slab allocators: Remove SLAB_DEBUG_INITIAL flag
[safe/jmp/linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80         smp_mb__before_clear_bit();
81         clear_buffer_locked(bh);
82         smp_mb__after_clear_bit();
83         wake_up_bit(&bh->b_state, BH_Lock);
84 }
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106         char b[BDEVNAME_SIZE];
107
108         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109                         bdevname(bh->b_bdev, b),
110                         (unsigned long long)bh->b_blocknr);
111 }
112
113 /*
114  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
115  * unlock the buffer. This is what ll_rw_block uses too.
116  */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119         if (uptodate) {
120                 set_buffer_uptodate(bh);
121         } else {
122                 /* This happens, due to failed READA attempts. */
123                 clear_buffer_uptodate(bh);
124         }
125         unlock_buffer(bh);
126         put_bh(bh);
127 }
128
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131         char b[BDEVNAME_SIZE];
132
133         if (uptodate) {
134                 set_buffer_uptodate(bh);
135         } else {
136                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137                         buffer_io_error(bh);
138                         printk(KERN_WARNING "lost page write due to "
139                                         "I/O error on %s\n",
140                                        bdevname(bh->b_bdev, b));
141                 }
142                 set_buffer_write_io_error(bh);
143                 clear_buffer_uptodate(bh);
144         }
145         unlock_buffer(bh);
146         put_bh(bh);
147 }
148
149 /*
150  * Write out and wait upon all the dirty data associated with a block
151  * device via its mapping.  Does not take the superblock lock.
152  */
153 int sync_blockdev(struct block_device *bdev)
154 {
155         int ret = 0;
156
157         if (bdev)
158                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159         return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162
163 /*
164  * Write out and wait upon all dirty data associated with this
165  * device.   Filesystem data as well as the underlying block
166  * device.  Takes the superblock lock.
167  */
168 int fsync_bdev(struct block_device *bdev)
169 {
170         struct super_block *sb = get_super(bdev);
171         if (sb) {
172                 int res = fsync_super(sb);
173                 drop_super(sb);
174                 return res;
175         }
176         return sync_blockdev(bdev);
177 }
178
179 /**
180  * freeze_bdev  --  lock a filesystem and force it into a consistent state
181  * @bdev:       blockdevice to lock
182  *
183  * This takes the block device bd_mount_sem to make sure no new mounts
184  * happen on bdev until thaw_bdev() is called.
185  * If a superblock is found on this device, we take the s_umount semaphore
186  * on it to make sure nobody unmounts until the snapshot creation is done.
187  */
188 struct super_block *freeze_bdev(struct block_device *bdev)
189 {
190         struct super_block *sb;
191
192         down(&bdev->bd_mount_sem);
193         sb = get_super(bdev);
194         if (sb && !(sb->s_flags & MS_RDONLY)) {
195                 sb->s_frozen = SB_FREEZE_WRITE;
196                 smp_wmb();
197
198                 __fsync_super(sb);
199
200                 sb->s_frozen = SB_FREEZE_TRANS;
201                 smp_wmb();
202
203                 sync_blockdev(sb->s_bdev);
204
205                 if (sb->s_op->write_super_lockfs)
206                         sb->s_op->write_super_lockfs(sb);
207         }
208
209         sync_blockdev(bdev);
210         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
211 }
212 EXPORT_SYMBOL(freeze_bdev);
213
214 /**
215  * thaw_bdev  -- unlock filesystem
216  * @bdev:       blockdevice to unlock
217  * @sb:         associated superblock
218  *
219  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
220  */
221 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
222 {
223         if (sb) {
224                 BUG_ON(sb->s_bdev != bdev);
225
226                 if (sb->s_op->unlockfs)
227                         sb->s_op->unlockfs(sb);
228                 sb->s_frozen = SB_UNFROZEN;
229                 smp_wmb();
230                 wake_up(&sb->s_wait_unfrozen);
231                 drop_super(sb);
232         }
233
234         up(&bdev->bd_mount_sem);
235 }
236 EXPORT_SYMBOL(thaw_bdev);
237
238 /*
239  * Various filesystems appear to want __find_get_block to be non-blocking.
240  * But it's the page lock which protects the buffers.  To get around this,
241  * we get exclusion from try_to_free_buffers with the blockdev mapping's
242  * private_lock.
243  *
244  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
245  * may be quite high.  This code could TryLock the page, and if that
246  * succeeds, there is no need to take private_lock. (But if
247  * private_lock is contended then so is mapping->tree_lock).
248  */
249 static struct buffer_head *
250 __find_get_block_slow(struct block_device *bdev, sector_t block)
251 {
252         struct inode *bd_inode = bdev->bd_inode;
253         struct address_space *bd_mapping = bd_inode->i_mapping;
254         struct buffer_head *ret = NULL;
255         pgoff_t index;
256         struct buffer_head *bh;
257         struct buffer_head *head;
258         struct page *page;
259         int all_mapped = 1;
260
261         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
262         page = find_get_page(bd_mapping, index);
263         if (!page)
264                 goto out;
265
266         spin_lock(&bd_mapping->private_lock);
267         if (!page_has_buffers(page))
268                 goto out_unlock;
269         head = page_buffers(page);
270         bh = head;
271         do {
272                 if (bh->b_blocknr == block) {
273                         ret = bh;
274                         get_bh(bh);
275                         goto out_unlock;
276                 }
277                 if (!buffer_mapped(bh))
278                         all_mapped = 0;
279                 bh = bh->b_this_page;
280         } while (bh != head);
281
282         /* we might be here because some of the buffers on this page are
283          * not mapped.  This is due to various races between
284          * file io on the block device and getblk.  It gets dealt with
285          * elsewhere, don't buffer_error if we had some unmapped buffers
286          */
287         if (all_mapped) {
288                 printk("__find_get_block_slow() failed. "
289                         "block=%llu, b_blocknr=%llu\n",
290                         (unsigned long long)block,
291                         (unsigned long long)bh->b_blocknr);
292                 printk("b_state=0x%08lx, b_size=%zu\n",
293                         bh->b_state, bh->b_size);
294                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
295         }
296 out_unlock:
297         spin_unlock(&bd_mapping->private_lock);
298         page_cache_release(page);
299 out:
300         return ret;
301 }
302
303 /* If invalidate_buffers() will trash dirty buffers, it means some kind
304    of fs corruption is going on. Trashing dirty data always imply losing
305    information that was supposed to be just stored on the physical layer
306    by the user.
307
308    Thus invalidate_buffers in general usage is not allwowed to trash
309    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
310    be preserved.  These buffers are simply skipped.
311   
312    We also skip buffers which are still in use.  For example this can
313    happen if a userspace program is reading the block device.
314
315    NOTE: In the case where the user removed a removable-media-disk even if
316    there's still dirty data not synced on disk (due a bug in the device driver
317    or due an error of the user), by not destroying the dirty buffers we could
318    generate corruption also on the next media inserted, thus a parameter is
319    necessary to handle this case in the most safe way possible (trying
320    to not corrupt also the new disk inserted with the data belonging to
321    the old now corrupted disk). Also for the ramdisk the natural thing
322    to do in order to release the ramdisk memory is to destroy dirty buffers.
323
324    These are two special cases. Normal usage imply the device driver
325    to issue a sync on the device (without waiting I/O completion) and
326    then an invalidate_buffers call that doesn't trash dirty buffers.
327
328    For handling cache coherency with the blkdev pagecache the 'update' case
329    is been introduced. It is needed to re-read from disk any pinned
330    buffer. NOTE: re-reading from disk is destructive so we can do it only
331    when we assume nobody is changing the buffercache under our I/O and when
332    we think the disk contains more recent information than the buffercache.
333    The update == 1 pass marks the buffers we need to update, the update == 2
334    pass does the actual I/O. */
335 void invalidate_bdev(struct block_device *bdev)
336 {
337         struct address_space *mapping = bdev->bd_inode->i_mapping;
338
339         if (mapping->nrpages == 0)
340                 return;
341
342         invalidate_bh_lrus();
343         invalidate_mapping_pages(mapping, 0, -1);
344 }
345
346 /*
347  * Kick pdflush then try to free up some ZONE_NORMAL memory.
348  */
349 static void free_more_memory(void)
350 {
351         struct zone **zones;
352         pg_data_t *pgdat;
353
354         wakeup_pdflush(1024);
355         yield();
356
357         for_each_online_pgdat(pgdat) {
358                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
359                 if (*zones)
360                         try_to_free_pages(zones, GFP_NOFS);
361         }
362 }
363
364 /*
365  * I/O completion handler for block_read_full_page() - pages
366  * which come unlocked at the end of I/O.
367  */
368 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
369 {
370         unsigned long flags;
371         struct buffer_head *first;
372         struct buffer_head *tmp;
373         struct page *page;
374         int page_uptodate = 1;
375
376         BUG_ON(!buffer_async_read(bh));
377
378         page = bh->b_page;
379         if (uptodate) {
380                 set_buffer_uptodate(bh);
381         } else {
382                 clear_buffer_uptodate(bh);
383                 if (printk_ratelimit())
384                         buffer_io_error(bh);
385                 SetPageError(page);
386         }
387
388         /*
389          * Be _very_ careful from here on. Bad things can happen if
390          * two buffer heads end IO at almost the same time and both
391          * decide that the page is now completely done.
392          */
393         first = page_buffers(page);
394         local_irq_save(flags);
395         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
396         clear_buffer_async_read(bh);
397         unlock_buffer(bh);
398         tmp = bh;
399         do {
400                 if (!buffer_uptodate(tmp))
401                         page_uptodate = 0;
402                 if (buffer_async_read(tmp)) {
403                         BUG_ON(!buffer_locked(tmp));
404                         goto still_busy;
405                 }
406                 tmp = tmp->b_this_page;
407         } while (tmp != bh);
408         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
409         local_irq_restore(flags);
410
411         /*
412          * If none of the buffers had errors and they are all
413          * uptodate then we can set the page uptodate.
414          */
415         if (page_uptodate && !PageError(page))
416                 SetPageUptodate(page);
417         unlock_page(page);
418         return;
419
420 still_busy:
421         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
422         local_irq_restore(flags);
423         return;
424 }
425
426 /*
427  * Completion handler for block_write_full_page() - pages which are unlocked
428  * during I/O, and which have PageWriteback cleared upon I/O completion.
429  */
430 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
431 {
432         char b[BDEVNAME_SIZE];
433         unsigned long flags;
434         struct buffer_head *first;
435         struct buffer_head *tmp;
436         struct page *page;
437
438         BUG_ON(!buffer_async_write(bh));
439
440         page = bh->b_page;
441         if (uptodate) {
442                 set_buffer_uptodate(bh);
443         } else {
444                 if (printk_ratelimit()) {
445                         buffer_io_error(bh);
446                         printk(KERN_WARNING "lost page write due to "
447                                         "I/O error on %s\n",
448                                bdevname(bh->b_bdev, b));
449                 }
450                 set_bit(AS_EIO, &page->mapping->flags);
451                 set_buffer_write_io_error(bh);
452                 clear_buffer_uptodate(bh);
453                 SetPageError(page);
454         }
455
456         first = page_buffers(page);
457         local_irq_save(flags);
458         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
459
460         clear_buffer_async_write(bh);
461         unlock_buffer(bh);
462         tmp = bh->b_this_page;
463         while (tmp != bh) {
464                 if (buffer_async_write(tmp)) {
465                         BUG_ON(!buffer_locked(tmp));
466                         goto still_busy;
467                 }
468                 tmp = tmp->b_this_page;
469         }
470         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
471         local_irq_restore(flags);
472         end_page_writeback(page);
473         return;
474
475 still_busy:
476         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
477         local_irq_restore(flags);
478         return;
479 }
480
481 /*
482  * If a page's buffers are under async readin (end_buffer_async_read
483  * completion) then there is a possibility that another thread of
484  * control could lock one of the buffers after it has completed
485  * but while some of the other buffers have not completed.  This
486  * locked buffer would confuse end_buffer_async_read() into not unlocking
487  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
488  * that this buffer is not under async I/O.
