fs: fix data-loss on error
[safe/jmp/linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79         smp_mb__before_clear_bit();
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122         if (uptodate) {
123                 set_buffer_uptodate(bh);
124         } else {
125                 /* This happens, due to failed READA attempts. */
126                 clear_buffer_uptodate(bh);
127         }
128         unlock_buffer(bh);
129 }
130
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137         __end_buffer_read_notouch(bh, uptodate);
138         put_bh(bh);
139 }
140
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143         char b[BDEVNAME_SIZE];
144
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149                         buffer_io_error(bh);
150                         printk(KERN_WARNING "lost page write due to "
151                                         "I/O error on %s\n",
152                                        bdevname(bh->b_bdev, b));
153                 }
154                 set_buffer_write_io_error(bh);
155                 clear_buffer_uptodate(bh);
156         }
157         unlock_buffer(bh);
158         put_bh(bh);
159 }
160
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167         int ret = 0;
168
169         if (bdev)
170                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171         return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182         struct super_block *sb = get_super(bdev);
183         if (sb) {
184                 int res = fsync_super(sb);
185                 drop_super(sb);
186                 return res;
187         }
188         return sync_blockdev(bdev);
189 }
190
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:       blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202         struct super_block *sb;
203
204         down(&bdev->bd_mount_sem);
205         sb = get_super(bdev);
206         if (sb && !(sb->s_flags & MS_RDONLY)) {
207                 sb->s_frozen = SB_FREEZE_WRITE;
208                 smp_wmb();
209
210                 __fsync_super(sb);
211
212                 sb->s_frozen = SB_FREEZE_TRANS;
213                 smp_wmb();
214
215                 sync_blockdev(sb->s_bdev);
216
217                 if (sb->s_op->write_super_lockfs)
218                         sb->s_op->write_super_lockfs(sb);
219         }
220
221         sync_blockdev(bdev);
222         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:       blockdevice to unlock
229  * @sb:         associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235         if (sb) {
236                 BUG_ON(sb->s_bdev != bdev);
237
238                 if (sb->s_op->unlockfs)
239                         sb->s_op->unlockfs(sb);
240                 sb->s_frozen = SB_UNFROZEN;
241                 smp_wmb();
242                 wake_up(&sb->s_wait_unfrozen);
243                 drop_super(sb);
244         }
245
246         up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264         struct inode *bd_inode = bdev->bd_inode;
265         struct address_space *bd_mapping = bd_inode->i_mapping;
266         struct buffer_head *ret = NULL;
267         pgoff_t index;
268         struct buffer_head *bh;
269         struct buffer_head *head;
270         struct page *page;
271         int all_mapped = 1;
272
273         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274         page = find_get_page(bd_mapping, index);
275         if (!page)
276                 goto out;
277
278         spin_lock(&bd_mapping->private_lock);
279         if (!page_has_buffers(page))
280                 goto out_unlock;
281         head = page_buffers(page);
282         bh = head;
283         do {
284                 if (bh->b_blocknr == block) {
285                         ret = bh;
286                         get_bh(bh);
287                         goto out_unlock;
288                 }
289                 if (!buffer_mapped(bh))
290                         all_mapped = 0;
291                 bh = bh->b_this_page;
292         } while (bh != head);
293
294         /* we might be here because some of the buffers on this page are
295          * not mapped.  This is due to various races between
296          * file io on the block device and getblk.  It gets dealt with
297          * elsewhere, don't buffer_error if we had some unmapped buffers
298          */
299         if (all_mapped) {
300                 printk("__find_get_block_slow() failed. "
301                         "block=%llu, b_blocknr=%llu\n",
302                         (unsigned long long)block,
303                         (unsigned long long)bh->b_blocknr);
304                 printk("b_state=0x%08lx, b_size=%zu\n",
305                         bh->b_state, bh->b_size);
306                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307         }
308 out_unlock:
309         spin_unlock(&bd_mapping->private_lock);
310         page_cache_release(page);
311 out:
312         return ret;
313 }
314
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323   
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349         struct address_space *mapping = bdev->bd_inode->i_mapping;
350
351         if (mapping->nrpages == 0)
352                 return;
353
354         invalidate_bh_lrus();
355         invalidate_mapping_pages(mapping, 0, -1);
356 }
357
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363         struct zone **zones;
364         pg_data_t *pgdat;
365
366         wakeup_pdflush(1024);
367         yield();
368
369         for_each_online_pgdat(pgdat) {
370                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
371                 if (*zones)
372                         try_to_free_pages(zones, 0, GFP_NOFS);
373         }
374 }
375
376 /*
377  * I/O completion handler for block_read_full_page() - pages
378  * which come unlocked at the end of I/O.
379  */
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381 {
382         unsigned long flags;
383         struct buffer_head *first;
384         struct buffer_head *tmp;
385         struct page *page;
386         int page_uptodate = 1;
387
388         BUG_ON(!buffer_async_read(bh));
389
390         page = bh->b_page;
391         if (uptodate) {
392                 set_buffer_uptodate(bh);
393         } else {
394                 clear_buffer_uptodate(bh);
395                 if (printk_ratelimit())
396                         buffer_io_error(bh);
397                 SetPageError(page);
398         }
399
400         /*
401          * Be _very_ careful from here on. Bad things can happen if
402          * two buffer heads end IO at almost the same time and both
403          * decide that the page is now completely done.
404          */
405         first = page_buffers(page);
406         local_irq_save(flags);
407         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408         clear_buffer_async_read(bh);
409         unlock_buffer(bh);
410         tmp = bh;
411         do {
412                 if (!buffer_uptodate(tmp))
413                         page_uptodate = 0;
414                 if (buffer_async_read(tmp)) {
415                         BUG_ON(!buffer_locked(tmp));
416                         goto still_busy;
417                 }
418                 tmp = tmp->b_this_page;
419         } while (tmp != bh);
420         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421         local_irq_restore(flags);
422
423         /*
424          * If none of the buffers had errors and they are all
425          * uptodate then we can set the page uptodate.
426          */
427         if (page_uptodate && !PageError(page))
428                 SetPageUptodate(page);
429         unlock_page(page);
430         return;
431
432 still_busy:
433         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434         local_irq_restore(flags);
435         return;
436 }
437
438 /*
439  * Completion handler for block_write_full_page() - pages which are unlocked
440  * during I/O, and which have PageWriteback cleared upon I/O completion.
441  */
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
443 {
444         char b[BDEVNAME_SIZE];
445         unsigned long flags;
446         struct buffer_head *first;
447         struct buffer_head *tmp;
448         struct page *page;
449
450         BUG_ON(!buffer_async_write(bh));
451
452         page = bh->b_page;
453         if (uptodate) {
454                 set_buffer_uptodate(bh);
455         } else {
456                 if (printk_ratelimit()) {
457                         buffer_io_error(bh);
458                         printk(KERN_WARNING "lost page write due to "
459                                         "I/O error on %s\n",
460                                bdevname(bh->b_bdev, b));
461                 }
462                 set_bit(AS_EIO, &page->mapping->flags);
463                 set_buffer_write_io_error(bh);
464                 clear_buffer_uptodate(bh);
465                 SetPageError(page);
466         }
467
468         first = page_buffers(page);
469         local_irq_save(flags);
470         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471
472         clear_buffer_async_write(bh);
473         unlock_buffer(bh);
474         tmp = bh->b_this_page;
475         while (tmp != bh) {
476                 if (buffer_async_write(tmp)) {
477                         BUG_ON(!buffer_locked(tmp));
478                         goto still_busy;
479                 }
480                 tmp = tmp->b_this_page;
481         }
482         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483         local_irq_restore(flags);
484         end_page_writeback(page);
485         return;
486
487 still_busy:
488         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489         local_irq_restore(flags);
490         return;
491 }
492
493 /*
494  * If a page's buffers are under async readin (end_buffer_async_read
495  * completion) then there is a possibility that another thread of
496  * control could lock one of the buffers after it has completed
497  * but while some of the other buffers have not completed.  This
498  * locked buffer would confuse end_buffer_async_read() into not unlocking
499  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
500  * that this buffer is not under async I/O.
501  *
502  * The page comes unlocked when it has no locked buffer_async buffers
503  * left.
504  *
505  * PageLocked prevents anyone starting new async I/O reads any of
506  * the buffers.
507  *
508  * PageWriteback is used to prevent simultaneous writeout of the same
509  * page.
510  *
511  * PageLocked prevents anyone from starting writeback of a page which is
512  * under read I/O (PageWriteback is only ever set against a locked page).
513  */
514 static void mark_buffer_async_read(struct buffer_head *bh)
515 {
516         bh->b_end_io = end_buffer_async_read;
517         set_buffer_async_read(bh);
518 }
519
520 void mark_buffer_async_write(struct buffer_head *bh)
521 {
522         bh->b_end_io = end_buffer_async_write;
523         set_buffer_async_write(bh);
524 }
525 EXPORT_SYMBOL(mark_buffer_async_write);
526
527
528 /*
529  * fs/buffer.c contains helper functions for buffer-backed address space's
530  * fsync functions.  A common requirement for buffer-based filesystems is
531  * that certain data from the backing blockdev needs to be written out for
532  * a successful fsync().  For example, ext2 indirect blocks need to be
533  * written back and waited upon before fsync() returns.
534  *
535  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537  * management of a list of dependent buffers at ->i_mapping->private_list.
538  *
539  * Locking is a little subtle: try_to_free_buffers() will remove buffers
540  * from their controlling inode's queue when they are being freed.  But
541  * try_to_free_buffers() will be operating against the *blockdev* mapping
542  * at the time, not against the S_ISREG file which depends on those buffers.
543  * So the locking for private_list is via the private_lock in the address_space
544  * which backs the buffers.  Which is different from the address_space 
545  * against which the buffers are listed.  So for a particular address_space,
546  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
547  * mapping->private_list will always be protected by the backing blockdev's
548  * ->private_lock.
549  *
550  * Which introduces a requirement: all buffers on an address_space's
551  * ->private_list must be from the same address_space: the blockdev's.
552  *
553  * address_spaces which do not place buffers at ->private_list via these
554  * utility functions are free to use private_lock and private_list for
555  * whatever they want.  The only requirement is that list_empty(private_list)
556  * be true at clear_inode() time.
557  *
558  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
559  * filesystems should do that.  invalidate_inode_buffers() should just go
560  * BUG_ON(!list_empty).
561  *
562  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
563  * take an address_space, not an inode.  And it should be called
564  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565  * queued up.
566  *
567  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568  * list if it is already on a list.  Because if the buffer is on a list,
569  * it *must* already be on the right one.  If not, the filesystem is being
570  * silly.  This will save a ton of locking.  But first we have to ensure
571  * that buffers are taken *off* the old inode's list when they are freed
572  * (presumably in truncate).  That requires careful auditing of all
573  * filesystems (do it inside bforget()).  It could also be done by bringing
574  * b_inode back.
575  */
576
577 /*
578  * The buffer's backing address_space's private_lock must be held
579  */
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
581 {
582         list_del_init(&bh->b_assoc_buffers);
583         WARN_ON(!bh->b_assoc_map);
584         if (buffer_write_io_error(bh))
585                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586         bh->b_assoc_map = NULL;
587 }
588
589 int inode_has_buffers(struct inode *inode)
590 {
591         return !list_empty(&inode->i_data.private_list);
592 }
593
594 /*
595  * osync is designed to support O_SYNC io.  It waits synchronously for
596  * all already-submitted IO to complete, but does not queue any new
597  * writes to the disk.
