         pgoff_t index;
275         struct buffer_head *bh;
276         struct buffer_head *head;
277         struct page *page;
278         int all_mapped = 1;
279
280         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
281         page = find_get_page(bd_mapping, index);
282         if (!page)
283                 goto out;
284
285         spin_lock(&bd_mapping->private_lock);
286         if (!page_has_buffers(page))
287                 goto out_unlock;
288         head = page_buffers(page);
289         bh = head;
290         do {
291                 if (bh->b_blocknr == block) {
292                         ret = bh;
293                         get_bh(bh);
294                         goto out_unlock;
295                 }
296                 if (!buffer_mapped(bh))
297                         all_mapped = 0;
298                 bh = bh->b_this_page;
299         } while (bh != head);
300
301         /* we might be here because some of the buffers on this page are
302          * not mapped.  This is due to various races between
303          * file io on the block device and getblk.  It gets dealt with
304          * elsewhere, don't buffer_error if we had some unmapped buffers
305          */
306         if (all_mapped) {
307                 printk("__find_get_block_slow() failed. "
308                         "block=%llu, b_blocknr=%llu\n",
309                         (unsigned long long)block,
310                         (unsigned long long)bh->b_blocknr);
311                 printk("b_state=0x%08lx, b_size=%zu\n",
312                         bh->b_state, bh->b_size);
313                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
314         }
315 out_unlock:
316         spin_unlock(&bd_mapping->private_lock);
317         page_cache_release(page);
318 out:
319         return ret;
320 }
321
322 /* If invalidate_buffers() will trash dirty buffers, it means some kind
323    of fs corruption is going on. Trashing dirty data always imply losing
324    information that was supposed to be just stored on the physical layer
325    by the user.
326
327    Thus invalidate_buffers in general usage is not allwowed to trash
328    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
329    be preserved.  These buffers are simply skipped.
330   
331    We also skip buffers which are still in use.  For example this can
332    happen if a userspace program is reading the block device.
333
334    NOTE: In the case where the user removed a removable-media-disk even if
335    there's still dirty data not synced on disk (due a bug in the device driver
336    or due an error of the user), by not destroying the dirty buffers we could
337    generate corruption also on the next media inserted, thus a parameter is
338    necessary to handle this case in the most safe way possible (trying
339    to not corrupt also the new disk inserted with the data belonging to
340    the old now corrupted disk). Also for the ramdisk the natural thing
341    to do in order to release the ramdisk memory is to destroy dirty buffers.
342
343    These are two special cases. Normal usage imply the device driver
344    to issue a sync on the device (without waiting I/O completion) and
345    then an invalidate_buffers call that doesn't trash dirty buffers.
346
347    For handling cache coherency with the blkdev pagecache the 'update' case
348    is been introduced. It is needed to re-read from disk any pinned
349    buffer. NOTE: re-reading from disk is destructive so we can do it only
350    when we assume nobody is changing the buffercache under our I/O and when
351    we think the disk contains more recent information than the buffercache.
352    The update == 1 pass marks the buffers we need to update, the update == 2
353    pass does the actual I/O. */
354 void invalidate_bdev(struct block_device *bdev)
355 {
356         struct address_space *mapping = bdev->bd_inode->i_mapping;
357
358         if (mapping->nrpages == 0)
359                 return;
360
361         invalidate_bh_lrus();
362         invalidate_mapping_pages(mapping, 0, -1);
363 }
364
365 /*
366  * Kick pdflush then try to free up some ZONE_NORMAL memory.
367  */
368 static void free_more_memory(void)
369 {
370         struct zone *zone;
371         int nid;
372
373         wakeup_pdflush(1024);
374         yield();
375
376         for_each_online_node(nid) {
377                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
378                                                 gfp_zone(GFP_NOFS), NULL,
379                                                 &zone);
380                 if (zone)
381                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
382                                                 GFP_NOFS);
383         }
384 }
385
386 /*
387  * I/O completion handler for block_read_full_page() - pages
388  * which come unlocked at the end of I/O.
389  */
390 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
391 {
392         unsigned long flags;
393         struct buffer_head *first;
394         struct buffer_head *tmp;
395         struct page *page;
396         int page_uptodate = 1;
397
398         BUG_ON(!buffer_async_read(bh));
399
400         page = bh->b_page;
401         if (uptodate) {
402                 set_buffer_uptodate(bh);
403         } else {
404                 clear_buffer_uptodate(bh);
405                 if (!quiet_error(bh))
406                         buffer_io_error(bh);
407                 SetPageError(page);
408         }
409
410         /*
411          * Be _very_ careful from here on. Bad things can happen if
412          * two buffer heads end IO at almost the same time and both
413          * decide that the page is now completely done.
414          */
415         first = page_buffers(page);
416         local_irq_save(flags);
417         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
418         clear_buffer_async_read(bh);
419         unlock_buffer(bh);
420         tmp = bh;
421         do {
422                 if (!buffer_uptodate(tmp))
423                         page_uptodate = 0;
424                 if (buffer_async_read(tmp)) {
425                         BUG_ON(!buffer_locked(tmp));
426                         goto still_busy;
427                 }
428                 tmp = tmp->b_this_page;
429         } while (tmp != bh);
430         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
431         local_irq_restore(flags);
432
433         /*
434          * If none of the buffers had errors and they are all
435          * uptodate then we can set the page uptodate.
436          */
437         if (page_uptodate && !PageError(page))
438                 SetPageUptodate(page);
439         unlock_page(page);
440         return;
441
442 still_busy:
443         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
444         local_irq_restore(flags);
445         return;
446 }
447
448 /*
449  * Completion handler for block_write_full_page() - pages which are unlocked
450  * during I/O, and which have PageWriteback cleared upon I/O completion.
451  */
452 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
453 {
454         char b[BDEVNAME_SIZE];
455         unsigned long flags;
456         struct buffer_head *first;
457         struct buffer_head *tmp;
458         struct page *page;
459
460         BUG_ON(!buffer_async_write(bh));
461
462         page = bh->b_page;
463         if (uptodate) {
464                 set_buffer_uptodate(bh);
465         } else {
466                 if (!quiet_error(bh)) {
467                         buffer_io_error(bh);
468                         printk(KERN_WARNING "lost page write due to "
469                                         "I/O error on %s\n",
470                                bdevname(bh->b_bdev, b));
471                 }
472                 set_bit(AS_EIO, &page->mapping->flags);
473                 set_buffer_write_io_error(bh);
474                 clear_buffer_uptodate(bh);
475                 SetPageError(page);
476         }
477
478         first = page_buffers(page);
479         local_irq_save(flags);
480         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
481
482         clear_buffer_async_write(bh);
483         unlock_buffer(bh);
484         tmp = bh->b_this_page;
485         while (tmp != bh) {
486                 if (buffer_async_write(tmp)) {
487                         BUG_ON(!buffer_locked(tmp));
488                         goto still_busy;
489                 }
490                 tmp = tmp->b_this_page;
491         }
492         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
493         local_irq_restore(flags);
494         end_page_writeback(page);
495         return;
496
497 still_busy:
498         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
499         local_irq_restore(flags);
500         return;
501 }
502
503 /*
504  * If a page's buffers are under async readin (end_buffer_async_read
505  * completion) then there is a possibility that another thread of
506  * control could lock one of the buffers after it has completed
507  * but while some of the other buffers have not completed.  This
508  * locked buffer would confuse end_buffer_async_read() into not unlocking
509  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
510  * that this buffer is not under async I/O.
511  *
512  * The page comes unlocked when it has no locked buffer_async buffers
513  * left.
514  *
515  * PageLocked prevents anyone starting new async I/O reads any of
516  * the buffers.
517  *
518  * PageWriteback is used to prevent simultaneous writeout of the same
519  * page.
520  *
521  * PageLocked prevents anyone from starting writeback of a page which is
522  * under read I/O (PageWriteback is only ever set against a locked page).
523  */
524 static void mark_buffer_async_read(struct buffer_head *bh)
525 {
526         bh->b_end_io = end_buffer_async_read;
527         set_buffer_async_read(bh);
528 }
529
530 void mark_buffer_async_write(struct buffer_head *bh)
531 {
532         bh->b_end_io = end_buffer_async_write;
533         set_buffer_async_write(bh);
534 }
535 EXPORT_SYMBOL(mark_buffer_async_write);
536
537
538 /*
539  * fs/buffer.c contains helper functions for buffer-backed address space's
540  * fsync functions.  A common requirement for buffer-based filesystems is
541  * that certain data from the backing blockdev needs to be written out for
542  * a successful fsync().  For example, ext2 indirect blocks need to be
543  * written back and waited upon before fsync() returns.
544  *
545  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
546  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
547  * management of a list of dependent buffers at ->i_mapping->private_list.
548  *
549  * Locking is a little subtle: try_to_free_buffers() will remove buffers
550  * from their controlling inode's queue when they are being freed.  But
551  * try_to_free_buffers() will be operating against the *blockdev* mapping
552  * at the time, not against the S_ISREG file which depends on those buffers.
553  * So the locking for private_list is via the private_lock in the address_space
554  * which backs the buffers.  Which is different from the address_space 
555  * against which the buffers are listed.  So for a particular address_space,
556  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
557  * mapping->private_list will always be protected by the backing blockdev's
558  * ->private_lock.
559  *
560  * Which introduces a requirement: all buffers on an address_space's
561  * ->private_list must be from the same address_space: the blockdev's.
562  *
563  * address_spaces which do not place buffers at ->private_list via these
564  * utility functions are free to use private_lock and private_list for
565  * whatever they want.  The only requirement is that list_empty(private_list)
566  * be true at clear_inode() time.
567  *
568  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
569  * filesystems should do that.  invalidate_inode_buffers() should just go
570  * BUG_ON(!list_empty).
571  *
572  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
573  * take an address_space, not an inode.  And it should be called
574  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
575  * queued up.
576  *
577  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
578  * list if it is already on a list.  Because if the buffer is on a list,
579  * it *must* already be on the right one.  If not, the filesystem is being
580  * silly.  This will save a ton of locking.  But first we have to ensure
581  * that buffers are taken *off* the old inode's list when they are freed
582  * (presumably in truncate).  That requires careful auditing of all
583  * filesystems (do it inside bforget()).  It could also be done by bringing
584  * b_inode back.
585  */
586
587 /*
588  * The buffer's backing address_space's private_lock must be held
589  */
590 static void __remove_assoc_queue(struct buffer_head *bh)
591 {
592         list_del_init(&bh->b_assoc_buffers);
593         WARN_ON(!bh->b_assoc_map);
594         if (buffer_write_io_error(bh))
595                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
596         bh->b_assoc_map = NULL;
597 }
598
599 int inode_has_buffers(struct inode *inode)
600 {
601         return !list_empty(&inode->i_data.private_list);
602 }
603
604 /*
605  * osync is designed to support O_SYNC io.  It waits synchronously for
606  * all already-submitted IO to complete, but does not queue any new
607  * writes to the disk.
608  *
609  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
610  * you dirty the buffers, and then use osync_inode_buffers to wait for
611  * completion.  Any other dirty buffers which are not yet queued for
612  * write will not be flushed to disk by the osync.
613  */
614 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
615 {
616         struct buffer_head *bh;
617         struct list_head *p;
618         int err = 0;
619
620         spin_lock(lock);
621 repeat:
622         list_for_each_prev(p, list) {
623                 bh = BH_ENTRY(p);
624                 if (buffer_locked(bh)) {
625                         get_bh(bh);
626                         spin_unlock(lock);
627                         wait_on_buffer(bh);
628                         if (!buffer_uptodate(bh))
629                                 err = -EIO;
630                         brelse(bh);
631                         spin_lock(lock);
632                         goto repeat;
633                 }
634         }
635         spin_unlock(lock);
636         return err;
637 }
638
639 /**
640  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
641  * @mapping: the mapping which wants those buffers written
642  *
643  * Starts I/O against the buffers at mapping->private_list, and waits upon
644  * that I/O.
645  *
646  * Basically, this is a convenience function for fsync().
647  * @mapping is a file or directory which needs those buffers to be written for
648  * a successful fsync().
