buffer: switch do_emergency_thaw() away from pdflush_operation()
[safe/jmp/linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97         ClearPagePrivate(page);
98         set_page_private(page, 0);
99         page_cache_release(page);
100 }
101
102
103 static int quiet_error(struct buffer_head *bh)
104 {
105         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106                 return 0;
107         return 1;
108 }
109
110
111 static void buffer_io_error(struct buffer_head *bh)
112 {
113         char b[BDEVNAME_SIZE];
114         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115                         bdevname(bh->b_bdev, b),
116                         (unsigned long long)bh->b_blocknr);
117 }
118
119 /*
120  * End-of-IO handler helper function which does not touch the bh after
121  * unlocking it.
122  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123  * a race there is benign: unlock_buffer() only use the bh's address for
124  * hashing after unlocking the buffer, so it doesn't actually touch the bh
125  * itself.
126  */
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129         if (uptodate) {
130                 set_buffer_uptodate(bh);
131         } else {
132                 /* This happens, due to failed READA attempts. */
133                 clear_buffer_uptodate(bh);
134         }
135         unlock_buffer(bh);
136 }
137
138 /*
139  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
140  * unlock the buffer. This is what ll_rw_block uses too.
141  */
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144         __end_buffer_read_notouch(bh, uptodate);
145         put_bh(bh);
146 }
147
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150         char b[BDEVNAME_SIZE];
151
152         if (uptodate) {
153                 set_buffer_uptodate(bh);
154         } else {
155                 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156                         buffer_io_error(bh);
157                         printk(KERN_WARNING "lost page write due to "
158                                         "I/O error on %s\n",
159                                        bdevname(bh->b_bdev, b));
160                 }
161                 set_buffer_write_io_error(bh);
162                 clear_buffer_uptodate(bh);
163         }
164         unlock_buffer(bh);
165         put_bh(bh);
166 }
167
168 /*
169  * Various filesystems appear to want __find_get_block to be non-blocking.
170  * But it's the page lock which protects the buffers.  To get around this,
171  * we get exclusion from try_to_free_buffers with the blockdev mapping's
172  * private_lock.
173  *
174  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175  * may be quite high.  This code could TryLock the page, and if that
176  * succeeds, there is no need to take private_lock. (But if
177  * private_lock is contended then so is mapping->tree_lock).
178  */
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block)
181 {
182         struct inode *bd_inode = bdev->bd_inode;
183         struct address_space *bd_mapping = bd_inode->i_mapping;
184         struct buffer_head *ret = NULL;
185         pgoff_t index;
186         struct buffer_head *bh;
187         struct buffer_head *head;
188         struct page *page;
189         int all_mapped = 1;
190
191         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192         page = find_get_page(bd_mapping, index);
193         if (!page)
194                 goto out;
195
196         spin_lock(&bd_mapping->private_lock);
197         if (!page_has_buffers(page))
198                 goto out_unlock;
199         head = page_buffers(page);
200         bh = head;
201         do {
202                 if (!buffer_mapped(bh))
203                         all_mapped = 0;
204                 else if (bh->b_blocknr == block) {
205                         ret = bh;
206                         get_bh(bh);
207                         goto out_unlock;
208                 }
209                 bh = bh->b_this_page;
210         } while (bh != head);
211
212         /* we might be here because some of the buffers on this page are
213          * not mapped.  This is due to various races between
214          * file io on the block device and getblk.  It gets dealt with
215          * elsewhere, don't buffer_error if we had some unmapped buffers
216          */
217         if (all_mapped) {
218                 printk("__find_get_block_slow() failed. "
219                         "block=%llu, b_blocknr=%llu\n",
220                         (unsigned long long)block,
221                         (unsigned long long)bh->b_blocknr);
222                 printk("b_state=0x%08lx, b_size=%zu\n",
223                         bh->b_state, bh->b_size);
224                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
225         }
226 out_unlock:
227         spin_unlock(&bd_mapping->private_lock);
228         page_cache_release(page);
229 out:
230         return ret;
231 }
232
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234    of fs corruption is going on. Trashing dirty data always imply losing
235    information that was supposed to be just stored on the physical layer
236    by the user.
237
238    Thus invalidate_buffers in general usage is not allwowed to trash
239    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240    be preserved.  These buffers are simply skipped.
241   
242    We also skip buffers which are still in use.  For example this can
243    happen if a userspace program is reading the block device.
244
245    NOTE: In the case where the user removed a removable-media-disk even if
246    there's still dirty data not synced on disk (due a bug in the device driver
247    or due an error of the user), by not destroying the dirty buffers we could
248    generate corruption also on the next media inserted, thus a parameter is
249    necessary to handle this case in the most safe way possible (trying
250    to not corrupt also the new disk inserted with the data belonging to
251    the old now corrupted disk). Also for the ramdisk the natural thing
252    to do in order to release the ramdisk memory is to destroy dirty buffers.
253
254    These are two special cases. Normal usage imply the device driver
255    to issue a sync on the device (without waiting I/O completion) and
256    then an invalidate_buffers call that doesn't trash dirty buffers.
257
258    For handling cache coherency with the blkdev pagecache the 'update' case
259    is been introduced. It is needed to re-read from disk any pinned
260    buffer. NOTE: re-reading from disk is destructive so we can do it only
261    when we assume nobody is changing the buffercache under our I/O and when
262    we think the disk contains more recent information than the buffercache.
263    The update == 1 pass marks the buffers we need to update, the update == 2
264    pass does the actual I/O. */
265 void invalidate_bdev(struct block_device *bdev)
266 {
267         struct address_space *mapping = bdev->bd_inode->i_mapping;
268
269         if (mapping->nrpages == 0)
270                 return;
271
272         invalidate_bh_lrus();
273         invalidate_mapping_pages(mapping, 0, -1);
274 }
275
276 /*
277  * Kick pdflush then try to free up some ZONE_NORMAL memory.
278  */
279 static void free_more_memory(void)
280 {
281         struct zone *zone;
282         int nid;
283
284         wakeup_pdflush(1024);
285         yield();
286
287         for_each_online_node(nid) {
288                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289                                                 gfp_zone(GFP_NOFS), NULL,
290                                                 &zone);
291                 if (zone)
292                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293                                                 GFP_NOFS, NULL);
294         }
295 }
296
297 /*
298  * I/O completion handler for block_read_full_page() - pages
299  * which come unlocked at the end of I/O.
300  */
301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302 {
303         unsigned long flags;
304         struct buffer_head *first;
305         struct buffer_head *tmp;
306         struct page *page;
307         int page_uptodate = 1;
308
309         BUG_ON(!buffer_async_read(bh));
310
311         page = bh->b_page;
312         if (uptodate) {
313                 set_buffer_uptodate(bh);
314         } else {
315                 clear_buffer_uptodate(bh);
316                 if (!quiet_error(bh))
317                         buffer_io_error(bh);
318                 SetPageError(page);
319         }
320
321         /*
322          * Be _very_ careful from here on. Bad things can happen if
323          * two buffer heads end IO at almost the same time and both
324          * decide that the page is now completely done.
325          */
326         first = page_buffers(page);
327         local_irq_save(flags);
328         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
329         clear_buffer_async_read(bh);
330         unlock_buffer(bh);
331         tmp = bh;
332         do {
333                 if (!buffer_uptodate(tmp))
334                         page_uptodate = 0;
335                 if (buffer_async_read(tmp)) {
336                         BUG_ON(!buffer_locked(tmp));
337                         goto still_busy;
338                 }
339                 tmp = tmp->b_this_page;
340         } while (tmp != bh);
341         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342         local_irq_restore(flags);
343
344         /*
345          * If none of the buffers had errors and they are all
346          * uptodate then we can set the page uptodate.
347          */
348         if (page_uptodate && !PageError(page))
349                 SetPageUptodate(page);
350         unlock_page(page);
351         return;
352
353 still_busy:
354         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355         local_irq_restore(flags);
356         return;
357 }
358
359 /*
360  * Completion handler for block_write_full_page() - pages which are unlocked
361  * during I/O, and which have PageWriteback cleared upon I/O completion.
362  */
363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
364 {
365         char b[BDEVNAME_SIZE];
366         unsigned long flags;
367         struct buffer_head *first;
368         struct buffer_head *tmp;
369         struct page *page;
370
371         BUG_ON(!buffer_async_write(bh));
372
373         page = bh->b_page;
374         if (uptodate) {
375                 set_buffer_uptodate(bh);
376         } else {
377                 if (!quiet_error(bh)) {
378                         buffer_io_error(bh);
379                         printk(KERN_WARNING "lost page write due to "
380                                         "I/O error on %s\n",
381                                bdevname(bh->b_bdev, b));
382                 }
383                 set_bit(AS_EIO, &page->mapping->flags);
384                 set_buffer_write_io_error(bh);
385                 clear_buffer_uptodate(bh);
386                 SetPageError(page);
387         }
388
389         first = page_buffers(page);
390         local_irq_save(flags);
391         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392
393         clear_buffer_async_write(bh);
394         unlock_buffer(bh);
395         tmp = bh->b_this_page;
396         while (tmp != bh) {
397                 if (buffer_async_write(tmp)) {
398                         BUG_ON(!buffer_locked(tmp));
399                         goto still_busy;
400                 }
401                 tmp = tmp->b_this_page;
402         }
403         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404         local_irq_restore(flags);
405         end_page_writeback(page);
406         return;
407
408 still_busy:
409         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410         local_irq_restore(flags);
411         return;
412 }
413
414 /*
415  * If a page's buffers are under async readin (end_buffer_async_read
416  * completion) then there is a possibility that another thread of
417  * control could lock one of the buffers after it has completed
418  * but while some of the other buffers have not completed.  This
419  * locked buffer would confuse end_buffer_async_read() into not unlocking
420  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
421  * that this buffer is not under async I/O.
422  *
423  * The page comes unlocked when it has no locked buffer_async buffers
424  * left.
425  *
426  * PageLocked prevents anyone starting new async I/O reads any of
427  * the buffers.
428  *
429  * PageWriteback is used to prevent simultaneous writeout of the same
430  * page.
431  *
432  * PageLocked prevents anyone from starting writeback of a page which is
433  * under read I/O (PageWriteback is only ever set against a locked page).
434  */
435 static void mark_buffer_async_read(struct buffer_head *bh)
436 {
437         bh->b_end_io = end_buffer_async_read;
438         set_buffer_async_read(bh);
439 }
440
441 void mark_buffer_async_write(struct buffer_head *bh)
442 {
443         bh->b_end_io = end_buffer_async_write;
444         set_buffer_async_write(bh);
445 }
446 EXPORT_SYMBOL(mark_buffer_async_write);
447
448
449 /*
450  * fs/buffer.c contains helper functions for buffer-backed address space's
451  * fsync functions.  A common requirement for buffer-based filesystems is
452  * that certain data from the backing blockdev needs to be written out for
453  * a successful fsync().  For example, ext2 indirect blocks need to be
454  * written back and waited upon before fsync() returns.
455  *
456  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458  * management of a list of dependent buffers at ->i_mapping->private_list.
459  *
460  * Locking is a little subtle: try_to_free_buffers() will remove buffers
461  * from their controlling inode's queue when they are being freed.  But
462  * try_to_free_buffers() will be operating against the *blockdev* mapping
463  * at the time, not against the S_ISREG file which depends on those buffers.
464  * So the locking for private_list is via the private_lock in the address_space
465  * which backs the buffers.  Which is different from the address_space 
466  * against which the buffers are listed.  So for a particular address_space,
467  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
468  * mapping->private_list will always be protected by the backing blockdev's
469  * ->private_lock.
470  *
471  * Which introduces a requirement: all buffers on an address_space's
472  * ->private_list must be from the same address_space: the blockdev's.
473  *
474  * address_spaces which do not place buffers at ->private_list via these
475  * utility functions are free to use private_lock and private_list for
476  * whatever they want.  The only requirement is that list_empty(private_list)
477  * be true at clear_inode() time.
478  *
479  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
480  * filesystems should do that.  invalidate_inode_buffers() should just go
481  * BUG_ON(!list_empty).
482  *
483  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
484  * take an address_space, not an inode.  And it should be called
485  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486  * queued up.
487  *
488  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489  * list if it is already on a list.  Because if the buffer is on a list,
490  * it *must* already be on the right one.  If not, the filesystem is being
491  * silly.  This will save a ton of locking.  But first we have to ensure
492  * that buffers are taken *off* the old inode's list when they are freed
493  * (presumably in truncate).  That requires careful auditing of all
494  * filesystems (do it inside bforget()).  It could also be done by bringing
495  * b_inode back.
496  */
497
498 /*
499  * The buffer's backing address_space's private_lock must be held
500  */
501 static void __remove_assoc_queue(struct buffer_head *bh)
502 {
503         list_del_init(&bh->b_assoc_buffers);
504         WARN_ON(!bh->b_assoc_map);
505         if (buffer_write_io_error(bh))
506                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
507         bh->b_assoc_map = NULL;
508 }
509
510 int inode_has_buffers(struct inode *inode)
511 {
512         return !list_empty(&inode->i_data.private_list);
513 }
514
515 /*
516  * osync is designed to support O_SYNC io.  It waits synchronously for
517  * all already-submitted IO to complete, but does not queue any new
518  * writes to the disk.
