fs: symlink write_begin allocation context fix
[safe/jmp/linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97         ClearPagePrivate(page);
98         set_page_private(page, 0);
99         page_cache_release(page);
100 }
101
102
103 static int quiet_error(struct buffer_head *bh)
104 {
105         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106                 return 0;
107         return 1;
108 }
109
110
111 static void buffer_io_error(struct buffer_head *bh)
112 {
113         char b[BDEVNAME_SIZE];
114         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115                         bdevname(bh->b_bdev, b),
116                         (unsigned long long)bh->b_blocknr);
117 }
118
119 /*
120  * End-of-IO handler helper function which does not touch the bh after
121  * unlocking it.
122  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123  * a race there is benign: unlock_buffer() only use the bh's address for
124  * hashing after unlocking the buffer, so it doesn't actually touch the bh
125  * itself.
126  */
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129         if (uptodate) {
130                 set_buffer_uptodate(bh);
131         } else {
132                 /* This happens, due to failed READA attempts. */
133                 clear_buffer_uptodate(bh);
134         }
135         unlock_buffer(bh);
136 }
137
138 /*
139  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
140  * unlock the buffer. This is what ll_rw_block uses too.
141  */
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144         __end_buffer_read_notouch(bh, uptodate);
145         put_bh(bh);
146 }
147
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150         char b[BDEVNAME_SIZE];
151
152         if (uptodate) {
153                 set_buffer_uptodate(bh);
154         } else {
155                 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156                         buffer_io_error(bh);
157                         printk(KERN_WARNING "lost page write due to "
158                                         "I/O error on %s\n",
159                                        bdevname(bh->b_bdev, b));
160                 }
161                 set_buffer_write_io_error(bh);
162                 clear_buffer_uptodate(bh);
163         }
164         unlock_buffer(bh);
165         put_bh(bh);
166 }
167
168 /*
169  * Write out and wait upon all the dirty data associated with a block
170  * device via its mapping.  Does not take the superblock lock.
171  */
172 int sync_blockdev(struct block_device *bdev)
173 {
174         int ret = 0;
175
176         if (bdev)
177                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
178         return ret;
179 }
180 EXPORT_SYMBOL(sync_blockdev);
181
182 /*
183  * Write out and wait upon all dirty data associated with this
184  * device.   Filesystem data as well as the underlying block
185  * device.  Takes the superblock lock.
186  */
187 int fsync_bdev(struct block_device *bdev)
188 {
189         struct super_block *sb = get_super(bdev);
190         if (sb) {
191                 int res = fsync_super(sb);
192                 drop_super(sb);
193                 return res;
194         }
195         return sync_blockdev(bdev);
196 }
197
198 /**
199  * freeze_bdev  --  lock a filesystem and force it into a consistent state
200  * @bdev:       blockdevice to lock
201  *
202  * This takes the block device bd_mount_sem to make sure no new mounts
203  * happen on bdev until thaw_bdev() is called.
204  * If a superblock is found on this device, we take the s_umount semaphore
205  * on it to make sure nobody unmounts until the snapshot creation is done.
206  */
207 struct super_block *freeze_bdev(struct block_device *bdev)
208 {
209         struct super_block *sb;
210
211         down(&bdev->bd_mount_sem);
212         sb = get_super(bdev);
213         if (sb && !(sb->s_flags & MS_RDONLY)) {
214                 sb->s_frozen = SB_FREEZE_WRITE;
215                 smp_wmb();
216
217                 __fsync_super(sb);
218
219                 sb->s_frozen = SB_FREEZE_TRANS;
220                 smp_wmb();
221
222                 sync_blockdev(sb->s_bdev);
223
224                 if (sb->s_op->write_super_lockfs)
225                         sb->s_op->write_super_lockfs(sb);
226         }
227
228         sync_blockdev(bdev);
229         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
230 }
231 EXPORT_SYMBOL(freeze_bdev);
232
233 /**
234  * thaw_bdev  -- unlock filesystem
235  * @bdev:       blockdevice to unlock
236  * @sb:         associated superblock
237  *
238  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
239  */
240 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
241 {
242         if (sb) {
243                 BUG_ON(sb->s_bdev != bdev);
244
245                 if (sb->s_op->unlockfs)
246                         sb->s_op->unlockfs(sb);
247                 sb->s_frozen = SB_UNFROZEN;
248                 smp_wmb();
249                 wake_up(&sb->s_wait_unfrozen);
250                 drop_super(sb);
251         }
252
253         up(&bdev->bd_mount_sem);
254 }
255 EXPORT_SYMBOL(thaw_bdev);
256
257 /*
258  * Various filesystems appear to want __find_get_block to be non-blocking.
259  * But it's the page lock which protects the buffers.  To get around this,
260  * we get exclusion from try_to_free_buffers with the blockdev mapping's
261  * private_lock.
262  *
263  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
264  * may be quite high.  This code could TryLock the page, and if that
265  * succeeds, there is no need to take private_lock. (But if
266  * private_lock is contended then so is mapping->tree_lock).
267  */
268 static struct buffer_head *
269 __find_get_block_slow(struct block_device *bdev, sector_t block)
270 {
271         struct inode *bd_inode = bdev->bd_inode;
272         struct address_space *bd_mapping = bd_inode->i_mapping;
273         struct buffer_head *ret = NULL;
274         pgoff_t index;
275         struct buffer_head *bh;
276         struct buffer_head *head;
277         struct page *page;
278         int all_mapped = 1;
279
280         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
281         page = find_get_page(bd_mapping, index);
282         if (!page)
283                 goto out;
284
285         spin_lock(&bd_mapping->private_lock);
286         if (!page_has_buffers(page))
287                 goto out_unlock;
288         head = page_buffers(page);
289         bh = head;
290         do {
291                 if (bh->b_blocknr == block) {
292                         ret = bh;
293                         get_bh(bh);
294                         goto out_unlock;
295                 }
296                 if (!buffer_mapped(bh))
297                         all_mapped = 0;
298                 bh = bh->b_this_page;
299         } while (bh != head);
300
301         /* we might be here because some of the buffers on this page are
302          * not mapped.  This is due to various races between
303          * file io on the block device and getblk.  It gets dealt with
304          * elsewhere, don't buffer_error if we had some unmapped buffers
305          */
306         if (all_mapped) {
307                 printk("__find_get_block_slow() failed. "
308                         "block=%llu, b_blocknr=%llu\n",
309                         (unsigned long long)block,
310                         (unsigned long long)bh->b_blocknr);
311                 printk("b_state=0x%08lx, b_size=%zu\n",
312                         bh->b_state, bh->b_size);
313                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
314         }
315 out_unlock:
316         spin_unlock(&bd_mapping->private_lock);
317         page_cache_release(page);
318 out:
319         return ret;
320 }
321
322 /* If invalidate_buffers() will trash dirty buffers, it means some kind
323    of fs corruption is going on. Trashing dirty data always imply losing
324    information that was supposed to be just stored on the physical layer
325    by the user.
326
327    Thus invalidate_buffers in general usage is not allwowed to trash
328    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
329    be preserved.  These buffers are simply skipped.
330   
331    We also skip buffers which are still in use.  For example this can
332    happen if a userspace program is reading the block device.
333
334    NOTE: In the case where the user removed a removable-media-disk even if
335    there's still dirty data not synced on disk (due a bug in the device driver
336    or due an error of the user), by not destroying the dirty buffers we could
337    generate corruption also on the next media inserted, thus a parameter is
338    necessary to handle this case in the most safe way possible (trying
339    to not corrupt also the new disk inserted with the data belonging to
340    the old now corrupted disk). Also for the ramdisk the natural thing
341    to do in order to release the ramdisk memory is to destroy dirty buffers.
342
343    These are two special cases. Normal usage imply the device driver
344    to issue a sync on the device (without waiting I/O completion) and
345    then an invalidate_buffers call that doesn't trash dirty buffers.
346
347    For handling cache coherency with the blkdev pagecache the 'update' case
348    is been introduced. It is needed to re-read from disk any pinned
349    buffer. NOTE: re-reading from disk is destructive so we can do it only
350    when we assume nobody is changing the buffercache under our I/O and when
351    we think the disk contains more recent information than the buffercache.
352    The update == 1 pass marks the buffers we need to update, the update == 2
353    pass does the actual I/O. */
354 void invalidate_bdev(struct block_device *bdev)
355 {
356         struct address_space *mapping = bdev->bd_inode->i_mapping;
357
358         if (mapping->nrpages == 0)
359                 return;
360
361         invalidate_bh_lrus();
362         invalidate_mapping_pages(mapping, 0, -1);
363 }
364
365 /*
366  * Kick pdflush then try to free up some ZONE_NORMAL memory.
367  */
368 static void free_more_memory(void)
369 {
370         struct zone *zone;
371         int nid;
372
373         wakeup_pdflush(1024);
374         yield();
375
376         for_each_online_node(nid) {
377                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
378                                                 gfp_zone(GFP_NOFS), NULL,
379                                                 &zone);
380                 if (zone)
381                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
382                                                 GFP_NOFS);
383         }
384 }
385
386 /*
387  * I/O completion handler for block_read_full_page() - pages
388  * which come unlocked at the end of I/O.
389  */
390 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
391 {
392         unsigned long flags;
393         struct buffer_head *first;
394         struct buffer_head *tmp;
395         struct page *page;
396         int page_uptodate = 1;
397
398         BUG_ON(!buffer_async_read(bh));
399
400         page = bh->b_page;
401         if (uptodate) {
402                 set_buffer_uptodate(bh);
403         } else {
404                 clear_buffer_uptodate(bh);
405                 if (!quiet_error(bh))
406                         buffer_io_error(bh);
407                 SetPageError(page);
408         }
409
410         /*
411          * Be _very_ careful from here on. Bad things can happen if
412          * two buffer heads end IO at almost the same time and both
413          * decide that the page is now completely done.
414          */
415         first = page_buffers(page);
416         local_irq_save(flags);
417         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
418         clear_buffer_async_read(bh);
419         unlock_buffer(bh);
420         tmp = bh;
421         do {
422                 if (!buffer_uptodate(tmp))
423                         page_uptodate = 0;
424                 if (buffer_async_read(tmp)) {
425                         BUG_ON(!buffer_locked(tmp));
426                         goto still_busy;
427                 }
428                 tmp = tmp->b_this_page;
429         } while (tmp != bh);
430         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
431         local_irq_restore(flags);
432
433         /*
434          * If none of the buffers had errors and they are all
435          * uptodate then we can set the page uptodate.
436          */
437         if (page_uptodate && !PageError(page))
438                 SetPageUptodate(page);
439         unlock_page(page);
440         return;
441
442 still_busy:
443         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
444         local_irq_restore(flags);
445         return;
446 }
447
448 /*
449  * Completion handler for block_write_full_page() - pages which are unlocked
450  * during I/O, and which have PageWriteback cleared upon I/O completion.
451  */
452 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
453 {
454         char b[BDEVNAME_SIZE];
455         unsigned long flags;
456         struct buffer_head *first;
457         struct buffer_head *tmp;
458         struct page *page;
459
460         BUG_ON(!buffer_async_write(bh));
461
462         page = bh->b_page;
463         if (uptodate) {
464                 set_buffer_uptodate(bh);
465         } else {
466                 if (!quiet_error(bh)) {
467                         buffer_io_error(bh);
468                         printk(KERN_WARNING "lost page write due to "
469                                         "I/O error on %s\n",
470                                bdevname(bh->b_bdev, b));
471                 }
472                 set_bit(AS_EIO, &page->mapping->flags);
473                 set_buffer_write_io_error(bh);
474                 clear_buffer_uptodate(bh);
475                 SetPageError(page);
476         }
477
478         first = page_buffers(page);
479         local_irq_save(flags);
480         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
481
482         clear_buffer_async_write(bh);
483         unlock_buffer(bh);
484         tmp = bh->b_this_page;
485         while (tmp != bh) {
486                 if (buffer_async_write(tmp)) {
487                         BUG_ON(!buffer_locked(tmp));
488                         goto still_busy;
489                 }
490                 tmp = tmp->b_this_page;
491         }
492         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
493         local_irq_restore(flags);
494         end_page_writeback(page);
495         return;
496
497 still_busy:
498         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
499         local_irq_restore(flags);
500         return;
501 }
502
503 /*
504  * If a page's buffers are under async readin (end_buffer_async_read
505  * completion) then there is a possibility that another thread of
506  * control could lock one of the buffers after it has completed
507  * but while some of the other buffers have not completed.  This
508  * locked buffer would confuse end_buffer_async_read() into not unlocking
509  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
510  * that this buffer is not under async I/O.
511  *
512  * The page comes unlocked when it has no locked buffer_async buffers
513  * left.
514  *
515  * PageLocked prevents anyone starting new async I/O reads any of
516  * the buffers.
517  *
518  * PageWriteback is used to prevent simultaneous writeout of the same
519  * page.
520  *
521  * PageLocked prevents anyone from starting writeback of a page which is
522  * under read I/O (PageWriteback is only ever set against a locked page).