649  */
650 int sync_mapping_buffers(struct address_space *mapping)
651 {
652         struct address_space *buffer_mapping = mapping->assoc_mapping;
653
654         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
655                 return 0;
656
657         return fsync_buffers_list(&buffer_mapping->private_lock,
658                                         &mapping->private_list);
659 }
660 EXPORT_SYMBOL(sync_mapping_buffers);
661
662 /*
663  * Called when we've recently written block `bblock', and it is known that
664  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
665  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
666  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
667  */
668 void write_boundary_block(struct block_device *bdev,
669                         sector_t bblock, unsigned blocksize)
670 {
671         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
672         if (bh) {
673                 if (buffer_dirty(bh))
674                         ll_rw_block(WRITE, 1, &bh);
675                 put_bh(bh);
676         }
677 }
678
679 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
680 {
681         struct address_space *mapping = inode->i_mapping;
682         struct address_space *buffer_mapping = bh->b_page->mapping;
683
684         mark_buffer_dirty(bh);
685         if (!mapping->assoc_mapping) {
686                 mapping->assoc_mapping = buffer_mapping;
687         } else {
688                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
689         }
690         if (!bh->b_assoc_map) {
691                 spin_lock(&buffer_mapping->private_lock);
692                 list_move_tail(&bh->b_assoc_buffers,
693                                 &mapping->private_list);
694                 bh->b_assoc_map = mapping;
695                 spin_unlock(&buffer_mapping->private_lock);
696         }
697 }
698 EXPORT_SYMBOL(mark_buffer_dirty_inode);
699
700 /*
701  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
702  * dirty.
703  *
704  * If warn is true, then emit a warning if the page is not uptodate and has
705  * not been truncated.
706  */
707 static int __set_page_dirty(struct page *page,
708                 struct address_space *mapping, int warn)
709 {
710         if (unlikely(!mapping))
711                 return !TestSetPageDirty(page);
712
713         if (TestSetPageDirty(page))
714                 return 0;
715
716         spin_lock_irq(&mapping->tree_lock);
717         if (page->mapping) {    /* Race with truncate? */
718                 WARN_ON_ONCE(warn && !PageUptodate(page));
719
720                 if (mapping_cap_account_dirty(mapping)) {
721                         __inc_zone_page_state(page, NR_FILE_DIRTY);
722                         __inc_bdi_stat(mapping->backing_dev_info,
723                                         BDI_RECLAIMABLE);
724                         task_io_account_write(PAGE_CACHE_SIZE);
725                 }
726                 radix_tree_tag_set(&mapping->page_tree,
727                                 page_index(page), PAGECACHE_TAG_DIRTY);
728         }
729         spin_unlock_irq(&mapping->tree_lock);
730         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
731
732         return 1;
733 }
734
735 /*
736  * Add a page to the dirty page list.
737  *
738  * It is a sad fact of life that this function is called from several places
739  * deeply under spinlocking.  It may not sleep.
740  *
741  * If the page has buffers, the uptodate buffers are set dirty, to preserve
742  * dirty-state coherency between the page and the buffers.  It the page does
743  * not have buffers then when they are later attached they will all be set
744  * dirty.
745  *
746  * The buffers are dirtied before the page is dirtied.  There's a small race
747  * window in which a writepage caller may see the page cleanness but not the
748  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
749  * before the buffers, a concurrent writepage caller could clear the page dirty
750  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
751  * page on the dirty page list.
752  *
753  * We use private_lock to lock against try_to_free_buffers while using the
754  * page's buffer list.  Also use this to protect against clean buffers being
755  * added to the page after it was set dirty.
756  *
757  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
758  * address_space though.
759  */
760 int __set_page_dirty_buffers(struct page *page)
761 {
762         struct address_space *mapping = page_mapping(page);
763
764         if (unlikely(!mapping))
765                 return !TestSetPageDirty(page);
766
767         spin_lock(&mapping->private_lock);
768         if (page_has_buffers(page)) {
769                 struct buffer_head *head = page_buffers(page);
770                 struct buffer_head *bh = head;
771
772                 do {
773                         set_buffer_dirty(bh);
774                         bh = bh->b_this_page;
775                 } while (bh != head);
776         }
777         spin_unlock(&mapping->private_lock);
778
779         return __set_page_dirty(page, mapping, 1);
780 }
781 EXPORT_SYMBOL(__set_page_dirty_buffers);
782
783 /*
784  * Write out and wait upon a list of buffers.
785  *
786  * We have conflicting pressures: we want to make sure that all
787  * initially dirty buffers get waited on, but that any subsequently
788  * dirtied buffers don't.  After all, we don't want fsync to last
789  * forever if somebody is actively writing to the file.
790  *
791  * Do this in two main stages: first we copy dirty buffers to a
792  * temporary inode list, queueing the writes as we go.  Then we clean
793  * up, waiting for those writes to complete.
794  * 
795  * During this second stage, any subsequent updates to the file may end
796  * up refiling the buffer on the original inode's dirty list again, so
797  * there is a chance we will end up with a buffer queued for write but
798  * not yet completed on that list.  So, as a final cleanup we go through
799  * the osync code to catch these locked, dirty buffers without requeuing
800  * any newly dirty buffers for write.
801  */
802 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
803 {
804         struct buffer_head *bh;
805         struct list_head tmp;
806         struct address_space *mapping;
807         int err = 0, err2;
808
809         INIT_LIST_HEAD(&tmp);
810
811         spin_lock(lock);
812         while (!list_empty(list)) {
813                 bh = BH_ENTRY(list->next);
814                 mapping = bh->b_assoc_map;
815                 __remove_assoc_queue(bh);
816                 /* Avoid race with mark_buffer_dirty_inode() which does
817                  * a lockless check and we rely on seeing the dirty bit */
818                 smp_mb();
819                 if (buffer_dirty(bh) || buffer_locked(bh)) {
820                         list_add(&bh->b_assoc_buffers, &tmp);
821                         bh->b_assoc_map = mapping;
822                         if (buffer_dirty(bh)) {
823                                 get_bh(bh);
824                                 spin_unlock(lock);
825                                 /*
826                                  * Ensure any pending I/O completes so that
827                                  * ll_rw_block() actually writes the current
828                                  * contents - it is a noop if I/O is still in
829                                  * flight on potentially older contents.
830                                  */
831                                 ll_rw_block(SWRITE_SYNC, 1, &bh);
832                                 brelse(bh);
833                                 spin_lock(lock);
834                         }
835                 }
836         }
837
838         while (!list_empty(&tmp)) {
839                 bh = BH_ENTRY(tmp.prev);
840                 get_bh(bh);
841                 mapping = bh->b_assoc_map;
842                 __remove_assoc_queue(bh);
843                 /* Avoid race with mark_buffer_dirty_inode() which does
844                  * a lockless check and we rely on seeing the dirty bit */
845                 smp_mb();
846                 if (buffer_dirty(bh)) {
847                         list_add(&bh->b_assoc_buffers,
848                                  &mapping->private_list);
849                         bh->b_assoc_map = mapping;
850                 }
851                 spin_unlock(lock);
852                 wait_on_buffer(bh);
853                 if (!buffer_uptodate(bh))
854                         err = -EIO;
855                 brelse(bh);
856                 spin_lock(lock);
857         }
858         
859         spin_unlock(lock);
860         err2 = osync_buffers_list(lock, list);
861         if (err)
862                 return err;
863         else
864                 return err2;
865 }
866
867 /*
868  * Invalidate any and all dirty buffers on a given inode.  We are
869  * probably unmounting the fs, but that doesn't mean we have already
870  * done a sync().  Just drop the buffers from the inode list.
871  *
872  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
873  * assumes that all the buffers are against the blockdev.  Not true
874  * for reiserfs.
875  */
876 void invalidate_inode_buffers(struct inode *inode)
877 {
878         if (inode_has_buffers(inode)) {
879                 struct address_space *mapping = &inode->i_data;
880                 struct list_head *list = &mapping->private_list;
881                 struct address_space *buffer_mapping = mapping->assoc_mapping;
882
883                 spin_lock(&buffer_mapping->private_lock);
884                 while (!list_empty(list))
885                         __remove_assoc_queue(BH_ENTRY(list->next));
886                 spin_unlock(&buffer_mapping->private_lock);
887         }
888 }
889 EXPORT_SYMBOL(invalidate_inode_buffers);
890
891 /*
892  * Remove any clean buffers from the inode's buffer list.  This is called
893  * when we're trying to free the inode itself.  Those buffers can pin it.
894  *
895  * Returns true if all buffers were removed.
896  */
897 int remove_inode_buffers(struct inode *inode)
898 {
899         int ret = 1;
900
901         if (inode_has_buffers(inode)) {
902                 struct address_space *mapping = &inode->i_data;
903                 struct list_head *list = &mapping->private_list;
904                 struct address_space *buffer_mapping = mapping->assoc_mapping;
905
906                 spin_lock(&buffer_mapping->private_lock);
907                 while (!list_empty(list)) {
908                         struct buffer_head *bh = BH_ENTRY(list->next);
909                         if (buffer_dirty(bh)) {
910                                 ret = 0;
911                                 break;
912                         }
913                         __remove_assoc_queue(bh);
914                 }
915                 spin_unlock(&buffer_mapping->private_lock);
916         }
917         return ret;
918 }
919
920 /*
921  * Create the appropriate buffers when given a page for data area and
922  * the size of each buffer.. Use the bh->b_this_page linked list to
923  * follow the buffers created.  Return NULL if unable to create more
924  * buffers.
925  *
926  * The retry flag is used to differentiate async IO (paging, swapping)
927  * which may not fail from ordinary buffer allocations.
928  */
929 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
930                 int retry)
931 {
932         struct buffer_head *bh, *head;
933         long offset;
934
935 try_again:
936         head = NULL;
937         offset = PAGE_SIZE;
938         while ((offset -= size) >= 0) {
939                 bh = alloc_buffer_head(GFP_NOFS);
940                 if (!bh)
941                         goto no_grow;
942
943                 bh->b_bdev = NULL;
944                 bh->b_this_page = head;
945                 bh->b_blocknr = -1;
946                 head = bh;
947
948                 bh->b_state = 0;
949                 atomic_set(&bh->b_count, 0);
950                 bh->b_private = NULL;
951                 bh->b_size = size;
952
953                 /* Link the buffer to its page */
954                 set_bh_page(bh, page, offset);
955
956                 init_buffer(bh, NULL, NULL);
957         }
958         return head;
959 /*
960  * In case anything failed, we just free everything we got.
961  */
962 no_grow:
963         if (head) {
964                 do {
965                         bh = head;
966                         head = head->b_this_page;
967                         free_buffer_head(bh);
968                 } while (head);
969         }
970
971         /*
972          * Return failure for non-async IO requests.  Async IO requests
973          * are not allowed to fail, so we have to wait until buffer heads
974          * become available.  But we don't want tasks sleeping with 
975          * partially complete buffers, so all were released above.
976          */
977         if (!retry)
978                 return NULL;
979
980         /* We're _really_ low on memory. Now we just
981          * wait for old buffer heads to become free due to
982          * finishing IO.  Since this is an async request and
983          * the reserve list is empty, we're sure there are 
984          * async buffer heads in use.
985          */
986         free_more_memory();
987         goto try_again;
988 }
989 EXPORT_SYMBOL_GPL(alloc_page_buffers);
990
991 static inline void
992 link_dev_buffers(struct page *page, struct buffer_head *head)
993 {
994         struct buffer_head *bh, *tail;
995
996         bh = head;
997         do {
998                 tail = bh;
999                 bh = bh->b_this_page;
1000         } while (bh);
1001         tail->b_this_page = head;
1002         attach_page_buffers(page, head);
1003 }
1004
1005 /*
1006  * Initialise the state of a blockdev page's buffers.
1007  */ 
1008 static void
1009 init_page_buffers(struct page *page, struct block_device *bdev,
1010                         sector_t block, int size)
1011 {
1012         struct buffer_head *head = page_buffers(page);
1013         struct buffer_head *bh = head;
1014         int uptodate = PageUptodate(page);
1015
1016         do {
1017                 if (!buffer_mapped(bh)) {
1018                         init_buffer(bh, NULL, NULL);
1019                         bh->b_bdev = bdev;
1020                         bh->b_blocknr = block;
1021                         if (uptodate)
1022                                 set_buffer_uptodate(bh);
1023                         set_buffer_mapped(bh);
1024                 }
1025                 block++;
1026                 bh = bh->b_this_page;
1027         } while (bh != head);
1028 }
1029
1030 /*
1031  * Create the page-cache page that contains the requested block.
1032  *
1033  * This is user purely for blockdev mappings.