519  *
520  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521  * you dirty the buffers, and then use osync_inode_buffers to wait for
522  * completion.  Any other dirty buffers which are not yet queued for
523  * write will not be flushed to disk by the osync.
524  */
525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
526 {
527         struct buffer_head *bh;
528         struct list_head *p;
529         int err = 0;
530
531         spin_lock(lock);
532 repeat:
533         list_for_each_prev(p, list) {
534                 bh = BH_ENTRY(p);
535                 if (buffer_locked(bh)) {
536                         get_bh(bh);
537                         spin_unlock(lock);
538                         wait_on_buffer(bh);
539                         if (!buffer_uptodate(bh))
540                                 err = -EIO;
541                         brelse(bh);
542                         spin_lock(lock);
543                         goto repeat;
544                 }
545         }
546         spin_unlock(lock);
547         return err;
548 }
549
550 void do_thaw_all(struct work_struct *work)
551 {
552         struct super_block *sb;
553         char b[BDEVNAME_SIZE];
554
555         spin_lock(&sb_lock);
556 restart:
557         list_for_each_entry(sb, &super_blocks, s_list) {
558                 sb->s_count++;
559                 spin_unlock(&sb_lock);
560                 down_read(&sb->s_umount);
561                 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
562                         printk(KERN_WARNING "Emergency Thaw on %s\n",
563                                bdevname(sb->s_bdev, b));
564                 up_read(&sb->s_umount);
565                 spin_lock(&sb_lock);
566                 if (__put_super_and_need_restart(sb))
567                         goto restart;
568         }
569         spin_unlock(&sb_lock);
570         kfree(work);
571         printk(KERN_WARNING "Emergency Thaw complete\n");
572 }
573
574 /**
575  * emergency_thaw_all -- forcibly thaw every frozen filesystem
576  *
577  * Used for emergency unfreeze of all filesystems via SysRq
578  */
579 void emergency_thaw_all(void)
580 {
581         struct work_struct *work;
582
583         work = kmalloc(sizeof(*work), GFP_ATOMIC);
584         if (work) {
585                 INIT_WORK(work, do_thaw_all);
586                 schedule_work(work);
587         }
588 }
589
590 /**
591  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
592  * @mapping: the mapping which wants those buffers written
593  *
594  * Starts I/O against the buffers at mapping->private_list, and waits upon
595  * that I/O.
596  *
597  * Basically, this is a convenience function for fsync().
598  * @mapping is a file or directory which needs those buffers to be written for
599  * a successful fsync().
600  */
601 int sync_mapping_buffers(struct address_space *mapping)
602 {
603         struct address_space *buffer_mapping = mapping->assoc_mapping;
604
605         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
606                 return 0;
607
608         return fsync_buffers_list(&buffer_mapping->private_lock,
609                                         &mapping->private_list);
610 }
611 EXPORT_SYMBOL(sync_mapping_buffers);
612
613 /*
614  * Called when we've recently written block `bblock', and it is known that
615  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
616  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
617  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
618  */
619 void write_boundary_block(struct block_device *bdev,
620                         sector_t bblock, unsigned blocksize)
621 {
622         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
623         if (bh) {
624                 if (buffer_dirty(bh))
625                         ll_rw_block(WRITE, 1, &bh);
626                 put_bh(bh);
627         }
628 }
629
630 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
631 {
632         struct address_space *mapping = inode->i_mapping;
633         struct address_space *buffer_mapping = bh->b_page->mapping;
634
635         mark_buffer_dirty(bh);
636         if (!mapping->assoc_mapping) {
637                 mapping->assoc_mapping = buffer_mapping;
638         } else {
639                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
640         }
641         if (!bh->b_assoc_map) {
642                 spin_lock(&buffer_mapping->private_lock);
643                 list_move_tail(&bh->b_assoc_buffers,
644                                 &mapping->private_list);
645                 bh->b_assoc_map = mapping;
646                 spin_unlock(&buffer_mapping->private_lock);
647         }
648 }
649 EXPORT_SYMBOL(mark_buffer_dirty_inode);
650
651 /*
652  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
653  * dirty.
654  *
655  * If warn is true, then emit a warning if the page is not uptodate and has
656  * not been truncated.
657  */
658 static void __set_page_dirty(struct page *page,
659                 struct address_space *mapping, int warn)
660 {
661         spin_lock_irq(&mapping->tree_lock);
662         if (page->mapping) {    /* Race with truncate? */
663                 WARN_ON_ONCE(warn && !PageUptodate(page));
664                 account_page_dirtied(page, mapping);
665                 radix_tree_tag_set(&mapping->page_tree,
666                                 page_index(page), PAGECACHE_TAG_DIRTY);
667         }
668         spin_unlock_irq(&mapping->tree_lock);
669         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
670 }
671
672 /*
673  * Add a page to the dirty page list.
674  *
675  * It is a sad fact of life that this function is called from several places
676  * deeply under spinlocking.  It may not sleep.
677  *
678  * If the page has buffers, the uptodate buffers are set dirty, to preserve
679  * dirty-state coherency between the page and the buffers.  It the page does
680  * not have buffers then when they are later attached they will all be set
681  * dirty.
682  *
683  * The buffers are dirtied before the page is dirtied.  There's a small race
684  * window in which a writepage caller may see the page cleanness but not the
685  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
686  * before the buffers, a concurrent writepage caller could clear the page dirty
687  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
688  * page on the dirty page list.
689  *
690  * We use private_lock to lock against try_to_free_buffers while using the
691  * page's buffer list.  Also use this to protect against clean buffers being
692  * added to the page after it was set dirty.
693  *
694  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
695  * address_space though.
696  */
697 int __set_page_dirty_buffers(struct page *page)
698 {
699         int newly_dirty;
700         struct address_space *mapping = page_mapping(page);
701
702         if (unlikely(!mapping))
703                 return !TestSetPageDirty(page);
704
705         spin_lock(&mapping->private_lock);
706         if (page_has_buffers(page)) {
707                 struct buffer_head *head = page_buffers(page);
708                 struct buffer_head *bh = head;
709
710                 do {
711                         set_buffer_dirty(bh);
712                         bh = bh->b_this_page;
713                 } while (bh != head);
714         }
715         newly_dirty = !TestSetPageDirty(page);
716         spin_unlock(&mapping->private_lock);
717
718         if (newly_dirty)
719                 __set_page_dirty(page, mapping, 1);
720         return newly_dirty;
721 }
722 EXPORT_SYMBOL(__set_page_dirty_buffers);
723
724 /*
725  * Write out and wait upon a list of buffers.
726  *
727  * We have conflicting pressures: we want to make sure that all
728  * initially dirty buffers get waited on, but that any subsequently
729  * dirtied buffers don't.  After all, we don't want fsync to last
730  * forever if somebody is actively writing to the file.
731  *
732  * Do this in two main stages: first we copy dirty buffers to a
733  * temporary inode list, queueing the writes as we go.  Then we clean
734  * up, waiting for those writes to complete.
735  * 
736  * During this second stage, any subsequent updates to the file may end
737  * up refiling the buffer on the original inode's dirty list again, so
738  * there is a chance we will end up with a buffer queued for write but
739  * not yet completed on that list.  So, as a final cleanup we go through
740  * the osync code to catch these locked, dirty buffers without requeuing
741  * any newly dirty buffers for write.
742  */
743 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
744 {
745         struct buffer_head *bh;
746         struct list_head tmp;
747         struct address_space *mapping, *prev_mapping = NULL;
748         int err = 0, err2;
749
750         INIT_LIST_HEAD(&tmp);
751
752         spin_lock(lock);
753         while (!list_empty(list)) {
754                 bh = BH_ENTRY(list->next);
755                 mapping = bh->b_assoc_map;
756                 __remove_assoc_queue(bh);
757                 /* Avoid race with mark_buffer_dirty_inode() which does
758                  * a lockless check and we rely on seeing the dirty bit */
759                 smp_mb();
760                 if (buffer_dirty(bh) || buffer_locked(bh)) {
761                         list_add(&bh->b_assoc_buffers, &tmp);
762                         bh->b_assoc_map = mapping;
763                         if (buffer_dirty(bh)) {
764                                 get_bh(bh);
765                                 spin_unlock(lock);
766                                 /*
767                                  * Ensure any pending I/O completes so that
768                                  * ll_rw_block() actually writes the current
769                                  * contents - it is a noop if I/O is still in
770                                  * flight on potentially older contents.
771                                  */
772                                 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
773
774                                 /*
775                                  * Kick off IO for the previous mapping. Note
776                                  * that we will not run the very last mapping,
777                                  * wait_on_buffer() will do that for us
778                                  * through sync_buffer().
779                                  */
780                                 if (prev_mapping && prev_mapping != mapping)
781                                         blk_run_address_space(prev_mapping);
782                                 prev_mapping = mapping;
783
784                                 brelse(bh);
785                                 spin_lock(lock);
786                         }
787                 }
788         }
789
790         while (!list_empty(&tmp)) {
791                 bh = BH_ENTRY(tmp.prev);
792                 get_bh(bh);
793                 mapping = bh->b_assoc_map;
794                 __remove_assoc_queue(bh);
795                 /* Avoid race with mark_buffer_dirty_inode() which does
796                  * a lockless check and we rely on seeing the dirty bit */
797                 smp_mb();
798                 if (buffer_dirty(bh)) {
799                         list_add(&bh->b_assoc_buffers,
800                                  &mapping->private_list);
801                         bh->b_assoc_map = mapping;
802                 }
803                 spin_unlock(lock);
804                 wait_on_buffer(bh);
805                 if (!buffer_uptodate(bh))
806                         err = -EIO;
807                 brelse(bh);
808                 spin_lock(lock);
809         }
810         
811         spin_unlock(lock);
812         err2 = osync_buffers_list(lock, list);
813         if (err)
814                 return err;
815         else
816                 return err2;
817 }
818
819 /*
820  * Invalidate any and all dirty buffers on a given inode.  We are
821  * probably unmounting the fs, but that doesn't mean we have already
822  * done a sync().  Just drop the buffers from the inode list.
823  *
824  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
825  * assumes that all the buffers are against the blockdev.  Not true
826  * for reiserfs.
827  */
828 void invalidate_inode_buffers(struct inode *inode)
829 {
830         if (inode_has_buffers(inode)) {
831                 struct address_space *mapping = &inode->i_data;
832                 struct list_head *list = &mapping->private_list;
833                 struct address_space *buffer_mapping = mapping->assoc_mapping;
834
835                 spin_lock(&buffer_mapping->private_lock);
836                 while (!list_empty(list))
837                         __remove_assoc_queue(BH_ENTRY(list->next));
838                 spin_unlock(&buffer_mapping->private_lock);
839         }
840 }
841 EXPORT_SYMBOL(invalidate_inode_buffers);
842
843 /*
844  * Remove any clean buffers from the inode's buffer list.  This is called
845  * when we're trying to free the inode itself.  Those buffers can pin it.
846  *
847  * Returns true if all buffers were removed.
848  */
849 int remove_inode_buffers(struct inode *inode)
850 {
851         int ret = 1;
852
853         if (inode_has_buffers(inode)) {
854                 struct address_space *mapping = &inode->i_data;
855                 struct list_head *list = &mapping->private_list;
856                 struct address_space *buffer_mapping = mapping->assoc_mapping;
857
858                 spin_lock(&buffer_mapping->private_lock);
859                 while (!list_empty(list)) {
860                         struct buffer_head *bh = BH_ENTRY(list->next);
861                         if (buffer_dirty(bh)) {
862                                 ret = 0;
863                                 break;
864                         }
865                         __remove_assoc_queue(bh);
866                 }
867                 spin_unlock(&buffer_mapping->private_lock);
868         }
869         return ret;
870 }
871
872 /*
873  * Create the appropriate buffers when given a page for data area and
874  * the size of each buffer.. Use the bh->b_this_page linked list to
875  * follow the buffers created.  Return NULL if unable to create more
876  * buffers.
877  *
878  * The retry flag is used to differentiate async IO (paging, swapping)
879  * which may not fail from ordinary buffer allocations.
880  */
881 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
882                 int retry)
883 {
884         struct buffer_head *bh, *head;
885         long offset;
886
887 try_again:
888         head = NULL;
889         offset = PAGE_SIZE;
890         while ((offset -= size) >= 0) {
891                 bh = alloc_buffer_head(GFP_NOFS);
892                 if (!bh)
893                         goto no_grow;
894
895                 bh->b_bdev = NULL;
896                 bh->b_this_page = head;
897                 bh->b_blocknr = -1;
898                 head = bh;
899
900                 bh->b_state = 0;
901                 atomic_set(&bh->b_count, 0);
902                 bh->b_private = NULL;
903                 bh->b_size = size;
904
905                 /* Link the buffer to its page */
906                 set_bh_page(bh, page, offset);
907
908                 init_buffer(bh, NULL, NULL);
909         }
910         return head;
911 /*
912  * In case anything failed, we just free everything we got.
