mm: count reclaimable pages per BDI
[safe/jmp/linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79         smp_mb__before_clear_bit();
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122         if (uptodate) {
123                 set_buffer_uptodate(bh);
124         } else {
125                 /* This happens, due to failed READA attempts. */
126                 clear_buffer_uptodate(bh);
127         }
128         unlock_buffer(bh);
129 }
130
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137         __end_buffer_read_notouch(bh, uptodate);
138         put_bh(bh);
139 }
140
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143         char b[BDEVNAME_SIZE];
144
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149                         buffer_io_error(bh);
150                         printk(KERN_WARNING "lost page write due to "
151                                         "I/O error on %s\n",
152                                        bdevname(bh->b_bdev, b));
153                 }
154                 set_buffer_write_io_error(bh);
155                 clear_buffer_uptodate(bh);
156         }
157         unlock_buffer(bh);
158         put_bh(bh);
159 }
160
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167         int ret = 0;
168
169         if (bdev)
170                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171         return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182         struct super_block *sb = get_super(bdev);
183         if (sb) {
184                 int res = fsync_super(sb);
185                 drop_super(sb);
186                 return res;
187         }
188         return sync_blockdev(bdev);
189 }
190
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:       blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202         struct super_block *sb;
203
204         down(&bdev->bd_mount_sem);
205         sb = get_super(bdev);
206         if (sb && !(sb->s_flags & MS_RDONLY)) {
207                 sb->s_frozen = SB_FREEZE_WRITE;
208                 smp_wmb();
209
210                 __fsync_super(sb);
211
212                 sb->s_frozen = SB_FREEZE_TRANS;
213                 smp_wmb();
214
215                 sync_blockdev(sb->s_bdev);
216
217                 if (sb->s_op->write_super_lockfs)
218                         sb->s_op->write_super_lockfs(sb);
219         }
220
221         sync_blockdev(bdev);
222         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:       blockdevice to unlock
229  * @sb:         associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235         if (sb) {
236                 BUG_ON(sb->s_bdev != bdev);
237
238                 if (sb->s_op->unlockfs)
239                         sb->s_op->unlockfs(sb);
240                 sb->s_frozen = SB_UNFROZEN;
241                 smp_wmb();
242                 wake_up(&sb->s_wait_unfrozen);
243                 drop_super(sb);
244         }
245
246         up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264         struct inode *bd_inode = bdev->bd_inode;
265         struct address_space *bd_mapping = bd_inode->i_mapping;
266         struct buffer_head *ret = NULL;
267         pgoff_t index;
268         struct buffer_head *bh;
269         struct buffer_head *head;
270         struct page *page;
271         int all_mapped = 1;
272
273         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274         page = find_get_page(bd_mapping, index);
275         if (!page)
276                 goto out;
277
278         spin_lock(&bd_mapping->private_lock);
279         if (!page_has_buffers(page))
280                 goto out_unlock;
281         head = page_buffers(page);
282         bh = head;
283         do {
284                 if (bh->b_blocknr == block) {
285                         ret = bh;
286                         get_bh(bh);
287                         goto out_unlock;
288                 }
289                 if (!buffer_mapped(bh))
290                         all_mapped = 0;
291                 bh = bh->b_this_page;
292         } while (bh != head);
293
294         /* we might be here because some of the buffers on this page are
295          * not mapped.  This is due to various races between
296          * file io on the block device and getblk.  It gets dealt with
297          * elsewhere, don't buffer_error if we had some unmapped buffers
298          */
299         if (all_mapped) {
300                 printk("__find_get_block_slow() failed. "
301                         "block=%llu, b_blocknr=%llu\n",
302                         (unsigned long long)block,
303                         (unsigned long long)bh->b_blocknr);
304                 printk("b_state=0x%08lx, b_size=%zu\n",
305                         bh->b_state, bh->b_size);
306                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307         }
308 out_unlock:
309         spin_unlock(&bd_mapping->private_lock);
310         page_cache_release(page);
311 out:
312         return ret;
313 }
314
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323   
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349         struct address_space *mapping = bdev->bd_inode->i_mapping;
350
351         if (mapping->nrpages == 0)
352                 return;
353
354         invalidate_bh_lrus();
355         invalidate_mapping_pages(mapping, 0, -1);
356 }
357
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363         struct zone **zones;
364         pg_data_t *pgdat;
365
366         wakeup_pdflush(1024);
367         yield();
368
369         for_each_online_pgdat(pgdat) {
370                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
371                 if (*zones)
372                         try_to_free_pages(zones, 0, GFP_NOFS);
373         }
374 }
375
376 /*
377  * I/O completion handler for block_read_full_page() - pages
378  * which come unlocked at the end of I/O.
379  */
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381 {
382         unsigned long flags;
383         struct buffer_head *first;
384         struct buffer_head *tmp;
385         struct page *page;
386         int page_uptodate = 1;
387
388         BUG_ON(!buffer_async_read(bh));
389
390         page = bh->b_page;
391         if (uptodate) {
392                 set_buffer_uptodate(bh);
393         } else {
394                 clear_buffer_uptodate(bh);
395                 if (printk_ratelimit())
396                         buffer_io_error(bh);
397                 SetPageError(page);
398         }
399
400         /*
401          * Be _very_ careful from here on. Bad things can happen if
402          * two buffer heads end IO at almost the same time and both
403          * decide that the page is now completely done.
404          */
405         first = page_buffers(page);
406         local_irq_save(flags);
407         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408         clear_buffer_async_read(bh);
409         unlock_buffer(bh);
410         tmp = bh;
411         do {
412                 if (!buffer_uptodate(tmp))
413                         page_uptodate = 0;
414                 if (buffer_async_read(tmp)) {
415                         BUG_ON(!buffer_locked(tmp));
416                         goto still_busy;
417                 }
418                 tmp = tmp->b_this_page;
419         } while (tmp != bh);
420         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421         local_irq_restore(flags);
422
423         /*
424          * If none of the buffers had errors and they are all
425          * uptodate then we can set the page uptodate.
426          */
427         if (page_uptodate && !PageError(page))
428                 SetPageUptodate(page);
429         unlock_page(page);
430         return;
431
432 still_busy:
433         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434         local_irq_restore(flags);
435         return;
436 }
437
438 /*
439  * Completion handler for block_write_full_page() - pages which are unlocked
440  * during I/O, and which have PageWriteback cleared upon I/O completion.
441  */
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
443 {
444         char b[BDEVNAME_SIZE];
445         unsigned long flags;
446         struct buffer_head *first;
447         struct buffer_head *tmp;
448         struct page *page;
449
450         BUG_ON(!buffer_async_write(bh));
451
452         page = bh->b_page;
453         if (uptodate) {
454                 set_buffer_uptodate(bh);
455         } else {
456                 if (printk_ratelimit()) {
457                         buffer_io_error(bh);
458                         printk(KERN_WARNING "lost page write due to "
459                                         "I/O error on %s\n",
460                                bdevname(bh->b_bdev, b));
461                 }
462                 set_bit(AS_EIO, &page->mapping->flags);
463                 set_buffer_write_io_error(bh);
464                 clear_buffer_uptodate(bh);
465                 SetPageError(page);
466         }
467
468         first = page_buffers(page);
469         local_irq_save(flags);
470         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471
472         clear_buffer_async_write(bh);
473         unlock_buffer(bh);
474         tmp = bh->b_this_page;
475         while (tmp != bh) {
476                 if (buffer_async_write(tmp)) {
477                         BUG_ON(!buffer_locked(tmp));
478                         goto still_busy;
479                 }
480                 tmp = tmp->b_this_page;
481         }
482         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483         local_irq_restore(flags);
484         end_page_writeback(page);
485         return;
486
487 still_busy:
488         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489         local_irq_restore(flags);
490         return;
491 }
492
493 /*
494  * If a page's buffers are under async readin (end_buffer_async_read
495  * completion) then there is a possibility that another thread of
496  * control could lock one of the buffers after it has completed
497  * but while some of the other buffers have not completed.  This
498  * locked buffer would confuse end_buffer_async_read() into not unlocking
499  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
500  * that this buffer is not under async I/O.
501  *
502  * The page comes unlocked when it has no locked buffer_async buffers
503  * left.
504  *
505  * PageLocked prevents anyone starting new async I/O reads any of
506  * the buffers.
507  *
508  * PageWriteback is used to prevent simultaneous writeout of the same
509  * page.
510  *
511  * PageLocked prevents anyone from starting writeback of a page which is
512  * under read I/O (PageWriteback is only ever set against a locked page).
513  */
514 static void mark_buffer_async_read(struct buffer_head *bh)
515 {
516         bh->b_end_io = end_buffer_async_read;
517         set_buffer_async_read(bh);
518 }
519
520 void mark_buffer_async_write(struct buffer_head *bh)
521 {
522         bh->b_end_io = end_buffer_async_write;
523         set_buffer_async_write(bh);
524 }
525 EXPORT_SYMBOL(mark_buffer_async_write);
526
527
528 /*
529  * fs/buffer.c contains helper functions for buffer-backed address space's
530  * fsync functions.  A common requirement for buffer-based filesystems is
531  * that certain data from the backing blockdev needs to be written out for
532  * a successful fsync().  For example, ext2 indirect blocks need to be
533  * written back and waited upon before fsync() returns.
534  *
535  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537  * management of a list of dependent buffers at ->i_mapping->private_list.
538  *
539  * Locking is a little subtle: try_to_free_buffers() will remove buffers
540  * from their controlling inode's queue when they are being freed.  But
541  * try_to_free_buffers() will be operating against the *blockdev* mapping
542  * at the time, not against the S_ISREG file which depends on those buffers.
543  * So the locking for private_list is via the private_lock in the address_space
544  * which backs the buffers.  Which is different from the address_space 
545  * against which the buffers are listed.  So for a particular address_space,
546  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
547  * mapping->private_list will always be protected by the backing blockdev's
548  * ->private_lock.
549  *
550  * Which introduces a requirement: all buffers on an address_space's
551  * ->private_list must be from the same address_space: the blockdev's.
552  *
553  * address_spaces which do not place buffers at ->private_list via these
554  * utility functions are free to use private_lock and private_list for
555  * whatever they want.  The only requirement is that list_empty(private_list)
556  * be true at clear_inode() time.
557  *
558  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
559  * filesystems should do that.  invalidate_inode_buffers() should just go
560  * BUG_ON(!list_empty).
561  *
562  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
563  * take an address_space, not an inode.  And it should be called
564  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565  * queued up.
566  *
567  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568  * list if it is already on a list.  Because if the buffer is on a list,
569  * it *must* already be on the right one.  If not, the filesystem is being
570  * silly.  This will save a ton of locking.  But first we have to ensure
571  * that buffers are taken *off* the old inode's list when they are freed
572  * (presumably in truncate).  That requires careful auditing of all
573  * filesystems (do it inside bforget()).  It could also be done by bringing
574  * b_inode back.
575  */
576
577 /*
578  * The buffer's backing address_space's private_lock must be held
579  */
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
581 {
582         list_del_init(&bh->b_assoc_buffers);
583         WARN_ON(!bh->b_assoc_map);
584         if (buffer_write_io_error(bh))
585                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586         bh->b_assoc_map = NULL;
587 }
588
589 int inode_has_buffers(struct inode *inode)
590 {
591         return !list_empty(&inode->i_data.private_list);
592 }
593
594 /*
595  * osync is designed to support O_SYNC io.  It waits synchronously for
596  * all already-submitted IO to complete, but does not queue any new
597  * writes to the disk.
598  *
599  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600  * you dirty the buffers, and then use osync_inode_buffers to wait for
601  * completion.  Any other dirty buffers which are not yet queued for
602  * write will not be flushed to disk by the osync.
603  */
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605 {
606         struct buffer_head *bh;
607         struct list_head *p;
608         int err = 0;
609
610         spin_lock(lock);
611 repeat:
612         list_for_each_prev(p, list) {
613                 bh = BH_ENTRY(p);
614                 if (buffer_locked(bh)) {
615                         get_bh(bh);
616                         spin_unlock(lock);
617                         wait_on_buffer(bh);
618                         if (!buffer_uptodate(bh))
619                                 err = -EIO;
620                         brelse(bh);
621                         spin_lock(lock);
622                         goto repeat;
623                 }
624         }
625         spin_unlock(lock);
626         return err;
627 }
628
629 /**
630  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631  *                        buffers
632  * @mapping: the mapping which wants those buffers written
633  *
634  * Starts I/O against the buffers at mapping->private_list, and waits upon
635  * that I/O.