489  *
490  * The page comes unlocked when it has no locked buffer_async buffers
491  * left.
492  *
493  * PageLocked prevents anyone starting new async I/O reads any of
494  * the buffers.
495  *
496  * PageWriteback is used to prevent simultaneous writeout of the same
497  * page.
498  *
499  * PageLocked prevents anyone from starting writeback of a page which is
500  * under read I/O (PageWriteback is only ever set against a locked page).
501  */
502 static void mark_buffer_async_read(struct buffer_head *bh)
503 {
504         bh->b_end_io = end_buffer_async_read;
505         set_buffer_async_read(bh);
506 }
507
508 void mark_buffer_async_write(struct buffer_head *bh)
509 {
510         bh->b_end_io = end_buffer_async_write;
511         set_buffer_async_write(bh);
512 }
513 EXPORT_SYMBOL(mark_buffer_async_write);
514
515
516 /*
517  * fs/buffer.c contains helper functions for buffer-backed address space's
518  * fsync functions.  A common requirement for buffer-based filesystems is
519  * that certain data from the backing blockdev needs to be written out for
520  * a successful fsync().  For example, ext2 indirect blocks need to be
521  * written back and waited upon before fsync() returns.
522  *
523  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
524  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
525  * management of a list of dependent buffers at ->i_mapping->private_list.
526  *
527  * Locking is a little subtle: try_to_free_buffers() will remove buffers
528  * from their controlling inode's queue when they are being freed.  But
529  * try_to_free_buffers() will be operating against the *blockdev* mapping
530  * at the time, not against the S_ISREG file which depends on those buffers.
531  * So the locking for private_list is via the private_lock in the address_space
532  * which backs the buffers.  Which is different from the address_space 
533  * against which the buffers are listed.  So for a particular address_space,
534  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
535  * mapping->private_list will always be protected by the backing blockdev's
536  * ->private_lock.
537  *
538  * Which introduces a requirement: all buffers on an address_space's
539  * ->private_list must be from the same address_space: the blockdev's.
540  *
541  * address_spaces which do not place buffers at ->private_list via these
542  * utility functions are free to use private_lock and private_list for
543  * whatever they want.  The only requirement is that list_empty(private_list)
544  * be true at clear_inode() time.
545  *
546  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
547  * filesystems should do that.  invalidate_inode_buffers() should just go
548  * BUG_ON(!list_empty).
549  *
550  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
551  * take an address_space, not an inode.  And it should be called
552  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
553  * queued up.
554  *
555  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
556  * list if it is already on a list.  Because if the buffer is on a list,
557  * it *must* already be on the right one.  If not, the filesystem is being
558  * silly.  This will save a ton of locking.  But first we have to ensure
559  * that buffers are taken *off* the old inode's list when they are freed
560  * (presumably in truncate).  That requires careful auditing of all
561  * filesystems (do it inside bforget()).  It could also be done by bringing
562  * b_inode back.
563  */
564
565 /*
566  * The buffer's backing address_space's private_lock must be held
567  */
568 static inline void __remove_assoc_queue(struct buffer_head *bh)
569 {
570         list_del_init(&bh->b_assoc_buffers);
571         WARN_ON(!bh->b_assoc_map);
572         if (buffer_write_io_error(bh))
573                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
574         bh->b_assoc_map = NULL;
575 }
576
577 int inode_has_buffers(struct inode *inode)
578 {
579         return !list_empty(&inode->i_data.private_list);
580 }
581
582 /*
583  * osync is designed to support O_SYNC io.  It waits synchronously for
584  * all already-submitted IO to complete, but does not queue any new
585  * writes to the disk.
586  *
587  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
588  * you dirty the buffers, and then use osync_inode_buffers to wait for
589  * completion.  Any other dirty buffers which are not yet queued for
590  * write will not be flushed to disk by the osync.
591  */
592 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
593 {
594         struct buffer_head *bh;
595         struct list_head *p;
596         int err = 0;
597
598         spin_lock(lock);
599 repeat:
600         list_for_each_prev(p, list) {
601                 bh = BH_ENTRY(p);
602                 if (buffer_locked(bh)) {
603                         get_bh(bh);
604                         spin_unlock(lock);
605                         wait_on_buffer(bh);
606                         if (!buffer_uptodate(bh))
607                                 err = -EIO;
608                         brelse(bh);
609                         spin_lock(lock);
610                         goto repeat;
611                 }
612         }
613         spin_unlock(lock);
614         return err;
615 }
616
617 /**
618  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
619  *                        buffers
620  * @mapping: the mapping which wants those buffers written
621  *
622  * Starts I/O against the buffers at mapping->private_list, and waits upon
623  * that I/O.
624  *
625  * Basically, this is a convenience function for fsync().
626  * @mapping is a file or directory which needs those buffers to be written for
627  * a successful fsync().
628  */
629 int sync_mapping_buffers(struct address_space *mapping)
630 {
631         struct address_space *buffer_mapping = mapping->assoc_mapping;
632
633         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
634                 return 0;
635
636         return fsync_buffers_list(&buffer_mapping->private_lock,
637                                         &mapping->private_list);
638 }
639 EXPORT_SYMBOL(sync_mapping_buffers);
640
641 /*
642  * Called when we've recently written block `bblock', and it is known that
643  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
644  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
645  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
646  */
647 void write_boundary_block(struct block_device *bdev,
648                         sector_t bblock, unsigned blocksize)
649 {
650         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
651         if (bh) {
652                 if (buffer_dirty(bh))
653                         ll_rw_block(WRITE, 1, &bh);
654                 put_bh(bh);
655         }
656 }
657
658 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
659 {
660         struct address_space *mapping = inode->i_mapping;
661         struct address_space *buffer_mapping = bh->b_page->mapping;
662
663         mark_buffer_dirty(bh);
664         if (!mapping->assoc_mapping) {
665                 mapping->assoc_mapping = buffer_mapping;
666         } else {
667                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
668         }
669         if (list_empty(&bh->b_assoc_buffers)) {
670                 spin_lock(&buffer_mapping->private_lock);
671                 list_move_tail(&bh->b_assoc_buffers,
672                                 &mapping->private_list);
673                 bh->b_assoc_map = mapping;
674                 spin_unlock(&buffer_mapping->private_lock);
675         }
676 }
677 EXPORT_SYMBOL(mark_buffer_dirty_inode);
678
679 /*
680  * Add a page to the dirty page list.
681  *
682  * It is a sad fact of life that this function is called from several places
683  * deeply under spinlocking.  It may not sleep.
684  *
685  * If the page has buffers, the uptodate buffers are set dirty, to preserve
686  * dirty-state coherency between the page and the buffers.  It the page does
687  * not have buffers then when they are later attached they will all be set
688  * dirty.
689  *
690  * The buffers are dirtied before the page is dirtied.  There's a small race
691  * window in which a writepage caller may see the page cleanness but not the
692  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
693  * before the buffers, a concurrent writepage caller could clear the page dirty
694  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
695  * page on the dirty page list.
696  *
697  * We use private_lock to lock against try_to_free_buffers while using the
698  * page's buffer list.  Also use this to protect against clean buffers being
699  * added to the page after it was set dirty.
700  *
701  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
702  * address_space though.
703  */
704 int __set_page_dirty_buffers(struct page *page)
705 {
706         struct address_space * const mapping = page_mapping(page);
707
708         if (unlikely(!mapping))
709                 return !TestSetPageDirty(page);
710
711         spin_lock(&mapping->private_lock);
712         if (page_has_buffers(page)) {
713                 struct buffer_head *head = page_buffers(page);
714                 struct buffer_head *bh = head;
715
716                 do {
717                         set_buffer_dirty(bh);
718                         bh = bh->b_this_page;
719                 } while (bh != head);
720         }
721         spin_unlock(&mapping->private_lock);
722
723         if (TestSetPageDirty(page))
724                 return 0;
725
726         write_lock_irq(&mapping->tree_lock);
727         if (page->mapping) {    /* Race with truncate? */
728                 if (mapping_cap_account_dirty(mapping)) {
729                         __inc_zone_page_state(page, NR_FILE_DIRTY);
730                         task_io_account_write(PAGE_CACHE_SIZE);
731                 }
732                 radix_tree_tag_set(&mapping->page_tree,
733                                 page_index(page), PAGECACHE_TAG_DIRTY);
734         }
735         write_unlock_irq(&mapping->tree_lock);
736         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
737         return 1;
738 }
739 EXPORT_SYMBOL(__set_page_dirty_buffers);
740
741 /*
742  * Write out and wait upon a list of buffers.
743  *
744  * We have conflicting pressures: we want to make sure that all
745  * initially dirty buffers get waited on, but that any subsequently
746  * dirtied buffers don't.  After all, we don't want fsync to last
747  * forever if somebody is actively writing to the file.
748  *
749  * Do this in two main stages: first we copy dirty buffers to a
750  * temporary inode list, queueing the writes as we go.  Then we clean
751  * up, waiting for those writes to complete.
752  * 
753  * During this second stage, any subsequent updates to the file may end
754  * up refiling the buffer on the original inode's dirty list again, so
755  * there is a chance we will end up with a buffer queued for write but
756  * not yet completed on that list.  So, as a final cleanup we go through
757  * the osync code to catch these locked, dirty buffers without requeuing
758  * any newly dirty buffers for write.
759  */
760 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
761 {
762         struct buffer_head *bh;
763         struct list_head tmp;
764         int err = 0, err2;
765
766         INIT_LIST_HEAD(&tmp);
767
768         spin_lock(lock);
769         while (!list_empty(list)) {
770                 bh = BH_ENTRY(list->next);
771                 __remove_assoc_queue(bh);
772                 if (buffer_dirty(bh) || buffer_locked(bh)) {
773                         list_add(&bh->b_assoc_buffers, &tmp);
774                         if (buffer_dirty(bh)) {
775                                 get_bh(bh);
776                                 spin_unlock(lock);
777                                 /*
778                                  * Ensure any pending I/O completes so that
779                                  * ll_rw_block() actually writes the current
780                                  * contents - it is a noop if I/O is still in
781                                  * flight on potentially older contents.
782                                  */
783                                 ll_rw_block(SWRITE, 1, &bh);
784                                 brelse(bh);
785                                 spin_lock(lock);
786                         }
787                 }
788         }
789
790         while (!list_empty(&tmp)) {
791                 bh = BH_ENTRY(tmp.prev);
792                 list_del_init(&bh->b_assoc_buffers);
793                 get_bh(bh);
794                 spin_unlock(lock);
795                 wait_on_buffer(bh);
796                 if (!buffer_uptodate(bh))
797                         err = -EIO;
798                 brelse(bh);
799                 spin_lock(lock);
800         }
801         
802         spin_unlock(lock);
803         err2 = osync_buffers_list(lock, list);
804         if (err)
805                 return err;
806         else
807                 return err2;
808 }
809
810 /*
811  * Invalidate any and all dirty buffers on a given inode.  We are
812  * probably unmounting the fs, but that doesn't mean we have already
813  * done a sync().  Just drop the buffers from the inode list.
814  *
815  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
816  * assumes that all the buffers are against the blockdev.  Not true
817  * for reiserfs.
818  */
819 void invalidate_inode_buffers(struct inode *inode)
820 {
821         if (inode_has_buffers(inode)) {
822                 struct address_space *mapping = &inode->i_data;
823                 struct list_head *list = &mapping->private_list;
824                 struct address_space *buffer_mapping = mapping->assoc_mapping;
825
826                 spin_lock(&buffer_mapping->private_lock);
827                 while (!list_empty(list))
828                         __remove_assoc_queue(BH_ENTRY(list->next));
829                 spin_unlock(&buffer_mapping->private_lock);
830         }
831 }
832
833 /*
834  * Remove any clean buffers from the inode's buffer list.  This is called
835  * when we're trying to free the inode itself.  Those buffers can pin it.
