nfsd: simplify fh_verify access checks
[safe/jmp/linux-2.6] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34         WARN_ON(transaction->use_count == 0);
35         transaction->use_count--;
36         if (transaction->use_count == 0) {
37                 list_del_init(&transaction->list);
38                 memset(transaction, 0, sizeof(*transaction));
39                 kmem_cache_free(btrfs_transaction_cachep, transaction);
40         }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45         free_extent_buffer(root->commit_root);
46         root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54         struct btrfs_transaction *cur_trans;
55         cur_trans = root->fs_info->running_transaction;
56         if (!cur_trans) {
57                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58                                              GFP_NOFS);
59                 BUG_ON(!cur_trans);
60                 root->fs_info->generation++;
61                 cur_trans->num_writers = 1;
62                 cur_trans->num_joined = 0;
63                 cur_trans->transid = root->fs_info->generation;
64                 init_waitqueue_head(&cur_trans->writer_wait);
65                 init_waitqueue_head(&cur_trans->commit_wait);
66                 cur_trans->in_commit = 0;
67                 cur_trans->blocked = 0;
68                 cur_trans->use_count = 1;
69                 cur_trans->commit_done = 0;
70                 cur_trans->start_time = get_seconds();
71
72                 cur_trans->delayed_refs.root.rb_node = NULL;
73                 cur_trans->delayed_refs.num_entries = 0;
74                 cur_trans->delayed_refs.num_heads_ready = 0;
75                 cur_trans->delayed_refs.num_heads = 0;
76                 cur_trans->delayed_refs.flushing = 0;
77                 cur_trans->delayed_refs.run_delayed_start = 0;
78                 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82                 extent_io_tree_init(&cur_trans->dirty_pages,
83                                      root->fs_info->btree_inode->i_mapping,
84                                      GFP_NOFS);
85                 spin_lock(&root->fs_info->new_trans_lock);
86                 root->fs_info->running_transaction = cur_trans;
87                 spin_unlock(&root->fs_info->new_trans_lock);
88         } else {
89                 cur_trans->num_writers++;
90                 cur_trans->num_joined++;
91         }
92
93         return 0;
94 }
95
96 /*
97  * this does all the record keeping required to make sure that a reference
98  * counted root is properly recorded in a given transaction.  This is required
99  * to make sure the old root from before we joined the transaction is deleted
100  * when the transaction commits
101  */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103                                          struct btrfs_root *root)
104 {
105         if (root->ref_cows && root->last_trans < trans->transid) {
106                 WARN_ON(root == root->fs_info->extent_root);
107                 WARN_ON(root->commit_root != root->node);
108
109                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110                            (unsigned long)root->root_key.objectid,
111                            BTRFS_ROOT_TRANS_TAG);
112                 root->last_trans = trans->transid;
113                 btrfs_init_reloc_root(trans, root);
114         }
115         return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119                                struct btrfs_root *root)
120 {
121         if (!root->ref_cows)
122                 return 0;
123
124         mutex_lock(&root->fs_info->trans_mutex);
125         if (root->last_trans == trans->transid) {
126                 mutex_unlock(&root->fs_info->trans_mutex);
127                 return 0;
128         }
129
130         record_root_in_trans(trans, root);
131         mutex_unlock(&root->fs_info->trans_mutex);
132         return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136  * when this is done, it is safe to start a new transaction, but the current
137  * transaction might not be fully on disk.