523  */
524 static void mark_buffer_async_read(struct buffer_head *bh)
525 {
526         bh->b_end_io = end_buffer_async_read;
527         set_buffer_async_read(bh);
528 }
529
530 void mark_buffer_async_write(struct buffer_head *bh)
531 {
532         bh->b_end_io = end_buffer_async_write;
533         set_buffer_async_write(bh);
534 }
535 EXPORT_SYMBOL(mark_buffer_async_write);
536
537
538 /*
539  * fs/buffer.c contains helper functions for buffer-backed address space's
540  * fsync functions.  A common requirement for buffer-based filesystems is
541  * that certain data from the backing blockdev needs to be written out for
542  * a successful fsync().  For example, ext2 indirect blocks need to be
543  * written back and waited upon before fsync() returns.
544  *
545  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
546  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
547  * management of a list of dependent buffers at ->i_mapping->private_list.
548  *
549  * Locking is a little subtle: try_to_free_buffers() will remove buffers
550  * from their controlling inode's queue when they are being freed.  But
551  * try_to_free_buffers() will be operating against the *blockdev* mapping
552  * at the time, not against the S_ISREG file which depends on those buffers.
553  * So the locking for private_list is via the private_lock in the address_space
554  * which backs the buffers.  Which is different from the address_space 
555  * against which the buffers are listed.  So for a particular address_space,
556  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
557  * mapping->private_list will always be protected by the backing blockdev's
558  * ->private_lock.
559  *
560  * Which introduces a requirement: all buffers on an address_space's
561  * ->private_list must be from the same address_space: the blockdev's.
562  *
563  * address_spaces which do not place buffers at ->private_list via these
564  * utility functions are free to use private_lock and private_list for
565  * whatever they want.  The only requirement is that list_empty(private_list)
566  * be true at clear_inode() time.
567  *
568  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
569  * filesystems should do that.  invalidate_inode_buffers() should just go
570  * BUG_ON(!list_empty).
571  *
572  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
573  * take an address_space, not an inode.  And it should be called
574  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
575  * queued up.
576  *
577  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
578  * list if it is already on a list.  Because if the buffer is on a list,
579  * it *must* already be on the right one.  If not, the filesystem is being
580  * silly.  This will save a ton of locking.  But first we have to ensure
581  * that buffers are taken *off* the old inode's list when they are freed
582  * (presumably in truncate).  That requires careful auditing of all
583  * filesystems (do it inside bforget()).  It could also be done by bringing
584  * b_inode back.
585  */
586
587 /*
588  * The buffer's backing address_space's private_lock must be held
589  */
590 static void __remove_assoc_queue(struct buffer_head *bh)
591 {
592         list_del_init(&bh->b_assoc_buffers);
593         WARN_ON(!bh->b_assoc_map);
594         if (buffer_write_io_error(bh))
595                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
596         bh->b_assoc_map = NULL;
597 }
598
599 int inode_has_buffers(struct inode *inode)
600 {
601         return !list_empty(&inode->i_data.private_list);
602 }
603
604 /*
605  * osync is designed to support O_SYNC io.  It waits synchronously for
606  * all already-submitted IO to complete, but does not queue any new
607  * writes to the disk.
608  *
609  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
610  * you dirty the buffers, and then use osync_inode_buffers to wait for
611  * completion.  Any other dirty buffers which are not yet queued for
612  * write will not be flushed to disk by the osync.
613  */
614 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
615 {
616         struct buffer_head *bh;
617         struct list_head *p;
618         int err = 0;
619
620         spin_lock(lock);
621 repeat:
622         list_for_each_prev(p, list) {
623                 bh = BH_ENTRY(p);
624                 if (buffer_locked(bh)) {
625                         get_bh(bh);
626                         spin_unlock(lock);
627                         wait_on_buffer(bh);
628                         if (!buffer_uptodate(bh))
629                                 err = -EIO;
630                         brelse(bh);
631                         spin_lock(lock);
632                         goto repeat;
633                 }
634         }
635         spin_unlock(lock);
636         return err;
637 }
638
639 /**
640  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
641  * @mapping: the mapping which wants those buffers written
642  *
643  * Starts I/O against the buffers at mapping->private_list, and waits upon
644  * that I/O.
645  *
646  * Basically, this is a convenience function for fsync().
647  * @mapping is a file or directory which needs those buffers to be written for
648  * a successful fsync().
649  */
650 int sync_mapping_buffers(struct address_space *mapping)
651 {
652         struct address_space *buffer_mapping = mapping->assoc_mapping;
653
654         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
655                 return 0;
656
657         return fsync_buffers_list(&buffer_mapping->private_lock,
658                                         &mapping->private_list);
659 }
660 EXPORT_SYMBOL(sync_mapping_buffers);
661
662 /*
663  * Called when we've recently written block `bblock', and it is known that
664  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
665  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
666  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
667  */
668 void write_boundary_block(struct block_device *bdev,
669                         sector_t bblock, unsigned blocksize)
670 {
671         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
672         if (bh) {
673                 if (buffer_dirty(bh))
674                         ll_rw_block(WRITE, 1, &bh);
675                 put_bh(bh);
676         }
677 }
678
679 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
680 {
681         struct address_space *mapping = inode->i_mapping;
682         struct address_space *buffer_mapping = bh->b_page->mapping;
683
684         mark_buffer_dirty(bh);
685         if (!mapping->assoc_mapping) {
686                 mapping->assoc_mapping = buffer_mapping;
687         } else {
688                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
689         }
690         if (!bh->b_assoc_map) {
691                 spin_lock(&buffer_mapping->private_lock);
692                 list_move_tail(&bh->b_assoc_buffers,
693                                 &mapping->private_list);
694                 bh->b_assoc_map = mapping;
695                 spin_unlock(&buffer_mapping->private_lock);
696         }
697 }
698 EXPORT_SYMBOL(mark_buffer_dirty_inode);
699
700 /*
701  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
702  * dirty.
703  *
704  * If warn is true, then emit a warning if the page is not uptodate and has
705  * not been truncated.
706  */
707 static int __set_page_dirty(struct page *page,
708                 struct address_space *mapping, int warn)
709 {
710         if (unlikely(!mapping))
711                 return !TestSetPageDirty(page);
712
713         if (TestSetPageDirty(page))
714                 return 0;
715
716         spin_lock_irq(&mapping->tree_lock);
717         if (page->mapping) {    /* Race with truncate? */
718                 WARN_ON_ONCE(warn && !PageUptodate(page));
719
720                 if (mapping_cap_account_dirty(mapping)) {
721                         __inc_zone_page_state(page, NR_FILE_DIRTY);
722                         __inc_bdi_stat(mapping->backing_dev_info,
723                                         BDI_RECLAIMABLE);
724                         task_io_account_write(PAGE_CACHE_SIZE);
725                 }
726                 radix_tree_tag_set(&mapping->page_tree,
727                                 page_index(page), PAGECACHE_TAG_DIRTY);
728         }
729         spin_unlock_irq(&mapping->tree_lock);
730         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
731
732         return 1;
733 }
734
735 /*
736  * Add a page to the dirty page list.
737  *
738  * It is a sad fact of life that this function is called from several places
739  * deeply under spinlocking.  It may not sleep.
740  *
741  * If the page has buffers, the uptodate buffers are set dirty, to preserve
742  * dirty-state coherency between the page and the buffers.  It the page does
743  * not have buffers then when they are later attached they will all be set
744  * dirty.
745  *
746  * The buffers are dirtied before the page is dirtied.  There's a small race
747  * window in which a writepage caller may see the page cleanness but not the
748  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
749  * before the buffers, a concurrent writepage caller could clear the page dirty
750  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
751  * page on the dirty page list.
752  *
753  * We use private_lock to lock against try_to_free_buffers while using the
754  * page's buffer list.  Also use this to protect against clean buffers being
755  * added to the page after it was set dirty.
756  *
757  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
758  * address_space though.
759  */
760 int __set_page_dirty_buffers(struct page *page)
761 {
762         struct address_space *mapping = page_mapping(page);
763
764         if (unlikely(!mapping))
765                 return !TestSetPageDirty(page);
766
767         spin_lock(&mapping->private_lock);
768         if (page_has_buffers(page)) {
769                 struct buffer_head *head = page_buffers(page);
770                 struct buffer_head *bh = head;
771
772                 do {
773                         set_buffer_dirty(bh);
774                         bh = bh->b_this_page;
775                 } while (bh != head);
776         }
777         spin_unlock(&mapping->private_lock);
778
779         return __set_page_dirty(page, mapping, 1);
780 }
781 EXPORT_SYMBOL(__set_page_dirty_buffers);
782
783 /*
784  * Write out and wait upon a list of buffers.
785  *
786  * We have conflicting pressures: we want to make sure that all
787  * initially dirty buffers get waited on, but that any subsequently
788  * dirtied buffers don't.  After all, we don't want fsync to last
789  * forever if somebody is actively writing to the file.
790  *
791  * Do this in two main stages: first we copy dirty buffers to a
792  * temporary inode list, queueing the writes as we go.  Then we clean
793  * up, waiting for those writes to complete.
794  * 
795  * During this second stage, any subsequent updates to the file may end
796  * up refiling the buffer on the original inode's dirty list again, so
797  * there is a chance we will end up with a buffer queued for write but
798  * not yet completed on that list.  So, as a final cleanup we go through
799  * the osync code to catch these locked, dirty buffers without requeuing
800  * any newly dirty buffers for write.
801  */
802 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
803 {
804         struct buffer_head *bh;
805         struct list_head tmp;
806         struct address_space *mapping;
807         int err = 0, err2;
808
809         INIT_LIST_HEAD(&tmp);
810
811         spin_lock(lock);
812         while (!list_empty(list)) {
813                 bh = BH_ENTRY(list->next);
814                 mapping = bh->b_assoc_map;
815                 __remove_assoc_queue(bh);
816                 /* Avoid race with mark_buffer_dirty_inode() which does
817                  * a lockless check and we rely on seeing the dirty bit */
818                 smp_mb();
819                 if (buffer_dirty(bh) || buffer_locked(bh)) {
820                         list_add(&bh->b_assoc_buffers, &tmp);
821                         bh->b_assoc_map = mapping;
822                         if (buffer_dirty(bh)) {
823                                 get_bh(bh);
824                                 spin_unlock(lock);
825                                 /*
826                                  * Ensure any pending I/O completes so that
827                                  * ll_rw_block() actually writes the current
828                                  * contents - it is a noop if I/O is still in
829                                  * flight on potentially older contents.
830                                  */
831                                 ll_rw_block(SWRITE_SYNC, 1, &bh);
832                                 brelse(bh);
833                                 spin_lock(lock);
834                         }
835                 }
836         }
837
838         while (!list_empty(&tmp)) {
839                 bh = BH_ENTRY(tmp.prev);
840                 get_bh(bh);
841                 mapping = bh->b_assoc_map;
842                 __remove_assoc_queue(bh);
843                 /* Avoid race with mark_buffer_dirty_inode() which does
844                  * a lockless check and we rely on seeing the dirty bit */
845                 smp_mb();
846                 if (buffer_dirty(bh)) {
847                         list_add(&bh->b_assoc_buffers,
848                                  &mapping->private_list);
849                         bh->b_assoc_map = mapping;
850                 }
851                 spin_unlock(lock);
852                 wait_on_buffer(bh);
853                 if (!buffer_uptodate(bh))
854                         err = -EIO;
855                 brelse(bh);
856                 spin_lock(lock);
857         }
858         
859         spin_unlock(lock);
860         err2 = osync_buffers_list(lock, list);
861         if (err)
862                 return err;
863         else
864                 return err2;
865 }
866
867 /*
868  * Invalidate any and all dirty buffers on a given inode.  We are
869  * probably unmounting the fs, but that doesn't mean we have already
870  * done a sync().  Just drop the buffers from the inode list.
871  *
872  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
873  * assumes that all the buffers are against the blockdev.  Not true
874  * for reiserfs.
875  */
876 void invalidate_inode_buffers(struct inode *inode)
877 {
878         if (inode_has_buffers(inode)) {
879                 struct address_space *mapping = &inode->i_data;
880                 struct list_head *list = &mapping->private_list;
881                 struct address_space *buffer_mapping = mapping->assoc_mapping;
882
883                 spin_lock(&buffer_mapping->private_lock);
884                 while (!list_empty(list))
885                         __remove_assoc_queue(BH_ENTRY(list->next));
886                 spin_unlock(&buffer_mapping->private_lock);
887         }
888 }
889 EXPORT_SYMBOL(invalidate_inode_buffers);
890
891 /*
892  * Remove any clean buffers from the inode's buffer list.  This is called
893  * when we're trying to free the inode itself.  Those buffers can pin it.
894  *
895  * Returns true if all buffers were removed.
896  */
897 int remove_inode_buffers(struct inode *inode)
898 {
899         int ret = 1;
900
901         if (inode_has_buffers(inode)) {
902                 struct address_space *mapping = &inode->i_data;
903                 struct list_head *list = &mapping->private_list;
904                 struct address_space *buffer_mapping = mapping->assoc_mapping;
905
906                 spin_lock(&buffer_mapping->private_lock);
907                 while (!list_empty(list)) {
908                         struct buffer_head *bh = BH_ENTRY(list->next);
909                         if (buffer_dirty(bh)) {
910                                 ret = 0;
911                                 break;
912                         }
913                         __remove_assoc_queue(bh);
914                 }
915                 spin_unlock(&buffer_mapping->private_lock);
916         }
917         return ret;
918 }
919
920 /*
921  * Create the appropriate buffers when given a page for data area and
922  * the size of each buffer.. Use the bh->b_this_page linked list to
923  * follow the buffers created.  Return NULL if unable to create more
924  * buffers.
