Btrfs: fix some metadata enospc issues
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93         int err;
94
95         err = btrfs_init_acl(inode, dir);
96         if (!err)
97                 err = btrfs_xattr_security_init(inode, dir);
98         return err;
99 }
100
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107                                 struct btrfs_root *root, struct inode *inode,
108                                 u64 start, size_t size, size_t compressed_size,
109                                 struct page **compressed_pages)
110 {
111         struct btrfs_key key;
112         struct btrfs_path *path;
113         struct extent_buffer *leaf;
114         struct page *page = NULL;
115         char *kaddr;
116         unsigned long ptr;
117         struct btrfs_file_extent_item *ei;
118         int err = 0;
119         int ret;
120         size_t cur_size = size;
121         size_t datasize;
122         unsigned long offset;
123         int use_compress = 0;
124
125         if (compressed_size && compressed_pages) {
126                 use_compress = 1;
127                 cur_size = compressed_size;
128         }
129
130         path = btrfs_alloc_path();
131         if (!path)
132                 return -ENOMEM;
133
134         path->leave_spinning = 1;
135         btrfs_set_trans_block_group(trans, inode);
136
137         key.objectid = inode->i_ino;
138         key.offset = start;
139         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140         datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142         inode_add_bytes(inode, size);
143         ret = btrfs_insert_empty_item(trans, root, path, &key,
144                                       datasize);
145         BUG_ON(ret);
146         if (ret) {
147                 err = ret;
148                 goto fail;
149         }
150         leaf = path->nodes[0];
151         ei = btrfs_item_ptr(leaf, path->slots[0],
152                             struct btrfs_file_extent_item);
153         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155         btrfs_set_file_extent_encryption(leaf, ei, 0);
156         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158         ptr = btrfs_file_extent_inline_start(ei);
159
160         if (use_compress) {
161                 struct page *cpage;
162                 int i = 0;
163                 while (compressed_size > 0) {
164                         cpage = compressed_pages[i];
165                         cur_size = min_t(unsigned long, compressed_size,
166                                        PAGE_CACHE_SIZE);
167
168                         kaddr = kmap_atomic(cpage, KM_USER0);
169                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
170                         kunmap_atomic(kaddr, KM_USER0);
171
172                         i++;
173                         ptr += cur_size;
174                         compressed_size -= cur_size;
175                 }
176                 btrfs_set_file_extent_compression(leaf, ei,
177                                                   BTRFS_COMPRESS_ZLIB);
178         } else {
179                 page = find_get_page(inode->i_mapping,
180                                      start >> PAGE_CACHE_SHIFT);
181                 btrfs_set_file_extent_compression(leaf, ei, 0);
182                 kaddr = kmap_atomic(page, KM_USER0);
183                 offset = start & (PAGE_CACHE_SIZE - 1);
184                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185                 kunmap_atomic(kaddr, KM_USER0);
186                 page_cache_release(page);
187         }
188         btrfs_mark_buffer_dirty(leaf);
189         btrfs_free_path(path);
190
191         BTRFS_I(inode)->disk_i_size = inode->i_size;
192         btrfs_update_inode(trans, root, inode);
193         return 0;
194 fail:
195         btrfs_free_path(path);
196         return err;
197 }
198
199
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206                                  struct btrfs_root *root,
207                                  struct inode *inode, u64 start, u64 end,
208                                  size_t compressed_size,
209                                  struct page **compressed_pages)
210 {
211         u64 isize = i_size_read(inode);
212         u64 actual_end = min(end + 1, isize);
213         u64 inline_len = actual_end - start;
214         u64 aligned_end = (end + root->sectorsize - 1) &
215                         ~((u64)root->sectorsize - 1);
216         u64 hint_byte;
217         u64 data_len = inline_len;
218         int ret;
219
220         if (compressed_size)
221                 data_len = compressed_size;
222
223         if (start > 0 ||
224             actual_end >= PAGE_CACHE_SIZE ||
225             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226             (!compressed_size &&
227             (actual_end & (root->sectorsize - 1)) == 0) ||
228             end + 1 < isize ||
229             data_len > root->fs_info->max_inline) {
230                 return 1;
231         }
232
233         ret = btrfs_drop_extents(trans, root, inode, start,
234                                  aligned_end, aligned_end, start,
235                                  &hint_byte, 1);
236         BUG_ON(ret);
237
238         if (isize > actual_end)
239                 inline_len = min_t(u64, isize, actual_end);
240         ret = insert_inline_extent(trans, root, inode, start,
241                                    inline_len, compressed_size,
242                                    compressed_pages);
243         BUG_ON(ret);
244         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245         return 0;
246 }
247
248 struct async_extent {
249         u64 start;
250         u64 ram_size;
251         u64 compressed_size;
252         struct page **pages;
253         unsigned long nr_pages;
254         struct list_head list;
255 };
256
257 struct async_cow {
258         struct inode *inode;
259         struct btrfs_root *root;
260         struct page *locked_page;
261         u64 start;
262         u64 end;
263         struct list_head extents;
264         struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268                                      u64 start, u64 ram_size,
269                                      u64 compressed_size,
270                                      struct page **pages,
271                                      unsigned long nr_pages)
272 {
273         struct async_extent *async_extent;
274
275         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276         async_extent->start = start;
277         async_extent->ram_size = ram_size;
278         async_extent->compressed_size = compressed_size;
279         async_extent->pages = pages;
280         async_extent->nr_pages = nr_pages;
281         list_add_tail(&async_extent->list, &cow->extents);
282         return 0;
283 }
284
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302                                         struct page *locked_page,
303                                         u64 start, u64 end,
304                                         struct async_cow *async_cow,
305                                         int *num_added)
306 {
307         struct btrfs_root *root = BTRFS_I(inode)->root;
308         struct btrfs_trans_handle *trans;
309         u64 num_bytes;
310         u64 orig_start;
311         u64 disk_num_bytes;
312         u64 blocksize = root->sectorsize;
313         u64 actual_end;
314         u64 isize = i_size_read(inode);
315         int ret = 0;
316         struct page **pages = NULL;
317         unsigned long nr_pages;
318         unsigned long nr_pages_ret = 0;
319         unsigned long total_compressed = 0;
320         unsigned long total_in = 0;
321         unsigned long max_compressed = 128 * 1024;
322         unsigned long max_uncompressed = 128 * 1024;
323         int i;
324         int will_compress;
325
326         orig_start = start;
327
328         actual_end = min_t(u64, isize, end + 1);
329 again:
330         will_compress = 0;
331         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334         /*
335          * we don't want to send crud past the end of i_size through
336          * compression, that's just a waste of CPU time.  So, if the
337          * end of the file is before the start of our current
338          * requested range of bytes, we bail out to the uncompressed
339          * cleanup code that can deal with all of this.
340          *
341          * It isn't really the fastest way to fix things, but this is a
342          * very uncommon corner.
343          */
344         if (actual_end <= start)
345                 goto cleanup_and_bail_uncompressed;
346
347         total_compressed = actual_end - start;
348
349         /* we want to make sure that amount of ram required to uncompress
350          * an extent is reasonable, so we limit the total size in ram
351          * of a compressed extent to 128k.  This is a crucial number
352          * because it also controls how easily we can spread reads across
353          * cpus for decompression.
354          *
355          * We also want to make sure the amount of IO required to do
356          * a random read is reasonably small, so we limit the size of
357          * a compressed extent to 128k.
358          */
359         total_compressed = min(total_compressed, max_uncompressed);
360         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361         num_bytes = max(blocksize,  num_bytes);
362         disk_num_bytes = num_bytes;
363         total_in = 0;
364         ret = 0;
365
366         /*
367          * we do compression for mount -o compress and when the
368          * inode has not been flagged as nocompress.  This flag can
369          * change at any time if we discover bad compression ratios.
370          */
371         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372             btrfs_test_opt(root, COMPRESS)) {
373                 WARN_ON(pages);
374                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377                                                 total_compressed, pages,
378                                                 nr_pages, &nr_pages_ret,
379                                                 &total_in,
380                                                 &total_compressed,
381                                                 max_compressed);
382
383                 if (!ret) {
384                         unsigned long offset = total_compressed &
385                                 (PAGE_CACHE_SIZE - 1);
386                         struct page *page = pages[nr_pages_ret - 1];
387                         char *kaddr;
388
389                         /* zero the tail end of the last page, we might be
390                          * sending it down to disk
391                          */
392                         if (offset) {
393                                 kaddr = kmap_atomic(page, KM_USER0);
394                                 memset(kaddr + offset, 0,
395                                        PAGE_CACHE_SIZE - offset);
396                                 kunmap_atomic(kaddr, KM_USER0);
397                         }
398                         will_compress = 1;
399                 }
400         }
401         if (start == 0) {
402                 trans = btrfs_join_transaction(root, 1);
403                 BUG_ON(!trans);
404                 btrfs_set_trans_block_group(trans, inode);
405
406                 /* lets try to make an inline extent */
407                 if (ret || total_in < (actual_end - start)) {
408                         /* we didn't compress the entire range, try
409                          * to make an uncompressed inline extent.
410                          */
411                         ret = cow_file_range_inline(trans, root, inode,
412                                                     start, end, 0, NULL);
413                 } else {
414                         /* try making a compressed inline extent */
415                         ret = cow_file_range_inline(trans, root, inode,
416                                                     start, end,
417                                                     total_compressed, pages);
418                 }
419                 btrfs_end_transaction(trans, root);
420                 if (ret == 0) {
421                         /*
422                          * inline extent creation worked, we don't need
423                          * to create any more async work items.  Unlock
424                          * and free up our temp pages.
425                          */
426                         extent_clear_unlock_delalloc(inode,
427                              &BTRFS_I(inode)->io_tree,
428                              start, end, NULL,
429                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430                              EXTENT_CLEAR_DELALLOC |
431                              EXTENT_CLEAR_ACCOUNTING |
432                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
433                         ret = 0;
434                         goto free_pages_out;
435                 }
436         }
437
438         if (will_compress) {
439                 /*
440                  * we aren't doing an inline extent round the compressed size
441                  * up to a block size boundary so the allocator does sane
442                  * things
443                  */
444                 total_compressed = (total_compressed + blocksize - 1) &
445                         ~(blocksize - 1);
446
447                 /*
448                  * one last check to make sure the compression is really a
449                  * win, compare the page count read with the blocks on disk
450                  */
451                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452                         ~(PAGE_CACHE_SIZE - 1);
453                 if (total_compressed >= total_in) {
454                         will_compress = 0;
455                 } else {
456                         disk_num_bytes = total_compressed;
457                         num_bytes = total_in;
458                 }
459         }
460         if (!will_compress && pages) {
461                 /*
462                  * the compression code ran but failed to make things smaller,
463                  * free any pages it allocated and our page pointer array
464                  */
465                 for (i = 0; i < nr_pages_ret; i++) {
466                         WARN_ON(pages[i]->mapping);
467                         page_cache_release(pages[i]);
468                 }
469                 kfree(pages);
470                 pages = NULL;
471                 total_compressed = 0;
472                 nr_pages_ret = 0;
473
474                 /* flag the file so we don't compress in the future */
475                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
476         }
477         if (will_compress) {
478                 *num_added += 1;
479
480                 /* the async work queues will take care of doing actual
481                  * allocation on disk for these compressed pages,
482                  * and will submit them to the elevator.
483                  */
484                 add_async_extent(async_cow, start, num_bytes,
485                                  total_compressed, pages, nr_pages_ret);
486
487                 if (start + num_bytes < end && start + num_bytes < actual_end) {
488                         start += num_bytes;
489                         pages = NULL;
490                         cond_resched();
491                         goto again;
492                 }
493         } else {
494 cleanup_and_bail_uncompressed:
495                 /*
496                  * No compression, but we still need to write the pages in
497                  * the file we've been given so far.  redirty the locked
498                  * page if it corresponds to our extent and set things up
499                  * for the async work queue to run cow_file_range to do
500                  * the normal delalloc dance
501                  */
502                 if (page_offset(locked_page) >= start &&
503                     page_offset(locked_page) <= end) {
504                         __set_page_dirty_nobuffers(locked_page);
505                         /* unlocked later on in the async handlers */
506                 }
507                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508                 *num_added += 1;
509         }
510
511 out:
512         return 0;
513
514 free_pages_out:
515         for (i = 0; i < nr_pages_ret; i++) {
516                 WARN_ON(pages[i]->mapping);
517                 page_cache_release(pages[i]);
518         }
519         kfree(pages);
520
521         goto out;
522 }
523
524 /*
525  * phase two of compressed writeback.  This is the ordered portion
526  * of the code, which only gets called in the order the work was
527  * queued.  We walk all the async extents created by compress_file_range
528  * and send them down to the disk.
529  */
530 static noinline int submit_compressed_extents(struct inode *inode,
531                                               struct async_cow *async_cow)
532 {
533         struct async_extent *async_extent;
534         u64 alloc_hint = 0;
535         struct btrfs_trans_handle *trans;
536         struct btrfs_key ins;
537         struct extent_map *em;
538         struct btrfs_root *root = BTRFS_I(inode)->root;
539         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540         struct extent_io_tree *io_tree;
541         int ret;
542
543         if (list_empty(&async_cow->extents))
544                 return 0;
545
546         trans = btrfs_join_transaction(root, 1);
547
548         while (!list_empty(&async_cow->extents)) {
549                 async_extent = list_entry(async_cow->extents.next,
550                                           struct async_extent, list);
551                 list_del(&async_extent->list);
552
553                 io_tree = &BTRFS_I(inode)->io_tree;
554
555                 /* did the compression code fall back to uncompressed IO? */
556                 if (!async_extent->pages) {
557                         int page_started = 0;
558                         unsigned long nr_written = 0;
559
560                         lock_extent(io_tree, async_extent->start,
561                                     async_extent->start +
562                                     async_extent->ram_size - 1, GFP_NOFS);
563
564                         /* allocate blocks */
565                         cow_file_range(inode, async_cow->locked_page,
566                                        async_extent->start,
567                                        async_extent->start +
568                                        async_extent->ram_size - 1,
569                                        &page_started, &nr_written, 0);
570
571                         /*
572                          * if page_started, cow_file_range inserted an
573                          * inline extent and took care of all the unlocking
574                          * and IO for us.  Otherwise, we need to submit
575                          * all those pages down to the drive.
576                          */
577                         if (!page_started)
578                                 extent_write_locked_range(io_tree,
579                                                   inode, async_extent->start,
580                                                   async_extent->start +
581                                                   async_extent->ram_size - 1,
582                                                   btrfs_get_extent,
583                                                   WB_SYNC_ALL);
584                         kfree(async_extent);
585                         cond_resched();
586                         continue;
587                 }
588
589                 lock_extent(io_tree, async_extent->start,
590                             async_extent->start + async_extent->ram_size - 1,
591                             GFP_NOFS);
592                 /*
593                  * here we're doing allocation and writeback of the
594                  * compressed pages
595                  */
596                 btrfs_drop_extent_cache(inode, async_extent->start,
597                                         async_extent->start +
598                                         async_extent->ram_size - 1, 0);
599
600                 ret = btrfs_reserve_extent(trans, root,
601                                            async_extent->compressed_size,
602                                            async_extent->compressed_size,
603                                            0, alloc_hint,
604                                            (u64)-1, &ins, 1);
605                 BUG_ON(ret);
606                 em = alloc_extent_map(GFP_NOFS);
607                 em->start = async_extent->start;
608                 em->len = async_extent->ram_size;
609                 em->orig_start = em->start;
610
611                 em->block_start = ins.objectid;
612                 em->block_len = ins.offset;
613                 em->bdev = root->fs_info->fs_devices->latest_bdev;
614                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
615                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
616
617                 while (1) {
618                         write_lock(&em_tree->lock);
619                         ret = add_extent_mapping(em_tree, em);
620                         write_unlock(&em_tree->lock);
621                         if (ret != -EEXIST) {
622                                 free_extent_map(em);
623                                 break;
624                         }
625                         btrfs_drop_extent_cache(inode, async_extent->start,
626                                                 async_extent->start +
627                                                 async_extent->ram_size - 1, 0);
628                 }
629
630                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
631                                                ins.objectid,
632                                                async_extent->ram_size,
633                                                ins.offset,
634                                                BTRFS_ORDERED_COMPRESSED);
635                 BUG_ON(ret);
636
637                 btrfs_end_transaction(trans, root);
638
639                 /*
640                  * clear dirty, set writeback and unlock the pages.
641                  */
642                 extent_clear_unlock_delalloc(inode,
643                                 &BTRFS_I(inode)->io_tree,
644                                 async_extent->start,
645                                 async_extent->start +
646                                 async_extent->ram_size - 1,
647                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
648                                 EXTENT_CLEAR_UNLOCK |
649                                 EXTENT_CLEAR_DELALLOC |
650                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
651
652                 ret = btrfs_submit_compressed_write(inode,
653                                     async_extent->start,
654                                     async_extent->ram_size,
655                                     ins.objectid,
656                                     ins.offset, async_extent->pages,
657                                     async_extent->nr_pages);
658
659                 BUG_ON(ret);
660                 trans = btrfs_join_transaction(root, 1);
661                 alloc_hint = ins.objectid + ins.offset;
662                 kfree(async_extent);
663                 cond_resched();
664         }
665
666         btrfs_end_transaction(trans, root);
667         return 0;
668 }
669
670 /*
671  * when extent_io.c finds a delayed allocation range in the file,
672  * the call backs end up in this code.  The basic idea is to
673  * allocate extents on disk for the range, and create ordered data structs
674  * in ram to track those extents.
675  *
676  * locked_page is the page that writepage had locked already.  We use
677  * it to make sure we don't do extra locks or unlocks.
678  *
679  * *page_started is set to one if we unlock locked_page and do everything
680  * required to start IO on it.  It may be clean and already done with
681  * IO when we return.
682  */
683 static noinline int cow_file_range(struct inode *inode,
684                                    struct page *locked_page,
685                                    u64 start, u64 end, int *page_started,
686                                    unsigned long *nr_written,
687                                    int unlock)
688 {
689         struct btrfs_root *root = BTRFS_I(inode)->root;
690         struct btrfs_trans_handle *trans;
691         u64 alloc_hint = 0;
692         u64 num_bytes;
693         unsigned long ram_size;
694         u64 disk_num_bytes;
695         u64 cur_alloc_size;
696         u64 blocksize = root->sectorsize;
697         u64 actual_end;
698         u64 isize = i_size_read(inode);
699         struct btrfs_key ins;
700         struct extent_map *em;
701         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702         int ret = 0;
703
704         trans = btrfs_join_transaction(root, 1);
705         BUG_ON(!trans);
706         btrfs_set_trans_block_group(trans, inode);
707
708         actual_end = min_t(u64, isize, end + 1);
709
710         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711         num_bytes = max(blocksize,  num_bytes);
712         disk_num_bytes = num_bytes;
713         ret = 0;
714
715         if (start == 0) {
716                 /* lets try to make an inline extent */
717                 ret = cow_file_range_inline(trans, root, inode,
718                                             start, end, 0, NULL);
719                 if (ret == 0) {
720                         extent_clear_unlock_delalloc(inode,
721                                      &BTRFS_I(inode)->io_tree,
722                                      start, end, NULL,
723                                      EXTENT_CLEAR_UNLOCK_PAGE |
724                                      EXTENT_CLEAR_UNLOCK |
725                                      EXTENT_CLEAR_DELALLOC |
726                                      EXTENT_CLEAR_ACCOUNTING |
727                                      EXTENT_CLEAR_DIRTY |
728                                      EXTENT_SET_WRITEBACK |
729                                      EXTENT_END_WRITEBACK);
730                         *nr_written = *nr_written +
731                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
732                         *page_started = 1;
733                         ret = 0;
734                         goto out;
735                 }
736         }
737
738         BUG_ON(disk_num_bytes >
739                btrfs_super_total_bytes(&root->fs_info->super_copy));
740
741
742         read_lock(&BTRFS_I(inode)->extent_tree.lock);
743         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
744                                    start, num_bytes);
745         if (em) {
746                 /*
747                  * if block start isn't an actual block number then find the
748                  * first block in this inode and use that as a hint.  If that
749                  * block is also bogus then just don't worry about it.