836  *
837  * Returns true if all buffers were removed.
838  */
839 int remove_inode_buffers(struct inode *inode)
840 {
841         int ret = 1;
842
843         if (inode_has_buffers(inode)) {
844                 struct address_space *mapping = &inode->i_data;
845                 struct list_head *list = &mapping->private_list;
846                 struct address_space *buffer_mapping = mapping->assoc_mapping;
847
848                 spin_lock(&buffer_mapping->private_lock);
849                 while (!list_empty(list)) {
850                         struct buffer_head *bh = BH_ENTRY(list->next);
851                         if (buffer_dirty(bh)) {
852                                 ret = 0;
853                                 break;
854                         }
855                         __remove_assoc_queue(bh);
856                 }
857                 spin_unlock(&buffer_mapping->private_lock);
858         }
859         return ret;
860 }
861
862 /*
863  * Create the appropriate buffers when given a page for data area and
864  * the size of each buffer.. Use the bh->b_this_page linked list to
865  * follow the buffers created.  Return NULL if unable to create more
866  * buffers.
867  *
868  * The retry flag is used to differentiate async IO (paging, swapping)
869  * which may not fail from ordinary buffer allocations.
870  */
871 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
872                 int retry)
873 {
874         struct buffer_head *bh, *head;
875         long offset;
876
877 try_again:
878         head = NULL;
879         offset = PAGE_SIZE;
880         while ((offset -= size) >= 0) {
881                 bh = alloc_buffer_head(GFP_NOFS);
882                 if (!bh)
883                         goto no_grow;
884
885                 bh->b_bdev = NULL;
886                 bh->b_this_page = head;
887                 bh->b_blocknr = -1;
888                 head = bh;
889
890                 bh->b_state = 0;
891                 atomic_set(&bh->b_count, 0);
892                 bh->b_private = NULL;
893                 bh->b_size = size;
894
895                 /* Link the buffer to its page */
896                 set_bh_page(bh, page, offset);
897
898                 init_buffer(bh, NULL, NULL);
899         }
900         return head;
901 /*
902  * In case anything failed, we just free everything we got.
903  */
904 no_grow:
905         if (head) {
906                 do {
907                         bh = head;
908                         head = head->b_this_page;
909                         free_buffer_head(bh);
910                 } while (head);
911         }
912
913         /*
914          * Return failure for non-async IO requests.  Async IO requests
915          * are not allowed to fail, so we have to wait until buffer heads
916          * become available.  But we don't want tasks sleeping with 
917          * partially complete buffers, so all were released above.
918          */
919         if (!retry)
920                 return NULL;
921
922         /* We're _really_ low on memory. Now we just
923          * wait for old buffer heads to become free due to
924          * finishing IO.  Since this is an async request and
925          * the reserve list is empty, we're sure there are 
926          * async buffer heads in use.
927          */
928         free_more_memory();
929         goto try_again;
930 }
931 EXPORT_SYMBOL_GPL(alloc_page_buffers);
932
933 static inline void
934 link_dev_buffers(struct page *page, struct buffer_head *head)
935 {
936         struct buffer_head *bh, *tail;
937
938         bh = head;
939         do {
940                 tail = bh;
941                 bh = bh->b_this_page;
942         } while (bh);
943         tail->b_this_page = head;
944         attach_page_buffers(page, head);
945 }
946
947 /*
948  * Initialise the state of a blockdev page's buffers.
949  */ 
950 static void
951 init_page_buffers(struct page *page, struct block_device *bdev,
952                         sector_t block, int size)
953 {
954         struct buffer_head *head = page_buffers(page);
955         struct buffer_head *bh = head;
956         int uptodate = PageUptodate(page);
957
958         do {
959                 if (!buffer_mapped(bh)) {
960                         init_buffer(bh, NULL, NULL);
961                         bh->b_bdev = bdev;
962                         bh->b_blocknr = block;
963                         if (uptodate)
964                                 set_buffer_uptodate(bh);
965                         set_buffer_mapped(bh);
966                 }
967                 block++;
968                 bh = bh->b_this_page;
969         } while (bh != head);
970 }
971
972 /*
973  * Create the page-cache page that contains the requested block.
974  *
975  * This is user purely for blockdev mappings.
976  */
977 static struct page *
978 grow_dev_page(struct block_device *bdev, sector_t block,
979                 pgoff_t index, int size)
980 {
981         struct inode *inode = bdev->bd_inode;
982         struct page *page;
983         struct buffer_head *bh;
984
985         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
986         if (!page)
987                 return NULL;
988
989         BUG_ON(!PageLocked(page));
990
991         if (page_has_buffers(page)) {
992                 bh = page_buffers(page);
993                 if (bh->b_size == size) {
994                         init_page_buffers(page, bdev, block, size);
995                         return page;
996                 }
997                 if (!try_to_free_buffers(page))
998                         goto failed;
999         }
1000
1001         /*
1002          * Allocate some buffers for this page
1003          */
1004         bh = alloc_page_buffers(page, size, 0);
1005         if (!bh)
1006                 goto failed;
1007
1008         /*
1009          * Link the page to the buffers and initialise them.  Take the
1010          * lock to be atomic wrt __find_get_block(), which does not
1011          * run under the page lock.
1012          */
1013         spin_lock(&inode->i_mapping->private_lock);
1014         link_dev_buffers(page, bh);
1015         init_page_buffers(page, bdev, block, size);
1016         spin_unlock(&inode->i_mapping->private_lock);
1017         return page;
1018
1019 failed:
1020         BUG();
1021         unlock_page(page);
1022         page_cache_release(page);
1023         return NULL;
1024 }
1025
1026 /*
1027  * Create buffers for the specified block device block's page.  If
1028  * that page was dirty, the buffers are set dirty also.
1029  *
1030  * Except that's a bug.  Attaching dirty buffers to a dirty
1031  * blockdev's page can result in filesystem corruption, because
1032  * some of those buffers may be aliases of filesystem data.
1033  * grow_dev_page() will go BUG() if this happens.
1034  */
1035 static int
1036 grow_buffers(struct block_device *bdev, sector_t block, int size)
1037 {
1038         struct page *page;
1039         pgoff_t index;
1040         int sizebits;
1041
1042         sizebits = -1;
1043         do {
1044                 sizebits++;
1045         } while ((size << sizebits) < PAGE_SIZE);
1046
1047         index = block >> sizebits;
1048
1049         /*
1050          * Check for a block which wants to lie outside our maximum possible
1051          * pagecache index.  (this comparison is done using sector_t types).
1052          */
1053         if (unlikely(index != block >> sizebits)) {
1054                 char b[BDEVNAME_SIZE];
1055
1056                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1057                         "device %s\n",
1058                         __FUNCTION__, (unsigned long long)block,
1059                         bdevname(bdev, b));
1060                 return -EIO;
1061         }
1062         block = index << sizebits;
1063         /* Create a page with the proper size buffers.. */
1064         page = grow_dev_page(bdev, block, index, size);
1065         if (!page)
1066                 return 0;
1067         unlock_page(page);
1068         page_cache_release(page);
1069         return 1;
1070 }
1071
1072 static struct buffer_head *
1073 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1074 {
1075         /* Size must be multiple of hard sectorsize */
1076         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1077                         (size < 512 || size > PAGE_SIZE))) {
1078                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1079                                         size);
1080                 printk(KERN_ERR "hardsect size: %d\n",
1081                                         bdev_hardsect_size(bdev));
1082
1083                 dump_stack();
1084                 return NULL;
1085         }
1086
1087         for (;;) {
1088                 struct buffer_head * bh;
1089                 int ret;
1090
1091                 bh = __find_get_block(bdev, block, size);
1092                 if (bh)
1093                         return bh;
1094
1095                 ret = grow_buffers(bdev, block, size);
1096                 if (ret < 0)
1097                         return NULL;
1098                 if (ret == 0)
1099                         free_more_memory();
1100         }
1101 }
1102
1103 /*
1104  * The relationship between dirty buffers and dirty pages:
1105  *
1106  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1107  * the page is tagged dirty in its radix tree.
1108  *
1109  * At all times, the dirtiness of the buffers represents the dirtiness of
1110  * subsections of the page.  If the page has buffers, the page dirty bit is
1111  * merely a hint about the true dirty state.
1112  *
1113  * When a page is set dirty in its entirety, all its buffers are marked dirty
1114  * (if the page has buffers).
1115  *
1116  * When a buffer is marked dirty, its page is dirtied, but the page's other
1117  * buffers are not.
1118  *
1119  * Also.  When blockdev buffers are explicitly read with bread(), they
1120  * individually become uptodate.  But their backing page remains not
1121  * uptodate - even if all of its buffers are uptodate.  A subsequent
1122  * block_read_full_page() against that page will discover all the uptodate
1123  * buffers, will set the page uptodate and will perform no I/O.
1124  */
1125
1126 /**
1127  * mark_buffer_dirty - mark a buffer_head as needing writeout
1128  * @bh: the buffer_head to mark dirty
1129  *
1130  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1131  * backing page dirty, then tag the page as dirty in its address_space's radix
1132  * tree and then attach the address_space's inode to its superblock's dirty
1133  * inode list.
1134  *
1135  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1136  * mapping->tree_lock and the global inode_lock.
1137  */
1138 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1139 {
1140         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1141                 __set_page_dirty_nobuffers(bh->b_page);
1142 }
1143
1144 /*
1145  * Decrement a buffer_head's reference count.  If all buffers against a page
1146  * have zero reference count, are clean and unlocked, and if the page is clean
1147  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1148  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1149  * a page but it ends up not being freed, and buffers may later be reattached).
1150  */
1151 void __brelse(struct buffer_head * buf)
1152 {
1153         if (atomic_read(&buf->b_count)) {
1154                 put_bh(buf);
1155                 return;
1156         }
1157         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1158         WARN_ON(1);
1159 }
1160
1161 /*
1162  * bforget() is like brelse(), except it discards any
1163  * potentially dirty data.
1164  */
1165 void __bforget(struct buffer_head *bh)
1166 {
1167         clear_buffer_dirty(bh);
1168         if (!list_empty(&bh->b_assoc_buffers)) {
1169                 struct address_space *buffer_mapping = bh->b_page->mapping;
1170
1171                 spin_lock(&buffer_mapping->private_lock);
1172                 list_del_init(&bh->b_assoc_buffers);
1173                 bh->b_assoc_map = NULL;
1174                 spin_unlock(&buffer_mapping->private_lock);
1175         }
1176         __brelse(bh);
1177 }
1178
1179 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1180 {
1181         lock_buffer(bh);
1182         if (buffer_uptodate(bh)) {
1183                 unlock_buffer(bh);
1184                 return bh;
1185         } else {
1186                 get_bh(bh);
1187                 bh->b_end_io = end_buffer_read_sync;
1188                 submit_bh(READ, bh);
1189                 wait_on_buffer(bh);
1190                 if (buffer_uptodate(bh))
1191                         return bh;
1192         }
1193         brelse(bh);
1194         return NULL;
1195 }
1196
1197 /*
1198  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1199  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1200  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1201  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1202  * CPU's LRUs at the same time.
1203  *
1204  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1205  * sb_find_get_block().
1206  *
1207  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1208  * a local interrupt disable for that.
1209  */
1210
1211 #define BH_LRU_SIZE     8
1212
1213 struct bh_lru {
1214         struct buffer_head *bhs[BH_LRU_SIZE];
1215 };
1216
1217 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1218
1219 #ifdef CONFIG_SMP
1220 #define bh_lru_lock()   local_irq_disable()
1221 #define bh_lru_unlock() local_irq_enable()
1222 #else
1223 #define bh_lru_lock()   preempt_disable()
1224 #define bh_lru_unlock() preempt_enable()
1225 #endif
1226
1227 static inline void check_irqs_on(void)
1228 {
1229 #ifdef irqs_disabled
1230         BUG_ON(irqs_disabled());
1231 #endif
1232 }
1233
1234 /*
1235  * The LRU management algorithm is dopey-but-simple.  Sorry.