925  *
926  * The retry flag is used to differentiate async IO (paging, swapping)
927  * which may not fail from ordinary buffer allocations.
928  */
929 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
930                 int retry)
931 {
932         struct buffer_head *bh, *head;
933         long offset;
934
935 try_again:
936         head = NULL;
937         offset = PAGE_SIZE;
938         while ((offset -= size) >= 0) {
939                 bh = alloc_buffer_head(GFP_NOFS);
940                 if (!bh)
941                         goto no_grow;
942
943                 bh->b_bdev = NULL;
944                 bh->b_this_page = head;
945                 bh->b_blocknr = -1;
946                 head = bh;
947
948                 bh->b_state = 0;
949                 atomic_set(&bh->b_count, 0);
950                 bh->b_private = NULL;
951                 bh->b_size = size;
952
953                 /* Link the buffer to its page */
954                 set_bh_page(bh, page, offset);
955
956                 init_buffer(bh, NULL, NULL);
957         }
958         return head;
959 /*
960  * In case anything failed, we just free everything we got.
961  */
962 no_grow:
963         if (head) {
964                 do {
965                         bh = head;
966                         head = head->b_this_page;
967                         free_buffer_head(bh);
968                 } while (head);
969         }
970
971         /*
972          * Return failure for non-async IO requests.  Async IO requests
973          * are not allowed to fail, so we have to wait until buffer heads
974          * become available.  But we don't want tasks sleeping with 
975          * partially complete buffers, so all were released above.
976          */
977         if (!retry)
978                 return NULL;
979
980         /* We're _really_ low on memory. Now we just
981          * wait for old buffer heads to become free due to
982          * finishing IO.  Since this is an async request and
983          * the reserve list is empty, we're sure there are 
984          * async buffer heads in use.
985          */
986         free_more_memory();
987         goto try_again;
988 }
989 EXPORT_SYMBOL_GPL(alloc_page_buffers);
990
991 static inline void
992 link_dev_buffers(struct page *page, struct buffer_head *head)
993 {
994         struct buffer_head *bh, *tail;
995
996         bh = head;
997         do {
998                 tail = bh;
999                 bh = bh->b_this_page;
1000         } while (bh);
1001         tail->b_this_page = head;
1002         attach_page_buffers(page, head);
1003 }
1004
1005 /*
1006  * Initialise the state of a blockdev page's buffers.
1007  */ 
1008 static void
1009 init_page_buffers(struct page *page, struct block_device *bdev,
1010                         sector_t block, int size)
1011 {
1012         struct buffer_head *head = page_buffers(page);
1013         struct buffer_head *bh = head;
1014         int uptodate = PageUptodate(page);
1015
1016         do {
1017                 if (!buffer_mapped(bh)) {
1018                         init_buffer(bh, NULL, NULL);
1019                         bh->b_bdev = bdev;
1020                         bh->b_blocknr = block;
1021                         if (uptodate)
1022                                 set_buffer_uptodate(bh);
1023                         set_buffer_mapped(bh);
1024                 }
1025                 block++;
1026                 bh = bh->b_this_page;
1027         } while (bh != head);
1028 }
1029
1030 /*
1031  * Create the page-cache page that contains the requested block.
1032  *
1033  * This is user purely for blockdev mappings.
1034  */
1035 static struct page *
1036 grow_dev_page(struct block_device *bdev, sector_t block,
1037                 pgoff_t index, int size)
1038 {
1039         struct inode *inode = bdev->bd_inode;
1040         struct page *page;
1041         struct buffer_head *bh;
1042
1043         page = find_or_create_page(inode->i_mapping, index,
1044                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1045         if (!page)
1046                 return NULL;
1047
1048         BUG_ON(!PageLocked(page));
1049
1050         if (page_has_buffers(page)) {
1051                 bh = page_buffers(page);
1052                 if (bh->b_size == size) {
1053                         init_page_buffers(page, bdev, block, size);
1054                         return page;
1055                 }
1056                 if (!try_to_free_buffers(page))
1057                         goto failed;
1058         }
1059
1060         /*
1061          * Allocate some buffers for this page
1062          */
1063         bh = alloc_page_buffers(page, size, 0);
1064         if (!bh)
1065                 goto failed;
1066
1067         /*
1068          * Link the page to the buffers and initialise them.  Take the
1069          * lock to be atomic wrt __find_get_block(), which does not
1070          * run under the page lock.
1071          */
1072         spin_lock(&inode->i_mapping->private_lock);
1073         link_dev_buffers(page, bh);
1074         init_page_buffers(page, bdev, block, size);
1075         spin_unlock(&inode->i_mapping->private_lock);
1076         return page;
1077
1078 failed:
1079         BUG();
1080         unlock_page(page);
1081         page_cache_release(page);
1082         return NULL;
1083 }
1084
1085 /*
1086  * Create buffers for the specified block device block's page.  If
1087  * that page was dirty, the buffers are set dirty also.
1088  */
1089 static int
1090 grow_buffers(struct block_device *bdev, sector_t block, int size)
1091 {
1092         struct page *page;
1093         pgoff_t index;
1094         int sizebits;
1095
1096         sizebits = -1;
1097         do {
1098                 sizebits++;
1099         } while ((size << sizebits) < PAGE_SIZE);
1100
1101         index = block >> sizebits;
1102
1103         /*
1104          * Check for a block which wants to lie outside our maximum possible
1105          * pagecache index.  (this comparison is done using sector_t types).
1106          */
1107         if (unlikely(index != block >> sizebits)) {
1108                 char b[BDEVNAME_SIZE];
1109
1110                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1111                         "device %s\n",
1112                         __func__, (unsigned long long)block,
1113                         bdevname(bdev, b));
1114                 return -EIO;
1115         }
1116         block = index << sizebits;
1117         /* Create a page with the proper size buffers.. */
1118         page = grow_dev_page(bdev, block, index, size);
1119         if (!page)
1120                 return 0;
1121         unlock_page(page);
1122         page_cache_release(page);
1123         return 1;
1124 }
1125
1126 static struct buffer_head *
1127 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1128 {
1129         /* Size must be multiple of hard sectorsize */
1130         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1131                         (size < 512 || size > PAGE_SIZE))) {
1132                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1133                                         size);
1134                 printk(KERN_ERR "hardsect size: %d\n",
1135                                         bdev_hardsect_size(bdev));
1136
1137                 dump_stack();
1138                 return NULL;
1139         }
1140
1141         for (;;) {
1142                 struct buffer_head * bh;
1143                 int ret;
1144
1145                 bh = __find_get_block(bdev, block, size);
1146                 if (bh)
1147                         return bh;
1148
1149                 ret = grow_buffers(bdev, block, size);
1150                 if (ret < 0)
1151                         return NULL;
1152                 if (ret == 0)
1153                         free_more_memory();
1154         }
1155 }
1156
1157 /*
1158  * The relationship between dirty buffers and dirty pages:
1159  *
1160  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1161  * the page is tagged dirty in its radix tree.
1162  *
1163  * At all times, the dirtiness of the buffers represents the dirtiness of
1164  * subsections of the page.  If the page has buffers, the page dirty bit is
1165  * merely a hint about the true dirty state.
1166  *
1167  * When a page is set dirty in its entirety, all its buffers are marked dirty
1168  * (if the page has buffers).
1169  *
1170  * When a buffer is marked dirty, its page is dirtied, but the page's other
1171  * buffers are not.
1172  *
1173  * Also.  When blockdev buffers are explicitly read with bread(), they
1174  * individually become uptodate.  But their backing page remains not
1175  * uptodate - even if all of its buffers are uptodate.  A subsequent
1176  * block_read_full_page() against that page will discover all the uptodate
1177  * buffers, will set the page uptodate and will perform no I/O.
1178  */
1179
1180 /**
1181  * mark_buffer_dirty - mark a buffer_head as needing writeout
1182  * @bh: the buffer_head to mark dirty
1183  *
1184  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1185  * backing page dirty, then tag the page as dirty in its address_space's radix
1186  * tree and then attach the address_space's inode to its superblock's dirty
1187  * inode list.
1188  *
1189  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1190  * mapping->tree_lock and the global inode_lock.
1191  */
1192 void mark_buffer_dirty(struct buffer_head *bh)
1193 {
1194         WARN_ON_ONCE(!buffer_uptodate(bh));
1195
1196         /*
1197          * Very *carefully* optimize the it-is-already-dirty case.
1198          *
1199          * Don't let the final "is it dirty" escape to before we
1200          * perhaps modified the buffer.
1201          */
1202         if (buffer_dirty(bh)) {
1203                 smp_mb();
1204                 if (buffer_dirty(bh))
1205                         return;
1206         }
1207
1208         if (!test_set_buffer_dirty(bh))
1209                 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1210 }
1211
1212 /*
1213  * Decrement a buffer_head's reference count.  If all buffers against a page
1214  * have zero reference count, are clean and unlocked, and if the page is clean
1215  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1216  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1217  * a page but it ends up not being freed, and buffers may later be reattached).
1218  */
1219 void __brelse(struct buffer_head * buf)
1220 {
1221         if (atomic_read(&buf->b_count)) {
1222                 put_bh(buf);
1223                 return;
1224         }
1225         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1226 }
1227
1228 /*
1229  * bforget() is like brelse(), except it discards any
1230  * potentially dirty data.
1231  */
1232 void __bforget(struct buffer_head *bh)
1233 {
1234         clear_buffer_dirty(bh);
1235         if (bh->b_assoc_map) {
1236                 struct address_space *buffer_mapping = bh->b_page->mapping;
1237
1238                 spin_lock(&buffer_mapping->private_lock);
1239                 list_del_init(&bh->b_assoc_buffers);
1240                 bh->b_assoc_map = NULL;
1241                 spin_unlock(&buffer_mapping->private_lock);
1242         }
1243         __brelse(bh);
1244 }
1245
1246 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1247 {
1248         lock_buffer(bh);
1249         if (buffer_uptodate(bh)) {
1250                 unlock_buffer(bh);
1251                 return bh;
1252         } else {
1253                 get_bh(bh);
1254                 bh->b_end_io = end_buffer_read_sync;
1255                 submit_bh(READ, bh);
1256                 wait_on_buffer(bh);
1257                 if (buffer_uptodate(bh))
1258                         return bh;
1259         }
1260         brelse(bh);
1261         return NULL;
1262 }
1263
1264 /*
1265  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1266  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1267  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1268  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1269  * CPU's LRUs at the same time.
1270  *
1271  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1272  * sb_find_get_block().
1273  *
1274  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1275  * a local interrupt disable for that.
1276  */
1277
1278 #define BH_LRU_SIZE     8
1279
1280 struct bh_lru {
1281         struct buffer_head *bhs[BH_LRU_SIZE];
1282 };
1283
1284 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1285
1286 #ifdef CONFIG_SMP
1287 #define bh_lru_lock()   local_irq_disable()
1288 #define bh_lru_unlock() local_irq_enable()
1289 #else
1290 #define bh_lru_lock()   preempt_disable()
1291 #define bh_lru_unlock() preempt_enable()
1292 #endif
1293
1294 static inline void check_irqs_on(void)
1295 {
1296 #ifdef irqs_disabled
1297         BUG_ON(irqs_disabled());
1298 #endif
1299 }
1300
1301 /*
1302  * The LRU management algorithm is dopey-but-simple.  Sorry.
1303  */
1304 static void bh_lru_install(struct buffer_head *bh)
1305 {
1306         struct buffer_head *evictee = NULL;
1307         struct bh_lru *lru;
1308
1309         check_irqs_on();
1310         bh_lru_lock();
1311         lru = &__get_cpu_var(bh_lrus);
1312         if (lru->bhs[0] != bh) {
1313                 struct buffer_head *bhs[BH_LRU_SIZE];
1314                 int in;
1315                 int out = 0;
1316
1317                 get_bh(bh);
1318                 bhs[out++] = bh;
1319                 for (in = 0; in < BH_LRU_SIZE; in++) {
1320                         struct buffer_head *bh2 = lru->bhs[in];
1321
1322                         if (bh2 == bh) {
1323                                 __brelse(bh2);
1324                         } else {
1325                                 if (out >= BH_LRU_SIZE) {
1326                                         BUG_ON(evictee != NULL);
1327                                         evictee = bh2;
1328                                 } else {
1329                                         bhs[out++] = bh2;
1330                                 }
1331                         }
1332                 }
1333                 while (out < BH_LRU_SIZE)
1334                         bhs[out++] = NULL;
1335                 memcpy(lru->bhs, bhs, sizeof(bhs));
1336         }
1337         bh_lru_unlock();
1338
1339         if (evictee)
1340                 __brelse(evictee);
1341 }
1342
1343 /*
1344  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1345  */
1346 static struct buffer_head *
1347 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1348 {
1349         struct buffer_head *ret = NULL;
1350         struct bh_lru *lru;
1351         unsigned int i;
1352
1353         check_irqs_on();
1354         bh_lru_lock();
1355         lru = &__get_cpu_var(bh_lrus);
1356         for (i = 0; i < BH_LRU_SIZE; i++) {
1357                 struct buffer_head *bh = lru->bhs[i];
1358
1359                 if (bh && bh->b_bdev == bdev &&
1360                                 bh->b_blocknr == block && bh->b_size == size) {
1361                         if (i) {
1362                                 while (i) {
1363                                         lru->bhs[i] = lru->bhs[i - 1];
1364                                         i--;
1365                                 }
1366                                 lru->bhs[0] = bh;
1367                         }
1368                         get_bh(bh);
1369                         ret = bh;
1370                         break;
1371                 }
1372         }
1373         bh_lru_unlock();
1374         return ret;
1375 }
1376
1377 /*
1378  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1379  * it in the LRU and mark it as accessed.  If it is not present then return
1380  * NULL
1381  */
1382 struct buffer_head *
1383 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1384 {
1385         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1386
1387         if (bh == NULL) {
1388                 bh = __find_get_block_slow(bdev, block);
1389                 if (bh)
1390                         bh_lru_install(bh);
1391         }
1392         if (bh)
1393                 touch_buffer(bh);
1394         return bh;
1395 }
1396 EXPORT_SYMBOL(__find_get_block);
1397
1398 /*
1399  * __getblk will locate (and, if necessary, create) the buffer_head
1400  * which corresponds to the passed block_device, block and size. The
1401  * returned buffer has its reference count incremented.