1034  */
1035 static struct page *
1036 grow_dev_page(struct block_device *bdev, sector_t block,
1037                 pgoff_t index, int size)
1038 {
1039         struct inode *inode = bdev->bd_inode;
1040         struct page *page;
1041         struct buffer_head *bh;
1042
1043         page = find_or_create_page(inode->i_mapping, index,
1044                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1045         if (!page)
1046                 return NULL;
1047
1048         BUG_ON(!PageLocked(page));
1049
1050         if (page_has_buffers(page)) {
1051                 bh = page_buffers(page);
1052                 if (bh->b_size == size) {
1053                         init_page_buffers(page, bdev, block, size);
1054                         return page;
1055                 }
1056                 if (!try_to_free_buffers(page))
1057                         goto failed;
1058         }
1059
1060         /*
1061          * Allocate some buffers for this page
1062          */
1063         bh = alloc_page_buffers(page, size, 0);
1064         if (!bh)
1065                 goto failed;
1066
1067         /*
1068          * Link the page to the buffers and initialise them.  Take the
1069          * lock to be atomic wrt __find_get_block(), which does not
1070          * run under the page lock.
1071          */
1072         spin_lock(&inode->i_mapping->private_lock);
1073         link_dev_buffers(page, bh);
1074         init_page_buffers(page, bdev, block, size);
1075         spin_unlock(&inode->i_mapping->private_lock);
1076         return page;
1077
1078 failed:
1079         BUG();
1080         unlock_page(page);
1081         page_cache_release(page);
1082         return NULL;
1083 }
1084
1085 /*
1086  * Create buffers for the specified block device block's page.  If
1087  * that page was dirty, the buffers are set dirty also.
1088  */
1089 static int
1090 grow_buffers(struct block_device *bdev, sector_t block, int size)
1091 {
1092         struct page *page;
1093         pgoff_t index;
1094         int sizebits;
1095
1096         sizebits = -1;
1097         do {
1098                 sizebits++;
1099         } while ((size << sizebits) < PAGE_SIZE);
1100
1101         index = block >> sizebits;
1102
1103         /*
1104          * Check for a block which wants to lie outside our maximum possible
1105          * pagecache index.  (this comparison is done using sector_t types).
1106          */
1107         if (unlikely(index != block >> sizebits)) {
1108                 char b[BDEVNAME_SIZE];
1109
1110                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1111                         "device %s\n",
1112                         __func__, (unsigned long long)block,
1113                         bdevname(bdev, b));
1114                 return -EIO;
1115         }
1116         block = index << sizebits;
1117         /* Create a page with the proper size buffers.. */
1118         page = grow_dev_page(bdev, block, index, size);
1119         if (!page)
1120                 return 0;
1121         unlock_page(page);
1122         page_cache_release(page);
1123         return 1;
1124 }
1125
1126 static struct buffer_head *
1127 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1128 {
1129         /* Size must be multiple of hard sectorsize */
1130         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1131                         (size < 512 || size > PAGE_SIZE))) {
1132                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1133                                         size);
1134                 printk(KERN_ERR "hardsect size: %d\n",
1135                                         bdev_hardsect_size(bdev));
1136
1137                 dump_stack();
1138                 return NULL;
1139         }
1140
1141         for (;;) {
1142                 struct buffer_head * bh;
1143                 int ret;
1144
1145                 bh = __find_get_block(bdev, block, size);
1146                 if (bh)
1147                         return bh;
1148
1149                 ret = grow_buffers(bdev, block, size);
1150                 if (ret < 0)
1151                         return NULL;
1152                 if (ret == 0)
1153                         free_more_memory();
1154         }
1155 }
1156
1157 /*
1158  * The relationship between dirty buffers and dirty pages:
1159  *
1160  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1161  * the page is tagged dirty in its radix tree.
1162  *
1163  * At all times, the dirtiness of the buffers represents the dirtiness of
1164  * subsections of the page.  If the page has buffers, the page dirty bit is
1165  * merely a hint about the true dirty state.
1166  *
1167  * When a page is set dirty in its entirety, all its buffers are marked dirty
1168  * (if the page has buffers).
1169  *
1170  * When a buffer is marked dirty, its page is dirtied, but the page's other
1171  * buffers are not.
1172  *
1173  * Also.  When blockdev buffers are explicitly read with bread(), they
1174  * individually become uptodate.  But their backing page remains not
1175  * uptodate - even if all of its buffers are uptodate.  A subsequent
1176  * block_read_full_page() against that page will discover all the uptodate
1177  * buffers, will set the page uptodate and will perform no I/O.
1178  */
1179
1180 /**
1181  * mark_buffer_dirty - mark a buffer_head as needing writeout
1182  * @bh: the buffer_head to mark dirty
1183  *
1184  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1185  * backing page dirty, then tag the page as dirty in its address_space's radix
1186  * tree and then attach the address_space's inode to its superblock's dirty
1187  * inode list.
1188  *
1189  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1190  * mapping->tree_lock and the global inode_lock.
1191  */
1192 void mark_buffer_dirty(struct buffer_head *bh)
1193 {
1194         WARN_ON_ONCE(!buffer_uptodate(bh));
1195
1196         /*
1197          * Very *carefully* optimize the it-is-already-dirty case.
1198          *
1199          * Don't let the final "is it dirty" escape to before we
1200          * perhaps modified the buffer.
1201          */
1202         if (buffer_dirty(bh)) {
1203                 smp_mb();
1204                 if (buffer_dirty(bh))
1205                         return;
1206         }
1207
1208         if (!test_set_buffer_dirty(bh))
1209                 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1210 }
1211
1212 /*
1213  * Decrement a buffer_head's reference count.  If all buffers against a page
1214  * have zero reference count, are clean and unlocked, and if the page is clean
1215  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1216  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1217  * a page but it ends up not being freed, and buffers may later be reattached).
1218  */
1219 void __brelse(struct buffer_head * buf)
1220 {
1221         if (atomic_read(&buf->b_count)) {
1222                 put_bh(buf);
1223                 return;
1224         }
1225         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1226 }
1227
1228 /*
1229  * bforget() is like brelse(), except it discards any
1230  * potentially dirty data.
1231  */
1232 void __bforget(struct buffer_head *bh)
1233 {
1234         clear_buffer_dirty(bh);
1235         if (bh->b_assoc_map) {
1236                 struct address_space *buffer_mapping = bh->b_page->mapping;
1237
1238                 spin_lock(&buffer_mapping->private_lock);
1239                 list_del_init(&bh->b_assoc_buffers);
1240                 bh->b_assoc_map = NULL;
1241                 spin_unlock(&buffer_mapping->private_lock);
1242         }
1243         __brelse(bh);
1244 }
1245
1246 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1247 {
1248         lock_buffer(bh);
1249         if (buffer_uptodate(bh)) {
1250                 unlock_buffer(bh);
1251                 return bh;
1252         } else {
1253                 get_bh(bh);
1254                 bh->b_end_io = end_buffer_read_sync;
1255                 submit_bh(READ, bh);
1256                 wait_on_buffer(bh);
1257                 if (buffer_uptodate(bh))
1258                         return bh;
1259         }
1260         brelse(bh);
1261         return NULL;
1262 }
1263
1264 /*
1265  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1266  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1267  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1268  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1269  * CPU's LRUs at the same time.
1270  *
1271  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1272  * sb_find_get_block().
1273  *
1274  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1275  * a local interrupt disable for that.
1276  */
1277
1278 #define BH_LRU_SIZE     8
1279
1280 struct bh_lru {
1281         struct buffer_head *bhs[BH_LRU_SIZE];
1282 };
1283
1284 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1285
1286 #ifdef CONFIG_SMP
1287 #define bh_lru_lock()   local_irq_disable()
1288 #define bh_lru_unlock() local_irq_enable()
1289 #else
1290 #define bh_lru_lock()   preempt_disable()
1291 #define bh_lru_unlock() preempt_enable()
1292 #endif
1293
1294 static inline void check_irqs_on(void)
1295 {
1296 #ifdef irqs_disabled
1297         BUG_ON(irqs_disabled());
1298 #endif
1299 }
1300
1301 /*
1302  * The LRU management algorithm is dopey-but-simple.  Sorry.
1303  */
1304 static void bh_lru_install(struct buffer_head *bh)
1305 {
1306         struct buffer_head *evictee = NULL;
1307         struct bh_lru *lru;
1308
1309         check_irqs_on();
1310         bh_lru_lock();
1311         lru = &__get_cpu_var(bh_lrus);
1312         if (lru->bhs[0] != bh) {
1313                 struct buffer_head *bhs[BH_LRU_SIZE];
1314                 int in;
1315                 int out = 0;
1316
1317                 get_bh(bh);
1318                 bhs[out++] = bh;
1319                 for (in = 0; in < BH_LRU_SIZE; in++) {
1320                         struct buffer_head *bh2 = lru->bhs[in];
1321
1322                         if (bh2 == bh) {
1323                                 __brelse(bh2);
1324                         } else {
1325                                 if (out >= BH_LRU_SIZE) {
1326                                         BUG_ON(evictee != NULL);
1327                                         evictee = bh2;
1328                                 } else {
1329                                         bhs[out++] = bh2;
1330                                 }
1331                         }
1332                 }
1333                 while (out < BH_LRU_SIZE)
1334                         bhs[out++] = NULL;
1335                 memcpy(lru->bhs, bhs, sizeof(bhs));
1336         }
1337         bh_lru_unlock();
1338
1339         if (evictee)
1340                 __brelse(evictee);
1341 }
1342
1343 /*
1344  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1345  */
1346 static struct buffer_head *
1347 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1348 {
1349         struct buffer_head *ret = NULL;
1350         struct bh_lru *lru;
1351         unsigned int i;
1352
1353         check_irqs_on();
1354         bh_lru_lock();
1355         lru = &__get_cpu_var(bh_lrus);
1356         for (i = 0; i < BH_LRU_SIZE; i++) {
1357                 struct buffer_head *bh = lru->bhs[i];
1358
1359                 if (bh && bh->b_bdev == bdev &&
1360                                 bh->b_blocknr == block && bh->b_size == size) {
1361                         if (i) {
1362                                 while (i) {
1363                                         lru->bhs[i] = lru->bhs[i - 1];
1364                                         i--;
1365                                 }
1366                                 lru->bhs[0] = bh;
1367                         }
1368                         get_bh(bh);
1369                         ret = bh;
1370                         break;
1371                 }
1372         }
1373         bh_lru_unlock();
1374         return ret;
1375 }
1376
1377 /*
1378  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1379  * it in the LRU and mark it as accessed.  If it is not present then return
1380  * NULL
1381  */
1382 struct buffer_head *
1383 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1384 {
1385         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1386
1387         if (bh == NULL) {
1388                 bh = __find_get_block_slow(bdev, block);
1389                 if (bh)
1390                         bh_lru_install(bh);
1391         }
1392         if (bh)
1393                 touch_buffer(bh);
1394         return bh;
1395 }
1396 EXPORT_SYMBOL(__find_get_block);
1397
1398 /*
1399  * __getblk will locate (and, if necessary, create) the buffer_head
1400  * which corresponds to the passed block_device, block and size. The
1401  * returned buffer has its reference count incremented.
1402  *
1403  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1404  * illegal block number, __getblk() will happily return a buffer_head
1405  * which represents the non-existent block.  Very weird.
1406  *
1407  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1408  * attempt is failing.  FIXME, perhaps?
1409  */
1410 struct buffer_head *
1411 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1412 {
1413         struct buffer_head *bh = __find_get_block(bdev, block, size);
1414
1415         might_sleep();
1416         if (bh == NULL)
1417                 bh = __getblk_slow(bdev, block, size);
1418         return bh;
1419 }
1420 EXPORT_SYMBOL(__getblk);
1421
1422 /*
1423  * Do async read-ahead on a buffer..
1424  */
1425 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1426 {
1427         struct buffer_head *bh = __getblk(bdev, block, size);
1428         if (likely(bh)) {
1429                 ll_rw_block(READA, 1, &bh);
1430                 brelse(bh);
1431         }
1432 }
1433 EXPORT_SYMBOL(__breadahead);
1434
1435 /**
1436  *  __bread() - reads a specified block and returns the bh
1437  *  @bdev: the block_device to read from
1438  *  @block: number of block
1439  *  @size: size (in bytes) to read
1440  * 
1441  *  Reads a specified block, and returns buffer head that contains it.
1442  *  It returns NULL if the block was unreadable.
1443  */
1444 struct buffer_head *
1445 __bread(struct block_device *bdev, sector_t block, unsigned size)
1446 {
1447         struct buffer_head *bh = __getblk(bdev, block, size);
1448
1449         if (likely(bh) && !buffer_uptodate(bh))
1450                 bh = __bread_slow(bh);
1451         return bh;
1452 }
1453 EXPORT_SYMBOL(__bread);
1454
1455 /*
1456  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1457  * This doesn't race because it runs in each cpu either in irq
1458  * or with preempt disabled.