1236  */
1237 static void bh_lru_install(struct buffer_head *bh)
1238 {
1239         struct buffer_head *evictee = NULL;
1240         struct bh_lru *lru;
1241
1242         check_irqs_on();
1243         bh_lru_lock();
1244         lru = &__get_cpu_var(bh_lrus);
1245         if (lru->bhs[0] != bh) {
1246                 struct buffer_head *bhs[BH_LRU_SIZE];
1247                 int in;
1248                 int out = 0;
1249
1250                 get_bh(bh);
1251                 bhs[out++] = bh;
1252                 for (in = 0; in < BH_LRU_SIZE; in++) {
1253                         struct buffer_head *bh2 = lru->bhs[in];
1254
1255                         if (bh2 == bh) {
1256                                 __brelse(bh2);
1257                         } else {
1258                                 if (out >= BH_LRU_SIZE) {
1259                                         BUG_ON(evictee != NULL);
1260                                         evictee = bh2;
1261                                 } else {
1262                                         bhs[out++] = bh2;
1263                                 }
1264                         }
1265                 }
1266                 while (out < BH_LRU_SIZE)
1267                         bhs[out++] = NULL;
1268                 memcpy(lru->bhs, bhs, sizeof(bhs));
1269         }
1270         bh_lru_unlock();
1271
1272         if (evictee)
1273                 __brelse(evictee);
1274 }
1275
1276 /*
1277  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1278  */
1279 static struct buffer_head *
1280 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1281 {
1282         struct buffer_head *ret = NULL;
1283         struct bh_lru *lru;
1284         unsigned int i;
1285
1286         check_irqs_on();
1287         bh_lru_lock();
1288         lru = &__get_cpu_var(bh_lrus);
1289         for (i = 0; i < BH_LRU_SIZE; i++) {
1290                 struct buffer_head *bh = lru->bhs[i];
1291
1292                 if (bh && bh->b_bdev == bdev &&
1293                                 bh->b_blocknr == block && bh->b_size == size) {
1294                         if (i) {
1295                                 while (i) {
1296                                         lru->bhs[i] = lru->bhs[i - 1];
1297                                         i--;
1298                                 }
1299                                 lru->bhs[0] = bh;
1300                         }
1301                         get_bh(bh);
1302                         ret = bh;
1303                         break;
1304                 }
1305         }
1306         bh_lru_unlock();
1307         return ret;
1308 }
1309
1310 /*
1311  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1312  * it in the LRU and mark it as accessed.  If it is not present then return
1313  * NULL
1314  */
1315 struct buffer_head *
1316 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1317 {
1318         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1319
1320         if (bh == NULL) {
1321                 bh = __find_get_block_slow(bdev, block);
1322                 if (bh)
1323                         bh_lru_install(bh);
1324         }
1325         if (bh)
1326                 touch_buffer(bh);
1327         return bh;
1328 }
1329 EXPORT_SYMBOL(__find_get_block);
1330
1331 /*
1332  * __getblk will locate (and, if necessary, create) the buffer_head
1333  * which corresponds to the passed block_device, block and size. The
1334  * returned buffer has its reference count incremented.
1335  *
1336  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1337  * illegal block number, __getblk() will happily return a buffer_head
1338  * which represents the non-existent block.  Very weird.
1339  *
1340  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1341  * attempt is failing.  FIXME, perhaps?
1342  */
1343 struct buffer_head *
1344 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346         struct buffer_head *bh = __find_get_block(bdev, block, size);
1347
1348         might_sleep();
1349         if (bh == NULL)
1350                 bh = __getblk_slow(bdev, block, size);
1351         return bh;
1352 }
1353 EXPORT_SYMBOL(__getblk);
1354
1355 /*
1356  * Do async read-ahead on a buffer..
1357  */
1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1359 {
1360         struct buffer_head *bh = __getblk(bdev, block, size);
1361         if (likely(bh)) {
1362                 ll_rw_block(READA, 1, &bh);
1363                 brelse(bh);
1364         }
1365 }
1366 EXPORT_SYMBOL(__breadahead);
1367
1368 /**
1369  *  __bread() - reads a specified block and returns the bh
1370  *  @bdev: the block_device to read from
1371  *  @block: number of block
1372  *  @size: size (in bytes) to read
1373  * 
1374  *  Reads a specified block, and returns buffer head that contains it.
1375  *  It returns NULL if the block was unreadable.
1376  */
1377 struct buffer_head *
1378 __bread(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380         struct buffer_head *bh = __getblk(bdev, block, size);
1381
1382         if (likely(bh) && !buffer_uptodate(bh))
1383                 bh = __bread_slow(bh);
1384         return bh;
1385 }
1386 EXPORT_SYMBOL(__bread);
1387
1388 /*
1389  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1390  * This doesn't race because it runs in each cpu either in irq
1391  * or with preempt disabled.
1392  */
1393 static void invalidate_bh_lru(void *arg)
1394 {
1395         struct bh_lru *b = &get_cpu_var(bh_lrus);
1396         int i;
1397
1398         for (i = 0; i < BH_LRU_SIZE; i++) {
1399                 brelse(b->bhs[i]);
1400                 b->bhs[i] = NULL;
1401         }
1402         put_cpu_var(bh_lrus);
1403 }
1404         
1405 void invalidate_bh_lrus(void)
1406 {
1407         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1408 }
1409
1410 void set_bh_page(struct buffer_head *bh,
1411                 struct page *page, unsigned long offset)
1412 {
1413         bh->b_page = page;
1414         BUG_ON(offset >= PAGE_SIZE);
1415         if (PageHighMem(page))
1416                 /*
1417                  * This catches illegal uses and preserves the offset:
1418                  */
1419                 bh->b_data = (char *)(0 + offset);
1420         else
1421                 bh->b_data = page_address(page) + offset;
1422 }
1423 EXPORT_SYMBOL(set_bh_page);
1424
1425 /*
1426  * Called when truncating a buffer on a page completely.
1427  */
1428 static void discard_buffer(struct buffer_head * bh)
1429 {
1430         lock_buffer(bh);
1431         clear_buffer_dirty(bh);
1432         bh->b_bdev = NULL;
1433         clear_buffer_mapped(bh);
1434         clear_buffer_req(bh);
1435         clear_buffer_new(bh);
1436         clear_buffer_delay(bh);
1437         clear_buffer_unwritten(bh);
1438         unlock_buffer(bh);
1439 }
1440
1441 /**
1442  * block_invalidatepage - invalidate part of all of a buffer-backed page
1443  *
1444  * @page: the page which is affected
1445  * @offset: the index of the truncation point
1446  *
1447  * block_invalidatepage() is called when all or part of the page has become
1448  * invalidatedby a truncate operation.
1449  *
1450  * block_invalidatepage() does not have to release all buffers, but it must
1451  * ensure that no dirty buffer is left outside @offset and that no I/O
1452  * is underway against any of the blocks which are outside the truncation
1453  * point.  Because the caller is about to free (and possibly reuse) those
1454  * blocks on-disk.
1455  */
1456 void block_invalidatepage(struct page *page, unsigned long offset)
1457 {
1458         struct buffer_head *head, *bh, *next;
1459         unsigned int curr_off = 0;
1460
1461         BUG_ON(!PageLocked(page));
1462         if (!page_has_buffers(page))
1463                 goto out;
1464
1465         head = page_buffers(page);
1466         bh = head;
1467         do {
1468                 unsigned int next_off = curr_off + bh->b_size;
1469                 next = bh->b_this_page;
1470
1471                 /*
1472                  * is this block fully invalidated?
1473                  */
1474                 if (offset <= curr_off)
1475                         discard_buffer(bh);
1476                 curr_off = next_off;
1477                 bh = next;
1478         } while (bh != head);
1479
1480         /*
1481          * We release buffers only if the entire page is being invalidated.
1482          * The get_block cached value has been unconditionally invalidated,
1483          * so real IO is not possible anymore.
1484          */
1485         if (offset == 0)
1486                 try_to_release_page(page, 0);
1487 out:
1488         return;
1489 }
1490 EXPORT_SYMBOL(block_invalidatepage);
1491
1492 /*
1493  * We attach and possibly dirty the buffers atomically wrt
1494  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1495  * is already excluded via the page lock.
1496  */
1497 void create_empty_buffers(struct page *page,
1498                         unsigned long blocksize, unsigned long b_state)
1499 {
1500         struct buffer_head *bh, *head, *tail;
1501
1502         head = alloc_page_buffers(page, blocksize, 1);
1503         bh = head;
1504         do {
1505                 bh->b_state |= b_state;
1506                 tail = bh;
1507                 bh = bh->b_this_page;
1508         } while (bh);
1509         tail->b_this_page = head;
1510
1511         spin_lock(&page->mapping->private_lock);
1512         if (PageUptodate(page) || PageDirty(page)) {
1513                 bh = head;
1514                 do {
1515                         if (PageDirty(page))
1516                                 set_buffer_dirty(bh);
1517                         if (PageUptodate(page))
1518                                 set_buffer_uptodate(bh);
1519                         bh = bh->b_this_page;
1520                 } while (bh != head);
1521         }
1522         attach_page_buffers(page, head);
1523         spin_unlock(&page->mapping->private_lock);
1524 }
1525 EXPORT_SYMBOL(create_empty_buffers);
1526
1527 /*
1528  * We are taking a block for data and we don't want any output from any
1529  * buffer-cache aliases starting from return from that function and
1530  * until the moment when something will explicitly mark the buffer
1531  * dirty (hopefully that will not happen until we will free that block ;-)
1532  * We don't even need to mark it not-uptodate - nobody can expect
1533  * anything from a newly allocated buffer anyway. We used to used
1534  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1535  * don't want to mark the alias unmapped, for example - it would confuse
1536  * anyone who might pick it with bread() afterwards...
1537  *
1538  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1539  * be writeout I/O going on against recently-freed buffers.  We don't
1540  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1541  * only if we really need to.  That happens here.
1542  */
1543 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1544 {
1545         struct buffer_head *old_bh;
1546
1547         might_sleep();
1548
1549         old_bh = __find_get_block_slow(bdev, block);
1550         if (old_bh) {
1551                 clear_buffer_dirty(old_bh);
1552                 wait_on_buffer(old_bh);
1553                 clear_buffer_req(old_bh);
1554                 __brelse(old_bh);
1555         }
1556 }
1557 EXPORT_SYMBOL(unmap_underlying_metadata);
1558
1559 /*
1560  * NOTE! All mapped/uptodate combinations are valid:
1561  *
1562  *      Mapped  Uptodate        Meaning
1563  *
1564  *      No      No              "unknown" - must do get_block()
1565  *      No      Yes             "hole" - zero-filled
1566  *      Yes     No              "allocated" - allocated on disk, not read in
1567  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1568  *
1569  * "Dirty" is valid only with the last case (mapped+uptodate).
1570  */
1571
1572 /*
1573  * While block_write_full_page is writing back the dirty buffers under
1574  * the page lock, whoever dirtied the buffers may decide to clean them
1575  * again at any time.  We handle that by only looking at the buffer
1576  * state inside lock_buffer().
1577  *
1578  * If block_write_full_page() is called for regular writeback
1579  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1580  * locked buffer.   This only can happen if someone has written the buffer
1581  * directly, with submit_bh().  At the address_space level PageWriteback
1582  * prevents this contention from occurring.