138  */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141         struct btrfs_transaction *cur_trans;
142
143         cur_trans = root->fs_info->running_transaction;
144         if (cur_trans && cur_trans->blocked) {
145                 DEFINE_WAIT(wait);
146                 cur_trans->use_count++;
147                 while (1) {
148                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149                                         TASK_UNINTERRUPTIBLE);
150                         if (cur_trans->blocked) {
151                                 mutex_unlock(&root->fs_info->trans_mutex);
152                                 schedule();
153                                 mutex_lock(&root->fs_info->trans_mutex);
154                                 finish_wait(&root->fs_info->transaction_wait,
155                                             &wait);
156                         } else {
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                                 break;
160                         }
161                 }
162                 put_transaction(cur_trans);
163         }
164 }
165
166 enum btrfs_trans_type {
167         TRANS_START,
168         TRANS_JOIN,
169         TRANS_USERSPACE,
170 };
171
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173                                              int num_blocks, int type)
174 {
175         struct btrfs_trans_handle *h =
176                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177         int ret;
178
179         mutex_lock(&root->fs_info->trans_mutex);
180         if (!root->fs_info->log_root_recovering &&
181             ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
182              type == TRANS_USERSPACE))
183                 wait_current_trans(root);
184         ret = join_transaction(root);
185         BUG_ON(ret);
186
187         h->transid = root->fs_info->running_transaction->transid;
188         h->transaction = root->fs_info->running_transaction;
189         h->blocks_reserved = num_blocks;
190         h->blocks_used = 0;
191         h->block_group = 0;
192         h->alloc_exclude_nr = 0;
193         h->alloc_exclude_start = 0;
194         h->delayed_ref_updates = 0;
195
196         if (!current->journal_info && type != TRANS_USERSPACE)
197                 current->journal_info = h;
198
199         root->fs_info->running_transaction->use_count++;
200         record_root_in_trans(h, root);
201         mutex_unlock(&root->fs_info->trans_mutex);
202         return h;
203 }
204
205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
206                                                    int num_blocks)
207 {
208         return start_transaction(root, num_blocks, TRANS_START);
209 }
210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
211                                                    int num_blocks)
212 {
213         return start_transaction(root, num_blocks, TRANS_JOIN);
214 }
215
216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
217                                                          int num_blocks)
218 {
219         return start_transaction(r, num_blocks, TRANS_USERSPACE);
220 }
221
222 /* wait for a transaction commit to be fully complete */
223 static noinline int wait_for_commit(struct btrfs_root *root,
224                                     struct btrfs_transaction *commit)
225 {
226         DEFINE_WAIT(wait);
227         mutex_lock(&root->fs_info->trans_mutex);
228         while (!commit->commit_done) {
229                 prepare_to_wait(&commit->commit_wait, &wait,
230                                 TASK_UNINTERRUPTIBLE);
231                 if (commit->commit_done)
232                         break;
233                 mutex_unlock(&root->fs_info->trans_mutex);
234                 schedule();
235                 mutex_lock(&root->fs_info->trans_mutex);
236         }
237         mutex_unlock(&root->fs_info->trans_mutex);
238         finish_wait(&commit->commit_wait, &wait);
239         return 0;
240 }
241
242 #if 0
243 /*
244  * rate limit against the drop_snapshot code.  This helps to slow down new
245  * operations if the drop_snapshot code isn't able to keep up.
246  */
247 static void throttle_on_drops(struct btrfs_root *root)
248 {
249         struct btrfs_fs_info *info = root->fs_info;
250         int harder_count = 0;
251
252 harder:
253         if (atomic_read(&info->throttles)) {
254                 DEFINE_WAIT(wait);
255                 int thr;
256                 thr = atomic_read(&info->throttle_gen);
257
258                 do {
259                         prepare_to_wait(&info->transaction_throttle,
260                                         &wait, TASK_UNINTERRUPTIBLE);
261                         if (!atomic_read(&info->throttles)) {
262                                 finish_wait(&info->transaction_throttle, &wait);
263                                 break;
264                         }
265                         schedule();
266                         finish_wait(&info->transaction_throttle, &wait);
267                 } while (thr == atomic_read(&info->throttle_gen));
268                 harder_count++;
269
270                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
271                     harder_count < 2)
272                         goto harder;
273
274                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
275                     harder_count < 10)
276                         goto harder;
277
278                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
279                     harder_count < 20)
280                         goto harder;
281         }
282 }
283 #endif
284
285 void btrfs_throttle(struct btrfs_root *root)
286 {
287         mutex_lock(&root->fs_info->trans_mutex);
288         if (!root->fs_info->open_ioctl_trans)
289                 wait_current_trans(root);
290         mutex_unlock(&root->fs_info->trans_mutex);
291 }
292
293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
294                           struct btrfs_root *root, int throttle)
295 {
296         struct btrfs_transaction *cur_trans;
297         struct btrfs_fs_info *info = root->fs_info;
298         int count = 0;
299
300         while (count < 4) {
301                 unsigned long cur = trans->delayed_ref_updates;
302                 trans->delayed_ref_updates = 0;
303                 if (cur &&
304                     trans->transaction->delayed_refs.num_heads_ready > 64) {
305                         trans->delayed_ref_updates = 0;
306
307                         /*
308                          * do a full flush if the transaction is trying
309                          * to close
310                          */
311                         if (trans->transaction->delayed_refs.flushing)
312                                 cur = 0;