913  */
914 no_grow:
915         if (head) {
916                 do {
917                         bh = head;
918                         head = head->b_this_page;
919                         free_buffer_head(bh);
920                 } while (head);
921         }
922
923         /*
924          * Return failure for non-async IO requests.  Async IO requests
925          * are not allowed to fail, so we have to wait until buffer heads
926          * become available.  But we don't want tasks sleeping with 
927          * partially complete buffers, so all were released above.
928          */
929         if (!retry)
930                 return NULL;
931
932         /* We're _really_ low on memory. Now we just
933          * wait for old buffer heads to become free due to
934          * finishing IO.  Since this is an async request and
935          * the reserve list is empty, we're sure there are 
936          * async buffer heads in use.
937          */
938         free_more_memory();
939         goto try_again;
940 }
941 EXPORT_SYMBOL_GPL(alloc_page_buffers);
942
943 static inline void
944 link_dev_buffers(struct page *page, struct buffer_head *head)
945 {
946         struct buffer_head *bh, *tail;
947
948         bh = head;
949         do {
950                 tail = bh;
951                 bh = bh->b_this_page;
952         } while (bh);
953         tail->b_this_page = head;
954         attach_page_buffers(page, head);
955 }
956
957 /*
958  * Initialise the state of a blockdev page's buffers.
959  */ 
960 static void
961 init_page_buffers(struct page *page, struct block_device *bdev,
962                         sector_t block, int size)
963 {
964         struct buffer_head *head = page_buffers(page);
965         struct buffer_head *bh = head;
966         int uptodate = PageUptodate(page);
967
968         do {
969                 if (!buffer_mapped(bh)) {
970                         init_buffer(bh, NULL, NULL);
971                         bh->b_bdev = bdev;
972                         bh->b_blocknr = block;
973                         if (uptodate)
974                                 set_buffer_uptodate(bh);
975                         set_buffer_mapped(bh);
976                 }
977                 block++;
978                 bh = bh->b_this_page;
979         } while (bh != head);
980 }
981
982 /*
983  * Create the page-cache page that contains the requested block.
984  *
985  * This is user purely for blockdev mappings.
986  */
987 static struct page *
988 grow_dev_page(struct block_device *bdev, sector_t block,
989                 pgoff_t index, int size)
990 {
991         struct inode *inode = bdev->bd_inode;
992         struct page *page;
993         struct buffer_head *bh;
994
995         page = find_or_create_page(inode->i_mapping, index,
996                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
997         if (!page)
998                 return NULL;
999
1000         BUG_ON(!PageLocked(page));
1001
1002         if (page_has_buffers(page)) {
1003                 bh = page_buffers(page);
1004                 if (bh->b_size == size) {
1005                         init_page_buffers(page, bdev, block, size);
1006                         return page;
1007                 }
1008                 if (!try_to_free_buffers(page))
1009                         goto failed;
1010         }
1011
1012         /*
1013          * Allocate some buffers for this page
1014          */
1015         bh = alloc_page_buffers(page, size, 0);
1016         if (!bh)
1017                 goto failed;
1018
1019         /*
1020          * Link the page to the buffers and initialise them.  Take the
1021          * lock to be atomic wrt __find_get_block(), which does not
1022          * run under the page lock.
1023          */
1024         spin_lock(&inode->i_mapping->private_lock);
1025         link_dev_buffers(page, bh);
1026         init_page_buffers(page, bdev, block, size);
1027         spin_unlock(&inode->i_mapping->private_lock);
1028         return page;
1029
1030 failed:
1031         BUG();
1032         unlock_page(page);
1033         page_cache_release(page);
1034         return NULL;
1035 }
1036
1037 /*
1038  * Create buffers for the specified block device block's page.  If
1039  * that page was dirty, the buffers are set dirty also.
1040  */
1041 static int
1042 grow_buffers(struct block_device *bdev, sector_t block, int size)
1043 {
1044         struct page *page;
1045         pgoff_t index;
1046         int sizebits;
1047
1048         sizebits = -1;
1049         do {
1050                 sizebits++;
1051         } while ((size << sizebits) < PAGE_SIZE);
1052
1053         index = block >> sizebits;
1054
1055         /*
1056          * Check for a block which wants to lie outside our maximum possible
1057          * pagecache index.  (this comparison is done using sector_t types).
1058          */
1059         if (unlikely(index != block >> sizebits)) {
1060                 char b[BDEVNAME_SIZE];
1061
1062                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063                         "device %s\n",
1064                         __func__, (unsigned long long)block,
1065                         bdevname(bdev, b));
1066                 return -EIO;
1067         }
1068         block = index << sizebits;
1069         /* Create a page with the proper size buffers.. */
1070         page = grow_dev_page(bdev, block, index, size);
1071         if (!page)
1072                 return 0;
1073         unlock_page(page);
1074         page_cache_release(page);
1075         return 1;
1076 }
1077
1078 static struct buffer_head *
1079 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1080 {
1081         /* Size must be multiple of hard sectorsize */
1082         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1083                         (size < 512 || size > PAGE_SIZE))) {
1084                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1085                                         size);
1086                 printk(KERN_ERR "hardsect size: %d\n",
1087                                         bdev_hardsect_size(bdev));
1088
1089                 dump_stack();
1090                 return NULL;
1091         }
1092
1093         for (;;) {
1094                 struct buffer_head * bh;
1095                 int ret;
1096
1097                 bh = __find_get_block(bdev, block, size);
1098                 if (bh)
1099                         return bh;
1100
1101                 ret = grow_buffers(bdev, block, size);
1102                 if (ret < 0)
1103                         return NULL;
1104                 if (ret == 0)
1105                         free_more_memory();
1106         }
1107 }
1108
1109 /*
1110  * The relationship between dirty buffers and dirty pages:
1111  *
1112  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1113  * the page is tagged dirty in its radix tree.
1114  *
1115  * At all times, the dirtiness of the buffers represents the dirtiness of
1116  * subsections of the page.  If the page has buffers, the page dirty bit is
1117  * merely a hint about the true dirty state.
1118  *
1119  * When a page is set dirty in its entirety, all its buffers are marked dirty
1120  * (if the page has buffers).
1121  *
1122  * When a buffer is marked dirty, its page is dirtied, but the page's other
1123  * buffers are not.
1124  *
1125  * Also.  When blockdev buffers are explicitly read with bread(), they
1126  * individually become uptodate.  But their backing page remains not
1127  * uptodate - even if all of its buffers are uptodate.  A subsequent
1128  * block_read_full_page() against that page will discover all the uptodate
1129  * buffers, will set the page uptodate and will perform no I/O.
1130  */
1131
1132 /**
1133  * mark_buffer_dirty - mark a buffer_head as needing writeout
1134  * @bh: the buffer_head to mark dirty
1135  *
1136  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1137  * backing page dirty, then tag the page as dirty in its address_space's radix
1138  * tree and then attach the address_space's inode to its superblock's dirty
1139  * inode list.
1140  *
1141  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1142  * mapping->tree_lock and the global inode_lock.
1143  */
1144 void mark_buffer_dirty(struct buffer_head *bh)
1145 {
1146         WARN_ON_ONCE(!buffer_uptodate(bh));
1147
1148         /*
1149          * Very *carefully* optimize the it-is-already-dirty case.
1150          *
1151          * Don't let the final "is it dirty" escape to before we
1152          * perhaps modified the buffer.
1153          */
1154         if (buffer_dirty(bh)) {
1155                 smp_mb();
1156                 if (buffer_dirty(bh))
1157                         return;
1158         }
1159
1160         if (!test_set_buffer_dirty(bh)) {
1161                 struct page *page = bh->b_page;
1162                 if (!TestSetPageDirty(page))
1163                         __set_page_dirty(page, page_mapping(page), 0);
1164         }
1165 }
1166
1167 /*
1168  * Decrement a buffer_head's reference count.  If all buffers against a page
1169  * have zero reference count, are clean and unlocked, and if the page is clean
1170  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1171  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1172  * a page but it ends up not being freed, and buffers may later be reattached).
1173  */
1174 void __brelse(struct buffer_head * buf)
1175 {
1176         if (atomic_read(&buf->b_count)) {
1177                 put_bh(buf);
1178                 return;
1179         }
1180         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1181 }
1182
1183 /*
1184  * bforget() is like brelse(), except it discards any
1185  * potentially dirty data.
1186  */
1187 void __bforget(struct buffer_head *bh)
1188 {
1189         clear_buffer_dirty(bh);
1190         if (bh->b_assoc_map) {
1191                 struct address_space *buffer_mapping = bh->b_page->mapping;
1192
1193                 spin_lock(&buffer_mapping->private_lock);
1194                 list_del_init(&bh->b_assoc_buffers);
1195                 bh->b_assoc_map = NULL;
1196                 spin_unlock(&buffer_mapping->private_lock);
1197         }
1198         __brelse(bh);
1199 }
1200
1201 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1202 {
1203         lock_buffer(bh);
1204         if (buffer_uptodate(bh)) {
1205                 unlock_buffer(bh);
1206                 return bh;
1207         } else {
1208                 get_bh(bh);
1209                 bh->b_end_io = end_buffer_read_sync;
1210                 submit_bh(READ, bh);
1211                 wait_on_buffer(bh);
1212                 if (buffer_uptodate(bh))
1213                         return bh;
1214         }
1215         brelse(bh);
1216         return NULL;
1217 }
1218
1219 /*
1220  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1221  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1222  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1223  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1224  * CPU's LRUs at the same time.
1225  *
1226  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1227  * sb_find_get_block().
1228  *
1229  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1230  * a local interrupt disable for that.
1231  */
1232
1233 #define BH_LRU_SIZE     8
1234
1235 struct bh_lru {
1236         struct buffer_head *bhs[BH_LRU_SIZE];
1237 };
1238
1239 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1240
1241 #ifdef CONFIG_SMP
1242 #define bh_lru_lock()   local_irq_disable()
1243 #define bh_lru_unlock() local_irq_enable()
1244 #else
1245 #define bh_lru_lock()   preempt_disable()
1246 #define bh_lru_unlock() preempt_enable()
1247 #endif
1248
1249 static inline void check_irqs_on(void)
1250 {
1251 #ifdef irqs_disabled
1252         BUG_ON(irqs_disabled());
1253 #endif
1254 }
1255
1256 /*
1257  * The LRU management algorithm is dopey-but-simple.  Sorry.
1258  */
1259 static void bh_lru_install(struct buffer_head *bh)
1260 {
1261         struct buffer_head *evictee = NULL;
1262         struct bh_lru *lru;
1263
1264         check_irqs_on();
1265         bh_lru_lock();
1266         lru = &__get_cpu_var(bh_lrus);
1267         if (lru->bhs[0] != bh) {
1268                 struct buffer_head *bhs[BH_LRU_SIZE];
1269                 int in;
1270                 int out = 0;
1271
1272                 get_bh(bh);
1273                 bhs[out++] = bh;
1274                 for (in = 0; in < BH_LRU_SIZE; in++) {
1275                         struct buffer_head *bh2 = lru->bhs[in];
1276
1277                         if (bh2 == bh) {
1278                                 __brelse(bh2);
1279                         } else {
1280                                 if (out >= BH_LRU_SIZE) {
1281                                         BUG_ON(evictee != NULL);
1282                                         evictee = bh2;
1283                                 } else {
1284                                         bhs[out++] = bh2;
1285                                 }
1286                         }
1287                 }
1288                 while (out < BH_LRU_SIZE)
1289                         bhs[out++] = NULL;
1290                 memcpy(lru->bhs, bhs, sizeof(bhs));
1291         }
1292         bh_lru_unlock();
1293
1294         if (evictee)
1295                 __brelse(evictee);
1296 }
1297
1298 /*
1299  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1300  */
1301 static struct buffer_head *
1302 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1303 {
1304         struct buffer_head *ret = NULL;
1305         struct bh_lru *lru;
1306         unsigned int i;
1307
1308         check_irqs_on();
1309         bh_lru_lock();
1310         lru = &__get_cpu_var(bh_lrus);
1311         for (i = 0; i < BH_LRU_SIZE; i++) {
1312                 struct buffer_head *bh = lru->bhs[i];
1313
1314                 if (bh && bh->b_bdev == bdev &&
1315                                 bh->b_blocknr == block && bh->b_size == size) {
1316                         if (i) {
1317                                 while (i) {
1318                                         lru->bhs[i] = lru->bhs[i - 1];
1319                                         i--;
1320                                 }
1321                                 lru->bhs[0] = bh;
1322                         }
1323                         get_bh(bh);
1324                         ret = bh;
1325                         break;
1326                 }
1327         }
1328         bh_lru_unlock();
1329         return ret;
1330 }
1331
1332 /*
1333  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1334  * it in the LRU and mark it as accessed.  If it is not present then return
1335  * NULL
1336  */
1337 struct buffer_head *
1338 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1339 {
1340         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1341
1342         if (bh == NULL) {
1343                 bh = __find_get_block_slow(bdev, block);
1344                 if (bh)
1345                         bh_lru_install(bh);
1346         }
1347         if (bh)
1348                 touch_buffer(bh);
1349         return bh;
1350 }
1351 EXPORT_SYMBOL(__find_get_block);
1352
1353 /*
1354  * __getblk will locate (and, if necessary, create) the buffer_head
1355  * which corresponds to the passed block_device, block and size. The
1356  * returned buffer has its reference count incremented.