1583  */
1584 static int __block_write_full_page(struct inode *inode, struct page *page,
1585                         get_block_t *get_block, struct writeback_control *wbc)
1586 {
1587         int err;
1588         sector_t block;
1589         sector_t last_block;
1590         struct buffer_head *bh, *head;
1591         const unsigned blocksize = 1 << inode->i_blkbits;
1592         int nr_underway = 0;
1593
1594         BUG_ON(!PageLocked(page));
1595
1596         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1597
1598         if (!page_has_buffers(page)) {
1599                 create_empty_buffers(page, blocksize,
1600                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1601         }
1602
1603         /*
1604          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1605          * here, and the (potentially unmapped) buffers may become dirty at
1606          * any time.  If a buffer becomes dirty here after we've inspected it
1607          * then we just miss that fact, and the page stays dirty.
1608          *
1609          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1610          * handle that here by just cleaning them.
1611          */
1612
1613         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1614         head = page_buffers(page);
1615         bh = head;
1616
1617         /*
1618          * Get all the dirty buffers mapped to disk addresses and
1619          * handle any aliases from the underlying blockdev's mapping.
1620          */
1621         do {
1622                 if (block > last_block) {
1623                         /*
1624                          * mapped buffers outside i_size will occur, because
1625                          * this page can be outside i_size when there is a
1626                          * truncate in progress.
1627                          */
1628                         /*
1629                          * The buffer was zeroed by block_write_full_page()
1630                          */
1631                         clear_buffer_dirty(bh);
1632                         set_buffer_uptodate(bh);
1633                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1634                         WARN_ON(bh->b_size != blocksize);
1635                         err = get_block(inode, block, bh, 1);
1636                         if (err)
1637                                 goto recover;
1638                         if (buffer_new(bh)) {
1639                                 /* blockdev mappings never come here */
1640                                 clear_buffer_new(bh);
1641                                 unmap_underlying_metadata(bh->b_bdev,
1642                                                         bh->b_blocknr);
1643                         }
1644                 }
1645                 bh = bh->b_this_page;
1646                 block++;
1647         } while (bh != head);
1648
1649         do {
1650                 if (!buffer_mapped(bh))
1651                         continue;
1652                 /*
1653                  * If it's a fully non-blocking write attempt and we cannot
1654                  * lock the buffer then redirty the page.  Note that this can
1655                  * potentially cause a busy-wait loop from pdflush and kswapd
1656                  * activity, but those code paths have their own higher-level
1657                  * throttling.
1658                  */
1659                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1660                         lock_buffer(bh);
1661                 } else if (test_set_buffer_locked(bh)) {
1662                         redirty_page_for_writepage(wbc, page);
1663                         continue;
1664                 }
1665                 if (test_clear_buffer_dirty(bh)) {
1666                         mark_buffer_async_write(bh);
1667                 } else {
1668                         unlock_buffer(bh);
1669                 }
1670         } while ((bh = bh->b_this_page) != head);
1671
1672         /*
1673          * The page and its buffers are protected by PageWriteback(), so we can
1674          * drop the bh refcounts early.
1675          */
1676         BUG_ON(PageWriteback(page));
1677         set_page_writeback(page);
1678
1679         do {
1680                 struct buffer_head *next = bh->b_this_page;
1681                 if (buffer_async_write(bh)) {
1682                         submit_bh(WRITE, bh);
1683                         nr_underway++;
1684                 }
1685                 bh = next;
1686         } while (bh != head);
1687         unlock_page(page);
1688
1689         err = 0;
1690 done:
1691         if (nr_underway == 0) {
1692                 /*
1693                  * The page was marked dirty, but the buffers were
1694                  * clean.  Someone wrote them back by hand with
1695                  * ll_rw_block/submit_bh.  A rare case.
1696                  */
1697                 end_page_writeback(page);
1698
1699                 /*
1700                  * The page and buffer_heads can be released at any time from
1701                  * here on.
1702                  */
1703                 wbc->pages_skipped++;   /* We didn't write this page */
1704         }
1705         return err;
1706
1707 recover:
1708         /*
1709          * ENOSPC, or some other error.  We may already have added some
1710          * blocks to the file, so we need to write these out to avoid
1711          * exposing stale data.
1712          * The page is currently locked and not marked for writeback
1713          */
1714         bh = head;
1715         /* Recovery: lock and submit the mapped buffers */
1716         do {
1717                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1718                         lock_buffer(bh);
1719                         mark_buffer_async_write(bh);
1720                 } else {
1721                         /*
1722                          * The buffer may have been set dirty during
1723                          * attachment to a dirty page.
1724                          */
1725                         clear_buffer_dirty(bh);
1726                 }
1727         } while ((bh = bh->b_this_page) != head);
1728         SetPageError(page);
1729         BUG_ON(PageWriteback(page));
1730         set_page_writeback(page);
1731         do {
1732                 struct buffer_head *next = bh->b_this_page;
1733                 if (buffer_async_write(bh)) {
1734                         clear_buffer_dirty(bh);
1735                         submit_bh(WRITE, bh);
1736                         nr_underway++;
1737                 }
1738                 bh = next;
1739         } while (bh != head);
1740         unlock_page(page);
1741         goto done;
1742 }
1743
1744 static int __block_prepare_write(struct inode *inode, struct page *page,
1745                 unsigned from, unsigned to, get_block_t *get_block)
1746 {
1747         unsigned block_start, block_end;
1748         sector_t block;
1749         int err = 0;
1750         unsigned blocksize, bbits;
1751         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1752
1753         BUG_ON(!PageLocked(page));
1754         BUG_ON(from > PAGE_CACHE_SIZE);
1755         BUG_ON(to > PAGE_CACHE_SIZE);
1756         BUG_ON(from > to);
1757
1758         blocksize = 1 << inode->i_blkbits;
1759         if (!page_has_buffers(page))
1760                 create_empty_buffers(page, blocksize, 0);
1761         head = page_buffers(page);
1762
1763         bbits = inode->i_blkbits;
1764         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1765
1766         for(bh = head, block_start = 0; bh != head || !block_start;
1767             block++, block_start=block_end, bh = bh->b_this_page) {
1768                 block_end = block_start + blocksize;
1769                 if (block_end <= from || block_start >= to) {
1770                         if (PageUptodate(page)) {
1771                                 if (!buffer_uptodate(bh))
1772                                         set_buffer_uptodate(bh);
1773                         }
1774                         continue;
1775                 }
1776                 if (buffer_new(bh))
1777                         clear_buffer_new(bh);
1778                 if (!buffer_mapped(bh)) {
1779                         WARN_ON(bh->b_size != blocksize);
1780                         err = get_block(inode, block, bh, 1);
1781                         if (err)
1782                                 break;
1783                         if (buffer_new(bh)) {
1784                                 unmap_underlying_metadata(bh->b_bdev,
1785                                                         bh->b_blocknr);
1786                                 if (PageUptodate(page)) {
1787                                         set_buffer_uptodate(bh);
1788                                         continue;
1789                                 }
1790                                 if (block_end > to || block_start < from) {
1791                                         void *kaddr;
1792
1793                                         kaddr = kmap_atomic(page, KM_USER0);
1794                                         if (block_end > to)
1795                                                 memset(kaddr+to, 0,
1796                                                         block_end-to);
1797                                         if (block_start < from)
1798                                                 memset(kaddr+block_start,
1799                                                         0, from-block_start);
1800                                         flush_dcache_page(page);
1801                                         kunmap_atomic(kaddr, KM_USER0);
1802                                 }
1803                                 continue;
1804                         }
1805                 }
1806                 if (PageUptodate(page)) {
1807                         if (!buffer_uptodate(bh))
1808                                 set_buffer_uptodate(bh);
1809                         continue; 
1810                 }
1811                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1812                     !buffer_unwritten(bh) &&
1813                      (block_start < from || block_end > to)) {
1814                         ll_rw_block(READ, 1, &bh);
1815                         *wait_bh++=bh;
1816                 }
1817         }
1818         /*
1819          * If we issued read requests - let them complete.
1820          */
1821         while(wait_bh > wait) {
1822                 wait_on_buffer(*--wait_bh);
1823                 if (!buffer_uptodate(*wait_bh))
1824                         err = -EIO;
1825         }
1826         if (!err) {
1827                 bh = head;
1828                 do {
1829                         if (buffer_new(bh))
1830                                 clear_buffer_new(bh);
1831                 } while ((bh = bh->b_this_page) != head);
1832                 return 0;
1833         }
1834         /* Error case: */
1835         /*
1836          * Zero out any newly allocated blocks to avoid exposing stale
1837          * data.  If BH_New is set, we know that the block was newly
1838          * allocated in the above loop.
1839          */
1840         bh = head;
1841         block_start = 0;
1842         do {
1843                 block_end = block_start+blocksize;
1844                 if (block_end <= from)
1845                         goto next_bh;
1846                 if (block_start >= to)
1847                         break;
1848                 if (buffer_new(bh)) {
1849                         void *kaddr;
1850
1851                         clear_buffer_new(bh);
1852                         kaddr = kmap_atomic(page, KM_USER0);
1853                         memset(kaddr+block_start, 0, bh->b_size);
1854                         flush_dcache_page(page);
1855                         kunmap_atomic(kaddr, KM_USER0);
1856                         set_buffer_uptodate(bh);
1857                         mark_buffer_dirty(bh);
1858                 }
1859 next_bh:
1860                 block_start = block_end;
1861                 bh = bh->b_this_page;
1862         } while (bh != head);
1863         return err;
1864 }
1865
1866 static int __block_commit_write(struct inode *inode, struct page *page,
1867                 unsigned from, unsigned to)
1868 {
1869         unsigned block_start, block_end;
1870         int partial = 0;
1871         unsigned blocksize;
1872         struct buffer_head *bh, *head;
1873
1874         blocksize = 1 << inode->i_blkbits;
1875
1876         for(bh = head = page_buffers(page), block_start = 0;
1877             bh != head || !block_start;
1878             block_start=block_end, bh = bh->b_this_page) {
1879                 block_end = block_start + blocksize;
1880                 if (block_end <= from || block_start >= to) {
1881                         if (!buffer_uptodate(bh))
1882                                 partial = 1;
1883                 } else {
1884                         set_buffer_uptodate(bh);
1885                         mark_buffer_dirty(bh);
1886                 }
1887         }
1888
1889         /*
1890          * If this is a partial write which happened to make all buffers
1891          * uptodate then we can optimize away a bogus readpage() for
1892          * the next read(). Here we 'discover' whether the page went
1893          * uptodate as a result of this (potentially partial) write.
1894          */
1895         if (!partial)
1896                 SetPageUptodate(page);
1897         return 0;
1898 }
1899
1900 /*
1901  * Generic "read page" function for block devices that have the normal
1902  * get_block functionality. This is most of the block device filesystems.
1903  * Reads the page asynchronously --- the unlock_buffer() and
1904  * set/clear_buffer_uptodate() functions propagate buffer state into the
1905  * page struct once IO has completed.
1906  */
1907 int block_read_full_page(struct page *page, get_block_t *get_block)
1908 {
1909         struct inode *inode = page->mapping->host;
1910         sector_t iblock, lblock;
1911         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1912         unsigned int blocksize;
1913         int nr, i;
1914         int fully_mapped = 1;
1915
1916         BUG_ON(!PageLocked(page));
1917         blocksize = 1 << inode->i_blkbits;
1918         if (!page_has_buffers(page))
1919                 create_empty_buffers(page, blocksize, 0);
1920         head = page_buffers(page);
1921
1922         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1923         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1924         bh = head;
1925         nr = 0;
1926         i = 0;
1927
1928         do {
1929                 if (buffer_uptodate(bh))
1930                         continue;
1931
1932                 if (!buffer_mapped(bh)) {
1933                         int err = 0;
1934
1935                         fully_mapped = 0;
1936                         if (iblock < lblock) {
1937                                 WARN_ON(bh->b_size != blocksize);
1938                                 err = get_block(inode, iblock, bh, 0);
1939                                 if (err)
1940                                         SetPageError(page);
1941                         }
1942                         if (!buffer_mapped(bh)) {
1943                                 void *kaddr = kmap_atomic(page, KM_USER0);
1944                                 memset(kaddr + i * blocksize, 0, blocksize);
1945                                 flush_dcache_page(page);
1946                                 kunmap_atomic(kaddr, KM_USER0);
1947                                 if (!err)
1948                                         set_buffer_uptodate(bh);
1949                                 continue;
1950                         }
1951                         /*
1952                          * get_block() might have updated the buffer
1953                          * synchronously
1954                          */
1955                         if (buffer_uptodate(bh))
1956                                 continue;
1957                 }
1958                 arr[nr++] = bh;
1959         } while (i++, iblock++, (bh = bh->b_this_page) != head);
1960
1961         if (fully_mapped)
1962                 SetPageMappedToDisk(page);
1963
1964         if (!nr) {
1965                 /*
1966                  * All buffers are uptodate - we can set the page uptodate
1967                  * as well. But not if get_block() returned an error.