1459  */
1460 static void invalidate_bh_lru(void *arg)
1461 {
1462         struct bh_lru *b = &get_cpu_var(bh_lrus);
1463         int i;
1464
1465         for (i = 0; i < BH_LRU_SIZE; i++) {
1466                 brelse(b->bhs[i]);
1467                 b->bhs[i] = NULL;
1468         }
1469         put_cpu_var(bh_lrus);
1470 }
1471         
1472 void invalidate_bh_lrus(void)
1473 {
1474         on_each_cpu(invalidate_bh_lru, NULL, 1);
1475 }
1476 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1477
1478 void set_bh_page(struct buffer_head *bh,
1479                 struct page *page, unsigned long offset)
1480 {
1481         bh->b_page = page;
1482         BUG_ON(offset >= PAGE_SIZE);
1483         if (PageHighMem(page))
1484                 /*
1485                  * This catches illegal uses and preserves the offset:
1486                  */
1487                 bh->b_data = (char *)(0 + offset);
1488         else
1489                 bh->b_data = page_address(page) + offset;
1490 }
1491 EXPORT_SYMBOL(set_bh_page);
1492
1493 /*
1494  * Called when truncating a buffer on a page completely.
1495  */
1496 static void discard_buffer(struct buffer_head * bh)
1497 {
1498         lock_buffer(bh);
1499         clear_buffer_dirty(bh);
1500         bh->b_bdev = NULL;
1501         clear_buffer_mapped(bh);
1502         clear_buffer_req(bh);
1503         clear_buffer_new(bh);
1504         clear_buffer_delay(bh);
1505         clear_buffer_unwritten(bh);
1506         unlock_buffer(bh);
1507 }
1508
1509 /**
1510  * block_invalidatepage - invalidate part of all of a buffer-backed page
1511  *
1512  * @page: the page which is affected
1513  * @offset: the index of the truncation point
1514  *
1515  * block_invalidatepage() is called when all or part of the page has become
1516  * invalidatedby a truncate operation.
1517  *
1518  * block_invalidatepage() does not have to release all buffers, but it must
1519  * ensure that no dirty buffer is left outside @offset and that no I/O
1520  * is underway against any of the blocks which are outside the truncation
1521  * point.  Because the caller is about to free (and possibly reuse) those
1522  * blocks on-disk.
1523  */
1524 void block_invalidatepage(struct page *page, unsigned long offset)
1525 {
1526         struct buffer_head *head, *bh, *next;
1527         unsigned int curr_off = 0;
1528
1529         BUG_ON(!PageLocked(page));
1530         if (!page_has_buffers(page))
1531                 goto out;
1532
1533         head = page_buffers(page);
1534         bh = head;
1535         do {
1536                 unsigned int next_off = curr_off + bh->b_size;
1537                 next = bh->b_this_page;
1538
1539                 /*
1540                  * is this block fully invalidated?
1541                  */
1542                 if (offset <= curr_off)
1543                         discard_buffer(bh);
1544                 curr_off = next_off;
1545                 bh = next;
1546         } while (bh != head);
1547
1548         /*
1549          * We release buffers only if the entire page is being invalidated.
1550          * The get_block cached value has been unconditionally invalidated,
1551          * so real IO is not possible anymore.
1552          */
1553         if (offset == 0)
1554                 try_to_release_page(page, 0);
1555 out:
1556         return;
1557 }
1558 EXPORT_SYMBOL(block_invalidatepage);
1559
1560 /*
1561  * We attach and possibly dirty the buffers atomically wrt
1562  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1563  * is already excluded via the page lock.
1564  */
1565 void create_empty_buffers(struct page *page,
1566                         unsigned long blocksize, unsigned long b_state)
1567 {
1568         struct buffer_head *bh, *head, *tail;
1569
1570         head = alloc_page_buffers(page, blocksize, 1);
1571         bh = head;
1572         do {
1573                 bh->b_state |= b_state;
1574                 tail = bh;
1575                 bh = bh->b_this_page;
1576         } while (bh);
1577         tail->b_this_page = head;
1578
1579         spin_lock(&page->mapping->private_lock);
1580         if (PageUptodate(page) || PageDirty(page)) {
1581                 bh = head;
1582                 do {
1583                         if (PageDirty(page))
1584                                 set_buffer_dirty(bh);
1585                         if (PageUptodate(page))
1586                                 set_buffer_uptodate(bh);
1587                         bh = bh->b_this_page;
1588                 } while (bh != head);
1589         }
1590         attach_page_buffers(page, head);
1591         spin_unlock(&page->mapping->private_lock);
1592 }
1593 EXPORT_SYMBOL(create_empty_buffers);
1594
1595 /*
1596  * We are taking a block for data and we don't want any output from any
1597  * buffer-cache aliases starting from return from that function and
1598  * until the moment when something will explicitly mark the buffer
1599  * dirty (hopefully that will not happen until we will free that block ;-)
1600  * We don't even need to mark it not-uptodate - nobody can expect
1601  * anything from a newly allocated buffer anyway. We used to used
1602  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1603  * don't want to mark the alias unmapped, for example - it would confuse
1604  * anyone who might pick it with bread() afterwards...
1605  *
1606  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1607  * be writeout I/O going on against recently-freed buffers.  We don't
1608  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1609  * only if we really need to.  That happens here.
1610  */
1611 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1612 {
1613         struct buffer_head *old_bh;
1614
1615         might_sleep();
1616
1617         old_bh = __find_get_block_slow(bdev, block);
1618         if (old_bh) {
1619                 clear_buffer_dirty(old_bh);
1620                 wait_on_buffer(old_bh);
1621                 clear_buffer_req(old_bh);
1622                 __brelse(old_bh);
1623         }
1624 }
1625 EXPORT_SYMBOL(unmap_underlying_metadata);
1626
1627 /*
1628  * NOTE! All mapped/uptodate combinations are valid:
1629  *
1630  *      Mapped  Uptodate        Meaning
1631  *
1632  *      No      No              "unknown" - must do get_block()
1633  *      No      Yes             "hole" - zero-filled
1634  *      Yes     No              "allocated" - allocated on disk, not read in
1635  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1636  *
1637  * "Dirty" is valid only with the last case (mapped+uptodate).
1638  */
1639
1640 /*
1641  * While block_write_full_page is writing back the dirty buffers under
1642  * the page lock, whoever dirtied the buffers may decide to clean them
1643  * again at any time.  We handle that by only looking at the buffer
1644  * state inside lock_buffer().
1645  *
1646  * If block_write_full_page() is called for regular writeback
1647  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1648  * locked buffer.   This only can happen if someone has written the buffer
1649  * directly, with submit_bh().  At the address_space level PageWriteback
1650  * prevents this contention from occurring.
1651  */
1652 static int __block_write_full_page(struct inode *inode, struct page *page,
1653                         get_block_t *get_block, struct writeback_control *wbc)
1654 {
1655         int err;
1656         sector_t block;
1657         sector_t last_block;
1658         struct buffer_head *bh, *head;
1659         const unsigned blocksize = 1 << inode->i_blkbits;
1660         int nr_underway = 0;
1661
1662         BUG_ON(!PageLocked(page));
1663
1664         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1665
1666         if (!page_has_buffers(page)) {
1667                 create_empty_buffers(page, blocksize,
1668                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1669         }
1670
1671         /*
1672          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1673          * here, and the (potentially unmapped) buffers may become dirty at
1674          * any time.  If a buffer becomes dirty here after we've inspected it
1675          * then we just miss that fact, and the page stays dirty.
1676          *
1677          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1678          * handle that here by just cleaning them.
1679          */
1680
1681         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1682         head = page_buffers(page);
1683         bh = head;
1684
1685         /*
1686          * Get all the dirty buffers mapped to disk addresses and
1687          * handle any aliases from the underlying blockdev's mapping.
1688          */
1689         do {
1690                 if (block > last_block) {
1691                         /*
1692                          * mapped buffers outside i_size will occur, because
1693                          * this page can be outside i_size when there is a
1694                          * truncate in progress.
1695                          */
1696                         /*
1697                          * The buffer was zeroed by block_write_full_page()
1698                          */
1699                         clear_buffer_dirty(bh);
1700                         set_buffer_uptodate(bh);
1701                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1702                            buffer_dirty(bh)) {
1703                         WARN_ON(bh->b_size != blocksize);
1704                         err = get_block(inode, block, bh, 1);
1705                         if (err)
1706                                 goto recover;
1707                         clear_buffer_delay(bh);
1708                         if (buffer_new(bh)) {
1709                                 /* blockdev mappings never come here */
1710                                 clear_buffer_new(bh);
1711                                 unmap_underlying_metadata(bh->b_bdev,
1712                                                         bh->b_blocknr);
1713                         }
1714                 }
1715                 bh = bh->b_this_page;
1716                 block++;
1717         } while (bh != head);
1718
1719         do {
1720                 if (!buffer_mapped(bh))
1721                         continue;
1722                 /*
1723                  * If it's a fully non-blocking write attempt and we cannot
1724                  * lock the buffer then redirty the page.  Note that this can
1725                  * potentially cause a busy-wait loop from pdflush and kswapd
1726                  * activity, but those code paths have their own higher-level
1727                  * throttling.
1728                  */
1729                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1730                         lock_buffer(bh);
1731                 } else if (!trylock_buffer(bh)) {
1732                         redirty_page_for_writepage(wbc, page);
1733                         continue;
1734                 }
1735                 if (test_clear_buffer_dirty(bh)) {
1736                         mark_buffer_async_write(bh);
1737                 } else {
1738                         unlock_buffer(bh);
1739                 }
1740         } while ((bh = bh->b_this_page) != head);
1741
1742         /*
1743          * The page and its buffers are protected by PageWriteback(), so we can
1744          * drop the bh refcounts early.
1745          */
1746         BUG_ON(PageWriteback(page));
1747         set_page_writeback(page);
1748
1749         do {
1750                 struct buffer_head *next = bh->b_this_page;
1751                 if (buffer_async_write(bh)) {
1752                         submit_bh(WRITE, bh);
1753                         nr_underway++;
1754                 }
1755                 bh = next;
1756         } while (bh != head);
1757         unlock_page(page);
1758
1759         err = 0;
1760 done:
1761         if (nr_underway == 0) {
1762                 /*
1763                  * The page was marked dirty, but the buffers were
1764                  * clean.  Someone wrote them back by hand with
1765                  * ll_rw_block/submit_bh.  A rare case.
1766                  */
1767                 end_page_writeback(page);
1768
1769                 /*
1770                  * The page and buffer_heads can be released at any time from
1771                  * here on.
1772                  */
1773         }
1774         return err;
1775
1776 recover:
1777         /*
1778          * ENOSPC, or some other error.  We may already have added some
1779          * blocks to the file, so we need to write these out to avoid
1780          * exposing stale data.
1781          * The page is currently locked and not marked for writeback
1782          */
1783         bh = head;
1784         /* Recovery: lock and submit the mapped buffers */
1785         do {
1786                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1787                     !buffer_delay(bh)) {
1788                         lock_buffer(bh);
1789                         mark_buffer_async_write(bh);
1790                 } else {
1791                         /*
1792                          * The buffer may have been set dirty during
1793                          * attachment to a dirty page.
1794                          */
1795                         clear_buffer_dirty(bh);
1796                 }
1797         } while ((bh = bh->b_this_page) != head);
1798         SetPageError(page);
1799         BUG_ON(PageWriteback(page));
1800         mapping_set_error(page->mapping, err);
1801         set_page_writeback(page);
1802         do {
1803                 struct buffer_head *next = bh->b_this_page;
1804                 if (buffer_async_write(bh)) {
1805                         clear_buffer_dirty(bh);
1806                         submit_bh(WRITE, bh);
1807                         nr_underway++;
1808                 }
1809                 bh = next;
1810         } while (bh != head);
1811         unlock_page(page);
1812         goto done;
1813 }
1814
1815 /*
1816  * If a page has any new buffers, zero them out here, and mark them uptodate
1817  * and dirty so they'll be written out (in order to prevent uninitialised
1818  * block data from leaking). And clear the new bit.