313                         btrfs_run_delayed_refs(trans, root, cur);
314                 } else {
315                         break;
316                 }
317                 count++;
318         }
319
320         mutex_lock(&info->trans_mutex);
321         cur_trans = info->running_transaction;
322         WARN_ON(cur_trans != trans->transaction);
323         WARN_ON(cur_trans->num_writers < 1);
324         cur_trans->num_writers--;
325
326         if (waitqueue_active(&cur_trans->writer_wait))
327                 wake_up(&cur_trans->writer_wait);
328         put_transaction(cur_trans);
329         mutex_unlock(&info->trans_mutex);
330
331         if (current->journal_info == trans)
332                 current->journal_info = NULL;
333         memset(trans, 0, sizeof(*trans));
334         kmem_cache_free(btrfs_trans_handle_cachep, trans);
335
336         return 0;
337 }
338
339 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
340                           struct btrfs_root *root)
341 {
342         return __btrfs_end_transaction(trans, root, 0);
343 }
344
345 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
346                                    struct btrfs_root *root)
347 {
348         return __btrfs_end_transaction(trans, root, 1);
349 }
350
351 /*
352  * when btree blocks are allocated, they have some corresponding bits set for
353  * them in one of two extent_io trees.  This is used to make sure all of
354  * those extents are sent to disk but does not wait on them
355  */
356 int btrfs_write_marked_extents(struct btrfs_root *root,
357                                struct extent_io_tree *dirty_pages)
358 {
359         int ret;
360         int err = 0;
361         int werr = 0;
362         struct page *page;
363         struct inode *btree_inode = root->fs_info->btree_inode;
364         u64 start = 0;
365         u64 end;
366         unsigned long index;
367
368         while (1) {
369                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
370                                             EXTENT_DIRTY);
371                 if (ret)
372                         break;
373                 while (start <= end) {
374                         cond_resched();
375
376                         index = start >> PAGE_CACHE_SHIFT;
377                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
378                         page = find_get_page(btree_inode->i_mapping, index);
379                         if (!page)
380                                 continue;
381
382                         btree_lock_page_hook(page);
383                         if (!page->mapping) {
384                                 unlock_page(page);
385                                 page_cache_release(page);
386                                 continue;
387                         }
388
389                         if (PageWriteback(page)) {
390                                 if (PageDirty(page))
391                                         wait_on_page_writeback(page);
392                                 else {
393                                         unlock_page(page);
394                                         page_cache_release(page);
395                                         continue;
396                                 }
397                         }
398                         err = write_one_page(page, 0);
399                         if (err)
400                                 werr = err;
401                         page_cache_release(page);
402                 }
403         }
404         if (err)
405                 werr = err;
406         return werr;
407 }
408
409 /*
410  * when btree blocks are allocated, they have some corresponding bits set for
411  * them in one of two extent_io trees.  This is used to make sure all of
412  * those extents are on disk for transaction or log commit.  We wait
413  * on all the pages and clear them from the dirty pages state tree
414  */
415 int btrfs_wait_marked_extents(struct btrfs_root *root,
416                               struct extent_io_tree *dirty_pages)
417 {
418         int ret;
419         int err = 0;
420         int werr = 0;
421         struct page *page;
422         struct inode *btree_inode = root->fs_info->btree_inode;
423         u64 start = 0;
424         u64 end;
425         unsigned long index;
426
427         while (1) {
428                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
429                                             EXTENT_DIRTY);
430                 if (ret)
431                         break;
432
433                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
434                 while (start <= end) {
435                         index = start >> PAGE_CACHE_SHIFT;
436                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
437                         page = find_get_page(btree_inode->i_mapping, index);
438                         if (!page)
439                                 continue;
440                         if (PageDirty(page)) {
441                                 btree_lock_page_hook(page);
442                                 wait_on_page_writeback(page);
443                                 err = write_one_page(page, 0);
444                                 if (err)
445                                         werr = err;
446                         }
447                         wait_on_page_writeback(page);
448                         page_cache_release(page);
449                         cond_resched();
450                 }
451         }
452         if (err)
453                 werr = err;
454         return werr;
455 }
456
457 /*
458  * when btree blocks are allocated, they have some corresponding bits set for
459  * them in one of two extent_io trees.  This is used to make sure all of
460  * those extents are on disk for transaction or log commit
461  */
462 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
463                                         struct extent_io_tree *dirty_pages)
464 {
465         int ret;
466         int ret2;
467
468         ret = btrfs_write_marked_extents(root, dirty_pages);
469         ret2 = btrfs_wait_marked_extents(root, dirty_pages);
470         return ret || ret2;
471 }
472
473 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
474                                      struct btrfs_root *root)
475 {
476         if (!trans || !trans->transaction) {
477                 struct inode *btree_inode;
478                 btree_inode = root->fs_info->btree_inode;
479                 return filemap_write_and_wait(btree_inode->i_mapping);
480         }
481         return btrfs_write_and_wait_marked_extents(root,
482                                            &trans->transaction->dirty_pages);
483 }
484
485 /*
486  * this is used to update the root pointer in the tree of tree roots.