1402  *
1403  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1404  * illegal block number, __getblk() will happily return a buffer_head
1405  * which represents the non-existent block.  Very weird.
1406  *
1407  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1408  * attempt is failing.  FIXME, perhaps?
1409  */
1410 struct buffer_head *
1411 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1412 {
1413         struct buffer_head *bh = __find_get_block(bdev, block, size);
1414
1415         might_sleep();
1416         if (bh == NULL)
1417                 bh = __getblk_slow(bdev, block, size);
1418         return bh;
1419 }
1420 EXPORT_SYMBOL(__getblk);
1421
1422 /*
1423  * Do async read-ahead on a buffer..
1424  */
1425 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1426 {
1427         struct buffer_head *bh = __getblk(bdev, block, size);
1428         if (likely(bh)) {
1429                 ll_rw_block(READA, 1, &bh);
1430                 brelse(bh);
1431         }
1432 }
1433 EXPORT_SYMBOL(__breadahead);
1434
1435 /**
1436  *  __bread() - reads a specified block and returns the bh
1437  *  @bdev: the block_device to read from
1438  *  @block: number of block
1439  *  @size: size (in bytes) to read
1440  * 
1441  *  Reads a specified block, and returns buffer head that contains it.
1442  *  It returns NULL if the block was unreadable.
1443  */
1444 struct buffer_head *
1445 __bread(struct block_device *bdev, sector_t block, unsigned size)
1446 {
1447         struct buffer_head *bh = __getblk(bdev, block, size);
1448
1449         if (likely(bh) && !buffer_uptodate(bh))
1450                 bh = __bread_slow(bh);
1451         return bh;
1452 }
1453 EXPORT_SYMBOL(__bread);
1454
1455 /*
1456  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1457  * This doesn't race because it runs in each cpu either in irq
1458  * or with preempt disabled.
1459  */
1460 static void invalidate_bh_lru(void *arg)
1461 {
1462         struct bh_lru *b = &get_cpu_var(bh_lrus);
1463         int i;
1464
1465         for (i = 0; i < BH_LRU_SIZE; i++) {
1466                 brelse(b->bhs[i]);
1467                 b->bhs[i] = NULL;
1468         }
1469         put_cpu_var(bh_lrus);
1470 }
1471         
1472 void invalidate_bh_lrus(void)
1473 {
1474         on_each_cpu(invalidate_bh_lru, NULL, 1);
1475 }
1476 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1477
1478 void set_bh_page(struct buffer_head *bh,
1479                 struct page *page, unsigned long offset)
1480 {
1481         bh->b_page = page;
1482         BUG_ON(offset >= PAGE_SIZE);
1483         if (PageHighMem(page))
1484                 /*
1485                  * This catches illegal uses and preserves the offset:
1486                  */
1487                 bh->b_data = (char *)(0 + offset);
1488         else
1489                 bh->b_data = page_address(page) + offset;
1490 }
1491 EXPORT_SYMBOL(set_bh_page);
1492
1493 /*
1494  * Called when truncating a buffer on a page completely.
1495  */
1496 static void discard_buffer(struct buffer_head * bh)
1497 {
1498         lock_buffer(bh);
1499         clear_buffer_dirty(bh);
1500         bh->b_bdev = NULL;
1501         clear_buffer_mapped(bh);
1502         clear_buffer_req(bh);
1503         clear_buffer_new(bh);
1504         clear_buffer_delay(bh);
1505         clear_buffer_unwritten(bh);
1506         unlock_buffer(bh);
1507 }
1508
1509 /**
1510  * block_invalidatepage - invalidate part of all of a buffer-backed page
1511  *
1512  * @page: the page which is affected
1513  * @offset: the index of the truncation point
1514  *
1515  * block_invalidatepage() is called when all or part of the page has become
1516  * invalidatedby a truncate operation.
1517  *
1518  * block_invalidatepage() does not have to release all buffers, but it must
1519  * ensure that no dirty buffer is left outside @offset and that no I/O
1520  * is underway against any of the blocks which are outside the truncation
1521  * point.  Because the caller is about to free (and possibly reuse) those
1522  * blocks on-disk.
1523  */
1524 void block_invalidatepage(struct page *page, unsigned long offset)
1525 {
1526         struct buffer_head *head, *bh, *next;
1527         unsigned int curr_off = 0;
1528
1529         BUG_ON(!PageLocked(page));
1530         if (!page_has_buffers(page))
1531                 goto out;
1532
1533         head = page_buffers(page);
1534         bh = head;
1535         do {
1536                 unsigned int next_off = curr_off + bh->b_size;
1537                 next = bh->b_this_page;
1538
1539                 /*
1540                  * is this block fully invalidated?
1541                  */
1542                 if (offset <= curr_off)
1543                         discard_buffer(bh);
1544                 curr_off = next_off;
1545                 bh = next;
1546         } while (bh != head);
1547
1548         /*
1549          * We release buffers only if the entire page is being invalidated.
1550          * The get_block cached value has been unconditionally invalidated,
1551          * so real IO is not possible anymore.
1552          */
1553         if (offset == 0)
1554                 try_to_release_page(page, 0);
1555 out:
1556         return;
1557 }
1558 EXPORT_SYMBOL(block_invalidatepage);
1559
1560 /*
1561  * We attach and possibly dirty the buffers atomically wrt
1562  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1563  * is already excluded via the page lock.
1564  */
1565 void create_empty_buffers(struct page *page,
1566                         unsigned long blocksize, unsigned long b_state)
1567 {
1568         struct buffer_head *bh, *head, *tail;
1569
1570         head = alloc_page_buffers(page, blocksize, 1);
1571         bh = head;
1572         do {
1573                 bh->b_state |= b_state;
1574                 tail = bh;
1575                 bh = bh->b_this_page;
1576         } while (bh);
1577         tail->b_this_page = head;
1578
1579         spin_lock(&page->mapping->private_lock);
1580         if (PageUptodate(page) || PageDirty(page)) {
1581                 bh = head;
1582                 do {
1583                         if (PageDirty(page))
1584                                 set_buffer_dirty(bh);
1585                         if (PageUptodate(page))
1586                                 set_buffer_uptodate(bh);
1587                         bh = bh->b_this_page;
1588                 } while (bh != head);
1589         }
1590         attach_page_buffers(page, head);
1591         spin_unlock(&page->mapping->private_lock);
1592 }
1593 EXPORT_SYMBOL(create_empty_buffers);
1594
1595 /*
1596  * We are taking a block for data and we don't want any output from any
1597  * buffer-cache aliases starting from return from that function and
1598  * until the moment when something will explicitly mark the buffer
1599  * dirty (hopefully that will not happen until we will free that block ;-)
1600  * We don't even need to mark it not-uptodate - nobody can expect
1601  * anything from a newly allocated buffer anyway. We used to used
1602  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1603  * don't want to mark the alias unmapped, for example - it would confuse
1604  * anyone who might pick it with bread() afterwards...
1605  *
1606  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1607  * be writeout I/O going on against recently-freed buffers.  We don't
1608  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1609  * only if we really need to.  That happens here.
1610  */
1611 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1612 {
1613         struct buffer_head *old_bh;
1614
1615         might_sleep();
1616
1617         old_bh = __find_get_block_slow(bdev, block);
1618         if (old_bh) {
1619                 clear_buffer_dirty(old_bh);
1620                 wait_on_buffer(old_bh);
1621                 clear_buffer_req(old_bh);
1622                 __brelse(old_bh);
1623         }
1624 }
1625 EXPORT_SYMBOL(unmap_underlying_metadata);
1626
1627 /*
1628  * NOTE! All mapped/uptodate combinations are valid:
1629  *
1630  *      Mapped  Uptodate        Meaning
1631  *
1632  *      No      No              "unknown" - must do get_block()
1633  *      No      Yes             "hole" - zero-filled
1634  *      Yes     No              "allocated" - allocated on disk, not read in
1635  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1636  *
1637  * "Dirty" is valid only with the last case (mapped+uptodate).
1638  */
1639
1640 /*
1641  * While block_write_full_page is writing back the dirty buffers under
1642  * the page lock, whoever dirtied the buffers may decide to clean them
1643  * again at any time.  We handle that by only looking at the buffer
1644  * state inside lock_buffer().
1645  *
1646  * If block_write_full_page() is called for regular writeback
1647  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1648  * locked buffer.   This only can happen if someone has written the buffer
1649  * directly, with submit_bh().  At the address_space level PageWriteback
1650  * prevents this contention from occurring.
1651  */
1652 static int __block_write_full_page(struct inode *inode, struct page *page,
1653                         get_block_t *get_block, struct writeback_control *wbc)
1654 {
1655         int err;
1656         sector_t block;
1657         sector_t last_block;
1658         struct buffer_head *bh, *head;
1659         const unsigned blocksize = 1 << inode->i_blkbits;
1660         int nr_underway = 0;
1661
1662         BUG_ON(!PageLocked(page));
1663
1664         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1665
1666         if (!page_has_buffers(page)) {
1667                 create_empty_buffers(page, blocksize,
1668                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1669         }
1670
1671         /*
1672          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1673          * here, and the (potentially unmapped) buffers may become dirty at
1674          * any time.  If a buffer becomes dirty here after we've inspected it
1675          * then we just miss that fact, and the page stays dirty.
1676          *
1677          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1678          * handle that here by just cleaning them.
1679          */
1680
1681         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1682         head = page_buffers(page);
1683         bh = head;
1684
1685         /*
1686          * Get all the dirty buffers mapped to disk addresses and
1687          * handle any aliases from the underlying blockdev's mapping.
1688          */
1689         do {
1690                 if (block > last_block) {
1691                         /*
1692                          * mapped buffers outside i_size will occur, because
1693                          * this page can be outside i_size when there is a
1694                          * truncate in progress.
1695                          */
1696                         /*
1697                          * The buffer was zeroed by block_write_full_page()
1698                          */
1699                         clear_buffer_dirty(bh);
1700                         set_buffer_uptodate(bh);
1701                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1702                            buffer_dirty(bh)) {
1703                         WARN_ON(bh->b_size != blocksize);
1704                         err = get_block(inode, block, bh, 1);
1705                         if (err)
1706                                 goto recover;
1707                         clear_buffer_delay(bh);
1708                         if (buffer_new(bh)) {
1709                                 /* blockdev mappings never come here */
1710                                 clear_buffer_new(bh);
1711                                 unmap_underlying_metadata(bh->b_bdev,
1712                                                         bh->b_blocknr);
1713                         }
1714                 }
1715                 bh = bh->b_this_page;
1716                 block++;
1717         } while (bh != head);
1718
1719         do {
1720                 if (!buffer_mapped(bh))
1721                         continue;
1722                 /*
1723                  * If it's a fully non-blocking write attempt and we cannot
1724                  * lock the buffer then redirty the page.  Note that this can
1725                  * potentially cause a busy-wait loop from pdflush and kswapd
1726                  * activity, but those code paths have their own higher-level
1727                  * throttling.
1728                  */
1729                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1730                         lock_buffer(bh);
1731                 } else if (!trylock_buffer(bh)) {
1732                         redirty_page_for_writepage(wbc, page);
1733                         continue;
1734                 }
1735                 if (test_clear_buffer_dirty(bh)) {
1736                         mark_buffer_async_write(bh);
1737                 } else {
1738                         unlock_buffer(bh);
1739                 }
1740         } while ((bh = bh->b_this_page) != head);
1741
1742         /*
1743          * The page and its buffers are protected by PageWriteback(), so we can
1744          * drop the bh refcounts early.
1745          */
1746         BUG_ON(PageWriteback(page));
1747         set_page_writeback(page);
1748
1749         do {
1750                 struct buffer_head *next = bh->b_this_page;
1751                 if (buffer_async_write(bh)) {
1752                         submit_bh(WRITE, bh);
1753                         nr_underway++;
1754                 }
1755                 bh = next;
1756         } while (bh != head);
1757         unlock_page(page);
1758
1759         err = 0;
1760 done:
1761         if (nr_underway == 0) {
1762                 /*
1763                  * The page was marked dirty, but the buffers were
1764                  * clean.  Someone wrote them back by hand with
1765                  * ll_rw_block/submit_bh.  A rare case.