750                  */
751                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
752                         free_extent_map(em);
753                         em = search_extent_mapping(em_tree, 0, 0);
754                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
755                                 alloc_hint = em->block_start;
756                         if (em)
757                                 free_extent_map(em);
758                 } else {
759                         alloc_hint = em->block_start;
760                         free_extent_map(em);
761                 }
762         }
763         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
764         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
765
766         while (disk_num_bytes > 0) {
767                 unsigned long op;
768
769                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
770                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771                                            root->sectorsize, 0, alloc_hint,
772                                            (u64)-1, &ins, 1);
773                 BUG_ON(ret);
774
775                 em = alloc_extent_map(GFP_NOFS);
776                 em->start = start;
777                 em->orig_start = em->start;
778                 ram_size = ins.offset;
779                 em->len = ins.offset;
780
781                 em->block_start = ins.objectid;
782                 em->block_len = ins.offset;
783                 em->bdev = root->fs_info->fs_devices->latest_bdev;
784                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
785
786                 while (1) {
787                         write_lock(&em_tree->lock);
788                         ret = add_extent_mapping(em_tree, em);
789                         write_unlock(&em_tree->lock);
790                         if (ret != -EEXIST) {
791                                 free_extent_map(em);
792                                 break;
793                         }
794                         btrfs_drop_extent_cache(inode, start,
795                                                 start + ram_size - 1, 0);
796                 }
797
798                 cur_alloc_size = ins.offset;
799                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
800                                                ram_size, cur_alloc_size, 0);
801                 BUG_ON(ret);
802
803                 if (root->root_key.objectid ==
804                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
805                         ret = btrfs_reloc_clone_csums(inode, start,
806                                                       cur_alloc_size);
807                         BUG_ON(ret);
808                 }
809
810                 if (disk_num_bytes < cur_alloc_size)
811                         break;
812
813                 /* we're not doing compressed IO, don't unlock the first
814                  * page (which the caller expects to stay locked), don't
815                  * clear any dirty bits and don't set any writeback bits
816                  *
817                  * Do set the Private2 bit so we know this page was properly
818                  * setup for writepage
819                  */
820                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
821                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
822                         EXTENT_SET_PRIVATE2;
823
824                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
825                                              start, start + ram_size - 1,
826                                              locked_page, op);
827                 disk_num_bytes -= cur_alloc_size;
828                 num_bytes -= cur_alloc_size;
829                 alloc_hint = ins.objectid + ins.offset;
830                 start += cur_alloc_size;
831         }
832 out:
833         ret = 0;
834         btrfs_end_transaction(trans, root);
835
836         return ret;
837 }
838
839 /*
840  * work queue call back to started compression on a file and pages
841  */
842 static noinline void async_cow_start(struct btrfs_work *work)
843 {
844         struct async_cow *async_cow;
845         int num_added = 0;
846         async_cow = container_of(work, struct async_cow, work);
847
848         compress_file_range(async_cow->inode, async_cow->locked_page,
849                             async_cow->start, async_cow->end, async_cow,
850                             &num_added);
851         if (num_added == 0)
852                 async_cow->inode = NULL;
853 }
854
855 /*
856  * work queue call back to submit previously compressed pages
857  */
858 static noinline void async_cow_submit(struct btrfs_work *work)
859 {
860         struct async_cow *async_cow;
861         struct btrfs_root *root;
862         unsigned long nr_pages;
863
864         async_cow = container_of(work, struct async_cow, work);
865
866         root = async_cow->root;
867         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
868                 PAGE_CACHE_SHIFT;
869
870         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
871
872         if (atomic_read(&root->fs_info->async_delalloc_pages) <
873             5 * 1042 * 1024 &&
874             waitqueue_active(&root->fs_info->async_submit_wait))
875                 wake_up(&root->fs_info->async_submit_wait);
876
877         if (async_cow->inode)
878                 submit_compressed_extents(async_cow->inode, async_cow);
879 }
880
881 static noinline void async_cow_free(struct btrfs_work *work)
882 {
883         struct async_cow *async_cow;
884         async_cow = container_of(work, struct async_cow, work);
885         kfree(async_cow);
886 }
887
888 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
889                                 u64 start, u64 end, int *page_started,
890                                 unsigned long *nr_written)
891 {
892         struct async_cow *async_cow;
893         struct btrfs_root *root = BTRFS_I(inode)->root;
894         unsigned long nr_pages;
895         u64 cur_end;
896         int limit = 10 * 1024 * 1042;
897
898         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
899                          1, 0, NULL, GFP_NOFS);
900         while (start < end) {
901                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
902                 async_cow->inode = inode;
903                 async_cow->root = root;
904                 async_cow->locked_page = locked_page;
905                 async_cow->start = start;
906
907                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
908                         cur_end = end;
909                 else
910                         cur_end = min(end, start + 512 * 1024 - 1);
911
912                 async_cow->end = cur_end;
913                 INIT_LIST_HEAD(&async_cow->extents);
914
915                 async_cow->work.func = async_cow_start;
916                 async_cow->work.ordered_func = async_cow_submit;
917                 async_cow->work.ordered_free = async_cow_free;
918                 async_cow->work.flags = 0;
919
920                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
921                         PAGE_CACHE_SHIFT;
922                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
923
924                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
925                                    &async_cow->work);
926
927                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
928                         wait_event(root->fs_info->async_submit_wait,
929                            (atomic_read(&root->fs_info->async_delalloc_pages) <
930                             limit));
931                 }
932
933                 while (atomic_read(&root->fs_info->async_submit_draining) &&
934                       atomic_read(&root->fs_info->async_delalloc_pages)) {
935                         wait_event(root->fs_info->async_submit_wait,
936                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
937                            0));
938                 }
939
940                 *nr_written += nr_pages;
941                 start = cur_end + 1;
942         }
943         *page_started = 1;
944         return 0;
945 }
946
947 static noinline int csum_exist_in_range(struct btrfs_root *root,
948                                         u64 bytenr, u64 num_bytes)
949 {
950         int ret;
951         struct btrfs_ordered_sum *sums;
952         LIST_HEAD(list);
953
954         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
955                                        bytenr + num_bytes - 1, &list);
956         if (ret == 0 && list_empty(&list))
957                 return 0;
958
959         while (!list_empty(&list)) {
960                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
961                 list_del(&sums->list);
962                 kfree(sums);
963         }
964         return 1;
965 }
966
967 /*
968  * when nowcow writeback call back.  This checks for snapshots or COW copies
969  * of the extents that exist in the file, and COWs the file as required.
970  *
971  * If no cow copies or snapshots exist, we write directly to the existing
972  * blocks on disk
973  */
974 static noinline int run_delalloc_nocow(struct inode *inode,
975                                        struct page *locked_page,
976                               u64 start, u64 end, int *page_started, int force,
977                               unsigned long *nr_written)
978 {
979         struct btrfs_root *root = BTRFS_I(inode)->root;
980         struct btrfs_trans_handle *trans;
981         struct extent_buffer *leaf;
982         struct btrfs_path *path;
983         struct btrfs_file_extent_item *fi;
984         struct btrfs_key found_key;
985         u64 cow_start;
986         u64 cur_offset;
987         u64 extent_end;
988         u64 extent_offset;
989         u64 disk_bytenr;
990         u64 num_bytes;
991         int extent_type;
992         int ret;
993         int type;
994         int nocow;
995         int check_prev = 1;
996
997         path = btrfs_alloc_path();
998         BUG_ON(!path);
999         trans = btrfs_join_transaction(root, 1);
1000         BUG_ON(!trans);
1001
1002         cow_start = (u64)-1;
1003         cur_offset = start;
1004         while (1) {
1005                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1006                                                cur_offset, 0);
1007                 BUG_ON(ret < 0);
1008                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1009                         leaf = path->nodes[0];
1010                         btrfs_item_key_to_cpu(leaf, &found_key,
1011                                               path->slots[0] - 1);
1012                         if (found_key.objectid == inode->i_ino &&
1013                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1014                                 path->slots[0]--;
1015                 }
1016                 check_prev = 0;
1017 next_slot:
1018                 leaf = path->nodes[0];
1019                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1020                         ret = btrfs_next_leaf(root, path);
1021                         if (ret < 0)
1022                                 BUG_ON(1);
1023                         if (ret > 0)
1024                                 break;
1025                         leaf = path->nodes[0];
1026                 }
1027
1028                 nocow = 0;
1029                 disk_bytenr = 0;
1030                 num_bytes = 0;
1031                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1032
1033                 if (found_key.objectid > inode->i_ino ||
1034                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1035                     found_key.offset > end)
1036                         break;
1037
1038                 if (found_key.offset > cur_offset) {
1039                         extent_end = found_key.offset;
1040                         extent_type = 0;
1041                         goto out_check;
1042                 }
1043
1044                 fi = btrfs_item_ptr(leaf, path->slots[0],
1045                                     struct btrfs_file_extent_item);
1046                 extent_type = btrfs_file_extent_type(leaf, fi);
1047
1048                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1049                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1050                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1051                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1052                         extent_end = found_key.offset +
1053                                 btrfs_file_extent_num_bytes(leaf, fi);
1054                         if (extent_end <= start) {
1055                                 path->slots[0]++;
1056                                 goto next_slot;
1057                         }
1058                         if (disk_bytenr == 0)
1059                                 goto out_check;
1060                         if (btrfs_file_extent_compression(leaf, fi) ||
1061                             btrfs_file_extent_encryption(leaf, fi) ||
1062                             btrfs_file_extent_other_encoding(leaf, fi))
1063                                 goto out_check;
1064                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1065                                 goto out_check;
1066                         if (btrfs_extent_readonly(root, disk_bytenr))
1067                                 goto out_check;
1068                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1069                                                   found_key.offset -
1070                                                   extent_offset, disk_bytenr))
1071                                 goto out_check;
1072                         disk_bytenr += extent_offset;
1073                         disk_bytenr += cur_offset - found_key.offset;
1074                         num_bytes = min(end + 1, extent_end) - cur_offset;
1075                         /*
1076                          * force cow if csum exists in the range.
1077                          * this ensure that csum for a given extent are
1078                          * either valid or do not exist.
1079                          */
1080                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1081                                 goto out_check;
1082                         nocow = 1;
1083                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1084                         extent_end = found_key.offset +
1085                                 btrfs_file_extent_inline_len(leaf, fi);
1086                         extent_end = ALIGN(extent_end, root->sectorsize);
1087                 } else {
1088                         BUG_ON(1);
1089                 }
1090 out_check:
1091                 if (extent_end <= start) {
1092                         path->slots[0]++;
1093                         goto next_slot;
1094                 }
1095                 if (!nocow) {
1096                         if (cow_start == (u64)-1)
1097                                 cow_start = cur_offset;
1098                         cur_offset = extent_end;
1099                         if (cur_offset > end)
1100                                 break;
1101                         path->slots[0]++;
1102                         goto next_slot;
1103                 }
1104
1105                 btrfs_release_path(root, path);
1106                 if (cow_start != (u64)-1) {
1107                         ret = cow_file_range(inode, locked_page, cow_start,
1108                                         found_key.offset - 1, page_started,
1109                                         nr_written, 1);
1110                         BUG_ON(ret);
1111                         cow_start = (u64)-1;
1112                 }
1113
1114                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1115                         struct extent_map *em;
1116                         struct extent_map_tree *em_tree;
1117                         em_tree = &BTRFS_I(inode)->extent_tree;
1118                         em = alloc_extent_map(GFP_NOFS);
1119                         em->start = cur_offset;
1120                         em->orig_start = em->start;
1121                         em->len = num_bytes;
1122                         em->block_len = num_bytes;
1123                         em->block_start = disk_bytenr;
1124                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1125                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1126                         while (1) {
1127                                 write_lock(&em_tree->lock);
1128                                 ret = add_extent_mapping(em_tree, em);
1129                                 write_unlock(&em_tree->lock);
1130                                 if (ret != -EEXIST) {
1131                                         free_extent_map(em);
1132                                         break;
1133                                 }
1134                                 btrfs_drop_extent_cache(inode, em->start,
1135                                                 em->start + em->len - 1, 0);
1136                         }
1137                         type = BTRFS_ORDERED_PREALLOC;
1138                 } else {
1139                         type = BTRFS_ORDERED_NOCOW;
1140                 }
1141
1142                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1143                                                num_bytes, num_bytes, type);
1144                 BUG_ON(ret);
1145
1146                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1147                                 cur_offset, cur_offset + num_bytes - 1,
1148                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1149                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1150                                 EXTENT_SET_PRIVATE2);
1151                 cur_offset = extent_end;
1152                 if (cur_offset > end)
1153                         break;
1154         }
1155         btrfs_release_path(root, path);
1156
1157         if (cur_offset <= end && cow_start == (u64)-1)
1158                 cow_start = cur_offset;
1159         if (cow_start != (u64)-1) {
1160                 ret = cow_file_range(inode, locked_page, cow_start, end,
1161                                      page_started, nr_written, 1);
1162                 BUG_ON(ret);
1163         }
1164
1165         ret = btrfs_end_transaction(trans, root);
1166         BUG_ON(ret);
1167         btrfs_free_path(path);
1168         return 0;
1169 }
1170
1171 /*
1172  * extent_io.c call back to do delayed allocation processing
1173  */
1174 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1175                               u64 start, u64 end, int *page_started,
1176                               unsigned long *nr_written)
1177 {
1178         int ret;
1179         struct btrfs_root *root = BTRFS_I(inode)->root;
1180
1181         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1182                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1183                                          page_started, 1, nr_written);
1184         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1185                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1186                                          page_started, 0, nr_written);
1187         else if (!btrfs_test_opt(root, COMPRESS))
1188                 ret = cow_file_range(inode, locked_page, start, end,
1189                                       page_started, nr_written, 1);
1190         else
1191                 ret = cow_file_range_async(inode, locked_page, start, end,
1192                                            page_started, nr_written);
1193         return ret;
1194 }
1195
1196 static int btrfs_split_extent_hook(struct inode *inode,
1197                                     struct extent_state *orig, u64 split)
1198 {
1199         struct btrfs_root *root = BTRFS_I(inode)->root;
1200         u64 size;
1201
1202         if (!(orig->state & EXTENT_DELALLOC))
1203                 return 0;
1204
1205         size = orig->end - orig->start + 1;
1206         if (size > root->fs_info->max_extent) {
1207                 u64 num_extents;
1208                 u64 new_size;
1209
1210                 new_size = orig->end - split + 1;
1211                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1212                                         root->fs_info->max_extent);
1213
1214                 /*
1215                  * if we break a large extent up then leave oustanding_extents
1216                  * be, since we've already accounted for the large extent.
1217                  */
1218                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1219                               root->fs_info->max_extent) < num_extents)
1220                         return 0;
1221         }
1222
1223         spin_lock(&BTRFS_I(inode)->accounting_lock);
1224         BTRFS_I(inode)->outstanding_extents++;
1225         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1226
1227         return 0;
1228 }
1229
1230 /*
1231  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1232  * extents so we can keep track of new extents that are just merged onto old
1233  * extents, such as when we are doing sequential writes, so we can properly
1234  * account for the metadata space we'll need.
1235  */
1236 static int btrfs_merge_extent_hook(struct inode *inode,
1237                                    struct extent_state *new,
1238                                    struct extent_state *other)
1239 {
1240         struct btrfs_root *root = BTRFS_I(inode)->root;
1241         u64 new_size, old_size;
1242         u64 num_extents;
1243
1244         /* not delalloc, ignore it */
1245         if (!(other->state & EXTENT_DELALLOC))
1246                 return 0;
1247
1248         old_size = other->end - other->start + 1;
1249         if (new->start < other->start)
1250                 new_size = other->end - new->start + 1;
1251         else
1252                 new_size = new->end - other->start + 1;
1253
1254         /* we're not bigger than the max, unreserve the space and go */
1255         if (new_size <= root->fs_info->max_extent) {
1256                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1257                 BTRFS_I(inode)->outstanding_extents--;
1258                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1259                 return 0;
1260         }
1261
1262         /*
1263          * If we grew by another max_extent, just return, we want to keep that
1264          * reserved amount.
1265          */
1266         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1267                                 root->fs_info->max_extent);
1268         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1269                       root->fs_info->max_extent) > num_extents)
1270                 return 0;
1271
1272         spin_lock(&BTRFS_I(inode)->accounting_lock);
1273         BTRFS_I(inode)->outstanding_extents--;
1274         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1275
1276         return 0;
1277 }
1278
1279 /*
1280  * extent_io.c set_bit_hook, used to track delayed allocation
1281  * bytes in this file, and to maintain the list of inodes that
1282  * have pending delalloc work to be done.
1283  */
1284 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1285                        unsigned long old, unsigned long bits)
1286 {
1287
1288         /*
1289          * set_bit and clear bit hooks normally require _irqsave/restore
1290          * but in this case, we are only testeing for the DELALLOC
1291          * bit, which is only set or cleared with irqs on
1292          */
1293         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1294                 struct btrfs_root *root = BTRFS_I(inode)->root;
1295
1296                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1297                 BTRFS_I(inode)->outstanding_extents++;
1298                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1299                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1300                 spin_lock(&root->fs_info->delalloc_lock);
1301                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1302                 root->fs_info->delalloc_bytes += end - start + 1;
1303                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1304                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1305                                       &root->fs_info->delalloc_inodes);
1306                 }
1307                 spin_unlock(&root->fs_info->delalloc_lock);
1308         }
1309         return 0;
1310 }
1311
1312 /*
1313  * extent_io.c clear_bit_hook, see set_bit_hook for why
1314  */
1315 static int btrfs_clear_bit_hook(struct inode *inode,
1316                                 struct extent_state *state, unsigned long bits)
1317 {
1318         /*
1319          * set_bit and clear bit hooks normally require _irqsave/restore
1320          * but in this case, we are only testeing for the DELALLOC
1321          * bit, which is only set or cleared with irqs on
1322          */
1323         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1324                 struct btrfs_root *root = BTRFS_I(inode)->root;
1325
1326                 if (bits & EXTENT_DO_ACCOUNTING) {
1327                         spin_lock(&BTRFS_I(inode)->accounting_lock);
1328                         BTRFS_I(inode)->outstanding_extents--;
1329                         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1330                         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1331                 }
1332
1333                 spin_lock(&root->fs_info->delalloc_lock);
1334                 if (state->end - state->start + 1 >
1335                     root->fs_info->delalloc_bytes) {
1336                         printk(KERN_INFO "btrfs warning: delalloc account "
1337                                "%llu %llu\n",
1338                                (unsigned long long)
1339                                state->end - state->start + 1,
1340                                (unsigned long long)
1341                                root->fs_info->delalloc_bytes);
1342                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1343                         root->fs_info->delalloc_bytes = 0;
1344                         BTRFS_I(inode)->delalloc_bytes = 0;
1345                 } else {
1346                         btrfs_delalloc_free_space(root, inode,
1347                                                   state->end -
1348                                                   state->start + 1);
1349                         root->fs_info->delalloc_bytes -= state->end -
1350                                 state->start + 1;
1351                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1352                                 state->start + 1;
1353                 }
1354                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1355                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1356                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1357                 }
1358                 spin_unlock(&root->fs_info->delalloc_lock);
1359         }
1360         return 0;
1361 }
1362
1363 /*
1364  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1365  * we don't create bios that span stripes or chunks
1366  */
1367 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1368                          size_t size, struct bio *bio,
1369                          unsigned long bio_flags)
1370 {
1371         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1372         struct btrfs_mapping_tree *map_tree;
1373         u64 logical = (u64)bio->bi_sector << 9;
1374         u64 length = 0;
1375         u64 map_length;
1376         int ret;
1377
1378         if (bio_flags & EXTENT_BIO_COMPRESSED)
1379                 return 0;
1380
1381         length = bio->bi_size;
1382         map_tree = &root->fs_info->mapping_tree;
1383         map_length = length;
1384         ret = btrfs_map_block(map_tree, READ, logical,
1385                               &map_length, NULL, 0);
1386
1387         if (map_length < length + size)
1388                 return 1;
1389         return 0;
1390 }
1391
1392 /*
1393  * in order to insert checksums into the metadata in large chunks,
1394  * we wait until bio submission time.   All the pages in the bio are
1395  * checksummed and sums are attached onto the ordered extent record.