487  *
488  * But, in the case of the extent allocation tree, updating the root
489  * pointer may allocate blocks which may change the root of the extent
490  * allocation tree.
491  *
492  * So, this loops and repeats and makes sure the cowonly root didn't
493  * change while the root pointer was being updated in the metadata.
494  */
495 static int update_cowonly_root(struct btrfs_trans_handle *trans,
496                                struct btrfs_root *root)
497 {
498         int ret;
499         u64 old_root_bytenr;
500         struct btrfs_root *tree_root = root->fs_info->tree_root;
501
502         btrfs_write_dirty_block_groups(trans, root);
503
504         while (1) {
505                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
506                 if (old_root_bytenr == root->node->start)
507                         break;
508
509                 btrfs_set_root_node(&root->root_item, root->node);
510                 ret = btrfs_update_root(trans, tree_root,
511                                         &root->root_key,
512                                         &root->root_item);
513                 BUG_ON(ret);
514
515                 ret = btrfs_write_dirty_block_groups(trans, root);
516                 BUG_ON(ret);
517         }
518
519         if (root != root->fs_info->extent_root)
520                 switch_commit_root(root);
521
522         return 0;
523 }
524
525 /*
526  * update all the cowonly tree roots on disk
527  */
528 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
529                                          struct btrfs_root *root)
530 {
531         struct btrfs_fs_info *fs_info = root->fs_info;
532         struct list_head *next;
533         struct extent_buffer *eb;
534         int ret;
535
536         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
537         BUG_ON(ret);
538
539         eb = btrfs_lock_root_node(fs_info->tree_root);
540         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
541         btrfs_tree_unlock(eb);
542         free_extent_buffer(eb);
543
544         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
545         BUG_ON(ret);
546
547         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
548                 next = fs_info->dirty_cowonly_roots.next;
549                 list_del_init(next);
550                 root = list_entry(next, struct btrfs_root, dirty_list);
551
552                 update_cowonly_root(trans, root);
553         }
554
555         down_write(&fs_info->extent_commit_sem);
556         switch_commit_root(fs_info->extent_root);
557         up_write(&fs_info->extent_commit_sem);
558
559         return 0;
560 }
561
562 /*
563  * dead roots are old snapshots that need to be deleted.  This allocates
564  * a dirty root struct and adds it into the list of dead roots that need to
565  * be deleted
566  */
567 int btrfs_add_dead_root(struct btrfs_root *root)
568 {
569         mutex_lock(&root->fs_info->trans_mutex);
570         list_add(&root->root_list, &root->fs_info->dead_roots);
571         mutex_unlock(&root->fs_info->trans_mutex);
572         return 0;
573 }
574
575 /*
576  * update all the cowonly tree roots on disk
577  */
578 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
579                                     struct btrfs_root *root)
580 {
581         struct btrfs_root *gang[8];
582         struct btrfs_fs_info *fs_info = root->fs_info;
583         int i;
584         int ret;
585         int err = 0;
586
587         while (1) {
588                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
589                                                  (void **)gang, 0,
590                                                  ARRAY_SIZE(gang),
591                                                  BTRFS_ROOT_TRANS_TAG);
592                 if (ret == 0)
593                         break;
594                 for (i = 0; i < ret; i++) {
595                         root = gang[i];
596                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
597                                         (unsigned long)root->root_key.objectid,
598                                         BTRFS_ROOT_TRANS_TAG);
599
600                         btrfs_free_log(trans, root);
601                         btrfs_update_reloc_root(trans, root);
602
603                         if (root->commit_root != root->node) {
604                                 switch_commit_root(root);
605                                 btrfs_set_root_node(&root->root_item,
606                                                     root->node);
607                         }
608
609                         err = btrfs_update_root(trans, fs_info->tree_root,
610                                                 &root->root_key,
611                                                 &root->root_item);
612                         if (err)
613                                 break;
614                 }
615         }
616         return err;
617 }
618
619 /*
620  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
621  * otherwise every leaf in the btree is read and defragged.