598  *
599  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600  * you dirty the buffers, and then use osync_inode_buffers to wait for
601  * completion.  Any other dirty buffers which are not yet queued for
602  * write will not be flushed to disk by the osync.
603  */
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605 {
606         struct buffer_head *bh;
607         struct list_head *p;
608         int err = 0;
609
610         spin_lock(lock);
611 repeat:
612         list_for_each_prev(p, list) {
613                 bh = BH_ENTRY(p);
614                 if (buffer_locked(bh)) {
615                         get_bh(bh);
616                         spin_unlock(lock);
617                         wait_on_buffer(bh);
618                         if (!buffer_uptodate(bh))
619                                 err = -EIO;
620                         brelse(bh);
621                         spin_lock(lock);
622                         goto repeat;
623                 }
624         }
625         spin_unlock(lock);
626         return err;
627 }
628
629 /**
630  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631  *                        buffers
632  * @mapping: the mapping which wants those buffers written
633  *
634  * Starts I/O against the buffers at mapping->private_list, and waits upon
635  * that I/O.
636  *
637  * Basically, this is a convenience function for fsync().
638  * @mapping is a file or directory which needs those buffers to be written for
639  * a successful fsync().
640  */
641 int sync_mapping_buffers(struct address_space *mapping)
642 {
643         struct address_space *buffer_mapping = mapping->assoc_mapping;
644
645         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646                 return 0;
647
648         return fsync_buffers_list(&buffer_mapping->private_lock,
649                                         &mapping->private_list);
650 }
651 EXPORT_SYMBOL(sync_mapping_buffers);
652
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660                         sector_t bblock, unsigned blocksize)
661 {
662         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663         if (bh) {
664                 if (buffer_dirty(bh))
665                         ll_rw_block(WRITE, 1, &bh);
666                 put_bh(bh);
667         }
668 }
669
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct address_space *buffer_mapping = bh->b_page->mapping;
674
675         mark_buffer_dirty(bh);
676         if (!mapping->assoc_mapping) {
677                 mapping->assoc_mapping = buffer_mapping;
678         } else {
679                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
680         }
681         if (list_empty(&bh->b_assoc_buffers)) {
682                 spin_lock(&buffer_mapping->private_lock);
683                 list_move_tail(&bh->b_assoc_buffers,
684                                 &mapping->private_list);
685                 bh->b_assoc_map = mapping;
686                 spin_unlock(&buffer_mapping->private_lock);
687         }
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
691 /*
692  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693  * dirty.
694  *
695  * If warn is true, then emit a warning if the page is not uptodate and has
696  * not been truncated.
697  */
698 static int __set_page_dirty(struct page *page,
699                 struct address_space *mapping, int warn)
700 {
701         if (unlikely(!mapping))
702                 return !TestSetPageDirty(page);
703
704         if (TestSetPageDirty(page))
705                 return 0;
706
707         write_lock_irq(&mapping->tree_lock);
708         if (page->mapping) {    /* Race with truncate? */
709                 WARN_ON_ONCE(warn && !PageUptodate(page));
710
711                 if (mapping_cap_account_dirty(mapping)) {
712                         __inc_zone_page_state(page, NR_FILE_DIRTY);
713                         task_io_account_write(PAGE_CACHE_SIZE);
714                 }
715                 radix_tree_tag_set(&mapping->page_tree,
716                                 page_index(page), PAGECACHE_TAG_DIRTY);
717         }
718         write_unlock_irq(&mapping->tree_lock);
719         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
720
721         return 1;
722 }
723
724 /*
725  * Add a page to the dirty page list.
726  *
727  * It is a sad fact of life that this function is called from several places
728  * deeply under spinlocking.  It may not sleep.
729  *
730  * If the page has buffers, the uptodate buffers are set dirty, to preserve
731  * dirty-state coherency between the page and the buffers.  It the page does
732  * not have buffers then when they are later attached they will all be set
733  * dirty.
734  *
735  * The buffers are dirtied before the page is dirtied.  There's a small race
736  * window in which a writepage caller may see the page cleanness but not the
737  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
738  * before the buffers, a concurrent writepage caller could clear the page dirty
739  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
740  * page on the dirty page list.
741  *
742  * We use private_lock to lock against try_to_free_buffers while using the
743  * page's buffer list.  Also use this to protect against clean buffers being
744  * added to the page after it was set dirty.
745  *
746  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
747  * address_space though.
748  */
749 int __set_page_dirty_buffers(struct page *page)
750 {
751         struct address_space *mapping = page_mapping(page);
752
753         if (unlikely(!mapping))
754                 return !TestSetPageDirty(page);
755
756         spin_lock(&mapping->private_lock);
757         if (page_has_buffers(page)) {
758                 struct buffer_head *head = page_buffers(page);
759                 struct buffer_head *bh = head;
760
761                 do {
762                         set_buffer_dirty(bh);
763                         bh = bh->b_this_page;
764                 } while (bh != head);
765         }
766         spin_unlock(&mapping->private_lock);
767
768         return __set_page_dirty(page, mapping, 1);
769 }
770 EXPORT_SYMBOL(__set_page_dirty_buffers);
771
772 /*
773  * Write out and wait upon a list of buffers.
774  *
775  * We have conflicting pressures: we want to make sure that all
776  * initially dirty buffers get waited on, but that any subsequently
777  * dirtied buffers don't.  After all, we don't want fsync to last
778  * forever if somebody is actively writing to the file.
779  *
780  * Do this in two main stages: first we copy dirty buffers to a
781  * temporary inode list, queueing the writes as we go.  Then we clean
782  * up, waiting for those writes to complete.
783  * 
784  * During this second stage, any subsequent updates to the file may end
785  * up refiling the buffer on the original inode's dirty list again, so
786  * there is a chance we will end up with a buffer queued for write but
787  * not yet completed on that list.  So, as a final cleanup we go through
788  * the osync code to catch these locked, dirty buffers without requeuing
789  * any newly dirty buffers for write.
790  */
791 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
792 {
793         struct buffer_head *bh;
794         struct list_head tmp;
795         int err = 0, err2;
796
797         INIT_LIST_HEAD(&tmp);
798
799         spin_lock(lock);
800         while (!list_empty(list)) {
801                 bh = BH_ENTRY(list->next);
802                 __remove_assoc_queue(bh);
803                 if (buffer_dirty(bh) || buffer_locked(bh)) {
804                         list_add(&bh->b_assoc_buffers, &tmp);
805                         if (buffer_dirty(bh)) {
806                                 get_bh(bh);
807                                 spin_unlock(lock);
808                                 /*
809                                  * Ensure any pending I/O completes so that
810                                  * ll_rw_block() actually writes the current
811                                  * contents - it is a noop if I/O is still in
812                                  * flight on potentially older contents.
813                                  */
814                                 ll_rw_block(SWRITE, 1, &bh);
815                                 brelse(bh);
816                                 spin_lock(lock);
817                         }
818                 }
819         }
820
821         while (!list_empty(&tmp)) {
822                 bh = BH_ENTRY(tmp.prev);
823                 list_del_init(&bh->b_assoc_buffers);
824                 get_bh(bh);
825                 spin_unlock(lock);
826                 wait_on_buffer(bh);
827                 if (!buffer_uptodate(bh))
828                         err = -EIO;
829                 brelse(bh);
830                 spin_lock(lock);
831         }
832         
833         spin_unlock(lock);
834         err2 = osync_buffers_list(lock, list);
835         if (err)
836                 return err;
837         else
838                 return err2;
839 }
840
841 /*
842  * Invalidate any and all dirty buffers on a given inode.  We are
843  * probably unmounting the fs, but that doesn't mean we have already
844  * done a sync().  Just drop the buffers from the inode list.
845  *
846  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
847  * assumes that all the buffers are against the blockdev.  Not true
848  * for reiserfs.
849  */
850 void invalidate_inode_buffers(struct inode *inode)
851 {
852         if (inode_has_buffers(inode)) {
853                 struct address_space *mapping = &inode->i_data;
854                 struct list_head *list = &mapping->private_list;
855                 struct address_space *buffer_mapping = mapping->assoc_mapping;
856
857                 spin_lock(&buffer_mapping->private_lock);
858                 while (!list_empty(list))
859                         __remove_assoc_queue(BH_ENTRY(list->next));
860                 spin_unlock(&buffer_mapping->private_lock);
861         }
862 }
863
864 /*
865  * Remove any clean buffers from the inode's buffer list.  This is called
866  * when we're trying to free the inode itself.  Those buffers can pin it.
867  *
868  * Returns true if all buffers were removed.
869  */
870 int remove_inode_buffers(struct inode *inode)
871 {
872         int ret = 1;
873
874         if (inode_has_buffers(inode)) {
875                 struct address_space *mapping = &inode->i_data;
876                 struct list_head *list = &mapping->private_list;
877                 struct address_space *buffer_mapping = mapping->assoc_mapping;
878
879                 spin_lock(&buffer_mapping->private_lock);
880                 while (!list_empty(list)) {
881                         struct buffer_head *bh = BH_ENTRY(list->next);
882                         if (buffer_dirty(bh)) {
883                                 ret = 0;
884                                 break;
885                         }
886                         __remove_assoc_queue(bh);
887                 }
888                 spin_unlock(&buffer_mapping->private_lock);
889         }
890         return ret;
891 }
892
893 /*
894  * Create the appropriate buffers when given a page for data area and
895  * the size of each buffer.. Use the bh->b_this_page linked list to
896  * follow the buffers created.  Return NULL if unable to create more
897  * buffers.
898  *
899  * The retry flag is used to differentiate async IO (paging, swapping)
900  * which may not fail from ordinary buffer allocations.
901  */
902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
903                 int retry)
904 {
905         struct buffer_head *bh, *head;
906         long offset;
907
908 try_again:
909         head = NULL;
910         offset = PAGE_SIZE;
911         while ((offset -= size) >= 0) {
912                 bh = alloc_buffer_head(GFP_NOFS);
913                 if (!bh)
914                         goto no_grow;
915
916                 bh->b_bdev = NULL;
917                 bh->b_this_page = head;
918                 bh->b_blocknr = -1;
919                 head = bh;
920
921                 bh->b_state = 0;
922                 atomic_set(&bh->b_count, 0);
923                 bh->b_private = NULL;
924                 bh->b_size = size;
925
926                 /* Link the buffer to its page */
927                 set_bh_page(bh, page, offset);
928
929                 init_buffer(bh, NULL, NULL);
930         }
931         return head;
932 /*
933  * In case anything failed, we just free everything we got.
934  */
935 no_grow:
936         if (head) {
937                 do {
938                         bh = head;
939                         head = head->b_this_page;
940                         free_buffer_head(bh);
941                 } while (head);
942         }
943
944         /*
945          * Return failure for non-async IO requests.  Async IO requests
946          * are not allowed to fail, so we have to wait until buffer heads
947          * become available.  But we don't want tasks sleeping with 
948          * partially complete buffers, so all were released above.
949          */
950         if (!retry)
951                 return NULL;
952
953         /* We're _really_ low on memory. Now we just
954          * wait for old buffer heads to become free due to
955          * finishing IO.  Since this is an async request and
956          * the reserve list is empty, we're sure there are 
957          * async buffer heads in use.