1357  *
1358  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1359  * illegal block number, __getblk() will happily return a buffer_head
1360  * which represents the non-existent block.  Very weird.
1361  *
1362  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1363  * attempt is failing.  FIXME, perhaps?
1364  */
1365 struct buffer_head *
1366 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1367 {
1368         struct buffer_head *bh = __find_get_block(bdev, block, size);
1369
1370         might_sleep();
1371         if (bh == NULL)
1372                 bh = __getblk_slow(bdev, block, size);
1373         return bh;
1374 }
1375 EXPORT_SYMBOL(__getblk);
1376
1377 /*
1378  * Do async read-ahead on a buffer..
1379  */
1380 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1381 {
1382         struct buffer_head *bh = __getblk(bdev, block, size);
1383         if (likely(bh)) {
1384                 ll_rw_block(READA, 1, &bh);
1385                 brelse(bh);
1386         }
1387 }
1388 EXPORT_SYMBOL(__breadahead);
1389
1390 /**
1391  *  __bread() - reads a specified block and returns the bh
1392  *  @bdev: the block_device to read from
1393  *  @block: number of block
1394  *  @size: size (in bytes) to read
1395  * 
1396  *  Reads a specified block, and returns buffer head that contains it.
1397  *  It returns NULL if the block was unreadable.
1398  */
1399 struct buffer_head *
1400 __bread(struct block_device *bdev, sector_t block, unsigned size)
1401 {
1402         struct buffer_head *bh = __getblk(bdev, block, size);
1403
1404         if (likely(bh) && !buffer_uptodate(bh))
1405                 bh = __bread_slow(bh);
1406         return bh;
1407 }
1408 EXPORT_SYMBOL(__bread);
1409
1410 /*
1411  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1412  * This doesn't race because it runs in each cpu either in irq
1413  * or with preempt disabled.
1414  */
1415 static void invalidate_bh_lru(void *arg)
1416 {
1417         struct bh_lru *b = &get_cpu_var(bh_lrus);
1418         int i;
1419
1420         for (i = 0; i < BH_LRU_SIZE; i++) {
1421                 brelse(b->bhs[i]);
1422                 b->bhs[i] = NULL;
1423         }
1424         put_cpu_var(bh_lrus);
1425 }
1426         
1427 void invalidate_bh_lrus(void)
1428 {
1429         on_each_cpu(invalidate_bh_lru, NULL, 1);
1430 }
1431 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1432
1433 void set_bh_page(struct buffer_head *bh,
1434                 struct page *page, unsigned long offset)
1435 {
1436         bh->b_page = page;
1437         BUG_ON(offset >= PAGE_SIZE);
1438         if (PageHighMem(page))
1439                 /*
1440                  * This catches illegal uses and preserves the offset:
1441                  */
1442                 bh->b_data = (char *)(0 + offset);
1443         else
1444                 bh->b_data = page_address(page) + offset;
1445 }
1446 EXPORT_SYMBOL(set_bh_page);
1447
1448 /*
1449  * Called when truncating a buffer on a page completely.
1450  */
1451 static void discard_buffer(struct buffer_head * bh)
1452 {
1453         lock_buffer(bh);
1454         clear_buffer_dirty(bh);
1455         bh->b_bdev = NULL;
1456         clear_buffer_mapped(bh);
1457         clear_buffer_req(bh);
1458         clear_buffer_new(bh);
1459         clear_buffer_delay(bh);
1460         clear_buffer_unwritten(bh);
1461         unlock_buffer(bh);
1462 }
1463
1464 /**
1465  * block_invalidatepage - invalidate part of all of a buffer-backed page
1466  *
1467  * @page: the page which is affected
1468  * @offset: the index of the truncation point
1469  *
1470  * block_invalidatepage() is called when all or part of the page has become
1471  * invalidatedby a truncate operation.
1472  *
1473  * block_invalidatepage() does not have to release all buffers, but it must
1474  * ensure that no dirty buffer is left outside @offset and that no I/O
1475  * is underway against any of the blocks which are outside the truncation
1476  * point.  Because the caller is about to free (and possibly reuse) those
1477  * blocks on-disk.
1478  */
1479 void block_invalidatepage(struct page *page, unsigned long offset)
1480 {
1481         struct buffer_head *head, *bh, *next;
1482         unsigned int curr_off = 0;
1483
1484         BUG_ON(!PageLocked(page));
1485         if (!page_has_buffers(page))
1486                 goto out;
1487
1488         head = page_buffers(page);
1489         bh = head;
1490         do {
1491                 unsigned int next_off = curr_off + bh->b_size;
1492                 next = bh->b_this_page;
1493
1494                 /*
1495                  * is this block fully invalidated?
1496                  */
1497                 if (offset <= curr_off)
1498                         discard_buffer(bh);
1499                 curr_off = next_off;
1500                 bh = next;
1501         } while (bh != head);
1502
1503         /*
1504          * We release buffers only if the entire page is being invalidated.
1505          * The get_block cached value has been unconditionally invalidated,
1506          * so real IO is not possible anymore.
1507          */
1508         if (offset == 0)
1509                 try_to_release_page(page, 0);
1510 out:
1511         return;
1512 }
1513 EXPORT_SYMBOL(block_invalidatepage);
1514
1515 /*
1516  * We attach and possibly dirty the buffers atomically wrt
1517  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1518  * is already excluded via the page lock.
1519  */
1520 void create_empty_buffers(struct page *page,
1521                         unsigned long blocksize, unsigned long b_state)
1522 {
1523         struct buffer_head *bh, *head, *tail;
1524
1525         head = alloc_page_buffers(page, blocksize, 1);
1526         bh = head;
1527         do {
1528                 bh->b_state |= b_state;
1529                 tail = bh;
1530                 bh = bh->b_this_page;
1531         } while (bh);
1532         tail->b_this_page = head;
1533
1534         spin_lock(&page->mapping->private_lock);
1535         if (PageUptodate(page) || PageDirty(page)) {
1536                 bh = head;
1537                 do {
1538                         if (PageDirty(page))
1539                                 set_buffer_dirty(bh);
1540                         if (PageUptodate(page))
1541                                 set_buffer_uptodate(bh);
1542                         bh = bh->b_this_page;
1543                 } while (bh != head);
1544         }
1545         attach_page_buffers(page, head);
1546         spin_unlock(&page->mapping->private_lock);
1547 }
1548 EXPORT_SYMBOL(create_empty_buffers);
1549
1550 /*
1551  * We are taking a block for data and we don't want any output from any
1552  * buffer-cache aliases starting from return from that function and
1553  * until the moment when something will explicitly mark the buffer
1554  * dirty (hopefully that will not happen until we will free that block ;-)
1555  * We don't even need to mark it not-uptodate - nobody can expect
1556  * anything from a newly allocated buffer anyway. We used to used
1557  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1558  * don't want to mark the alias unmapped, for example - it would confuse
1559  * anyone who might pick it with bread() afterwards...
1560  *
1561  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1562  * be writeout I/O going on against recently-freed buffers.  We don't
1563  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1564  * only if we really need to.  That happens here.
1565  */
1566 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1567 {
1568         struct buffer_head *old_bh;
1569
1570         might_sleep();
1571
1572         old_bh = __find_get_block_slow(bdev, block);
1573         if (old_bh) {
1574                 clear_buffer_dirty(old_bh);
1575                 wait_on_buffer(old_bh);
1576                 clear_buffer_req(old_bh);
1577                 __brelse(old_bh);
1578         }
1579 }
1580 EXPORT_SYMBOL(unmap_underlying_metadata);
1581
1582 /*
1583  * NOTE! All mapped/uptodate combinations are valid:
1584  *
1585  *      Mapped  Uptodate        Meaning
1586  *
1587  *      No      No              "unknown" - must do get_block()
1588  *      No      Yes             "hole" - zero-filled
1589  *      Yes     No              "allocated" - allocated on disk, not read in
1590  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1591  *
1592  * "Dirty" is valid only with the last case (mapped+uptodate).
1593  */
1594
1595 /*
1596  * While block_write_full_page is writing back the dirty buffers under
1597  * the page lock, whoever dirtied the buffers may decide to clean them
1598  * again at any time.  We handle that by only looking at the buffer
1599  * state inside lock_buffer().
1600  *
1601  * If block_write_full_page() is called for regular writeback
1602  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1603  * locked buffer.   This only can happen if someone has written the buffer
1604  * directly, with submit_bh().  At the address_space level PageWriteback
1605  * prevents this contention from occurring.
1606  *
1607  * If block_write_full_page() is called with wbc->sync_mode ==
1608  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1609  * causes the writes to be flagged as synchronous writes, but the
1610  * block device queue will NOT be unplugged, since usually many pages
1611  * will be pushed to the out before the higher-level caller actually
1612  * waits for the writes to be completed.  The various wait functions,
1613  * such as wait_on_writeback_range() will ultimately call sync_page()
1614  * which will ultimately call blk_run_backing_dev(), which will end up
1615  * unplugging the device queue.
1616  */
1617 static int __block_write_full_page(struct inode *inode, struct page *page,
1618                         get_block_t *get_block, struct writeback_control *wbc)
1619 {
1620         int err;
1621         sector_t block;
1622         sector_t last_block;
1623         struct buffer_head *bh, *head;
1624         const unsigned blocksize = 1 << inode->i_blkbits;
1625         int nr_underway = 0;
1626         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1627                         WRITE_SYNC_PLUG : WRITE);
1628
1629         BUG_ON(!PageLocked(page));
1630
1631         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1632
1633         if (!page_has_buffers(page)) {
1634                 create_empty_buffers(page, blocksize,
1635                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1636         }
1637
1638         /*
1639          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1640          * here, and the (potentially unmapped) buffers may become dirty at
1641          * any time.  If a buffer becomes dirty here after we've inspected it
1642          * then we just miss that fact, and the page stays dirty.
1643          *
1644          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1645          * handle that here by just cleaning them.
1646          */
1647
1648         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1649         head = page_buffers(page);
1650         bh = head;
1651
1652         /*
1653          * Get all the dirty buffers mapped to disk addresses and
1654          * handle any aliases from the underlying blockdev's mapping.
1655          */
1656         do {
1657                 if (block > last_block) {
1658                         /*
1659                          * mapped buffers outside i_size will occur, because
1660                          * this page can be outside i_size when there is a
1661                          * truncate in progress.
1662                          */
1663                         /*
1664                          * The buffer was zeroed by block_write_full_page()
1665                          */
1666                         clear_buffer_dirty(bh);
1667                         set_buffer_uptodate(bh);
1668                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1669                            buffer_dirty(bh)) {
1670                         WARN_ON(bh->b_size != blocksize);
1671                         err = get_block(inode, block, bh, 1);
1672                         if (err)
1673                                 goto recover;
1674                         clear_buffer_delay(bh);
1675                         if (buffer_new(bh)) {
1676                                 /* blockdev mappings never come here */
1677                                 clear_buffer_new(bh);
1678                                 unmap_underlying_metadata(bh->b_bdev,
1679                                                         bh->b_blocknr);
1680                         }
1681                 }
1682                 bh = bh->b_this_page;
1683                 block++;
1684         } while (bh != head);
1685
1686         do {
1687                 if (!buffer_mapped(bh))
1688                         continue;
1689                 /*
1690                  * If it's a fully non-blocking write attempt and we cannot
1691                  * lock the buffer then redirty the page.  Note that this can
1692                  * potentially cause a busy-wait loop from pdflush and kswapd
1693                  * activity, but those code paths have their own higher-level
1694                  * throttling.
1695                  */
1696                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1697                         lock_buffer(bh);
1698                 } else if (!trylock_buffer(bh)) {
1699                         redirty_page_for_writepage(wbc, page);
1700                         continue;
1701                 }
1702                 if (test_clear_buffer_dirty(bh)) {
1703                         mark_buffer_async_write(bh);
1704                 } else {
1705                         unlock_buffer(bh);
1706                 }
1707         } while ((bh = bh->b_this_page) != head);
1708
1709         /*
1710          * The page and its buffers are protected by PageWriteback(), so we can
1711          * drop the bh refcounts early.
1712          */
1713         BUG_ON(PageWriteback(page));
1714         set_page_writeback(page);
1715
1716         do {
1717                 struct buffer_head *next = bh->b_this_page;
1718                 if (buffer_async_write(bh)) {
1719                         submit_bh(write_op, bh);
1720                         nr_underway++;
1721                 }
1722                 bh = next;
1723         } while (bh != head);
1724         unlock_page(page);
1725
1726         err = 0;
1727 done:
1728         if (nr_underway == 0) {
1729                 /*
1730                  * The page was marked dirty, but the buffers were
1731                  * clean.  Someone wrote them back by hand with
1732                  * ll_rw_block/submit_bh.  A rare case.
1733                  */
1734                 end_page_writeback(page);
1735
1736                 /*
1737                  * The page and buffer_heads can be released at any time from
1738                  * here on.
1739                  */
1740         }
1741         return err;
1742
1743 recover:
1744         /*
1745          * ENOSPC, or some other error.  We may already have added some
1746          * blocks to the file, so we need to write these out to avoid
1747          * exposing stale data.