1396  *
1397  * At IO completion time the cums attached on the ordered extent record
1398  * are inserted into the btree
1399  */
1400 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1401                                     struct bio *bio, int mirror_num,
1402                                     unsigned long bio_flags)
1403 {
1404         struct btrfs_root *root = BTRFS_I(inode)->root;
1405         int ret = 0;
1406
1407         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1408         BUG_ON(ret);
1409         return 0;
1410 }
1411
1412 /*
1413  * in order to insert checksums into the metadata in large chunks,
1414  * we wait until bio submission time.   All the pages in the bio are
1415  * checksummed and sums are attached onto the ordered extent record.
1416  *
1417  * At IO completion time the cums attached on the ordered extent record
1418  * are inserted into the btree
1419  */
1420 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1421                           int mirror_num, unsigned long bio_flags)
1422 {
1423         struct btrfs_root *root = BTRFS_I(inode)->root;
1424         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1425 }
1426
1427 /*
1428  * extent_io.c submission hook. This does the right thing for csum calculation
1429  * on write, or reading the csums from the tree before a read
1430  */
1431 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1432                           int mirror_num, unsigned long bio_flags)
1433 {
1434         struct btrfs_root *root = BTRFS_I(inode)->root;
1435         int ret = 0;
1436         int skip_sum;
1437
1438         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1439
1440         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1441         BUG_ON(ret);
1442
1443         if (!(rw & (1 << BIO_RW))) {
1444                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1445                         return btrfs_submit_compressed_read(inode, bio,
1446                                                     mirror_num, bio_flags);
1447                 } else if (!skip_sum)
1448                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1449                 goto mapit;
1450         } else if (!skip_sum) {
1451                 /* csum items have already been cloned */
1452                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1453                         goto mapit;
1454                 /* we're doing a write, do the async checksumming */
1455                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1456                                    inode, rw, bio, mirror_num,
1457                                    bio_flags, __btrfs_submit_bio_start,
1458                                    __btrfs_submit_bio_done);
1459         }
1460
1461 mapit:
1462         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1463 }
1464
1465 /*
1466  * given a list of ordered sums record them in the inode.  This happens
1467  * at IO completion time based on sums calculated at bio submission time.
1468  */
1469 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1470                              struct inode *inode, u64 file_offset,
1471                              struct list_head *list)
1472 {
1473         struct btrfs_ordered_sum *sum;
1474
1475         btrfs_set_trans_block_group(trans, inode);
1476
1477         list_for_each_entry(sum, list, list) {
1478                 btrfs_csum_file_blocks(trans,
1479                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1480         }
1481         return 0;
1482 }
1483
1484 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1485 {
1486         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1487                 WARN_ON(1);
1488         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1489                                    GFP_NOFS);
1490 }
1491
1492 /* see btrfs_writepage_start_hook for details on why this is required */
1493 struct btrfs_writepage_fixup {
1494         struct page *page;
1495         struct btrfs_work work;
1496 };
1497
1498 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1499 {
1500         struct btrfs_writepage_fixup *fixup;
1501         struct btrfs_ordered_extent *ordered;
1502         struct page *page;
1503         struct inode *inode;
1504         u64 page_start;
1505         u64 page_end;
1506
1507         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1508         page = fixup->page;
1509 again:
1510         lock_page(page);
1511         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1512                 ClearPageChecked(page);
1513                 goto out_page;
1514         }
1515
1516         inode = page->mapping->host;
1517         page_start = page_offset(page);
1518         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1519
1520         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1521
1522         /* already ordered? We're done */
1523         if (PagePrivate2(page))
1524                 goto out;
1525
1526         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1527         if (ordered) {
1528                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1529                               page_end, GFP_NOFS);
1530                 unlock_page(page);
1531                 btrfs_start_ordered_extent(inode, ordered, 1);
1532                 goto again;
1533         }
1534
1535         btrfs_set_extent_delalloc(inode, page_start, page_end);
1536         ClearPageChecked(page);
1537 out:
1538         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1539 out_page:
1540         unlock_page(page);
1541         page_cache_release(page);
1542 }
1543
1544 /*
1545  * There are a few paths in the higher layers of the kernel that directly
1546  * set the page dirty bit without asking the filesystem if it is a
1547  * good idea.  This causes problems because we want to make sure COW
1548  * properly happens and the data=ordered rules are followed.
1549  *
1550  * In our case any range that doesn't have the ORDERED bit set
1551  * hasn't been properly setup for IO.  We kick off an async process
1552  * to fix it up.  The async helper will wait for ordered extents, set
1553  * the delalloc bit and make it safe to write the page.
1554  */
1555 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1556 {
1557         struct inode *inode = page->mapping->host;
1558         struct btrfs_writepage_fixup *fixup;
1559         struct btrfs_root *root = BTRFS_I(inode)->root;
1560
1561         /* this page is properly in the ordered list */
1562         if (TestClearPagePrivate2(page))
1563                 return 0;
1564
1565         if (PageChecked(page))
1566                 return -EAGAIN;
1567
1568         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1569         if (!fixup)
1570                 return -EAGAIN;
1571
1572         SetPageChecked(page);
1573         page_cache_get(page);
1574         fixup->work.func = btrfs_writepage_fixup_worker;
1575         fixup->page = page;
1576         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1577         return -EAGAIN;
1578 }
1579
1580 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1581                                        struct inode *inode, u64 file_pos,
1582                                        u64 disk_bytenr, u64 disk_num_bytes,
1583                                        u64 num_bytes, u64 ram_bytes,
1584                                        u64 locked_end,
1585                                        u8 compression, u8 encryption,
1586                                        u16 other_encoding, int extent_type)
1587 {
1588         struct btrfs_root *root = BTRFS_I(inode)->root;
1589         struct btrfs_file_extent_item *fi;
1590         struct btrfs_path *path;
1591         struct extent_buffer *leaf;
1592         struct btrfs_key ins;
1593         u64 hint;
1594         int ret;
1595
1596         path = btrfs_alloc_path();
1597         BUG_ON(!path);
1598
1599         path->leave_spinning = 1;
1600
1601         /*
1602          * we may be replacing one extent in the tree with another.
1603          * The new extent is pinned in the extent map, and we don't want
1604          * to drop it from the cache until it is completely in the btree.
1605          *
1606          * So, tell btrfs_drop_extents to leave this extent in the cache.
1607          * the caller is expected to unpin it and allow it to be merged
1608          * with the others.
1609          */
1610         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1611                                  file_pos + num_bytes, locked_end,
1612                                  file_pos, &hint, 0);
1613         BUG_ON(ret);
1614
1615         ins.objectid = inode->i_ino;
1616         ins.offset = file_pos;
1617         ins.type = BTRFS_EXTENT_DATA_KEY;
1618         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1619         BUG_ON(ret);
1620         leaf = path->nodes[0];
1621         fi = btrfs_item_ptr(leaf, path->slots[0],
1622                             struct btrfs_file_extent_item);
1623         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1624         btrfs_set_file_extent_type(leaf, fi, extent_type);
1625         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1626         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1627         btrfs_set_file_extent_offset(leaf, fi, 0);
1628         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1629         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1630         btrfs_set_file_extent_compression(leaf, fi, compression);
1631         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1632         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1633
1634         btrfs_unlock_up_safe(path, 1);
1635         btrfs_set_lock_blocking(leaf);
1636
1637         btrfs_mark_buffer_dirty(leaf);
1638
1639         inode_add_bytes(inode, num_bytes);
1640
1641         ins.objectid = disk_bytenr;
1642         ins.offset = disk_num_bytes;
1643         ins.type = BTRFS_EXTENT_ITEM_KEY;
1644         ret = btrfs_alloc_reserved_file_extent(trans, root,
1645                                         root->root_key.objectid,
1646                                         inode->i_ino, file_pos, &ins);
1647         BUG_ON(ret);
1648         btrfs_free_path(path);
1649
1650         return 0;
1651 }
1652
1653 /*
1654  * helper function for btrfs_finish_ordered_io, this
1655  * just reads in some of the csum leaves to prime them into ram
1656  * before we start the transaction.  It limits the amount of btree
1657  * reads required while inside the transaction.
1658  */
1659 static noinline void reada_csum(struct btrfs_root *root,
1660                                 struct btrfs_path *path,
1661                                 struct btrfs_ordered_extent *ordered_extent)
1662 {
1663         struct btrfs_ordered_sum *sum;
1664         u64 bytenr;
1665
1666         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1667                          list);
1668         bytenr = sum->sums[0].bytenr;
1669
1670         /*
1671          * we don't care about the results, the point of this search is
1672          * just to get the btree leaves into ram
1673          */
1674         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1675 }
1676
1677 /* as ordered data IO finishes, this gets called so we can finish
1678  * an ordered extent if the range of bytes in the file it covers are
1679  * fully written.
1680  */
1681 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1682 {
1683         struct btrfs_root *root = BTRFS_I(inode)->root;
1684         struct btrfs_trans_handle *trans;
1685         struct btrfs_ordered_extent *ordered_extent = NULL;
1686         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1687         struct btrfs_path *path;
1688         int compressed = 0;
1689         int ret;
1690
1691         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1692         if (!ret)
1693                 return 0;
1694
1695         /*
1696          * before we join the transaction, try to do some of our IO.
1697          * This will limit the amount of IO that we have to do with
1698          * the transaction running.  We're unlikely to need to do any
1699          * IO if the file extents are new, the disk_i_size checks
1700          * covers the most common case.
1701          */
1702         if (start < BTRFS_I(inode)->disk_i_size) {
1703                 path = btrfs_alloc_path();
1704                 if (path) {
1705                         ret = btrfs_lookup_file_extent(NULL, root, path,
1706                                                        inode->i_ino,
1707                                                        start, 0);
1708                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1709                                                                      start);
1710                         if (!list_empty(&ordered_extent->list)) {
1711                                 btrfs_release_path(root, path);
1712                                 reada_csum(root, path, ordered_extent);
1713                         }
1714                         btrfs_free_path(path);
1715                 }
1716         }
1717
1718         trans = btrfs_join_transaction(root, 1);
1719
1720         if (!ordered_extent)
1721                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1722         BUG_ON(!ordered_extent);
1723         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1724                 goto nocow;
1725
1726         lock_extent(io_tree, ordered_extent->file_offset,
1727                     ordered_extent->file_offset + ordered_extent->len - 1,
1728                     GFP_NOFS);
1729
1730         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1731                 compressed = 1;
1732         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1733                 BUG_ON(compressed);
1734                 ret = btrfs_mark_extent_written(trans, root, inode,
1735                                                 ordered_extent->file_offset,
1736                                                 ordered_extent->file_offset +
1737                                                 ordered_extent->len);
1738                 BUG_ON(ret);
1739         } else {
1740                 ret = insert_reserved_file_extent(trans, inode,
1741                                                 ordered_extent->file_offset,
1742                                                 ordered_extent->start,
1743                                                 ordered_extent->disk_len,
1744                                                 ordered_extent->len,
1745                                                 ordered_extent->len,
1746                                                 ordered_extent->file_offset +
1747                                                 ordered_extent->len,
1748                                                 compressed, 0, 0,
1749                                                 BTRFS_FILE_EXTENT_REG);
1750                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1751                                    ordered_extent->file_offset,
1752                                    ordered_extent->len);
1753                 BUG_ON(ret);
1754         }
1755         unlock_extent(io_tree, ordered_extent->file_offset,
1756                     ordered_extent->file_offset + ordered_extent->len - 1,
1757                     GFP_NOFS);
1758 nocow:
1759         add_pending_csums(trans, inode, ordered_extent->file_offset,
1760                           &ordered_extent->list);
1761
1762         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1763         btrfs_ordered_update_i_size(inode, ordered_extent);
1764         btrfs_update_inode(trans, root, inode);
1765         btrfs_remove_ordered_extent(inode, ordered_extent);
1766         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1767
1768         /* once for us */
1769         btrfs_put_ordered_extent(ordered_extent);
1770         /* once for the tree */
1771         btrfs_put_ordered_extent(ordered_extent);
1772
1773         btrfs_end_transaction(trans, root);
1774         return 0;
1775 }
1776
1777 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1778                                 struct extent_state *state, int uptodate)
1779 {
1780         ClearPagePrivate2(page);
1781         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1782 }
1783
1784 /*
1785  * When IO fails, either with EIO or csum verification fails, we
1786  * try other mirrors that might have a good copy of the data.  This
1787  * io_failure_record is used to record state as we go through all the
1788  * mirrors.  If another mirror has good data, the page is set up to date
1789  * and things continue.  If a good mirror can't be found, the original
1790  * bio end_io callback is called to indicate things have failed.
1791  */
1792 struct io_failure_record {
1793         struct page *page;
1794         u64 start;
1795         u64 len;
1796         u64 logical;
1797         unsigned long bio_flags;
1798         int last_mirror;
1799 };
1800
1801 static int btrfs_io_failed_hook(struct bio *failed_bio,
1802                          struct page *page, u64 start, u64 end,
1803                          struct extent_state *state)
1804 {
1805         struct io_failure_record *failrec = NULL;
1806         u64 private;
1807         struct extent_map *em;
1808         struct inode *inode = page->mapping->host;
1809         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1810         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1811         struct bio *bio;
1812         int num_copies;
1813         int ret;
1814         int rw;
1815         u64 logical;
1816
1817         ret = get_state_private(failure_tree, start, &private);
1818         if (ret) {
1819                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1820                 if (!failrec)
1821                         return -ENOMEM;
1822                 failrec->start = start;
1823                 failrec->len = end - start + 1;
1824                 failrec->last_mirror = 0;
1825                 failrec->bio_flags = 0;
1826
1827                 read_lock(&em_tree->lock);
1828                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1829                 if (em->start > start || em->start + em->len < start) {
1830                         free_extent_map(em);
1831                         em = NULL;
1832                 }
1833                 read_unlock(&em_tree->lock);
1834
1835                 if (!em || IS_ERR(em)) {
1836                         kfree(failrec);
1837                         return -EIO;
1838                 }
1839                 logical = start - em->start;
1840                 logical = em->block_start + logical;
1841                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1842                         logical = em->block_start;
1843                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1844                 }
1845                 failrec->logical = logical;
1846                 free_extent_map(em);
1847                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1848                                 EXTENT_DIRTY, GFP_NOFS);
1849                 set_state_private(failure_tree, start,
1850                                  (u64)(unsigned long)failrec);
1851         } else {
1852                 failrec = (struct io_failure_record *)(unsigned long)private;
1853         }
1854         num_copies = btrfs_num_copies(
1855                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1856                               failrec->logical, failrec->len);
1857         failrec->last_mirror++;
1858         if (!state) {
1859                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1860                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1861                                                     failrec->start,
1862                                                     EXTENT_LOCKED);
1863                 if (state && state->start != failrec->start)
1864                         state = NULL;
1865                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1866         }
1867         if (!state || failrec->last_mirror > num_copies) {
1868                 set_state_private(failure_tree, failrec->start, 0);
1869                 clear_extent_bits(failure_tree, failrec->start,
1870                                   failrec->start + failrec->len - 1,
1871                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1872                 kfree(failrec);
1873                 return -EIO;
1874         }
1875         bio = bio_alloc(GFP_NOFS, 1);
1876         bio->bi_private = state;
1877         bio->bi_end_io = failed_bio->bi_end_io;
1878         bio->bi_sector = failrec->logical >> 9;
1879         bio->bi_bdev = failed_bio->bi_bdev;
1880         bio->bi_size = 0;
1881
1882         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1883         if (failed_bio->bi_rw & (1 << BIO_RW))
1884                 rw = WRITE;
1885         else
1886                 rw = READ;
1887
1888         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1889                                                       failrec->last_mirror,
1890                                                       failrec->bio_flags);
1891         return 0;
1892 }
1893
1894 /*
1895  * each time an IO finishes, we do a fast check in the IO failure tree
1896  * to see if we need to process or clean up an io_failure_record
1897  */
1898 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1899 {
1900         u64 private;
1901         u64 private_failure;
1902         struct io_failure_record *failure;
1903         int ret;
1904
1905         private = 0;
1906         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1907                              (u64)-1, 1, EXTENT_DIRTY)) {
1908                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1909                                         start, &private_failure);
1910                 if (ret == 0) {
1911                         failure = (struct io_failure_record *)(unsigned long)
1912                                    private_failure;
1913                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1914                                           failure->start, 0);
1915                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1916                                           failure->start,
1917                                           failure->start + failure->len - 1,
1918                                           EXTENT_DIRTY | EXTENT_LOCKED,
1919                                           GFP_NOFS);
1920                         kfree(failure);
1921                 }
1922         }
1923         return 0;
1924 }
1925
1926 /*
1927  * when reads are done, we need to check csums to verify the data is correct
1928  * if there's a match, we allow the bio to finish.  If not, we go through
1929  * the io_failure_record routines to find good copies
1930  */
1931 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1932                                struct extent_state *state)
1933 {
1934         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1935         struct inode *inode = page->mapping->host;
1936         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1937         char *kaddr;
1938         u64 private = ~(u32)0;
1939         int ret;
1940         struct btrfs_root *root = BTRFS_I(inode)->root;
1941         u32 csum = ~(u32)0;
1942
1943         if (PageChecked(page)) {
1944                 ClearPageChecked(page);
1945                 goto good;
1946         }
1947
1948         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1949                 return 0;
1950
1951         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1952             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1953                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1954                                   GFP_NOFS);
1955                 return 0;
1956         }
1957
1958         if (state && state->start == start) {
1959                 private = state->private;
1960                 ret = 0;
1961         } else {
1962                 ret = get_state_private(io_tree, start, &private);
1963         }
1964         kaddr = kmap_atomic(page, KM_USER0);
1965         if (ret)
1966                 goto zeroit;
1967
1968         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1969         btrfs_csum_final(csum, (char *)&csum);
1970         if (csum != private)
1971                 goto zeroit;
1972
1973         kunmap_atomic(kaddr, KM_USER0);
1974 good:
1975         /* if the io failure tree for this inode is non-empty,
1976          * check to see if we've recovered from a failed IO
1977          */
1978         btrfs_clean_io_failures(inode, start);
1979         return 0;
1980
1981 zeroit:
1982         if (printk_ratelimit()) {
1983                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1984                        "private %llu\n", page->mapping->host->i_ino,
1985                        (unsigned long long)start, csum,
1986                        (unsigned long long)private);
1987         }
1988         memset(kaddr + offset, 1, end - start + 1);
1989         flush_dcache_page(page);
1990         kunmap_atomic(kaddr, KM_USER0);
1991         if (private == 0)
1992                 return 0;
1993         return -EIO;
1994 }
1995
1996 /*
1997  * This creates an orphan entry for the given inode in case something goes
1998  * wrong in the middle of an unlink/truncate.
1999  */
2000 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2001 {
2002         struct btrfs_root *root = BTRFS_I(inode)->root;
2003         int ret = 0;
2004
2005         spin_lock(&root->list_lock);
2006
2007         /* already on the orphan list, we're good */
2008         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2009                 spin_unlock(&root->list_lock);
2010                 return 0;
2011         }
2012
2013         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2014
2015         spin_unlock(&root->list_lock);
2016
2017         /*
2018          * insert an orphan item to track this unlinked/truncated file
2019          */
2020         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2021
2022         return ret;
2023 }
2024
2025 /*
2026  * We have done the truncate/delete so we can go ahead and remove the orphan
2027  * item for this particular inode.
2028  */
2029 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2030 {
2031         struct btrfs_root *root = BTRFS_I(inode)->root;
2032         int ret = 0;
2033
2034         spin_lock(&root->list_lock);
2035
2036         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2037                 spin_unlock(&root->list_lock);
2038                 return 0;
2039         }
2040
2041         list_del_init(&BTRFS_I(inode)->i_orphan);
2042         if (!trans) {
2043                 spin_unlock(&root->list_lock);
2044                 return 0;
2045         }
2046
2047         spin_unlock(&root->list_lock);
2048
2049         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2050
2051         return ret;
2052 }
2053
2054 /*
2055  * this cleans up any orphans that may be left on the list from the last use
2056  * of this root.