958          */
959         free_more_memory();
960         goto try_again;
961 }
962 EXPORT_SYMBOL_GPL(alloc_page_buffers);
963
964 static inline void
965 link_dev_buffers(struct page *page, struct buffer_head *head)
966 {
967         struct buffer_head *bh, *tail;
968
969         bh = head;
970         do {
971                 tail = bh;
972                 bh = bh->b_this_page;
973         } while (bh);
974         tail->b_this_page = head;
975         attach_page_buffers(page, head);
976 }
977
978 /*
979  * Initialise the state of a blockdev page's buffers.
980  */ 
981 static void
982 init_page_buffers(struct page *page, struct block_device *bdev,
983                         sector_t block, int size)
984 {
985         struct buffer_head *head = page_buffers(page);
986         struct buffer_head *bh = head;
987         int uptodate = PageUptodate(page);
988
989         do {
990                 if (!buffer_mapped(bh)) {
991                         init_buffer(bh, NULL, NULL);
992                         bh->b_bdev = bdev;
993                         bh->b_blocknr = block;
994                         if (uptodate)
995                                 set_buffer_uptodate(bh);
996                         set_buffer_mapped(bh);
997                 }
998                 block++;
999                 bh = bh->b_this_page;
1000         } while (bh != head);
1001 }
1002
1003 /*
1004  * Create the page-cache page that contains the requested block.
1005  *
1006  * This is user purely for blockdev mappings.
1007  */
1008 static struct page *
1009 grow_dev_page(struct block_device *bdev, sector_t block,
1010                 pgoff_t index, int size)
1011 {
1012         struct inode *inode = bdev->bd_inode;
1013         struct page *page;
1014         struct buffer_head *bh;
1015
1016         page = find_or_create_page(inode->i_mapping, index,
1017                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1018         if (!page)
1019                 return NULL;
1020
1021         BUG_ON(!PageLocked(page));
1022
1023         if (page_has_buffers(page)) {
1024                 bh = page_buffers(page);
1025                 if (bh->b_size == size) {
1026                         init_page_buffers(page, bdev, block, size);
1027                         return page;
1028                 }
1029                 if (!try_to_free_buffers(page))
1030                         goto failed;
1031         }
1032
1033         /*
1034          * Allocate some buffers for this page
1035          */
1036         bh = alloc_page_buffers(page, size, 0);
1037         if (!bh)
1038                 goto failed;
1039
1040         /*
1041          * Link the page to the buffers and initialise them.  Take the
1042          * lock to be atomic wrt __find_get_block(), which does not
1043          * run under the page lock.
1044          */
1045         spin_lock(&inode->i_mapping->private_lock);
1046         link_dev_buffers(page, bh);
1047         init_page_buffers(page, bdev, block, size);
1048         spin_unlock(&inode->i_mapping->private_lock);
1049         return page;
1050
1051 failed:
1052         BUG();
1053         unlock_page(page);
1054         page_cache_release(page);
1055         return NULL;
1056 }
1057
1058 /*
1059  * Create buffers for the specified block device block's page.  If
1060  * that page was dirty, the buffers are set dirty also.
1061  */
1062 static int
1063 grow_buffers(struct block_device *bdev, sector_t block, int size)
1064 {
1065         struct page *page;
1066         pgoff_t index;
1067         int sizebits;
1068
1069         sizebits = -1;
1070         do {
1071                 sizebits++;
1072         } while ((size << sizebits) < PAGE_SIZE);
1073
1074         index = block >> sizebits;
1075
1076         /*
1077          * Check for a block which wants to lie outside our maximum possible
1078          * pagecache index.  (this comparison is done using sector_t types).
1079          */
1080         if (unlikely(index != block >> sizebits)) {
1081                 char b[BDEVNAME_SIZE];
1082
1083                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1084                         "device %s\n",
1085                         __FUNCTION__, (unsigned long long)block,
1086                         bdevname(bdev, b));
1087                 return -EIO;
1088         }
1089         block = index << sizebits;
1090         /* Create a page with the proper size buffers.. */
1091         page = grow_dev_page(bdev, block, index, size);
1092         if (!page)
1093                 return 0;
1094         unlock_page(page);
1095         page_cache_release(page);
1096         return 1;
1097 }
1098
1099 static struct buffer_head *
1100 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1101 {
1102         /* Size must be multiple of hard sectorsize */
1103         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1104                         (size < 512 || size > PAGE_SIZE))) {
1105                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1106                                         size);
1107                 printk(KERN_ERR "hardsect size: %d\n",
1108                                         bdev_hardsect_size(bdev));
1109
1110                 dump_stack();
1111                 return NULL;
1112         }
1113
1114         for (;;) {
1115                 struct buffer_head * bh;
1116                 int ret;
1117
1118                 bh = __find_get_block(bdev, block, size);
1119                 if (bh)
1120                         return bh;
1121
1122                 ret = grow_buffers(bdev, block, size);
1123                 if (ret < 0)
1124                         return NULL;
1125                 if (ret == 0)
1126                         free_more_memory();
1127         }
1128 }
1129
1130 /*
1131  * The relationship between dirty buffers and dirty pages:
1132  *
1133  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1134  * the page is tagged dirty in its radix tree.
1135  *
1136  * At all times, the dirtiness of the buffers represents the dirtiness of
1137  * subsections of the page.  If the page has buffers, the page dirty bit is
1138  * merely a hint about the true dirty state.
1139  *
1140  * When a page is set dirty in its entirety, all its buffers are marked dirty
1141  * (if the page has buffers).
1142  *
1143  * When a buffer is marked dirty, its page is dirtied, but the page's other
1144  * buffers are not.
1145  *
1146  * Also.  When blockdev buffers are explicitly read with bread(), they
1147  * individually become uptodate.  But their backing page remains not
1148  * uptodate - even if all of its buffers are uptodate.  A subsequent
1149  * block_read_full_page() against that page will discover all the uptodate
1150  * buffers, will set the page uptodate and will perform no I/O.
1151  */
1152
1153 /**
1154  * mark_buffer_dirty - mark a buffer_head as needing writeout
1155  * @bh: the buffer_head to mark dirty
1156  *
1157  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1158  * backing page dirty, then tag the page as dirty in its address_space's radix
1159  * tree and then attach the address_space's inode to its superblock's dirty
1160  * inode list.
1161  *
1162  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1163  * mapping->tree_lock and the global inode_lock.
1164  */
1165 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1166 {
1167         WARN_ON_ONCE(!buffer_uptodate(bh));
1168         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1169                 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1170 }
1171
1172 /*
1173  * Decrement a buffer_head's reference count.  If all buffers against a page
1174  * have zero reference count, are clean and unlocked, and if the page is clean
1175  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177  * a page but it ends up not being freed, and buffers may later be reattached).
1178  */
1179 void __brelse(struct buffer_head * buf)
1180 {
1181         if (atomic_read(&buf->b_count)) {
1182                 put_bh(buf);
1183                 return;
1184         }
1185         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1186         WARN_ON(1);
1187 }
1188
1189 /*
1190  * bforget() is like brelse(), except it discards any
1191  * potentially dirty data.
1192  */
1193 void __bforget(struct buffer_head *bh)
1194 {
1195         clear_buffer_dirty(bh);
1196         if (!list_empty(&bh->b_assoc_buffers)) {
1197                 struct address_space *buffer_mapping = bh->b_page->mapping;
1198
1199                 spin_lock(&buffer_mapping->private_lock);
1200                 list_del_init(&bh->b_assoc_buffers);
1201                 bh->b_assoc_map = NULL;
1202                 spin_unlock(&buffer_mapping->private_lock);
1203         }
1204         __brelse(bh);
1205 }
1206
1207 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1208 {
1209         lock_buffer(bh);
1210         if (buffer_uptodate(bh)) {
1211                 unlock_buffer(bh);
1212                 return bh;
1213         } else {
1214                 get_bh(bh);
1215                 bh->b_end_io = end_buffer_read_sync;
1216                 submit_bh(READ, bh);
1217                 wait_on_buffer(bh);
1218                 if (buffer_uptodate(bh))
1219                         return bh;
1220         }
1221         brelse(bh);
1222         return NULL;
1223 }
1224
1225 /*
1226  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1227  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1228  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1229  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1230  * CPU's LRUs at the same time.
1231  *
1232  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1233  * sb_find_get_block().
1234  *
1235  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1236  * a local interrupt disable for that.
1237  */
1238
1239 #define BH_LRU_SIZE     8
1240
1241 struct bh_lru {
1242         struct buffer_head *bhs[BH_LRU_SIZE];
1243 };
1244
1245 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1246
1247 #ifdef CONFIG_SMP
1248 #define bh_lru_lock()   local_irq_disable()
1249 #define bh_lru_unlock() local_irq_enable()
1250 #else
1251 #define bh_lru_lock()   preempt_disable()
1252 #define bh_lru_unlock() preempt_enable()
1253 #endif
1254
1255 static inline void check_irqs_on(void)
1256 {
1257 #ifdef irqs_disabled
1258         BUG_ON(irqs_disabled());
1259 #endif
1260 }
1261
1262 /*
1263  * The LRU management algorithm is dopey-but-simple.  Sorry.
1264  */
1265 static void bh_lru_install(struct buffer_head *bh)
1266 {
1267         struct buffer_head *evictee = NULL;
1268         struct bh_lru *lru;
1269
1270         check_irqs_on();
1271         bh_lru_lock();
1272         lru = &__get_cpu_var(bh_lrus);
1273         if (lru->bhs[0] != bh) {
1274                 struct buffer_head *bhs[BH_LRU_SIZE];
1275                 int in;
1276                 int out = 0;
1277
1278                 get_bh(bh);
1279                 bhs[out++] = bh;
1280                 for (in = 0; in < BH_LRU_SIZE; in++) {
1281                         struct buffer_head *bh2 = lru->bhs[in];
1282
1283                         if (bh2 == bh) {
1284                                 __brelse(bh2);
1285                         } else {
1286                                 if (out >= BH_LRU_SIZE) {
1287                                         BUG_ON(evictee != NULL);
1288                                         evictee = bh2;
1289                                 } else {
1290                                         bhs[out++] = bh2;
1291                                 }
1292                         }
1293                 }
1294                 while (out < BH_LRU_SIZE)
1295                         bhs[out++] = NULL;
1296                 memcpy(lru->bhs, bhs, sizeof(bhs));
1297         }
1298         bh_lru_unlock();
1299
1300         if (evictee)
1301                 __brelse(evictee);
1302 }
1303
1304 /*
1305  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1306  */
1307 static struct buffer_head *
1308 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1309 {
1310         struct buffer_head *ret = NULL;
1311         struct bh_lru *lru;
1312         unsigned int i;
1313
1314         check_irqs_on();
1315         bh_lru_lock();
1316         lru = &__get_cpu_var(bh_lrus);
1317         for (i = 0; i < BH_LRU_SIZE; i++) {
1318                 struct buffer_head *bh = lru->bhs[i];
1319
1320                 if (bh && bh->b_bdev == bdev &&
1321                                 bh->b_blocknr == block && bh->b_size == size) {
1322                         if (i) {
1323                                 while (i) {
1324                                         lru->bhs[i] = lru->bhs[i - 1];
1325                                         i--;
1326                                 }
1327                                 lru->bhs[0] = bh;
1328                         }
1329                         get_bh(bh);
1330                         ret = bh;
1331                         break;
1332                 }
1333         }
1334         bh_lru_unlock();
1335         return ret;
1336 }
1337
1338 /*
1339  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1340  * it in the LRU and mark it as accessed.  If it is not present then return
1341  * NULL
1342  */
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347
1348         if (bh == NULL) {
1349                 bh = __find_get_block_slow(bdev, block);
1350                 if (bh)
1351                         bh_lru_install(bh);
1352         }
1353         if (bh)
1354                 touch_buffer(bh);
1355         return bh;
1356 }
1357 EXPORT_SYMBOL(__find_get_block);
1358
1359 /*
1360  * __getblk will locate (and, if necessary, create) the buffer_head
1361  * which corresponds to the passed block_device, block and size. The
1362  * returned buffer has its reference count incremented.