622  */
623 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
624 {
625         struct btrfs_fs_info *info = root->fs_info;
626         int ret;
627         struct btrfs_trans_handle *trans;
628         unsigned long nr;
629
630         smp_mb();
631         if (root->defrag_running)
632                 return 0;
633         trans = btrfs_start_transaction(root, 1);
634         while (1) {
635                 root->defrag_running = 1;
636                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
637                 nr = trans->blocks_used;
638                 btrfs_end_transaction(trans, root);
639                 btrfs_btree_balance_dirty(info->tree_root, nr);
640                 cond_resched();
641
642                 trans = btrfs_start_transaction(root, 1);
643                 if (root->fs_info->closing || ret != -EAGAIN)
644                         break;
645         }
646         root->defrag_running = 0;
647         smp_mb();
648         btrfs_end_transaction(trans, root);
649         return 0;
650 }
651
652 #if 0
653 /*
654  * when dropping snapshots, we generate a ton of delayed refs, and it makes
655  * sense not to join the transaction while it is trying to flush the current
656  * queue of delayed refs out.
657  *
658  * This is used by the drop snapshot code only
659  */
660 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
661 {
662         DEFINE_WAIT(wait);
663
664         mutex_lock(&info->trans_mutex);
665         while (info->running_transaction &&
666                info->running_transaction->delayed_refs.flushing) {
667                 prepare_to_wait(&info->transaction_wait, &wait,
668                                 TASK_UNINTERRUPTIBLE);
669                 mutex_unlock(&info->trans_mutex);
670
671                 schedule();
672
673                 mutex_lock(&info->trans_mutex);
674                 finish_wait(&info->transaction_wait, &wait);
675         }
676         mutex_unlock(&info->trans_mutex);
677         return 0;
678 }
679
680 /*
681  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
682  * all of them
683  */
684 int btrfs_drop_dead_root(struct btrfs_root *root)
685 {
686         struct btrfs_trans_handle *trans;
687         struct btrfs_root *tree_root = root->fs_info->tree_root;
688         unsigned long nr;
689         int ret;
690
691         while (1) {
692                 /*
693                  * we don't want to jump in and create a bunch of
694                  * delayed refs if the transaction is starting to close
695                  */
696                 wait_transaction_pre_flush(tree_root->fs_info);
697                 trans = btrfs_start_transaction(tree_root, 1);
698
699                 /*
700                  * we've joined a transaction, make sure it isn't
701                  * closing right now
702                  */
703                 if (trans->transaction->delayed_refs.flushing) {
704                         btrfs_end_transaction(trans, tree_root);
705                         continue;
706                 }
707
708                 ret = btrfs_drop_snapshot(trans, root);
709                 if (ret != -EAGAIN)
710                         break;
711
712                 ret = btrfs_update_root(trans, tree_root,
713                                         &root->root_key,
714                                         &root->root_item);
715                 if (ret)
716                         break;
717
718                 nr = trans->blocks_used;
719                 ret = btrfs_end_transaction(trans, tree_root);
720                 BUG_ON(ret);
721
722                 btrfs_btree_balance_dirty(tree_root, nr);
723                 cond_resched();
724         }
725         BUG_ON(ret);
726
727         ret = btrfs_del_root(trans, tree_root, &root->root_key);
728         BUG_ON(ret);
729
730         nr = trans->blocks_used;
731         ret = btrfs_end_transaction(trans, tree_root);
732         BUG_ON(ret);
733
734         free_extent_buffer(root->node);
735         free_extent_buffer(root->commit_root);
736         kfree(root);
737
738         btrfs_btree_balance_dirty(tree_root, nr);
739         return ret;
740 }
741 #endif
742
743 /*
744  * new snapshots need to be created at a very specific time in the
745  * transaction commit.  This does the actual creation
746  */
747 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
748                                    struct btrfs_fs_info *fs_info,
749                                    struct btrfs_pending_snapshot *pending)
750 {
751         struct btrfs_key key;
752         struct btrfs_root_item *new_root_item;
753         struct btrfs_root *tree_root = fs_info->tree_root;
754         struct btrfs_root *root = pending->root;
755         struct extent_buffer *tmp;
756         struct extent_buffer *old;
757         int ret;
758         u64 objectid;
759
760         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
761         if (!new_root_item) {
762                 ret = -ENOMEM;
763                 goto fail;
764         }
765         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
766         if (ret)
767                 goto fail;
768
769         record_root_in_trans(trans, root);
770         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
771         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
772
773         key.objectid = objectid;
774         /* record when the snapshot was created in key.offset */
775         key.offset = trans->transid;
776         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
777
778         old = btrfs_lock_root_node(root);
779         btrfs_cow_block(trans, root, old, NULL, 0, &old);
780         btrfs_set_lock_blocking(old);
781