636  *
637  * Basically, this is a convenience function for fsync().
638  * @mapping is a file or directory which needs those buffers to be written for
639  * a successful fsync().
640  */
641 int sync_mapping_buffers(struct address_space *mapping)
642 {
643         struct address_space *buffer_mapping = mapping->assoc_mapping;
644
645         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646                 return 0;
647
648         return fsync_buffers_list(&buffer_mapping->private_lock,
649                                         &mapping->private_list);
650 }
651 EXPORT_SYMBOL(sync_mapping_buffers);
652
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660                         sector_t bblock, unsigned blocksize)
661 {
662         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663         if (bh) {
664                 if (buffer_dirty(bh))
665                         ll_rw_block(WRITE, 1, &bh);
666                 put_bh(bh);
667         }
668 }
669
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct address_space *buffer_mapping = bh->b_page->mapping;
674
675         mark_buffer_dirty(bh);
676         if (!mapping->assoc_mapping) {
677                 mapping->assoc_mapping = buffer_mapping;
678         } else {
679                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
680         }
681         if (list_empty(&bh->b_assoc_buffers)) {
682                 spin_lock(&buffer_mapping->private_lock);
683                 list_move_tail(&bh->b_assoc_buffers,
684                                 &mapping->private_list);
685                 bh->b_assoc_map = mapping;
686                 spin_unlock(&buffer_mapping->private_lock);
687         }
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
691 /*
692  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693  * dirty.
694  *
695  * If warn is true, then emit a warning if the page is not uptodate and has
696  * not been truncated.
697  */
698 static int __set_page_dirty(struct page *page,
699                 struct address_space *mapping, int warn)
700 {
701         if (unlikely(!mapping))
702                 return !TestSetPageDirty(page);
703
704         if (TestSetPageDirty(page))
705                 return 0;
706
707         write_lock_irq(&mapping->tree_lock);
708         if (page->mapping) {    /* Race with truncate? */
709                 WARN_ON_ONCE(warn && !PageUptodate(page));
710
711                 if (mapping_cap_account_dirty(mapping)) {
712                         __inc_zone_page_state(page, NR_FILE_DIRTY);
713                         __inc_bdi_stat(mapping->backing_dev_info,
714                                         BDI_RECLAIMABLE);
715                         task_io_account_write(PAGE_CACHE_SIZE);
716                 }
717                 radix_tree_tag_set(&mapping->page_tree,
718                                 page_index(page), PAGECACHE_TAG_DIRTY);
719         }
720         write_unlock_irq(&mapping->tree_lock);
721         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
722
723         return 1;
724 }
725
726 /*
727  * Add a page to the dirty page list.
728  *
729  * It is a sad fact of life that this function is called from several places
730  * deeply under spinlocking.  It may not sleep.
731  *
732  * If the page has buffers, the uptodate buffers are set dirty, to preserve
733  * dirty-state coherency between the page and the buffers.  It the page does
734  * not have buffers then when they are later attached they will all be set
735  * dirty.
736  *
737  * The buffers are dirtied before the page is dirtied.  There's a small race
738  * window in which a writepage caller may see the page cleanness but not the
739  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
740  * before the buffers, a concurrent writepage caller could clear the page dirty
741  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
742  * page on the dirty page list.
743  *
744  * We use private_lock to lock against try_to_free_buffers while using the
745  * page's buffer list.  Also use this to protect against clean buffers being
746  * added to the page after it was set dirty.
747  *
748  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
749  * address_space though.
750  */
751 int __set_page_dirty_buffers(struct page *page)
752 {
753         struct address_space *mapping = page_mapping(page);
754
755         if (unlikely(!mapping))
756                 return !TestSetPageDirty(page);
757
758         spin_lock(&mapping->private_lock);
759         if (page_has_buffers(page)) {
760                 struct buffer_head *head = page_buffers(page);
761                 struct buffer_head *bh = head;
762
763                 do {
764                         set_buffer_dirty(bh);
765                         bh = bh->b_this_page;
766                 } while (bh != head);
767         }
768         spin_unlock(&mapping->private_lock);
769
770         return __set_page_dirty(page, mapping, 1);
771 }
772 EXPORT_SYMBOL(__set_page_dirty_buffers);
773
774 /*
775  * Write out and wait upon a list of buffers.
776  *
777  * We have conflicting pressures: we want to make sure that all
778  * initially dirty buffers get waited on, but that any subsequently
779  * dirtied buffers don't.  After all, we don't want fsync to last
780  * forever if somebody is actively writing to the file.
781  *
782  * Do this in two main stages: first we copy dirty buffers to a
783  * temporary inode list, queueing the writes as we go.  Then we clean
784  * up, waiting for those writes to complete.
785  * 
786  * During this second stage, any subsequent updates to the file may end
787  * up refiling the buffer on the original inode's dirty list again, so
788  * there is a chance we will end up with a buffer queued for write but
789  * not yet completed on that list.  So, as a final cleanup we go through
790  * the osync code to catch these locked, dirty buffers without requeuing
791  * any newly dirty buffers for write.
792  */
793 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
794 {
795         struct buffer_head *bh;
796         struct list_head tmp;
797         int err = 0, err2;
798
799         INIT_LIST_HEAD(&tmp);
800
801         spin_lock(lock);
802         while (!list_empty(list)) {
803                 bh = BH_ENTRY(list->next);
804                 __remove_assoc_queue(bh);
805                 if (buffer_dirty(bh) || buffer_locked(bh)) {
806                         list_add(&bh->b_assoc_buffers, &tmp);
807                         if (buffer_dirty(bh)) {
808                                 get_bh(bh);
809                                 spin_unlock(lock);
810                                 /*
811                                  * Ensure any pending I/O completes so that
812                                  * ll_rw_block() actually writes the current
813                                  * contents - it is a noop if I/O is still in
814                                  * flight on potentially older contents.
815                                  */
816                                 ll_rw_block(SWRITE, 1, &bh);
817                                 brelse(bh);
818                                 spin_lock(lock);
819                         }
820                 }
821         }
822
823         while (!list_empty(&tmp)) {
824                 bh = BH_ENTRY(tmp.prev);
825                 list_del_init(&bh->b_assoc_buffers);
826                 get_bh(bh);
827                 spin_unlock(lock);
828                 wait_on_buffer(bh);
829                 if (!buffer_uptodate(bh))
830                         err = -EIO;
831                 brelse(bh);
832                 spin_lock(lock);
833         }
834         
835         spin_unlock(lock);
836         err2 = osync_buffers_list(lock, list);
837         if (err)
838                 return err;
839         else
840                 return err2;
841 }
842
843 /*
844  * Invalidate any and all dirty buffers on a given inode.  We are
845  * probably unmounting the fs, but that doesn't mean we have already
846  * done a sync().  Just drop the buffers from the inode list.
847  *
848  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
849  * assumes that all the buffers are against the blockdev.  Not true
850  * for reiserfs.
851  */
852 void invalidate_inode_buffers(struct inode *inode)
853 {
854         if (inode_has_buffers(inode)) {
855                 struct address_space *mapping = &inode->i_data;
856                 struct list_head *list = &mapping->private_list;
857                 struct address_space *buffer_mapping = mapping->assoc_mapping;
858
859                 spin_lock(&buffer_mapping->private_lock);
860                 while (!list_empty(list))
861                         __remove_assoc_queue(BH_ENTRY(list->next));
862                 spin_unlock(&buffer_mapping->private_lock);
863         }
864 }
865
866 /*
867  * Remove any clean buffers from the inode's buffer list.  This is called
868  * when we're trying to free the inode itself.  Those buffers can pin it.
869  *
870  * Returns true if all buffers were removed.
871  */
872 int remove_inode_buffers(struct inode *inode)
873 {
874         int ret = 1;
875
876         if (inode_has_buffers(inode)) {
877                 struct address_space *mapping = &inode->i_data;
878                 struct list_head *list = &mapping->private_list;
879                 struct address_space *buffer_mapping = mapping->assoc_mapping;
880
881                 spin_lock(&buffer_mapping->private_lock);
882                 while (!list_empty(list)) {
883                         struct buffer_head *bh = BH_ENTRY(list->next);
884                         if (buffer_dirty(bh)) {
885                                 ret = 0;
886                                 break;
887                         }
888                         __remove_assoc_queue(bh);
889                 }
890                 spin_unlock(&buffer_mapping->private_lock);
891         }
892         return ret;
893 }
894
895 /*
896  * Create the appropriate buffers when given a page for data area and
897  * the size of each buffer.. Use the bh->b_this_page linked list to
898  * follow the buffers created.  Return NULL if unable to create more
899  * buffers.
900  *
901  * The retry flag is used to differentiate async IO (paging, swapping)
902  * which may not fail from ordinary buffer allocations.
903  */
904 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
905                 int retry)
906 {
907         struct buffer_head *bh, *head;
908         long offset;
909
910 try_again:
911         head = NULL;
912         offset = PAGE_SIZE;
913         while ((offset -= size) >= 0) {
914                 bh = alloc_buffer_head(GFP_NOFS);
915                 if (!bh)
916                         goto no_grow;
917
918                 bh->b_bdev = NULL;
919                 bh->b_this_page = head;
920                 bh->b_blocknr = -1;
921                 head = bh;
922
923                 bh->b_state = 0;
924                 atomic_set(&bh->b_count, 0);
925                 bh->b_private = NULL;
926                 bh->b_size = size;
927
928                 /* Link the buffer to its page */
929                 set_bh_page(bh, page, offset);
930
931                 init_buffer(bh, NULL, NULL);
932         }
933         return head;
934 /*
935  * In case anything failed, we just free everything we got.
936  */
937 no_grow:
938         if (head) {
939                 do {
940                         bh = head;
941                         head = head->b_this_page;
942                         free_buffer_head(bh);
943                 } while (head);
944         }
945
946         /*
947          * Return failure for non-async IO requests.  Async IO requests
948          * are not allowed to fail, so we have to wait until buffer heads
949          * become available.  But we don't want tasks sleeping with 
950          * partially complete buffers, so all were released above.
951          */
952         if (!retry)
953                 return NULL;
954
955         /* We're _really_ low on memory. Now we just
956          * wait for old buffer heads to become free due to
957          * finishing IO.  Since this is an async request and
958          * the reserve list is empty, we're sure there are 
959          * async buffer heads in use.
960          */
961         free_more_memory();
962         goto try_again;
963 }
964 EXPORT_SYMBOL_GPL(alloc_page_buffers);
965
966 static inline void
967 link_dev_buffers(struct page *page, struct buffer_head *head)
968 {
969         struct buffer_head *bh, *tail;
970
971         bh = head;
972         do {
973                 tail = bh;
974                 bh = bh->b_this_page;
975         } while (bh);
976         tail->b_this_page = head;
977         attach_page_buffers(page, head);
978 }
979
980 /*
981  * Initialise the state of a blockdev page's buffers.
982  */ 
983 static void
984 init_page_buffers(struct page *page, struct block_device *bdev,
985                         sector_t block, int size)
986 {
987         struct buffer_head *head = page_buffers(page);
988         struct buffer_head *bh = head;
989         int uptodate = PageUptodate(page);
990
991         do {
992                 if (!buffer_mapped(bh)) {
993                         init_buffer(bh, NULL, NULL);
994                         bh->b_bdev = bdev;
995                         bh->b_blocknr = block;
996                         if (uptodate)
997                                 set_buffer_uptodate(bh);
998                         set_buffer_mapped(bh);
999                 }
1000                 block++;
1001                 bh = bh->b_this_page;
1002         } while (bh != head);
1003 }
1004
1005 /*
1006  * Create the page-cache page that contains the requested block.
1007  *
1008  * This is user purely for blockdev mappings.