1363  *
1364  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1365  * illegal block number, __getblk() will happily return a buffer_head
1366  * which represents the non-existent block.  Very weird.
1367  *
1368  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1369  * attempt is failing.  FIXME, perhaps?
1370  */
1371 struct buffer_head *
1372 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374         struct buffer_head *bh = __find_get_block(bdev, block, size);
1375
1376         might_sleep();
1377         if (bh == NULL)
1378                 bh = __getblk_slow(bdev, block, size);
1379         return bh;
1380 }
1381 EXPORT_SYMBOL(__getblk);
1382
1383 /*
1384  * Do async read-ahead on a buffer..
1385  */
1386 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1387 {
1388         struct buffer_head *bh = __getblk(bdev, block, size);
1389         if (likely(bh)) {
1390                 ll_rw_block(READA, 1, &bh);
1391                 brelse(bh);
1392         }
1393 }
1394 EXPORT_SYMBOL(__breadahead);
1395
1396 /**
1397  *  __bread() - reads a specified block and returns the bh
1398  *  @bdev: the block_device to read from
1399  *  @block: number of block
1400  *  @size: size (in bytes) to read
1401  * 
1402  *  Reads a specified block, and returns buffer head that contains it.
1403  *  It returns NULL if the block was unreadable.
1404  */
1405 struct buffer_head *
1406 __bread(struct block_device *bdev, sector_t block, unsigned size)
1407 {
1408         struct buffer_head *bh = __getblk(bdev, block, size);
1409
1410         if (likely(bh) && !buffer_uptodate(bh))
1411                 bh = __bread_slow(bh);
1412         return bh;
1413 }
1414 EXPORT_SYMBOL(__bread);
1415
1416 /*
1417  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1418  * This doesn't race because it runs in each cpu either in irq
1419  * or with preempt disabled.
1420  */
1421 static void invalidate_bh_lru(void *arg)
1422 {
1423         struct bh_lru *b = &get_cpu_var(bh_lrus);
1424         int i;
1425
1426         for (i = 0; i < BH_LRU_SIZE; i++) {
1427                 brelse(b->bhs[i]);
1428                 b->bhs[i] = NULL;
1429         }
1430         put_cpu_var(bh_lrus);
1431 }
1432         
1433 void invalidate_bh_lrus(void)
1434 {
1435         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1436 }
1437
1438 void set_bh_page(struct buffer_head *bh,
1439                 struct page *page, unsigned long offset)
1440 {
1441         bh->b_page = page;
1442         BUG_ON(offset >= PAGE_SIZE);
1443         if (PageHighMem(page))
1444                 /*
1445                  * This catches illegal uses and preserves the offset:
1446                  */
1447                 bh->b_data = (char *)(0 + offset);
1448         else
1449                 bh->b_data = page_address(page) + offset;
1450 }
1451 EXPORT_SYMBOL(set_bh_page);
1452
1453 /*
1454  * Called when truncating a buffer on a page completely.
1455  */
1456 static void discard_buffer(struct buffer_head * bh)
1457 {
1458         lock_buffer(bh);
1459         clear_buffer_dirty(bh);
1460         bh->b_bdev = NULL;
1461         clear_buffer_mapped(bh);
1462         clear_buffer_req(bh);
1463         clear_buffer_new(bh);
1464         clear_buffer_delay(bh);
1465         clear_buffer_unwritten(bh);
1466         unlock_buffer(bh);
1467 }
1468
1469 /**
1470  * block_invalidatepage - invalidate part of all of a buffer-backed page
1471  *
1472  * @page: the page which is affected
1473  * @offset: the index of the truncation point
1474  *
1475  * block_invalidatepage() is called when all or part of the page has become
1476  * invalidatedby a truncate operation.
1477  *
1478  * block_invalidatepage() does not have to release all buffers, but it must
1479  * ensure that no dirty buffer is left outside @offset and that no I/O
1480  * is underway against any of the blocks which are outside the truncation
1481  * point.  Because the caller is about to free (and possibly reuse) those
1482  * blocks on-disk.
1483  */
1484 void block_invalidatepage(struct page *page, unsigned long offset)
1485 {
1486         struct buffer_head *head, *bh, *next;
1487         unsigned int curr_off = 0;
1488
1489         BUG_ON(!PageLocked(page));
1490         if (!page_has_buffers(page))
1491                 goto out;
1492
1493         head = page_buffers(page);
1494         bh = head;
1495         do {
1496                 unsigned int next_off = curr_off + bh->b_size;
1497                 next = bh->b_this_page;
1498
1499                 /*
1500                  * is this block fully invalidated?
1501                  */
1502                 if (offset <= curr_off)
1503                         discard_buffer(bh);
1504                 curr_off = next_off;
1505                 bh = next;
1506         } while (bh != head);
1507
1508         /*
1509          * We release buffers only if the entire page is being invalidated.
1510          * The get_block cached value has been unconditionally invalidated,
1511          * so real IO is not possible anymore.
1512          */
1513         if (offset == 0)
1514                 try_to_release_page(page, 0);
1515 out:
1516         return;
1517 }
1518 EXPORT_SYMBOL(block_invalidatepage);
1519
1520 /*
1521  * We attach and possibly dirty the buffers atomically wrt
1522  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1523  * is already excluded via the page lock.
1524  */
1525 void create_empty_buffers(struct page *page,
1526                         unsigned long blocksize, unsigned long b_state)
1527 {
1528         struct buffer_head *bh, *head, *tail;
1529
1530         head = alloc_page_buffers(page, blocksize, 1);
1531         bh = head;
1532         do {
1533                 bh->b_state |= b_state;
1534                 tail = bh;
1535                 bh = bh->b_this_page;
1536         } while (bh);
1537         tail->b_this_page = head;
1538
1539         spin_lock(&page->mapping->private_lock);
1540         if (PageUptodate(page) || PageDirty(page)) {
1541                 bh = head;
1542                 do {
1543                         if (PageDirty(page))
1544                                 set_buffer_dirty(bh);
1545                         if (PageUptodate(page))
1546                                 set_buffer_uptodate(bh);
1547                         bh = bh->b_this_page;
1548                 } while (bh != head);
1549         }
1550         attach_page_buffers(page, head);
1551         spin_unlock(&page->mapping->private_lock);
1552 }
1553 EXPORT_SYMBOL(create_empty_buffers);
1554
1555 /*
1556  * We are taking a block for data and we don't want any output from any
1557  * buffer-cache aliases starting from return from that function and
1558  * until the moment when something will explicitly mark the buffer
1559  * dirty (hopefully that will not happen until we will free that block ;-)
1560  * We don't even need to mark it not-uptodate - nobody can expect
1561  * anything from a newly allocated buffer anyway. We used to used
1562  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1563  * don't want to mark the alias unmapped, for example - it would confuse
1564  * anyone who might pick it with bread() afterwards...
1565  *
1566  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1567  * be writeout I/O going on against recently-freed buffers.  We don't
1568  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1569  * only if we really need to.  That happens here.
1570  */
1571 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1572 {
1573         struct buffer_head *old_bh;
1574
1575         might_sleep();
1576
1577         old_bh = __find_get_block_slow(bdev, block);
1578         if (old_bh) {
1579                 clear_buffer_dirty(old_bh);
1580                 wait_on_buffer(old_bh);
1581                 clear_buffer_req(old_bh);
1582                 __brelse(old_bh);
1583         }
1584 }
1585 EXPORT_SYMBOL(unmap_underlying_metadata);
1586
1587 /*
1588  * NOTE! All mapped/uptodate combinations are valid:
1589  *
1590  *      Mapped  Uptodate        Meaning
1591  *
1592  *      No      No              "unknown" - must do get_block()
1593  *      No      Yes             "hole" - zero-filled
1594  *      Yes     No              "allocated" - allocated on disk, not read in
1595  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1596  *
1597  * "Dirty" is valid only with the last case (mapped+uptodate).
1598  */
1599
1600 /*
1601  * While block_write_full_page is writing back the dirty buffers under
1602  * the page lock, whoever dirtied the buffers may decide to clean them
1603  * again at any time.  We handle that by only looking at the buffer
1604  * state inside lock_buffer().
1605  *
1606  * If block_write_full_page() is called for regular writeback
1607  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1608  * locked buffer.   This only can happen if someone has written the buffer
1609  * directly, with submit_bh().  At the address_space level PageWriteback
1610  * prevents this contention from occurring.
1611  */
1612 static int __block_write_full_page(struct inode *inode, struct page *page,
1613                         get_block_t *get_block, struct writeback_control *wbc)
1614 {
1615         int err;
1616         sector_t block;
1617         sector_t last_block;
1618         struct buffer_head *bh, *head;
1619         const unsigned blocksize = 1 << inode->i_blkbits;
1620         int nr_underway = 0;
1621
1622         BUG_ON(!PageLocked(page));
1623
1624         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1625
1626         if (!page_has_buffers(page)) {
1627                 create_empty_buffers(page, blocksize,
1628                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1629         }
1630
1631         /*
1632          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1633          * here, and the (potentially unmapped) buffers may become dirty at
1634          * any time.  If a buffer becomes dirty here after we've inspected it
1635          * then we just miss that fact, and the page stays dirty.
1636          *
1637          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1638          * handle that here by just cleaning them.
1639          */
1640
1641         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1642         head = page_buffers(page);
1643         bh = head;
1644
1645         /*
1646          * Get all the dirty buffers mapped to disk addresses and
1647          * handle any aliases from the underlying blockdev's mapping.
1648          */
1649         do {
1650                 if (block > last_block) {
1651                         /*
1652                          * mapped buffers outside i_size will occur, because
1653                          * this page can be outside i_size when there is a
1654                          * truncate in progress.
1655                          */
1656                         /*
1657                          * The buffer was zeroed by block_write_full_page()
1658                          */
1659                         clear_buffer_dirty(bh);
1660                         set_buffer_uptodate(bh);
1661                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1662                         WARN_ON(bh->b_size != blocksize);
1663                         err = get_block(inode, block, bh, 1);
1664                         if (err)
1665                                 goto recover;
1666                         if (buffer_new(bh)) {
1667                                 /* blockdev mappings never come here */
1668                                 clear_buffer_new(bh);
1669                                 unmap_underlying_metadata(bh->b_bdev,
1670                                                         bh->b_blocknr);
1671                         }
1672                 }
1673                 bh = bh->b_this_page;
1674                 block++;
1675         } while (bh != head);
1676
1677         do {
1678                 if (!buffer_mapped(bh))
1679                         continue;
1680                 /*
1681                  * If it's a fully non-blocking write attempt and we cannot
1682                  * lock the buffer then redirty the page.  Note that this can
1683                  * potentially cause a busy-wait loop from pdflush and kswapd
1684                  * activity, but those code paths have their own higher-level
1685                  * throttling.