782         btrfs_copy_root(trans, root, old, &tmp, objectid);
783         btrfs_tree_unlock(old);
784         free_extent_buffer(old);
785
786         btrfs_set_root_node(new_root_item, tmp);
787         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
788                                 new_root_item);
789         btrfs_tree_unlock(tmp);
790         free_extent_buffer(tmp);
791         if (ret)
792                 goto fail;
793
794         key.offset = (u64)-1;
795         memcpy(&pending->root_key, &key, sizeof(key));
796 fail:
797         kfree(new_root_item);
798         btrfs_unreserve_metadata_space(root, 6);
799         return ret;
800 }
801
802 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
803                                    struct btrfs_pending_snapshot *pending)
804 {
805         int ret;
806         int namelen;
807         u64 index = 0;
808         struct btrfs_trans_handle *trans;
809         struct inode *parent_inode;
810         struct inode *inode;
811         struct btrfs_root *parent_root;
812
813         parent_inode = pending->dentry->d_parent->d_inode;
814         parent_root = BTRFS_I(parent_inode)->root;
815         trans = btrfs_join_transaction(parent_root, 1);
816
817         /*
818          * insert the directory item
819          */
820         namelen = strlen(pending->name);
821         ret = btrfs_set_inode_index(parent_inode, &index);
822         ret = btrfs_insert_dir_item(trans, parent_root,
823                             pending->name, namelen,
824                             parent_inode->i_ino,
825                             &pending->root_key, BTRFS_FT_DIR, index);
826
827         if (ret)
828                 goto fail;
829
830         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
831         ret = btrfs_update_inode(trans, parent_root, parent_inode);
832         BUG_ON(ret);
833
834         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
835                                  pending->root_key.objectid,
836                                  parent_root->root_key.objectid,
837                                  parent_inode->i_ino, index, pending->name,
838                                  namelen);
839
840         BUG_ON(ret);
841
842         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
843         d_instantiate(pending->dentry, inode);
844 fail:
845         btrfs_end_transaction(trans, fs_info->fs_root);
846         return ret;
847 }
848
849 /*
850  * create all the snapshots we've scheduled for creation
851  */
852 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
853                                              struct btrfs_fs_info *fs_info)
854 {
855         struct btrfs_pending_snapshot *pending;
856         struct list_head *head = &trans->transaction->pending_snapshots;
857         int ret;
858
859         list_for_each_entry(pending, head, list) {
860                 ret = create_pending_snapshot(trans, fs_info, pending);
861                 BUG_ON(ret);
862         }
863         return 0;
864 }
865
866 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
867                                              struct btrfs_fs_info *fs_info)
868 {
869         struct btrfs_pending_snapshot *pending;
870         struct list_head *head = &trans->transaction->pending_snapshots;
871         int ret;
872
873         while (!list_empty(head)) {
874                 pending = list_entry(head->next,
875                                      struct btrfs_pending_snapshot, list);
876                 ret = finish_pending_snapshot(fs_info, pending);
877                 BUG_ON(ret);
878                 list_del(&pending->list);
879                 kfree(pending->name);
880                 kfree(pending);
881         }
882         return 0;
883 }
884
885 static void update_super_roots(struct btrfs_root *root)
886 {
887         struct btrfs_root_item *root_item;
888         struct btrfs_super_block *super;
889
890         super = &root->fs_info->super_copy;
891
892         root_item = &root->fs_info->chunk_root->root_item;
893         super->chunk_root = root_item->bytenr;
894         super->chunk_root_generation = root_item->generation;
895         super->chunk_root_level = root_item->level;
896
897         root_item = &root->fs_info->tree_root->root_item;
898         super->root = root_item->bytenr;
899         super->generation = root_item->generation;
900         super->root_level = root_item->level;
901 }
902
903 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
904 {
905         int ret = 0;
906         spin_lock(&info->new_trans_lock);
907         if (info->running_transaction)
908                 ret = info->running_transaction->in_commit;
909         spin_unlock(&info->new_trans_lock);
910         return ret;
911 }
912
913 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
914                              struct btrfs_root *root)
915 {
916         unsigned long joined = 0;
917         unsigned long timeout = 1;
918         struct btrfs_transaction *cur_trans;
919         struct btrfs_transaction *prev_trans = NULL;
920         DEFINE_WAIT(wait);
921         int ret;
922         int should_grow = 0;
923         unsigned long now = get_seconds();
924         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
925
926         btrfs_run_ordered_operations(root, 0);
927
928         /* make a pass through all the delayed refs we have so far
929          * any runnings procs may add more while we are here
930          */
931         ret = btrfs_run_delayed_refs(trans, root, 0);
932         BUG_ON(ret);
933
934         cur_trans = trans->transaction;
935         /*
936          * set the flushing flag so procs in this transaction have to
937          * start sending their work down.