1009  */
1010 static struct page *
1011 grow_dev_page(struct block_device *bdev, sector_t block,
1012                 pgoff_t index, int size)
1013 {
1014         struct inode *inode = bdev->bd_inode;
1015         struct page *page;
1016         struct buffer_head *bh;
1017
1018         page = find_or_create_page(inode->i_mapping, index,
1019                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1020         if (!page)
1021                 return NULL;
1022
1023         BUG_ON(!PageLocked(page));
1024
1025         if (page_has_buffers(page)) {
1026                 bh = page_buffers(page);
1027                 if (bh->b_size == size) {
1028                         init_page_buffers(page, bdev, block, size);
1029                         return page;
1030                 }
1031                 if (!try_to_free_buffers(page))
1032                         goto failed;
1033         }
1034
1035         /*
1036          * Allocate some buffers for this page
1037          */
1038         bh = alloc_page_buffers(page, size, 0);
1039         if (!bh)
1040                 goto failed;
1041
1042         /*
1043          * Link the page to the buffers and initialise them.  Take the
1044          * lock to be atomic wrt __find_get_block(), which does not
1045          * run under the page lock.
1046          */
1047         spin_lock(&inode->i_mapping->private_lock);
1048         link_dev_buffers(page, bh);
1049         init_page_buffers(page, bdev, block, size);
1050         spin_unlock(&inode->i_mapping->private_lock);
1051         return page;
1052
1053 failed:
1054         BUG();
1055         unlock_page(page);
1056         page_cache_release(page);
1057         return NULL;
1058 }
1059
1060 /*
1061  * Create buffers for the specified block device block's page.  If
1062  * that page was dirty, the buffers are set dirty also.
1063  */
1064 static int
1065 grow_buffers(struct block_device *bdev, sector_t block, int size)
1066 {
1067         struct page *page;
1068         pgoff_t index;
1069         int sizebits;
1070
1071         sizebits = -1;
1072         do {
1073                 sizebits++;
1074         } while ((size << sizebits) < PAGE_SIZE);
1075
1076         index = block >> sizebits;
1077
1078         /*
1079          * Check for a block which wants to lie outside our maximum possible
1080          * pagecache index.  (this comparison is done using sector_t types).
1081          */
1082         if (unlikely(index != block >> sizebits)) {
1083                 char b[BDEVNAME_SIZE];
1084
1085                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1086                         "device %s\n",
1087                         __FUNCTION__, (unsigned long long)block,
1088                         bdevname(bdev, b));
1089                 return -EIO;
1090         }
1091         block = index << sizebits;
1092         /* Create a page with the proper size buffers.. */
1093         page = grow_dev_page(bdev, block, index, size);
1094         if (!page)
1095                 return 0;
1096         unlock_page(page);
1097         page_cache_release(page);
1098         return 1;
1099 }
1100
1101 static struct buffer_head *
1102 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1103 {
1104         /* Size must be multiple of hard sectorsize */
1105         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1106                         (size < 512 || size > PAGE_SIZE))) {
1107                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1108                                         size);
1109                 printk(KERN_ERR "hardsect size: %d\n",
1110                                         bdev_hardsect_size(bdev));
1111
1112                 dump_stack();
1113                 return NULL;
1114         }
1115
1116         for (;;) {
1117                 struct buffer_head * bh;
1118                 int ret;
1119
1120                 bh = __find_get_block(bdev, block, size);
1121                 if (bh)
1122                         return bh;
1123
1124                 ret = grow_buffers(bdev, block, size);
1125                 if (ret < 0)
1126                         return NULL;
1127                 if (ret == 0)
1128                         free_more_memory();
1129         }
1130 }
1131
1132 /*
1133  * The relationship between dirty buffers and dirty pages:
1134  *
1135  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1136  * the page is tagged dirty in its radix tree.
1137  *
1138  * At all times, the dirtiness of the buffers represents the dirtiness of
1139  * subsections of the page.  If the page has buffers, the page dirty bit is
1140  * merely a hint about the true dirty state.
1141  *
1142  * When a page is set dirty in its entirety, all its buffers are marked dirty
1143  * (if the page has buffers).
1144  *
1145  * When a buffer is marked dirty, its page is dirtied, but the page's other
1146  * buffers are not.
1147  *
1148  * Also.  When blockdev buffers are explicitly read with bread(), they
1149  * individually become uptodate.  But their backing page remains not
1150  * uptodate - even if all of its buffers are uptodate.  A subsequent
1151  * block_read_full_page() against that page will discover all the uptodate
1152  * buffers, will set the page uptodate and will perform no I/O.
1153  */
1154
1155 /**
1156  * mark_buffer_dirty - mark a buffer_head as needing writeout
1157  * @bh: the buffer_head to mark dirty
1158  *
1159  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1160  * backing page dirty, then tag the page as dirty in its address_space's radix
1161  * tree and then attach the address_space's inode to its superblock's dirty
1162  * inode list.
1163  *
1164  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1165  * mapping->tree_lock and the global inode_lock.
1166  */
1167 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1168 {
1169         WARN_ON_ONCE(!buffer_uptodate(bh));
1170         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1171                 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1172 }
1173
1174 /*
1175  * Decrement a buffer_head's reference count.  If all buffers against a page
1176  * have zero reference count, are clean and unlocked, and if the page is clean
1177  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1178  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1179  * a page but it ends up not being freed, and buffers may later be reattached).
1180  */
1181 void __brelse(struct buffer_head * buf)
1182 {
1183         if (atomic_read(&buf->b_count)) {
1184                 put_bh(buf);
1185                 return;
1186         }
1187         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1188         WARN_ON(1);
1189 }
1190
1191 /*
1192  * bforget() is like brelse(), except it discards any
1193  * potentially dirty data.
1194  */
1195 void __bforget(struct buffer_head *bh)
1196 {
1197         clear_buffer_dirty(bh);
1198         if (!list_empty(&bh->b_assoc_buffers)) {
1199                 struct address_space *buffer_mapping = bh->b_page->mapping;
1200
1201                 spin_lock(&buffer_mapping->private_lock);
1202                 list_del_init(&bh->b_assoc_buffers);
1203                 bh->b_assoc_map = NULL;
1204                 spin_unlock(&buffer_mapping->private_lock);
1205         }
1206         __brelse(bh);
1207 }
1208
1209 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210 {
1211         lock_buffer(bh);
1212         if (buffer_uptodate(bh)) {
1213                 unlock_buffer(bh);
1214                 return bh;
1215         } else {
1216                 get_bh(bh);
1217                 bh->b_end_io = end_buffer_read_sync;
1218                 submit_bh(READ, bh);
1219                 wait_on_buffer(bh);
1220                 if (buffer_uptodate(bh))
1221                         return bh;
1222         }
1223         brelse(bh);
1224         return NULL;
1225 }
1226
1227 /*
1228  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1229  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1230  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1231  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1232  * CPU's LRUs at the same time.
1233  *
1234  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235  * sb_find_get_block().
1236  *
1237  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1238  * a local interrupt disable for that.
1239  */
1240
1241 #define BH_LRU_SIZE     8
1242
1243 struct bh_lru {
1244         struct buffer_head *bhs[BH_LRU_SIZE];
1245 };
1246
1247 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248
1249 #ifdef CONFIG_SMP
1250 #define bh_lru_lock()   local_irq_disable()
1251 #define bh_lru_unlock() local_irq_enable()
1252 #else
1253 #define bh_lru_lock()   preempt_disable()
1254 #define bh_lru_unlock() preempt_enable()
1255 #endif
1256
1257 static inline void check_irqs_on(void)
1258 {
1259 #ifdef irqs_disabled
1260         BUG_ON(irqs_disabled());
1261 #endif
1262 }
1263
1264 /*
1265  * The LRU management algorithm is dopey-but-simple.  Sorry.
1266  */
1267 static void bh_lru_install(struct buffer_head *bh)
1268 {
1269         struct buffer_head *evictee = NULL;
1270         struct bh_lru *lru;
1271
1272         check_irqs_on();
1273         bh_lru_lock();
1274         lru = &__get_cpu_var(bh_lrus);
1275         if (lru->bhs[0] != bh) {
1276                 struct buffer_head *bhs[BH_LRU_SIZE];
1277                 int in;
1278                 int out = 0;
1279
1280                 get_bh(bh);
1281                 bhs[out++] = bh;
1282                 for (in = 0; in < BH_LRU_SIZE; in++) {
1283                         struct buffer_head *bh2 = lru->bhs[in];
1284
1285                         if (bh2 == bh) {
1286                                 __brelse(bh2);
1287                         } else {
1288                                 if (out >= BH_LRU_SIZE) {
1289                                         BUG_ON(evictee != NULL);
1290                                         evictee = bh2;
1291                                 } else {
1292                                         bhs[out++] = bh2;
1293                                 }
1294                         }
1295                 }
1296                 while (out < BH_LRU_SIZE)
1297                         bhs[out++] = NULL;
1298                 memcpy(lru->bhs, bhs, sizeof(bhs));
1299         }
1300         bh_lru_unlock();
1301
1302         if (evictee)
1303                 __brelse(evictee);
1304 }
1305
1306 /*
1307  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1308  */
1309 static struct buffer_head *
1310 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1311 {
1312         struct buffer_head *ret = NULL;
1313         struct bh_lru *lru;
1314         unsigned int i;
1315
1316         check_irqs_on();
1317         bh_lru_lock();
1318         lru = &__get_cpu_var(bh_lrus);
1319         for (i = 0; i < BH_LRU_SIZE; i++) {
1320                 struct buffer_head *bh = lru->bhs[i];
1321
1322                 if (bh && bh->b_bdev == bdev &&
1323                                 bh->b_blocknr == block && bh->b_size == size) {
1324                         if (i) {
1325                                 while (i) {
1326                                         lru->bhs[i] = lru->bhs[i - 1];
1327                                         i--;
1328                                 }
1329                                 lru->bhs[0] = bh;
1330                         }
1331                         get_bh(bh);
1332                         ret = bh;
1333                         break;
1334                 }
1335         }
1336         bh_lru_unlock();
1337         return ret;
1338 }
1339
1340 /*
1341  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1342  * it in the LRU and mark it as accessed.  If it is not present then return
1343  * NULL
1344  */
1345 struct buffer_head *
1346 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1347 {
1348         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349
1350         if (bh == NULL) {
1351                 bh = __find_get_block_slow(bdev, block);
1352                 if (bh)
1353                         bh_lru_install(bh);
1354         }
1355         if (bh)
1356                 touch_buffer(bh);
1357         return bh;
1358 }
1359 EXPORT_SYMBOL(__find_get_block);
1360
1361 /*
1362  * __getblk will locate (and, if necessary, create) the buffer_head
1363  * which corresponds to the passed block_device, block and size. The
1364  * returned buffer has its reference count incremented.
1365  *
1366  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1367  * illegal block number, __getblk() will happily return a buffer_head
1368  * which represents the non-existent block.  Very weird.
1369  *
1370  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371  * attempt is failing.  FIXME, perhaps?
1372  */
1373 struct buffer_head *
1374 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1375 {
1376         struct buffer_head *bh = __find_get_block(bdev, block, size);
1377
1378         might_sleep();
1379         if (bh == NULL)
1380                 bh = __getblk_slow(bdev, block, size);
1381         return bh;
1382 }
1383 EXPORT_SYMBOL(__getblk);
1384
1385 /*
1386  * Do async read-ahead on a buffer..
1387  */
1388 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1389 {
1390         struct buffer_head *bh = __getblk(bdev, block, size);
1391         if (likely(bh)) {
1392                 ll_rw_block(READA, 1, &bh);
1393                 brelse(bh);
1394         }
1395 }
1396 EXPORT_SYMBOL(__breadahead);
1397
1398 /**
1399  *  __bread() - reads a specified block and returns the bh
1400  *  @bdev: the block_device to read from
1401  *  @block: number of block
1402  *  @size: size (in bytes) to read
1403  * 
1404  *  Reads a specified block, and returns buffer head that contains it.
1405  *  It returns NULL if the block was unreadable.
1406  */
1407 struct buffer_head *
1408 __bread(struct block_device *bdev, sector_t block, unsigned size)
1409 {
1410         struct buffer_head *bh = __getblk(bdev, block, size);
1411
1412         if (likely(bh) && !buffer_uptodate(bh))
1413                 bh = __bread_slow(bh);
1414         return bh;
1415 }
1416 EXPORT_SYMBOL(__bread);
1417
1418 /*
1419  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420  * This doesn't race because it runs in each cpu either in irq
1421  * or with preempt disabled.