1686                  */
1687                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1688                         lock_buffer(bh);
1689                 } else if (test_set_buffer_locked(bh)) {
1690                         redirty_page_for_writepage(wbc, page);
1691                         continue;
1692                 }
1693                 if (test_clear_buffer_dirty(bh)) {
1694                         mark_buffer_async_write(bh);
1695                 } else {
1696                         unlock_buffer(bh);
1697                 }
1698         } while ((bh = bh->b_this_page) != head);
1699
1700         /*
1701          * The page and its buffers are protected by PageWriteback(), so we can
1702          * drop the bh refcounts early.
1703          */
1704         BUG_ON(PageWriteback(page));
1705         set_page_writeback(page);
1706
1707         do {
1708                 struct buffer_head *next = bh->b_this_page;
1709                 if (buffer_async_write(bh)) {
1710                         submit_bh(WRITE, bh);
1711                         nr_underway++;
1712                 }
1713                 bh = next;
1714         } while (bh != head);
1715         unlock_page(page);
1716
1717         err = 0;
1718 done:
1719         if (nr_underway == 0) {
1720                 /*
1721                  * The page was marked dirty, but the buffers were
1722                  * clean.  Someone wrote them back by hand with
1723                  * ll_rw_block/submit_bh.  A rare case.
1724                  */
1725                 end_page_writeback(page);
1726
1727                 /*
1728                  * The page and buffer_heads can be released at any time from
1729                  * here on.
1730                  */
1731                 wbc->pages_skipped++;   /* We didn't write this page */
1732         }
1733         return err;
1734
1735 recover:
1736         /*
1737          * ENOSPC, or some other error.  We may already have added some
1738          * blocks to the file, so we need to write these out to avoid
1739          * exposing stale data.
1740          * The page is currently locked and not marked for writeback
1741          */
1742         bh = head;
1743         /* Recovery: lock and submit the mapped buffers */
1744         do {
1745                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1746                         lock_buffer(bh);
1747                         mark_buffer_async_write(bh);
1748                 } else {
1749                         /*
1750                          * The buffer may have been set dirty during
1751                          * attachment to a dirty page.
1752                          */
1753                         clear_buffer_dirty(bh);
1754                 }
1755         } while ((bh = bh->b_this_page) != head);
1756         SetPageError(page);
1757         BUG_ON(PageWriteback(page));
1758         mapping_set_error(page->mapping, err);
1759         set_page_writeback(page);
1760         do {
1761                 struct buffer_head *next = bh->b_this_page;
1762                 if (buffer_async_write(bh)) {
1763                         clear_buffer_dirty(bh);
1764                         submit_bh(WRITE, bh);
1765                         nr_underway++;
1766                 }
1767                 bh = next;
1768         } while (bh != head);
1769         unlock_page(page);
1770         goto done;
1771 }
1772
1773 static int __block_prepare_write(struct inode *inode, struct page *page,
1774                 unsigned from, unsigned to, get_block_t *get_block)
1775 {
1776         unsigned block_start, block_end;
1777         sector_t block;
1778         int err = 0;
1779         unsigned blocksize, bbits;
1780         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1781
1782         BUG_ON(!PageLocked(page));
1783         BUG_ON(from > PAGE_CACHE_SIZE);
1784         BUG_ON(to > PAGE_CACHE_SIZE);
1785         BUG_ON(from > to);
1786
1787         blocksize = 1 << inode->i_blkbits;
1788         if (!page_has_buffers(page))
1789                 create_empty_buffers(page, blocksize, 0);
1790         head = page_buffers(page);
1791
1792         bbits = inode->i_blkbits;
1793         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1794
1795         for(bh = head, block_start = 0; bh != head || !block_start;
1796             block++, block_start=block_end, bh = bh->b_this_page) {
1797                 block_end = block_start + blocksize;
1798                 if (block_end <= from || block_start >= to) {
1799                         if (PageUptodate(page)) {
1800                                 if (!buffer_uptodate(bh))
1801                                         set_buffer_uptodate(bh);
1802                         }
1803                         continue;
1804                 }
1805                 if (buffer_new(bh))
1806                         clear_buffer_new(bh);
1807                 if (!buffer_mapped(bh)) {
1808                         WARN_ON(bh->b_size != blocksize);
1809                         err = get_block(inode, block, bh, 1);
1810                         if (err)
1811                                 break;
1812                         if (buffer_new(bh)) {
1813                                 unmap_underlying_metadata(bh->b_bdev,
1814                                                         bh->b_blocknr);
1815                                 if (PageUptodate(page)) {
1816                                         clear_buffer_new(bh);
1817                                         set_buffer_uptodate(bh);
1818                                         mark_buffer_dirty(bh);
1819                                         continue;
1820                                 }
1821                                 if (block_end > to || block_start < from) {
1822                                         void *kaddr;
1823
1824                                         kaddr = kmap_atomic(page, KM_USER0);
1825                                         if (block_end > to)
1826                                                 memset(kaddr+to, 0,
1827                                                         block_end-to);
1828                                         if (block_start < from)
1829                                                 memset(kaddr+block_start,
1830                                                         0, from-block_start);
1831                                         flush_dcache_page(page);
1832                                         kunmap_atomic(kaddr, KM_USER0);
1833                                 }
1834                                 continue;
1835                         }
1836                 }
1837                 if (PageUptodate(page)) {
1838                         if (!buffer_uptodate(bh))
1839                                 set_buffer_uptodate(bh);
1840                         continue; 
1841                 }
1842                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1843                     !buffer_unwritten(bh) &&
1844                      (block_start < from || block_end > to)) {
1845                         ll_rw_block(READ, 1, &bh);
1846                         *wait_bh++=bh;
1847                 }
1848         }
1849         /*
1850          * If we issued read requests - let them complete.
1851          */
1852         while(wait_bh > wait) {
1853                 wait_on_buffer(*--wait_bh);
1854                 if (!buffer_uptodate(*wait_bh))
1855                         err = -EIO;
1856         }
1857         if (!err) {
1858                 bh = head;
1859                 do {
1860                         if (buffer_new(bh))
1861                                 clear_buffer_new(bh);
1862                 } while ((bh = bh->b_this_page) != head);
1863                 return 0;
1864         }
1865         /* Error case: */
1866         /*
1867          * Zero out any newly allocated blocks to avoid exposing stale
1868          * data.  If BH_New is set, we know that the block was newly
1869          * allocated in the above loop.
1870          */
1871         bh = head;
1872         block_start = 0;
1873         do {
1874                 block_end = block_start+blocksize;
1875                 if (block_end <= from)
1876                         goto next_bh;
1877                 if (block_start >= to)
1878                         break;
1879                 if (buffer_new(bh)) {
1880                         clear_buffer_new(bh);
1881                         zero_user_page(page, block_start, bh->b_size, KM_USER0);
1882                         set_buffer_uptodate(bh);
1883                         mark_buffer_dirty(bh);
1884                 }
1885 next_bh:
1886                 block_start = block_end;
1887                 bh = bh->b_this_page;
1888         } while (bh != head);
1889         return err;
1890 }
1891
1892 static int __block_commit_write(struct inode *inode, struct page *page,
1893                 unsigned from, unsigned to)
1894 {
1895         unsigned block_start, block_end;
1896         int partial = 0;
1897         unsigned blocksize;
1898         struct buffer_head *bh, *head;
1899
1900         blocksize = 1 << inode->i_blkbits;
1901
1902         for(bh = head = page_buffers(page), block_start = 0;
1903             bh != head || !block_start;
1904             block_start=block_end, bh = bh->b_this_page) {
1905                 block_end = block_start + blocksize;
1906                 if (block_end <= from || block_start >= to) {
1907                         if (!buffer_uptodate(bh))
1908                                 partial = 1;
1909                 } else {
1910                         set_buffer_uptodate(bh);
1911                         mark_buffer_dirty(bh);
1912                 }
1913         }
1914
1915         /*
1916          * If this is a partial write which happened to make all buffers
1917          * uptodate then we can optimize away a bogus readpage() for
1918          * the next read(). Here we 'discover' whether the page went
1919          * uptodate as a result of this (potentially partial) write.
1920          */
1921         if (!partial)
1922                 SetPageUptodate(page);
1923         return 0;
1924 }
1925
1926 /*
1927  * Generic "read page" function for block devices that have the normal
1928  * get_block functionality. This is most of the block device filesystems.
1929  * Reads the page asynchronously --- the unlock_buffer() and
1930  * set/clear_buffer_uptodate() functions propagate buffer state into the
1931  * page struct once IO has completed.
1932  */
1933 int block_read_full_page(struct page *page, get_block_t *get_block)
1934 {
1935         struct inode *inode = page->mapping->host;
1936         sector_t iblock, lblock;
1937         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1938         unsigned int blocksize;
1939         int nr, i;
1940         int fully_mapped = 1;
1941
1942         BUG_ON(!PageLocked(page));
1943         blocksize = 1 << inode->i_blkbits;
1944         if (!page_has_buffers(page))
1945                 create_empty_buffers(page, blocksize, 0);
1946         head = page_buffers(page);
1947
1948         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1949         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1950         bh = head;
1951         nr = 0;
1952         i = 0;
1953
1954         do {
1955                 if (buffer_uptodate(bh))
1956                         continue;
1957
1958                 if (!buffer_mapped(bh)) {
1959                         int err = 0;
1960
1961                         fully_mapped = 0;
1962                         if (iblock < lblock) {
1963                                 WARN_ON(bh->b_size != blocksize);
1964                                 err = get_block(inode, iblock, bh, 0);
1965                                 if (err)
1966                                         SetPageError(page);
1967                         }
1968                         if (!buffer_mapped(bh)) {
1969                                 zero_user_page(page, i * blocksize, blocksize,
1970                                                 KM_USER0);
1971                                 if (!err)
1972                                         set_buffer_uptodate(bh);
1973                                 continue;
1974                         }
1975                         /*
1976                          * get_block() might have updated the buffer
1977                          * synchronously
1978                          */
1979                         if (buffer_uptodate(bh))
1980                                 continue;
1981                 }
1982                 arr[nr++] = bh;
1983         } while (i++, iblock++, (bh = bh->b_this_page) != head);
1984
1985         if (fully_mapped)
1986                 SetPageMappedToDisk(page);
1987
1988         if (!nr) {
1989                 /*
1990                  * All buffers are uptodate - we can set the page uptodate
1991                  * as well. But not if get_block() returned an error.
1992                  */
1993                 if (!PageError(page))
1994                         SetPageUptodate(page);
1995                 unlock_page(page);
1996                 return 0;
1997         }
1998
1999         /* Stage two: lock the buffers */
2000         for (i = 0; i < nr; i++) {
2001                 bh = arr[i];
2002                 lock_buffer(bh);
2003                 mark_buffer_async_read(bh);
2004         }
2005
2006         /*
2007          * Stage 3: start the IO.  Check for uptodateness
2008          * inside the buffer lock in case another process reading
2009          * the underlying blockdev brought it uptodate (the sct fix).
2010          */
2011         for (i = 0; i < nr; i++) {
2012                 bh = arr[i];
2013                 if (buffer_uptodate(bh))
2014                         end_buffer_async_read(bh, 1);
2015                 else
2016                         submit_bh(READ, bh);
2017         }
2018         return 0;
2019 }
2020
2021 /* utility function for filesystems that need to do work on expanding
2022  * truncates.  Uses prepare/commit_write to allow the filesystem to
2023  * deal with the hole.  