1968                  */
1969                 if (!PageError(page))
1970                         SetPageUptodate(page);
1971                 unlock_page(page);
1972                 return 0;
1973         }
1974
1975         /* Stage two: lock the buffers */
1976         for (i = 0; i < nr; i++) {
1977                 bh = arr[i];
1978                 lock_buffer(bh);
1979                 mark_buffer_async_read(bh);
1980         }
1981
1982         /*
1983          * Stage 3: start the IO.  Check for uptodateness
1984          * inside the buffer lock in case another process reading
1985          * the underlying blockdev brought it uptodate (the sct fix).
1986          */
1987         for (i = 0; i < nr; i++) {
1988                 bh = arr[i];
1989                 if (buffer_uptodate(bh))
1990                         end_buffer_async_read(bh, 1);
1991                 else
1992                         submit_bh(READ, bh);
1993         }
1994         return 0;
1995 }
1996
1997 /* utility function for filesystems that need to do work on expanding
1998  * truncates.  Uses prepare/commit_write to allow the filesystem to
1999  * deal with the hole.  
2000  */
2001 static int __generic_cont_expand(struct inode *inode, loff_t size,
2002                                  pgoff_t index, unsigned int offset)
2003 {
2004         struct address_space *mapping = inode->i_mapping;
2005         struct page *page;
2006         unsigned long limit;
2007         int err;
2008
2009         err = -EFBIG;
2010         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2011         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2012                 send_sig(SIGXFSZ, current, 0);
2013                 goto out;
2014         }
2015         if (size > inode->i_sb->s_maxbytes)
2016                 goto out;
2017
2018         err = -ENOMEM;
2019         page = grab_cache_page(mapping, index);
2020         if (!page)
2021                 goto out;
2022         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2023         if (err) {
2024                 /*
2025                  * ->prepare_write() may have instantiated a few blocks
2026                  * outside i_size.  Trim these off again.
2027                  */
2028                 unlock_page(page);
2029                 page_cache_release(page);
2030                 vmtruncate(inode, inode->i_size);
2031                 goto out;
2032         }
2033
2034         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2035
2036         unlock_page(page);
2037         page_cache_release(page);
2038         if (err > 0)
2039                 err = 0;
2040 out:
2041         return err;
2042 }
2043
2044 int generic_cont_expand(struct inode *inode, loff_t size)
2045 {
2046         pgoff_t index;
2047         unsigned int offset;
2048
2049         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2050
2051         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2052         ** skip the prepare.  make sure we never send an offset for the start
2053         ** of a block
2054         */
2055         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2056                 /* caller must handle this extra byte. */
2057                 offset++;
2058         }
2059         index = size >> PAGE_CACHE_SHIFT;
2060
2061         return __generic_cont_expand(inode, size, index, offset);
2062 }
2063
2064 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2065 {
2066         loff_t pos = size - 1;
2067         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2068         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2069
2070         /* prepare/commit_write can handle even if from==to==start of block. */
2071         return __generic_cont_expand(inode, size, index, offset);
2072 }
2073
2074 /*
2075  * For moronic filesystems that do not allow holes in file.
2076  * We may have to extend the file.
2077  */
2078
2079 int cont_prepare_write(struct page *page, unsigned offset,
2080                 unsigned to, get_block_t *get_block, loff_t *bytes)
2081 {
2082         struct address_space *mapping = page->mapping;
2083         struct inode *inode = mapping->host;
2084         struct page *new_page;
2085         pgoff_t pgpos;
2086         long status;
2087         unsigned zerofrom;
2088         unsigned blocksize = 1 << inode->i_blkbits;
2089         void *kaddr;
2090
2091         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2092                 status = -ENOMEM;
2093                 new_page = grab_cache_page(mapping, pgpos);
2094                 if (!new_page)
2095                         goto out;
2096                 /* we might sleep */
2097                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2098                         unlock_page(new_page);
2099                         page_cache_release(new_page);
2100                         continue;
2101                 }
2102                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2103                 if (zerofrom & (blocksize-1)) {
2104                         *bytes |= (blocksize-1);
2105                         (*bytes)++;
2106                 }
2107                 status = __block_prepare_write(inode, new_page, zerofrom,
2108                                                 PAGE_CACHE_SIZE, get_block);
2109                 if (status)
2110                         goto out_unmap;
2111                 kaddr = kmap_atomic(new_page, KM_USER0);
2112                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2113                 flush_dcache_page(new_page);
2114                 kunmap_atomic(kaddr, KM_USER0);
2115                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2116                 unlock_page(new_page);
2117                 page_cache_release(new_page);
2118         }
2119
2120         if (page->index < pgpos) {
2121                 /* completely inside the area */
2122                 zerofrom = offset;
2123         } else {
2124                 /* page covers the boundary, find the boundary offset */
2125                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2126
2127                 /* if we will expand the thing last block will be filled */
2128                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2129                         *bytes |= (blocksize-1);
2130                         (*bytes)++;
2131                 }
2132
2133                 /* starting below the boundary? Nothing to zero out */
2134                 if (offset <= zerofrom)
2135                         zerofrom = offset;
2136         }
2137         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2138         if (status)
2139                 goto out1;
2140         if (zerofrom < offset) {
2141                 kaddr = kmap_atomic(page, KM_USER0);
2142                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2143                 flush_dcache_page(page);
2144                 kunmap_atomic(kaddr, KM_USER0);
2145                 __block_commit_write(inode, page, zerofrom, offset);
2146         }
2147         return 0;
2148 out1:
2149         ClearPageUptodate(page);
2150         return status;
2151
2152 out_unmap:
2153         ClearPageUptodate(new_page);
2154         unlock_page(new_page);
2155         page_cache_release(new_page);
2156 out:
2157         return status;
2158 }
2159
2160 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2161                         get_block_t *get_block)
2162 {
2163         struct inode *inode = page->mapping->host;
2164         int err = __block_prepare_write(inode, page, from, to, get_block);
2165         if (err)
2166                 ClearPageUptodate(page);
2167         return err;
2168 }
2169
2170 int block_commit_write(struct page *page, unsigned from, unsigned to)
2171 {
2172         struct inode *inode = page->mapping->host;
2173         __block_commit_write(inode,page,from,to);
2174         return 0;
2175 }
2176
2177 int generic_commit_write(struct file *file, struct page *page,
2178                 unsigned from, unsigned to)
2179 {
2180         struct inode *inode = page->mapping->host;
2181         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2182         __block_commit_write(inode,page,from,to);
2183         /*
2184          * No need to use i_size_read() here, the i_size
2185          * cannot change under us because we hold i_mutex.
2186          */
2187         if (pos > inode->i_size) {
2188                 i_size_write(inode, pos);
2189                 mark_inode_dirty(inode);
2190         }
2191         return 0;
2192 }
2193
2194
2195 /*
2196  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2197  * immediately, while under the page lock.  So it needs a special end_io
2198  * handler which does not touch the bh after unlocking it.
2199  *
2200  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2201  * a race there is benign: unlock_buffer() only use the bh's address for
2202  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2203  * itself.
2204  */
2205 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2206 {
2207         if (uptodate) {
2208                 set_buffer_uptodate(bh);
2209         } else {
2210                 /* This happens, due to failed READA attempts. */
2211                 clear_buffer_uptodate(bh);
2212         }
2213         unlock_buffer(bh);
2214 }
2215
2216 /*
2217  * On entry, the page is fully not uptodate.
2218  * On exit the page is fully uptodate in the areas outside (from,to)
2219  */
2220 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2221                         get_block_t *get_block)
2222 {
2223         struct inode *inode = page->mapping->host;
2224         const unsigned blkbits = inode->i_blkbits;
2225         const unsigned blocksize = 1 << blkbits;
2226         struct buffer_head map_bh;
2227         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2228         unsigned block_in_page;
2229         unsigned block_start;
2230         sector_t block_in_file;
2231         char *kaddr;
2232         int nr_reads = 0;
2233         int i;
2234         int ret = 0;
2235         int is_mapped_to_disk = 1;
2236
2237         if (PageMappedToDisk(page))
2238                 return 0;
2239
2240         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2241         map_bh.b_page = page;
2242
2243         /*
2244          * We loop across all blocks in the page, whether or not they are
2245          * part of the affected region.  This is so we can discover if the
2246          * page is fully mapped-to-disk.
2247          */
2248         for (block_start = 0, block_in_page = 0;
2249                   block_start < PAGE_CACHE_SIZE;
2250                   block_in_page++, block_start += blocksize) {
2251                 unsigned block_end = block_start + blocksize;
2252                 int create;
2253
2254                 map_bh.b_state = 0;
2255                 create = 1;
2256                 if (block_start >= to)
2257                         create = 0;
2258                 map_bh.b_size = blocksize;
2259                 ret = get_block(inode, block_in_file + block_in_page,
2260                                         &map_bh, create);
2261                 if (ret)
2262                         goto failed;
2263                 if (!buffer_mapped(&map_bh))
2264                         is_mapped_to_disk = 0;
2265                 if (buffer_new(&map_bh))
2266                         unmap_underlying_metadata(map_bh.b_bdev,
2267                                                         map_bh.b_blocknr);
2268                 if (PageUptodate(page))
2269                         continue;
2270                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2271                         kaddr = kmap_atomic(page, KM_USER0);
2272                         if (block_start < from)
2273                                 memset(kaddr+block_start, 0, from-block_start);
2274                         if (block_end > to)
2275                                 memset(kaddr + to, 0, block_end - to);
2276                         flush_dcache_page(page);
2277                         kunmap_atomic(kaddr, KM_USER0);
2278                         continue;
2279                 }
2280                 if (buffer_uptodate(&map_bh))
2281                         continue;       /* reiserfs does this */
2282                 if (block_start < from || block_end > to) {
2283                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2284
2285                         if (!bh) {
2286                                 ret = -ENOMEM;
2287                                 goto failed;
2288                         }
2289                         bh->b_state = map_bh.b_state;
2290                         atomic_set(&bh->b_count, 0);
2291                         bh->b_this_page = NULL;
2292                         bh->b_page = page;
2293                         bh->b_blocknr = map_bh.b_blocknr;
2294                         bh->b_size = blocksize;
2295                         bh->b_data = (char *)(long)block_start;
2296                         bh->b_bdev = map_bh.b_bdev;
2297                         bh->b_private = NULL;
2298                         read_bh[nr_reads++] = bh;
2299                 }
2300         }
2301
2302         if (nr_reads) {
2303                 struct buffer_head *bh;
2304
2305                 /*
2306                  * The page is locked, so these buffers are protected from
2307                  * any VM or truncate activity.  Hence we don't need to care
2308                  * for the buffer_head refcounts.