938          */
939         cur_trans->delayed_refs.flushing = 1;
940
941         ret = btrfs_run_delayed_refs(trans, root, 0);
942         BUG_ON(ret);
943
944         mutex_lock(&root->fs_info->trans_mutex);
945         if (cur_trans->in_commit) {
946                 cur_trans->use_count++;
947                 mutex_unlock(&root->fs_info->trans_mutex);
948                 btrfs_end_transaction(trans, root);
949
950                 ret = wait_for_commit(root, cur_trans);
951                 BUG_ON(ret);
952
953                 mutex_lock(&root->fs_info->trans_mutex);
954                 put_transaction(cur_trans);
955                 mutex_unlock(&root->fs_info->trans_mutex);
956
957                 return 0;
958         }
959
960         trans->transaction->in_commit = 1;
961         trans->transaction->blocked = 1;
962         if (cur_trans->list.prev != &root->fs_info->trans_list) {
963                 prev_trans = list_entry(cur_trans->list.prev,
964                                         struct btrfs_transaction, list);
965                 if (!prev_trans->commit_done) {
966                         prev_trans->use_count++;
967                         mutex_unlock(&root->fs_info->trans_mutex);
968
969                         wait_for_commit(root, prev_trans);
970
971                         mutex_lock(&root->fs_info->trans_mutex);
972                         put_transaction(prev_trans);
973                 }
974         }
975
976         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
977                 should_grow = 1;
978
979         do {
980                 int snap_pending = 0;
981                 joined = cur_trans->num_joined;
982                 if (!list_empty(&trans->transaction->pending_snapshots))
983                         snap_pending = 1;
984
985                 WARN_ON(cur_trans != trans->transaction);
986                 prepare_to_wait(&cur_trans->writer_wait, &wait,
987                                 TASK_UNINTERRUPTIBLE);
988
989                 if (cur_trans->num_writers > 1)
990                         timeout = MAX_SCHEDULE_TIMEOUT;
991                 else if (should_grow)
992                         timeout = 1;
993
994                 mutex_unlock(&root->fs_info->trans_mutex);
995
996                 if (flush_on_commit) {
997                         btrfs_start_delalloc_inodes(root);
998                         ret = btrfs_wait_ordered_extents(root, 0);
999                         BUG_ON(ret);
1000                 } else if (snap_pending) {
1001                         ret = btrfs_wait_ordered_extents(root, 1);
1002                         BUG_ON(ret);
1003                 }
1004
1005                 /*
1006                  * rename don't use btrfs_join_transaction, so, once we
1007                  * set the transaction to blocked above, we aren't going
1008                  * to get any new ordered operations.  We can safely run
1009                  * it here and no for sure that nothing new will be added
1010                  * to the list
1011                  */
1012                 btrfs_run_ordered_operations(root, 1);
1013
1014                 smp_mb();
1015                 if (cur_trans->num_writers > 1 || should_grow)
1016                         schedule_timeout(timeout);
1017
1018                 mutex_lock(&root->fs_info->trans_mutex);
1019                 finish_wait(&cur_trans->writer_wait, &wait);
1020         } while (cur_trans->num_writers > 1 ||
1021                  (should_grow && cur_trans->num_joined != joined));
1022
1023         ret = create_pending_snapshots(trans, root->fs_info);
1024         BUG_ON(ret);
1025
1026         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1027         BUG_ON(ret);
1028
1029         WARN_ON(cur_trans != trans->transaction);
1030
1031         /* btrfs_commit_tree_roots is responsible for getting the
1032          * various roots consistent with each other.  Every pointer
1033          * in the tree of tree roots has to point to the most up to date
1034          * root for every subvolume and other tree.  So, we have to keep
1035          * the tree logging code from jumping in and changing any
1036          * of the trees.