2024  */
2025 static int __generic_cont_expand(struct inode *inode, loff_t size,
2026                                  pgoff_t index, unsigned int offset)
2027 {
2028         struct address_space *mapping = inode->i_mapping;
2029         struct page *page;
2030         unsigned long limit;
2031         int err;
2032
2033         err = -EFBIG;
2034         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2035         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2036                 send_sig(SIGXFSZ, current, 0);
2037                 goto out;
2038         }
2039         if (size > inode->i_sb->s_maxbytes)
2040                 goto out;
2041
2042         err = -ENOMEM;
2043         page = grab_cache_page(mapping, index);
2044         if (!page)
2045                 goto out;
2046         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2047         if (err) {
2048                 /*
2049                  * ->prepare_write() may have instantiated a few blocks
2050                  * outside i_size.  Trim these off again.
2051                  */
2052                 unlock_page(page);
2053                 page_cache_release(page);
2054                 vmtruncate(inode, inode->i_size);
2055                 goto out;
2056         }
2057
2058         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2059
2060         unlock_page(page);
2061         page_cache_release(page);
2062         if (err > 0)
2063                 err = 0;
2064 out:
2065         return err;
2066 }
2067
2068 int generic_cont_expand(struct inode *inode, loff_t size)
2069 {
2070         pgoff_t index;
2071         unsigned int offset;
2072
2073         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2074
2075         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2076         ** skip the prepare.  make sure we never send an offset for the start
2077         ** of a block
2078         */
2079         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2080                 /* caller must handle this extra byte. */
2081                 offset++;
2082         }
2083         index = size >> PAGE_CACHE_SHIFT;
2084
2085         return __generic_cont_expand(inode, size, index, offset);
2086 }
2087
2088 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2089 {
2090         loff_t pos = size - 1;
2091         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2092         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2093
2094         /* prepare/commit_write can handle even if from==to==start of block. */
2095         return __generic_cont_expand(inode, size, index, offset);
2096 }
2097
2098 /*
2099  * For moronic filesystems that do not allow holes in file.
2100  * We may have to extend the file.
2101  */
2102
2103 int cont_prepare_write(struct page *page, unsigned offset,
2104                 unsigned to, get_block_t *get_block, loff_t *bytes)
2105 {
2106         struct address_space *mapping = page->mapping;
2107         struct inode *inode = mapping->host;
2108         struct page *new_page;
2109         pgoff_t pgpos;
2110         long status;
2111         unsigned zerofrom;
2112         unsigned blocksize = 1 << inode->i_blkbits;
2113
2114         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2115                 status = -ENOMEM;
2116                 new_page = grab_cache_page(mapping, pgpos);
2117                 if (!new_page)
2118                         goto out;
2119                 /* we might sleep */
2120                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2121                         unlock_page(new_page);
2122                         page_cache_release(new_page);
2123                         continue;
2124                 }
2125                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2126                 if (zerofrom & (blocksize-1)) {
2127                         *bytes |= (blocksize-1);
2128                         (*bytes)++;
2129                 }
2130                 status = __block_prepare_write(inode, new_page, zerofrom,
2131                                                 PAGE_CACHE_SIZE, get_block);
2132                 if (status)
2133                         goto out_unmap;
2134                 zero_user_page(new_page, zerofrom, PAGE_CACHE_SIZE - zerofrom,
2135                                 KM_USER0);
2136                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2137                 unlock_page(new_page);
2138                 page_cache_release(new_page);
2139         }
2140
2141         if (page->index < pgpos) {
2142                 /* completely inside the area */
2143                 zerofrom = offset;
2144         } else {
2145                 /* page covers the boundary, find the boundary offset */
2146                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2147
2148                 /* if we will expand the thing last block will be filled */
2149                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2150                         *bytes |= (blocksize-1);
2151                         (*bytes)++;
2152                 }
2153
2154                 /* starting below the boundary? Nothing to zero out */
2155                 if (offset <= zerofrom)
2156                         zerofrom = offset;
2157         }
2158         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2159         if (status)
2160                 goto out1;
2161         if (zerofrom < offset) {
2162                 zero_user_page(page, zerofrom, offset - zerofrom, KM_USER0);
2163                 __block_commit_write(inode, page, zerofrom, offset);
2164         }
2165         return 0;
2166 out1:
2167         ClearPageUptodate(page);
2168         return status;
2169
2170 out_unmap:
2171         ClearPageUptodate(new_page);
2172         unlock_page(new_page);
2173         page_cache_release(new_page);
2174 out:
2175         return status;
2176 }
2177
2178 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2179                         get_block_t *get_block)
2180 {
2181         struct inode *inode = page->mapping->host;
2182         int err = __block_prepare_write(inode, page, from, to, get_block);
2183         if (err)
2184                 ClearPageUptodate(page);
2185         return err;
2186 }
2187
2188 int block_commit_write(struct page *page, unsigned from, unsigned to)
2189 {
2190         struct inode *inode = page->mapping->host;
2191         __block_commit_write(inode,page,from,to);
2192         return 0;
2193 }
2194
2195 int generic_commit_write(struct file *file, struct page *page,
2196                 unsigned from, unsigned to)
2197 {
2198         struct inode *inode = page->mapping->host;
2199         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2200         __block_commit_write(inode,page,from,to);
2201         /*
2202          * No need to use i_size_read() here, the i_size
2203          * cannot change under us because we hold i_mutex.
2204          */
2205         if (pos > inode->i_size) {
2206                 i_size_write(inode, pos);
2207                 mark_inode_dirty(inode);
2208         }
2209         return 0;
2210 }
2211
2212 /*
2213  * block_page_mkwrite() is not allowed to change the file size as it gets
2214  * called from a page fault handler when a page is first dirtied. Hence we must
2215  * be careful to check for EOF conditions here. We set the page up correctly
2216  * for a written page which means we get ENOSPC checking when writing into
2217  * holes and correct delalloc and unwritten extent mapping on filesystems that
2218  * support these features.
2219  *
2220  * We are not allowed to take the i_mutex here so we have to play games to
2221  * protect against truncate races as the page could now be beyond EOF.  Because
2222  * vmtruncate() writes the inode size before removing pages, once we have the
2223  * page lock we can determine safely if the page is beyond EOF. If it is not
2224  * beyond EOF, then the page is guaranteed safe against truncation until we
2225  * unlock the page.
2226  */
2227 int
2228 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2229                    get_block_t get_block)
2230 {
2231         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2232         unsigned long end;
2233         loff_t size;
2234         int ret = -EINVAL;
2235
2236         lock_page(page);
2237         size = i_size_read(inode);
2238         if ((page->mapping != inode->i_mapping) ||
2239             (page_offset(page) > size)) {
2240                 /* page got truncated out from underneath us */
2241                 goto out_unlock;
2242         }
2243
2244         /* page is wholly or partially inside EOF */
2245         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2246                 end = size & ~PAGE_CACHE_MASK;
2247         else
2248                 end = PAGE_CACHE_SIZE;
2249
2250         ret = block_prepare_write(page, 0, end, get_block);
2251         if (!ret)
2252                 ret = block_commit_write(page, 0, end);
2253
2254 out_unlock:
2255         unlock_page(page);
2256         return ret;
2257 }
2258
2259 /*
2260  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2261  * immediately, while under the page lock.  So it needs a special end_io
2262  * handler which does not touch the bh after unlocking it.
2263  */
2264 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2265 {
2266         __end_buffer_read_notouch(bh, uptodate);
2267 }
2268
2269 /*
2270  * On entry, the page is fully not uptodate.
2271  * On exit the page is fully uptodate in the areas outside (from,to)
2272  */
2273 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2274                         get_block_t *get_block)
2275 {
2276         struct inode *inode = page->mapping->host;
2277         const unsigned blkbits = inode->i_blkbits;
2278         const unsigned blocksize = 1 << blkbits;
2279         struct buffer_head *head, *bh;
2280         unsigned block_in_page;
2281         unsigned block_start, block_end;
2282         sector_t block_in_file;
2283         char *kaddr;
2284         int nr_reads = 0;
2285         int ret = 0;
2286         int is_mapped_to_disk = 1;
2287
2288         if (page_has_buffers(page))
2289                 return block_prepare_write(page, from, to, get_block);
2290
2291         if (PageMappedToDisk(page))
2292                 return 0;
2293
2294         /*
2295          * Allocate buffers so that we can keep track of state, and potentially
2296          * attach them to the page if an error occurs. In the common case of
2297          * no error, they will just be freed again without ever being attached
2298          * to the page (which is all OK, because we're under the page lock).
2299          *
2300          * Be careful: the buffer linked list is a NULL terminated one, rather
2301          * than the circular one we're used to.
2302          */
2303         head = alloc_page_buffers(page, blocksize, 0);
2304         if (!head)
2305                 return -ENOMEM;
2306
2307         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2308
2309         /*
2310          * We loop across all blocks in the page, whether or not they are
2311          * part of the affected region.  This is so we can discover if the
2312          * page is fully mapped-to-disk.
2313          */
2314         for (block_start = 0, block_in_page = 0, bh = head;
2315                   block_start < PAGE_CACHE_SIZE;
2316                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2317                 int create;
2318
2319                 block_end = block_start + blocksize;
2320                 bh->b_state = 0;
2321                 create = 1;
2322                 if (block_start >= to)
2323                         create = 0;
2324                 ret = get_block(inode, block_in_file + block_in_page,
2325                                         bh, create);
2326                 if (ret)
2327                         goto failed;
2328                 if (!buffer_mapped(bh))
2329                         is_mapped_to_disk = 0;
2330                 if (buffer_new(bh))
2331                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2332                 if (PageUptodate(page)) {
2333                         set_buffer_uptodate(bh);
2334                         continue;
2335                 }
2336                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2337                         kaddr = kmap_atomic(page, KM_USER0);
2338                         if (block_start < from)
2339                                 memset(kaddr+block_start, 0, from-block_start);
2340                         if (block_end > to)
2341                                 memset(kaddr + to, 0, block_end - to);
2342                         flush_dcache_page(page);
2343                         kunmap_atomic(kaddr, KM_USER0);
2344                         continue;
2345                 }
2346                 if (buffer_uptodate(bh))
2347                         continue;       /* reiserfs does this */
2348                 if (block_start < from || block_end > to) {
2349                         lock_buffer(bh);
2350                         bh->b_end_io = end_buffer_read_nobh;
2351                         submit_bh(READ, bh);
2352                         nr_reads++;
2353                 }
2354         }
2355
2356         if (nr_reads) {
2357                 /*
2358                  * The page is locked, so these buffers are protected from
2359                  * any VM or truncate activity.  Hence we don't need to care
2360                  * for the buffer_head refcounts.
2361                  */
2362                 for (bh = head; bh; bh = bh->b_this_page) {
2363                         wait_on_buffer(bh);
2364                         if (!buffer_uptodate(bh))
2365                                 ret = -EIO;
2366                 }
2367                 if (ret)
2368                         goto failed;
2369         }
2370
2371         if (is_mapped_to_disk)
2372                 SetPageMappedToDisk(page);
2373
2374         do {
2375                 bh = head;
2376                 head = head->b_this_page;
2377                 free_buffer_head(bh);
2378         } while (head);
2379
2380         return 0;
2381
2382 failed:
2383         /*
2384          * Error recovery is a bit difficult. We need to zero out blocks that
2385          * were newly allocated, and dirty them to ensure they get written out.
2386          * Buffers need to be attached to the page at this point, otherwise
2387          * the handling of potential IO errors during writeout would be hard
2388          * (could try doing synchronous writeout, but what if that fails too?)