2057  */
2058 void btrfs_orphan_cleanup(struct btrfs_root *root)
2059 {
2060         struct btrfs_path *path;
2061         struct extent_buffer *leaf;
2062         struct btrfs_item *item;
2063         struct btrfs_key key, found_key;
2064         struct btrfs_trans_handle *trans;
2065         struct inode *inode;
2066         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2067
2068         path = btrfs_alloc_path();
2069         if (!path)
2070                 return;
2071         path->reada = -1;
2072
2073         key.objectid = BTRFS_ORPHAN_OBJECTID;
2074         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2075         key.offset = (u64)-1;
2076
2077
2078         while (1) {
2079                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2080                 if (ret < 0) {
2081                         printk(KERN_ERR "Error searching slot for orphan: %d"
2082                                "\n", ret);
2083                         break;
2084                 }
2085
2086                 /*
2087                  * if ret == 0 means we found what we were searching for, which
2088                  * is weird, but possible, so only screw with path if we didnt
2089                  * find the key and see if we have stuff that matches
2090                  */
2091                 if (ret > 0) {
2092                         if (path->slots[0] == 0)
2093                                 break;
2094                         path->slots[0]--;
2095                 }
2096
2097                 /* pull out the item */
2098                 leaf = path->nodes[0];
2099                 item = btrfs_item_nr(leaf, path->slots[0]);
2100                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2101
2102                 /* make sure the item matches what we want */
2103                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2104                         break;
2105                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2106                         break;
2107
2108                 /* release the path since we're done with it */
2109                 btrfs_release_path(root, path);
2110
2111                 /*
2112                  * this is where we are basically btrfs_lookup, without the
2113                  * crossing root thing.  we store the inode number in the
2114                  * offset of the orphan item.
2115                  */
2116                 found_key.objectid = found_key.offset;
2117                 found_key.type = BTRFS_INODE_ITEM_KEY;
2118                 found_key.offset = 0;
2119                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2120                 if (IS_ERR(inode))
2121                         break;
2122
2123                 /*
2124                  * add this inode to the orphan list so btrfs_orphan_del does
2125                  * the proper thing when we hit it
2126                  */
2127                 spin_lock(&root->list_lock);
2128                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2129                 spin_unlock(&root->list_lock);
2130
2131                 /*
2132                  * if this is a bad inode, means we actually succeeded in
2133                  * removing the inode, but not the orphan record, which means
2134                  * we need to manually delete the orphan since iput will just
2135                  * do a destroy_inode
2136                  */
2137                 if (is_bad_inode(inode)) {
2138                         trans = btrfs_start_transaction(root, 1);
2139                         btrfs_orphan_del(trans, inode);
2140                         btrfs_end_transaction(trans, root);
2141                         iput(inode);
2142                         continue;
2143                 }
2144
2145                 /* if we have links, this was a truncate, lets do that */
2146                 if (inode->i_nlink) {
2147                         nr_truncate++;
2148                         btrfs_truncate(inode);
2149                 } else {
2150                         nr_unlink++;
2151                 }
2152
2153                 /* this will do delete_inode and everything for us */
2154                 iput(inode);
2155         }
2156
2157         if (nr_unlink)
2158                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2159         if (nr_truncate)
2160                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2161
2162         btrfs_free_path(path);
2163 }
2164
2165 /*
2166  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2167  * don't find any xattrs, we know there can't be any acls.
2168  *
2169  * slot is the slot the inode is in, objectid is the objectid of the inode
2170  */
2171 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2172                                           int slot, u64 objectid)
2173 {
2174         u32 nritems = btrfs_header_nritems(leaf);
2175         struct btrfs_key found_key;
2176         int scanned = 0;
2177
2178         slot++;
2179         while (slot < nritems) {
2180                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2181
2182                 /* we found a different objectid, there must not be acls */
2183                 if (found_key.objectid != objectid)
2184                         return 0;
2185
2186                 /* we found an xattr, assume we've got an acl */
2187                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2188                         return 1;
2189
2190                 /*
2191                  * we found a key greater than an xattr key, there can't
2192                  * be any acls later on
2193                  */
2194                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2195                         return 0;
2196
2197                 slot++;
2198                 scanned++;
2199
2200                 /*
2201                  * it goes inode, inode backrefs, xattrs, extents,
2202                  * so if there are a ton of hard links to an inode there can
2203                  * be a lot of backrefs.  Don't waste time searching too hard,
2204                  * this is just an optimization
2205                  */
2206                 if (scanned >= 8)
2207                         break;
2208         }
2209         /* we hit the end of the leaf before we found an xattr or
2210          * something larger than an xattr.  We have to assume the inode
2211          * has acls
2212          */
2213         return 1;
2214 }
2215
2216 /*
2217  * read an inode from the btree into the in-memory inode
2218  */
2219 static void btrfs_read_locked_inode(struct inode *inode)
2220 {
2221         struct btrfs_path *path;
2222         struct extent_buffer *leaf;
2223         struct btrfs_inode_item *inode_item;
2224         struct btrfs_timespec *tspec;
2225         struct btrfs_root *root = BTRFS_I(inode)->root;
2226         struct btrfs_key location;
2227         int maybe_acls;
2228         u64 alloc_group_block;
2229         u32 rdev;
2230         int ret;
2231
2232         path = btrfs_alloc_path();
2233         BUG_ON(!path);
2234         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2235
2236         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2237         if (ret)
2238                 goto make_bad;
2239
2240         leaf = path->nodes[0];
2241         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2242                                     struct btrfs_inode_item);
2243
2244         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2245         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2246         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2247         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2248         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2249
2250         tspec = btrfs_inode_atime(inode_item);
2251         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2252         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2253
2254         tspec = btrfs_inode_mtime(inode_item);
2255         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2256         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2257
2258         tspec = btrfs_inode_ctime(inode_item);
2259         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2260         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2261
2262         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2263         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2264         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2265         inode->i_generation = BTRFS_I(inode)->generation;
2266         inode->i_rdev = 0;
2267         rdev = btrfs_inode_rdev(leaf, inode_item);
2268
2269         BTRFS_I(inode)->index_cnt = (u64)-1;
2270         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2271
2272         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2273
2274         /*
2275          * try to precache a NULL acl entry for files that don't have
2276          * any xattrs or acls
2277          */
2278         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2279         if (!maybe_acls)
2280                 cache_no_acl(inode);
2281
2282         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2283                                                 alloc_group_block, 0);
2284         btrfs_free_path(path);
2285         inode_item = NULL;
2286
2287         switch (inode->i_mode & S_IFMT) {
2288         case S_IFREG:
2289                 inode->i_mapping->a_ops = &btrfs_aops;
2290                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2291                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2292                 inode->i_fop = &btrfs_file_operations;
2293                 inode->i_op = &btrfs_file_inode_operations;
2294                 break;
2295         case S_IFDIR:
2296                 inode->i_fop = &btrfs_dir_file_operations;
2297                 if (root == root->fs_info->tree_root)
2298                         inode->i_op = &btrfs_dir_ro_inode_operations;
2299                 else
2300                         inode->i_op = &btrfs_dir_inode_operations;
2301                 break;
2302         case S_IFLNK:
2303                 inode->i_op = &btrfs_symlink_inode_operations;
2304                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2305                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2306                 break;
2307         default:
2308                 inode->i_op = &btrfs_special_inode_operations;
2309                 init_special_inode(inode, inode->i_mode, rdev);
2310                 break;
2311         }
2312
2313         btrfs_update_iflags(inode);
2314         return;
2315
2316 make_bad:
2317         btrfs_free_path(path);
2318         make_bad_inode(inode);
2319 }
2320
2321 /*
2322  * given a leaf and an inode, copy the inode fields into the leaf
2323  */
2324 static void fill_inode_item(struct btrfs_trans_handle *trans,
2325                             struct extent_buffer *leaf,
2326                             struct btrfs_inode_item *item,
2327                             struct inode *inode)
2328 {
2329         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2330         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2331         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2332         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2333         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2334
2335         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2336                                inode->i_atime.tv_sec);
2337         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2338                                 inode->i_atime.tv_nsec);
2339
2340         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2341                                inode->i_mtime.tv_sec);
2342         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2343                                 inode->i_mtime.tv_nsec);
2344
2345         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2346                                inode->i_ctime.tv_sec);
2347         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2348                                 inode->i_ctime.tv_nsec);
2349
2350         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2351         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2352         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2353         btrfs_set_inode_transid(leaf, item, trans->transid);
2354         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2355         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2356         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2357 }
2358
2359 /*
2360  * copy everything in the in-memory inode into the btree.
2361  */
2362 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2363                                 struct btrfs_root *root, struct inode *inode)
2364 {
2365         struct btrfs_inode_item *inode_item;
2366         struct btrfs_path *path;
2367         struct extent_buffer *leaf;
2368         int ret;
2369
2370         path = btrfs_alloc_path();
2371         BUG_ON(!path);
2372         path->leave_spinning = 1;
2373         ret = btrfs_lookup_inode(trans, root, path,
2374                                  &BTRFS_I(inode)->location, 1);
2375         if (ret) {
2376                 if (ret > 0)
2377                         ret = -ENOENT;
2378                 goto failed;
2379         }
2380
2381         btrfs_unlock_up_safe(path, 1);
2382         leaf = path->nodes[0];
2383         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2384                                   struct btrfs_inode_item);
2385
2386         fill_inode_item(trans, leaf, inode_item, inode);
2387         btrfs_mark_buffer_dirty(leaf);
2388         btrfs_set_inode_last_trans(trans, inode);
2389         ret = 0;
2390 failed:
2391         btrfs_free_path(path);
2392         return ret;
2393 }
2394
2395
2396 /*
2397  * unlink helper that gets used here in inode.c and in the tree logging
2398  * recovery code.  It remove a link in a directory with a given name, and
2399  * also drops the back refs in the inode to the directory
2400  */
2401 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2402                        struct btrfs_root *root,
2403                        struct inode *dir, struct inode *inode,
2404                        const char *name, int name_len)
2405 {
2406         struct btrfs_path *path;
2407         int ret = 0;
2408         struct extent_buffer *leaf;
2409         struct btrfs_dir_item *di;
2410         struct btrfs_key key;
2411         u64 index;
2412
2413         path = btrfs_alloc_path();
2414         if (!path) {
2415                 ret = -ENOMEM;
2416                 goto err;
2417         }
2418
2419         path->leave_spinning = 1;
2420         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2421                                     name, name_len, -1);
2422         if (IS_ERR(di)) {
2423                 ret = PTR_ERR(di);
2424                 goto err;
2425         }
2426         if (!di) {
2427                 ret = -ENOENT;
2428                 goto err;
2429         }
2430         leaf = path->nodes[0];
2431         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2432         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2433         if (ret)
2434                 goto err;
2435         btrfs_release_path(root, path);
2436
2437         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2438                                   inode->i_ino,
2439                                   dir->i_ino, &index);
2440         if (ret) {
2441                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2442                        "inode %lu parent %lu\n", name_len, name,
2443                        inode->i_ino, dir->i_ino);
2444                 goto err;
2445         }
2446
2447         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2448                                          index, name, name_len, -1);
2449         if (IS_ERR(di)) {
2450                 ret = PTR_ERR(di);
2451                 goto err;
2452         }
2453         if (!di) {
2454                 ret = -ENOENT;
2455                 goto err;
2456         }
2457         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2458         btrfs_release_path(root, path);
2459
2460         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2461                                          inode, dir->i_ino);
2462         BUG_ON(ret != 0 && ret != -ENOENT);
2463
2464         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2465                                            dir, index);
2466         BUG_ON(ret);
2467 err:
2468         btrfs_free_path(path);
2469         if (ret)
2470                 goto out;
2471
2472         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2473         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2474         btrfs_update_inode(trans, root, dir);
2475         btrfs_drop_nlink(inode);
2476         ret = btrfs_update_inode(trans, root, inode);
2477 out:
2478         return ret;
2479 }
2480
2481 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2482 {
2483         struct btrfs_root *root;
2484         struct btrfs_trans_handle *trans;
2485         struct inode *inode = dentry->d_inode;
2486         int ret;
2487         unsigned long nr = 0;
2488
2489         root = BTRFS_I(dir)->root;
2490
2491         /*
2492          * 5 items for unlink inode
2493          * 1 for orphan
2494          */
2495         ret = btrfs_reserve_metadata_space(root, 6);
2496         if (ret)
2497                 return ret;
2498
2499         trans = btrfs_start_transaction(root, 1);
2500         if (IS_ERR(trans)) {
2501                 btrfs_unreserve_metadata_space(root, 6);
2502                 return PTR_ERR(trans);
2503         }
2504
2505         btrfs_set_trans_block_group(trans, dir);
2506
2507         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2508
2509         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2510                                  dentry->d_name.name, dentry->d_name.len);
2511
2512         if (inode->i_nlink == 0)
2513                 ret = btrfs_orphan_add(trans, inode);
2514
2515         nr = trans->blocks_used;
2516
2517         btrfs_end_transaction_throttle(trans, root);
2518         btrfs_unreserve_metadata_space(root, 6);
2519         btrfs_btree_balance_dirty(root, nr);
2520         return ret;
2521 }
2522
2523 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2524                         struct btrfs_root *root,
2525                         struct inode *dir, u64 objectid,
2526                         const char *name, int name_len)
2527 {
2528         struct btrfs_path *path;
2529         struct extent_buffer *leaf;
2530         struct btrfs_dir_item *di;
2531         struct btrfs_key key;
2532         u64 index;
2533         int ret;
2534
2535         path = btrfs_alloc_path();
2536         if (!path)
2537                 return -ENOMEM;
2538
2539         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2540                                    name, name_len, -1);
2541         BUG_ON(!di || IS_ERR(di));
2542
2543         leaf = path->nodes[0];
2544         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2545         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2546         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2547         BUG_ON(ret);
2548         btrfs_release_path(root, path);
2549
2550         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2551                                  objectid, root->root_key.objectid,
2552                                  dir->i_ino, &index, name, name_len);
2553         if (ret < 0) {
2554                 BUG_ON(ret != -ENOENT);
2555                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2556                                                  name, name_len);
2557                 BUG_ON(!di || IS_ERR(di));
2558
2559                 leaf = path->nodes[0];
2560                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2561                 btrfs_release_path(root, path);
2562                 index = key.offset;
2563         }
2564
2565         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2566                                          index, name, name_len, -1);
2567         BUG_ON(!di || IS_ERR(di));
2568
2569         leaf = path->nodes[0];
2570         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2571         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2572         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2573         BUG_ON(ret);
2574         btrfs_release_path(root, path);
2575
2576         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2577         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2578         ret = btrfs_update_inode(trans, root, dir);
2579         BUG_ON(ret);
2580         dir->i_sb->s_dirt = 1;
2581
2582         btrfs_free_path(path);
2583         return 0;
2584 }
2585
2586 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2587 {
2588         struct inode *inode = dentry->d_inode;
2589         int err = 0;
2590         int ret;
2591         struct btrfs_root *root = BTRFS_I(dir)->root;
2592         struct btrfs_trans_handle *trans;
2593         unsigned long nr = 0;
2594
2595         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2596             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2597                 return -ENOTEMPTY;
2598
2599         ret = btrfs_reserve_metadata_space(root, 5);
2600         if (ret)
2601                 return ret;
2602
2603         trans = btrfs_start_transaction(root, 1);
2604         if (IS_ERR(trans)) {
2605                 btrfs_unreserve_metadata_space(root, 5);
2606                 return PTR_ERR(trans);
2607         }
2608
2609         btrfs_set_trans_block_group(trans, dir);
2610
2611         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2612                 err = btrfs_unlink_subvol(trans, root, dir,
2613                                           BTRFS_I(inode)->location.objectid,
2614                                           dentry->d_name.name,
2615                                           dentry->d_name.len);
2616                 goto out;
2617         }
2618
2619         err = btrfs_orphan_add(trans, inode);
2620         if (err)
2621                 goto out;
2622
2623         /* now the directory is empty */
2624         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2625                                  dentry->d_name.name, dentry->d_name.len);
2626         if (!err)
2627                 btrfs_i_size_write(inode, 0);
2628 out:
2629         nr = trans->blocks_used;
2630         ret = btrfs_end_transaction_throttle(trans, root);
2631         btrfs_unreserve_metadata_space(root, 5);
2632         btrfs_btree_balance_dirty(root, nr);
2633
2634         if (ret && !err)
2635                 err = ret;
2636         return err;
2637 }
2638
2639 #if 0
2640 /*
2641  * when truncating bytes in a file, it is possible to avoid reading
2642  * the leaves that contain only checksum items.  This can be the
2643  * majority of the IO required to delete a large file, but it must
2644  * be done carefully.
2645  *
2646  * The keys in the level just above the leaves are checked to make sure
2647  * the lowest key in a given leaf is a csum key, and starts at an offset
2648  * after the new  size.
2649  *
2650  * Then the key for the next leaf is checked to make sure it also has
2651  * a checksum item for the same file.  If it does, we know our target leaf
2652  * contains only checksum items, and it can be safely freed without reading
2653  * it.
2654  *
2655  * This is just an optimization targeted at large files.  It may do
2656  * nothing.  It will return 0 unless things went badly.
2657  */
2658 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2659                                      struct btrfs_root *root,
2660                                      struct btrfs_path *path,
2661                                      struct inode *inode, u64 new_size)
2662 {
2663         struct btrfs_key key;
2664         int ret;
2665         int nritems;
2666         struct btrfs_key found_key;
2667         struct btrfs_key other_key;
2668         struct btrfs_leaf_ref *ref;
2669         u64 leaf_gen;
2670         u64 leaf_start;
2671
2672         path->lowest_level = 1;
2673         key.objectid = inode->i_ino;
2674         key.type = BTRFS_CSUM_ITEM_KEY;
2675         key.offset = new_size;
2676 again:
2677         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2678         if (ret < 0)
2679                 goto out;
2680
2681         if (path->nodes[1] == NULL) {
2682                 ret = 0;
2683                 goto out;
2684         }
2685         ret = 0;
2686         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2687         nritems = btrfs_header_nritems(path->nodes[1]);
2688
2689         if (!nritems)
2690                 goto out;
2691
2692         if (path->slots[1] >= nritems)
2693                 goto next_node;
2694
2695         /* did we find a key greater than anything we want to delete? */
2696         if (found_key.objectid > inode->i_ino ||
2697            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2698                 goto out;
2699
2700         /* we check the next key in the node to make sure the leave contains
2701          * only checksum items.  This comparison doesn't work if our
2702          * leaf is the last one in the node
2703          */
2704         if (path->slots[1] + 1 >= nritems) {
2705 next_node:
2706                 /* search forward from the last key in the node, this
2707                  * will bring us into the next node in the tree
2708                  */
2709                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2710
2711                 /* unlikely, but we inc below, so check to be safe */
2712                 if (found_key.offset == (u64)-1)
2713                         goto out;
2714
2715                 /* search_forward needs a path with locks held, do the
2716                  * search again for the original key.  It is possible
2717                  * this will race with a balance and return a path that
2718                  * we could modify, but this drop is just an optimization
2719                  * and is allowed to miss some leaves.
2720                  */
2721                 btrfs_release_path(root, path);
2722                 found_key.offset++;
2723
2724                 /* setup a max key for search_forward */
2725                 other_key.offset = (u64)-1;
2726                 other_key.type = key.type;
2727                 other_key.objectid = key.objectid;
2728
2729                 path->keep_locks = 1;
2730                 ret = btrfs_search_forward(root, &found_key, &other_key,
2731                                            path, 0, 0);
2732                 path->keep_locks = 0;
2733                 if (ret || found_key.objectid != key.objectid ||
2734                     found_key.type != key.type) {
2735                         ret = 0;
2736                         goto out;
2737                 }
2738
2739                 key.offset = found_key.offset;
2740                 btrfs_release_path(root, path);
2741                 cond_resched();
2742                 goto again;
2743         }
2744
2745         /* we know there's one more slot after us in the tree,
2746          * read that key so we can verify it is also a checksum item
2747          */
2748         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2749
2750         if (found_key.objectid < inode->i_ino)
2751                 goto next_key;
2752
2753         if (found_key.type != key.type || found_key.offset < new_size)
2754                 goto next_key;
2755
2756         /*
2757          * if the key for the next leaf isn't a csum key from this objectid,
2758          * we can't be sure there aren't good items inside this leaf.