1748          * The page is currently locked and not marked for writeback
1749          */
1750         bh = head;
1751         /* Recovery: lock and submit the mapped buffers */
1752         do {
1753                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1754                     !buffer_delay(bh)) {
1755                         lock_buffer(bh);
1756                         mark_buffer_async_write(bh);
1757                 } else {
1758                         /*
1759                          * The buffer may have been set dirty during
1760                          * attachment to a dirty page.
1761                          */
1762                         clear_buffer_dirty(bh);
1763                 }
1764         } while ((bh = bh->b_this_page) != head);
1765         SetPageError(page);
1766         BUG_ON(PageWriteback(page));
1767         mapping_set_error(page->mapping, err);
1768         set_page_writeback(page);
1769         do {
1770                 struct buffer_head *next = bh->b_this_page;
1771                 if (buffer_async_write(bh)) {
1772                         clear_buffer_dirty(bh);
1773                         submit_bh(write_op, bh);
1774                         nr_underway++;
1775                 }
1776                 bh = next;
1777         } while (bh != head);
1778         unlock_page(page);
1779         goto done;
1780 }
1781
1782 /*
1783  * If a page has any new buffers, zero them out here, and mark them uptodate
1784  * and dirty so they'll be written out (in order to prevent uninitialised
1785  * block data from leaking). And clear the new bit.
1786  */
1787 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1788 {
1789         unsigned int block_start, block_end;
1790         struct buffer_head *head, *bh;
1791
1792         BUG_ON(!PageLocked(page));
1793         if (!page_has_buffers(page))
1794                 return;
1795
1796         bh = head = page_buffers(page);
1797         block_start = 0;
1798         do {
1799                 block_end = block_start + bh->b_size;
1800
1801                 if (buffer_new(bh)) {
1802                         if (block_end > from && block_start < to) {
1803                                 if (!PageUptodate(page)) {
1804                                         unsigned start, size;
1805
1806                                         start = max(from, block_start);
1807                                         size = min(to, block_end) - start;
1808
1809                                         zero_user(page, start, size);
1810                                         set_buffer_uptodate(bh);
1811                                 }
1812
1813                                 clear_buffer_new(bh);
1814                                 mark_buffer_dirty(bh);
1815                         }
1816                 }
1817
1818                 block_start = block_end;
1819                 bh = bh->b_this_page;
1820         } while (bh != head);
1821 }
1822 EXPORT_SYMBOL(page_zero_new_buffers);
1823
1824 static int __block_prepare_write(struct inode *inode, struct page *page,
1825                 unsigned from, unsigned to, get_block_t *get_block)
1826 {
1827         unsigned block_start, block_end;
1828         sector_t block;
1829         int err = 0;
1830         unsigned blocksize, bbits;
1831         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1832
1833         BUG_ON(!PageLocked(page));
1834         BUG_ON(from > PAGE_CACHE_SIZE);
1835         BUG_ON(to > PAGE_CACHE_SIZE);
1836         BUG_ON(from > to);
1837
1838         blocksize = 1 << inode->i_blkbits;
1839         if (!page_has_buffers(page))
1840                 create_empty_buffers(page, blocksize, 0);
1841         head = page_buffers(page);
1842
1843         bbits = inode->i_blkbits;
1844         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1845
1846         for(bh = head, block_start = 0; bh != head || !block_start;
1847             block++, block_start=block_end, bh = bh->b_this_page) {
1848                 block_end = block_start + blocksize;
1849                 if (block_end <= from || block_start >= to) {
1850                         if (PageUptodate(page)) {
1851                                 if (!buffer_uptodate(bh))
1852                                         set_buffer_uptodate(bh);
1853                         }
1854                         continue;
1855                 }
1856                 if (buffer_new(bh))
1857                         clear_buffer_new(bh);
1858                 if (!buffer_mapped(bh)) {
1859                         WARN_ON(bh->b_size != blocksize);
1860                         err = get_block(inode, block, bh, 1);
1861                         if (err)
1862                                 break;
1863                         if (buffer_new(bh)) {
1864                                 unmap_underlying_metadata(bh->b_bdev,
1865                                                         bh->b_blocknr);
1866                                 if (PageUptodate(page)) {
1867                                         clear_buffer_new(bh);
1868                                         set_buffer_uptodate(bh);
1869                                         mark_buffer_dirty(bh);
1870                                         continue;
1871                                 }
1872                                 if (block_end > to || block_start < from)
1873                                         zero_user_segments(page,
1874                                                 to, block_end,
1875                                                 block_start, from);
1876                                 continue;
1877                         }
1878                 }
1879                 if (PageUptodate(page)) {
1880                         if (!buffer_uptodate(bh))
1881                                 set_buffer_uptodate(bh);
1882                         continue; 
1883                 }
1884                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885                     !buffer_unwritten(bh) &&
1886                      (block_start < from || block_end > to)) {
1887                         ll_rw_block(READ, 1, &bh);
1888                         *wait_bh++=bh;
1889                 }
1890         }
1891         /*
1892          * If we issued read requests - let them complete.
1893          */
1894         while(wait_bh > wait) {
1895                 wait_on_buffer(*--wait_bh);
1896                 if (!buffer_uptodate(*wait_bh))
1897                         err = -EIO;
1898         }
1899         if (unlikely(err))
1900                 page_zero_new_buffers(page, from, to);
1901         return err;
1902 }
1903
1904 static int __block_commit_write(struct inode *inode, struct page *page,
1905                 unsigned from, unsigned to)
1906 {
1907         unsigned block_start, block_end;
1908         int partial = 0;
1909         unsigned blocksize;
1910         struct buffer_head *bh, *head;
1911
1912         blocksize = 1 << inode->i_blkbits;
1913
1914         for(bh = head = page_buffers(page), block_start = 0;
1915             bh != head || !block_start;
1916             block_start=block_end, bh = bh->b_this_page) {
1917                 block_end = block_start + blocksize;
1918                 if (block_end <= from || block_start >= to) {
1919                         if (!buffer_uptodate(bh))
1920                                 partial = 1;
1921                 } else {
1922                         set_buffer_uptodate(bh);
1923                         mark_buffer_dirty(bh);
1924                 }
1925                 clear_buffer_new(bh);
1926         }
1927
1928         /*
1929          * If this is a partial write which happened to make all buffers
1930          * uptodate then we can optimize away a bogus readpage() for
1931          * the next read(). Here we 'discover' whether the page went
1932          * uptodate as a result of this (potentially partial) write.
1933          */
1934         if (!partial)
1935                 SetPageUptodate(page);
1936         return 0;
1937 }
1938
1939 /*
1940  * block_write_begin takes care of the basic task of block allocation and
1941  * bringing partial write blocks uptodate first.
1942  *
1943  * If *pagep is not NULL, then block_write_begin uses the locked page
1944  * at *pagep rather than allocating its own. In this case, the page will
1945  * not be unlocked or deallocated on failure.
1946  */
1947 int block_write_begin(struct file *file, struct address_space *mapping,
1948                         loff_t pos, unsigned len, unsigned flags,
1949                         struct page **pagep, void **fsdata,
1950                         get_block_t *get_block)
1951 {
1952         struct inode *inode = mapping->host;
1953         int status = 0;
1954         struct page *page;
1955         pgoff_t index;
1956         unsigned start, end;
1957         int ownpage = 0;
1958
1959         index = pos >> PAGE_CACHE_SHIFT;
1960         start = pos & (PAGE_CACHE_SIZE - 1);
1961         end = start + len;
1962
1963         page = *pagep;
1964         if (page == NULL) {
1965                 ownpage = 1;
1966                 page = grab_cache_page_write_begin(mapping, index, flags);
1967                 if (!page) {
1968                         status = -ENOMEM;
1969                         goto out;
1970                 }
1971                 *pagep = page;
1972         } else
1973                 BUG_ON(!PageLocked(page));
1974
1975         status = __block_prepare_write(inode, page, start, end, get_block);
1976         if (unlikely(status)) {
1977                 ClearPageUptodate(page);
1978
1979                 if (ownpage) {
1980                         unlock_page(page);
1981                         page_cache_release(page);
1982                         *pagep = NULL;
1983
1984                         /*
1985                          * prepare_write() may have instantiated a few blocks
1986                          * outside i_size.  Trim these off again. Don't need
1987                          * i_size_read because we hold i_mutex.
1988                          */
1989                         if (pos + len > inode->i_size)
1990                                 vmtruncate(inode, inode->i_size);
1991                 }
1992         }
1993
1994 out:
1995         return status;
1996 }
1997 EXPORT_SYMBOL(block_write_begin);
1998
1999 int block_write_end(struct file *file, struct address_space *mapping,
2000                         loff_t pos, unsigned len, unsigned copied,
2001                         struct page *page, void *fsdata)
2002 {
2003         struct inode *inode = mapping->host;
2004         unsigned start;
2005
2006         start = pos & (PAGE_CACHE_SIZE - 1);
2007
2008         if (unlikely(copied < len)) {
2009                 /*
2010                  * The buffers that were written will now be uptodate, so we
2011                  * don't have to worry about a readpage reading them and
2012                  * overwriting a partial write. However if we have encountered
2013                  * a short write and only partially written into a buffer, it
2014                  * will not be marked uptodate, so a readpage might come in and
2015                  * destroy our partial write.
2016                  *
2017                  * Do the simplest thing, and just treat any short write to a
2018                  * non uptodate page as a zero-length write, and force the
2019                  * caller to redo the whole thing.
2020                  */
2021                 if (!PageUptodate(page))
2022                         copied = 0;
2023
2024                 page_zero_new_buffers(page, start+copied, start+len);
2025         }
2026         flush_dcache_page(page);
2027
2028         /* This could be a short (even 0-length) commit */
2029         __block_commit_write(inode, page, start, start+copied);
2030
2031         return copied;
2032 }
2033 EXPORT_SYMBOL(block_write_end);
2034
2035 int generic_write_end(struct file *file, struct address_space *mapping,
2036                         loff_t pos, unsigned len, unsigned copied,
2037                         struct page *page, void *fsdata)
2038 {
2039         struct inode *inode = mapping->host;
2040         int i_size_changed = 0;
2041
2042         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2043
2044         /*
2045          * No need to use i_size_read() here, the i_size
2046          * cannot change under us because we hold i_mutex.
2047          *
2048          * But it's important to update i_size while still holding page lock:
2049          * page writeout could otherwise come in and zero beyond i_size.
2050          */
2051         if (pos+copied > inode->i_size) {
2052                 i_size_write(inode, pos+copied);
2053                 i_size_changed = 1;
2054         }
2055
2056         unlock_page(page);
2057         page_cache_release(page);
2058
2059         /*
2060          * Don't mark the inode dirty under page lock. First, it unnecessarily
2061          * makes the holding time of page lock longer. Second, it forces lock
2062          * ordering of page lock and transaction start for journaling
2063          * filesystems.
2064          */
2065         if (i_size_changed)
2066                 mark_inode_dirty(inode);
2067
2068         return copied;
2069 }
2070 EXPORT_SYMBOL(generic_write_end);
2071
2072 /*
2073  * block_is_partially_uptodate checks whether buffers within a page are
2074  * uptodate or not.
2075  *
2076  * Returns true if all buffers which correspond to a file portion
2077  * we want to read are uptodate.
2078  */
2079 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2080                                         unsigned long from)
2081 {
2082         struct inode *inode = page->mapping->host;
2083         unsigned block_start, block_end, blocksize;
2084         unsigned to;
2085         struct buffer_head *bh, *head;
2086         int ret = 1;
2087
2088         if (!page_has_buffers(page))
2089                 return 0;
2090
2091         blocksize = 1 << inode->i_blkbits;
2092         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2093         to = from + to;
2094         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2095                 return 0;
2096
2097         head = page_buffers(page);
2098         bh = head;
2099         block_start = 0;
2100         do {
2101                 block_end = block_start + blocksize;
2102                 if (block_end > from && block_start < to) {
2103                         if (!buffer_uptodate(bh)) {
2104                                 ret = 0;
2105                                 break;
2106                         }
2107                         if (block_end >= to)
2108                                 break;
2109                 }
2110                 block_start = block_end;
2111                 bh = bh->b_this_page;
2112         } while (bh != head);
2113
2114         return ret;
2115 }
2116 EXPORT_SYMBOL(block_is_partially_uptodate);
2117
2118 /*
2119  * Generic "read page" function for block devices that have the normal
2120  * get_block functionality. This is most of the block device filesystems.
2121  * Reads the page asynchronously --- the unlock_buffer() and
2122  * set/clear_buffer_uptodate() functions propagate buffer state into the
2123  * page struct once IO has completed.