1422  */
1423 static void invalidate_bh_lru(void *arg)
1424 {
1425         struct bh_lru *b = &get_cpu_var(bh_lrus);
1426         int i;
1427
1428         for (i = 0; i < BH_LRU_SIZE; i++) {
1429                 brelse(b->bhs[i]);
1430                 b->bhs[i] = NULL;
1431         }
1432         put_cpu_var(bh_lrus);
1433 }
1434         
1435 void invalidate_bh_lrus(void)
1436 {
1437         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1438 }
1439
1440 void set_bh_page(struct buffer_head *bh,
1441                 struct page *page, unsigned long offset)
1442 {
1443         bh->b_page = page;
1444         BUG_ON(offset >= PAGE_SIZE);
1445         if (PageHighMem(page))
1446                 /*
1447                  * This catches illegal uses and preserves the offset:
1448                  */
1449                 bh->b_data = (char *)(0 + offset);
1450         else
1451                 bh->b_data = page_address(page) + offset;
1452 }
1453 EXPORT_SYMBOL(set_bh_page);
1454
1455 /*
1456  * Called when truncating a buffer on a page completely.
1457  */
1458 static void discard_buffer(struct buffer_head * bh)
1459 {
1460         lock_buffer(bh);
1461         clear_buffer_dirty(bh);
1462         bh->b_bdev = NULL;
1463         clear_buffer_mapped(bh);
1464         clear_buffer_req(bh);
1465         clear_buffer_new(bh);
1466         clear_buffer_delay(bh);
1467         clear_buffer_unwritten(bh);
1468         unlock_buffer(bh);
1469 }
1470
1471 /**
1472  * block_invalidatepage - invalidate part of all of a buffer-backed page
1473  *
1474  * @page: the page which is affected
1475  * @offset: the index of the truncation point
1476  *
1477  * block_invalidatepage() is called when all or part of the page has become
1478  * invalidatedby a truncate operation.
1479  *
1480  * block_invalidatepage() does not have to release all buffers, but it must
1481  * ensure that no dirty buffer is left outside @offset and that no I/O
1482  * is underway against any of the blocks which are outside the truncation
1483  * point.  Because the caller is about to free (and possibly reuse) those
1484  * blocks on-disk.
1485  */
1486 void block_invalidatepage(struct page *page, unsigned long offset)
1487 {
1488         struct buffer_head *head, *bh, *next;
1489         unsigned int curr_off = 0;
1490
1491         BUG_ON(!PageLocked(page));
1492         if (!page_has_buffers(page))
1493                 goto out;
1494
1495         head = page_buffers(page);
1496         bh = head;
1497         do {
1498                 unsigned int next_off = curr_off + bh->b_size;
1499                 next = bh->b_this_page;
1500
1501                 /*
1502                  * is this block fully invalidated?
1503                  */
1504                 if (offset <= curr_off)
1505                         discard_buffer(bh);
1506                 curr_off = next_off;
1507                 bh = next;
1508         } while (bh != head);
1509
1510         /*
1511          * We release buffers only if the entire page is being invalidated.
1512          * The get_block cached value has been unconditionally invalidated,
1513          * so real IO is not possible anymore.
1514          */
1515         if (offset == 0)
1516                 try_to_release_page(page, 0);
1517 out:
1518         return;
1519 }
1520 EXPORT_SYMBOL(block_invalidatepage);
1521
1522 /*
1523  * We attach and possibly dirty the buffers atomically wrt
1524  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1525  * is already excluded via the page lock.
1526  */
1527 void create_empty_buffers(struct page *page,
1528                         unsigned long blocksize, unsigned long b_state)
1529 {
1530         struct buffer_head *bh, *head, *tail;
1531
1532         head = alloc_page_buffers(page, blocksize, 1);
1533         bh = head;
1534         do {
1535                 bh->b_state |= b_state;
1536                 tail = bh;
1537                 bh = bh->b_this_page;
1538         } while (bh);
1539         tail->b_this_page = head;
1540
1541         spin_lock(&page->mapping->private_lock);
1542         if (PageUptodate(page) || PageDirty(page)) {
1543                 bh = head;
1544                 do {
1545                         if (PageDirty(page))
1546                                 set_buffer_dirty(bh);
1547                         if (PageUptodate(page))
1548                                 set_buffer_uptodate(bh);
1549                         bh = bh->b_this_page;
1550                 } while (bh != head);
1551         }
1552         attach_page_buffers(page, head);
1553         spin_unlock(&page->mapping->private_lock);
1554 }
1555 EXPORT_SYMBOL(create_empty_buffers);
1556
1557 /*
1558  * We are taking a block for data and we don't want any output from any
1559  * buffer-cache aliases starting from return from that function and
1560  * until the moment when something will explicitly mark the buffer
1561  * dirty (hopefully that will not happen until we will free that block ;-)
1562  * We don't even need to mark it not-uptodate - nobody can expect
1563  * anything from a newly allocated buffer anyway. We used to used
1564  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1565  * don't want to mark the alias unmapped, for example - it would confuse
1566  * anyone who might pick it with bread() afterwards...
1567  *
1568  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1569  * be writeout I/O going on against recently-freed buffers.  We don't
1570  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1571  * only if we really need to.  That happens here.
1572  */
1573 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1574 {
1575         struct buffer_head *old_bh;
1576
1577         might_sleep();
1578
1579         old_bh = __find_get_block_slow(bdev, block);
1580         if (old_bh) {
1581                 clear_buffer_dirty(old_bh);
1582                 wait_on_buffer(old_bh);
1583                 clear_buffer_req(old_bh);
1584                 __brelse(old_bh);
1585         }
1586 }
1587 EXPORT_SYMBOL(unmap_underlying_metadata);
1588
1589 /*
1590  * NOTE! All mapped/uptodate combinations are valid:
1591  *
1592  *      Mapped  Uptodate        Meaning
1593  *
1594  *      No      No              "unknown" - must do get_block()
1595  *      No      Yes             "hole" - zero-filled
1596  *      Yes     No              "allocated" - allocated on disk, not read in
1597  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1598  *
1599  * "Dirty" is valid only with the last case (mapped+uptodate).
1600  */
1601
1602 /*
1603  * While block_write_full_page is writing back the dirty buffers under
1604  * the page lock, whoever dirtied the buffers may decide to clean them
1605  * again at any time.  We handle that by only looking at the buffer
1606  * state inside lock_buffer().
1607  *
1608  * If block_write_full_page() is called for regular writeback
1609  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610  * locked buffer.   This only can happen if someone has written the buffer
1611  * directly, with submit_bh().  At the address_space level PageWriteback
1612  * prevents this contention from occurring.
1613  */
1614 static int __block_write_full_page(struct inode *inode, struct page *page,
1615                         get_block_t *get_block, struct writeback_control *wbc)
1616 {
1617         int err;
1618         sector_t block;
1619         sector_t last_block;
1620         struct buffer_head *bh, *head;
1621         const unsigned blocksize = 1 << inode->i_blkbits;
1622         int nr_underway = 0;
1623
1624         BUG_ON(!PageLocked(page));
1625
1626         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1627
1628         if (!page_has_buffers(page)) {
1629                 create_empty_buffers(page, blocksize,
1630                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1631         }
1632
1633         /*
1634          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1635          * here, and the (potentially unmapped) buffers may become dirty at
1636          * any time.  If a buffer becomes dirty here after we've inspected it
1637          * then we just miss that fact, and the page stays dirty.
1638          *
1639          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1640          * handle that here by just cleaning them.
1641          */
1642
1643         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1644         head = page_buffers(page);
1645         bh = head;
1646
1647         /*
1648          * Get all the dirty buffers mapped to disk addresses and
1649          * handle any aliases from the underlying blockdev's mapping.
1650          */
1651         do {
1652                 if (block > last_block) {
1653                         /*
1654                          * mapped buffers outside i_size will occur, because
1655                          * this page can be outside i_size when there is a
1656                          * truncate in progress.
1657                          */
1658                         /*
1659                          * The buffer was zeroed by block_write_full_page()
1660                          */
1661                         clear_buffer_dirty(bh);
1662                         set_buffer_uptodate(bh);
1663                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1664                         WARN_ON(bh->b_size != blocksize);
1665                         err = get_block(inode, block, bh, 1);
1666                         if (err)
1667                                 goto recover;
1668                         if (buffer_new(bh)) {
1669                                 /* blockdev mappings never come here */
1670                                 clear_buffer_new(bh);
1671                                 unmap_underlying_metadata(bh->b_bdev,
1672                                                         bh->b_blocknr);
1673                         }
1674                 }
1675                 bh = bh->b_this_page;
1676                 block++;
1677         } while (bh != head);
1678
1679         do {
1680                 if (!buffer_mapped(bh))
1681                         continue;
1682                 /*
1683                  * If it's a fully non-blocking write attempt and we cannot
1684                  * lock the buffer then redirty the page.  Note that this can
1685                  * potentially cause a busy-wait loop from pdflush and kswapd
1686                  * activity, but those code paths have their own higher-level
1687                  * throttling.
1688                  */
1689                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1690                         lock_buffer(bh);
1691                 } else if (test_set_buffer_locked(bh)) {
1692                         redirty_page_for_writepage(wbc, page);
1693                         continue;
1694                 }
1695                 if (test_clear_buffer_dirty(bh)) {
1696                         mark_buffer_async_write(bh);
1697                 } else {
1698                         unlock_buffer(bh);
1699                 }
1700         } while ((bh = bh->b_this_page) != head);
1701
1702         /*
1703          * The page and its buffers are protected by PageWriteback(), so we can
1704          * drop the bh refcounts early.
1705          */
1706         BUG_ON(PageWriteback(page));
1707         set_page_writeback(page);
1708
1709         do {
1710                 struct buffer_head *next = bh->b_this_page;
1711                 if (buffer_async_write(bh)) {
1712                         submit_bh(WRITE, bh);
1713                         nr_underway++;
1714                 }
1715                 bh = next;
1716         } while (bh != head);
1717         unlock_page(page);
1718
1719         err = 0;
1720 done:
1721         if (nr_underway == 0) {
1722                 /*
1723                  * The page was marked dirty, but the buffers were
1724                  * clean.  Someone wrote them back by hand with
1725                  * ll_rw_block/submit_bh.  A rare case.
1726                  */
1727                 end_page_writeback(page);
1728
1729                 /*
1730                  * The page and buffer_heads can be released at any time from
1731                  * here on.
1732                  */
1733                 wbc->pages_skipped++;   /* We didn't write this page */
1734         }
1735         return err;
1736
1737 recover:
1738         /*
1739          * ENOSPC, or some other error.  We may already have added some
1740          * blocks to the file, so we need to write these out to avoid
1741          * exposing stale data.
1742          * The page is currently locked and not marked for writeback
1743          */
1744         bh = head;
1745         /* Recovery: lock and submit the mapped buffers */
1746         do {
1747                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1748                         lock_buffer(bh);
1749                         mark_buffer_async_write(bh);
1750                 } else {
1751                         /*
1752                          * The buffer may have been set dirty during
1753                          * attachment to a dirty page.
1754                          */
1755                         clear_buffer_dirty(bh);
1756                 }
1757         } while ((bh = bh->b_this_page) != head);
1758         SetPageError(page);
1759         BUG_ON(PageWriteback(page));
1760         mapping_set_error(page->mapping, err);
1761         set_page_writeback(page);
1762         do {
1763                 struct buffer_head *next = bh->b_this_page;
1764                 if (buffer_async_write(bh)) {
1765                         clear_buffer_dirty(bh);
1766                         submit_bh(WRITE, bh);
1767                         nr_underway++;
1768                 }
1769                 bh = next;
1770         } while (bh != head);
1771         unlock_page(page);
1772         goto done;
1773 }
1774
1775 /*
1776  * If a page has any new buffers, zero them out here, and mark them uptodate
1777  * and dirty so they'll be written out (in order to prevent uninitialised
1778  * block data from leaking). And clear the new bit.