2309                  */
2310                 for (i = 0; i < nr_reads; i++) {
2311                         bh = read_bh[i];
2312                         lock_buffer(bh);
2313                         bh->b_end_io = end_buffer_read_nobh;
2314                         submit_bh(READ, bh);
2315                 }
2316                 for (i = 0; i < nr_reads; i++) {
2317                         bh = read_bh[i];
2318                         wait_on_buffer(bh);
2319                         if (!buffer_uptodate(bh))
2320                                 ret = -EIO;
2321                         free_buffer_head(bh);
2322                         read_bh[i] = NULL;
2323                 }
2324                 if (ret)
2325                         goto failed;
2326         }
2327
2328         if (is_mapped_to_disk)
2329                 SetPageMappedToDisk(page);
2330
2331         return 0;
2332
2333 failed:
2334         for (i = 0; i < nr_reads; i++) {
2335                 if (read_bh[i])
2336                         free_buffer_head(read_bh[i]);
2337         }
2338
2339         /*
2340          * Error recovery is pretty slack.  Clear the page and mark it dirty
2341          * so we'll later zero out any blocks which _were_ allocated.
2342          */
2343         kaddr = kmap_atomic(page, KM_USER0);
2344         memset(kaddr, 0, PAGE_CACHE_SIZE);
2345         flush_dcache_page(page);
2346         kunmap_atomic(kaddr, KM_USER0);
2347         SetPageUptodate(page);
2348         set_page_dirty(page);
2349         return ret;
2350 }
2351 EXPORT_SYMBOL(nobh_prepare_write);
2352
2353 /*
2354  * Make sure any changes to nobh_commit_write() are reflected in
2355  * nobh_truncate_page(), since it doesn't call commit_write().
2356  */
2357 int nobh_commit_write(struct file *file, struct page *page,
2358                 unsigned from, unsigned to)
2359 {
2360         struct inode *inode = page->mapping->host;
2361         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2362
2363         SetPageUptodate(page);
2364         set_page_dirty(page);
2365         if (pos > inode->i_size) {
2366                 i_size_write(inode, pos);
2367                 mark_inode_dirty(inode);
2368         }
2369         return 0;
2370 }
2371 EXPORT_SYMBOL(nobh_commit_write);
2372
2373 /*
2374  * nobh_writepage() - based on block_full_write_page() except
2375  * that it tries to operate without attaching bufferheads to
2376  * the page.
2377  */
2378 int nobh_writepage(struct page *page, get_block_t *get_block,
2379                         struct writeback_control *wbc)
2380 {
2381         struct inode * const inode = page->mapping->host;
2382         loff_t i_size = i_size_read(inode);
2383         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2384         unsigned offset;
2385         void *kaddr;
2386         int ret;
2387
2388         /* Is the page fully inside i_size? */
2389         if (page->index < end_index)
2390                 goto out;
2391
2392         /* Is the page fully outside i_size? (truncate in progress) */
2393         offset = i_size & (PAGE_CACHE_SIZE-1);
2394         if (page->index >= end_index+1 || !offset) {
2395                 /*
2396                  * The page may have dirty, unmapped buffers.  For example,
2397                  * they may have been added in ext3_writepage().  Make them
2398                  * freeable here, so the page does not leak.
2399                  */
2400 #if 0
2401                 /* Not really sure about this  - do we need this ? */
2402                 if (page->mapping->a_ops->invalidatepage)
2403                         page->mapping->a_ops->invalidatepage(page, offset);
2404 #endif
2405                 unlock_page(page);
2406                 return 0; /* don't care */
2407         }
2408
2409         /*
2410          * The page straddles i_size.  It must be zeroed out on each and every
2411          * writepage invocation because it may be mmapped.  "A file is mapped
2412          * in multiples of the page size.  For a file that is not a multiple of
2413          * the  page size, the remaining memory is zeroed when mapped, and
2414          * writes to that region are not written out to the file."
2415          */
2416         kaddr = kmap_atomic(page, KM_USER0);
2417         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2418         flush_dcache_page(page);
2419         kunmap_atomic(kaddr, KM_USER0);
2420 out:
2421         ret = mpage_writepage(page, get_block, wbc);
2422         if (ret == -EAGAIN)
2423                 ret = __block_write_full_page(inode, page, get_block, wbc);
2424         return ret;
2425 }
2426 EXPORT_SYMBOL(nobh_writepage);
2427
2428 /*
2429  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2430  */
2431 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2432 {
2433         struct inode *inode = mapping->host;
2434         unsigned blocksize = 1 << inode->i_blkbits;
2435         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2436         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2437         unsigned to;
2438         struct page *page;
2439         const struct address_space_operations *a_ops = mapping->a_ops;
2440         char *kaddr;
2441         int ret = 0;
2442
2443         if ((offset & (blocksize - 1)) == 0)
2444                 goto out;
2445
2446         ret = -ENOMEM;
2447         page = grab_cache_page(mapping, index);
2448         if (!page)
2449                 goto out;
2450
2451         to = (offset + blocksize) & ~(blocksize - 1);
2452         ret = a_ops->prepare_write(NULL, page, offset, to);
2453         if (ret == 0) {
2454                 kaddr = kmap_atomic(page, KM_USER0);
2455                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2456                 flush_dcache_page(page);
2457                 kunmap_atomic(kaddr, KM_USER0);
2458                 /*
2459                  * It would be more correct to call aops->commit_write()
2460                  * here, but this is more efficient.
2461                  */
2462                 SetPageUptodate(page);
2463                 set_page_dirty(page);
2464         }
2465         unlock_page(page);
2466         page_cache_release(page);
2467 out:
2468         return ret;
2469 }
2470 EXPORT_SYMBOL(nobh_truncate_page);
2471
2472 int block_truncate_page(struct address_space *mapping,
2473                         loff_t from, get_block_t *get_block)
2474 {
2475         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2476         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2477         unsigned blocksize;
2478         sector_t iblock;
2479         unsigned length, pos;
2480         struct inode *inode = mapping->host;
2481         struct page *page;
2482         struct buffer_head *bh;
2483         void *kaddr;
2484         int err;
2485
2486         blocksize = 1 << inode->i_blkbits;
2487         length = offset & (blocksize - 1);
2488
2489         /* Block boundary? Nothing to do */
2490         if (!length)
2491                 return 0;
2492
2493         length = blocksize - length;
2494         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2495         
2496         page = grab_cache_page(mapping, index);
2497         err = -ENOMEM;
2498         if (!page)
2499                 goto out;
2500
2501         if (!page_has_buffers(page))
2502                 create_empty_buffers(page, blocksize, 0);
2503
2504         /* Find the buffer that contains "offset" */
2505         bh = page_buffers(page);
2506         pos = blocksize;
2507         while (offset >= pos) {
2508                 bh = bh->b_this_page;
2509                 iblock++;
2510                 pos += blocksize;
2511         }
2512
2513         err = 0;
2514         if (!buffer_mapped(bh)) {
2515                 WARN_ON(bh->b_size != blocksize);
2516                 err = get_block(inode, iblock, bh, 0);
2517                 if (err)
2518                         goto unlock;
2519                 /* unmapped? It's a hole - nothing to do */
2520                 if (!buffer_mapped(bh))
2521                         goto unlock;
2522         }
2523
2524         /* Ok, it's mapped. Make sure it's up-to-date */
2525         if (PageUptodate(page))
2526                 set_buffer_uptodate(bh);
2527
2528         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2529                 err = -EIO;
2530                 ll_rw_block(READ, 1, &bh);
2531                 wait_on_buffer(bh);
2532                 /* Uhhuh. Read error. Complain and punt. */
2533                 if (!buffer_uptodate(bh))
2534                         goto unlock;
2535         }
2536
2537         kaddr = kmap_atomic(page, KM_USER0);
2538         memset(kaddr + offset, 0, length);
2539         flush_dcache_page(page);
2540         kunmap_atomic(kaddr, KM_USER0);
2541
2542         mark_buffer_dirty(bh);
2543         err = 0;
2544
2545 unlock:
2546         unlock_page(page);
2547         page_cache_release(page);
2548 out:
2549         return err;
2550 }
2551
2552 /*
2553  * The generic ->writepage function for buffer-backed address_spaces
2554  */
2555 int block_write_full_page(struct page *page, get_block_t *get_block,
2556                         struct writeback_control *wbc)
2557 {
2558         struct inode * const inode = page->mapping->host;
2559         loff_t i_size = i_size_read(inode);
2560         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2561         unsigned offset;
2562         void *kaddr;
2563
2564         /* Is the page fully inside i_size? */
2565         if (page->index < end_index)
2566                 return __block_write_full_page(inode, page, get_block, wbc);
2567
2568         /* Is the page fully outside i_size? (truncate in progress) */
2569         offset = i_size & (PAGE_CACHE_SIZE-1);
2570         if (page->index >= end_index+1 || !offset) {
2571                 /*
2572                  * The page may have dirty, unmapped buffers.  For example,
2573                  * they may have been added in ext3_writepage().  Make them
2574                  * freeable here, so the page does not leak.
2575                  */
2576                 do_invalidatepage(page, 0);
2577                 unlock_page(page);
2578                 return 0; /* don't care */
2579         }
2580
2581         /*
2582          * The page straddles i_size.  It must be zeroed out on each and every
2583          * writepage invokation because it may be mmapped.  "A file is mapped
2584          * in multiples of the page size.  For a file that is not a multiple of
2585          * the  page size, the remaining memory is zeroed when mapped, and
2586          * writes to that region are not written out to the file."
2587          */
2588         kaddr = kmap_atomic(page, KM_USER0);
2589         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2590         flush_dcache_page(page);
2591         kunmap_atomic(kaddr, KM_USER0);
2592         return __block_write_full_page(inode, page, get_block, wbc);
2593 }
2594
2595 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2596                             get_block_t *get_block)
2597 {
2598         struct buffer_head tmp;
2599         struct inode *inode = mapping->host;
2600         tmp.b_state = 0;
2601         tmp.b_blocknr = 0;
2602         tmp.b_size = 1 << inode->i_blkbits;
2603         get_block(inode, block, &tmp, 0);
2604         return tmp.b_blocknr;
2605 }
2606
2607 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2608 {
2609         struct buffer_head *bh = bio->bi_private;
2610
2611         if (bio->bi_size)
2612                 return 1;
2613
2614         if (err == -EOPNOTSUPP) {
2615                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2616                 set_bit(BH_Eopnotsupp, &bh->b_state);
2617         }
2618
2619         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2620         bio_put(bio);
2621         return 0;
2622 }
2623
2624 int submit_bh(int rw, struct buffer_head * bh)
2625 {
2626         struct bio *bio;
2627         int ret = 0;
2628
2629         BUG_ON(!buffer_locked(bh));
2630         BUG_ON(!buffer_mapped(bh));
2631         BUG_ON(!bh->b_end_io);
2632
2633         if (buffer_ordered(bh) && (rw == WRITE))
2634                 rw = WRITE_BARRIER;
2635
2636         /*
2637          * Only clear out a write error when rewriting, should this
2638          * include WRITE_SYNC as well?
2639          */
2640         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2641                 clear_buffer_write_io_error(bh);
2642
2643         /*
2644          * from here on down, it's all bio -- do the initial mapping,
2645          * submit_bio -> generic_make_request may further map this bio around
2646          */
2647         bio = bio_alloc(GFP_NOIO, 1);
2648
2649         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2650         bio->bi_bdev = bh->b_bdev;
2651         bio->bi_io_vec[0].bv_page = bh->b_page;
2652         bio->bi_io_vec[0].bv_len = bh->b_size;
2653         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2654
2655         bio->bi_vcnt = 1;
2656         bio->bi_idx = 0;
2657         bio->bi_size = bh->b_size;
2658
2659         bio->bi_end_io = end_bio_bh_io_sync;
2660         bio->bi_private = bh;
2661
2662         bio_get(bio);
2663         submit_bio(rw, bio);
2664
2665         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2666                 ret = -EOPNOTSUPP;
2667
2668         bio_put(bio);
2669         return ret;
2670 }
2671
2672 /**
2673  * ll_rw_block: low-level access to block devices (DEPRECATED)
2674  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2675  * @nr: number of &struct buffer_heads in the array
2676  * @bhs: array of pointers to &struct buffer_head
2677  *
2678  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2679  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2680  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2681  * are sent to disk. The fourth %READA option is described in the documentation
2682  * for generic_make_request() which ll_rw_block() calls.