1766                  */
1767                 end_page_writeback(page);
1768
1769                 /*
1770                  * The page and buffer_heads can be released at any time from
1771                  * here on.
1772                  */
1773         }
1774         return err;
1775
1776 recover:
1777         /*
1778          * ENOSPC, or some other error.  We may already have added some
1779          * blocks to the file, so we need to write these out to avoid
1780          * exposing stale data.
1781          * The page is currently locked and not marked for writeback
1782          */
1783         bh = head;
1784         /* Recovery: lock and submit the mapped buffers */
1785         do {
1786                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1787                     !buffer_delay(bh)) {
1788                         lock_buffer(bh);
1789                         mark_buffer_async_write(bh);
1790                 } else {
1791                         /*
1792                          * The buffer may have been set dirty during
1793                          * attachment to a dirty page.
1794                          */
1795                         clear_buffer_dirty(bh);
1796                 }
1797         } while ((bh = bh->b_this_page) != head);
1798         SetPageError(page);
1799         BUG_ON(PageWriteback(page));
1800         mapping_set_error(page->mapping, err);
1801         set_page_writeback(page);
1802         do {
1803                 struct buffer_head *next = bh->b_this_page;
1804                 if (buffer_async_write(bh)) {
1805                         clear_buffer_dirty(bh);
1806                         submit_bh(WRITE, bh);
1807                         nr_underway++;
1808                 }
1809                 bh = next;
1810         } while (bh != head);
1811         unlock_page(page);
1812         goto done;
1813 }
1814
1815 /*
1816  * If a page has any new buffers, zero them out here, and mark them uptodate
1817  * and dirty so they'll be written out (in order to prevent uninitialised
1818  * block data from leaking). And clear the new bit.
1819  */
1820 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1821 {
1822         unsigned int block_start, block_end;
1823         struct buffer_head *head, *bh;
1824
1825         BUG_ON(!PageLocked(page));
1826         if (!page_has_buffers(page))
1827                 return;
1828
1829         bh = head = page_buffers(page);
1830         block_start = 0;
1831         do {
1832                 block_end = block_start + bh->b_size;
1833
1834                 if (buffer_new(bh)) {
1835                         if (block_end > from && block_start < to) {
1836                                 if (!PageUptodate(page)) {
1837                                         unsigned start, size;
1838
1839                                         start = max(from, block_start);
1840                                         size = min(to, block_end) - start;
1841
1842                                         zero_user(page, start, size);
1843                                         set_buffer_uptodate(bh);
1844                                 }
1845
1846                                 clear_buffer_new(bh);
1847                                 mark_buffer_dirty(bh);
1848                         }
1849                 }
1850
1851                 block_start = block_end;
1852                 bh = bh->b_this_page;
1853         } while (bh != head);
1854 }
1855 EXPORT_SYMBOL(page_zero_new_buffers);
1856
1857 static int __block_prepare_write(struct inode *inode, struct page *page,
1858                 unsigned from, unsigned to, get_block_t *get_block)
1859 {
1860         unsigned block_start, block_end;
1861         sector_t block;
1862         int err = 0;
1863         unsigned blocksize, bbits;
1864         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1865
1866         BUG_ON(!PageLocked(page));
1867         BUG_ON(from > PAGE_CACHE_SIZE);
1868         BUG_ON(to > PAGE_CACHE_SIZE);
1869         BUG_ON(from > to);
1870
1871         blocksize = 1 << inode->i_blkbits;
1872         if (!page_has_buffers(page))
1873                 create_empty_buffers(page, blocksize, 0);
1874         head = page_buffers(page);
1875
1876         bbits = inode->i_blkbits;
1877         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1878
1879         for(bh = head, block_start = 0; bh != head || !block_start;
1880             block++, block_start=block_end, bh = bh->b_this_page) {
1881                 block_end = block_start + blocksize;
1882                 if (block_end <= from || block_start >= to) {
1883                         if (PageUptodate(page)) {
1884                                 if (!buffer_uptodate(bh))
1885                                         set_buffer_uptodate(bh);
1886                         }
1887                         continue;
1888                 }
1889                 if (buffer_new(bh))
1890                         clear_buffer_new(bh);
1891                 if (!buffer_mapped(bh)) {
1892                         WARN_ON(bh->b_size != blocksize);
1893                         err = get_block(inode, block, bh, 1);
1894                         if (err)
1895                                 break;
1896                         if (buffer_new(bh)) {
1897                                 unmap_underlying_metadata(bh->b_bdev,
1898                                                         bh->b_blocknr);
1899                                 if (PageUptodate(page)) {
1900                                         clear_buffer_new(bh);
1901                                         set_buffer_uptodate(bh);
1902                                         mark_buffer_dirty(bh);
1903                                         continue;
1904                                 }
1905                                 if (block_end > to || block_start < from)
1906                                         zero_user_segments(page,
1907                                                 to, block_end,
1908                                                 block_start, from);
1909                                 continue;
1910                         }
1911                 }
1912                 if (PageUptodate(page)) {
1913                         if (!buffer_uptodate(bh))
1914                                 set_buffer_uptodate(bh);
1915                         continue; 
1916                 }
1917                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1918                     !buffer_unwritten(bh) &&
1919                      (block_start < from || block_end > to)) {
1920                         ll_rw_block(READ, 1, &bh);
1921                         *wait_bh++=bh;
1922                 }
1923         }
1924         /*
1925          * If we issued read requests - let them complete.
1926          */
1927         while(wait_bh > wait) {
1928                 wait_on_buffer(*--wait_bh);
1929                 if (!buffer_uptodate(*wait_bh))
1930                         err = -EIO;
1931         }
1932         if (unlikely(err))
1933                 page_zero_new_buffers(page, from, to);
1934         return err;
1935 }
1936
1937 static int __block_commit_write(struct inode *inode, struct page *page,
1938                 unsigned from, unsigned to)
1939 {
1940         unsigned block_start, block_end;
1941         int partial = 0;
1942         unsigned blocksize;
1943         struct buffer_head *bh, *head;
1944
1945         blocksize = 1 << inode->i_blkbits;
1946
1947         for(bh = head = page_buffers(page), block_start = 0;
1948             bh != head || !block_start;
1949             block_start=block_end, bh = bh->b_this_page) {
1950                 block_end = block_start + blocksize;
1951                 if (block_end <= from || block_start >= to) {
1952                         if (!buffer_uptodate(bh))
1953                                 partial = 1;
1954                 } else {
1955                         set_buffer_uptodate(bh);
1956                         mark_buffer_dirty(bh);
1957                 }
1958                 clear_buffer_new(bh);
1959         }
1960
1961         /*
1962          * If this is a partial write which happened to make all buffers
1963          * uptodate then we can optimize away a bogus readpage() for
1964          * the next read(). Here we 'discover' whether the page went
1965          * uptodate as a result of this (potentially partial) write.
1966          */
1967         if (!partial)
1968                 SetPageUptodate(page);
1969         return 0;
1970 }
1971
1972 /*
1973  * block_write_begin takes care of the basic task of block allocation and
1974  * bringing partial write blocks uptodate first.
1975  *
1976  * If *pagep is not NULL, then block_write_begin uses the locked page
1977  * at *pagep rather than allocating its own. In this case, the page will
1978  * not be unlocked or deallocated on failure.
1979  */
1980 int block_write_begin(struct file *file, struct address_space *mapping,
1981                         loff_t pos, unsigned len, unsigned flags,
1982                         struct page **pagep, void **fsdata,
1983                         get_block_t *get_block)
1984 {
1985         struct inode *inode = mapping->host;
1986         int status = 0;
1987         struct page *page;
1988         pgoff_t index;
1989         unsigned start, end;
1990         int ownpage = 0;
1991
1992         index = pos >> PAGE_CACHE_SHIFT;
1993         start = pos & (PAGE_CACHE_SIZE - 1);
1994         end = start + len;
1995
1996         page = *pagep;
1997         if (page == NULL) {
1998                 ownpage = 1;
1999                 page = grab_cache_page_write_begin(mapping, index, flags);
2000                 if (!page) {
2001                         status = -ENOMEM;
2002                         goto out;
2003                 }
2004                 *pagep = page;
2005         } else
2006                 BUG_ON(!PageLocked(page));
2007
2008         status = __block_prepare_write(inode, page, start, end, get_block);
2009         if (unlikely(status)) {
2010                 ClearPageUptodate(page);
2011
2012                 if (ownpage) {
2013                         unlock_page(page);
2014                         page_cache_release(page);
2015                         *pagep = NULL;
2016
2017                         /*
2018                          * prepare_write() may have instantiated a few blocks
2019                          * outside i_size.  Trim these off again. Don't need
2020                          * i_size_read because we hold i_mutex.
2021                          */
2022                         if (pos + len > inode->i_size)
2023                                 vmtruncate(inode, inode->i_size);
2024                 }
2025                 goto out;
2026         }
2027
2028 out:
2029         return status;
2030 }
2031 EXPORT_SYMBOL(block_write_begin);
2032
2033 int block_write_end(struct file *file, struct address_space *mapping,
2034                         loff_t pos, unsigned len, unsigned copied,
2035                         struct page *page, void *fsdata)
2036 {
2037         struct inode *inode = mapping->host;
2038         unsigned start;
2039
2040         start = pos & (PAGE_CACHE_SIZE - 1);
2041
2042         if (unlikely(copied < len)) {
2043                 /*
2044                  * The buffers that were written will now be uptodate, so we
2045                  * don't have to worry about a readpage reading them and
2046                  * overwriting a partial write. However if we have encountered
2047                  * a short write and only partially written into a buffer, it
2048                  * will not be marked uptodate, so a readpage might come in and
2049                  * destroy our partial write.
2050                  *
2051                  * Do the simplest thing, and just treat any short write to a
2052                  * non uptodate page as a zero-length write, and force the
2053                  * caller to redo the whole thing.
2054                  */
2055                 if (!PageUptodate(page))
2056                         copied = 0;
2057
2058                 page_zero_new_buffers(page, start+copied, start+len);
2059         }
2060         flush_dcache_page(page);
2061
2062         /* This could be a short (even 0-length) commit */
2063         __block_commit_write(inode, page, start, start+copied);
2064
2065         return copied;
2066 }
2067 EXPORT_SYMBOL(block_write_end);
2068
2069 int generic_write_end(struct file *file, struct address_space *mapping,
2070                         loff_t pos, unsigned len, unsigned copied,
2071                         struct page *page, void *fsdata)
2072 {
2073         struct inode *inode = mapping->host;
2074         int i_size_changed = 0;
2075
2076         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2077
2078         /*
2079          * No need to use i_size_read() here, the i_size
2080          * cannot change under us because we hold i_mutex.
2081          *
2082          * But it's important to update i_size while still holding page lock:
2083          * page writeout could otherwise come in and zero beyond i_size.
2084          */
2085         if (pos+copied > inode->i_size) {
2086                 i_size_write(inode, pos+copied);
2087                 i_size_changed = 1;
2088         }
2089
2090         unlock_page(page);
2091         page_cache_release(page);
2092
2093         /*
2094          * Don't mark the inode dirty under page lock. First, it unnecessarily
2095          * makes the holding time of page lock longer. Second, it forces lock
2096          * ordering of page lock and transaction start for journaling
2097          * filesystems.
2098          */
2099         if (i_size_changed)
2100                 mark_inode_dirty(inode);
2101
2102         return copied;
2103 }
2104 EXPORT_SYMBOL(generic_write_end);
2105
2106 /*
2107  * block_is_partially_uptodate checks whether buffers within a page are
2108  * uptodate or not.
2109  *
2110  * Returns true if all buffers which correspond to a file portion
2111  * we want to read are uptodate.
2112  */
2113 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2114                                         unsigned long from)
2115 {
2116         struct inode *inode = page->mapping->host;
2117         unsigned block_start, block_end, blocksize;
2118         unsigned to;
2119         struct buffer_head *bh, *head;
2120         int ret = 1;
2121
2122         if (!page_has_buffers(page))
2123                 return 0;
2124
2125         blocksize = 1 << inode->i_blkbits;
2126         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2127         to = from + to;
2128         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2129                 return 0;
2130
2131         head = page_buffers(page);
2132         bh = head;
2133         block_start = 0;
2134         do {
2135                 block_end = block_start + blocksize;
2136                 if (block_end > from && block_start < to) {
2137                         if (!buffer_uptodate(bh)) {
2138                                 ret = 0;
2139                                 break;
2140                         }
2141                         if (block_end >= to)
2142                                 break;
2143                 }
2144                 block_start = block_end;
2145                 bh = bh->b_this_page;
2146         } while (bh != head);
2147
2148         return ret;
2149 }
2150 EXPORT_SYMBOL(block_is_partially_uptodate);
2151
2152 /*
2153  * Generic "read page" function for block devices that have the normal
2154  * get_block functionality. This is most of the block device filesystems.
2155  * Reads the page asynchronously --- the unlock_buffer() and
2156  * set/clear_buffer_uptodate() functions propagate buffer state into the
2157  * page struct once IO has completed.