1779  */
1780 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1781 {
1782         unsigned int block_start, block_end;
1783         struct buffer_head *head, *bh;
1784
1785         BUG_ON(!PageLocked(page));
1786         if (!page_has_buffers(page))
1787                 return;
1788
1789         bh = head = page_buffers(page);
1790         block_start = 0;
1791         do {
1792                 block_end = block_start + bh->b_size;
1793
1794                 if (buffer_new(bh)) {
1795                         if (block_end > from && block_start < to) {
1796                                 if (!PageUptodate(page)) {
1797                                         unsigned start, size;
1798
1799                                         start = max(from, block_start);
1800                                         size = min(to, block_end) - start;
1801
1802                                         zero_user_page(page, start, size, KM_USER0);
1803                                         set_buffer_uptodate(bh);
1804                                 }
1805
1806                                 clear_buffer_new(bh);
1807                                 mark_buffer_dirty(bh);
1808                         }
1809                 }
1810
1811                 block_start = block_end;
1812                 bh = bh->b_this_page;
1813         } while (bh != head);
1814 }
1815 EXPORT_SYMBOL(page_zero_new_buffers);
1816
1817 static int __block_prepare_write(struct inode *inode, struct page *page,
1818                 unsigned from, unsigned to, get_block_t *get_block)
1819 {
1820         unsigned block_start, block_end;
1821         sector_t block;
1822         int err = 0;
1823         unsigned blocksize, bbits;
1824         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1825
1826         BUG_ON(!PageLocked(page));
1827         BUG_ON(from > PAGE_CACHE_SIZE);
1828         BUG_ON(to > PAGE_CACHE_SIZE);
1829         BUG_ON(from > to);
1830
1831         blocksize = 1 << inode->i_blkbits;
1832         if (!page_has_buffers(page))
1833                 create_empty_buffers(page, blocksize, 0);
1834         head = page_buffers(page);
1835
1836         bbits = inode->i_blkbits;
1837         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1838
1839         for(bh = head, block_start = 0; bh != head || !block_start;
1840             block++, block_start=block_end, bh = bh->b_this_page) {
1841                 block_end = block_start + blocksize;
1842                 if (block_end <= from || block_start >= to) {
1843                         if (PageUptodate(page)) {
1844                                 if (!buffer_uptodate(bh))
1845                                         set_buffer_uptodate(bh);
1846                         }
1847                         continue;
1848                 }
1849                 if (buffer_new(bh))
1850                         clear_buffer_new(bh);
1851                 if (!buffer_mapped(bh)) {
1852                         WARN_ON(bh->b_size != blocksize);
1853                         err = get_block(inode, block, bh, 1);
1854                         if (err)
1855                                 break;
1856                         if (buffer_new(bh)) {
1857                                 unmap_underlying_metadata(bh->b_bdev,
1858                                                         bh->b_blocknr);
1859                                 if (PageUptodate(page)) {
1860                                         clear_buffer_new(bh);
1861                                         set_buffer_uptodate(bh);
1862                                         mark_buffer_dirty(bh);
1863                                         continue;
1864                                 }
1865                                 if (block_end > to || block_start < from) {
1866                                         void *kaddr;
1867
1868                                         kaddr = kmap_atomic(page, KM_USER0);
1869                                         if (block_end > to)
1870                                                 memset(kaddr+to, 0,
1871                                                         block_end-to);
1872                                         if (block_start < from)
1873                                                 memset(kaddr+block_start,
1874                                                         0, from-block_start);
1875                                         flush_dcache_page(page);
1876                                         kunmap_atomic(kaddr, KM_USER0);
1877                                 }
1878                                 continue;
1879                         }
1880                 }
1881                 if (PageUptodate(page)) {
1882                         if (!buffer_uptodate(bh))
1883                                 set_buffer_uptodate(bh);
1884                         continue; 
1885                 }
1886                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1887                     !buffer_unwritten(bh) &&
1888                      (block_start < from || block_end > to)) {
1889                         ll_rw_block(READ, 1, &bh);
1890                         *wait_bh++=bh;
1891                 }
1892         }
1893         /*
1894          * If we issued read requests - let them complete.
1895          */
1896         while(wait_bh > wait) {
1897                 wait_on_buffer(*--wait_bh);
1898                 if (!buffer_uptodate(*wait_bh))
1899                         err = -EIO;
1900         }
1901         if (unlikely(err))
1902                 page_zero_new_buffers(page, from, to);
1903         return err;
1904 }
1905
1906 static int __block_commit_write(struct inode *inode, struct page *page,
1907                 unsigned from, unsigned to)
1908 {
1909         unsigned block_start, block_end;
1910         int partial = 0;
1911         unsigned blocksize;
1912         struct buffer_head *bh, *head;
1913
1914         blocksize = 1 << inode->i_blkbits;
1915
1916         for(bh = head = page_buffers(page), block_start = 0;
1917             bh != head || !block_start;
1918             block_start=block_end, bh = bh->b_this_page) {
1919                 block_end = block_start + blocksize;
1920                 if (block_end <= from || block_start >= to) {
1921                         if (!buffer_uptodate(bh))
1922                                 partial = 1;
1923                 } else {
1924                         set_buffer_uptodate(bh);
1925                         mark_buffer_dirty(bh);
1926                 }
1927                 clear_buffer_new(bh);
1928         }
1929
1930         /*
1931          * If this is a partial write which happened to make all buffers
1932          * uptodate then we can optimize away a bogus readpage() for
1933          * the next read(). Here we 'discover' whether the page went
1934          * uptodate as a result of this (potentially partial) write.
1935          */
1936         if (!partial)
1937                 SetPageUptodate(page);
1938         return 0;
1939 }
1940
1941 /*
1942  * block_write_begin takes care of the basic task of block allocation and
1943  * bringing partial write blocks uptodate first.
1944  *
1945  * If *pagep is not NULL, then block_write_begin uses the locked page
1946  * at *pagep rather than allocating its own. In this case, the page will
1947  * not be unlocked or deallocated on failure.
1948  */
1949 int block_write_begin(struct file *file, struct address_space *mapping,
1950                         loff_t pos, unsigned len, unsigned flags,
1951                         struct page **pagep, void **fsdata,
1952                         get_block_t *get_block)
1953 {
1954         struct inode *inode = mapping->host;
1955         int status = 0;
1956         struct page *page;
1957         pgoff_t index;
1958         unsigned start, end;
1959         int ownpage = 0;
1960
1961         index = pos >> PAGE_CACHE_SHIFT;
1962         start = pos & (PAGE_CACHE_SIZE - 1);
1963         end = start + len;
1964
1965         page = *pagep;
1966         if (page == NULL) {
1967                 ownpage = 1;
1968                 page = __grab_cache_page(mapping, index);
1969                 if (!page) {
1970                         status = -ENOMEM;
1971                         goto out;
1972                 }
1973                 *pagep = page;
1974         } else
1975                 BUG_ON(!PageLocked(page));
1976
1977         status = __block_prepare_write(inode, page, start, end, get_block);
1978         if (unlikely(status)) {
1979                 ClearPageUptodate(page);
1980
1981                 if (ownpage) {
1982                         unlock_page(page);
1983                         page_cache_release(page);
1984                         *pagep = NULL;
1985
1986                         /*
1987                          * prepare_write() may have instantiated a few blocks
1988                          * outside i_size.  Trim these off again. Don't need
1989                          * i_size_read because we hold i_mutex.
1990                          */
1991                         if (pos + len > inode->i_size)
1992                                 vmtruncate(inode, inode->i_size);
1993                 }
1994                 goto out;
1995         }
1996
1997 out:
1998         return status;
1999 }
2000 EXPORT_SYMBOL(block_write_begin);
2001
2002 int block_write_end(struct file *file, struct address_space *mapping,
2003                         loff_t pos, unsigned len, unsigned copied,
2004                         struct page *page, void *fsdata)
2005 {
2006         struct inode *inode = mapping->host;
2007         unsigned start;
2008
2009         start = pos & (PAGE_CACHE_SIZE - 1);
2010
2011         if (unlikely(copied < len)) {
2012                 /*
2013                  * The buffers that were written will now be uptodate, so we
2014                  * don't have to worry about a readpage reading them and
2015                  * overwriting a partial write. However if we have encountered
2016                  * a short write and only partially written into a buffer, it
2017                  * will not be marked uptodate, so a readpage might come in and
2018                  * destroy our partial write.
2019                  *
2020                  * Do the simplest thing, and just treat any short write to a
2021                  * non uptodate page as a zero-length write, and force the
2022                  * caller to redo the whole thing.
2023                  */
2024                 if (!PageUptodate(page))
2025                         copied = 0;
2026
2027                 page_zero_new_buffers(page, start+copied, start+len);
2028         }
2029         flush_dcache_page(page);
2030
2031         /* This could be a short (even 0-length) commit */
2032         __block_commit_write(inode, page, start, start+copied);
2033
2034         return copied;
2035 }
2036 EXPORT_SYMBOL(block_write_end);
2037
2038 int generic_write_end(struct file *file, struct address_space *mapping,
2039                         loff_t pos, unsigned len, unsigned copied,
2040                         struct page *page, void *fsdata)
2041 {
2042         struct inode *inode = mapping->host;
2043
2044         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2045
2046         /*
2047          * No need to use i_size_read() here, the i_size
2048          * cannot change under us because we hold i_mutex.
2049          *
2050          * But it's important to update i_size while still holding page lock:
2051          * page writeout could otherwise come in and zero beyond i_size.
2052          */
2053         if (pos+copied > inode->i_size) {
2054                 i_size_write(inode, pos+copied);
2055                 mark_inode_dirty(inode);
2056         }
2057
2058         unlock_page(page);
2059         page_cache_release(page);
2060
2061         return copied;
2062 }
2063 EXPORT_SYMBOL(generic_write_end);
2064
2065 /*
2066  * Generic "read page" function for block devices that have the normal
2067  * get_block functionality. This is most of the block device filesystems.
2068  * Reads the page asynchronously --- the unlock_buffer() and
2069  * set/clear_buffer_uptodate() functions propagate buffer state into the
2070  * page struct once IO has completed.
2071  */
2072 int block_read_full_page(struct page *page, get_block_t *get_block)
2073 {
2074         struct inode *inode = page->mapping->host;
2075         sector_t iblock, lblock;
2076         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2077         unsigned int blocksize;
2078         int nr, i;
2079         int fully_mapped = 1;
2080
2081         BUG_ON(!PageLocked(page));
2082         blocksize = 1 << inode->i_blkbits;
2083         if (!page_has_buffers(page))
2084                 create_empty_buffers(page, blocksize, 0);
2085         head = page_buffers(page);
2086
2087         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2088         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2089         bh = head;
2090         nr = 0;
2091         i = 0;
2092
2093         do {
2094                 if (buffer_uptodate(bh))
2095                         continue;
2096
2097                 if (!buffer_mapped(bh)) {
2098                         int err = 0;
2099
2100                         fully_mapped = 0;
2101                         if (iblock < lblock) {
2102                                 WARN_ON(bh->b_size != blocksize);
2103                                 err = get_block(inode, iblock, bh, 0);
2104                                 if (err)
2105                                         SetPageError(page);
2106                         }
2107                         if (!buffer_mapped(bh)) {
2108                                 zero_user_page(page, i * blocksize, blocksize,
2109                                                 KM_USER0);
2110                                 if (!err)
2111                                         set_buffer_uptodate(bh);
2112                                 continue;
2113                         }
2114                         /*
2115                          * get_block() might have updated the buffer
2116                          * synchronously
2117                          */
2118                         if (buffer_uptodate(bh))
2119                                 continue;
2120                 }
2121                 arr[nr++] = bh;
2122         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2123
2124         if (fully_mapped)
2125                 SetPageMappedToDisk(page);
2126
2127         if (!nr) {
2128                 /*
2129                  * All buffers are uptodate - we can set the page uptodate
2130                  * as well. But not if get_block() returned an error.
2131                  */
2132                 if (!PageError(page))
2133                         SetPageUptodate(page);
2134                 unlock_page(page);
2135                 return 0;
2136         }
2137
2138         /* Stage two: lock the buffers */
2139         for (i = 0; i < nr; i++) {
2140                 bh = arr[i];
2141                 lock_buffer(bh);
2142                 mark_buffer_async_read(bh);
2143         }
2144
2145         /*
2146          * Stage 3: start the IO.  Check for uptodateness
2147          * inside the buffer lock in case another process reading
2148          * the underlying blockdev brought it uptodate (the sct fix).