2683  *
2684  * This function drops any buffer that it cannot get a lock on (with the
2685  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2686  * clean when doing a write request, and any buffer that appears to be
2687  * up-to-date when doing read request.  Further it marks as clean buffers that
2688  * are processed for writing (the buffer cache won't assume that they are
2689  * actually clean until the buffer gets unlocked).
2690  *
2691  * ll_rw_block sets b_end_io to simple completion handler that marks
2692  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2693  * any waiters. 
2694  *
2695  * All of the buffers must be for the same device, and must also be a
2696  * multiple of the current approved size for the device.
2697  */
2698 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2699 {
2700         int i;
2701
2702         for (i = 0; i < nr; i++) {
2703                 struct buffer_head *bh = bhs[i];
2704
2705                 if (rw == SWRITE)
2706                         lock_buffer(bh);
2707                 else if (test_set_buffer_locked(bh))
2708                         continue;
2709
2710                 if (rw == WRITE || rw == SWRITE) {
2711                         if (test_clear_buffer_dirty(bh)) {
2712                                 bh->b_end_io = end_buffer_write_sync;
2713                                 get_bh(bh);
2714                                 submit_bh(WRITE, bh);
2715                                 continue;
2716                         }
2717                 } else {
2718                         if (!buffer_uptodate(bh)) {
2719                                 bh->b_end_io = end_buffer_read_sync;
2720                                 get_bh(bh);
2721                                 submit_bh(rw, bh);
2722                                 continue;
2723                         }
2724                 }
2725                 unlock_buffer(bh);
2726         }
2727 }
2728
2729 /*
2730  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2731  * and then start new I/O and then wait upon it.  The caller must have a ref on
2732  * the buffer_head.
2733  */
2734 int sync_dirty_buffer(struct buffer_head *bh)
2735 {
2736         int ret = 0;
2737
2738         WARN_ON(atomic_read(&bh->b_count) < 1);
2739         lock_buffer(bh);
2740         if (test_clear_buffer_dirty(bh)) {
2741                 get_bh(bh);
2742                 bh->b_end_io = end_buffer_write_sync;
2743                 ret = submit_bh(WRITE, bh);
2744                 wait_on_buffer(bh);
2745                 if (buffer_eopnotsupp(bh)) {
2746                         clear_buffer_eopnotsupp(bh);
2747                         ret = -EOPNOTSUPP;
2748                 }
2749                 if (!ret && !buffer_uptodate(bh))
2750                         ret = -EIO;
2751         } else {
2752                 unlock_buffer(bh);
2753         }
2754         return ret;
2755 }
2756
2757 /*
2758  * try_to_free_buffers() checks if all the buffers on this particular page
2759  * are unused, and releases them if so.
2760  *
2761  * Exclusion against try_to_free_buffers may be obtained by either
2762  * locking the page or by holding its mapping's private_lock.
2763  *
2764  * If the page is dirty but all the buffers are clean then we need to
2765  * be sure to mark the page clean as well.  This is because the page
2766  * may be against a block device, and a later reattachment of buffers
2767  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2768  * filesystem data on the same device.
2769  *
2770  * The same applies to regular filesystem pages: if all the buffers are
2771  * clean then we set the page clean and proceed.  To do that, we require
2772  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2773  * private_lock.
2774  *
2775  * try_to_free_buffers() is non-blocking.
2776  */
2777 static inline int buffer_busy(struct buffer_head *bh)
2778 {
2779         return atomic_read(&bh->b_count) |
2780                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2781 }
2782
2783 static int
2784 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2785 {
2786         struct buffer_head *head = page_buffers(page);
2787         struct buffer_head *bh;
2788
2789         bh = head;
2790         do {
2791                 if (buffer_write_io_error(bh) && page->mapping)
2792                         set_bit(AS_EIO, &page->mapping->flags);
2793                 if (buffer_busy(bh))
2794                         goto failed;
2795                 bh = bh->b_this_page;
2796         } while (bh != head);
2797
2798         do {
2799                 struct buffer_head *next = bh->b_this_page;
2800
2801                 if (!list_empty(&bh->b_assoc_buffers))
2802                         __remove_assoc_queue(bh);
2803                 bh = next;
2804         } while (bh != head);
2805         *buffers_to_free = head;
2806         __clear_page_buffers(page);
2807         return 1;
2808 failed:
2809         return 0;
2810 }
2811
2812 int try_to_free_buffers(struct page *page)
2813 {
2814         struct address_space * const mapping = page->mapping;
2815         struct buffer_head *buffers_to_free = NULL;
2816         int ret = 0;
2817
2818         BUG_ON(!PageLocked(page));
2819         if (PageWriteback(page))
2820                 return 0;
2821
2822         if (mapping == NULL) {          /* can this still happen? */
2823                 ret = drop_buffers(page, &buffers_to_free);
2824                 goto out;
2825         }
2826
2827         spin_lock(&mapping->private_lock);
2828         ret = drop_buffers(page, &buffers_to_free);
2829
2830         /*
2831          * If the filesystem writes its buffers by hand (eg ext3)
2832          * then we can have clean buffers against a dirty page.  We
2833          * clean the page here; otherwise the VM will never notice
2834          * that the filesystem did any IO at all.
2835          *
2836          * Also, during truncate, discard_buffer will have marked all
2837          * the page's buffers clean.  We discover that here and clean
2838          * the page also.
2839          *
2840          * private_lock must be held over this entire operation in order
2841          * to synchronise against __set_page_dirty_buffers and prevent the
2842          * dirty bit from being lost.
2843          */
2844         if (ret)
2845                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2846         spin_unlock(&mapping->private_lock);
2847 out:
2848         if (buffers_to_free) {
2849                 struct buffer_head *bh = buffers_to_free;
2850
2851                 do {
2852                         struct buffer_head *next = bh->b_this_page;
2853                         free_buffer_head(bh);
2854                         bh = next;
2855                 } while (bh != buffers_to_free);
2856         }
2857         return ret;
2858 }
2859 EXPORT_SYMBOL(try_to_free_buffers);
2860
2861 void block_sync_page(struct page *page)
2862 {
2863         struct address_space *mapping;
2864
2865         smp_mb();
2866         mapping = page_mapping(page);
2867         if (mapping)
2868                 blk_run_backing_dev(mapping->backing_dev_info, page);
2869 }
2870
2871 /*
2872  * There are no bdflush tunables left.  But distributions are
2873  * still running obsolete flush daemons, so we terminate them here.
2874  *
2875  * Use of bdflush() is deprecated and will be removed in a future kernel.
2876  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2877  */
2878 asmlinkage long sys_bdflush(int func, long data)
2879 {
2880         static int msg_count;
2881
2882         if (!capable(CAP_SYS_ADMIN))
2883                 return -EPERM;
2884
2885         if (msg_count < 5) {
2886                 msg_count++;
2887                 printk(KERN_INFO
2888                         "warning: process `%s' used the obsolete bdflush"
2889                         " system call\n", current->comm);
2890                 printk(KERN_INFO "Fix your initscripts?\n");
2891         }
2892
2893         if (func == 1)
2894                 do_exit(0);
2895         return 0;
2896 }
2897
2898 /*
2899  * Buffer-head allocation
2900  */
2901 static struct kmem_cache *bh_cachep;
2902
2903 /*
2904  * Once the number of bh's in the machine exceeds this level, we start
2905  * stripping them in writeback.
2906  */
2907 static int max_buffer_heads;
2908
2909 int buffer_heads_over_limit;
2910
2911 struct bh_accounting {
2912         int nr;                 /* Number of live bh's */
2913         int ratelimit;          /* Limit cacheline bouncing */
2914 };
2915
2916 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2917
2918 static void recalc_bh_state(void)
2919 {
2920         int i;
2921         int tot = 0;
2922
2923         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2924                 return;
2925         __get_cpu_var(bh_accounting).ratelimit = 0;
2926         for_each_online_cpu(i)
2927                 tot += per_cpu(bh_accounting, i).nr;
2928         buffer_heads_over_limit = (tot > max_buffer_heads);
2929 }
2930         
2931 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2932 {
2933         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2934         if (ret) {
2935                 get_cpu_var(bh_accounting).nr++;
2936                 recalc_bh_state();
2937                 put_cpu_var(bh_accounting);
2938         }
2939         return ret;
2940 }
2941 EXPORT_SYMBOL(alloc_buffer_head);
2942
2943 void free_buffer_head(struct buffer_head *bh)
2944 {
2945         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2946         kmem_cache_free(bh_cachep, bh);
2947         get_cpu_var(bh_accounting).nr--;
2948         recalc_bh_state();
2949         put_cpu_var(bh_accounting);
2950 }
2951 EXPORT_SYMBOL(free_buffer_head);
2952
2953 static void
2954 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2955 {
2956         if (flags & SLAB_CTOR_CONSTRUCTOR) {
2957                 struct buffer_head * bh = (struct buffer_head *)data;
2958
2959                 memset(bh, 0, sizeof(*bh));
2960                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2961         }
2962 }
2963
2964 static void buffer_exit_cpu(int cpu)
2965 {
2966         int i;
2967         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2968
2969         for (i = 0; i < BH_LRU_SIZE; i++) {
2970                 brelse(b->bhs[i]);
2971                 b->bhs[i] = NULL;
2972         }
2973         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2974         per_cpu(bh_accounting, cpu).nr = 0;
2975         put_cpu_var(bh_accounting);
2976 }
2977
2978 static int buffer_cpu_notify(struct notifier_block *self,
2979                               unsigned long action, void *hcpu)
2980 {
2981         if (action == CPU_DEAD)
2982                 buffer_exit_cpu((unsigned long)hcpu);
2983         return NOTIFY_OK;
2984 }
2985
2986 void __init buffer_init(void)
2987 {
2988         int nrpages;
2989
2990         bh_cachep = kmem_cache_create("buffer_head",
2991                                         sizeof(struct buffer_head), 0,
2992                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2993                                         SLAB_MEM_SPREAD),
2994                                         init_buffer_head,
2995                                         NULL);
2996
2997         /*
2998          * Limit the bh occupancy to 10% of ZONE_NORMAL
2999          */
3000         nrpages = (nr_free_buffer_pages() * 10) / 100;
3001         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3002         hotcpu_notifier(buffer_cpu_notify, 0);
3003 }
3004
3005 EXPORT_SYMBOL(__bforget);
3006 EXPORT_SYMBOL(__brelse);
3007 EXPORT_SYMBOL(__wait_on_buffer);
3008 EXPORT_SYMBOL(block_commit_write);
3009 EXPORT_SYMBOL(block_prepare_write);
3010 EXPORT_SYMBOL(block_read_full_page);
3011 EXPORT_SYMBOL(block_sync_page);
3012 EXPORT_SYMBOL(block_truncate_page);
3013 EXPORT_SYMBOL(block_write_full_page);
3014 EXPORT_SYMBOL(cont_prepare_write);
3015 EXPORT_SYMBOL(end_buffer_read_sync);
3016 EXPORT_SYMBOL(end_buffer_write_sync);
3017 EXPORT_SYMBOL(file_fsync);
3018 EXPORT_SYMBOL(fsync_bdev);
3019 EXPORT_SYMBOL(generic_block_bmap);
3020 EXPORT_SYMBOL(generic_commit_write);
3021 EXPORT_SYMBOL(generic_cont_expand);
3022 EXPORT_SYMBOL(generic_cont_expand_simple);
3023 EXPORT_SYMBOL(init_buffer);
3024 EXPORT_SYMBOL(invalidate_bdev);
3025 EXPORT_SYMBOL(ll_rw_block);
3026 EXPORT_SYMBOL(mark_buffer_dirty);
3027 EXPORT_SYMBOL(submit_bh);
3028 EXPORT_SYMBOL(sync_dirty_buffer);
3029 EXPORT_SYMBOL(unlock_buffer);