2389          */
2390         spin_lock(&page->mapping->private_lock);
2391         bh = head;
2392         block_start = 0;
2393         do {
2394                 if (PageUptodate(page))
2395                         set_buffer_uptodate(bh);
2396                 if (PageDirty(page))
2397                         set_buffer_dirty(bh);
2398
2399                 block_end = block_start+blocksize;
2400                 if (block_end <= from)
2401                         goto next;
2402                 if (block_start >= to)
2403                         goto next;
2404
2405                 if (buffer_new(bh)) {
2406                         clear_buffer_new(bh);
2407                         if (!buffer_uptodate(bh)) {
2408                                 zero_user_page(page, block_start, bh->b_size, KM_USER0);
2409                                 set_buffer_uptodate(bh);
2410                         }
2411                         mark_buffer_dirty(bh);
2412                 }
2413 next:
2414                 block_start = block_end;
2415                 if (!bh->b_this_page)
2416                         bh->b_this_page = head;
2417                 bh = bh->b_this_page;
2418         } while (bh != head);
2419         attach_page_buffers(page, head);
2420         spin_unlock(&page->mapping->private_lock);
2421
2422         return ret;
2423 }
2424 EXPORT_SYMBOL(nobh_prepare_write);
2425
2426 /*
2427  * Make sure any changes to nobh_commit_write() are reflected in
2428  * nobh_truncate_page(), since it doesn't call commit_write().
2429  */
2430 int nobh_commit_write(struct file *file, struct page *page,
2431                 unsigned from, unsigned to)
2432 {
2433         struct inode *inode = page->mapping->host;
2434         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2435
2436         if (page_has_buffers(page))
2437                 return generic_commit_write(file, page, from, to);
2438
2439         SetPageUptodate(page);
2440         set_page_dirty(page);
2441         if (pos > inode->i_size) {
2442                 i_size_write(inode, pos);
2443                 mark_inode_dirty(inode);
2444         }
2445         return 0;
2446 }
2447 EXPORT_SYMBOL(nobh_commit_write);
2448
2449 /*
2450  * nobh_writepage() - based on block_full_write_page() except
2451  * that it tries to operate without attaching bufferheads to
2452  * the page.
2453  */
2454 int nobh_writepage(struct page *page, get_block_t *get_block,
2455                         struct writeback_control *wbc)
2456 {
2457         struct inode * const inode = page->mapping->host;
2458         loff_t i_size = i_size_read(inode);
2459         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2460         unsigned offset;
2461         int ret;
2462
2463         /* Is the page fully inside i_size? */
2464         if (page->index < end_index)
2465                 goto out;
2466
2467         /* Is the page fully outside i_size? (truncate in progress) */
2468         offset = i_size & (PAGE_CACHE_SIZE-1);
2469         if (page->index >= end_index+1 || !offset) {
2470                 /*
2471                  * The page may have dirty, unmapped buffers.  For example,
2472                  * they may have been added in ext3_writepage().  Make them
2473                  * freeable here, so the page does not leak.
2474                  */
2475 #if 0
2476                 /* Not really sure about this  - do we need this ? */
2477                 if (page->mapping->a_ops->invalidatepage)
2478                         page->mapping->a_ops->invalidatepage(page, offset);
2479 #endif
2480                 unlock_page(page);
2481                 return 0; /* don't care */
2482         }
2483
2484         /*
2485          * The page straddles i_size.  It must be zeroed out on each and every
2486          * writepage invocation because it may be mmapped.  "A file is mapped
2487          * in multiples of the page size.  For a file that is not a multiple of
2488          * the  page size, the remaining memory is zeroed when mapped, and
2489          * writes to that region are not written out to the file."
2490          */
2491         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2492 out:
2493         ret = mpage_writepage(page, get_block, wbc);
2494         if (ret == -EAGAIN)
2495                 ret = __block_write_full_page(inode, page, get_block, wbc);
2496         return ret;
2497 }
2498 EXPORT_SYMBOL(nobh_writepage);
2499
2500 /*
2501  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2502  */
2503 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2504 {
2505         struct inode *inode = mapping->host;
2506         unsigned blocksize = 1 << inode->i_blkbits;
2507         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2508         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2509         unsigned to;
2510         struct page *page;
2511         const struct address_space_operations *a_ops = mapping->a_ops;
2512         int ret = 0;
2513
2514         if ((offset & (blocksize - 1)) == 0)
2515                 goto out;
2516
2517         ret = -ENOMEM;
2518         page = grab_cache_page(mapping, index);
2519         if (!page)
2520                 goto out;
2521
2522         to = (offset + blocksize) & ~(blocksize - 1);
2523         ret = a_ops->prepare_write(NULL, page, offset, to);
2524         if (ret == 0) {
2525                 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset,
2526                                 KM_USER0);
2527                 /*
2528                  * It would be more correct to call aops->commit_write()
2529                  * here, but this is more efficient.
2530                  */
2531                 SetPageUptodate(page);
2532                 set_page_dirty(page);
2533         }
2534         unlock_page(page);
2535         page_cache_release(page);
2536 out:
2537         return ret;
2538 }
2539 EXPORT_SYMBOL(nobh_truncate_page);
2540
2541 int block_truncate_page(struct address_space *mapping,
2542                         loff_t from, get_block_t *get_block)
2543 {
2544         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2545         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2546         unsigned blocksize;
2547         sector_t iblock;
2548         unsigned length, pos;
2549         struct inode *inode = mapping->host;
2550         struct page *page;
2551         struct buffer_head *bh;
2552         int err;
2553
2554         blocksize = 1 << inode->i_blkbits;
2555         length = offset & (blocksize - 1);
2556
2557         /* Block boundary? Nothing to do */
2558         if (!length)
2559                 return 0;
2560
2561         length = blocksize - length;
2562         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2563         
2564         page = grab_cache_page(mapping, index);
2565         err = -ENOMEM;
2566         if (!page)
2567                 goto out;
2568
2569         if (!page_has_buffers(page))
2570                 create_empty_buffers(page, blocksize, 0);
2571
2572         /* Find the buffer that contains "offset" */
2573         bh = page_buffers(page);
2574         pos = blocksize;
2575         while (offset >= pos) {
2576                 bh = bh->b_this_page;
2577                 iblock++;
2578                 pos += blocksize;
2579         }
2580
2581         err = 0;
2582         if (!buffer_mapped(bh)) {
2583                 WARN_ON(bh->b_size != blocksize);
2584                 err = get_block(inode, iblock, bh, 0);
2585                 if (err)
2586                         goto unlock;
2587                 /* unmapped? It's a hole - nothing to do */
2588                 if (!buffer_mapped(bh))
2589                         goto unlock;
2590         }
2591
2592         /* Ok, it's mapped. Make sure it's up-to-date */
2593         if (PageUptodate(page))
2594                 set_buffer_uptodate(bh);
2595
2596         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2597                 err = -EIO;
2598                 ll_rw_block(READ, 1, &bh);
2599                 wait_on_buffer(bh);
2600                 /* Uhhuh. Read error. Complain and punt. */
2601                 if (!buffer_uptodate(bh))
2602                         goto unlock;
2603         }
2604
2605         zero_user_page(page, offset, length, KM_USER0);
2606         mark_buffer_dirty(bh);
2607         err = 0;
2608
2609 unlock:
2610         unlock_page(page);
2611         page_cache_release(page);
2612 out:
2613         return err;
2614 }
2615
2616 /*
2617  * The generic ->writepage function for buffer-backed address_spaces
2618  */
2619 int block_write_full_page(struct page *page, get_block_t *get_block,
2620                         struct writeback_control *wbc)
2621 {
2622         struct inode * const inode = page->mapping->host;
2623         loff_t i_size = i_size_read(inode);
2624         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2625         unsigned offset;
2626
2627         /* Is the page fully inside i_size? */
2628         if (page->index < end_index)
2629                 return __block_write_full_page(inode, page, get_block, wbc);
2630
2631         /* Is the page fully outside i_size? (truncate in progress) */
2632         offset = i_size & (PAGE_CACHE_SIZE-1);
2633         if (page->index >= end_index+1 || !offset) {
2634                 /*
2635                  * The page may have dirty, unmapped buffers.  For example,
2636                  * they may have been added in ext3_writepage().  Make them
2637                  * freeable here, so the page does not leak.
2638                  */
2639                 do_invalidatepage(page, 0);
2640                 unlock_page(page);
2641                 return 0; /* don't care */
2642         }
2643
2644         /*
2645          * The page straddles i_size.  It must be zeroed out on each and every
2646          * writepage invokation because it may be mmapped.  "A file is mapped
2647          * in multiples of the page size.  For a file that is not a multiple of
2648          * the  page size, the remaining memory is zeroed when mapped, and
2649          * writes to that region are not written out to the file."
2650          */
2651         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2652         return __block_write_full_page(inode, page, get_block, wbc);
2653 }
2654
2655 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2656                             get_block_t *get_block)
2657 {
2658         struct buffer_head tmp;
2659         struct inode *inode = mapping->host;
2660         tmp.b_state = 0;
2661         tmp.b_blocknr = 0;
2662         tmp.b_size = 1 << inode->i_blkbits;
2663         get_block(inode, block, &tmp, 0);
2664         return tmp.b_blocknr;
2665 }
2666
2667 static void end_bio_bh_io_sync(struct bio *bio, int err)
2668 {
2669         struct buffer_head *bh = bio->bi_private;
2670
2671         if (err == -EOPNOTSUPP) {
2672                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2673                 set_bit(BH_Eopnotsupp, &bh->b_state);
2674         }
2675
2676         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2677         bio_put(bio);
2678 }
2679
2680 int submit_bh(int rw, struct buffer_head * bh)
2681 {
2682         struct bio *bio;
2683         int ret = 0;
2684
2685         BUG_ON(!buffer_locked(bh));
2686         BUG_ON(!buffer_mapped(bh));
2687         BUG_ON(!bh->b_end_io);
2688
2689         if (buffer_ordered(bh) && (rw == WRITE))
2690                 rw = WRITE_BARRIER;
2691
2692         /*
2693          * Only clear out a write error when rewriting, should this
2694          * include WRITE_SYNC as well?
2695          */
2696         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2697                 clear_buffer_write_io_error(bh);
2698
2699         /*
2700          * from here on down, it's all bio -- do the initial mapping,
2701          * submit_bio -> generic_make_request may further map this bio around
2702          */
2703         bio = bio_alloc(GFP_NOIO, 1);
2704
2705         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2706         bio->bi_bdev = bh->b_bdev;
2707         bio->bi_io_vec[0].bv_page = bh->b_page;
2708         bio->bi_io_vec[0].bv_len = bh->b_size;
2709         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2710
2711         bio->bi_vcnt = 1;
2712         bio->bi_idx = 0;
2713         bio->bi_size = bh->b_size;
2714
2715         bio->bi_end_io = end_bio_bh_io_sync;
2716         bio->bi_private = bh;
2717
2718         bio_get(bio);
2719         submit_bio(rw, bio);
2720
2721         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2722                 ret = -EOPNOTSUPP;
2723
2724         bio_put(bio);
2725         return ret;
2726 }
2727
2728 /**
2729  * ll_rw_block: low-level access to block devices (DEPRECATED)
2730  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2731  * @nr: number of &struct buffer_heads in the array
2732  * @bhs: array of pointers to &struct buffer_head
2733  *
2734  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2735  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2736  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2737  * are sent to disk. The fourth %READA option is described in the documentation
2738  * for generic_make_request() which ll_rw_block() calls.