2149          */
2150         for (i = 0; i < nr; i++) {
2151                 bh = arr[i];
2152                 if (buffer_uptodate(bh))
2153                         end_buffer_async_read(bh, 1);
2154                 else
2155                         submit_bh(READ, bh);
2156         }
2157         return 0;
2158 }
2159
2160 /* utility function for filesystems that need to do work on expanding
2161  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2162  * deal with the hole.  
2163  */
2164 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2165 {
2166         struct address_space *mapping = inode->i_mapping;
2167         struct page *page;
2168         void *fsdata;
2169         unsigned long limit;
2170         int err;
2171
2172         err = -EFBIG;
2173         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2174         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2175                 send_sig(SIGXFSZ, current, 0);
2176                 goto out;
2177         }
2178         if (size > inode->i_sb->s_maxbytes)
2179                 goto out;
2180
2181         err = pagecache_write_begin(NULL, mapping, size, 0,
2182                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2183                                 &page, &fsdata);
2184         if (err)
2185                 goto out;
2186
2187         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2188         BUG_ON(err > 0);
2189
2190 out:
2191         return err;
2192 }
2193
2194 int cont_expand_zero(struct file *file, struct address_space *mapping,
2195                         loff_t pos, loff_t *bytes)
2196 {
2197         struct inode *inode = mapping->host;
2198         unsigned blocksize = 1 << inode->i_blkbits;
2199         struct page *page;
2200         void *fsdata;
2201         pgoff_t index, curidx;
2202         loff_t curpos;
2203         unsigned zerofrom, offset, len;
2204         int err = 0;
2205
2206         index = pos >> PAGE_CACHE_SHIFT;
2207         offset = pos & ~PAGE_CACHE_MASK;
2208
2209         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2210                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2211                 if (zerofrom & (blocksize-1)) {
2212                         *bytes |= (blocksize-1);
2213                         (*bytes)++;
2214                 }
2215                 len = PAGE_CACHE_SIZE - zerofrom;
2216
2217                 err = pagecache_write_begin(file, mapping, curpos, len,
2218                                                 AOP_FLAG_UNINTERRUPTIBLE,
2219                                                 &page, &fsdata);
2220                 if (err)
2221                         goto out;
2222                 zero_user_page(page, zerofrom, len, KM_USER0);
2223                 err = pagecache_write_end(file, mapping, curpos, len, len,
2224                                                 page, fsdata);
2225                 if (err < 0)
2226                         goto out;
2227                 BUG_ON(err != len);
2228                 err = 0;
2229         }
2230
2231         /* page covers the boundary, find the boundary offset */
2232         if (index == curidx) {
2233                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2234                 /* if we will expand the thing last block will be filled */
2235                 if (offset <= zerofrom) {
2236                         goto out;
2237                 }
2238                 if (zerofrom & (blocksize-1)) {
2239                         *bytes |= (blocksize-1);
2240                         (*bytes)++;
2241                 }
2242                 len = offset - zerofrom;
2243
2244                 err = pagecache_write_begin(file, mapping, curpos, len,
2245                                                 AOP_FLAG_UNINTERRUPTIBLE,
2246                                                 &page, &fsdata);
2247                 if (err)
2248                         goto out;
2249                 zero_user_page(page, zerofrom, len, KM_USER0);
2250                 err = pagecache_write_end(file, mapping, curpos, len, len,
2251                                                 page, fsdata);
2252                 if (err < 0)
2253                         goto out;
2254                 BUG_ON(err != len);
2255                 err = 0;
2256         }
2257 out:
2258         return err;
2259 }
2260
2261 /*
2262  * For moronic filesystems that do not allow holes in file.
2263  * We may have to extend the file.
2264  */
2265 int cont_write_begin(struct file *file, struct address_space *mapping,
2266                         loff_t pos, unsigned len, unsigned flags,
2267                         struct page **pagep, void **fsdata,
2268                         get_block_t *get_block, loff_t *bytes)
2269 {
2270         struct inode *inode = mapping->host;
2271         unsigned blocksize = 1 << inode->i_blkbits;
2272         unsigned zerofrom;
2273         int err;
2274
2275         err = cont_expand_zero(file, mapping, pos, bytes);
2276         if (err)
2277                 goto out;
2278
2279         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2280         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2281                 *bytes |= (blocksize-1);
2282                 (*bytes)++;
2283         }
2284
2285         *pagep = NULL;
2286         err = block_write_begin(file, mapping, pos, len,
2287                                 flags, pagep, fsdata, get_block);
2288 out:
2289         return err;
2290 }
2291
2292 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2293                         get_block_t *get_block)
2294 {
2295         struct inode *inode = page->mapping->host;
2296         int err = __block_prepare_write(inode, page, from, to, get_block);
2297         if (err)
2298                 ClearPageUptodate(page);
2299         return err;
2300 }
2301
2302 int block_commit_write(struct page *page, unsigned from, unsigned to)
2303 {
2304         struct inode *inode = page->mapping->host;
2305         __block_commit_write(inode,page,from,to);
2306         return 0;
2307 }
2308
2309 int generic_commit_write(struct file *file, struct page *page,
2310                 unsigned from, unsigned to)
2311 {
2312         struct inode *inode = page->mapping->host;
2313         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2314         __block_commit_write(inode,page,from,to);
2315         /*
2316          * No need to use i_size_read() here, the i_size
2317          * cannot change under us because we hold i_mutex.
2318          */
2319         if (pos > inode->i_size) {
2320                 i_size_write(inode, pos);
2321                 mark_inode_dirty(inode);
2322         }
2323         return 0;
2324 }
2325
2326 /*
2327  * block_page_mkwrite() is not allowed to change the file size as it gets
2328  * called from a page fault handler when a page is first dirtied. Hence we must
2329  * be careful to check for EOF conditions here. We set the page up correctly
2330  * for a written page which means we get ENOSPC checking when writing into
2331  * holes and correct delalloc and unwritten extent mapping on filesystems that
2332  * support these features.
2333  *
2334  * We are not allowed to take the i_mutex here so we have to play games to
2335  * protect against truncate races as the page could now be beyond EOF.  Because
2336  * vmtruncate() writes the inode size before removing pages, once we have the
2337  * page lock we can determine safely if the page is beyond EOF. If it is not
2338  * beyond EOF, then the page is guaranteed safe against truncation until we
2339  * unlock the page.
2340  */
2341 int
2342 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2343                    get_block_t get_block)
2344 {
2345         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2346         unsigned long end;
2347         loff_t size;
2348         int ret = -EINVAL;
2349
2350         lock_page(page);
2351         size = i_size_read(inode);
2352         if ((page->mapping != inode->i_mapping) ||
2353             (page_offset(page) > size)) {
2354                 /* page got truncated out from underneath us */
2355                 goto out_unlock;
2356         }
2357
2358         /* page is wholly or partially inside EOF */
2359         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2360                 end = size & ~PAGE_CACHE_MASK;
2361         else
2362                 end = PAGE_CACHE_SIZE;
2363
2364         ret = block_prepare_write(page, 0, end, get_block);
2365         if (!ret)
2366                 ret = block_commit_write(page, 0, end);
2367
2368 out_unlock:
2369         unlock_page(page);
2370         return ret;
2371 }
2372
2373 /*
2374  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2375  * immediately, while under the page lock.  So it needs a special end_io
2376  * handler which does not touch the bh after unlocking it.
2377  */
2378 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2379 {
2380         __end_buffer_read_notouch(bh, uptodate);
2381 }
2382
2383 /*
2384  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2385  * the page (converting it to circular linked list and taking care of page
2386  * dirty races).
2387  */
2388 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2389 {
2390         struct buffer_head *bh;
2391
2392         BUG_ON(!PageLocked(page));
2393
2394         spin_lock(&page->mapping->private_lock);
2395         bh = head;
2396         do {
2397                 if (PageDirty(page))
2398                         set_buffer_dirty(bh);
2399                 if (!bh->b_this_page)
2400                         bh->b_this_page = head;
2401                 bh = bh->b_this_page;
2402         } while (bh != head);
2403         attach_page_buffers(page, head);
2404         spin_unlock(&page->mapping->private_lock);
2405 }
2406
2407 /*
2408  * On entry, the page is fully not uptodate.
2409  * On exit the page is fully uptodate in the areas outside (from,to)
2410  */
2411 int nobh_write_begin(struct file *file, struct address_space *mapping,
2412                         loff_t pos, unsigned len, unsigned flags,
2413                         struct page **pagep, void **fsdata,
2414                         get_block_t *get_block)
2415 {
2416         struct inode *inode = mapping->host;
2417         const unsigned blkbits = inode->i_blkbits;
2418         const unsigned blocksize = 1 << blkbits;
2419         struct buffer_head *head, *bh;
2420         struct page *page;
2421         pgoff_t index;
2422         unsigned from, to;
2423         unsigned block_in_page;
2424         unsigned block_start, block_end;
2425         sector_t block_in_file;
2426         char *kaddr;
2427         int nr_reads = 0;
2428         int ret = 0;
2429         int is_mapped_to_disk = 1;
2430
2431         index = pos >> PAGE_CACHE_SHIFT;
2432         from = pos & (PAGE_CACHE_SIZE - 1);
2433         to = from + len;
2434
2435         page = __grab_cache_page(mapping, index);
2436         if (!page)
2437                 return -ENOMEM;
2438         *pagep = page;
2439         *fsdata = NULL;
2440
2441         if (page_has_buffers(page)) {
2442                 unlock_page(page);
2443                 page_cache_release(page);
2444                 *pagep = NULL;
2445                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2446                                         fsdata, get_block);
2447         }
2448
2449         if (PageMappedToDisk(page))
2450                 return 0;
2451
2452         /*
2453          * Allocate buffers so that we can keep track of state, and potentially
2454          * attach them to the page if an error occurs. In the common case of
2455          * no error, they will just be freed again without ever being attached
2456          * to the page (which is all OK, because we're under the page lock).
2457          *
2458          * Be careful: the buffer linked list is a NULL terminated one, rather
2459          * than the circular one we're used to.
2460          */
2461         head = alloc_page_buffers(page, blocksize, 0);
2462         if (!head) {
2463                 ret = -ENOMEM;
2464                 goto out_release;
2465         }
2466
2467         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2468
2469         /*
2470          * We loop across all blocks in the page, whether or not they are
2471          * part of the affected region.  This is so we can discover if the
2472          * page is fully mapped-to-disk.
2473          */
2474         for (block_start = 0, block_in_page = 0, bh = head;
2475                   block_start < PAGE_CACHE_SIZE;
2476                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2477                 int create;
2478
2479                 block_end = block_start + blocksize;
2480                 bh->b_state = 0;
2481                 create = 1;
2482                 if (block_start >= to)
2483                         create = 0;
2484                 ret = get_block(inode, block_in_file + block_in_page,
2485                                         bh, create);
2486                 if (ret)
2487                         goto failed;
2488                 if (!buffer_mapped(bh))
2489                         is_mapped_to_disk = 0;
2490                 if (buffer_new(bh))
2491                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2492                 if (PageUptodate(page)) {
2493                         set_buffer_uptodate(bh);
2494                         continue;
2495                 }
2496                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2497                         kaddr = kmap_atomic(page, KM_USER0);
2498                         if (block_start < from)
2499                                 memset(kaddr+block_start, 0, from-block_start);
2500                         if (block_end > to)
2501                                 memset(kaddr + to, 0, block_end - to);
2502                         flush_dcache_page(page);
2503                         kunmap_atomic(kaddr, KM_USER0);
2504                         continue;
2505                 }
2506                 if (buffer_uptodate(bh))
2507                         continue;       /* reiserfs does this */
2508                 if (block_start < from || block_end > to) {
2509                         lock_buffer(bh);
2510                         bh->b_end_io = end_buffer_read_nobh;
2511                         submit_bh(READ, bh);
2512                         nr_reads++;
2513                 }
2514         }
2515
2516         if (nr_reads) {
2517                 /*
2518                  * The page is locked, so these buffers are protected from
2519                  * any VM or truncate activity.  Hence we don't need to care
2520                  * for the buffer_head refcounts.