2124  */
2125 int block_read_full_page(struct page *page, get_block_t *get_block)
2126 {
2127         struct inode *inode = page->mapping->host;
2128         sector_t iblock, lblock;
2129         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2130         unsigned int blocksize;
2131         int nr, i;
2132         int fully_mapped = 1;
2133
2134         BUG_ON(!PageLocked(page));
2135         blocksize = 1 << inode->i_blkbits;
2136         if (!page_has_buffers(page))
2137                 create_empty_buffers(page, blocksize, 0);
2138         head = page_buffers(page);
2139
2140         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2141         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2142         bh = head;
2143         nr = 0;
2144         i = 0;
2145
2146         do {
2147                 if (buffer_uptodate(bh))
2148                         continue;
2149
2150                 if (!buffer_mapped(bh)) {
2151                         int err = 0;
2152
2153                         fully_mapped = 0;
2154                         if (iblock < lblock) {
2155                                 WARN_ON(bh->b_size != blocksize);
2156                                 err = get_block(inode, iblock, bh, 0);
2157                                 if (err)
2158                                         SetPageError(page);
2159                         }
2160                         if (!buffer_mapped(bh)) {
2161                                 zero_user(page, i * blocksize, blocksize);
2162                                 if (!err)
2163                                         set_buffer_uptodate(bh);
2164                                 continue;
2165                         }
2166                         /*
2167                          * get_block() might have updated the buffer
2168                          * synchronously
2169                          */
2170                         if (buffer_uptodate(bh))
2171                                 continue;
2172                 }
2173                 arr[nr++] = bh;
2174         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2175
2176         if (fully_mapped)
2177                 SetPageMappedToDisk(page);
2178
2179         if (!nr) {
2180                 /*
2181                  * All buffers are uptodate - we can set the page uptodate
2182                  * as well. But not if get_block() returned an error.
2183                  */
2184                 if (!PageError(page))
2185                         SetPageUptodate(page);
2186                 unlock_page(page);
2187                 return 0;
2188         }
2189
2190         /* Stage two: lock the buffers */
2191         for (i = 0; i < nr; i++) {
2192                 bh = arr[i];
2193                 lock_buffer(bh);
2194                 mark_buffer_async_read(bh);
2195         }
2196
2197         /*
2198          * Stage 3: start the IO.  Check for uptodateness
2199          * inside the buffer lock in case another process reading
2200          * the underlying blockdev brought it uptodate (the sct fix).
2201          */
2202         for (i = 0; i < nr; i++) {
2203                 bh = arr[i];
2204                 if (buffer_uptodate(bh))
2205                         end_buffer_async_read(bh, 1);
2206                 else
2207                         submit_bh(READ, bh);
2208         }
2209         return 0;
2210 }
2211
2212 /* utility function for filesystems that need to do work on expanding
2213  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2214  * deal with the hole.  
2215  */
2216 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2217 {
2218         struct address_space *mapping = inode->i_mapping;
2219         struct page *page;
2220         void *fsdata;
2221         unsigned long limit;
2222         int err;
2223
2224         err = -EFBIG;
2225         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2226         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2227                 send_sig(SIGXFSZ, current, 0);
2228                 goto out;
2229         }
2230         if (size > inode->i_sb->s_maxbytes)
2231                 goto out;
2232
2233         err = pagecache_write_begin(NULL, mapping, size, 0,
2234                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2235                                 &page, &fsdata);
2236         if (err)
2237                 goto out;
2238
2239         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2240         BUG_ON(err > 0);
2241
2242 out:
2243         return err;
2244 }
2245
2246 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2247                             loff_t pos, loff_t *bytes)
2248 {
2249         struct inode *inode = mapping->host;
2250         unsigned blocksize = 1 << inode->i_blkbits;
2251         struct page *page;
2252         void *fsdata;
2253         pgoff_t index, curidx;
2254         loff_t curpos;
2255         unsigned zerofrom, offset, len;
2256         int err = 0;
2257
2258         index = pos >> PAGE_CACHE_SHIFT;
2259         offset = pos & ~PAGE_CACHE_MASK;
2260
2261         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2262                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2263                 if (zerofrom & (blocksize-1)) {
2264                         *bytes |= (blocksize-1);
2265                         (*bytes)++;
2266                 }
2267                 len = PAGE_CACHE_SIZE - zerofrom;
2268
2269                 err = pagecache_write_begin(file, mapping, curpos, len,
2270                                                 AOP_FLAG_UNINTERRUPTIBLE,
2271                                                 &page, &fsdata);
2272                 if (err)
2273                         goto out;
2274                 zero_user(page, zerofrom, len);
2275                 err = pagecache_write_end(file, mapping, curpos, len, len,
2276                                                 page, fsdata);
2277                 if (err < 0)
2278                         goto out;
2279                 BUG_ON(err != len);
2280                 err = 0;
2281
2282                 balance_dirty_pages_ratelimited(mapping);
2283         }
2284
2285         /* page covers the boundary, find the boundary offset */
2286         if (index == curidx) {
2287                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2288                 /* if we will expand the thing last block will be filled */
2289                 if (offset <= zerofrom) {
2290                         goto out;
2291                 }
2292                 if (zerofrom & (blocksize-1)) {
2293                         *bytes |= (blocksize-1);
2294                         (*bytes)++;
2295                 }
2296                 len = offset - zerofrom;
2297
2298                 err = pagecache_write_begin(file, mapping, curpos, len,
2299                                                 AOP_FLAG_UNINTERRUPTIBLE,
2300                                                 &page, &fsdata);
2301                 if (err)
2302                         goto out;
2303                 zero_user(page, zerofrom, len);
2304                 err = pagecache_write_end(file, mapping, curpos, len, len,
2305                                                 page, fsdata);
2306                 if (err < 0)
2307                         goto out;
2308                 BUG_ON(err != len);
2309                 err = 0;
2310         }
2311 out:
2312         return err;
2313 }
2314
2315 /*
2316  * For moronic filesystems that do not allow holes in file.
2317  * We may have to extend the file.
2318  */
2319 int cont_write_begin(struct file *file, struct address_space *mapping,
2320                         loff_t pos, unsigned len, unsigned flags,
2321                         struct page **pagep, void **fsdata,
2322                         get_block_t *get_block, loff_t *bytes)
2323 {
2324         struct inode *inode = mapping->host;
2325         unsigned blocksize = 1 << inode->i_blkbits;
2326         unsigned zerofrom;
2327         int err;
2328
2329         err = cont_expand_zero(file, mapping, pos, bytes);
2330         if (err)
2331                 goto out;
2332
2333         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2334         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2335                 *bytes |= (blocksize-1);
2336                 (*bytes)++;
2337         }
2338
2339         *pagep = NULL;
2340         err = block_write_begin(file, mapping, pos, len,
2341                                 flags, pagep, fsdata, get_block);
2342 out:
2343         return err;
2344 }
2345
2346 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2347                         get_block_t *get_block)
2348 {
2349         struct inode *inode = page->mapping->host;
2350         int err = __block_prepare_write(inode, page, from, to, get_block);
2351         if (err)
2352                 ClearPageUptodate(page);
2353         return err;
2354 }
2355
2356 int block_commit_write(struct page *page, unsigned from, unsigned to)
2357 {
2358         struct inode *inode = page->mapping->host;
2359         __block_commit_write(inode,page,from,to);
2360         return 0;
2361 }
2362
2363 /*
2364  * block_page_mkwrite() is not allowed to change the file size as it gets
2365  * called from a page fault handler when a page is first dirtied. Hence we must
2366  * be careful to check for EOF conditions here. We set the page up correctly
2367  * for a written page which means we get ENOSPC checking when writing into
2368  * holes and correct delalloc and unwritten extent mapping on filesystems that
2369  * support these features.
2370  *
2371  * We are not allowed to take the i_mutex here so we have to play games to
2372  * protect against truncate races as the page could now be beyond EOF.  Because
2373  * vmtruncate() writes the inode size before removing pages, once we have the
2374  * page lock we can determine safely if the page is beyond EOF. If it is not
2375  * beyond EOF, then the page is guaranteed safe against truncation until we
2376  * unlock the page.
2377  */
2378 int
2379 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2380                    get_block_t get_block)
2381 {
2382         struct page *page = vmf->page;
2383         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2384         unsigned long end;
2385         loff_t size;
2386         int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2387
2388         lock_page(page);
2389         size = i_size_read(inode);
2390         if ((page->mapping != inode->i_mapping) ||
2391             (page_offset(page) > size)) {
2392                 /* page got truncated out from underneath us */
2393                 goto out_unlock;
2394         }
2395
2396         /* page is wholly or partially inside EOF */
2397         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2398                 end = size & ~PAGE_CACHE_MASK;
2399         else
2400                 end = PAGE_CACHE_SIZE;
2401
2402         ret = block_prepare_write(page, 0, end, get_block);
2403         if (!ret)
2404                 ret = block_commit_write(page, 0, end);
2405
2406         if (unlikely(ret)) {
2407                 if (ret == -ENOMEM)
2408                         ret = VM_FAULT_OOM;
2409                 else /* -ENOSPC, -EIO, etc */
2410                         ret = VM_FAULT_SIGBUS;
2411         }
2412
2413 out_unlock:
2414         unlock_page(page);
2415         return ret;
2416 }
2417
2418 /*
2419  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2420  * immediately, while under the page lock.  So it needs a special end_io
2421  * handler which does not touch the bh after unlocking it.
2422  */
2423 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2424 {
2425         __end_buffer_read_notouch(bh, uptodate);
2426 }
2427
2428 /*
2429  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2430  * the page (converting it to circular linked list and taking care of page
2431  * dirty races).
2432  */
2433 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2434 {
2435         struct buffer_head *bh;
2436
2437         BUG_ON(!PageLocked(page));
2438
2439         spin_lock(&page->mapping->private_lock);
2440         bh = head;
2441         do {
2442                 if (PageDirty(page))
2443                         set_buffer_dirty(bh);
2444                 if (!bh->b_this_page)
2445                         bh->b_this_page = head;
2446                 bh = bh->b_this_page;
2447         } while (bh != head);
2448         attach_page_buffers(page, head);
2449         spin_unlock(&page->mapping->private_lock);
2450 }
2451
2452 /*
2453  * On entry, the page is fully not uptodate.
2454  * On exit the page is fully uptodate in the areas outside (from,to)
2455  */
2456 int nobh_write_begin(struct file *file, struct address_space *mapping,
2457                         loff_t pos, unsigned len, unsigned flags,
2458                         struct page **pagep, void **fsdata,
2459                         get_block_t *get_block)
2460 {
2461         struct inode *inode = mapping->host;
2462         const unsigned blkbits = inode->i_blkbits;
2463         const unsigned blocksize = 1 << blkbits;
2464         struct buffer_head *head, *bh;
2465         struct page *page;
2466         pgoff_t index;
2467         unsigned from, to;
2468         unsigned block_in_page;
2469         unsigned block_start, block_end;
2470         sector_t block_in_file;
2471         int nr_reads = 0;
2472         int ret = 0;
2473         int is_mapped_to_disk = 1;
2474
2475         index = pos >> PAGE_CACHE_SHIFT;
2476         from = pos & (PAGE_CACHE_SIZE - 1);
2477         to = from + len;
2478
2479         page = grab_cache_page_write_begin(mapping, index, flags);
2480         if (!page)
2481                 return -ENOMEM;
2482         *pagep = page;
2483         *fsdata = NULL;
2484
2485         if (page_has_buffers(page)) {
2486                 unlock_page(page);
2487                 page_cache_release(page);
2488                 *pagep = NULL;
2489                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2490                                         fsdata, get_block);
2491         }
2492
2493         if (PageMappedToDisk(page))
2494                 return 0;
2495
2496         /*
2497          * Allocate buffers so that we can keep track of state, and potentially
2498          * attach them to the page if an error occurs. In the common case of
2499          * no error, they will just be freed again without ever being attached
2500          * to the page (which is all OK, because we're under the page lock).
2501          *
2502          * Be careful: the buffer linked list is a NULL terminated one, rather
2503          * than the circular one we're used to.
2504          */
2505         head = alloc_page_buffers(page, blocksize, 0);
2506         if (!head) {
2507                 ret = -ENOMEM;
2508                 goto out_release;
2509         }
2510
2511         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2512
2513         /*
2514          * We loop across all blocks in the page, whether or not they are
2515          * part of the affected region.  This is so we can discover if the
2516          * page is fully mapped-to-disk.
2517          */
2518         for (block_start = 0, block_in_page = 0, bh = head;
2519                   block_start < PAGE_CACHE_SIZE;
2520                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2521                 int create;
2522
2523                 block_end = block_start + blocksize;
2524                 bh->b_state = 0;
2525                 create = 1;
2526                 if (block_start >= to)
2527                         create = 0;
2528                 ret = get_block(inode, block_in_file + block_in_page,
2529                                         bh, create);
2530                 if (ret)
2531                         goto failed;
2532                 if (!buffer_mapped(bh))
2533                         is_mapped_to_disk = 0;
2534                 if (buffer_new(bh))
2535                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2536                 if (PageUptodate(page)) {
2537                         set_buffer_uptodate(bh);
2538                         continue;
2539                 }
2540                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2541                         zero_user_segments(page, block_start, from,
2542                                                         to, block_end);
2543                         continue;
2544                 }
2545                 if (buffer_uptodate(bh))
2546                         continue;       /* reiserfs does this */
2547                 if (block_start < from || block_end > to) {
2548                         lock_buffer(bh);
2549                         bh->b_end_io = end_buffer_read_nobh;
2550                         submit_bh(READ, bh);
2551                         nr_reads++;
2552                 }
2553         }
2554
2555         if (nr_reads) {
2556                 /*
2557                  * The page is locked, so these buffers are protected from
2558                  * any VM or truncate activity.  Hence we don't need to care
2559                  * for the buffer_head refcounts.