2158  */
2159 int block_read_full_page(struct page *page, get_block_t *get_block)
2160 {
2161         struct inode *inode = page->mapping->host;
2162         sector_t iblock, lblock;
2163         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2164         unsigned int blocksize;
2165         int nr, i;
2166         int fully_mapped = 1;
2167
2168         BUG_ON(!PageLocked(page));
2169         blocksize = 1 << inode->i_blkbits;
2170         if (!page_has_buffers(page))
2171                 create_empty_buffers(page, blocksize, 0);
2172         head = page_buffers(page);
2173
2174         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2175         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2176         bh = head;
2177         nr = 0;
2178         i = 0;
2179
2180         do {
2181                 if (buffer_uptodate(bh))
2182                         continue;
2183
2184                 if (!buffer_mapped(bh)) {
2185                         int err = 0;
2186
2187                         fully_mapped = 0;
2188                         if (iblock < lblock) {
2189                                 WARN_ON(bh->b_size != blocksize);
2190                                 err = get_block(inode, iblock, bh, 0);
2191                                 if (err)
2192                                         SetPageError(page);
2193                         }
2194                         if (!buffer_mapped(bh)) {
2195                                 zero_user(page, i * blocksize, blocksize);
2196                                 if (!err)
2197                                         set_buffer_uptodate(bh);
2198                                 continue;
2199                         }
2200                         /*
2201                          * get_block() might have updated the buffer
2202                          * synchronously
2203                          */
2204                         if (buffer_uptodate(bh))
2205                                 continue;
2206                 }
2207                 arr[nr++] = bh;
2208         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2209
2210         if (fully_mapped)
2211                 SetPageMappedToDisk(page);
2212
2213         if (!nr) {
2214                 /*
2215                  * All buffers are uptodate - we can set the page uptodate
2216                  * as well. But not if get_block() returned an error.
2217                  */
2218                 if (!PageError(page))
2219                         SetPageUptodate(page);
2220                 unlock_page(page);
2221                 return 0;
2222         }
2223
2224         /* Stage two: lock the buffers */
2225         for (i = 0; i < nr; i++) {
2226                 bh = arr[i];
2227                 lock_buffer(bh);
2228                 mark_buffer_async_read(bh);
2229         }
2230
2231         /*
2232          * Stage 3: start the IO.  Check for uptodateness
2233          * inside the buffer lock in case another process reading
2234          * the underlying blockdev brought it uptodate (the sct fix).
2235          */
2236         for (i = 0; i < nr; i++) {
2237                 bh = arr[i];
2238                 if (buffer_uptodate(bh))
2239                         end_buffer_async_read(bh, 1);
2240                 else
2241                         submit_bh(READ, bh);
2242         }
2243         return 0;
2244 }
2245
2246 /* utility function for filesystems that need to do work on expanding
2247  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2248  * deal with the hole.  
2249  */
2250 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2251 {
2252         struct address_space *mapping = inode->i_mapping;
2253         struct page *page;
2254         void *fsdata;
2255         unsigned long limit;
2256         int err;
2257
2258         err = -EFBIG;
2259         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2260         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2261                 send_sig(SIGXFSZ, current, 0);
2262                 goto out;
2263         }
2264         if (size > inode->i_sb->s_maxbytes)
2265                 goto out;
2266
2267         err = pagecache_write_begin(NULL, mapping, size, 0,
2268                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2269                                 &page, &fsdata);
2270         if (err)
2271                 goto out;
2272
2273         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2274         BUG_ON(err > 0);
2275
2276 out:
2277         return err;
2278 }
2279
2280 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2281                             loff_t pos, loff_t *bytes)
2282 {
2283         struct inode *inode = mapping->host;
2284         unsigned blocksize = 1 << inode->i_blkbits;
2285         struct page *page;
2286         void *fsdata;
2287         pgoff_t index, curidx;
2288         loff_t curpos;
2289         unsigned zerofrom, offset, len;
2290         int err = 0;
2291
2292         index = pos >> PAGE_CACHE_SHIFT;
2293         offset = pos & ~PAGE_CACHE_MASK;
2294
2295         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2296                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2297                 if (zerofrom & (blocksize-1)) {
2298                         *bytes |= (blocksize-1);
2299                         (*bytes)++;
2300                 }
2301                 len = PAGE_CACHE_SIZE - zerofrom;
2302
2303                 err = pagecache_write_begin(file, mapping, curpos, len,
2304                                                 AOP_FLAG_UNINTERRUPTIBLE,
2305                                                 &page, &fsdata);
2306                 if (err)
2307                         goto out;
2308                 zero_user(page, zerofrom, len);
2309                 err = pagecache_write_end(file, mapping, curpos, len, len,
2310                                                 page, fsdata);
2311                 if (err < 0)
2312                         goto out;
2313                 BUG_ON(err != len);
2314                 err = 0;
2315
2316                 balance_dirty_pages_ratelimited(mapping);
2317         }
2318
2319         /* page covers the boundary, find the boundary offset */
2320         if (index == curidx) {
2321                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2322                 /* if we will expand the thing last block will be filled */
2323                 if (offset <= zerofrom) {
2324                         goto out;
2325                 }
2326                 if (zerofrom & (blocksize-1)) {
2327                         *bytes |= (blocksize-1);
2328                         (*bytes)++;
2329                 }
2330                 len = offset - zerofrom;
2331
2332                 err = pagecache_write_begin(file, mapping, curpos, len,
2333                                                 AOP_FLAG_UNINTERRUPTIBLE,
2334                                                 &page, &fsdata);
2335                 if (err)
2336                         goto out;
2337                 zero_user(page, zerofrom, len);
2338                 err = pagecache_write_end(file, mapping, curpos, len, len,
2339                                                 page, fsdata);
2340                 if (err < 0)
2341                         goto out;
2342                 BUG_ON(err != len);
2343                 err = 0;
2344         }
2345 out:
2346         return err;
2347 }
2348
2349 /*
2350  * For moronic filesystems that do not allow holes in file.
2351  * We may have to extend the file.
2352  */
2353 int cont_write_begin(struct file *file, struct address_space *mapping,
2354                         loff_t pos, unsigned len, unsigned flags,
2355                         struct page **pagep, void **fsdata,
2356                         get_block_t *get_block, loff_t *bytes)
2357 {
2358         struct inode *inode = mapping->host;
2359         unsigned blocksize = 1 << inode->i_blkbits;
2360         unsigned zerofrom;
2361         int err;
2362
2363         err = cont_expand_zero(file, mapping, pos, bytes);
2364         if (err)
2365                 goto out;
2366
2367         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2368         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2369                 *bytes |= (blocksize-1);
2370                 (*bytes)++;
2371         }
2372
2373         *pagep = NULL;
2374         err = block_write_begin(file, mapping, pos, len,
2375                                 flags, pagep, fsdata, get_block);
2376 out:
2377         return err;
2378 }
2379
2380 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2381                         get_block_t *get_block)
2382 {
2383         struct inode *inode = page->mapping->host;
2384         int err = __block_prepare_write(inode, page, from, to, get_block);
2385         if (err)
2386                 ClearPageUptodate(page);
2387         return err;
2388 }
2389
2390 int block_commit_write(struct page *page, unsigned from, unsigned to)
2391 {
2392         struct inode *inode = page->mapping->host;
2393         __block_commit_write(inode,page,from,to);
2394         return 0;
2395 }
2396
2397 /*
2398  * block_page_mkwrite() is not allowed to change the file size as it gets
2399  * called from a page fault handler when a page is first dirtied. Hence we must
2400  * be careful to check for EOF conditions here. We set the page up correctly
2401  * for a written page which means we get ENOSPC checking when writing into
2402  * holes and correct delalloc and unwritten extent mapping on filesystems that
2403  * support these features.
2404  *
2405  * We are not allowed to take the i_mutex here so we have to play games to
2406  * protect against truncate races as the page could now be beyond EOF.  Because
2407  * vmtruncate() writes the inode size before removing pages, once we have the
2408  * page lock we can determine safely if the page is beyond EOF. If it is not
2409  * beyond EOF, then the page is guaranteed safe against truncation until we
2410  * unlock the page.
2411  */
2412 int
2413 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2414                    get_block_t get_block)
2415 {
2416         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2417         unsigned long end;
2418         loff_t size;
2419         int ret = -EINVAL;
2420
2421         lock_page(page);
2422         size = i_size_read(inode);
2423         if ((page->mapping != inode->i_mapping) ||
2424             (page_offset(page) > size)) {
2425                 /* page got truncated out from underneath us */
2426                 goto out_unlock;
2427         }
2428
2429         /* page is wholly or partially inside EOF */
2430         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2431                 end = size & ~PAGE_CACHE_MASK;
2432         else
2433                 end = PAGE_CACHE_SIZE;
2434
2435         ret = block_prepare_write(page, 0, end, get_block);
2436         if (!ret)
2437                 ret = block_commit_write(page, 0, end);
2438
2439 out_unlock:
2440         unlock_page(page);
2441         return ret;
2442 }
2443
2444 /*
2445  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2446  * immediately, while under the page lock.  So it needs a special end_io
2447  * handler which does not touch the bh after unlocking it.
2448  */
2449 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2450 {
2451         __end_buffer_read_notouch(bh, uptodate);
2452 }
2453
2454 /*
2455  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2456  * the page (converting it to circular linked list and taking care of page
2457  * dirty races).
2458  */
2459 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2460 {
2461         struct buffer_head *bh;
2462
2463         BUG_ON(!PageLocked(page));
2464
2465         spin_lock(&page->mapping->private_lock);
2466         bh = head;
2467         do {
2468                 if (PageDirty(page))
2469                         set_buffer_dirty(bh);
2470                 if (!bh->b_this_page)
2471                         bh->b_this_page = head;
2472                 bh = bh->b_this_page;
2473         } while (bh != head);
2474         attach_page_buffers(page, head);
2475         spin_unlock(&page->mapping->private_lock);
2476 }
2477
2478 /*
2479  * On entry, the page is fully not uptodate.
2480  * On exit the page is fully uptodate in the areas outside (from,to)
2481  */
2482 int nobh_write_begin(struct file *file, struct address_space *mapping,
2483                         loff_t pos, unsigned len, unsigned flags,
2484                         struct page **pagep, void **fsdata,
2485                         get_block_t *get_block)
2486 {
2487         struct inode *inode = mapping->host;
2488         const unsigned blkbits = inode->i_blkbits;
2489         const unsigned blocksize = 1 << blkbits;
2490         struct buffer_head *head, *bh;
2491         struct page *page;
2492         pgoff_t index;
2493         unsigned from, to;
2494         unsigned block_in_page;
2495         unsigned block_start, block_end;
2496         sector_t block_in_file;
2497         int nr_reads = 0;
2498         int ret = 0;
2499         int is_mapped_to_disk = 1;
2500
2501         index = pos >> PAGE_CACHE_SHIFT;
2502         from = pos & (PAGE_CACHE_SIZE - 1);
2503         to = from + len;
2504
2505         page = grab_cache_page_write_begin(mapping, index, flags);
2506         if (!page)
2507                 return -ENOMEM;
2508         *pagep = page;
2509         *fsdata = NULL;
2510
2511         if (page_has_buffers(page)) {
2512                 unlock_page(page);
2513                 page_cache_release(page);
2514                 *pagep = NULL;
2515                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2516                                         fsdata, get_block);
2517         }
2518
2519         if (PageMappedToDisk(page))
2520                 return 0;
2521
2522         /*
2523          * Allocate buffers so that we can keep track of state, and potentially
2524          * attach them to the page if an error occurs. In the common case of
2525          * no error, they will just be freed again without ever being attached
2526          * to the page (which is all OK, because we're under the page lock).
2527          *
2528          * Be careful: the buffer linked list is a NULL terminated one, rather
2529          * than the circular one we're used to.
2530          */
2531         head = alloc_page_buffers(page, blocksize, 0);
2532         if (!head) {
2533                 ret = -ENOMEM;
2534                 goto out_release;
2535         }
2536
2537         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2538
2539         /*
2540          * We loop across all blocks in the page, whether or not they are
2541          * part of the affected region.  This is so we can discover if the
2542          * page is fully mapped-to-disk.
2543          */
2544         for (block_start = 0, block_in_page = 0, bh = head;
2545                   block_start < PAGE_CACHE_SIZE;
2546                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2547                 int create;
2548
2549                 block_end = block_start + blocksize;
2550                 bh->b_state = 0;
2551                 create = 1;
2552                 if (block_start >= to)
2553                         create = 0;
2554                 ret = get_block(inode, block_in_file + block_in_page,
2555                                         bh, create);
2556                 if (ret)
2557                         goto failed;
2558                 if (!buffer_mapped(bh))
2559                         is_mapped_to_disk = 0;
2560                 if (buffer_new(bh))
2561                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2562                 if (PageUptodate(page)) {
2563                         set_buffer_uptodate(bh);
2564                         continue;
2565                 }
2566                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2567                         zero_user_segments(page, block_start, from,
2568                                                         to, block_end);
2569                         continue;
2570                 }
2571                 if (buffer_uptodate(bh))
2572                         continue;       /* reiserfs does this */
2573                 if (block_start < from || block_end > to) {
2574                         lock_buffer(bh);
2575                         bh->b_end_io = end_buffer_read_nobh;
2576                         submit_bh(READ, bh);
2577                         nr_reads++;
2578                 }
2579         }
2580
2581         if (nr_reads) {
2582                 /*
2583                  * The page is locked, so these buffers are protected from
2584                  * any VM or truncate activity.  Hence we don't need to care
2585                  * for the buffer_head refcounts.