2759          * Bail out
2760          */
2761         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2762                 goto out;
2763
2764         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2765         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2766         /*
2767          * it is safe to delete this leaf, it contains only
2768          * csum items from this inode at an offset >= new_size
2769          */
2770         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2771         BUG_ON(ret);
2772
2773         if (root->ref_cows && leaf_gen < trans->transid) {
2774                 ref = btrfs_alloc_leaf_ref(root, 0);
2775                 if (ref) {
2776                         ref->root_gen = root->root_key.offset;
2777                         ref->bytenr = leaf_start;
2778                         ref->owner = 0;
2779                         ref->generation = leaf_gen;
2780                         ref->nritems = 0;
2781
2782                         btrfs_sort_leaf_ref(ref);
2783
2784                         ret = btrfs_add_leaf_ref(root, ref, 0);
2785                         WARN_ON(ret);
2786                         btrfs_free_leaf_ref(root, ref);
2787                 } else {
2788                         WARN_ON(1);
2789                 }
2790         }
2791 next_key:
2792         btrfs_release_path(root, path);
2793
2794         if (other_key.objectid == inode->i_ino &&
2795             other_key.type == key.type && other_key.offset > key.offset) {
2796                 key.offset = other_key.offset;
2797                 cond_resched();
2798                 goto again;
2799         }
2800         ret = 0;
2801 out:
2802         /* fixup any changes we've made to the path */
2803         path->lowest_level = 0;
2804         path->keep_locks = 0;
2805         btrfs_release_path(root, path);
2806         return ret;
2807 }
2808
2809 #endif
2810
2811 /*
2812  * this can truncate away extent items, csum items and directory items.
2813  * It starts at a high offset and removes keys until it can't find
2814  * any higher than new_size
2815  *
2816  * csum items that cross the new i_size are truncated to the new size
2817  * as well.
2818  *
2819  * min_type is the minimum key type to truncate down to.  If set to 0, this
2820  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2821  */
2822 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2823                                         struct btrfs_root *root,
2824                                         struct inode *inode,
2825                                         u64 new_size, u32 min_type)
2826 {
2827         int ret;
2828         struct btrfs_path *path;
2829         struct btrfs_key key;
2830         struct btrfs_key found_key;
2831         u32 found_type = (u8)-1;
2832         struct extent_buffer *leaf;
2833         struct btrfs_file_extent_item *fi;
2834         u64 extent_start = 0;
2835         u64 extent_num_bytes = 0;
2836         u64 extent_offset = 0;
2837         u64 item_end = 0;
2838         int found_extent;
2839         int del_item;
2840         int pending_del_nr = 0;
2841         int pending_del_slot = 0;
2842         int extent_type = -1;
2843         int encoding;
2844         u64 mask = root->sectorsize - 1;
2845
2846         if (root->ref_cows)
2847                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2848         path = btrfs_alloc_path();
2849         BUG_ON(!path);
2850         path->reada = -1;
2851
2852         /* FIXME, add redo link to tree so we don't leak on crash */
2853         key.objectid = inode->i_ino;
2854         key.offset = (u64)-1;
2855         key.type = (u8)-1;
2856
2857 search_again:
2858         path->leave_spinning = 1;
2859         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2860         if (ret < 0)
2861                 goto error;
2862
2863         if (ret > 0) {
2864                 /* there are no items in the tree for us to truncate, we're
2865                  * done
2866                  */
2867                 if (path->slots[0] == 0) {
2868                         ret = 0;
2869                         goto error;
2870                 }
2871                 path->slots[0]--;
2872         }
2873
2874         while (1) {
2875                 fi = NULL;
2876                 leaf = path->nodes[0];
2877                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2878                 found_type = btrfs_key_type(&found_key);
2879                 encoding = 0;
2880
2881                 if (found_key.objectid != inode->i_ino)
2882                         break;
2883
2884                 if (found_type < min_type)
2885                         break;
2886
2887                 item_end = found_key.offset;
2888                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2889                         fi = btrfs_item_ptr(leaf, path->slots[0],
2890                                             struct btrfs_file_extent_item);
2891                         extent_type = btrfs_file_extent_type(leaf, fi);
2892                         encoding = btrfs_file_extent_compression(leaf, fi);
2893                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2894                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2895
2896                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2897                                 item_end +=
2898                                     btrfs_file_extent_num_bytes(leaf, fi);
2899                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2900                                 item_end += btrfs_file_extent_inline_len(leaf,
2901                                                                          fi);
2902                         }
2903                         item_end--;
2904                 }
2905                 if (item_end < new_size) {
2906                         if (found_type == BTRFS_DIR_ITEM_KEY)
2907                                 found_type = BTRFS_INODE_ITEM_KEY;
2908                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2909                                 found_type = BTRFS_EXTENT_DATA_KEY;
2910                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2911                                 found_type = BTRFS_XATTR_ITEM_KEY;
2912                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2913                                 found_type = BTRFS_INODE_REF_KEY;
2914                         else if (found_type)
2915                                 found_type--;
2916                         else
2917                                 break;
2918                         btrfs_set_key_type(&key, found_type);
2919                         goto next;
2920                 }
2921                 if (found_key.offset >= new_size)
2922                         del_item = 1;
2923                 else
2924                         del_item = 0;
2925                 found_extent = 0;
2926
2927                 /* FIXME, shrink the extent if the ref count is only 1 */
2928                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2929                         goto delete;
2930
2931                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2932                         u64 num_dec;
2933                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2934                         if (!del_item && !encoding) {
2935                                 u64 orig_num_bytes =
2936                                         btrfs_file_extent_num_bytes(leaf, fi);
2937                                 extent_num_bytes = new_size -
2938                                         found_key.offset + root->sectorsize - 1;
2939                                 extent_num_bytes = extent_num_bytes &
2940                                         ~((u64)root->sectorsize - 1);
2941                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2942                                                          extent_num_bytes);
2943                                 num_dec = (orig_num_bytes -
2944                                            extent_num_bytes);
2945                                 if (root->ref_cows && extent_start != 0)
2946                                         inode_sub_bytes(inode, num_dec);
2947                                 btrfs_mark_buffer_dirty(leaf);
2948                         } else {
2949                                 extent_num_bytes =
2950                                         btrfs_file_extent_disk_num_bytes(leaf,
2951                                                                          fi);
2952                                 extent_offset = found_key.offset -
2953                                         btrfs_file_extent_offset(leaf, fi);
2954
2955                                 /* FIXME blocksize != 4096 */
2956                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2957                                 if (extent_start != 0) {
2958                                         found_extent = 1;
2959                                         if (root->ref_cows)
2960                                                 inode_sub_bytes(inode, num_dec);
2961                                 }
2962                         }
2963                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2964                         /*
2965                          * we can't truncate inline items that have had
2966                          * special encodings
2967                          */
2968                         if (!del_item &&
2969                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2970                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2971                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2972                                 u32 size = new_size - found_key.offset;
2973
2974                                 if (root->ref_cows) {
2975                                         inode_sub_bytes(inode, item_end + 1 -
2976                                                         new_size);
2977                                 }
2978                                 size =
2979                                     btrfs_file_extent_calc_inline_size(size);
2980                                 ret = btrfs_truncate_item(trans, root, path,
2981                                                           size, 1);
2982                                 BUG_ON(ret);
2983                         } else if (root->ref_cows) {
2984                                 inode_sub_bytes(inode, item_end + 1 -
2985                                                 found_key.offset);
2986                         }
2987                 }
2988 delete:
2989                 if (del_item) {
2990                         if (!pending_del_nr) {
2991                                 /* no pending yet, add ourselves */
2992                                 pending_del_slot = path->slots[0];
2993                                 pending_del_nr = 1;
2994                         } else if (pending_del_nr &&
2995                                    path->slots[0] + 1 == pending_del_slot) {
2996                                 /* hop on the pending chunk */
2997                                 pending_del_nr++;
2998                                 pending_del_slot = path->slots[0];
2999                         } else {
3000                                 BUG();
3001                         }
3002                 } else {
3003                         break;
3004                 }
3005                 if (found_extent && root->ref_cows) {
3006                         btrfs_set_path_blocking(path);
3007                         ret = btrfs_free_extent(trans, root, extent_start,
3008                                                 extent_num_bytes, 0,
3009                                                 btrfs_header_owner(leaf),
3010                                                 inode->i_ino, extent_offset);
3011                         BUG_ON(ret);
3012                 }
3013 next:
3014                 if (path->slots[0] == 0) {
3015                         if (pending_del_nr)
3016                                 goto del_pending;
3017                         btrfs_release_path(root, path);
3018                         if (found_type == BTRFS_INODE_ITEM_KEY)
3019                                 break;
3020                         goto search_again;
3021                 }
3022
3023                 path->slots[0]--;
3024                 if (pending_del_nr &&
3025                     path->slots[0] + 1 != pending_del_slot) {
3026                         struct btrfs_key debug;
3027 del_pending:
3028                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
3029                                               pending_del_slot);
3030                         ret = btrfs_del_items(trans, root, path,
3031                                               pending_del_slot,
3032                                               pending_del_nr);
3033                         BUG_ON(ret);
3034                         pending_del_nr = 0;
3035                         btrfs_release_path(root, path);
3036                         if (found_type == BTRFS_INODE_ITEM_KEY)
3037                                 break;
3038                         goto search_again;
3039                 }
3040         }
3041         ret = 0;
3042 error:
3043         if (pending_del_nr) {
3044                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3045                                       pending_del_nr);
3046         }
3047         btrfs_free_path(path);
3048         return ret;
3049 }
3050
3051 /*
3052  * taken from block_truncate_page, but does cow as it zeros out
3053  * any bytes left in the last page in the file.
3054  */
3055 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3056 {
3057         struct inode *inode = mapping->host;
3058         struct btrfs_root *root = BTRFS_I(inode)->root;
3059         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3060         struct btrfs_ordered_extent *ordered;
3061         char *kaddr;
3062         u32 blocksize = root->sectorsize;
3063         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3064         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3065         struct page *page;
3066         int ret = 0;
3067         u64 page_start;
3068         u64 page_end;
3069
3070         if ((offset & (blocksize - 1)) == 0)
3071                 goto out;
3072         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3073         if (ret)
3074                 goto out;
3075
3076         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3077         if (ret)
3078                 goto out;
3079
3080         ret = -ENOMEM;
3081 again:
3082         page = grab_cache_page(mapping, index);
3083         if (!page) {
3084                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3085                 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3086                 goto out;
3087         }
3088
3089         page_start = page_offset(page);
3090         page_end = page_start + PAGE_CACHE_SIZE - 1;
3091
3092         if (!PageUptodate(page)) {
3093                 ret = btrfs_readpage(NULL, page);
3094                 lock_page(page);
3095                 if (page->mapping != mapping) {
3096                         unlock_page(page);
3097                         page_cache_release(page);
3098                         goto again;
3099                 }
3100                 if (!PageUptodate(page)) {
3101                         ret = -EIO;
3102                         goto out_unlock;
3103                 }
3104         }
3105         wait_on_page_writeback(page);
3106
3107         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3108         set_page_extent_mapped(page);
3109
3110         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3111         if (ordered) {
3112                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3113                 unlock_page(page);
3114                 page_cache_release(page);
3115                 btrfs_start_ordered_extent(inode, ordered, 1);
3116                 btrfs_put_ordered_extent(ordered);
3117                 goto again;
3118         }
3119
3120         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3121                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3122                           GFP_NOFS);
3123
3124         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3125         if (ret) {
3126                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3127                 goto out_unlock;
3128         }
3129
3130         ret = 0;
3131         if (offset != PAGE_CACHE_SIZE) {
3132                 kaddr = kmap(page);
3133                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3134                 flush_dcache_page(page);
3135                 kunmap(page);
3136         }
3137         ClearPageChecked(page);
3138         set_page_dirty(page);
3139         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3140
3141 out_unlock:
3142         if (ret)
3143                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3144         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3145         unlock_page(page);
3146         page_cache_release(page);
3147 out:
3148         return ret;
3149 }
3150
3151 int btrfs_cont_expand(struct inode *inode, loff_t size)
3152 {
3153         struct btrfs_trans_handle *trans;
3154         struct btrfs_root *root = BTRFS_I(inode)->root;
3155         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3156         struct extent_map *em;
3157         u64 mask = root->sectorsize - 1;
3158         u64 hole_start = (inode->i_size + mask) & ~mask;
3159         u64 block_end = (size + mask) & ~mask;
3160         u64 last_byte;
3161         u64 cur_offset;
3162         u64 hole_size;
3163         int err = 0;
3164
3165         if (size <= hole_start)
3166                 return 0;
3167
3168         err = btrfs_truncate_page(inode->i_mapping, inode->i_size);
3169         if (err)
3170                 return err;
3171
3172         while (1) {
3173                 struct btrfs_ordered_extent *ordered;
3174                 btrfs_wait_ordered_range(inode, hole_start,
3175                                          block_end - hole_start);
3176                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3177                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3178                 if (!ordered)
3179                         break;
3180                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3181                 btrfs_put_ordered_extent(ordered);
3182         }
3183
3184         trans = btrfs_start_transaction(root, 1);
3185         btrfs_set_trans_block_group(trans, inode);
3186
3187         cur_offset = hole_start;
3188         while (1) {
3189                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3190                                 block_end - cur_offset, 0);
3191                 BUG_ON(IS_ERR(em) || !em);
3192                 last_byte = min(extent_map_end(em), block_end);
3193                 last_byte = (last_byte + mask) & ~mask;
3194                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3195                         u64 hint_byte = 0;
3196                         hole_size = last_byte - cur_offset;
3197                         err = btrfs_drop_extents(trans, root, inode,
3198                                                  cur_offset,
3199                                                  cur_offset + hole_size,
3200                                                  block_end,
3201                                                  cur_offset, &hint_byte, 1);
3202                         if (err)
3203                                 break;
3204
3205                         err = btrfs_reserve_metadata_space(root, 1);
3206                         if (err)
3207                                 break;
3208
3209                         err = btrfs_insert_file_extent(trans, root,
3210                                         inode->i_ino, cur_offset, 0,
3211                                         0, hole_size, 0, hole_size,
3212                                         0, 0, 0);
3213                         btrfs_drop_extent_cache(inode, hole_start,
3214                                         last_byte - 1, 0);
3215                         btrfs_unreserve_metadata_space(root, 1);
3216                 }
3217                 free_extent_map(em);
3218                 cur_offset = last_byte;
3219                 if (err || cur_offset >= block_end)
3220                         break;
3221         }
3222
3223         btrfs_end_transaction(trans, root);
3224         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3225         return err;
3226 }
3227
3228 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3229 {
3230         struct inode *inode = dentry->d_inode;
3231         int err;
3232
3233         err = inode_change_ok(inode, attr);
3234         if (err)
3235                 return err;
3236
3237         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3238                 if (attr->ia_size > inode->i_size) {
3239                         err = btrfs_cont_expand(inode, attr->ia_size);
3240                         if (err)
3241                                 return err;
3242                 } else if (inode->i_size > 0 &&
3243                            attr->ia_size == 0) {
3244
3245                         /* we're truncating a file that used to have good
3246                          * data down to zero.  Make sure it gets into
3247                          * the ordered flush list so that any new writes
3248                          * get down to disk quickly.
3249                          */
3250                         BTRFS_I(inode)->ordered_data_close = 1;
3251                 }
3252         }
3253
3254         err = inode_setattr(inode, attr);
3255
3256         if (!err && ((attr->ia_valid & ATTR_MODE)))
3257                 err = btrfs_acl_chmod(inode);
3258         return err;
3259 }
3260
3261 void btrfs_delete_inode(struct inode *inode)
3262 {
3263         struct btrfs_trans_handle *trans;
3264         struct btrfs_root *root = BTRFS_I(inode)->root;
3265         unsigned long nr;
3266         int ret;
3267
3268         truncate_inode_pages(&inode->i_data, 0);
3269         if (is_bad_inode(inode)) {
3270                 btrfs_orphan_del(NULL, inode);
3271                 goto no_delete;
3272         }
3273         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3274
3275         if (inode->i_nlink > 0) {
3276                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3277                 goto no_delete;
3278         }
3279
3280         btrfs_i_size_write(inode, 0);
3281         trans = btrfs_join_transaction(root, 1);
3282
3283         btrfs_set_trans_block_group(trans, inode);
3284         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3285         if (ret) {
3286                 btrfs_orphan_del(NULL, inode);
3287                 goto no_delete_lock;
3288         }
3289
3290         btrfs_orphan_del(trans, inode);
3291
3292         nr = trans->blocks_used;
3293         clear_inode(inode);
3294
3295         btrfs_end_transaction(trans, root);
3296         btrfs_btree_balance_dirty(root, nr);
3297         return;
3298
3299 no_delete_lock:
3300         nr = trans->blocks_used;
3301         btrfs_end_transaction(trans, root);
3302         btrfs_btree_balance_dirty(root, nr);
3303 no_delete:
3304         clear_inode(inode);
3305 }
3306
3307 /*
3308  * this returns the key found in the dir entry in the location pointer.
3309  * If no dir entries were found, location->objectid is 0.
3310  */
3311 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3312                                struct btrfs_key *location)
3313 {
3314         const char *name = dentry->d_name.name;
3315         int namelen = dentry->d_name.len;
3316         struct btrfs_dir_item *di;
3317         struct btrfs_path *path;
3318         struct btrfs_root *root = BTRFS_I(dir)->root;
3319         int ret = 0;
3320
3321         path = btrfs_alloc_path();
3322         BUG_ON(!path);
3323
3324         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3325                                     namelen, 0);
3326         if (IS_ERR(di))
3327                 ret = PTR_ERR(di);
3328
3329         if (!di || IS_ERR(di))
3330                 goto out_err;
3331
3332         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3333 out:
3334         btrfs_free_path(path);
3335         return ret;
3336 out_err:
3337         location->objectid = 0;
3338         goto out;
3339 }
3340
3341 /*
3342  * when we hit a tree root in a directory, the btrfs part of the inode
3343  * needs to be changed to reflect the root directory of the tree root.  This
3344  * is kind of like crossing a mount point.
3345  */
3346 static int fixup_tree_root_location(struct btrfs_root *root,
3347                                     struct inode *dir,
3348                                     struct dentry *dentry,
3349                                     struct btrfs_key *location,
3350                                     struct btrfs_root **sub_root)
3351 {
3352         struct btrfs_path *path;
3353         struct btrfs_root *new_root;
3354         struct btrfs_root_ref *ref;
3355         struct extent_buffer *leaf;
3356         int ret;
3357         int err = 0;
3358
3359         path = btrfs_alloc_path();
3360         if (!path) {
3361                 err = -ENOMEM;
3362                 goto out;
3363         }
3364
3365         err = -ENOENT;
3366         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3367                                   BTRFS_I(dir)->root->root_key.objectid,
3368                                   location->objectid);
3369         if (ret) {
3370                 if (ret < 0)
3371                         err = ret;
3372                 goto out;
3373         }
3374
3375         leaf = path->nodes[0];
3376         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3377         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3378             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3379                 goto out;
3380
3381         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3382                                    (unsigned long)(ref + 1),
3383                                    dentry->d_name.len);
3384         if (ret)
3385                 goto out;
3386
3387         btrfs_release_path(root->fs_info->tree_root, path);
3388
3389         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3390         if (IS_ERR(new_root)) {
3391                 err = PTR_ERR(new_root);
3392                 goto out;
3393         }
3394
3395         if (btrfs_root_refs(&new_root->root_item) == 0) {
3396                 err = -ENOENT;
3397                 goto out;
3398         }
3399
3400         *sub_root = new_root;
3401         location->objectid = btrfs_root_dirid(&new_root->root_item);
3402         location->type = BTRFS_INODE_ITEM_KEY;
3403         location->offset = 0;
3404         err = 0;
3405 out:
3406         btrfs_free_path(path);
3407         return err;
3408 }
3409
3410 static void inode_tree_add(struct inode *inode)
3411 {
3412         struct btrfs_root *root = BTRFS_I(inode)->root;
3413         struct btrfs_inode *entry;
3414         struct rb_node **p;
3415         struct rb_node *parent;
3416 again:
3417         p = &root->inode_tree.rb_node;
3418         parent = NULL;
3419
3420         if (hlist_unhashed(&inode->i_hash))
3421                 return;
3422
3423         spin_lock(&root->inode_lock);
3424         while (*p) {
3425                 parent = *p;
3426                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3427
3428                 if (inode->i_ino < entry->vfs_inode.i_ino)
3429                         p = &parent->rb_left;
3430                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3431                         p = &parent->rb_right;
3432                 else {
3433                         WARN_ON(!(entry->vfs_inode.i_state &
3434                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3435                         rb_erase(parent, &root->inode_tree);
3436                         RB_CLEAR_NODE(parent);
3437                         spin_unlock(&root->inode_lock);
3438                         goto again;
3439                 }
3440         }
3441         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3442         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3443         spin_unlock(&root->inode_lock);
3444 }
3445
3446 static void inode_tree_del(struct inode *inode)
3447 {
3448         struct btrfs_root *root = BTRFS_I(inode)->root;
3449         int empty = 0;
3450
3451         spin_lock(&root->inode_lock);
3452         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3453                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3454                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3455                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3456         }
3457         spin_unlock(&root->inode_lock);
3458
3459         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3460                 synchronize_srcu(&root->fs_info->subvol_srcu);
3461                 spin_lock(&root->inode_lock);
3462                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3463                 spin_unlock(&root->inode_lock);
3464                 if (empty)
3465                         btrfs_add_dead_root(root);
3466         }
3467 }
3468
3469 int btrfs_invalidate_inodes(struct btrfs_root *root)
3470 {
3471         struct rb_node *node;
3472         struct rb_node *prev;
3473         struct btrfs_inode *entry;
3474         struct inode *inode;
3475         u64 objectid = 0;
3476
3477         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3478
3479         spin_lock(&root->inode_lock);
3480 again:
3481         node = root->inode_tree.rb_node;
3482         prev = NULL;
3483         while (node) {
3484                 prev = node;
3485                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3486
3487                 if (objectid < entry->vfs_inode.i_ino)
3488                         node = node->rb_left;
3489                 else if (objectid > entry->vfs_inode.i_ino)
3490                         node = node->rb_right;
3491                 else
3492                         break;
3493         }
3494         if (!node) {
3495                 while (prev) {
3496                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3497                         if (objectid <= entry->vfs_inode.i_ino) {
3498                                 node = prev;
3499                                 break;
3500                         }
3501                         prev = rb_next(prev);
3502                 }
3503         }
3504         while (node) {
3505                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3506                 objectid = entry->vfs_inode.i_ino + 1;
3507                 inode = igrab(&entry->vfs_inode);
3508                 if (inode) {
3509                         spin_unlock(&root->inode_lock);
3510                         if (atomic_read(&inode->i_count) > 1)
3511                                 d_prune_aliases(inode);
3512                         /*
3513                          * btrfs_drop_inode will remove it from
3514                          * the inode cache when its usage count
3515                          * hits zero.