2560                  */
2561                 for (bh = head; bh; bh = bh->b_this_page) {
2562                         wait_on_buffer(bh);
2563                         if (!buffer_uptodate(bh))
2564                                 ret = -EIO;
2565                 }
2566                 if (ret)
2567                         goto failed;
2568         }
2569
2570         if (is_mapped_to_disk)
2571                 SetPageMappedToDisk(page);
2572
2573         *fsdata = head; /* to be released by nobh_write_end */
2574
2575         return 0;
2576
2577 failed:
2578         BUG_ON(!ret);
2579         /*
2580          * Error recovery is a bit difficult. We need to zero out blocks that
2581          * were newly allocated, and dirty them to ensure they get written out.
2582          * Buffers need to be attached to the page at this point, otherwise
2583          * the handling of potential IO errors during writeout would be hard
2584          * (could try doing synchronous writeout, but what if that fails too?)
2585          */
2586         attach_nobh_buffers(page, head);
2587         page_zero_new_buffers(page, from, to);
2588
2589 out_release:
2590         unlock_page(page);
2591         page_cache_release(page);
2592         *pagep = NULL;
2593
2594         if (pos + len > inode->i_size)
2595                 vmtruncate(inode, inode->i_size);
2596
2597         return ret;
2598 }
2599 EXPORT_SYMBOL(nobh_write_begin);
2600
2601 int nobh_write_end(struct file *file, struct address_space *mapping,
2602                         loff_t pos, unsigned len, unsigned copied,
2603                         struct page *page, void *fsdata)
2604 {
2605         struct inode *inode = page->mapping->host;
2606         struct buffer_head *head = fsdata;
2607         struct buffer_head *bh;
2608         BUG_ON(fsdata != NULL && page_has_buffers(page));
2609
2610         if (unlikely(copied < len) && head)
2611                 attach_nobh_buffers(page, head);
2612         if (page_has_buffers(page))
2613                 return generic_write_end(file, mapping, pos, len,
2614                                         copied, page, fsdata);
2615
2616         SetPageUptodate(page);
2617         set_page_dirty(page);
2618         if (pos+copied > inode->i_size) {
2619                 i_size_write(inode, pos+copied);
2620                 mark_inode_dirty(inode);
2621         }
2622
2623         unlock_page(page);
2624         page_cache_release(page);
2625
2626         while (head) {
2627                 bh = head;
2628                 head = head->b_this_page;
2629                 free_buffer_head(bh);
2630         }
2631
2632         return copied;
2633 }
2634 EXPORT_SYMBOL(nobh_write_end);
2635
2636 /*
2637  * nobh_writepage() - based on block_full_write_page() except
2638  * that it tries to operate without attaching bufferheads to
2639  * the page.
2640  */
2641 int nobh_writepage(struct page *page, get_block_t *get_block,
2642                         struct writeback_control *wbc)
2643 {
2644         struct inode * const inode = page->mapping->host;
2645         loff_t i_size = i_size_read(inode);
2646         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2647         unsigned offset;
2648         int ret;
2649
2650         /* Is the page fully inside i_size? */
2651         if (page->index < end_index)
2652                 goto out;
2653
2654         /* Is the page fully outside i_size? (truncate in progress) */
2655         offset = i_size & (PAGE_CACHE_SIZE-1);
2656         if (page->index >= end_index+1 || !offset) {
2657                 /*
2658                  * The page may have dirty, unmapped buffers.  For example,
2659                  * they may have been added in ext3_writepage().  Make them
2660                  * freeable here, so the page does not leak.
2661                  */
2662 #if 0
2663                 /* Not really sure about this  - do we need this ? */
2664                 if (page->mapping->a_ops->invalidatepage)
2665                         page->mapping->a_ops->invalidatepage(page, offset);
2666 #endif
2667                 unlock_page(page);
2668                 return 0; /* don't care */
2669         }
2670
2671         /*
2672          * The page straddles i_size.  It must be zeroed out on each and every
2673          * writepage invocation because it may be mmapped.  "A file is mapped
2674          * in multiples of the page size.  For a file that is not a multiple of
2675          * the  page size, the remaining memory is zeroed when mapped, and
2676          * writes to that region are not written out to the file."
2677          */
2678         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2679 out:
2680         ret = mpage_writepage(page, get_block, wbc);
2681         if (ret == -EAGAIN)
2682                 ret = __block_write_full_page(inode, page, get_block, wbc);
2683         return ret;
2684 }
2685 EXPORT_SYMBOL(nobh_writepage);
2686
2687 int nobh_truncate_page(struct address_space *mapping,
2688                         loff_t from, get_block_t *get_block)
2689 {
2690         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2691         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2692         unsigned blocksize;
2693         sector_t iblock;
2694         unsigned length, pos;
2695         struct inode *inode = mapping->host;
2696         struct page *page;
2697         struct buffer_head map_bh;
2698         int err;
2699
2700         blocksize = 1 << inode->i_blkbits;
2701         length = offset & (blocksize - 1);
2702
2703         /* Block boundary? Nothing to do */
2704         if (!length)
2705                 return 0;
2706
2707         length = blocksize - length;
2708         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2709
2710         page = grab_cache_page(mapping, index);
2711         err = -ENOMEM;
2712         if (!page)
2713                 goto out;
2714
2715         if (page_has_buffers(page)) {
2716 has_buffers:
2717                 unlock_page(page);
2718                 page_cache_release(page);
2719                 return block_truncate_page(mapping, from, get_block);
2720         }
2721
2722         /* Find the buffer that contains "offset" */
2723         pos = blocksize;
2724         while (offset >= pos) {
2725                 iblock++;
2726                 pos += blocksize;
2727         }
2728
2729         err = get_block(inode, iblock, &map_bh, 0);
2730         if (err)
2731                 goto unlock;
2732         /* unmapped? It's a hole - nothing to do */
2733         if (!buffer_mapped(&map_bh))
2734                 goto unlock;
2735
2736         /* Ok, it's mapped. Make sure it's up-to-date */
2737         if (!PageUptodate(page)) {
2738                 err = mapping->a_ops->readpage(NULL, page);
2739                 if (err) {
2740                         page_cache_release(page);
2741                         goto out;
2742                 }
2743                 lock_page(page);
2744                 if (!PageUptodate(page)) {
2745                         err = -EIO;
2746                         goto unlock;
2747                 }
2748                 if (page_has_buffers(page))
2749                         goto has_buffers;
2750         }
2751         zero_user(page, offset, length);
2752         set_page_dirty(page);
2753         err = 0;
2754
2755 unlock:
2756         unlock_page(page);
2757         page_cache_release(page);
2758 out:
2759         return err;
2760 }
2761 EXPORT_SYMBOL(nobh_truncate_page);
2762
2763 int block_truncate_page(struct address_space *mapping,
2764                         loff_t from, get_block_t *get_block)
2765 {
2766         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2767         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2768         unsigned blocksize;
2769         sector_t iblock;
2770         unsigned length, pos;
2771         struct inode *inode = mapping->host;
2772         struct page *page;
2773         struct buffer_head *bh;
2774         int err;
2775
2776         blocksize = 1 << inode->i_blkbits;
2777         length = offset & (blocksize - 1);
2778
2779         /* Block boundary? Nothing to do */
2780         if (!length)
2781                 return 0;
2782
2783         length = blocksize - length;
2784         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2785         
2786         page = grab_cache_page(mapping, index);
2787         err = -ENOMEM;
2788         if (!page)
2789                 goto out;
2790
2791         if (!page_has_buffers(page))
2792                 create_empty_buffers(page, blocksize, 0);
2793
2794         /* Find the buffer that contains "offset" */
2795         bh = page_buffers(page);
2796         pos = blocksize;
2797         while (offset >= pos) {
2798                 bh = bh->b_this_page;
2799                 iblock++;
2800                 pos += blocksize;
2801         }
2802
2803         err = 0;
2804         if (!buffer_mapped(bh)) {
2805                 WARN_ON(bh->b_size != blocksize);
2806                 err = get_block(inode, iblock, bh, 0);
2807                 if (err)
2808                         goto unlock;
2809                 /* unmapped? It's a hole - nothing to do */
2810                 if (!buffer_mapped(bh))
2811                         goto unlock;
2812         }
2813
2814         /* Ok, it's mapped. Make sure it's up-to-date */
2815         if (PageUptodate(page))
2816                 set_buffer_uptodate(bh);
2817
2818         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2819                 err = -EIO;
2820                 ll_rw_block(READ, 1, &bh);
2821                 wait_on_buffer(bh);
2822                 /* Uhhuh. Read error. Complain and punt. */
2823                 if (!buffer_uptodate(bh))
2824                         goto unlock;
2825         }
2826
2827         zero_user(page, offset, length);
2828         mark_buffer_dirty(bh);
2829         err = 0;
2830
2831 unlock:
2832         unlock_page(page);
2833         page_cache_release(page);
2834 out:
2835         return err;
2836 }
2837
2838 /*
2839  * The generic ->writepage function for buffer-backed address_spaces
2840  */
2841 int block_write_full_page(struct page *page, get_block_t *get_block,
2842                         struct writeback_control *wbc)
2843 {
2844         struct inode * const inode = page->mapping->host;
2845         loff_t i_size = i_size_read(inode);
2846         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2847         unsigned offset;
2848
2849         /* Is the page fully inside i_size? */
2850         if (page->index < end_index)
2851                 return __block_write_full_page(inode, page, get_block, wbc);
2852
2853         /* Is the page fully outside i_size? (truncate in progress) */
2854         offset = i_size & (PAGE_CACHE_SIZE-1);
2855         if (page->index >= end_index+1 || !offset) {
2856                 /*
2857                  * The page may have dirty, unmapped buffers.  For example,
2858                  * they may have been added in ext3_writepage().  Make them
2859                  * freeable here, so the page does not leak.
2860                  */
2861                 do_invalidatepage(page, 0);
2862                 unlock_page(page);
2863                 return 0; /* don't care */
2864         }
2865
2866         /*
2867          * The page straddles i_size.  It must be zeroed out on each and every
2868          * writepage invokation because it may be mmapped.  "A file is mapped
2869          * in multiples of the page size.  For a file that is not a multiple of
2870          * the  page size, the remaining memory is zeroed when mapped, and
2871          * writes to that region are not written out to the file."
2872          */
2873         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2874         return __block_write_full_page(inode, page, get_block, wbc);
2875 }
2876
2877 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2878                             get_block_t *get_block)
2879 {
2880         struct buffer_head tmp;
2881         struct inode *inode = mapping->host;
2882         tmp.b_state = 0;
2883         tmp.b_blocknr = 0;
2884         tmp.b_size = 1 << inode->i_blkbits;
2885         get_block(inode, block, &tmp, 0);
2886         return tmp.b_blocknr;
2887 }
2888
2889 static void end_bio_bh_io_sync(struct bio *bio, int err)
2890 {
2891         struct buffer_head *bh = bio->bi_private;
2892
2893         if (err == -EOPNOTSUPP) {
2894                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2895                 set_bit(BH_Eopnotsupp, &bh->b_state);
2896         }
2897
2898         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2899                 set_bit(BH_Quiet, &bh->b_state);
2900
2901         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2902         bio_put(bio);
2903 }
2904
2905 int submit_bh(int rw, struct buffer_head * bh)
2906 {
2907         struct bio *bio;
2908         int ret = 0;
2909
2910         BUG_ON(!buffer_locked(bh));
2911         BUG_ON(!buffer_mapped(bh));
2912         BUG_ON(!bh->b_end_io);
2913
2914         /*
2915          * Mask in barrier bit for a write (could be either a WRITE or a
2916          * WRITE_SYNC
2917          */
2918         if (buffer_ordered(bh) && (rw & WRITE))
2919                 rw |= WRITE_BARRIER;
2920
2921         /*
2922          * Only clear out a write error when rewriting
2923          */
2924         if (test_set_buffer_req(bh) && (rw & WRITE))
2925                 clear_buffer_write_io_error(bh);
2926
2927         /*
2928          * from here on down, it's all bio -- do the initial mapping,
2929          * submit_bio -> generic_make_request may further map this bio around
2930          */
2931         bio = bio_alloc(GFP_NOIO, 1);
2932
2933         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2934         bio->bi_bdev = bh->b_bdev;
2935         bio->bi_io_vec[0].bv_page = bh->b_page;
2936         bio->bi_io_vec[0].bv_len = bh->b_size;
2937         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2938
2939         bio->bi_vcnt = 1;
2940         bio->bi_idx = 0;
2941         bio->bi_size = bh->b_size;
2942
2943         bio->bi_end_io = end_bio_bh_io_sync;
2944         bio->bi_private = bh;
2945
2946         bio_get(bio);
2947         submit_bio(rw, bio);
2948
2949         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2950                 ret = -EOPNOTSUPP;
2951
2952         bio_put(bio);
2953         return ret;
2954 }
2955
2956 /**
2957  * ll_rw_block: low-level access to block devices (DEPRECATED)
2958  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2959  * @nr: number of &struct buffer_heads in the array
2960  * @bhs: array of pointers to &struct buffer_head
2961  *
2962  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2963  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2964  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2965  * are sent to disk. The fourth %READA option is described in the documentation
2966  * for generic_make_request() which ll_rw_block() calls.