1819  */
1820 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1821 {
1822         unsigned int block_start, block_end;
1823         struct buffer_head *head, *bh;
1824
1825         BUG_ON(!PageLocked(page));
1826         if (!page_has_buffers(page))
1827                 return;
1828
1829         bh = head = page_buffers(page);
1830         block_start = 0;
1831         do {
1832                 block_end = block_start + bh->b_size;
1833
1834                 if (buffer_new(bh)) {
1835                         if (block_end > from && block_start < to) {
1836                                 if (!PageUptodate(page)) {
1837                                         unsigned start, size;
1838
1839                                         start = max(from, block_start);
1840                                         size = min(to, block_end) - start;
1841
1842                                         zero_user(page, start, size);
1843                                         set_buffer_uptodate(bh);
1844                                 }
1845
1846                                 clear_buffer_new(bh);
1847                                 mark_buffer_dirty(bh);
1848                         }
1849                 }
1850
1851                 block_start = block_end;
1852                 bh = bh->b_this_page;
1853         } while (bh != head);
1854 }
1855 EXPORT_SYMBOL(page_zero_new_buffers);
1856
1857 static int __block_prepare_write(struct inode *inode, struct page *page,
1858                 unsigned from, unsigned to, get_block_t *get_block)
1859 {
1860         unsigned block_start, block_end;
1861         sector_t block;
1862         int err = 0;
1863         unsigned blocksize, bbits;
1864         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1865
1866         BUG_ON(!PageLocked(page));
1867         BUG_ON(from > PAGE_CACHE_SIZE);
1868         BUG_ON(to > PAGE_CACHE_SIZE);
1869         BUG_ON(from > to);
1870
1871         blocksize = 1 << inode->i_blkbits;
1872         if (!page_has_buffers(page))
1873                 create_empty_buffers(page, blocksize, 0);
1874         head = page_buffers(page);
1875
1876         bbits = inode->i_blkbits;
1877         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1878
1879         for(bh = head, block_start = 0; bh != head || !block_start;
1880             block++, block_start=block_end, bh = bh->b_this_page) {
1881                 block_end = block_start + blocksize;
1882                 if (block_end <= from || block_start >= to) {
1883                         if (PageUptodate(page)) {
1884                                 if (!buffer_uptodate(bh))
1885                                         set_buffer_uptodate(bh);
1886                         }
1887                         continue;
1888                 }
1889                 if (buffer_new(bh))
1890                         clear_buffer_new(bh);
1891                 if (!buffer_mapped(bh)) {
1892                         WARN_ON(bh->b_size != blocksize);
1893                         err = get_block(inode, block, bh, 1);
1894                         if (err)
1895                                 break;
1896                         if (buffer_new(bh)) {
1897                                 unmap_underlying_metadata(bh->b_bdev,
1898                                                         bh->b_blocknr);
1899                                 if (PageUptodate(page)) {
1900                                         clear_buffer_new(bh);
1901                                         set_buffer_uptodate(bh);
1902                                         mark_buffer_dirty(bh);
1903                                         continue;
1904                                 }
1905                                 if (block_end > to || block_start < from)
1906                                         zero_user_segments(page,
1907                                                 to, block_end,
1908                                                 block_start, from);
1909                                 continue;
1910                         }
1911                 }
1912                 if (PageUptodate(page)) {
1913                         if (!buffer_uptodate(bh))
1914                                 set_buffer_uptodate(bh);
1915                         continue; 
1916                 }
1917                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1918                     !buffer_unwritten(bh) &&
1919                      (block_start < from || block_end > to)) {
1920                         ll_rw_block(READ, 1, &bh);
1921                         *wait_bh++=bh;
1922                 }
1923         }
1924         /*
1925          * If we issued read requests - let them complete.
1926          */
1927         while(wait_bh > wait) {
1928                 wait_on_buffer(*--wait_bh);
1929                 if (!buffer_uptodate(*wait_bh))
1930                         err = -EIO;
1931         }
1932         if (unlikely(err))
1933                 page_zero_new_buffers(page, from, to);
1934         return err;
1935 }
1936
1937 static int __block_commit_write(struct inode *inode, struct page *page,
1938                 unsigned from, unsigned to)
1939 {
1940         unsigned block_start, block_end;
1941         int partial = 0;
1942         unsigned blocksize;
1943         struct buffer_head *bh, *head;
1944
1945         blocksize = 1 << inode->i_blkbits;
1946
1947         for(bh = head = page_buffers(page), block_start = 0;
1948             bh != head || !block_start;
1949             block_start=block_end, bh = bh->b_this_page) {
1950                 block_end = block_start + blocksize;
1951                 if (block_end <= from || block_start >= to) {
1952                         if (!buffer_uptodate(bh))
1953                                 partial = 1;
1954                 } else {
1955                         set_buffer_uptodate(bh);
1956                         mark_buffer_dirty(bh);
1957                 }
1958                 clear_buffer_new(bh);
1959         }
1960
1961         /*
1962          * If this is a partial write which happened to make all buffers
1963          * uptodate then we can optimize away a bogus readpage() for
1964          * the next read(). Here we 'discover' whether the page went
1965          * uptodate as a result of this (potentially partial) write.
1966          */
1967         if (!partial)
1968                 SetPageUptodate(page);
1969         return 0;
1970 }
1971
1972 /*
1973  * block_write_begin takes care of the basic task of block allocation and
1974  * bringing partial write blocks uptodate first.
1975  *
1976  * If *pagep is not NULL, then block_write_begin uses the locked page
1977  * at *pagep rather than allocating its own. In this case, the page will
1978  * not be unlocked or deallocated on failure.
1979  */
1980 int block_write_begin(struct file *file, struct address_space *mapping,
1981                         loff_t pos, unsigned len, unsigned flags,
1982                         struct page **pagep, void **fsdata,
1983                         get_block_t *get_block)
1984 {
1985         struct inode *inode = mapping->host;
1986         int status = 0;
1987         struct page *page;
1988         pgoff_t index;
1989         unsigned start, end;
1990         int ownpage = 0;
1991
1992         index = pos >> PAGE_CACHE_SHIFT;
1993         start = pos & (PAGE_CACHE_SIZE - 1);
1994         end = start + len;
1995
1996         page = *pagep;
1997         if (page == NULL) {
1998                 ownpage = 1;
1999                 page = grab_cache_page_write_begin(mapping, index, flags);
2000                 if (!page) {
2001                         status = -ENOMEM;
2002                         goto out;
2003                 }
2004                 *pagep = page;
2005         } else
2006                 BUG_ON(!PageLocked(page));
2007
2008         status = __block_prepare_write(inode, page, start, end, get_block);
2009         if (unlikely(status)) {
2010                 ClearPageUptodate(page);
2011
2012                 if (ownpage) {
2013                         unlock_page(page);
2014                         page_cache_release(page);
2015                         *pagep = NULL;
2016
2017                         /*
2018                          * prepare_write() may have instantiated a few blocks
2019                          * outside i_size.  Trim these off again. Don't need
2020                          * i_size_read because we hold i_mutex.
2021                          */
2022                         if (pos + len > inode->i_size)
2023                                 vmtruncate(inode, inode->i_size);
2024                 }
2025         }
2026
2027 out:
2028         return status;
2029 }
2030 EXPORT_SYMBOL(block_write_begin);
2031
2032 int block_write_end(struct file *file, struct address_space *mapping,
2033                         loff_t pos, unsigned len, unsigned copied,
2034                         struct page *page, void *fsdata)
2035 {
2036         struct inode *inode = mapping->host;
2037         unsigned start;
2038
2039         start = pos & (PAGE_CACHE_SIZE - 1);
2040
2041         if (unlikely(copied < len)) {
2042                 /*
2043                  * The buffers that were written will now be uptodate, so we
2044                  * don't have to worry about a readpage reading them and
2045                  * overwriting a partial write. However if we have encountered
2046                  * a short write and only partially written into a buffer, it
2047                  * will not be marked uptodate, so a readpage might come in and
2048                  * destroy our partial write.
2049                  *
2050                  * Do the simplest thing, and just treat any short write to a
2051                  * non uptodate page as a zero-length write, and force the
2052                  * caller to redo the whole thing.
2053                  */
2054                 if (!PageUptodate(page))
2055                         copied = 0;
2056
2057                 page_zero_new_buffers(page, start+copied, start+len);
2058         }
2059         flush_dcache_page(page);
2060
2061         /* This could be a short (even 0-length) commit */
2062         __block_commit_write(inode, page, start, start+copied);
2063
2064         return copied;
2065 }
2066 EXPORT_SYMBOL(block_write_end);
2067
2068 int generic_write_end(struct file *file, struct address_space *mapping,
2069                         loff_t pos, unsigned len, unsigned copied,
2070                         struct page *page, void *fsdata)
2071 {
2072         struct inode *inode = mapping->host;
2073         int i_size_changed = 0;
2074
2075         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2076
2077         /*
2078          * No need to use i_size_read() here, the i_size
2079          * cannot change under us because we hold i_mutex.
2080          *
2081          * But it's important to update i_size while still holding page lock:
2082          * page writeout could otherwise come in and zero beyond i_size.
2083          */
2084         if (pos+copied > inode->i_size) {
2085                 i_size_write(inode, pos+copied);
2086                 i_size_changed = 1;
2087         }
2088
2089         unlock_page(page);
2090         page_cache_release(page);
2091
2092         /*
2093          * Don't mark the inode dirty under page lock. First, it unnecessarily
2094          * makes the holding time of page lock longer. Second, it forces lock
2095          * ordering of page lock and transaction start for journaling
2096          * filesystems.
2097          */
2098         if (i_size_changed)
2099                 mark_inode_dirty(inode);
2100
2101         return copied;
2102 }
2103 EXPORT_SYMBOL(generic_write_end);
2104
2105 /*
2106  * block_is_partially_uptodate checks whether buffers within a page are
2107  * uptodate or not.
2108  *
2109  * Returns true if all buffers which correspond to a file portion
2110  * we want to read are uptodate.
2111  */
2112 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2113                                         unsigned long from)
2114 {
2115         struct inode *inode = page->mapping->host;
2116         unsigned block_start, block_end, blocksize;
2117         unsigned to;
2118         struct buffer_head *bh, *head;
2119         int ret = 1;
2120
2121         if (!page_has_buffers(page))
2122                 return 0;
2123
2124         blocksize = 1 << inode->i_blkbits;
2125         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2126         to = from + to;
2127         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2128                 return 0;
2129
2130         head = page_buffers(page);
2131         bh = head;
2132         block_start = 0;
2133         do {
2134                 block_end = block_start + blocksize;
2135                 if (block_end > from && block_start < to) {
2136                         if (!buffer_uptodate(bh)) {
2137                                 ret = 0;
2138                                 break;
2139                         }
2140                         if (block_end >= to)
2141                                 break;
2142                 }
2143                 block_start = block_end;
2144                 bh = bh->b_this_page;
2145         } while (bh != head);
2146
2147         return ret;
2148 }
2149 EXPORT_SYMBOL(block_is_partially_uptodate);
2150
2151 /*
2152  * Generic "read page" function for block devices that have the normal
2153  * get_block functionality. This is most of the block device filesystems.
2154  * Reads the page asynchronously --- the unlock_buffer() and
2155  * set/clear_buffer_uptodate() functions propagate buffer state into the
2156  * page struct once IO has completed.
2157  */
2158 int block_read_full_page(struct page *page, get_block_t *get_block)
2159 {
2160         struct inode *inode = page->mapping->host;
2161         sector_t iblock, lblock;
2162         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2163         unsigned int blocksize;
2164         int nr, i;
2165         int fully_mapped = 1;
2166
2167         BUG_ON(!PageLocked(page));
2168         blocksize = 1 << inode->i_blkbits;
2169         if (!page_has_buffers(page))
2170                 create_empty_buffers(page, blocksize, 0);
2171         head = page_buffers(page);
2172
2173         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2174         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2175         bh = head;
2176         nr = 0;
2177         i = 0;
2178
2179         do {
2180                 if (buffer_uptodate(bh))
2181                         continue;
2182
2183                 if (!buffer_mapped(bh)) {
2184                         int err = 0;
2185
2186                         fully_mapped = 0;
2187                         if (iblock < lblock) {
2188                                 WARN_ON(bh->b_size != blocksize);
2189                                 err = get_block(inode, iblock, bh, 0);
2190                                 if (err)
2191                                         SetPageError(page);
2192                         }
2193                         if (!buffer_mapped(bh)) {
2194                                 zero_user(page, i * blocksize, blocksize);
2195                                 if (!err)
2196                                         set_buffer_uptodate(bh);
2197                                 continue;
2198                         }
2199                         /*
2200                          * get_block() might have updated the buffer
2201                          * synchronously
2202                          */
2203                         if (buffer_uptodate(bh))
2204                                 continue;
2205                 }
2206                 arr[nr++] = bh;
2207         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2208
2209         if (fully_mapped)
2210                 SetPageMappedToDisk(page);
2211
2212         if (!nr) {
2213                 /*
2214                  * All buffers are uptodate - we can set the page uptodate
2215                  * as well. But not if get_block() returned an error.
2216                  */
2217                 if (!PageError(page))
2218                         SetPageUptodate(page);
2219                 unlock_page(page);
2220                 return 0;
2221         }
2222
2223         /* Stage two: lock the buffers */
2224         for (i = 0; i < nr; i++) {
2225                 bh = arr[i];
2226                 lock_buffer(bh);
2227                 mark_buffer_async_read(bh);
2228         }
2229
2230         /*
2231          * Stage 3: start the IO.  Check for uptodateness
2232          * inside the buffer lock in case another process reading
2233          * the underlying blockdev brought it uptodate (the sct fix).