3516                          */
3517                         iput(inode);
3518                         cond_resched();
3519                         spin_lock(&root->inode_lock);
3520                         goto again;
3521                 }
3522
3523                 if (cond_resched_lock(&root->inode_lock))
3524                         goto again;
3525
3526                 node = rb_next(node);
3527         }
3528         spin_unlock(&root->inode_lock);
3529         return 0;
3530 }
3531
3532 static noinline void init_btrfs_i(struct inode *inode)
3533 {
3534         struct btrfs_inode *bi = BTRFS_I(inode);
3535
3536         bi->generation = 0;
3537         bi->sequence = 0;
3538         bi->last_trans = 0;
3539         bi->last_sub_trans = 0;
3540         bi->logged_trans = 0;
3541         bi->delalloc_bytes = 0;
3542         bi->reserved_bytes = 0;
3543         bi->disk_i_size = 0;
3544         bi->flags = 0;
3545         bi->index_cnt = (u64)-1;
3546         bi->last_unlink_trans = 0;
3547         bi->ordered_data_close = 0;
3548         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3549         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3550                              inode->i_mapping, GFP_NOFS);
3551         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3552                              inode->i_mapping, GFP_NOFS);
3553         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3554         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3555         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3556         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3557         mutex_init(&BTRFS_I(inode)->extent_mutex);
3558         mutex_init(&BTRFS_I(inode)->log_mutex);
3559 }
3560
3561 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3562 {
3563         struct btrfs_iget_args *args = p;
3564         inode->i_ino = args->ino;
3565         init_btrfs_i(inode);
3566         BTRFS_I(inode)->root = args->root;
3567         btrfs_set_inode_space_info(args->root, inode);
3568         return 0;
3569 }
3570
3571 static int btrfs_find_actor(struct inode *inode, void *opaque)
3572 {
3573         struct btrfs_iget_args *args = opaque;
3574         return args->ino == inode->i_ino &&
3575                 args->root == BTRFS_I(inode)->root;
3576 }
3577
3578 static struct inode *btrfs_iget_locked(struct super_block *s,
3579                                        u64 objectid,
3580                                        struct btrfs_root *root)
3581 {
3582         struct inode *inode;
3583         struct btrfs_iget_args args;
3584         args.ino = objectid;
3585         args.root = root;
3586
3587         inode = iget5_locked(s, objectid, btrfs_find_actor,
3588                              btrfs_init_locked_inode,
3589                              (void *)&args);
3590         return inode;
3591 }
3592
3593 /* Get an inode object given its location and corresponding root.
3594  * Returns in *is_new if the inode was read from disk
3595  */
3596 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3597                          struct btrfs_root *root)
3598 {
3599         struct inode *inode;
3600
3601         inode = btrfs_iget_locked(s, location->objectid, root);
3602         if (!inode)
3603                 return ERR_PTR(-ENOMEM);
3604
3605         if (inode->i_state & I_NEW) {
3606                 BTRFS_I(inode)->root = root;
3607                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3608                 btrfs_read_locked_inode(inode);
3609
3610                 inode_tree_add(inode);
3611                 unlock_new_inode(inode);
3612         }
3613
3614         return inode;
3615 }
3616
3617 static struct inode *new_simple_dir(struct super_block *s,
3618                                     struct btrfs_key *key,
3619                                     struct btrfs_root *root)
3620 {
3621         struct inode *inode = new_inode(s);
3622
3623         if (!inode)
3624                 return ERR_PTR(-ENOMEM);
3625
3626         init_btrfs_i(inode);
3627
3628         BTRFS_I(inode)->root = root;
3629         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3630         BTRFS_I(inode)->dummy_inode = 1;
3631
3632         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3633         inode->i_op = &simple_dir_inode_operations;
3634         inode->i_fop = &simple_dir_operations;
3635         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3636         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3637
3638         return inode;
3639 }
3640
3641 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3642 {
3643         struct inode *inode;
3644         struct btrfs_root *root = BTRFS_I(dir)->root;
3645         struct btrfs_root *sub_root = root;
3646         struct btrfs_key location;
3647         int index;
3648         int ret;
3649
3650         dentry->d_op = &btrfs_dentry_operations;
3651
3652         if (dentry->d_name.len > BTRFS_NAME_LEN)
3653                 return ERR_PTR(-ENAMETOOLONG);
3654
3655         ret = btrfs_inode_by_name(dir, dentry, &location);
3656
3657         if (ret < 0)
3658                 return ERR_PTR(ret);
3659
3660         if (location.objectid == 0)
3661                 return NULL;
3662
3663         if (location.type == BTRFS_INODE_ITEM_KEY) {
3664                 inode = btrfs_iget(dir->i_sb, &location, root);
3665                 return inode;
3666         }
3667
3668         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3669
3670         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3671         ret = fixup_tree_root_location(root, dir, dentry,
3672                                        &location, &sub_root);
3673         if (ret < 0) {
3674                 if (ret != -ENOENT)
3675                         inode = ERR_PTR(ret);
3676                 else
3677                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3678         } else {
3679                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3680         }
3681         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3682
3683         return inode;
3684 }
3685
3686 static int btrfs_dentry_delete(struct dentry *dentry)
3687 {
3688         struct btrfs_root *root;
3689
3690         if (!dentry->d_inode && !IS_ROOT(dentry))
3691                 dentry = dentry->d_parent;
3692
3693         if (dentry->d_inode) {
3694                 root = BTRFS_I(dentry->d_inode)->root;
3695                 if (btrfs_root_refs(&root->root_item) == 0)
3696                         return 1;
3697         }
3698         return 0;
3699 }
3700
3701 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3702                                    struct nameidata *nd)
3703 {
3704         struct inode *inode;
3705
3706         inode = btrfs_lookup_dentry(dir, dentry);
3707         if (IS_ERR(inode))
3708                 return ERR_CAST(inode);
3709
3710         return d_splice_alias(inode, dentry);
3711 }
3712
3713 static unsigned char btrfs_filetype_table[] = {
3714         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3715 };
3716
3717 static int btrfs_real_readdir(struct file *filp, void *dirent,
3718                               filldir_t filldir)
3719 {
3720         struct inode *inode = filp->f_dentry->d_inode;
3721         struct btrfs_root *root = BTRFS_I(inode)->root;
3722         struct btrfs_item *item;
3723         struct btrfs_dir_item *di;
3724         struct btrfs_key key;
3725         struct btrfs_key found_key;
3726         struct btrfs_path *path;
3727         int ret;
3728         u32 nritems;
3729         struct extent_buffer *leaf;
3730         int slot;
3731         int advance;
3732         unsigned char d_type;
3733         int over = 0;
3734         u32 di_cur;
3735         u32 di_total;
3736         u32 di_len;
3737         int key_type = BTRFS_DIR_INDEX_KEY;
3738         char tmp_name[32];
3739         char *name_ptr;
3740         int name_len;
3741
3742         /* FIXME, use a real flag for deciding about the key type */
3743         if (root->fs_info->tree_root == root)
3744                 key_type = BTRFS_DIR_ITEM_KEY;
3745
3746         /* special case for "." */
3747         if (filp->f_pos == 0) {
3748                 over = filldir(dirent, ".", 1,
3749                                1, inode->i_ino,
3750                                DT_DIR);
3751                 if (over)
3752                         return 0;
3753                 filp->f_pos = 1;
3754         }
3755         /* special case for .., just use the back ref */
3756         if (filp->f_pos == 1) {
3757                 u64 pino = parent_ino(filp->f_path.dentry);
3758                 over = filldir(dirent, "..", 2,
3759                                2, pino, DT_DIR);
3760                 if (over)
3761                         return 0;
3762                 filp->f_pos = 2;
3763         }
3764         path = btrfs_alloc_path();
3765         path->reada = 2;
3766
3767         btrfs_set_key_type(&key, key_type);
3768         key.offset = filp->f_pos;
3769         key.objectid = inode->i_ino;
3770
3771         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3772         if (ret < 0)
3773                 goto err;
3774         advance = 0;
3775
3776         while (1) {
3777                 leaf = path->nodes[0];
3778                 nritems = btrfs_header_nritems(leaf);
3779                 slot = path->slots[0];
3780                 if (advance || slot >= nritems) {
3781                         if (slot >= nritems - 1) {
3782                                 ret = btrfs_next_leaf(root, path);
3783                                 if (ret)
3784                                         break;
3785                                 leaf = path->nodes[0];
3786                                 nritems = btrfs_header_nritems(leaf);
3787                                 slot = path->slots[0];
3788                         } else {
3789                                 slot++;
3790                                 path->slots[0]++;
3791                         }
3792                 }
3793
3794                 advance = 1;
3795                 item = btrfs_item_nr(leaf, slot);
3796                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3797
3798                 if (found_key.objectid != key.objectid)
3799                         break;
3800                 if (btrfs_key_type(&found_key) != key_type)
3801                         break;
3802                 if (found_key.offset < filp->f_pos)
3803                         continue;
3804
3805                 filp->f_pos = found_key.offset;
3806
3807                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3808                 di_cur = 0;
3809                 di_total = btrfs_item_size(leaf, item);
3810
3811                 while (di_cur < di_total) {
3812                         struct btrfs_key location;
3813
3814                         name_len = btrfs_dir_name_len(leaf, di);
3815                         if (name_len <= sizeof(tmp_name)) {
3816                                 name_ptr = tmp_name;
3817                         } else {
3818                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3819                                 if (!name_ptr) {
3820                                         ret = -ENOMEM;
3821                                         goto err;
3822                                 }
3823                         }
3824                         read_extent_buffer(leaf, name_ptr,
3825                                            (unsigned long)(di + 1), name_len);
3826
3827                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3828                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3829
3830                         /* is this a reference to our own snapshot? If so
3831                          * skip it
3832                          */
3833                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3834                             location.objectid == root->root_key.objectid) {
3835                                 over = 0;
3836                                 goto skip;
3837                         }
3838                         over = filldir(dirent, name_ptr, name_len,
3839                                        found_key.offset, location.objectid,
3840                                        d_type);
3841
3842 skip:
3843                         if (name_ptr != tmp_name)
3844                                 kfree(name_ptr);
3845
3846                         if (over)
3847                                 goto nopos;
3848                         di_len = btrfs_dir_name_len(leaf, di) +
3849                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3850                         di_cur += di_len;
3851                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3852                 }
3853         }
3854
3855         /* Reached end of directory/root. Bump pos past the last item. */
3856         if (key_type == BTRFS_DIR_INDEX_KEY)
3857                 filp->f_pos = INT_LIMIT(off_t);
3858         else
3859                 filp->f_pos++;
3860 nopos:
3861         ret = 0;
3862 err:
3863         btrfs_free_path(path);
3864         return ret;
3865 }
3866
3867 int btrfs_write_inode(struct inode *inode, int wait)
3868 {
3869         struct btrfs_root *root = BTRFS_I(inode)->root;
3870         struct btrfs_trans_handle *trans;
3871         int ret = 0;
3872
3873         if (root->fs_info->btree_inode == inode)
3874                 return 0;
3875
3876         if (wait) {
3877                 trans = btrfs_join_transaction(root, 1);
3878                 btrfs_set_trans_block_group(trans, inode);
3879                 ret = btrfs_commit_transaction(trans, root);
3880         }
3881         return ret;
3882 }
3883
3884 /*
3885  * This is somewhat expensive, updating the tree every time the
3886  * inode changes.  But, it is most likely to find the inode in cache.
3887  * FIXME, needs more benchmarking...there are no reasons other than performance
3888  * to keep or drop this code.
3889  */
3890 void btrfs_dirty_inode(struct inode *inode)
3891 {
3892         struct btrfs_root *root = BTRFS_I(inode)->root;
3893         struct btrfs_trans_handle *trans;
3894
3895         trans = btrfs_join_transaction(root, 1);
3896         btrfs_set_trans_block_group(trans, inode);
3897         btrfs_update_inode(trans, root, inode);
3898         btrfs_end_transaction(trans, root);
3899 }
3900
3901 /*
3902  * find the highest existing sequence number in a directory
3903  * and then set the in-memory index_cnt variable to reflect
3904  * free sequence numbers
3905  */
3906 static int btrfs_set_inode_index_count(struct inode *inode)
3907 {
3908         struct btrfs_root *root = BTRFS_I(inode)->root;
3909         struct btrfs_key key, found_key;
3910         struct btrfs_path *path;
3911         struct extent_buffer *leaf;
3912         int ret;
3913
3914         key.objectid = inode->i_ino;
3915         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3916         key.offset = (u64)-1;
3917
3918         path = btrfs_alloc_path();
3919         if (!path)
3920                 return -ENOMEM;
3921
3922         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3923         if (ret < 0)
3924                 goto out;
3925         /* FIXME: we should be able to handle this */
3926         if (ret == 0)
3927                 goto out;
3928         ret = 0;
3929
3930         /*
3931          * MAGIC NUMBER EXPLANATION:
3932          * since we search a directory based on f_pos we have to start at 2
3933          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3934          * else has to start at 2
3935          */
3936         if (path->slots[0] == 0) {
3937                 BTRFS_I(inode)->index_cnt = 2;
3938                 goto out;
3939         }
3940
3941         path->slots[0]--;
3942
3943         leaf = path->nodes[0];
3944         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3945
3946         if (found_key.objectid != inode->i_ino ||
3947             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3948                 BTRFS_I(inode)->index_cnt = 2;
3949                 goto out;
3950         }
3951
3952         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3953 out:
3954         btrfs_free_path(path);
3955         return ret;
3956 }
3957
3958 /*
3959  * helper to find a free sequence number in a given directory.  This current
3960  * code is very simple, later versions will do smarter things in the btree
3961  */
3962 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3963 {
3964         int ret = 0;
3965
3966         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3967                 ret = btrfs_set_inode_index_count(dir);
3968                 if (ret)
3969                         return ret;
3970         }
3971
3972         *index = BTRFS_I(dir)->index_cnt;
3973         BTRFS_I(dir)->index_cnt++;
3974
3975         return ret;
3976 }
3977
3978 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3979                                      struct btrfs_root *root,
3980                                      struct inode *dir,
3981                                      const char *name, int name_len,
3982                                      u64 ref_objectid, u64 objectid,
3983                                      u64 alloc_hint, int mode, u64 *index)
3984 {
3985         struct inode *inode;
3986         struct btrfs_inode_item *inode_item;
3987         struct btrfs_key *location;
3988         struct btrfs_path *path;
3989         struct btrfs_inode_ref *ref;
3990         struct btrfs_key key[2];
3991         u32 sizes[2];
3992         unsigned long ptr;
3993         int ret;
3994         int owner;
3995
3996         path = btrfs_alloc_path();
3997         BUG_ON(!path);
3998
3999         inode = new_inode(root->fs_info->sb);
4000         if (!inode)
4001                 return ERR_PTR(-ENOMEM);
4002
4003         if (dir) {
4004                 ret = btrfs_set_inode_index(dir, index);
4005                 if (ret) {
4006                         iput(inode);
4007                         return ERR_PTR(ret);
4008                 }
4009         }
4010         /*
4011          * index_cnt is ignored for everything but a dir,
4012          * btrfs_get_inode_index_count has an explanation for the magic
4013          * number
4014          */
4015         init_btrfs_i(inode);
4016         BTRFS_I(inode)->index_cnt = 2;
4017         BTRFS_I(inode)->root = root;
4018         BTRFS_I(inode)->generation = trans->transid;
4019         btrfs_set_inode_space_info(root, inode);
4020
4021         if (mode & S_IFDIR)
4022                 owner = 0;
4023         else
4024                 owner = 1;
4025         BTRFS_I(inode)->block_group =
4026                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4027
4028         key[0].objectid = objectid;
4029         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4030         key[0].offset = 0;
4031
4032         key[1].objectid = objectid;
4033         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4034         key[1].offset = ref_objectid;
4035
4036         sizes[0] = sizeof(struct btrfs_inode_item);
4037         sizes[1] = name_len + sizeof(*ref);
4038
4039         path->leave_spinning = 1;
4040         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4041         if (ret != 0)
4042                 goto fail;
4043
4044         inode->i_uid = current_fsuid();
4045
4046         if (dir && (dir->i_mode & S_ISGID)) {
4047                 inode->i_gid = dir->i_gid;
4048                 if (S_ISDIR(mode))
4049                         mode |= S_ISGID;
4050         } else
4051                 inode->i_gid = current_fsgid();
4052
4053         inode->i_mode = mode;
4054         inode->i_ino = objectid;
4055         inode_set_bytes(inode, 0);
4056         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4057         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4058                                   struct btrfs_inode_item);
4059         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4060
4061         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4062                              struct btrfs_inode_ref);
4063         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4064         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4065         ptr = (unsigned long)(ref + 1);
4066         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4067
4068         btrfs_mark_buffer_dirty(path->nodes[0]);
4069         btrfs_free_path(path);
4070
4071         location = &BTRFS_I(inode)->location;
4072         location->objectid = objectid;
4073         location->offset = 0;
4074         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4075
4076         btrfs_inherit_iflags(inode, dir);
4077
4078         if ((mode & S_IFREG)) {
4079                 if (btrfs_test_opt(root, NODATASUM))
4080                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4081                 if (btrfs_test_opt(root, NODATACOW))
4082                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4083         }
4084
4085         insert_inode_hash(inode);
4086         inode_tree_add(inode);
4087         return inode;
4088 fail:
4089         if (dir)
4090                 BTRFS_I(dir)->index_cnt--;
4091         btrfs_free_path(path);
4092         iput(inode);
4093         return ERR_PTR(ret);
4094 }
4095
4096 static inline u8 btrfs_inode_type(struct inode *inode)
4097 {
4098         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4099 }
4100
4101 /*
4102  * utility function to add 'inode' into 'parent_inode' with
4103  * a give name and a given sequence number.
4104  * if 'add_backref' is true, also insert a backref from the
4105  * inode to the parent directory.