2739  *
2740  * This function drops any buffer that it cannot get a lock on (with the
2741  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2742  * clean when doing a write request, and any buffer that appears to be
2743  * up-to-date when doing read request.  Further it marks as clean buffers that
2744  * are processed for writing (the buffer cache won't assume that they are
2745  * actually clean until the buffer gets unlocked).
2746  *
2747  * ll_rw_block sets b_end_io to simple completion handler that marks
2748  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2749  * any waiters. 
2750  *
2751  * All of the buffers must be for the same device, and must also be a
2752  * multiple of the current approved size for the device.
2753  */
2754 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2755 {
2756         int i;
2757
2758         for (i = 0; i < nr; i++) {
2759                 struct buffer_head *bh = bhs[i];
2760
2761                 if (rw == SWRITE)
2762                         lock_buffer(bh);
2763                 else if (test_set_buffer_locked(bh))
2764                         continue;
2765
2766                 if (rw == WRITE || rw == SWRITE) {
2767                         if (test_clear_buffer_dirty(bh)) {
2768                                 bh->b_end_io = end_buffer_write_sync;
2769                                 get_bh(bh);
2770                                 submit_bh(WRITE, bh);
2771                                 continue;
2772                         }
2773                 } else {
2774                         if (!buffer_uptodate(bh)) {
2775                                 bh->b_end_io = end_buffer_read_sync;
2776                                 get_bh(bh);
2777                                 submit_bh(rw, bh);
2778                                 continue;
2779                         }
2780                 }
2781                 unlock_buffer(bh);
2782         }
2783 }
2784
2785 /*
2786  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2787  * and then start new I/O and then wait upon it.  The caller must have a ref on
2788  * the buffer_head.
2789  */
2790 int sync_dirty_buffer(struct buffer_head *bh)
2791 {
2792         int ret = 0;
2793
2794         WARN_ON(atomic_read(&bh->b_count) < 1);
2795         lock_buffer(bh);
2796         if (test_clear_buffer_dirty(bh)) {
2797                 get_bh(bh);
2798                 bh->b_end_io = end_buffer_write_sync;
2799                 ret = submit_bh(WRITE, bh);
2800                 wait_on_buffer(bh);
2801                 if (buffer_eopnotsupp(bh)) {
2802                         clear_buffer_eopnotsupp(bh);
2803                         ret = -EOPNOTSUPP;
2804                 }
2805                 if (!ret && !buffer_uptodate(bh))
2806                         ret = -EIO;
2807         } else {
2808                 unlock_buffer(bh);
2809         }
2810         return ret;
2811 }
2812
2813 /*
2814  * try_to_free_buffers() checks if all the buffers on this particular page
2815  * are unused, and releases them if so.
2816  *
2817  * Exclusion against try_to_free_buffers may be obtained by either
2818  * locking the page or by holding its mapping's private_lock.
2819  *
2820  * If the page is dirty but all the buffers are clean then we need to
2821  * be sure to mark the page clean as well.  This is because the page
2822  * may be against a block device, and a later reattachment of buffers
2823  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2824  * filesystem data on the same device.
2825  *
2826  * The same applies to regular filesystem pages: if all the buffers are
2827  * clean then we set the page clean and proceed.  To do that, we require
2828  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2829  * private_lock.
2830  *
2831  * try_to_free_buffers() is non-blocking.
2832  */
2833 static inline int buffer_busy(struct buffer_head *bh)
2834 {
2835         return atomic_read(&bh->b_count) |
2836                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2837 }
2838
2839 static int
2840 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2841 {
2842         struct buffer_head *head = page_buffers(page);
2843         struct buffer_head *bh;
2844
2845         bh = head;
2846         do {
2847                 if (buffer_write_io_error(bh) && page->mapping)
2848                         set_bit(AS_EIO, &page->mapping->flags);
2849                 if (buffer_busy(bh))
2850                         goto failed;
2851                 bh = bh->b_this_page;
2852         } while (bh != head);
2853
2854         do {
2855                 struct buffer_head *next = bh->b_this_page;
2856
2857                 if (!list_empty(&bh->b_assoc_buffers))
2858                         __remove_assoc_queue(bh);
2859                 bh = next;
2860         } while (bh != head);
2861         *buffers_to_free = head;
2862         __clear_page_buffers(page);
2863         return 1;
2864 failed:
2865         return 0;
2866 }
2867
2868 int try_to_free_buffers(struct page *page)
2869 {
2870         struct address_space * const mapping = page->mapping;
2871         struct buffer_head *buffers_to_free = NULL;
2872         int ret = 0;
2873
2874         BUG_ON(!PageLocked(page));
2875         if (PageWriteback(page))
2876                 return 0;
2877
2878         if (mapping == NULL) {          /* can this still happen? */
2879                 ret = drop_buffers(page, &buffers_to_free);
2880                 goto out;
2881         }
2882
2883         spin_lock(&mapping->private_lock);
2884         ret = drop_buffers(page, &buffers_to_free);
2885
2886         /*
2887          * If the filesystem writes its buffers by hand (eg ext3)
2888          * then we can have clean buffers against a dirty page.  We
2889          * clean the page here; otherwise the VM will never notice
2890          * that the filesystem did any IO at all.
2891          *
2892          * Also, during truncate, discard_buffer will have marked all
2893          * the page's buffers clean.  We discover that here and clean
2894          * the page also.
2895          *
2896          * private_lock must be held over this entire operation in order
2897          * to synchronise against __set_page_dirty_buffers and prevent the
2898          * dirty bit from being lost.
2899          */
2900         if (ret)
2901                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2902         spin_unlock(&mapping->private_lock);
2903 out:
2904         if (buffers_to_free) {
2905                 struct buffer_head *bh = buffers_to_free;
2906
2907                 do {
2908                         struct buffer_head *next = bh->b_this_page;
2909                         free_buffer_head(bh);
2910                         bh = next;
2911                 } while (bh != buffers_to_free);
2912         }
2913         return ret;
2914 }
2915 EXPORT_SYMBOL(try_to_free_buffers);
2916
2917 void block_sync_page(struct page *page)
2918 {
2919         struct address_space *mapping;
2920
2921         smp_mb();
2922         mapping = page_mapping(page);
2923         if (mapping)
2924                 blk_run_backing_dev(mapping->backing_dev_info, page);
2925 }
2926
2927 /*
2928  * There are no bdflush tunables left.  But distributions are
2929  * still running obsolete flush daemons, so we terminate them here.
2930  *
2931  * Use of bdflush() is deprecated and will be removed in a future kernel.
2932  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2933  */
2934 asmlinkage long sys_bdflush(int func, long data)
2935 {
2936         static int msg_count;
2937
2938         if (!capable(CAP_SYS_ADMIN))
2939                 return -EPERM;
2940
2941         if (msg_count < 5) {
2942                 msg_count++;
2943                 printk(KERN_INFO
2944                         "warning: process `%s' used the obsolete bdflush"
2945                         " system call\n", current->comm);
2946                 printk(KERN_INFO "Fix your initscripts?\n");
2947         }
2948
2949         if (func == 1)
2950                 do_exit(0);
2951         return 0;
2952 }
2953
2954 /*
2955  * Buffer-head allocation
2956  */
2957 static struct kmem_cache *bh_cachep;
2958
2959 /*
2960  * Once the number of bh's in the machine exceeds this level, we start
2961  * stripping them in writeback.
2962  */
2963 static int max_buffer_heads;
2964
2965 int buffer_heads_over_limit;
2966
2967 struct bh_accounting {
2968         int nr;                 /* Number of live bh's */
2969         int ratelimit;          /* Limit cacheline bouncing */
2970 };
2971
2972 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2973
2974 static void recalc_bh_state(void)
2975 {
2976         int i;
2977         int tot = 0;
2978
2979         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2980                 return;
2981         __get_cpu_var(bh_accounting).ratelimit = 0;
2982         for_each_online_cpu(i)
2983                 tot += per_cpu(bh_accounting, i).nr;
2984         buffer_heads_over_limit = (tot > max_buffer_heads);
2985 }
2986         
2987 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2988 {
2989         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2990         if (ret) {
2991                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2992                 get_cpu_var(bh_accounting).nr++;
2993                 recalc_bh_state();
2994                 put_cpu_var(bh_accounting);
2995         }
2996         return ret;
2997 }
2998 EXPORT_SYMBOL(alloc_buffer_head);
2999
3000 void free_buffer_head(struct buffer_head *bh)
3001 {
3002         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3003         kmem_cache_free(bh_cachep, bh);
3004         get_cpu_var(bh_accounting).nr--;
3005         recalc_bh_state();
3006         put_cpu_var(bh_accounting);
3007 }
3008 EXPORT_SYMBOL(free_buffer_head);
3009
3010 static void buffer_exit_cpu(int cpu)
3011 {
3012         int i;
3013         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3014
3015         for (i = 0; i < BH_LRU_SIZE; i++) {
3016                 brelse(b->bhs[i]);
3017                 b->bhs[i] = NULL;
3018         }
3019         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3020         per_cpu(bh_accounting, cpu).nr = 0;
3021         put_cpu_var(bh_accounting);
3022 }
3023
3024 static int buffer_cpu_notify(struct notifier_block *self,
3025                               unsigned long action, void *hcpu)
3026 {
3027         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3028                 buffer_exit_cpu((unsigned long)hcpu);
3029         return NOTIFY_OK;
3030 }
3031
3032 void __init buffer_init(void)
3033 {
3034         int nrpages;
3035
3036         bh_cachep = KMEM_CACHE(buffer_head,
3037                         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3038
3039         /*
3040          * Limit the bh occupancy to 10% of ZONE_NORMAL
3041          */
3042         nrpages = (nr_free_buffer_pages() * 10) / 100;
3043         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3044         hotcpu_notifier(buffer_cpu_notify, 0);
3045 }
3046
3047 EXPORT_SYMBOL(__bforget);
3048 EXPORT_SYMBOL(__brelse);
3049 EXPORT_SYMBOL(__wait_on_buffer);
3050 EXPORT_SYMBOL(block_commit_write);
3051 EXPORT_SYMBOL(block_prepare_write);
3052 EXPORT_SYMBOL(block_page_mkwrite);
3053 EXPORT_SYMBOL(block_read_full_page);
3054 EXPORT_SYMBOL(block_sync_page);
3055 EXPORT_SYMBOL(block_truncate_page);
3056 EXPORT_SYMBOL(block_write_full_page);
3057 EXPORT_SYMBOL(cont_prepare_write);
3058 EXPORT_SYMBOL(end_buffer_read_sync);
3059 EXPORT_SYMBOL(end_buffer_write_sync);
3060 EXPORT_SYMBOL(file_fsync);
3061 EXPORT_SYMBOL(fsync_bdev);
3062 EXPORT_SYMBOL(generic_block_bmap);
3063 EXPORT_SYMBOL(generic_commit_write);
3064 EXPORT_SYMBOL(generic_cont_expand);
3065 EXPORT_SYMBOL(generic_cont_expand_simple);
3066 EXPORT_SYMBOL(init_buffer);
3067 EXPORT_SYMBOL(invalidate_bdev);
3068 EXPORT_SYMBOL(ll_rw_block);
3069 EXPORT_SYMBOL(mark_buffer_dirty);
3070 EXPORT_SYMBOL(submit_bh);
3071 EXPORT_SYMBOL(sync_dirty_buffer);
3072 EXPORT_SYMBOL(unlock_buffer);