2967  *
2968  * This function drops any buffer that it cannot get a lock on (with the
2969  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2970  * clean when doing a write request, and any buffer that appears to be
2971  * up-to-date when doing read request.  Further it marks as clean buffers that
2972  * are processed for writing (the buffer cache won't assume that they are
2973  * actually clean until the buffer gets unlocked).
2974  *
2975  * ll_rw_block sets b_end_io to simple completion handler that marks
2976  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2977  * any waiters. 
2978  *
2979  * All of the buffers must be for the same device, and must also be a
2980  * multiple of the current approved size for the device.
2981  */
2982 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2983 {
2984         int i;
2985
2986         for (i = 0; i < nr; i++) {
2987                 struct buffer_head *bh = bhs[i];
2988
2989                 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
2990                         lock_buffer(bh);
2991                 else if (!trylock_buffer(bh))
2992                         continue;
2993
2994                 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
2995                     rw == SWRITE_SYNC_PLUG) {
2996                         if (test_clear_buffer_dirty(bh)) {
2997                                 bh->b_end_io = end_buffer_write_sync;
2998                                 get_bh(bh);
2999                                 if (rw == SWRITE_SYNC)
3000                                         submit_bh(WRITE_SYNC, bh);
3001                                 else
3002                                         submit_bh(WRITE, bh);
3003                                 continue;
3004                         }
3005                 } else {
3006                         if (!buffer_uptodate(bh)) {
3007                                 bh->b_end_io = end_buffer_read_sync;
3008                                 get_bh(bh);
3009                                 submit_bh(rw, bh);
3010                                 continue;
3011                         }
3012                 }
3013                 unlock_buffer(bh);
3014         }
3015 }
3016
3017 /*
3018  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3019  * and then start new I/O and then wait upon it.  The caller must have a ref on
3020  * the buffer_head.
3021  */
3022 int sync_dirty_buffer(struct buffer_head *bh)
3023 {
3024         int ret = 0;
3025
3026         WARN_ON(atomic_read(&bh->b_count) < 1);
3027         lock_buffer(bh);
3028         if (test_clear_buffer_dirty(bh)) {
3029                 get_bh(bh);
3030                 bh->b_end_io = end_buffer_write_sync;
3031                 ret = submit_bh(WRITE_SYNC, bh);
3032                 wait_on_buffer(bh);
3033                 if (buffer_eopnotsupp(bh)) {
3034                         clear_buffer_eopnotsupp(bh);
3035                         ret = -EOPNOTSUPP;
3036                 }
3037                 if (!ret && !buffer_uptodate(bh))
3038                         ret = -EIO;
3039         } else {
3040                 unlock_buffer(bh);
3041         }
3042         return ret;
3043 }
3044
3045 /*
3046  * try_to_free_buffers() checks if all the buffers on this particular page
3047  * are unused, and releases them if so.
3048  *
3049  * Exclusion against try_to_free_buffers may be obtained by either
3050  * locking the page or by holding its mapping's private_lock.
3051  *
3052  * If the page is dirty but all the buffers are clean then we need to
3053  * be sure to mark the page clean as well.  This is because the page
3054  * may be against a block device, and a later reattachment of buffers
3055  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3056  * filesystem data on the same device.
3057  *
3058  * The same applies to regular filesystem pages: if all the buffers are
3059  * clean then we set the page clean and proceed.  To do that, we require
3060  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3061  * private_lock.
3062  *
3063  * try_to_free_buffers() is non-blocking.
3064  */
3065 static inline int buffer_busy(struct buffer_head *bh)
3066 {
3067         return atomic_read(&bh->b_count) |
3068                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3069 }
3070
3071 static int
3072 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3073 {
3074         struct buffer_head *head = page_buffers(page);
3075         struct buffer_head *bh;
3076
3077         bh = head;
3078         do {
3079                 if (buffer_write_io_error(bh) && page->mapping)
3080                         set_bit(AS_EIO, &page->mapping->flags);
3081                 if (buffer_busy(bh))
3082                         goto failed;
3083                 bh = bh->b_this_page;
3084         } while (bh != head);
3085
3086         do {
3087                 struct buffer_head *next = bh->b_this_page;
3088
3089                 if (bh->b_assoc_map)
3090                         __remove_assoc_queue(bh);
3091                 bh = next;
3092         } while (bh != head);
3093         *buffers_to_free = head;
3094         __clear_page_buffers(page);
3095         return 1;
3096 failed:
3097         return 0;
3098 }
3099
3100 int try_to_free_buffers(struct page *page)
3101 {
3102         struct address_space * const mapping = page->mapping;
3103         struct buffer_head *buffers_to_free = NULL;
3104         int ret = 0;
3105
3106         BUG_ON(!PageLocked(page));
3107         if (PageWriteback(page))
3108                 return 0;
3109
3110         if (mapping == NULL) {          /* can this still happen? */
3111                 ret = drop_buffers(page, &buffers_to_free);
3112                 goto out;
3113         }
3114
3115         spin_lock(&mapping->private_lock);
3116         ret = drop_buffers(page, &buffers_to_free);
3117
3118         /*
3119          * If the filesystem writes its buffers by hand (eg ext3)
3120          * then we can have clean buffers against a dirty page.  We
3121          * clean the page here; otherwise the VM will never notice
3122          * that the filesystem did any IO at all.
3123          *
3124          * Also, during truncate, discard_buffer will have marked all
3125          * the page's buffers clean.  We discover that here and clean
3126          * the page also.
3127          *
3128          * private_lock must be held over this entire operation in order
3129          * to synchronise against __set_page_dirty_buffers and prevent the
3130          * dirty bit from being lost.
3131          */
3132         if (ret)
3133                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3134         spin_unlock(&mapping->private_lock);
3135 out:
3136         if (buffers_to_free) {
3137                 struct buffer_head *bh = buffers_to_free;
3138
3139                 do {
3140                         struct buffer_head *next = bh->b_this_page;
3141                         free_buffer_head(bh);
3142                         bh = next;
3143                 } while (bh != buffers_to_free);
3144         }
3145         return ret;
3146 }
3147 EXPORT_SYMBOL(try_to_free_buffers);
3148
3149 void block_sync_page(struct page *page)
3150 {
3151         struct address_space *mapping;
3152
3153         smp_mb();
3154         mapping = page_mapping(page);
3155         if (mapping)
3156                 blk_run_backing_dev(mapping->backing_dev_info, page);
3157 }
3158
3159 /*
3160  * There are no bdflush tunables left.  But distributions are
3161  * still running obsolete flush daemons, so we terminate them here.
3162  *
3163  * Use of bdflush() is deprecated and will be removed in a future kernel.
3164  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3165  */
3166 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3167 {
3168         static int msg_count;
3169
3170         if (!capable(CAP_SYS_ADMIN))
3171                 return -EPERM;
3172
3173         if (msg_count < 5) {
3174                 msg_count++;
3175                 printk(KERN_INFO
3176                         "warning: process `%s' used the obsolete bdflush"
3177                         " system call\n", current->comm);
3178                 printk(KERN_INFO "Fix your initscripts?\n");
3179         }
3180
3181         if (func == 1)
3182                 do_exit(0);
3183         return 0;
3184 }
3185
3186 /*
3187  * Buffer-head allocation
3188  */
3189 static struct kmem_cache *bh_cachep;
3190
3191 /*
3192  * Once the number of bh's in the machine exceeds this level, we start
3193  * stripping them in writeback.
3194  */
3195 static int max_buffer_heads;
3196
3197 int buffer_heads_over_limit;
3198
3199 struct bh_accounting {
3200         int nr;                 /* Number of live bh's */
3201         int ratelimit;          /* Limit cacheline bouncing */
3202 };
3203
3204 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3205
3206 static void recalc_bh_state(void)
3207 {
3208         int i;
3209         int tot = 0;
3210
3211         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3212                 return;
3213         __get_cpu_var(bh_accounting).ratelimit = 0;
3214         for_each_online_cpu(i)
3215                 tot += per_cpu(bh_accounting, i).nr;
3216         buffer_heads_over_limit = (tot > max_buffer_heads);
3217 }
3218         
3219 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3220 {
3221         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3222         if (ret) {
3223                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3224                 get_cpu_var(bh_accounting).nr++;
3225                 recalc_bh_state();
3226                 put_cpu_var(bh_accounting);
3227         }
3228         return ret;
3229 }
3230 EXPORT_SYMBOL(alloc_buffer_head);
3231
3232 void free_buffer_head(struct buffer_head *bh)
3233 {
3234         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3235         kmem_cache_free(bh_cachep, bh);
3236         get_cpu_var(bh_accounting).nr--;
3237         recalc_bh_state();
3238         put_cpu_var(bh_accounting);
3239 }
3240 EXPORT_SYMBOL(free_buffer_head);
3241
3242 static void buffer_exit_cpu(int cpu)
3243 {
3244         int i;
3245         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3246
3247         for (i = 0; i < BH_LRU_SIZE; i++) {
3248                 brelse(b->bhs[i]);
3249                 b->bhs[i] = NULL;
3250         }
3251         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3252         per_cpu(bh_accounting, cpu).nr = 0;
3253         put_cpu_var(bh_accounting);
3254 }
3255
3256 static int buffer_cpu_notify(struct notifier_block *self,
3257                               unsigned long action, void *hcpu)
3258 {
3259         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3260                 buffer_exit_cpu((unsigned long)hcpu);
3261         return NOTIFY_OK;
3262 }
3263
3264 /**
3265  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3266  * @bh: struct buffer_head
3267  *
3268  * Return true if the buffer is up-to-date and false,
3269  * with the buffer locked, if not.
3270  */
3271 int bh_uptodate_or_lock(struct buffer_head *bh)
3272 {
3273         if (!buffer_uptodate(bh)) {
3274                 lock_buffer(bh);
3275                 if (!buffer_uptodate(bh))
3276                         return 0;
3277                 unlock_buffer(bh);
3278         }
3279         return 1;
3280 }
3281 EXPORT_SYMBOL(bh_uptodate_or_lock);
3282
3283 /**
3284  * bh_submit_read - Submit a locked buffer for reading
3285  * @bh: struct buffer_head
3286  *
3287  * Returns zero on success and -EIO on error.
3288  */
3289 int bh_submit_read(struct buffer_head *bh)
3290 {
3291         BUG_ON(!buffer_locked(bh));
3292
3293         if (buffer_uptodate(bh)) {
3294                 unlock_buffer(bh);
3295                 return 0;
3296         }
3297
3298         get_bh(bh);
3299         bh->b_end_io = end_buffer_read_sync;
3300         submit_bh(READ, bh);
3301         wait_on_buffer(bh);
3302         if (buffer_uptodate(bh))
3303                 return 0;
3304         return -EIO;
3305 }
3306 EXPORT_SYMBOL(bh_submit_read);
3307
3308 static void
3309 init_buffer_head(void *data)
3310 {
3311         struct buffer_head *bh = data;
3312
3313         memset(bh, 0, sizeof(*bh));
3314         INIT_LIST_HEAD(&bh->b_assoc_buffers);
3315 }
3316
3317 void __init buffer_init(void)
3318 {
3319         int nrpages;
3320
3321         bh_cachep = kmem_cache_create("buffer_head",
3322                         sizeof(struct buffer_head), 0,
3323                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3324                                 SLAB_MEM_SPREAD),
3325                                 init_buffer_head);
3326
3327         /*
3328          * Limit the bh occupancy to 10% of ZONE_NORMAL
3329          */
3330         nrpages = (nr_free_buffer_pages() * 10) / 100;
3331         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3332         hotcpu_notifier(buffer_cpu_notify, 0);
3333 }
3334
3335 EXPORT_SYMBOL(__bforget);
3336 EXPORT_SYMBOL(__brelse);
3337 EXPORT_SYMBOL(__wait_on_buffer);
3338 EXPORT_SYMBOL(block_commit_write);
3339 EXPORT_SYMBOL(block_prepare_write);
3340 EXPORT_SYMBOL(block_page_mkwrite);
3341 EXPORT_SYMBOL(block_read_full_page);
3342 EXPORT_SYMBOL(block_sync_page);
3343 EXPORT_SYMBOL(block_truncate_page);
3344 EXPORT_SYMBOL(block_write_full_page);
3345 EXPORT_SYMBOL(cont_write_begin);
3346 EXPORT_SYMBOL(end_buffer_read_sync);
3347 EXPORT_SYMBOL(end_buffer_write_sync);
3348 EXPORT_SYMBOL(file_fsync);
3349 EXPORT_SYMBOL(generic_block_bmap);
3350 EXPORT_SYMBOL(generic_cont_expand_simple);
3351 EXPORT_SYMBOL(init_buffer);
3352 EXPORT_SYMBOL(invalidate_bdev);
3353 EXPORT_SYMBOL(ll_rw_block);
3354 EXPORT_SYMBOL(mark_buffer_dirty);
3355 EXPORT_SYMBOL(submit_bh);
3356 EXPORT_SYMBOL(sync_dirty_buffer);
3357 EXPORT_SYMBOL(unlock_buffer);