4106  */
4107 int btrfs_add_link(struct btrfs_trans_handle *trans,
4108                    struct inode *parent_inode, struct inode *inode,
4109                    const char *name, int name_len, int add_backref, u64 index)
4110 {
4111         int ret = 0;
4112         struct btrfs_key key;
4113         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4114
4115         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4116                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4117         } else {
4118                 key.objectid = inode->i_ino;
4119                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4120                 key.offset = 0;
4121         }
4122
4123         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4124                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4125                                          key.objectid, root->root_key.objectid,
4126                                          parent_inode->i_ino,
4127                                          index, name, name_len);
4128         } else if (add_backref) {
4129                 ret = btrfs_insert_inode_ref(trans, root,
4130                                              name, name_len, inode->i_ino,
4131                                              parent_inode->i_ino, index);
4132         }
4133
4134         if (ret == 0) {
4135                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4136                                             parent_inode->i_ino, &key,
4137                                             btrfs_inode_type(inode), index);
4138                 BUG_ON(ret);
4139
4140                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4141                                    name_len * 2);
4142                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4143                 ret = btrfs_update_inode(trans, root, parent_inode);
4144         }
4145         return ret;
4146 }
4147
4148 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4149                             struct dentry *dentry, struct inode *inode,
4150                             int backref, u64 index)
4151 {
4152         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4153                                  inode, dentry->d_name.name,
4154                                  dentry->d_name.len, backref, index);
4155         if (!err) {
4156                 d_instantiate(dentry, inode);
4157                 return 0;
4158         }
4159         if (err > 0)
4160                 err = -EEXIST;
4161         return err;
4162 }
4163
4164 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4165                         int mode, dev_t rdev)
4166 {
4167         struct btrfs_trans_handle *trans;
4168         struct btrfs_root *root = BTRFS_I(dir)->root;
4169         struct inode *inode = NULL;
4170         int err;
4171         int drop_inode = 0;
4172         u64 objectid;
4173         unsigned long nr = 0;
4174         u64 index = 0;
4175
4176         if (!new_valid_dev(rdev))
4177                 return -EINVAL;
4178
4179         /*
4180          * 2 for inode item and ref
4181          * 2 for dir items
4182          * 1 for xattr if selinux is on
4183          */
4184         err = btrfs_reserve_metadata_space(root, 5);
4185         if (err)
4186                 return err;
4187
4188         trans = btrfs_start_transaction(root, 1);
4189         if (!trans)
4190                 goto fail;
4191         btrfs_set_trans_block_group(trans, dir);
4192
4193         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4194         if (err) {
4195                 err = -ENOSPC;
4196                 goto out_unlock;
4197         }
4198
4199         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4200                                 dentry->d_name.len,
4201                                 dentry->d_parent->d_inode->i_ino, objectid,
4202                                 BTRFS_I(dir)->block_group, mode, &index);
4203         err = PTR_ERR(inode);
4204         if (IS_ERR(inode))
4205                 goto out_unlock;
4206
4207         err = btrfs_init_inode_security(inode, dir);
4208         if (err) {
4209                 drop_inode = 1;
4210                 goto out_unlock;
4211         }
4212
4213         btrfs_set_trans_block_group(trans, inode);
4214         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4215         if (err)
4216                 drop_inode = 1;
4217         else {
4218                 inode->i_op = &btrfs_special_inode_operations;
4219                 init_special_inode(inode, inode->i_mode, rdev);
4220                 btrfs_update_inode(trans, root, inode);
4221         }
4222         btrfs_update_inode_block_group(trans, inode);
4223         btrfs_update_inode_block_group(trans, dir);
4224 out_unlock:
4225         nr = trans->blocks_used;
4226         btrfs_end_transaction_throttle(trans, root);
4227 fail:
4228         btrfs_unreserve_metadata_space(root, 5);
4229         if (drop_inode) {
4230                 inode_dec_link_count(inode);
4231                 iput(inode);
4232         }
4233         btrfs_btree_balance_dirty(root, nr);
4234         return err;
4235 }
4236
4237 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4238                         int mode, struct nameidata *nd)
4239 {
4240         struct btrfs_trans_handle *trans;
4241         struct btrfs_root *root = BTRFS_I(dir)->root;
4242         struct inode *inode = NULL;
4243         int err;
4244         int drop_inode = 0;
4245         unsigned long nr = 0;
4246         u64 objectid;
4247         u64 index = 0;
4248
4249         /*
4250          * 2 for inode item and ref
4251          * 2 for dir items
4252          * 1 for xattr if selinux is on
4253          */
4254         err = btrfs_reserve_metadata_space(root, 5);
4255         if (err)
4256                 return err;
4257
4258         trans = btrfs_start_transaction(root, 1);
4259         if (!trans)
4260                 goto fail;
4261         btrfs_set_trans_block_group(trans, dir);
4262
4263         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4264         if (err) {
4265                 err = -ENOSPC;
4266                 goto out_unlock;
4267         }
4268
4269         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4270                                 dentry->d_name.len,
4271                                 dentry->d_parent->d_inode->i_ino,
4272                                 objectid, BTRFS_I(dir)->block_group, mode,
4273                                 &index);
4274         err = PTR_ERR(inode);
4275         if (IS_ERR(inode))
4276                 goto out_unlock;
4277
4278         err = btrfs_init_inode_security(inode, dir);
4279         if (err) {
4280                 drop_inode = 1;
4281                 goto out_unlock;
4282         }
4283
4284         btrfs_set_trans_block_group(trans, inode);
4285         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4286         if (err)
4287                 drop_inode = 1;
4288         else {
4289                 inode->i_mapping->a_ops = &btrfs_aops;
4290                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4291                 inode->i_fop = &btrfs_file_operations;
4292                 inode->i_op = &btrfs_file_inode_operations;
4293                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4294         }
4295         btrfs_update_inode_block_group(trans, inode);
4296         btrfs_update_inode_block_group(trans, dir);
4297 out_unlock:
4298         nr = trans->blocks_used;
4299         btrfs_end_transaction_throttle(trans, root);
4300 fail:
4301         btrfs_unreserve_metadata_space(root, 5);
4302         if (drop_inode) {
4303                 inode_dec_link_count(inode);
4304                 iput(inode);
4305         }
4306         btrfs_btree_balance_dirty(root, nr);
4307         return err;
4308 }
4309
4310 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4311                       struct dentry *dentry)
4312 {
4313         struct btrfs_trans_handle *trans;
4314         struct btrfs_root *root = BTRFS_I(dir)->root;
4315         struct inode *inode = old_dentry->d_inode;
4316         u64 index;
4317         unsigned long nr = 0;
4318         int err;
4319         int drop_inode = 0;
4320
4321         if (inode->i_nlink == 0)
4322                 return -ENOENT;
4323
4324         /*
4325          * 1 item for inode ref
4326          * 2 items for dir items
4327          */
4328         err = btrfs_reserve_metadata_space(root, 3);
4329         if (err)
4330                 return err;
4331
4332         btrfs_inc_nlink(inode);
4333
4334         err = btrfs_set_inode_index(dir, &index);
4335         if (err)
4336                 goto fail;
4337
4338         trans = btrfs_start_transaction(root, 1);
4339
4340         btrfs_set_trans_block_group(trans, dir);
4341         atomic_inc(&inode->i_count);
4342
4343         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4344
4345         if (err) {
4346                 drop_inode = 1;
4347         } else {
4348                 btrfs_update_inode_block_group(trans, dir);
4349                 err = btrfs_update_inode(trans, root, inode);
4350                 BUG_ON(err);
4351                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4352         }
4353
4354         nr = trans->blocks_used;
4355         btrfs_end_transaction_throttle(trans, root);
4356 fail:
4357         btrfs_unreserve_metadata_space(root, 3);
4358         if (drop_inode) {
4359                 inode_dec_link_count(inode);
4360                 iput(inode);
4361         }
4362         btrfs_btree_balance_dirty(root, nr);
4363         return err;
4364 }
4365
4366 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4367 {
4368         struct inode *inode = NULL;
4369         struct btrfs_trans_handle *trans;
4370         struct btrfs_root *root = BTRFS_I(dir)->root;
4371         int err = 0;
4372         int drop_on_err = 0;
4373         u64 objectid = 0;
4374         u64 index = 0;
4375         unsigned long nr = 1;
4376
4377         /*
4378          * 2 items for inode and ref
4379          * 2 items for dir items
4380          * 1 for xattr if selinux is on
4381          */
4382         err = btrfs_reserve_metadata_space(root, 5);
4383         if (err)
4384                 return err;
4385
4386         trans = btrfs_start_transaction(root, 1);
4387         if (!trans) {
4388                 err = -ENOMEM;
4389                 goto out_unlock;
4390         }
4391         btrfs_set_trans_block_group(trans, dir);
4392
4393         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4394         if (err) {
4395                 err = -ENOSPC;
4396                 goto out_unlock;
4397         }
4398
4399         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4400                                 dentry->d_name.len,
4401                                 dentry->d_parent->d_inode->i_ino, objectid,
4402                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4403                                 &index);
4404         if (IS_ERR(inode)) {
4405                 err = PTR_ERR(inode);
4406                 goto out_fail;
4407         }
4408
4409         drop_on_err = 1;
4410
4411         err = btrfs_init_inode_security(inode, dir);
4412         if (err)
4413                 goto out_fail;
4414
4415         inode->i_op = &btrfs_dir_inode_operations;
4416         inode->i_fop = &btrfs_dir_file_operations;
4417         btrfs_set_trans_block_group(trans, inode);
4418
4419         btrfs_i_size_write(inode, 0);
4420         err = btrfs_update_inode(trans, root, inode);
4421         if (err)
4422                 goto out_fail;
4423
4424         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4425                                  inode, dentry->d_name.name,
4426                                  dentry->d_name.len, 0, index);
4427         if (err)
4428                 goto out_fail;
4429
4430         d_instantiate(dentry, inode);
4431         drop_on_err = 0;
4432         btrfs_update_inode_block_group(trans, inode);
4433         btrfs_update_inode_block_group(trans, dir);
4434
4435 out_fail:
4436         nr = trans->blocks_used;
4437         btrfs_end_transaction_throttle(trans, root);
4438
4439 out_unlock:
4440         btrfs_unreserve_metadata_space(root, 5);
4441         if (drop_on_err)
4442                 iput(inode);
4443         btrfs_btree_balance_dirty(root, nr);
4444         return err;
4445 }
4446
4447 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4448  * and an extent that you want to insert, deal with overlap and insert
4449  * the new extent into the tree.
4450  */
4451 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4452                                 struct extent_map *existing,
4453                                 struct extent_map *em,
4454                                 u64 map_start, u64 map_len)
4455 {
4456         u64 start_diff;
4457
4458         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4459         start_diff = map_start - em->start;
4460         em->start = map_start;
4461         em->len = map_len;
4462         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4463             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4464                 em->block_start += start_diff;
4465                 em->block_len -= start_diff;
4466         }
4467         return add_extent_mapping(em_tree, em);
4468 }
4469
4470 static noinline int uncompress_inline(struct btrfs_path *path,
4471                                       struct inode *inode, struct page *page,
4472                                       size_t pg_offset, u64 extent_offset,
4473                                       struct btrfs_file_extent_item *item)
4474 {
4475         int ret;
4476         struct extent_buffer *leaf = path->nodes[0];
4477         char *tmp;
4478         size_t max_size;
4479         unsigned long inline_size;
4480         unsigned long ptr;
4481
4482         WARN_ON(pg_offset != 0);
4483         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4484         inline_size = btrfs_file_extent_inline_item_len(leaf,
4485                                         btrfs_item_nr(leaf, path->slots[0]));
4486         tmp = kmalloc(inline_size, GFP_NOFS);
4487         ptr = btrfs_file_extent_inline_start(item);
4488
4489         read_extent_buffer(leaf, tmp, ptr, inline_size);
4490
4491         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4492         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4493                                     inline_size, max_size);
4494         if (ret) {
4495                 char *kaddr = kmap_atomic(page, KM_USER0);
4496                 unsigned long copy_size = min_t(u64,
4497                                   PAGE_CACHE_SIZE - pg_offset,
4498                                   max_size - extent_offset);
4499                 memset(kaddr + pg_offset, 0, copy_size);
4500                 kunmap_atomic(kaddr, KM_USER0);
4501         }
4502         kfree(tmp);
4503         return 0;
4504 }
4505
4506 /*
4507  * a bit scary, this does extent mapping from logical file offset to the disk.
4508  * the ugly parts come from merging extents from the disk with the in-ram
4509  * representation.  This gets more complex because of the data=ordered code,
4510  * where the in-ram extents might be locked pending data=ordered completion.
4511  *
4512  * This also copies inline extents directly into the page.
4513  */
4514
4515 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4516                                     size_t pg_offset, u64 start, u64 len,
4517                                     int create)
4518 {
4519         int ret;
4520         int err = 0;
4521         u64 bytenr;
4522         u64 extent_start = 0;
4523         u64 extent_end = 0;
4524         u64 objectid = inode->i_ino;
4525         u32 found_type;
4526         struct btrfs_path *path = NULL;
4527         struct btrfs_root *root = BTRFS_I(inode)->root;
4528         struct btrfs_file_extent_item *item;
4529         struct extent_buffer *leaf;
4530         struct btrfs_key found_key;
4531         struct extent_map *em = NULL;
4532         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4533         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4534         struct btrfs_trans_handle *trans = NULL;
4535         int compressed;
4536
4537 again:
4538         read_lock(&em_tree->lock);
4539         em = lookup_extent_mapping(em_tree, start, len);
4540         if (em)
4541                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4542         read_unlock(&em_tree->lock);
4543
4544         if (em) {
4545                 if (em->start > start || em->start + em->len <= start)
4546                         free_extent_map(em);
4547                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4548                         free_extent_map(em);
4549                 else
4550                         goto out;
4551         }
4552         em = alloc_extent_map(GFP_NOFS);
4553         if (!em) {
4554                 err = -ENOMEM;
4555                 goto out;
4556         }
4557         em->bdev = root->fs_info->fs_devices->latest_bdev;
4558         em->start = EXTENT_MAP_HOLE;
4559         em->orig_start = EXTENT_MAP_HOLE;
4560         em->len = (u64)-1;
4561         em->block_len = (u64)-1;
4562
4563         if (!path) {
4564                 path = btrfs_alloc_path();
4565                 BUG_ON(!path);
4566         }
4567
4568         ret = btrfs_lookup_file_extent(trans, root, path,
4569                                        objectid, start, trans != NULL);
4570         if (ret < 0) {
4571                 err = ret;
4572                 goto out;
4573         }
4574
4575         if (ret != 0) {
4576                 if (path->slots[0] == 0)
4577                         goto not_found;
4578                 path->slots[0]--;
4579         }
4580
4581         leaf = path->nodes[0];
4582         item = btrfs_item_ptr(leaf, path->slots[0],
4583                               struct btrfs_file_extent_item);
4584         /* are we inside the extent that was found? */
4585         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4586         found_type = btrfs_key_type(&found_key);
4587         if (found_key.objectid != objectid ||
4588             found_type != BTRFS_EXTENT_DATA_KEY) {
4589                 goto not_found;
4590         }
4591
4592         found_type = btrfs_file_extent_type(leaf, item);
4593         extent_start = found_key.offset;
4594         compressed = btrfs_file_extent_compression(leaf, item);
4595         if (found_type == BTRFS_FILE_EXTENT_REG ||
4596             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4597                 extent_end = extent_start +
4598                        btrfs_file_extent_num_bytes(leaf, item);
4599         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4600                 size_t size;
4601                 size = btrfs_file_extent_inline_len(leaf, item);
4602                 extent_end = (extent_start + size + root->sectorsize - 1) &
4603                         ~((u64)root->sectorsize - 1);
4604         }
4605
4606         if (start >= extent_end) {
4607                 path->slots[0]++;
4608                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4609                         ret = btrfs_next_leaf(root, path);
4610                         if (ret < 0) {
4611                                 err = ret;
4612                                 goto out;
4613                         }
4614                         if (ret > 0)
4615                                 goto not_found;
4616                         leaf = path->nodes[0];
4617                 }
4618                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4619                 if (found_key.objectid != objectid ||
4620                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4621                         goto not_found;
4622                 if (start + len <= found_key.offset)
4623                         goto not_found;
4624                 em->start = start;
4625                 em->len = found_key.offset - start;
4626                 goto not_found_em;
4627         }
4628
4629         if (found_type == BTRFS_FILE_EXTENT_REG ||
4630             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4631                 em->start = extent_start;
4632                 em->len = extent_end - extent_start;
4633                 em->orig_start = extent_start -
4634                                  btrfs_file_extent_offset(leaf, item);
4635                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4636                 if (bytenr == 0) {
4637                         em->block_start = EXTENT_MAP_HOLE;
4638                         goto insert;
4639                 }
4640                 if (compressed) {
4641                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4642                         em->block_start = bytenr;
4643                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4644                                                                          item);
4645                 } else {
4646                         bytenr += btrfs_file_extent_offset(leaf, item);
4647                         em->block_start = bytenr;
4648                         em->block_len = em->len;
4649                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4650                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4651                 }
4652                 goto insert;
4653         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4654                 unsigned long ptr;
4655                 char *map;
4656                 size_t size;
4657                 size_t extent_offset;
4658                 size_t copy_size;
4659
4660                 em->block_start = EXTENT_MAP_INLINE;
4661                 if (!page || create) {
4662                         em->start = extent_start;
4663                         em->len = extent_end - extent_start;
4664                         goto out;
4665                 }
4666
4667                 size = btrfs_file_extent_inline_len(leaf, item);
4668                 extent_offset = page_offset(page) + pg_offset - extent_start;
4669                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4670                                 size - extent_offset);
4671                 em->start = extent_start + extent_offset;
4672                 em->len = (copy_size + root->sectorsize - 1) &
4673                         ~((u64)root->sectorsize - 1);
4674                 em->orig_start = EXTENT_MAP_INLINE;
4675                 if (compressed)
4676                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4677                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4678                 if (create == 0 && !PageUptodate(page)) {
4679                         if (btrfs_file_extent_compression(leaf, item) ==
4680                             BTRFS_COMPRESS_ZLIB) {
4681                                 ret = uncompress_inline(path, inode, page,
4682                                                         pg_offset,
4683                                                         extent_offset, item);
4684                                 BUG_ON(ret);
4685                         } else {
4686                                 map = kmap(page);
4687                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4688                                                    copy_size);
4689                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4690                                         memset(map + pg_offset + copy_size, 0,
4691                                                PAGE_CACHE_SIZE - pg_offset -
4692                                                copy_size);
4693                                 }
4694                                 kunmap(page);
4695                         }
4696                         flush_dcache_page(page);
4697                 } else if (create && PageUptodate(page)) {
4698                         if (!trans) {
4699                                 kunmap(page);
4700                                 free_extent_map(em);
4701                                 em = NULL;
4702                                 btrfs_release_path(root, path);
4703                                 trans = btrfs_join_transaction(root, 1);
4704                                 goto again;
4705                         }
4706                         map = kmap(page);
4707                         write_extent_buffer(leaf, map + pg_offset, ptr,
4708                                             copy_size);
4709                         kunmap(page);
4710                         btrfs_mark_buffer_dirty(leaf);
4711                 }
4712                 set_extent_uptodate(io_tree, em->start,
4713                                     extent_map_end(em) - 1, GFP_NOFS);
4714                 goto insert;
4715         } else {
4716                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4717                 WARN_ON(1);
4718         }
4719 not_found:
4720         em->start = start;
4721         em->len = len;
4722 not_found_em:
4723         em->block_start = EXTENT_MAP_HOLE;
4724         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4725 insert:
4726         btrfs_release_path(root, path);
4727         if (em->start > start || extent_map_end(em) <= start) {
4728                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4729                        "[%llu %llu]\n", (unsigned long long)em->start,
4730                        (unsigned long long)em->len,
4731                        (unsigned long long)start,
4732                        (unsigned long long)len);
4733                 err = -EIO;
4734                 goto out;
4735         }
4736
4737         err = 0;
4738         write_lock(&em_tree->lock);
4739         ret = add_extent_mapping(em_tree, em);
4740         /* it is possible that someone inserted the extent into the tree
4741          * while we had the lock dropped.  It is also possible that
4742          * an overlapping map exists in the tree
4743          */
4744         if (ret == -EEXIST) {
4745                 struct extent_map *existing;
4746
4747                 ret = 0;
4748
4749                 existing = lookup_extent_mapping(em_tree, start, len);
4750                 if (existing && (existing->start > start ||
4751                     existing->start + existing->len <= start)) {
4752                         free_extent_map(existing);
4753                         existing = NULL;
4754                 }
4755                 if (!existing) {
4756                         existing = lookup_extent_mapping(em_tree, em->start,
4757                                                          em->len);
4758                         if (existing) {
4759                                 err = merge_extent_mapping(em_tree, existing,
4760                                                            em, start,
4761                                                            root->sectorsize);
4762                                 free_extent_map(existing);
4763                                 if (err) {
4764                                         free_extent_map(em);
4765                                         em = NULL;
4766                                 }
4767                         } else {
4768                                 err = -EIO;
4769                                 free_extent_map(em);
4770                                 em = NULL;
4771                         }
4772                 } else {
4773                         free_extent_map(em);
4774                         em = existing;
4775                         err = 0;
4776                 }
4777         }
4778         write_unlock(&em_tree->lock);
4779 out:
4780         if (path)
4781                 btrfs_free_path(path);
4782         if (trans) {
4783                 ret = btrfs_end_transaction(trans, root);
4784                 if (!err)
4785                         err = ret;
4786         }
4787         if (err) {
4788                 free_extent_map(em);
4789                 return ERR_PTR(err);
4790         }
4791         return em;
4792 }
4793
4794 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4795                         const struct iovec *iov, loff_t offset,
4796                         unsigned long nr_segs)
4797 {
4798         return -EINVAL;
4799 }
4800
4801 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4802                 __u64 start, __u64 len)
4803 {
4804         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4805 }
4806
4807 int btrfs_readpage(struct file *file, struct page *page)
4808 {
4809         struct extent_io_tree *tree;
4810         tree = &BTRFS_I(page->mapping->host)->io_tree;
4811         return extent_read_full_page(tree, page, btrfs_get_extent);
4812 }
4813
4814 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4815 {
4816         struct extent_io_tree *tree;
4817
4818
4819         if (current->flags & PF_MEMALLOC) {
4820                 redirty_page_for_writepage(wbc, page);
4821                 unlock_page(page);
4822                 return 0;
4823         }
4824         tree = &BTRFS_I(page->mapping->host)->io_tree;
4825         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4826 }
4827
4828 int btrfs_writepages(struct address_space *mapping,
4829                      struct writeback_control *wbc)
4830 {
4831         struct extent_io_tree *tree;
4832
4833         tree = &BTRFS_I(mapping->host)->io_tree;
4834         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4835 }
4836
4837 static int
4838 btrfs_readpages(struct file *file, struct address_space *mapping,
4839                 struct list_head *pages, unsigned nr_pages)
4840 {
4841         struct extent_io_tree *tree;
4842         tree = &BTRFS_I(mapping->host)->io_tree;
4843         return extent_readpages(tree, mapping, pages, nr_pages,
4844                                 btrfs_get_extent);
4845 }
4846 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4847 {
4848         struct extent_io_tree *tree;
4849         struct extent_map_tree *map;
4850         int ret;
4851
4852         tree = &BTRFS_I(page->mapping->host)->io_tree;
4853         map = &BTRFS_I(page->mapping->host)->extent_tree;
4854         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4855         if (ret == 1) {
4856                 ClearPagePrivate(page);
4857                 set_page_private(page, 0);
4858                 page_cache_release(page);
4859         }
4860         return ret;
4861 }
4862
4863 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4864 {
4865         if (PageWriteback(page) || PageDirty(page))
4866                 return 0;
4867         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4868 }
4869
4870 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4871 {
4872         struct extent_io_tree *tree;
4873         struct btrfs_ordered_extent *ordered;
4874         u64 page_start = page_offset(page);
4875         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4876
4877
4878         /*
4879          * we have the page locked, so new writeback can't start,
4880          * and the dirty bit won't be cleared while we are here.