2586                  */
2587                 for (bh = head; bh; bh = bh->b_this_page) {
2588                         wait_on_buffer(bh);
2589                         if (!buffer_uptodate(bh))
2590                                 ret = -EIO;
2591                 }
2592                 if (ret)
2593                         goto failed;
2594         }
2595
2596         if (is_mapped_to_disk)
2597                 SetPageMappedToDisk(page);
2598
2599         *fsdata = head; /* to be released by nobh_write_end */
2600
2601         return 0;
2602
2603 failed:
2604         BUG_ON(!ret);
2605         /*
2606          * Error recovery is a bit difficult. We need to zero out blocks that
2607          * were newly allocated, and dirty them to ensure they get written out.
2608          * Buffers need to be attached to the page at this point, otherwise
2609          * the handling of potential IO errors during writeout would be hard
2610          * (could try doing synchronous writeout, but what if that fails too?)
2611          */
2612         attach_nobh_buffers(page, head);
2613         page_zero_new_buffers(page, from, to);
2614
2615 out_release:
2616         unlock_page(page);
2617         page_cache_release(page);
2618         *pagep = NULL;
2619
2620         if (pos + len > inode->i_size)
2621                 vmtruncate(inode, inode->i_size);
2622
2623         return ret;
2624 }
2625 EXPORT_SYMBOL(nobh_write_begin);
2626
2627 int nobh_write_end(struct file *file, struct address_space *mapping,
2628                         loff_t pos, unsigned len, unsigned copied,
2629                         struct page *page, void *fsdata)
2630 {
2631         struct inode *inode = page->mapping->host;
2632         struct buffer_head *head = fsdata;
2633         struct buffer_head *bh;
2634         BUG_ON(fsdata != NULL && page_has_buffers(page));
2635
2636         if (unlikely(copied < len) && !page_has_buffers(page))
2637                 attach_nobh_buffers(page, head);
2638         if (page_has_buffers(page))
2639                 return generic_write_end(file, mapping, pos, len,
2640                                         copied, page, fsdata);
2641
2642         SetPageUptodate(page);
2643         set_page_dirty(page);
2644         if (pos+copied > inode->i_size) {
2645                 i_size_write(inode, pos+copied);
2646                 mark_inode_dirty(inode);
2647         }
2648
2649         unlock_page(page);
2650         page_cache_release(page);
2651
2652         while (head) {
2653                 bh = head;
2654                 head = head->b_this_page;
2655                 free_buffer_head(bh);
2656         }
2657
2658         return copied;
2659 }
2660 EXPORT_SYMBOL(nobh_write_end);
2661
2662 /*
2663  * nobh_writepage() - based on block_full_write_page() except
2664  * that it tries to operate without attaching bufferheads to
2665  * the page.
2666  */
2667 int nobh_writepage(struct page *page, get_block_t *get_block,
2668                         struct writeback_control *wbc)
2669 {
2670         struct inode * const inode = page->mapping->host;
2671         loff_t i_size = i_size_read(inode);
2672         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2673         unsigned offset;
2674         int ret;
2675
2676         /* Is the page fully inside i_size? */
2677         if (page->index < end_index)
2678                 goto out;
2679
2680         /* Is the page fully outside i_size? (truncate in progress) */
2681         offset = i_size & (PAGE_CACHE_SIZE-1);
2682         if (page->index >= end_index+1 || !offset) {
2683                 /*
2684                  * The page may have dirty, unmapped buffers.  For example,
2685                  * they may have been added in ext3_writepage().  Make them
2686                  * freeable here, so the page does not leak.
2687                  */
2688 #if 0
2689                 /* Not really sure about this  - do we need this ? */
2690                 if (page->mapping->a_ops->invalidatepage)
2691                         page->mapping->a_ops->invalidatepage(page, offset);
2692 #endif
2693                 unlock_page(page);
2694                 return 0; /* don't care */
2695         }
2696
2697         /*
2698          * The page straddles i_size.  It must be zeroed out on each and every
2699          * writepage invocation because it may be mmapped.  "A file is mapped
2700          * in multiples of the page size.  For a file that is not a multiple of
2701          * the  page size, the remaining memory is zeroed when mapped, and
2702          * writes to that region are not written out to the file."
2703          */
2704         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2705 out:
2706         ret = mpage_writepage(page, get_block, wbc);
2707         if (ret == -EAGAIN)
2708                 ret = __block_write_full_page(inode, page, get_block, wbc);
2709         return ret;
2710 }
2711 EXPORT_SYMBOL(nobh_writepage);
2712
2713 int nobh_truncate_page(struct address_space *mapping,
2714                         loff_t from, get_block_t *get_block)
2715 {
2716         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2717         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2718         unsigned blocksize;
2719         sector_t iblock;
2720         unsigned length, pos;
2721         struct inode *inode = mapping->host;
2722         struct page *page;
2723         struct buffer_head map_bh;
2724         int err;
2725
2726         blocksize = 1 << inode->i_blkbits;
2727         length = offset & (blocksize - 1);
2728
2729         /* Block boundary? Nothing to do */
2730         if (!length)
2731                 return 0;
2732
2733         length = blocksize - length;
2734         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2735
2736         page = grab_cache_page(mapping, index);
2737         err = -ENOMEM;
2738         if (!page)
2739                 goto out;
2740
2741         if (page_has_buffers(page)) {
2742 has_buffers:
2743                 unlock_page(page);
2744                 page_cache_release(page);
2745                 return block_truncate_page(mapping, from, get_block);
2746         }
2747
2748         /* Find the buffer that contains "offset" */
2749         pos = blocksize;
2750         while (offset >= pos) {
2751                 iblock++;
2752                 pos += blocksize;
2753         }
2754
2755         err = get_block(inode, iblock, &map_bh, 0);
2756         if (err)
2757                 goto unlock;
2758         /* unmapped? It's a hole - nothing to do */
2759         if (!buffer_mapped(&map_bh))
2760                 goto unlock;
2761
2762         /* Ok, it's mapped. Make sure it's up-to-date */
2763         if (!PageUptodate(page)) {
2764                 err = mapping->a_ops->readpage(NULL, page);
2765                 if (err) {
2766                         page_cache_release(page);
2767                         goto out;
2768                 }
2769                 lock_page(page);
2770                 if (!PageUptodate(page)) {
2771                         err = -EIO;
2772                         goto unlock;
2773                 }
2774                 if (page_has_buffers(page))
2775                         goto has_buffers;
2776         }
2777         zero_user(page, offset, length);
2778         set_page_dirty(page);
2779         err = 0;
2780
2781 unlock:
2782         unlock_page(page);
2783         page_cache_release(page);
2784 out:
2785         return err;
2786 }
2787 EXPORT_SYMBOL(nobh_truncate_page);
2788
2789 int block_truncate_page(struct address_space *mapping,
2790                         loff_t from, get_block_t *get_block)
2791 {
2792         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2793         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2794         unsigned blocksize;
2795         sector_t iblock;
2796         unsigned length, pos;
2797         struct inode *inode = mapping->host;
2798         struct page *page;
2799         struct buffer_head *bh;
2800         int err;
2801
2802         blocksize = 1 << inode->i_blkbits;
2803         length = offset & (blocksize - 1);
2804
2805         /* Block boundary? Nothing to do */
2806         if (!length)
2807                 return 0;
2808
2809         length = blocksize - length;
2810         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2811         
2812         page = grab_cache_page(mapping, index);
2813         err = -ENOMEM;
2814         if (!page)
2815                 goto out;
2816
2817         if (!page_has_buffers(page))
2818                 create_empty_buffers(page, blocksize, 0);
2819
2820         /* Find the buffer that contains "offset" */
2821         bh = page_buffers(page);
2822         pos = blocksize;
2823         while (offset >= pos) {
2824                 bh = bh->b_this_page;
2825                 iblock++;
2826                 pos += blocksize;
2827         }
2828
2829         err = 0;
2830         if (!buffer_mapped(bh)) {
2831                 WARN_ON(bh->b_size != blocksize);
2832                 err = get_block(inode, iblock, bh, 0);
2833                 if (err)
2834                         goto unlock;
2835                 /* unmapped? It's a hole - nothing to do */
2836                 if (!buffer_mapped(bh))
2837                         goto unlock;
2838         }
2839
2840         /* Ok, it's mapped. Make sure it's up-to-date */
2841         if (PageUptodate(page))
2842                 set_buffer_uptodate(bh);
2843
2844         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2845                 err = -EIO;
2846                 ll_rw_block(READ, 1, &bh);
2847                 wait_on_buffer(bh);
2848                 /* Uhhuh. Read error. Complain and punt. */
2849                 if (!buffer_uptodate(bh))
2850                         goto unlock;
2851         }
2852
2853         zero_user(page, offset, length);
2854         mark_buffer_dirty(bh);
2855         err = 0;
2856
2857 unlock:
2858         unlock_page(page);
2859         page_cache_release(page);
2860 out:
2861         return err;
2862 }
2863
2864 /*
2865  * The generic ->writepage function for buffer-backed address_spaces
2866  */
2867 int block_write_full_page(struct page *page, get_block_t *get_block,
2868                         struct writeback_control *wbc)
2869 {
2870         struct inode * const inode = page->mapping->host;
2871         loff_t i_size = i_size_read(inode);
2872         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2873         unsigned offset;
2874
2875         /* Is the page fully inside i_size? */
2876         if (page->index < end_index)
2877                 return __block_write_full_page(inode, page, get_block, wbc);
2878
2879         /* Is the page fully outside i_size? (truncate in progress) */
2880         offset = i_size & (PAGE_CACHE_SIZE-1);
2881         if (page->index >= end_index+1 || !offset) {
2882                 /*
2883                  * The page may have dirty, unmapped buffers.  For example,
2884                  * they may have been added in ext3_writepage().  Make them
2885                  * freeable here, so the page does not leak.
2886                  */
2887                 do_invalidatepage(page, 0);
2888                 unlock_page(page);
2889                 return 0; /* don't care */
2890         }
2891
2892         /*
2893          * The page straddles i_size.  It must be zeroed out on each and every
2894          * writepage invokation because it may be mmapped.  "A file is mapped
2895          * in multiples of the page size.  For a file that is not a multiple of
2896          * the  page size, the remaining memory is zeroed when mapped, and
2897          * writes to that region are not written out to the file."
2898          */
2899         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2900         return __block_write_full_page(inode, page, get_block, wbc);
2901 }
2902
2903 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2904                             get_block_t *get_block)
2905 {
2906         struct buffer_head tmp;
2907         struct inode *inode = mapping->host;
2908         tmp.b_state = 0;
2909         tmp.b_blocknr = 0;
2910         tmp.b_size = 1 << inode->i_blkbits;
2911         get_block(inode, block, &tmp, 0);
2912         return tmp.b_blocknr;
2913 }
2914
2915 static void end_bio_bh_io_sync(struct bio *bio, int err)
2916 {
2917         struct buffer_head *bh = bio->bi_private;
2918
2919         if (err == -EOPNOTSUPP) {
2920                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2921                 set_bit(BH_Eopnotsupp, &bh->b_state);
2922         }
2923
2924         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2925                 set_bit(BH_Quiet, &bh->b_state);
2926
2927         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2928         bio_put(bio);
2929 }
2930
2931 int submit_bh(int rw, struct buffer_head * bh)
2932 {
2933         struct bio *bio;
2934         int ret = 0;
2935
2936         BUG_ON(!buffer_locked(bh));
2937         BUG_ON(!buffer_mapped(bh));
2938         BUG_ON(!bh->b_end_io);
2939
2940         /*
2941          * Mask in barrier bit for a write (could be either a WRITE or a
2942          * WRITE_SYNC
2943          */
2944         if (buffer_ordered(bh) && (rw & WRITE))
2945                 rw |= WRITE_BARRIER;
2946
2947         /*
2948          * Only clear out a write error when rewriting
2949          */
2950         if (test_set_buffer_req(bh) && (rw & WRITE))
2951                 clear_buffer_write_io_error(bh);
2952
2953         /*
2954          * from here on down, it's all bio -- do the initial mapping,
2955          * submit_bio -> generic_make_request may further map this bio around
2956          */
2957         bio = bio_alloc(GFP_NOIO, 1);
2958
2959         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2960         bio->bi_bdev = bh->b_bdev;
2961         bio->bi_io_vec[0].bv_page = bh->b_page;
2962         bio->bi_io_vec[0].bv_len = bh->b_size;
2963         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2964
2965         bio->bi_vcnt = 1;
2966         bio->bi_idx = 0;
2967         bio->bi_size = bh->b_size;
2968
2969         bio->bi_end_io = end_bio_bh_io_sync;
2970         bio->bi_private = bh;
2971
2972         bio_get(bio);
2973         submit_bio(rw, bio);
2974
2975         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2976                 ret = -EOPNOTSUPP;
2977
2978         bio_put(bio);
2979         return ret;
2980 }
2981
2982 /**
2983  * ll_rw_block: low-level access to block devices (DEPRECATED)
2984  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2985  * @nr: number of &struct buffer_heads in the array
2986  * @bhs: array of pointers to &struct buffer_head
2987  *
2988  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2989  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2990  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2991  * are sent to disk. The fourth %READA option is described in the documentation
2992  * for generic_make_request() which ll_rw_block() calls.