1037          *
1038          * At this point in the commit, there can't be any tree-log
1039          * writers, but a little lower down we drop the trans mutex
1040          * and let new people in.  By holding the tree_log_mutex
1041          * from now until after the super is written, we avoid races
1042          * with the tree-log code.
1043          */
1044         mutex_lock(&root->fs_info->tree_log_mutex);
1045
1046         ret = commit_fs_roots(trans, root);
1047         BUG_ON(ret);
1048
1049         /* commit_fs_roots gets rid of all the tree log roots, it is now
1050          * safe to free the root of tree log roots
1051          */
1052         btrfs_free_log_root_tree(trans, root->fs_info);
1053
1054         ret = commit_cowonly_roots(trans, root);
1055         BUG_ON(ret);
1056
1057         btrfs_prepare_extent_commit(trans, root);
1058
1059         cur_trans = root->fs_info->running_transaction;
1060         spin_lock(&root->fs_info->new_trans_lock);
1061         root->fs_info->running_transaction = NULL;
1062         spin_unlock(&root->fs_info->new_trans_lock);
1063
1064         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1065                             root->fs_info->tree_root->node);
1066         switch_commit_root(root->fs_info->tree_root);
1067
1068         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1069                             root->fs_info->chunk_root->node);
1070         switch_commit_root(root->fs_info->chunk_root);
1071
1072         update_super_roots(root);
1073
1074         if (!root->fs_info->log_root_recovering) {
1075                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1076                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1077         }
1078
1079         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1080                sizeof(root->fs_info->super_copy));
1081
1082         trans->transaction->blocked = 0;
1083
1084         wake_up(&root->fs_info->transaction_wait);
1085
1086         mutex_unlock(&root->fs_info->trans_mutex);
1087         ret = btrfs_write_and_wait_transaction(trans, root);
1088         BUG_ON(ret);
1089         write_ctree_super(trans, root, 0);
1090
1091         /*
1092          * the super is written, we can safely allow the tree-loggers
1093          * to go about their business
1094          */
1095         mutex_unlock(&root->fs_info->tree_log_mutex);
1096
1097         btrfs_finish_extent_commit(trans, root);
1098
1099         /* do the directory inserts of any pending snapshot creations */
1100         finish_pending_snapshots(trans, root->fs_info);
1101
1102         mutex_lock(&root->fs_info->trans_mutex);
1103
1104         cur_trans->commit_done = 1;
1105
1106         root->fs_info->last_trans_committed = cur_trans->transid;
1107
1108         wake_up(&cur_trans->commit_wait);
1109
1110         put_transaction(cur_trans);
1111         put_transaction(cur_trans);
1112
1113         mutex_unlock(&root->fs_info->trans_mutex);
1114
1115         if (current->journal_info == trans)
1116                 current->journal_info = NULL;
1117
1118         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1119         return ret;
1120 }
1121
1122 /*
1123  * interface function to delete all the snapshots we have scheduled for deletion
1124  */
1125 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1126 {
1127         LIST_HEAD(list);
1128         struct btrfs_fs_info *fs_info = root->fs_info;
1129
1130         mutex_lock(&fs_info->trans_mutex);
1131         list_splice_init(&fs_info->dead_roots, &list);
1132         mutex_unlock(&fs_info->trans_mutex);
1133
1134         while (!list_empty(&list)) {
1135                 root = list_entry(list.next, struct btrfs_root, root_list);
1136                 list_del(&root->root_list);
1137
1138                 if (btrfs_header_backref_rev(root->node) <
1139                     BTRFS_MIXED_BACKREF_REV)
1140                         btrfs_drop_snapshot(root, 0);
1141                 else
1142                         btrfs_drop_snapshot(root, 1);
1143         }
1144         return 0;
1145 }