2234          */
2235         for (i = 0; i < nr; i++) {
2236                 bh = arr[i];
2237                 if (buffer_uptodate(bh))
2238                         end_buffer_async_read(bh, 1);
2239                 else
2240                         submit_bh(READ, bh);
2241         }
2242         return 0;
2243 }
2244
2245 /* utility function for filesystems that need to do work on expanding
2246  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2247  * deal with the hole.  
2248  */
2249 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2250 {
2251         struct address_space *mapping = inode->i_mapping;
2252         struct page *page;
2253         void *fsdata;
2254         unsigned long limit;
2255         int err;
2256
2257         err = -EFBIG;
2258         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2259         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2260                 send_sig(SIGXFSZ, current, 0);
2261                 goto out;
2262         }
2263         if (size > inode->i_sb->s_maxbytes)
2264                 goto out;
2265
2266         err = pagecache_write_begin(NULL, mapping, size, 0,
2267                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2268                                 &page, &fsdata);
2269         if (err)
2270                 goto out;
2271
2272         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2273         BUG_ON(err > 0);
2274
2275 out:
2276         return err;
2277 }
2278
2279 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2280                             loff_t pos, loff_t *bytes)
2281 {
2282         struct inode *inode = mapping->host;
2283         unsigned blocksize = 1 << inode->i_blkbits;
2284         struct page *page;
2285         void *fsdata;
2286         pgoff_t index, curidx;
2287         loff_t curpos;
2288         unsigned zerofrom, offset, len;
2289         int err = 0;
2290
2291         index = pos >> PAGE_CACHE_SHIFT;
2292         offset = pos & ~PAGE_CACHE_MASK;
2293
2294         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2295                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2296                 if (zerofrom & (blocksize-1)) {
2297                         *bytes |= (blocksize-1);
2298                         (*bytes)++;
2299                 }
2300                 len = PAGE_CACHE_SIZE - zerofrom;
2301
2302                 err = pagecache_write_begin(file, mapping, curpos, len,
2303                                                 AOP_FLAG_UNINTERRUPTIBLE,
2304                                                 &page, &fsdata);
2305                 if (err)
2306                         goto out;
2307                 zero_user(page, zerofrom, len);
2308                 err = pagecache_write_end(file, mapping, curpos, len, len,
2309                                                 page, fsdata);
2310                 if (err < 0)
2311                         goto out;
2312                 BUG_ON(err != len);
2313                 err = 0;
2314
2315                 balance_dirty_pages_ratelimited(mapping);
2316         }
2317
2318         /* page covers the boundary, find the boundary offset */
2319         if (index == curidx) {
2320                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2321                 /* if we will expand the thing last block will be filled */
2322                 if (offset <= zerofrom) {
2323                         goto out;
2324                 }
2325                 if (zerofrom & (blocksize-1)) {
2326                         *bytes |= (blocksize-1);
2327                         (*bytes)++;
2328                 }
2329                 len = offset - zerofrom;
2330
2331                 err = pagecache_write_begin(file, mapping, curpos, len,
2332                                                 AOP_FLAG_UNINTERRUPTIBLE,
2333                                                 &page, &fsdata);
2334                 if (err)
2335                         goto out;
2336                 zero_user(page, zerofrom, len);
2337                 err = pagecache_write_end(file, mapping, curpos, len, len,
2338                                                 page, fsdata);
2339                 if (err < 0)
2340                         goto out;
2341                 BUG_ON(err != len);
2342                 err = 0;
2343         }
2344 out:
2345         return err;
2346 }
2347
2348 /*
2349  * For moronic filesystems that do not allow holes in file.
2350  * We may have to extend the file.
2351  */
2352 int cont_write_begin(struct file *file, struct address_space *mapping,
2353                         loff_t pos, unsigned len, unsigned flags,
2354                         struct page **pagep, void **fsdata,
2355                         get_block_t *get_block, loff_t *bytes)
2356 {
2357         struct inode *inode = mapping->host;
2358         unsigned blocksize = 1 << inode->i_blkbits;
2359         unsigned zerofrom;
2360         int err;
2361
2362         err = cont_expand_zero(file, mapping, pos, bytes);
2363         if (err)
2364                 goto out;
2365
2366         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2367         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2368                 *bytes |= (blocksize-1);
2369                 (*bytes)++;
2370         }
2371
2372         *pagep = NULL;
2373         err = block_write_begin(file, mapping, pos, len,
2374                                 flags, pagep, fsdata, get_block);
2375 out:
2376         return err;
2377 }
2378
2379 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2380                         get_block_t *get_block)
2381 {
2382         struct inode *inode = page->mapping->host;
2383         int err = __block_prepare_write(inode, page, from, to, get_block);
2384         if (err)
2385                 ClearPageUptodate(page);
2386         return err;
2387 }
2388
2389 int block_commit_write(struct page *page, unsigned from, unsigned to)
2390 {
2391         struct inode *inode = page->mapping->host;
2392         __block_commit_write(inode,page,from,to);
2393         return 0;
2394 }
2395
2396 /*
2397  * block_page_mkwrite() is not allowed to change the file size as it gets
2398  * called from a page fault handler when a page is first dirtied. Hence we must
2399  * be careful to check for EOF conditions here. We set the page up correctly
2400  * for a written page which means we get ENOSPC checking when writing into
2401  * holes and correct delalloc and unwritten extent mapping on filesystems that
2402  * support these features.
2403  *
2404  * We are not allowed to take the i_mutex here so we have to play games to
2405  * protect against truncate races as the page could now be beyond EOF.  Because
2406  * vmtruncate() writes the inode size before removing pages, once we have the
2407  * page lock we can determine safely if the page is beyond EOF. If it is not
2408  * beyond EOF, then the page is guaranteed safe against truncation until we
2409  * unlock the page.
2410  */
2411 int
2412 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2413                    get_block_t get_block)
2414 {
2415         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2416         unsigned long end;
2417         loff_t size;
2418         int ret = -EINVAL;
2419
2420         lock_page(page);
2421         size = i_size_read(inode);
2422         if ((page->mapping != inode->i_mapping) ||
2423             (page_offset(page) > size)) {
2424                 /* page got truncated out from underneath us */
2425                 goto out_unlock;
2426         }
2427
2428         /* page is wholly or partially inside EOF */
2429         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2430                 end = size & ~PAGE_CACHE_MASK;
2431         else
2432                 end = PAGE_CACHE_SIZE;
2433
2434         ret = block_prepare_write(page, 0, end, get_block);
2435         if (!ret)
2436                 ret = block_commit_write(page, 0, end);
2437
2438 out_unlock:
2439         unlock_page(page);
2440         return ret;
2441 }
2442
2443 /*
2444  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2445  * immediately, while under the page lock.  So it needs a special end_io
2446  * handler which does not touch the bh after unlocking it.
2447  */
2448 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2449 {
2450         __end_buffer_read_notouch(bh, uptodate);
2451 }
2452
2453 /*
2454  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2455  * the page (converting it to circular linked list and taking care of page
2456  * dirty races).
2457  */
2458 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2459 {
2460         struct buffer_head *bh;
2461
2462         BUG_ON(!PageLocked(page));
2463
2464         spin_lock(&page->mapping->private_lock);
2465         bh = head;
2466         do {
2467                 if (PageDirty(page))
2468                         set_buffer_dirty(bh);
2469                 if (!bh->b_this_page)
2470                         bh->b_this_page = head;
2471                 bh = bh->b_this_page;
2472         } while (bh != head);
2473         attach_page_buffers(page, head);
2474         spin_unlock(&page->mapping->private_lock);
2475 }
2476
2477 /*
2478  * On entry, the page is fully not uptodate.
2479  * On exit the page is fully uptodate in the areas outside (from,to)
2480  */
2481 int nobh_write_begin(struct file *file, struct address_space *mapping,
2482                         loff_t pos, unsigned len, unsigned flags,
2483                         struct page **pagep, void **fsdata,
2484                         get_block_t *get_block)
2485 {
2486         struct inode *inode = mapping->host;
2487         const unsigned blkbits = inode->i_blkbits;
2488         const unsigned blocksize = 1 << blkbits;
2489         struct buffer_head *head, *bh;
2490         struct page *page;
2491         pgoff_t index;
2492         unsigned from, to;
2493         unsigned block_in_page;
2494         unsigned block_start, block_end;
2495         sector_t block_in_file;
2496         int nr_reads = 0;
2497         int ret = 0;
2498         int is_mapped_to_disk = 1;
2499
2500         index = pos >> PAGE_CACHE_SHIFT;
2501         from = pos & (PAGE_CACHE_SIZE - 1);
2502         to = from + len;
2503
2504         page = grab_cache_page_write_begin(mapping, index, flags);
2505         if (!page)
2506                 return -ENOMEM;
2507         *pagep = page;
2508         *fsdata = NULL;
2509
2510         if (page_has_buffers(page)) {
2511                 unlock_page(page);
2512                 page_cache_release(page);
2513                 *pagep = NULL;
2514                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2515                                         fsdata, get_block);
2516         }
2517
2518         if (PageMappedToDisk(page))
2519                 return 0;
2520
2521         /*
2522          * Allocate buffers so that we can keep track of state, and potentially
2523          * attach them to the page if an error occurs. In the common case of
2524          * no error, they will just be freed again without ever being attached
2525          * to the page (which is all OK, because we're under the page lock).
2526          *
2527          * Be careful: the buffer linked list is a NULL terminated one, rather
2528          * than the circular one we're used to.
2529          */
2530         head = alloc_page_buffers(page, blocksize, 0);
2531         if (!head) {
2532                 ret = -ENOMEM;
2533                 goto out_release;
2534         }
2535
2536         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2537
2538         /*
2539          * We loop across all blocks in the page, whether or not they are
2540          * part of the affected region.  This is so we can discover if the
2541          * page is fully mapped-to-disk.
2542          */
2543         for (block_start = 0, block_in_page = 0, bh = head;
2544                   block_start < PAGE_CACHE_SIZE;
2545                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2546                 int create;
2547
2548                 block_end = block_start + blocksize;
2549                 bh->b_state = 0;
2550                 create = 1;
2551                 if (block_start >= to)
2552                         create = 0;
2553                 ret = get_block(inode, block_in_file + block_in_page,
2554                                         bh, create);
2555                 if (ret)
2556                         goto failed;
2557                 if (!buffer_mapped(bh))
2558                         is_mapped_to_disk = 0;
2559                 if (buffer_new(bh))
2560                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2561                 if (PageUptodate(page)) {
2562                         set_buffer_uptodate(bh);
2563                         continue;
2564                 }
2565                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2566                         zero_user_segments(page, block_start, from,
2567                                                         to, block_end);
2568                         continue;
2569                 }
2570                 if (buffer_uptodate(bh))
2571                         continue;       /* reiserfs does this */
2572                 if (block_start < from || block_end > to) {
2573                         lock_buffer(bh);
2574                         bh->b_end_io = end_buffer_read_nobh;
2575                         submit_bh(READ, bh);
2576                         nr_reads++;
2577                 }
2578         }
2579
2580         if (nr_reads) {
2581                 /*
2582                  * The page is locked, so these buffers are protected from
2583                  * any VM or truncate activity.  Hence we don't need to care
2584                  * for the buffer_head refcounts.
2585                  */
2586                 for (bh = head; bh; bh = bh->b_this_page) {
2587                         wait_on_buffer(bh);
2588                         if (!buffer_uptodate(bh))
2589                                 ret = -EIO;
2590                 }
2591                 if (ret)
2592                         goto failed;
2593         }
2594
2595         if (is_mapped_to_disk)
2596                 SetPageMappedToDisk(page);
2597
2598         *fsdata = head; /* to be released by nobh_write_end */
2599
2600         return 0;
2601
2602 failed:
2603         BUG_ON(!ret);
2604         /*
2605          * Error recovery is a bit difficult. We need to zero out blocks that
2606          * were newly allocated, and dirty them to ensure they get written out.
2607          * Buffers need to be attached to the page at this point, otherwise
2608          * the handling of potential IO errors during writeout would be hard
2609          * (could try doing synchronous writeout, but what if that fails too?)