2993  *
2994  * This function drops any buffer that it cannot get a lock on (with the
2995  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2996  * clean when doing a write request, and any buffer that appears to be
2997  * up-to-date when doing read request.  Further it marks as clean buffers that
2998  * are processed for writing (the buffer cache won't assume that they are
2999  * actually clean until the buffer gets unlocked).
3000  *
3001  * ll_rw_block sets b_end_io to simple completion handler that marks
3002  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3003  * any waiters. 
3004  *
3005  * All of the buffers must be for the same device, and must also be a
3006  * multiple of the current approved size for the device.
3007  */
3008 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3009 {
3010         int i;
3011
3012         for (i = 0; i < nr; i++) {
3013                 struct buffer_head *bh = bhs[i];
3014
3015                 if (rw == SWRITE || rw == SWRITE_SYNC)
3016                         lock_buffer(bh);
3017                 else if (!trylock_buffer(bh))
3018                         continue;
3019
3020                 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
3021                         if (test_clear_buffer_dirty(bh)) {
3022                                 bh->b_end_io = end_buffer_write_sync;
3023                                 get_bh(bh);
3024                                 if (rw == SWRITE_SYNC)
3025                                         submit_bh(WRITE_SYNC, bh);
3026                                 else
3027                                         submit_bh(WRITE, bh);
3028                                 continue;
3029                         }
3030                 } else {
3031                         if (!buffer_uptodate(bh)) {
3032                                 bh->b_end_io = end_buffer_read_sync;
3033                                 get_bh(bh);
3034                                 submit_bh(rw, bh);
3035                                 continue;
3036                         }
3037                 }
3038                 unlock_buffer(bh);
3039         }
3040 }
3041
3042 /*
3043  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3044  * and then start new I/O and then wait upon it.  The caller must have a ref on
3045  * the buffer_head.
3046  */
3047 int sync_dirty_buffer(struct buffer_head *bh)
3048 {
3049         int ret = 0;
3050
3051         WARN_ON(atomic_read(&bh->b_count) < 1);
3052         lock_buffer(bh);
3053         if (test_clear_buffer_dirty(bh)) {
3054                 get_bh(bh);
3055                 bh->b_end_io = end_buffer_write_sync;
3056                 ret = submit_bh(WRITE_SYNC, bh);
3057                 wait_on_buffer(bh);
3058                 if (buffer_eopnotsupp(bh)) {
3059                         clear_buffer_eopnotsupp(bh);
3060                         ret = -EOPNOTSUPP;
3061                 }
3062                 if (!ret && !buffer_uptodate(bh))
3063                         ret = -EIO;
3064         } else {
3065                 unlock_buffer(bh);
3066         }
3067         return ret;
3068 }
3069
3070 /*
3071  * try_to_free_buffers() checks if all the buffers on this particular page
3072  * are unused, and releases them if so.
3073  *
3074  * Exclusion against try_to_free_buffers may be obtained by either
3075  * locking the page or by holding its mapping's private_lock.
3076  *
3077  * If the page is dirty but all the buffers are clean then we need to
3078  * be sure to mark the page clean as well.  This is because the page
3079  * may be against a block device, and a later reattachment of buffers
3080  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3081  * filesystem data on the same device.
3082  *
3083  * The same applies to regular filesystem pages: if all the buffers are
3084  * clean then we set the page clean and proceed.  To do that, we require
3085  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3086  * private_lock.
3087  *
3088  * try_to_free_buffers() is non-blocking.
3089  */
3090 static inline int buffer_busy(struct buffer_head *bh)
3091 {
3092         return atomic_read(&bh->b_count) |
3093                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3094 }
3095
3096 static int
3097 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3098 {
3099         struct buffer_head *head = page_buffers(page);
3100         struct buffer_head *bh;
3101
3102         bh = head;
3103         do {
3104                 if (buffer_write_io_error(bh) && page->mapping)
3105                         set_bit(AS_EIO, &page->mapping->flags);
3106                 if (buffer_busy(bh))
3107                         goto failed;
3108                 bh = bh->b_this_page;
3109         } while (bh != head);
3110
3111         do {
3112                 struct buffer_head *next = bh->b_this_page;
3113
3114                 if (bh->b_assoc_map)
3115                         __remove_assoc_queue(bh);
3116                 bh = next;
3117         } while (bh != head);
3118         *buffers_to_free = head;
3119         __clear_page_buffers(page);
3120         return 1;
3121 failed:
3122         return 0;
3123 }
3124
3125 int try_to_free_buffers(struct page *page)
3126 {
3127         struct address_space * const mapping = page->mapping;
3128         struct buffer_head *buffers_to_free = NULL;
3129         int ret = 0;
3130
3131         BUG_ON(!PageLocked(page));
3132         if (PageWriteback(page))
3133                 return 0;
3134
3135         if (mapping == NULL) {          /* can this still happen? */
3136                 ret = drop_buffers(page, &buffers_to_free);
3137                 goto out;
3138         }
3139
3140         spin_lock(&mapping->private_lock);
3141         ret = drop_buffers(page, &buffers_to_free);
3142
3143         /*
3144          * If the filesystem writes its buffers by hand (eg ext3)
3145          * then we can have clean buffers against a dirty page.  We
3146          * clean the page here; otherwise the VM will never notice
3147          * that the filesystem did any IO at all.
3148          *
3149          * Also, during truncate, discard_buffer will have marked all
3150          * the page's buffers clean.  We discover that here and clean
3151          * the page also.
3152          *
3153          * private_lock must be held over this entire operation in order
3154          * to synchronise against __set_page_dirty_buffers and prevent the
3155          * dirty bit from being lost.
3156          */
3157         if (ret)
3158                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3159         spin_unlock(&mapping->private_lock);
3160 out:
3161         if (buffers_to_free) {
3162                 struct buffer_head *bh = buffers_to_free;
3163
3164                 do {
3165                         struct buffer_head *next = bh->b_this_page;
3166                         free_buffer_head(bh);
3167                         bh = next;
3168                 } while (bh != buffers_to_free);
3169         }
3170         return ret;
3171 }
3172 EXPORT_SYMBOL(try_to_free_buffers);
3173
3174 void block_sync_page(struct page *page)
3175 {
3176         struct address_space *mapping;
3177
3178         smp_mb();
3179         mapping = page_mapping(page);
3180         if (mapping)
3181                 blk_run_backing_dev(mapping->backing_dev_info, page);
3182 }
3183
3184 /*
3185  * There are no bdflush tunables left.  But distributions are
3186  * still running obsolete flush daemons, so we terminate them here.
3187  *
3188  * Use of bdflush() is deprecated and will be removed in a future kernel.
3189  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3190  */
3191 asmlinkage long sys_bdflush(int func, long data)
3192 {
3193         static int msg_count;
3194
3195         if (!capable(CAP_SYS_ADMIN))
3196                 return -EPERM;
3197
3198         if (msg_count < 5) {
3199                 msg_count++;
3200                 printk(KERN_INFO
3201                         "warning: process `%s' used the obsolete bdflush"
3202                         " system call\n", current->comm);
3203                 printk(KERN_INFO "Fix your initscripts?\n");
3204         }
3205
3206         if (func == 1)
3207                 do_exit(0);
3208         return 0;
3209 }
3210
3211 /*
3212  * Buffer-head allocation
3213  */
3214 static struct kmem_cache *bh_cachep;
3215
3216 /*
3217  * Once the number of bh's in the machine exceeds this level, we start
3218  * stripping them in writeback.
3219  */
3220 static int max_buffer_heads;
3221
3222 int buffer_heads_over_limit;
3223
3224 struct bh_accounting {
3225         int nr;                 /* Number of live bh's */
3226         int ratelimit;          /* Limit cacheline bouncing */
3227 };
3228
3229 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3230
3231 static void recalc_bh_state(void)
3232 {
3233         int i;
3234         int tot = 0;
3235
3236         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3237                 return;
3238         __get_cpu_var(bh_accounting).ratelimit = 0;
3239         for_each_online_cpu(i)
3240                 tot += per_cpu(bh_accounting, i).nr;
3241         buffer_heads_over_limit = (tot > max_buffer_heads);
3242 }
3243         
3244 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3245 {
3246         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3247         if (ret) {
3248                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3249                 get_cpu_var(bh_accounting).nr++;
3250                 recalc_bh_state();
3251                 put_cpu_var(bh_accounting);
3252         }
3253         return ret;
3254 }
3255 EXPORT_SYMBOL(alloc_buffer_head);
3256
3257 void free_buffer_head(struct buffer_head *bh)
3258 {
3259         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3260         kmem_cache_free(bh_cachep, bh);
3261         get_cpu_var(bh_accounting).nr--;
3262         recalc_bh_state();
3263         put_cpu_var(bh_accounting);
3264 }
3265 EXPORT_SYMBOL(free_buffer_head);
3266
3267 static void buffer_exit_cpu(int cpu)
3268 {
3269         int i;
3270         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3271
3272         for (i = 0; i < BH_LRU_SIZE; i++) {
3273                 brelse(b->bhs[i]);
3274                 b->bhs[i] = NULL;
3275         }
3276         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3277         per_cpu(bh_accounting, cpu).nr = 0;
3278         put_cpu_var(bh_accounting);
3279 }
3280
3281 static int buffer_cpu_notify(struct notifier_block *self,
3282                               unsigned long action, void *hcpu)
3283 {
3284         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3285                 buffer_exit_cpu((unsigned long)hcpu);
3286         return NOTIFY_OK;
3287 }
3288
3289 /**
3290  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3291  * @bh: struct buffer_head
3292  *
3293  * Return true if the buffer is up-to-date and false,
3294  * with the buffer locked, if not.
3295  */
3296 int bh_uptodate_or_lock(struct buffer_head *bh)
3297 {
3298         if (!buffer_uptodate(bh)) {
3299                 lock_buffer(bh);
3300                 if (!buffer_uptodate(bh))
3301                         return 0;
3302                 unlock_buffer(bh);
3303         }
3304         return 1;
3305 }
3306 EXPORT_SYMBOL(bh_uptodate_or_lock);
3307
3308 /**
3309  * bh_submit_read - Submit a locked buffer for reading
3310  * @bh: struct buffer_head
3311  *
3312  * Returns zero on success and -EIO on error.
3313  */
3314 int bh_submit_read(struct buffer_head *bh)
3315 {
3316         BUG_ON(!buffer_locked(bh));
3317
3318         if (buffer_uptodate(bh)) {
3319                 unlock_buffer(bh);
3320                 return 0;
3321         }
3322
3323         get_bh(bh);
3324         bh->b_end_io = end_buffer_read_sync;
3325         submit_bh(READ, bh);
3326         wait_on_buffer(bh);
3327         if (buffer_uptodate(bh))
3328                 return 0;
3329         return -EIO;
3330 }
3331 EXPORT_SYMBOL(bh_submit_read);
3332
3333 static void
3334 init_buffer_head(void *data)
3335 {
3336         struct buffer_head *bh = data;
3337
3338         memset(bh, 0, sizeof(*bh));
3339         INIT_LIST_HEAD(&bh->b_assoc_buffers);
3340 }
3341
3342 void __init buffer_init(void)
3343 {
3344         int nrpages;
3345
3346         bh_cachep = kmem_cache_create("buffer_head",
3347                         sizeof(struct buffer_head), 0,
3348                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3349                                 SLAB_MEM_SPREAD),
3350                                 init_buffer_head);
3351
3352         /*
3353          * Limit the bh occupancy to 10% of ZONE_NORMAL
3354          */
3355         nrpages = (nr_free_buffer_pages() * 10) / 100;
3356         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3357         hotcpu_notifier(buffer_cpu_notify, 0);
3358 }
3359
3360 EXPORT_SYMBOL(__bforget);
3361 EXPORT_SYMBOL(__brelse);
3362 EXPORT_SYMBOL(__wait_on_buffer);
3363 EXPORT_SYMBOL(block_commit_write);
3364 EXPORT_SYMBOL(block_prepare_write);
3365 EXPORT_SYMBOL(block_page_mkwrite);
3366 EXPORT_SYMBOL(block_read_full_page);
3367 EXPORT_SYMBOL(block_sync_page);
3368 EXPORT_SYMBOL(block_truncate_page);
3369 EXPORT_SYMBOL(block_write_full_page);
3370 EXPORT_SYMBOL(cont_write_begin);
3371 EXPORT_SYMBOL(end_buffer_read_sync);
3372 EXPORT_SYMBOL(end_buffer_write_sync);
3373 EXPORT_SYMBOL(file_fsync);
3374 EXPORT_SYMBOL(fsync_bdev);
3375 EXPORT_SYMBOL(generic_block_bmap);
3376 EXPORT_SYMBOL(generic_cont_expand_simple);
3377 EXPORT_SYMBOL(init_buffer);
3378 EXPORT_SYMBOL(invalidate_bdev);
3379 EXPORT_SYMBOL(ll_rw_block);
3380 EXPORT_SYMBOL(mark_buffer_dirty);
3381 EXPORT_SYMBOL(submit_bh);
3382 EXPORT_SYMBOL(sync_dirty_buffer);
3383 EXPORT_SYMBOL(unlock_buffer);