2521                  */
2522                 for (bh = head; bh; bh = bh->b_this_page) {
2523                         wait_on_buffer(bh);
2524                         if (!buffer_uptodate(bh))
2525                                 ret = -EIO;
2526                 }
2527                 if (ret)
2528                         goto failed;
2529         }
2530
2531         if (is_mapped_to_disk)
2532                 SetPageMappedToDisk(page);
2533
2534         *fsdata = head; /* to be released by nobh_write_end */
2535
2536         return 0;
2537
2538 failed:
2539         BUG_ON(!ret);
2540         /*
2541          * Error recovery is a bit difficult. We need to zero out blocks that
2542          * were newly allocated, and dirty them to ensure they get written out.
2543          * Buffers need to be attached to the page at this point, otherwise
2544          * the handling of potential IO errors during writeout would be hard
2545          * (could try doing synchronous writeout, but what if that fails too?)
2546          */
2547         attach_nobh_buffers(page, head);
2548         page_zero_new_buffers(page, from, to);
2549
2550 out_release:
2551         unlock_page(page);
2552         page_cache_release(page);
2553         *pagep = NULL;
2554
2555         if (pos + len > inode->i_size)
2556                 vmtruncate(inode, inode->i_size);
2557
2558         return ret;
2559 }
2560 EXPORT_SYMBOL(nobh_write_begin);
2561
2562 int nobh_write_end(struct file *file, struct address_space *mapping,
2563                         loff_t pos, unsigned len, unsigned copied,
2564                         struct page *page, void *fsdata)
2565 {
2566         struct inode *inode = page->mapping->host;
2567         struct buffer_head *head = NULL;
2568         struct buffer_head *bh;
2569
2570         if (!PageMappedToDisk(page)) {
2571                 if (unlikely(copied < len) && !page_has_buffers(page))
2572                         attach_nobh_buffers(page, head);
2573                 if (page_has_buffers(page))
2574                         return generic_write_end(file, mapping, pos, len,
2575                                                 copied, page, fsdata);
2576         }
2577
2578         SetPageUptodate(page);
2579         set_page_dirty(page);
2580         if (pos+copied > inode->i_size) {
2581                 i_size_write(inode, pos+copied);
2582                 mark_inode_dirty(inode);
2583         }
2584
2585         unlock_page(page);
2586         page_cache_release(page);
2587
2588         head = fsdata;
2589         while (head) {
2590                 bh = head;
2591                 head = head->b_this_page;
2592                 free_buffer_head(bh);
2593         }
2594
2595         return copied;
2596 }
2597 EXPORT_SYMBOL(nobh_write_end);
2598
2599 /*
2600  * nobh_writepage() - based on block_full_write_page() except
2601  * that it tries to operate without attaching bufferheads to
2602  * the page.
2603  */
2604 int nobh_writepage(struct page *page, get_block_t *get_block,
2605                         struct writeback_control *wbc)
2606 {
2607         struct inode * const inode = page->mapping->host;
2608         loff_t i_size = i_size_read(inode);
2609         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2610         unsigned offset;
2611         int ret;
2612
2613         /* Is the page fully inside i_size? */
2614         if (page->index < end_index)
2615                 goto out;
2616
2617         /* Is the page fully outside i_size? (truncate in progress) */
2618         offset = i_size & (PAGE_CACHE_SIZE-1);
2619         if (page->index >= end_index+1 || !offset) {
2620                 /*
2621                  * The page may have dirty, unmapped buffers.  For example,
2622                  * they may have been added in ext3_writepage().  Make them
2623                  * freeable here, so the page does not leak.
2624                  */
2625 #if 0
2626                 /* Not really sure about this  - do we need this ? */
2627                 if (page->mapping->a_ops->invalidatepage)
2628                         page->mapping->a_ops->invalidatepage(page, offset);
2629 #endif
2630                 unlock_page(page);
2631                 return 0; /* don't care */
2632         }
2633
2634         /*
2635          * The page straddles i_size.  It must be zeroed out on each and every
2636          * writepage invocation because it may be mmapped.  "A file is mapped
2637          * in multiples of the page size.  For a file that is not a multiple of
2638          * the  page size, the remaining memory is zeroed when mapped, and
2639          * writes to that region are not written out to the file."
2640          */
2641         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2642 out:
2643         ret = mpage_writepage(page, get_block, wbc);
2644         if (ret == -EAGAIN)
2645                 ret = __block_write_full_page(inode, page, get_block, wbc);
2646         return ret;
2647 }
2648 EXPORT_SYMBOL(nobh_writepage);
2649
2650 int nobh_truncate_page(struct address_space *mapping,
2651                         loff_t from, get_block_t *get_block)
2652 {
2653         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2654         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2655         unsigned blocksize;
2656         sector_t iblock;
2657         unsigned length, pos;
2658         struct inode *inode = mapping->host;
2659         struct page *page;
2660         struct buffer_head map_bh;
2661         int err;
2662
2663         blocksize = 1 << inode->i_blkbits;
2664         length = offset & (blocksize - 1);
2665
2666         /* Block boundary? Nothing to do */
2667         if (!length)
2668                 return 0;
2669
2670         length = blocksize - length;
2671         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2672
2673         page = grab_cache_page(mapping, index);
2674         err = -ENOMEM;
2675         if (!page)
2676                 goto out;
2677
2678         if (page_has_buffers(page)) {
2679 has_buffers:
2680                 unlock_page(page);
2681                 page_cache_release(page);
2682                 return block_truncate_page(mapping, from, get_block);
2683         }
2684
2685         /* Find the buffer that contains "offset" */
2686         pos = blocksize;
2687         while (offset >= pos) {
2688                 iblock++;
2689                 pos += blocksize;
2690         }
2691
2692         err = get_block(inode, iblock, &map_bh, 0);
2693         if (err)
2694                 goto unlock;
2695         /* unmapped? It's a hole - nothing to do */
2696         if (!buffer_mapped(&map_bh))
2697                 goto unlock;
2698
2699         /* Ok, it's mapped. Make sure it's up-to-date */
2700         if (!PageUptodate(page)) {
2701                 err = mapping->a_ops->readpage(NULL, page);
2702                 if (err) {
2703                         page_cache_release(page);
2704                         goto out;
2705                 }
2706                 lock_page(page);
2707                 if (!PageUptodate(page)) {
2708                         err = -EIO;
2709                         goto unlock;
2710                 }
2711                 if (page_has_buffers(page))
2712                         goto has_buffers;
2713         }
2714         zero_user_page(page, offset, length, KM_USER0);
2715         set_page_dirty(page);
2716         err = 0;
2717
2718 unlock:
2719         unlock_page(page);
2720         page_cache_release(page);
2721 out:
2722         return err;
2723 }
2724 EXPORT_SYMBOL(nobh_truncate_page);
2725
2726 int block_truncate_page(struct address_space *mapping,
2727                         loff_t from, get_block_t *get_block)
2728 {
2729         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2730         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2731         unsigned blocksize;
2732         sector_t iblock;
2733         unsigned length, pos;
2734         struct inode *inode = mapping->host;
2735         struct page *page;
2736         struct buffer_head *bh;
2737         int err;
2738
2739         blocksize = 1 << inode->i_blkbits;
2740         length = offset & (blocksize - 1);
2741
2742         /* Block boundary? Nothing to do */
2743         if (!length)
2744                 return 0;
2745
2746         length = blocksize - length;
2747         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2748         
2749         page = grab_cache_page(mapping, index);
2750         err = -ENOMEM;
2751         if (!page)
2752                 goto out;
2753
2754         if (!page_has_buffers(page))
2755                 create_empty_buffers(page, blocksize, 0);
2756
2757         /* Find the buffer that contains "offset" */
2758         bh = page_buffers(page);
2759         pos = blocksize;
2760         while (offset >= pos) {
2761                 bh = bh->b_this_page;
2762                 iblock++;
2763                 pos += blocksize;
2764         }
2765
2766         err = 0;
2767         if (!buffer_mapped(bh)) {
2768                 WARN_ON(bh->b_size != blocksize);
2769                 err = get_block(inode, iblock, bh, 0);
2770                 if (err)
2771                         goto unlock;
2772                 /* unmapped? It's a hole - nothing to do */
2773                 if (!buffer_mapped(bh))
2774                         goto unlock;
2775         }
2776
2777         /* Ok, it's mapped. Make sure it's up-to-date */
2778         if (PageUptodate(page))
2779                 set_buffer_uptodate(bh);
2780
2781         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2782                 err = -EIO;
2783                 ll_rw_block(READ, 1, &bh);
2784                 wait_on_buffer(bh);
2785                 /* Uhhuh. Read error. Complain and punt. */
2786                 if (!buffer_uptodate(bh))
2787                         goto unlock;
2788         }
2789
2790         zero_user_page(page, offset, length, KM_USER0);
2791         mark_buffer_dirty(bh);
2792         err = 0;
2793
2794 unlock:
2795         unlock_page(page);
2796         page_cache_release(page);
2797 out:
2798         return err;
2799 }
2800
2801 /*
2802  * The generic ->writepage function for buffer-backed address_spaces
2803  */
2804 int block_write_full_page(struct page *page, get_block_t *get_block,
2805                         struct writeback_control *wbc)
2806 {
2807         struct inode * const inode = page->mapping->host;
2808         loff_t i_size = i_size_read(inode);
2809         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2810         unsigned offset;
2811
2812         /* Is the page fully inside i_size? */
2813         if (page->index < end_index)
2814                 return __block_write_full_page(inode, page, get_block, wbc);
2815
2816         /* Is the page fully outside i_size? (truncate in progress) */
2817         offset = i_size & (PAGE_CACHE_SIZE-1);
2818         if (page->index >= end_index+1 || !offset) {
2819                 /*
2820                  * The page may have dirty, unmapped buffers.  For example,
2821                  * they may have been added in ext3_writepage().  Make them
2822                  * freeable here, so the page does not leak.
2823                  */
2824                 do_invalidatepage(page, 0);
2825                 unlock_page(page);
2826                 return 0; /* don't care */
2827         }
2828
2829         /*
2830          * The page straddles i_size.  It must be zeroed out on each and every
2831          * writepage invokation because it may be mmapped.  "A file is mapped
2832          * in multiples of the page size.  For a file that is not a multiple of
2833          * the  page size, the remaining memory is zeroed when mapped, and
2834          * writes to that region are not written out to the file."
2835          */
2836         zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2837         return __block_write_full_page(inode, page, get_block, wbc);
2838 }
2839
2840 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2841                             get_block_t *get_block)
2842 {
2843         struct buffer_head tmp;
2844         struct inode *inode = mapping->host;
2845         tmp.b_state = 0;
2846         tmp.b_blocknr = 0;
2847         tmp.b_size = 1 << inode->i_blkbits;
2848         get_block(inode, block, &tmp, 0);
2849         return tmp.b_blocknr;
2850 }
2851
2852 static void end_bio_bh_io_sync(struct bio *bio, int err)
2853 {
2854         struct buffer_head *bh = bio->bi_private;
2855
2856         if (err == -EOPNOTSUPP) {
2857                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2858                 set_bit(BH_Eopnotsupp, &bh->b_state);
2859         }
2860
2861         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2862         bio_put(bio);
2863 }
2864
2865 int submit_bh(int rw, struct buffer_head * bh)
2866 {
2867         struct bio *bio;
2868         int ret = 0;
2869
2870         BUG_ON(!buffer_locked(bh));
2871         BUG_ON(!buffer_mapped(bh));
2872         BUG_ON(!bh->b_end_io);
2873
2874         if (buffer_ordered(bh) && (rw == WRITE))
2875                 rw = WRITE_BARRIER;
2876
2877         /*
2878          * Only clear out a write error when rewriting, should this
2879          * include WRITE_SYNC as well?