2610          */
2611         attach_nobh_buffers(page, head);
2612         page_zero_new_buffers(page, from, to);
2613
2614 out_release:
2615         unlock_page(page);
2616         page_cache_release(page);
2617         *pagep = NULL;
2618
2619         if (pos + len > inode->i_size)
2620                 vmtruncate(inode, inode->i_size);
2621
2622         return ret;
2623 }
2624 EXPORT_SYMBOL(nobh_write_begin);
2625
2626 int nobh_write_end(struct file *file, struct address_space *mapping,
2627                         loff_t pos, unsigned len, unsigned copied,
2628                         struct page *page, void *fsdata)
2629 {
2630         struct inode *inode = page->mapping->host;
2631         struct buffer_head *head = fsdata;
2632         struct buffer_head *bh;
2633         BUG_ON(fsdata != NULL && page_has_buffers(page));
2634
2635         if (unlikely(copied < len) && !page_has_buffers(page))
2636                 attach_nobh_buffers(page, head);
2637         if (page_has_buffers(page))
2638                 return generic_write_end(file, mapping, pos, len,
2639                                         copied, page, fsdata);
2640
2641         SetPageUptodate(page);
2642         set_page_dirty(page);
2643         if (pos+copied > inode->i_size) {
2644                 i_size_write(inode, pos+copied);
2645                 mark_inode_dirty(inode);
2646         }
2647
2648         unlock_page(page);
2649         page_cache_release(page);
2650
2651         while (head) {
2652                 bh = head;
2653                 head = head->b_this_page;
2654                 free_buffer_head(bh);
2655         }
2656
2657         return copied;
2658 }
2659 EXPORT_SYMBOL(nobh_write_end);
2660
2661 /*
2662  * nobh_writepage() - based on block_full_write_page() except
2663  * that it tries to operate without attaching bufferheads to
2664  * the page.
2665  */
2666 int nobh_writepage(struct page *page, get_block_t *get_block,
2667                         struct writeback_control *wbc)
2668 {
2669         struct inode * const inode = page->mapping->host;
2670         loff_t i_size = i_size_read(inode);
2671         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2672         unsigned offset;
2673         int ret;
2674
2675         /* Is the page fully inside i_size? */
2676         if (page->index < end_index)
2677                 goto out;
2678
2679         /* Is the page fully outside i_size? (truncate in progress) */
2680         offset = i_size & (PAGE_CACHE_SIZE-1);
2681         if (page->index >= end_index+1 || !offset) {
2682                 /*
2683                  * The page may have dirty, unmapped buffers.  For example,
2684                  * they may have been added in ext3_writepage().  Make them
2685                  * freeable here, so the page does not leak.
2686                  */
2687 #if 0
2688                 /* Not really sure about this  - do we need this ? */
2689                 if (page->mapping->a_ops->invalidatepage)
2690                         page->mapping->a_ops->invalidatepage(page, offset);
2691 #endif
2692                 unlock_page(page);
2693                 return 0; /* don't care */
2694         }
2695
2696         /*
2697          * The page straddles i_size.  It must be zeroed out on each and every
2698          * writepage invocation because it may be mmapped.  "A file is mapped
2699          * in multiples of the page size.  For a file that is not a multiple of
2700          * the  page size, the remaining memory is zeroed when mapped, and
2701          * writes to that region are not written out to the file."
2702          */
2703         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2704 out:
2705         ret = mpage_writepage(page, get_block, wbc);
2706         if (ret == -EAGAIN)
2707                 ret = __block_write_full_page(inode, page, get_block, wbc);
2708         return ret;
2709 }
2710 EXPORT_SYMBOL(nobh_writepage);
2711
2712 int nobh_truncate_page(struct address_space *mapping,
2713                         loff_t from, get_block_t *get_block)
2714 {
2715         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2716         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2717         unsigned blocksize;
2718         sector_t iblock;
2719         unsigned length, pos;
2720         struct inode *inode = mapping->host;
2721         struct page *page;
2722         struct buffer_head map_bh;
2723         int err;
2724
2725         blocksize = 1 << inode->i_blkbits;
2726         length = offset & (blocksize - 1);
2727
2728         /* Block boundary? Nothing to do */
2729         if (!length)
2730                 return 0;
2731
2732         length = blocksize - length;
2733         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2734
2735         page = grab_cache_page(mapping, index);
2736         err = -ENOMEM;
2737         if (!page)
2738                 goto out;
2739
2740         if (page_has_buffers(page)) {
2741 has_buffers:
2742                 unlock_page(page);
2743                 page_cache_release(page);
2744                 return block_truncate_page(mapping, from, get_block);
2745         }
2746
2747         /* Find the buffer that contains "offset" */
2748         pos = blocksize;
2749         while (offset >= pos) {
2750                 iblock++;
2751                 pos += blocksize;
2752         }
2753
2754         err = get_block(inode, iblock, &map_bh, 0);
2755         if (err)
2756                 goto unlock;
2757         /* unmapped? It's a hole - nothing to do */
2758         if (!buffer_mapped(&map_bh))
2759                 goto unlock;
2760
2761         /* Ok, it's mapped. Make sure it's up-to-date */
2762         if (!PageUptodate(page)) {
2763                 err = mapping->a_ops->readpage(NULL, page);
2764                 if (err) {
2765                         page_cache_release(page);
2766                         goto out;
2767                 }
2768                 lock_page(page);
2769                 if (!PageUptodate(page)) {
2770                         err = -EIO;
2771                         goto unlock;
2772                 }
2773                 if (page_has_buffers(page))
2774                         goto has_buffers;
2775         }
2776         zero_user(page, offset, length);
2777         set_page_dirty(page);
2778         err = 0;
2779
2780 unlock:
2781         unlock_page(page);
2782         page_cache_release(page);
2783 out:
2784         return err;
2785 }
2786 EXPORT_SYMBOL(nobh_truncate_page);
2787
2788 int block_truncate_page(struct address_space *mapping,
2789                         loff_t from, get_block_t *get_block)
2790 {
2791         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2792         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2793         unsigned blocksize;
2794         sector_t iblock;
2795         unsigned length, pos;
2796         struct inode *inode = mapping->host;
2797         struct page *page;
2798         struct buffer_head *bh;
2799         int err;
2800
2801         blocksize = 1 << inode->i_blkbits;
2802         length = offset & (blocksize - 1);
2803
2804         /* Block boundary? Nothing to do */
2805         if (!length)
2806                 return 0;
2807
2808         length = blocksize - length;
2809         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2810         
2811         page = grab_cache_page(mapping, index);
2812         err = -ENOMEM;
2813         if (!page)
2814                 goto out;
2815
2816         if (!page_has_buffers(page))
2817                 create_empty_buffers(page, blocksize, 0);
2818
2819         /* Find the buffer that contains "offset" */
2820         bh = page_buffers(page);
2821         pos = blocksize;
2822         while (offset >= pos) {
2823                 bh = bh->b_this_page;
2824                 iblock++;
2825                 pos += blocksize;
2826         }
2827
2828         err = 0;
2829         if (!buffer_mapped(bh)) {
2830                 WARN_ON(bh->b_size != blocksize);
2831                 err = get_block(inode, iblock, bh, 0);
2832                 if (err)
2833                         goto unlock;
2834                 /* unmapped? It's a hole - nothing to do */
2835                 if (!buffer_mapped(bh))
2836                         goto unlock;
2837         }
2838
2839         /* Ok, it's mapped. Make sure it's up-to-date */
2840         if (PageUptodate(page))
2841                 set_buffer_uptodate(bh);
2842
2843         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2844                 err = -EIO;
2845                 ll_rw_block(READ, 1, &bh);
2846                 wait_on_buffer(bh);
2847                 /* Uhhuh. Read error. Complain and punt. */
2848                 if (!buffer_uptodate(bh))
2849                         goto unlock;
2850         }
2851
2852         zero_user(page, offset, length);
2853         mark_buffer_dirty(bh);
2854         err = 0;
2855
2856 unlock:
2857         unlock_page(page);
2858         page_cache_release(page);
2859 out:
2860         return err;
2861 }
2862
2863 /*
2864  * The generic ->writepage function for buffer-backed address_spaces
2865  */
2866 int block_write_full_page(struct page *page, get_block_t *get_block,
2867                         struct writeback_control *wbc)
2868 {
2869         struct inode * const inode = page->mapping->host;
2870         loff_t i_size = i_size_read(inode);
2871         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2872         unsigned offset;
2873
2874         /* Is the page fully inside i_size? */
2875         if (page->index < end_index)
2876                 return __block_write_full_page(inode, page, get_block, wbc);
2877
2878         /* Is the page fully outside i_size? (truncate in progress) */
2879         offset = i_size & (PAGE_CACHE_SIZE-1);
2880         if (page->index >= end_index+1 || !offset) {
2881                 /*
2882                  * The page may have dirty, unmapped buffers.  For example,
2883                  * they may have been added in ext3_writepage().  Make them
2884                  * freeable here, so the page does not leak.
2885                  */
2886                 do_invalidatepage(page, 0);
2887                 unlock_page(page);
2888                 return 0; /* don't care */
2889         }
2890
2891         /*
2892          * The page straddles i_size.  It must be zeroed out on each and every
2893          * writepage invokation because it may be mmapped.  "A file is mapped
2894          * in multiples of the page size.  For a file that is not a multiple of
2895          * the  page size, the remaining memory is zeroed when mapped, and
2896          * writes to that region are not written out to the file."
2897          */
2898         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2899         return __block_write_full_page(inode, page, get_block, wbc);
2900 }
2901
2902 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2903                             get_block_t *get_block)
2904 {
2905         struct buffer_head tmp;
2906         struct inode *inode = mapping->host;
2907         tmp.b_state = 0;
2908         tmp.b_blocknr = 0;
2909         tmp.b_size = 1 << inode->i_blkbits;
2910         get_block(inode, block, &tmp, 0);
2911         return tmp.b_blocknr;
2912 }
2913
2914 static void end_bio_bh_io_sync(struct bio *bio, int err)
2915 {
2916         struct buffer_head *bh = bio->bi_private;
2917
2918         if (err == -EOPNOTSUPP) {
2919                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2920                 set_bit(BH_Eopnotsupp, &bh->b_state);
2921         }
2922
2923         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2924                 set_bit(BH_Quiet, &bh->b_state);
2925
2926         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2927         bio_put(bio);
2928 }
2929
2930 int submit_bh(int rw, struct buffer_head * bh)
2931 {
2932         struct bio *bio;
2933         int ret = 0;
2934
2935         BUG_ON(!buffer_locked(bh));
2936         BUG_ON(!buffer_mapped(bh));
2937         BUG_ON(!bh->b_end_io);
2938
2939         /*
2940          * Mask in barrier bit for a write (could be either a WRITE or a
2941          * WRITE_SYNC
2942          */
2943         if (buffer_ordered(bh) && (rw & WRITE))
2944                 rw |= WRITE_BARRIER;
2945
2946         /*
2947          * Only clear out a write error when rewriting
2948          */
2949         if (test_set_buffer_req(bh) && (rw & WRITE))
2950                 clear_buffer_write_io_error(bh);
2951
2952         /*
2953          * from here on down, it's all bio -- do the initial mapping,
2954          * submit_bio -> generic_make_request may further map this bio around
2955          */
2956         bio = bio_alloc(GFP_NOIO, 1);
2957
2958         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2959         bio->bi_bdev = bh->b_bdev;
2960         bio->bi_io_vec[0].bv_page = bh->b_page;
2961         bio->bi_io_vec[0].bv_len = bh->b_size;
2962         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2963
2964         bio->bi_vcnt = 1;
2965         bio->bi_idx = 0;
2966         bio->bi_size = bh->b_size;
2967
2968         bio->bi_end_io = end_bio_bh_io_sync;
2969         bio->bi_private = bh;
2970
2971         bio_get(bio);
2972         submit_bio(rw, bio);
2973
2974         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2975                 ret = -EOPNOTSUPP;
2976
2977         bio_put(bio);
2978         return ret;
2979 }
2980
2981 /**
2982  * ll_rw_block: low-level access to block devices (DEPRECATED)
2983  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2984  * @nr: number of &struct buffer_heads in the array
2985  * @bhs: array of pointers to &struct buffer_head
2986  *
2987  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2988  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2989  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2990  * are sent to disk. The fourth %READA option is described in the documentation
2991  * for generic_make_request() which ll_rw_block() calls.
2992  *
2993  * This function drops any buffer that it cannot get a lock on (with the
2994  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2995  * clean when doing a write request, and any buffer that appears to be
2996  * up-to-date when doing read request.  Further it marks as clean buffers that
2997  * are processed for writing (the buffer cache won't assume that they are
2998  * actually clean until the buffer gets unlocked).
2999  *
3000  * ll_rw_block sets b_end_io to simple completion handler that marks
3001  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3002  * any waiters. 
3003  *
3004  * All of the buffers must be for the same device, and must also be a
3005  * multiple of the current approved size for the device.
3006  */
3007 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3008 {
3009         int i;
3010
3011         for (i = 0; i < nr; i++) {
3012                 struct buffer_head *bh = bhs[i];
3013
3014                 if (rw == SWRITE || rw == SWRITE_SYNC)
3015                         lock_buffer(bh);
3016                 else if (!trylock_buffer(bh))
3017                         continue;
3018
3019                 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
3020                         if (test_clear_buffer_dirty(bh)) {
3021                                 bh->b_end_io = end_buffer_write_sync;
3022                                 get_bh(bh);
3023                                 if (rw == SWRITE_SYNC)
3024                                         submit_bh(WRITE_SYNC, bh);
3025                                 else
3026                                         submit_bh(WRITE, bh);
3027                                 continue;
3028                         }
3029                 } else {
3030                         if (!buffer_uptodate(bh)) {
3031                                 bh->b_end_io = end_buffer_read_sync;
3032                                 get_bh(bh);
3033                                 submit_bh(rw, bh);
3034                                 continue;
3035                         }
3036                 }
3037                 unlock_buffer(bh);
3038         }
3039 }
3040
3041 /*
3042  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3043  * and then start new I/O and then wait upon it.  The caller must have a ref on
3044  * the buffer_head.
3045  */
3046 int sync_dirty_buffer(struct buffer_head *bh)
3047 {
3048         int ret = 0;
3049
3050         WARN_ON(atomic_read(&bh->b_count) < 1);
3051         lock_buffer(bh);
3052         if (test_clear_buffer_dirty(bh)) {
3053                 get_bh(bh);
3054                 bh->b_end_io = end_buffer_write_sync;
3055                 ret = submit_bh(WRITE_SYNC, bh);
3056                 wait_on_buffer(bh);
3057                 if (buffer_eopnotsupp(bh)) {
3058                         clear_buffer_eopnotsupp(bh);
3059                         ret = -EOPNOTSUPP;
3060                 }
3061                 if (!ret && !buffer_uptodate(bh))
3062                         ret = -EIO;
3063         } else {
3064                 unlock_buffer(bh);
3065         }
3066         return ret;
3067 }
3068
3069 /*
3070  * try_to_free_buffers() checks if all the buffers on this particular page
3071  * are unused, and releases them if so.
3072  *
3073  * Exclusion against try_to_free_buffers may be obtained by either
3074  * locking the page or by holding its mapping's private_lock.
3075  *
3076  * If the page is dirty but all the buffers are clean then we need to
3077  * be sure to mark the page clean as well.  This is because the page
3078  * may be against a block device, and a later reattachment of buffers
3079  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3080  * filesystem data on the same device.
3081  *
3082  * The same applies to regular filesystem pages: if all the buffers are
3083  * clean then we set the page clean and proceed.  To do that, we require
3084  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3085  * private_lock.
3086  *
3087  * try_to_free_buffers() is non-blocking.
3088  */
3089 static inline int buffer_busy(struct buffer_head *bh)
3090 {
3091         return atomic_read(&bh->b_count) |
3092                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3093 }
3094
3095 static int
3096 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3097 {
3098         struct buffer_head *head = page_buffers(page);
3099         struct buffer_head *bh;
3100
3101         bh = head;
3102         do {
3103                 if (buffer_write_io_error(bh) && page->mapping)
3104                         set_bit(AS_EIO, &page->mapping->flags);
3105                 if (buffer_busy(bh))
3106                         goto failed;
3107                 bh = bh->b_this_page;
3108         } while (bh != head);
3109
3110         do {
3111                 struct buffer_head *next = bh->b_this_page;
3112
3113                 if (bh->b_assoc_map)
3114                         __remove_assoc_queue(bh);
3115                 bh = next;
3116         } while (bh != head);
3117         *buffers_to_free = head;
3118         __clear_page_buffers(page);
3119         return 1;
3120 failed:
3121         return 0;
3122 }
3123
3124 int try_to_free_buffers(struct page *page)
3125 {
3126         struct address_space * const mapping = page->mapping;
3127         struct buffer_head *buffers_to_free = NULL;
3128         int ret = 0;
3129
3130         BUG_ON(!PageLocked(page));
3131         if (PageWriteback(page))
3132                 return 0;
3133
3134         if (mapping == NULL) {          /* can this still happen? */
3135                 ret = drop_buffers(page, &buffers_to_free);
3136                 goto out;
3137         }
3138
3139         spin_lock(&mapping->private_lock);
3140         ret = drop_buffers(page, &buffers_to_free);
3141
3142         /*
3143          * If the filesystem writes its buffers by hand (eg ext3)
3144          * then we can have clean buffers against a dirty page.  We
3145          * clean the page here; otherwise the VM will never notice
3146          * that the filesystem did any IO at all.
3147          *
3148          * Also, during truncate, discard_buffer will have marked all
3149          * the page's buffers clean.  We discover that here and clean
3150          * the page also.
3151          *
3152          * private_lock must be held over this entire operation in order
3153          * to synchronise against __set_page_dirty_buffers and prevent the
3154          * dirty bit from being lost.
3155          */
3156         if (ret)
3157                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3158         spin_unlock(&mapping->private_lock);
3159 out:
3160         if (buffers_to_free) {
3161                 struct buffer_head *bh = buffers_to_free;
3162
3163                 do {
3164                         struct buffer_head *next = bh->b_this_page;
3165                         free_buffer_head(bh);
3166                         bh = next;
3167                 } while (bh != buffers_to_free);
3168         }
3169         return ret;
3170 }
3171 EXPORT_SYMBOL(try_to_free_buffers);
3172
3173 void block_sync_page(struct page *page)
3174 {
3175         struct address_space *mapping;
3176
3177         smp_mb();
3178         mapping = page_mapping(page);
3179         if (mapping)
3180                 blk_run_backing_dev(mapping->backing_dev_info, page);
3181 }
3182
3183 /*
3184  * There are no bdflush tunables left.  But distributions are
3185  * still running obsolete flush daemons, so we terminate them here.
3186  *
3187  * Use of bdflush() is deprecated and will be removed in a future kernel.
3188  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3189  */
3190 asmlinkage long sys_bdflush(int func, long data)
3191 {
3192         static int msg_count;
3193
3194         if (!capable(CAP_SYS_ADMIN))
3195                 return -EPERM;
3196
3197         if (msg_count < 5) {
3198                 msg_count++;
3199                 printk(KERN_INFO
3200                         "warning: process `%s' used the obsolete bdflush"
3201                         " system call\n", current->comm);
3202                 printk(KERN_INFO "Fix your initscripts?\n");
3203         }
3204
3205         if (func == 1)
3206                 do_exit(0);
3207         return 0;
3208 }
3209
3210 /*
3211  * Buffer-head allocation
3212  */
3213 static struct kmem_cache *bh_cachep;
3214
3215 /*
3216  * Once the number of bh's in the machine exceeds this level, we start
3217  * stripping them in writeback.
3218  */
3219 static int max_buffer_heads;
3220
3221 int buffer_heads_over_limit;
3222
3223 struct bh_accounting {
3224         int nr;                 /* Number of live bh's */
3225         int ratelimit;          /* Limit cacheline bouncing */
3226 };
3227
3228 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3229
3230 static void recalc_bh_state(void)
3231 {
3232         int i;
3233         int tot = 0;
3234
3235         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3236                 return;
3237         __get_cpu_var(bh_accounting).ratelimit = 0;
3238         for_each_online_cpu(i)
3239                 tot += per_cpu(bh_accounting, i).nr;
3240         buffer_heads_over_limit = (tot > max_buffer_heads);
3241 }
3242         
3243 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3244 {
3245         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3246         if (ret) {
3247                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3248                 get_cpu_var(bh_accounting).nr++;
3249                 recalc_bh_state();
3250                 put_cpu_var(bh_accounting);
3251         }
3252         return ret;
3253 }
3254 EXPORT_SYMBOL(alloc_buffer_head);
3255
3256 void free_buffer_head(struct buffer_head *bh)
3257 {
3258         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3259         kmem_cache_free(bh_cachep, bh);
3260         get_cpu_var(bh_accounting).nr--;
3261         recalc_bh_state();
3262         put_cpu_var(bh_accounting);
3263 }
3264 EXPORT_SYMBOL(free_buffer_head);
3265
3266 static void buffer_exit_cpu(int cpu)
3267 {
3268         int i;
3269         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3270
3271         for (i = 0; i < BH_LRU_SIZE; i++) {
3272                 brelse(b->bhs[i]);
3273                 b->bhs[i] = NULL;
3274         }
3275         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3276         per_cpu(bh_accounting, cpu).nr = 0;
3277         put_cpu_var(bh_accounting);
3278 }
3279
3280 static int buffer_cpu_notify(struct notifier_block *self,
3281                               unsigned long action, void *hcpu)
3282 {
3283         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3284                 buffer_exit_cpu((unsigned long)hcpu);
3285         return NOTIFY_OK;
3286 }
3287
3288 /**
3289  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3290  * @bh: struct buffer_head
3291  *
3292  * Return true if the buffer is up-to-date and false,
3293  * with the buffer locked, if not.
3294  */
3295 int bh_uptodate_or_lock(struct buffer_head *bh)
3296 {
3297         if (!buffer_uptodate(bh)) {
3298                 lock_buffer(bh);
3299                 if (!buffer_uptodate(bh))
3300                         return 0;
3301                 unlock_buffer(bh);
3302         }
3303         return 1;
3304 }
3305 EXPORT_SYMBOL(bh_uptodate_or_lock);
3306
3307 /**
3308  * bh_submit_read - Submit a locked buffer for reading
3309  * @bh: struct buffer_head
3310  *
3311  * Returns zero on success and -EIO on error.
3312  */
3313 int bh_submit_read(struct buffer_head *bh)
3314 {
3315         BUG_ON(!buffer_locked(bh));
3316
3317         if (buffer_uptodate(bh)) {
3318                 unlock_buffer(bh);
3319                 return 0;
3320         }
3321
3322         get_bh(bh);
3323         bh->b_end_io = end_buffer_read_sync;
3324         submit_bh(READ, bh);
3325         wait_on_buffer(bh);
3326         if (buffer_uptodate(bh))
3327                 return 0;
3328         return -EIO;
3329 }
3330 EXPORT_SYMBOL(bh_submit_read);
3331
3332 static void
3333 init_buffer_head(void *data)
3334 {
3335         struct buffer_head *bh = data;
3336
3337         memset(bh, 0, sizeof(*bh));
3338         INIT_LIST_HEAD(&bh->b_assoc_buffers);
3339 }
3340
3341 void __init buffer_init(void)
3342 {
3343         int nrpages;
3344
3345         bh_cachep = kmem_cache_create("buffer_head",
3346                         sizeof(struct buffer_head), 0,
3347                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3348                                 SLAB_MEM_SPREAD),
3349                                 init_buffer_head);
3350
3351         /*
3352          * Limit the bh occupancy to 10% of ZONE_NORMAL
3353          */
3354         nrpages = (nr_free_buffer_pages() * 10) / 100;
3355         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3356         hotcpu_notifier(buffer_cpu_notify, 0);
3357 }
3358
3359 EXPORT_SYMBOL(__bforget);
3360 EXPORT_SYMBOL(__brelse);
3361 EXPORT_SYMBOL(__wait_on_buffer);
3362 EXPORT_SYMBOL(block_commit_write);
3363 EXPORT_SYMBOL(block_prepare_write);
3364 EXPORT_SYMBOL(block_page_mkwrite);
3365 EXPORT_SYMBOL(block_read_full_page);
3366 EXPORT_SYMBOL(block_sync_page);
3367 EXPORT_SYMBOL(block_truncate_page);
3368 EXPORT_SYMBOL(block_write_full_page);
3369 EXPORT_SYMBOL(cont_write_begin);
3370 EXPORT_SYMBOL(end_buffer_read_sync);
3371 EXPORT_SYMBOL(end_buffer_write_sync);
3372 EXPORT_SYMBOL(file_fsync);
3373 EXPORT_SYMBOL(fsync_bdev);
3374 EXPORT_SYMBOL(generic_block_bmap);
3375 EXPORT_SYMBOL(generic_cont_expand_simple);
3376 EXPORT_SYMBOL(init_buffer);
3377 EXPORT_SYMBOL(invalidate_bdev);
3378 EXPORT_SYMBOL(ll_rw_block);
3379 EXPORT_SYMBOL(mark_buffer_dirty);
3380 EXPORT_SYMBOL(submit_bh);
3381 EXPORT_SYMBOL(sync_dirty_buffer);
3382 EXPORT_SYMBOL(unlock_buffer);