2880          */
2881         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2882                 clear_buffer_write_io_error(bh);
2883
2884         /*
2885          * from here on down, it's all bio -- do the initial mapping,
2886          * submit_bio -> generic_make_request may further map this bio around
2887          */
2888         bio = bio_alloc(GFP_NOIO, 1);
2889
2890         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2891         bio->bi_bdev = bh->b_bdev;
2892         bio->bi_io_vec[0].bv_page = bh->b_page;
2893         bio->bi_io_vec[0].bv_len = bh->b_size;
2894         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2895
2896         bio->bi_vcnt = 1;
2897         bio->bi_idx = 0;
2898         bio->bi_size = bh->b_size;
2899
2900         bio->bi_end_io = end_bio_bh_io_sync;
2901         bio->bi_private = bh;
2902
2903         bio_get(bio);
2904         submit_bio(rw, bio);
2905
2906         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2907                 ret = -EOPNOTSUPP;
2908
2909         bio_put(bio);
2910         return ret;
2911 }
2912
2913 /**
2914  * ll_rw_block: low-level access to block devices (DEPRECATED)
2915  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2916  * @nr: number of &struct buffer_heads in the array
2917  * @bhs: array of pointers to &struct buffer_head
2918  *
2919  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2920  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2921  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2922  * are sent to disk. The fourth %READA option is described in the documentation
2923  * for generic_make_request() which ll_rw_block() calls.
2924  *
2925  * This function drops any buffer that it cannot get a lock on (with the
2926  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2927  * clean when doing a write request, and any buffer that appears to be
2928  * up-to-date when doing read request.  Further it marks as clean buffers that
2929  * are processed for writing (the buffer cache won't assume that they are
2930  * actually clean until the buffer gets unlocked).
2931  *
2932  * ll_rw_block sets b_end_io to simple completion handler that marks
2933  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2934  * any waiters. 
2935  *
2936  * All of the buffers must be for the same device, and must also be a
2937  * multiple of the current approved size for the device.
2938  */
2939 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2940 {
2941         int i;
2942
2943         for (i = 0; i < nr; i++) {
2944                 struct buffer_head *bh = bhs[i];
2945
2946                 if (rw == SWRITE)
2947                         lock_buffer(bh);
2948                 else if (test_set_buffer_locked(bh))
2949                         continue;
2950
2951                 if (rw == WRITE || rw == SWRITE) {
2952                         if (test_clear_buffer_dirty(bh)) {
2953                                 bh->b_end_io = end_buffer_write_sync;
2954                                 get_bh(bh);
2955                                 submit_bh(WRITE, bh);
2956                                 continue;
2957                         }
2958                 } else {
2959                         if (!buffer_uptodate(bh)) {
2960                                 bh->b_end_io = end_buffer_read_sync;
2961                                 get_bh(bh);
2962                                 submit_bh(rw, bh);
2963                                 continue;
2964                         }
2965                 }
2966                 unlock_buffer(bh);
2967         }
2968 }
2969
2970 /*
2971  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2972  * and then start new I/O and then wait upon it.  The caller must have a ref on
2973  * the buffer_head.
2974  */
2975 int sync_dirty_buffer(struct buffer_head *bh)
2976 {
2977         int ret = 0;
2978
2979         WARN_ON(atomic_read(&bh->b_count) < 1);
2980         lock_buffer(bh);
2981         if (test_clear_buffer_dirty(bh)) {
2982                 get_bh(bh);
2983                 bh->b_end_io = end_buffer_write_sync;
2984                 ret = submit_bh(WRITE, bh);
2985                 wait_on_buffer(bh);
2986                 if (buffer_eopnotsupp(bh)) {
2987                         clear_buffer_eopnotsupp(bh);
2988                         ret = -EOPNOTSUPP;
2989                 }
2990                 if (!ret && !buffer_uptodate(bh))
2991                         ret = -EIO;
2992         } else {
2993                 unlock_buffer(bh);
2994         }
2995         return ret;
2996 }
2997
2998 /*
2999  * try_to_free_buffers() checks if all the buffers on this particular page
3000  * are unused, and releases them if so.
3001  *
3002  * Exclusion against try_to_free_buffers may be obtained by either
3003  * locking the page or by holding its mapping's private_lock.
3004  *
3005  * If the page is dirty but all the buffers are clean then we need to
3006  * be sure to mark the page clean as well.  This is because the page
3007  * may be against a block device, and a later reattachment of buffers
3008  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3009  * filesystem data on the same device.
3010  *
3011  * The same applies to regular filesystem pages: if all the buffers are
3012  * clean then we set the page clean and proceed.  To do that, we require
3013  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3014  * private_lock.
3015  *
3016  * try_to_free_buffers() is non-blocking.
3017  */
3018 static inline int buffer_busy(struct buffer_head *bh)
3019 {
3020         return atomic_read(&bh->b_count) |
3021                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3022 }
3023
3024 static int
3025 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3026 {
3027         struct buffer_head *head = page_buffers(page);
3028         struct buffer_head *bh;
3029
3030         bh = head;
3031         do {
3032                 if (buffer_write_io_error(bh) && page->mapping)
3033                         set_bit(AS_EIO, &page->mapping->flags);
3034                 if (buffer_busy(bh))
3035                         goto failed;
3036                 bh = bh->b_this_page;
3037         } while (bh != head);
3038
3039         do {
3040                 struct buffer_head *next = bh->b_this_page;
3041
3042                 if (!list_empty(&bh->b_assoc_buffers))
3043                         __remove_assoc_queue(bh);
3044                 bh = next;
3045         } while (bh != head);
3046         *buffers_to_free = head;
3047         __clear_page_buffers(page);
3048         return 1;
3049 failed:
3050         return 0;
3051 }
3052
3053 int try_to_free_buffers(struct page *page)
3054 {
3055         struct address_space * const mapping = page->mapping;
3056         struct buffer_head *buffers_to_free = NULL;
3057         int ret = 0;
3058
3059         BUG_ON(!PageLocked(page));
3060         if (PageWriteback(page))
3061                 return 0;
3062
3063         if (mapping == NULL) {          /* can this still happen? */
3064                 ret = drop_buffers(page, &buffers_to_free);
3065                 goto out;
3066         }
3067
3068         spin_lock(&mapping->private_lock);
3069         ret = drop_buffers(page, &buffers_to_free);
3070
3071         /*
3072          * If the filesystem writes its buffers by hand (eg ext3)
3073          * then we can have clean buffers against a dirty page.  We
3074          * clean the page here; otherwise the VM will never notice
3075          * that the filesystem did any IO at all.
3076          *
3077          * Also, during truncate, discard_buffer will have marked all
3078          * the page's buffers clean.  We discover that here and clean
3079          * the page also.
3080          *
3081          * private_lock must be held over this entire operation in order
3082          * to synchronise against __set_page_dirty_buffers and prevent the
3083          * dirty bit from being lost.
3084          */
3085         if (ret)
3086                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3087         spin_unlock(&mapping->private_lock);
3088 out:
3089         if (buffers_to_free) {
3090                 struct buffer_head *bh = buffers_to_free;
3091
3092                 do {
3093                         struct buffer_head *next = bh->b_this_page;
3094                         free_buffer_head(bh);
3095                         bh = next;
3096                 } while (bh != buffers_to_free);
3097         }
3098         return ret;
3099 }
3100 EXPORT_SYMBOL(try_to_free_buffers);
3101
3102 void block_sync_page(struct page *page)
3103 {
3104         struct address_space *mapping;
3105
3106         smp_mb();
3107         mapping = page_mapping(page);
3108         if (mapping)
3109                 blk_run_backing_dev(mapping->backing_dev_info, page);
3110 }
3111
3112 /*
3113  * There are no bdflush tunables left.  But distributions are
3114  * still running obsolete flush daemons, so we terminate them here.
3115  *
3116  * Use of bdflush() is deprecated and will be removed in a future kernel.
3117  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3118  */
3119 asmlinkage long sys_bdflush(int func, long data)
3120 {
3121         static int msg_count;
3122
3123         if (!capable(CAP_SYS_ADMIN))
3124                 return -EPERM;
3125
3126         if (msg_count < 5) {
3127                 msg_count++;
3128                 printk(KERN_INFO
3129                         "warning: process `%s' used the obsolete bdflush"
3130                         " system call\n", current->comm);
3131                 printk(KERN_INFO "Fix your initscripts?\n");
3132         }
3133
3134         if (func == 1)
3135                 do_exit(0);
3136         return 0;
3137 }
3138
3139 /*
3140  * Buffer-head allocation
3141  */
3142 static struct kmem_cache *bh_cachep;
3143
3144 /*
3145  * Once the number of bh's in the machine exceeds this level, we start
3146  * stripping them in writeback.
3147  */
3148 static int max_buffer_heads;
3149
3150 int buffer_heads_over_limit;
3151
3152 struct bh_accounting {
3153         int nr;                 /* Number of live bh's */
3154         int ratelimit;          /* Limit cacheline bouncing */
3155 };
3156
3157 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3158
3159 static void recalc_bh_state(void)
3160 {
3161         int i;
3162         int tot = 0;
3163
3164         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3165                 return;
3166         __get_cpu_var(bh_accounting).ratelimit = 0;
3167         for_each_online_cpu(i)
3168                 tot += per_cpu(bh_accounting, i).nr;
3169         buffer_heads_over_limit = (tot > max_buffer_heads);
3170 }
3171         
3172 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3173 {
3174         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep,
3175                                 set_migrateflags(gfp_flags, __GFP_RECLAIMABLE));
3176         if (ret) {
3177                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3178                 get_cpu_var(bh_accounting).nr++;
3179                 recalc_bh_state();
3180                 put_cpu_var(bh_accounting);
3181         }
3182         return ret;
3183 }
3184 EXPORT_SYMBOL(alloc_buffer_head);
3185
3186 void free_buffer_head(struct buffer_head *bh)
3187 {
3188         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3189         kmem_cache_free(bh_cachep, bh);
3190         get_cpu_var(bh_accounting).nr--;
3191         recalc_bh_state();
3192         put_cpu_var(bh_accounting);
3193 }
3194 EXPORT_SYMBOL(free_buffer_head);
3195
3196 static void buffer_exit_cpu(int cpu)
3197 {
3198         int i;
3199         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3200
3201         for (i = 0; i < BH_LRU_SIZE; i++) {
3202                 brelse(b->bhs[i]);
3203                 b->bhs[i] = NULL;
3204         }
3205         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3206         per_cpu(bh_accounting, cpu).nr = 0;
3207         put_cpu_var(bh_accounting);
3208 }
3209
3210 static int buffer_cpu_notify(struct notifier_block *self,
3211                               unsigned long action, void *hcpu)
3212 {
3213         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3214                 buffer_exit_cpu((unsigned long)hcpu);
3215         return NOTIFY_OK;
3216 }
3217
3218 void __init buffer_init(void)
3219 {
3220         int nrpages;
3221
3222         bh_cachep = KMEM_CACHE(buffer_head,
3223                         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3224
3225         /*
3226          * Limit the bh occupancy to 10% of ZONE_NORMAL
3227          */
3228         nrpages = (nr_free_buffer_pages() * 10) / 100;
3229         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3230         hotcpu_notifier(buffer_cpu_notify, 0);
3231 }
3232
3233 EXPORT_SYMBOL(__bforget);
3234 EXPORT_SYMBOL(__brelse);
3235 EXPORT_SYMBOL(__wait_on_buffer);
3236 EXPORT_SYMBOL(block_commit_write);
3237 EXPORT_SYMBOL(block_prepare_write);
3238 EXPORT_SYMBOL(block_page_mkwrite);
3239 EXPORT_SYMBOL(block_read_full_page);
3240 EXPORT_SYMBOL(block_sync_page);
3241 EXPORT_SYMBOL(block_truncate_page);
3242 EXPORT_SYMBOL(block_write_full_page);
3243 EXPORT_SYMBOL(cont_write_begin);
3244 EXPORT_SYMBOL(end_buffer_read_sync);
3245 EXPORT_SYMBOL(end_buffer_write_sync);
3246 EXPORT_SYMBOL(file_fsync);
3247 EXPORT_SYMBOL(fsync_bdev);
3248 EXPORT_SYMBOL(generic_block_bmap);
3249 EXPORT_SYMBOL(generic_commit_write);
3250 EXPORT_SYMBOL(generic_cont_expand_simple);
3251 EXPORT_SYMBOL(init_buffer);
3252 EXPORT_SYMBOL(invalidate_bdev);
3253 EXPORT_SYMBOL(ll_rw_block);
3254 EXPORT_SYMBOL(mark_buffer_dirty);
3255 EXPORT_SYMBOL(submit_bh);
3256 EXPORT_SYMBOL(sync_dirty_buffer);
3257 EXPORT_SYMBOL(unlock_buffer);