4881          *
4882          * Wait for IO on this page so that we can safely clear
4883          * the PagePrivate2 bit and do ordered accounting
4884          */
4885         wait_on_page_writeback(page);
4886
4887         tree = &BTRFS_I(page->mapping->host)->io_tree;
4888         if (offset) {
4889                 btrfs_releasepage(page, GFP_NOFS);
4890                 return;
4891         }
4892         lock_extent(tree, page_start, page_end, GFP_NOFS);
4893         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4894                                            page_offset(page));
4895         if (ordered) {
4896                 /*
4897                  * IO on this page will never be started, so we need
4898                  * to account for any ordered extents now
4899                  */
4900                 clear_extent_bit(tree, page_start, page_end,
4901                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4902                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4903                                  NULL, GFP_NOFS);
4904                 /*
4905                  * whoever cleared the private bit is responsible
4906                  * for the finish_ordered_io
4907                  */
4908                 if (TestClearPagePrivate2(page)) {
4909                         btrfs_finish_ordered_io(page->mapping->host,
4910                                                 page_start, page_end);
4911                 }
4912                 btrfs_put_ordered_extent(ordered);
4913                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4914         }
4915         clear_extent_bit(tree, page_start, page_end,
4916                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4917                  EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
4918         __btrfs_releasepage(page, GFP_NOFS);
4919
4920         ClearPageChecked(page);
4921         if (PagePrivate(page)) {
4922                 ClearPagePrivate(page);
4923                 set_page_private(page, 0);
4924                 page_cache_release(page);
4925         }
4926 }
4927
4928 /*
4929  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4930  * called from a page fault handler when a page is first dirtied. Hence we must
4931  * be careful to check for EOF conditions here. We set the page up correctly
4932  * for a written page which means we get ENOSPC checking when writing into
4933  * holes and correct delalloc and unwritten extent mapping on filesystems that
4934  * support these features.
4935  *
4936  * We are not allowed to take the i_mutex here so we have to play games to
4937  * protect against truncate races as the page could now be beyond EOF.  Because
4938  * vmtruncate() writes the inode size before removing pages, once we have the
4939  * page lock we can determine safely if the page is beyond EOF. If it is not
4940  * beyond EOF, then the page is guaranteed safe against truncation until we
4941  * unlock the page.
4942  */
4943 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4944 {
4945         struct page *page = vmf->page;
4946         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4947         struct btrfs_root *root = BTRFS_I(inode)->root;
4948         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4949         struct btrfs_ordered_extent *ordered;
4950         char *kaddr;
4951         unsigned long zero_start;
4952         loff_t size;
4953         int ret;
4954         u64 page_start;
4955         u64 page_end;
4956
4957         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4958         if (ret) {
4959                 if (ret == -ENOMEM)
4960                         ret = VM_FAULT_OOM;
4961                 else /* -ENOSPC, -EIO, etc */
4962                         ret = VM_FAULT_SIGBUS;
4963                 goto out;
4964         }
4965
4966         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4967         if (ret) {
4968                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4969                 ret = VM_FAULT_SIGBUS;
4970                 goto out;
4971         }
4972
4973         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4974 again:
4975         lock_page(page);
4976         size = i_size_read(inode);
4977         page_start = page_offset(page);
4978         page_end = page_start + PAGE_CACHE_SIZE - 1;
4979
4980         if ((page->mapping != inode->i_mapping) ||
4981             (page_start >= size)) {
4982                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4983                 /* page got truncated out from underneath us */
4984                 goto out_unlock;
4985         }
4986         wait_on_page_writeback(page);
4987
4988         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4989         set_page_extent_mapped(page);
4990
4991         /*
4992          * we can't set the delalloc bits if there are pending ordered
4993          * extents.  Drop our locks and wait for them to finish
4994          */
4995         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4996         if (ordered) {
4997                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4998                 unlock_page(page);
4999                 btrfs_start_ordered_extent(inode, ordered, 1);
5000                 btrfs_put_ordered_extent(ordered);
5001                 goto again;
5002         }
5003
5004         /*
5005          * XXX - page_mkwrite gets called every time the page is dirtied, even
5006          * if it was already dirty, so for space accounting reasons we need to
5007          * clear any delalloc bits for the range we are fixing to save.  There
5008          * is probably a better way to do this, but for now keep consistent with
5009          * prepare_pages in the normal write path.
5010          */
5011         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5012                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5013                           GFP_NOFS);
5014
5015         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5016         if (ret) {
5017                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5018                 ret = VM_FAULT_SIGBUS;
5019                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5020                 goto out_unlock;
5021         }
5022         ret = 0;
5023
5024         /* page is wholly or partially inside EOF */
5025         if (page_start + PAGE_CACHE_SIZE > size)
5026                 zero_start = size & ~PAGE_CACHE_MASK;
5027         else
5028                 zero_start = PAGE_CACHE_SIZE;
5029
5030         if (zero_start != PAGE_CACHE_SIZE) {
5031                 kaddr = kmap(page);
5032                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5033                 flush_dcache_page(page);
5034                 kunmap(page);
5035         }
5036         ClearPageChecked(page);
5037         set_page_dirty(page);
5038         SetPageUptodate(page);
5039
5040         BTRFS_I(inode)->last_trans = root->fs_info->generation;
5041         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5042
5043         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5044
5045 out_unlock:
5046         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5047         if (!ret)
5048                 return VM_FAULT_LOCKED;
5049         unlock_page(page);
5050 out:
5051         return ret;
5052 }
5053
5054 static void btrfs_truncate(struct inode *inode)
5055 {
5056         struct btrfs_root *root = BTRFS_I(inode)->root;
5057         int ret;
5058         struct btrfs_trans_handle *trans;
5059         unsigned long nr;
5060         u64 mask = root->sectorsize - 1;
5061
5062         if (!S_ISREG(inode->i_mode))
5063                 return;
5064         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5065                 return;
5066
5067         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5068         if (ret)
5069                 return;
5070         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5071
5072         trans = btrfs_start_transaction(root, 1);
5073
5074         /*
5075          * setattr is responsible for setting the ordered_data_close flag,
5076          * but that is only tested during the last file release.  That
5077          * could happen well after the next commit, leaving a great big
5078          * window where new writes may get lost if someone chooses to write
5079          * to this file after truncating to zero
5080          *
5081          * The inode doesn't have any dirty data here, and so if we commit
5082          * this is a noop.  If someone immediately starts writing to the inode
5083          * it is very likely we'll catch some of their writes in this
5084          * transaction, and the commit will find this file on the ordered
5085          * data list with good things to send down.
5086          *
5087          * This is a best effort solution, there is still a window where
5088          * using truncate to replace the contents of the file will
5089          * end up with a zero length file after a crash.
5090          */
5091         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5092                 btrfs_add_ordered_operation(trans, root, inode);
5093
5094         btrfs_set_trans_block_group(trans, inode);
5095         btrfs_i_size_write(inode, inode->i_size);
5096
5097         ret = btrfs_orphan_add(trans, inode);
5098         if (ret)
5099                 goto out;
5100         /* FIXME, add redo link to tree so we don't leak on crash */
5101         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5102                                       BTRFS_EXTENT_DATA_KEY);
5103         btrfs_update_inode(trans, root, inode);
5104
5105         ret = btrfs_orphan_del(trans, inode);
5106         BUG_ON(ret);
5107
5108 out:
5109         nr = trans->blocks_used;
5110         ret = btrfs_end_transaction_throttle(trans, root);
5111         BUG_ON(ret);
5112         btrfs_btree_balance_dirty(root, nr);
5113 }
5114
5115 /*
5116  * create a new subvolume directory/inode (helper for the ioctl).
5117  */
5118 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5119                              struct btrfs_root *new_root,
5120                              u64 new_dirid, u64 alloc_hint)
5121 {
5122         struct inode *inode;
5123         int err;
5124         u64 index = 0;
5125
5126         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5127                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5128         if (IS_ERR(inode))
5129                 return PTR_ERR(inode);
5130         inode->i_op = &btrfs_dir_inode_operations;
5131         inode->i_fop = &btrfs_dir_file_operations;
5132
5133         inode->i_nlink = 1;
5134         btrfs_i_size_write(inode, 0);
5135
5136         err = btrfs_update_inode(trans, new_root, inode);
5137         BUG_ON(err);
5138
5139         iput(inode);
5140         return 0;
5141 }
5142
5143 /* helper function for file defrag and space balancing.  This
5144  * forces readahead on a given range of bytes in an inode
5145  */
5146 unsigned long btrfs_force_ra(struct address_space *mapping,
5147                               struct file_ra_state *ra, struct file *file,
5148                               pgoff_t offset, pgoff_t last_index)
5149 {
5150         pgoff_t req_size = last_index - offset + 1;
5151
5152         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5153         return offset + req_size;
5154 }
5155
5156 struct inode *btrfs_alloc_inode(struct super_block *sb)
5157 {
5158         struct btrfs_inode *ei;
5159
5160         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5161         if (!ei)
5162                 return NULL;
5163         ei->last_trans = 0;
5164         ei->last_sub_trans = 0;
5165         ei->logged_trans = 0;
5166         ei->outstanding_extents = 0;
5167         ei->reserved_extents = 0;
5168         spin_lock_init(&ei->accounting_lock);
5169         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5170         INIT_LIST_HEAD(&ei->i_orphan);
5171         INIT_LIST_HEAD(&ei->ordered_operations);
5172         return &ei->vfs_inode;
5173 }
5174
5175 void btrfs_destroy_inode(struct inode *inode)
5176 {
5177         struct btrfs_ordered_extent *ordered;
5178         struct btrfs_root *root = BTRFS_I(inode)->root;
5179
5180         WARN_ON(!list_empty(&inode->i_dentry));
5181         WARN_ON(inode->i_data.nrpages);
5182
5183         /*
5184          * Make sure we're properly removed from the ordered operation
5185          * lists.
5186          */
5187         smp_mb();
5188         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5189                 spin_lock(&root->fs_info->ordered_extent_lock);
5190                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5191                 spin_unlock(&root->fs_info->ordered_extent_lock);
5192         }
5193
5194         spin_lock(&root->list_lock);
5195         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5196                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5197                        " list\n", inode->i_ino);
5198                 dump_stack();
5199         }
5200         spin_unlock(&root->list_lock);
5201
5202         while (1) {
5203                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5204                 if (!ordered)
5205                         break;
5206                 else {
5207                         printk(KERN_ERR "btrfs found ordered "
5208                                "extent %llu %llu on inode cleanup\n",
5209                                (unsigned long long)ordered->file_offset,
5210                                (unsigned long long)ordered->len);
5211                         btrfs_remove_ordered_extent(inode, ordered);
5212                         btrfs_put_ordered_extent(ordered);
5213                         btrfs_put_ordered_extent(ordered);
5214                 }
5215         }
5216         inode_tree_del(inode);
5217         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5218         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5219 }
5220
5221 void btrfs_drop_inode(struct inode *inode)
5222 {
5223         struct btrfs_root *root = BTRFS_I(inode)->root;
5224
5225         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5226                 generic_delete_inode(inode);
5227         else
5228                 generic_drop_inode(inode);
5229 }
5230
5231 static void init_once(void *foo)
5232 {
5233         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5234
5235         inode_init_once(&ei->vfs_inode);
5236 }
5237
5238 void btrfs_destroy_cachep(void)
5239 {
5240         if (btrfs_inode_cachep)
5241                 kmem_cache_destroy(btrfs_inode_cachep);
5242         if (btrfs_trans_handle_cachep)
5243                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5244         if (btrfs_transaction_cachep)
5245                 kmem_cache_destroy(btrfs_transaction_cachep);
5246         if (btrfs_path_cachep)
5247                 kmem_cache_destroy(btrfs_path_cachep);
5248 }
5249
5250 int btrfs_init_cachep(void)
5251 {
5252         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5253                         sizeof(struct btrfs_inode), 0,
5254                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5255         if (!btrfs_inode_cachep)
5256                 goto fail;
5257
5258         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5259                         sizeof(struct btrfs_trans_handle), 0,
5260                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5261         if (!btrfs_trans_handle_cachep)
5262                 goto fail;
5263
5264         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5265                         sizeof(struct btrfs_transaction), 0,
5266                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5267         if (!btrfs_transaction_cachep)
5268                 goto fail;
5269
5270         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5271                         sizeof(struct btrfs_path), 0,
5272                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5273         if (!btrfs_path_cachep)
5274                 goto fail;
5275
5276         return 0;
5277 fail:
5278         btrfs_destroy_cachep();
5279         return -ENOMEM;
5280 }
5281
5282 static int btrfs_getattr(struct vfsmount *mnt,
5283                          struct dentry *dentry, struct kstat *stat)
5284 {
5285         struct inode *inode = dentry->d_inode;
5286         generic_fillattr(inode, stat);
5287         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5288         stat->blksize = PAGE_CACHE_SIZE;
5289         stat->blocks = (inode_get_bytes(inode) +
5290                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5291         return 0;
5292 }
5293
5294 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5295                            struct inode *new_dir, struct dentry *new_dentry)
5296 {
5297         struct btrfs_trans_handle *trans;
5298         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5299         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5300         struct inode *new_inode = new_dentry->d_inode;
5301         struct inode *old_inode = old_dentry->d_inode;
5302         struct timespec ctime = CURRENT_TIME;
5303         u64 index = 0;
5304         u64 root_objectid;
5305         int ret;
5306
5307         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5308                 return -EPERM;
5309
5310         /* we only allow rename subvolume link between subvolumes */
5311         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5312                 return -EXDEV;
5313
5314         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5315             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5316                 return -ENOTEMPTY;
5317
5318         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5319             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5320                 return -ENOTEMPTY;
5321
5322         /*
5323          * We want to reserve the absolute worst case amount of items.  So if
5324          * both inodes are subvols and we need to unlink them then that would
5325          * require 4 item modifications, but if they are both normal inodes it
5326          * would require 5 item modifications, so we'll assume their normal
5327          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5328          * should cover the worst case number of items we'll modify.
5329          */
5330         ret = btrfs_reserve_metadata_space(root, 11);
5331         if (ret)
5332                 return ret;
5333
5334         /*
5335          * we're using rename to replace one file with another.
5336          * and the replacement file is large.  Start IO on it now so
5337          * we don't add too much work to the end of the transaction
5338          */
5339         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5340             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5341                 filemap_flush(old_inode->i_mapping);
5342
5343         /* close the racy window with snapshot create/destroy ioctl */
5344         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5345                 down_read(&root->fs_info->subvol_sem);
5346
5347         trans = btrfs_start_transaction(root, 1);
5348         btrfs_set_trans_block_group(trans, new_dir);
5349
5350         if (dest != root)
5351                 btrfs_record_root_in_trans(trans, dest);
5352
5353         ret = btrfs_set_inode_index(new_dir, &index);
5354         if (ret)
5355                 goto out_fail;
5356
5357         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5358                 /* force full log commit if subvolume involved. */
5359                 root->fs_info->last_trans_log_full_commit = trans->transid;
5360         } else {
5361                 ret = btrfs_insert_inode_ref(trans, dest,
5362                                              new_dentry->d_name.name,
5363                                              new_dentry->d_name.len,
5364                                              old_inode->i_ino,
5365                                              new_dir->i_ino, index);
5366                 if (ret)
5367                         goto out_fail;
5368                 /*
5369                  * this is an ugly little race, but the rename is required
5370                  * to make sure that if we crash, the inode is either at the
5371                  * old name or the new one.  pinning the log transaction lets
5372                  * us make sure we don't allow a log commit to come in after
5373                  * we unlink the name but before we add the new name back in.
5374                  */
5375                 btrfs_pin_log_trans(root);
5376         }
5377         /*
5378          * make sure the inode gets flushed if it is replacing
5379          * something.
5380          */
5381         if (new_inode && new_inode->i_size &&
5382             old_inode && S_ISREG(old_inode->i_mode)) {
5383                 btrfs_add_ordered_operation(trans, root, old_inode);
5384         }
5385
5386         old_dir->i_ctime = old_dir->i_mtime = ctime;
5387         new_dir->i_ctime = new_dir->i_mtime = ctime;
5388         old_inode->i_ctime = ctime;
5389
5390         if (old_dentry->d_parent != new_dentry->d_parent)
5391                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5392
5393         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5394                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5395                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5396                                         old_dentry->d_name.name,
5397                                         old_dentry->d_name.len);
5398         } else {
5399                 btrfs_inc_nlink(old_dentry->d_inode);
5400                 ret = btrfs_unlink_inode(trans, root, old_dir,
5401                                          old_dentry->d_inode,
5402                                          old_dentry->d_name.name,
5403                                          old_dentry->d_name.len);
5404         }
5405         BUG_ON(ret);
5406
5407         if (new_inode) {
5408                 new_inode->i_ctime = CURRENT_TIME;
5409                 if (unlikely(new_inode->i_ino ==
5410                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5411                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5412                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5413                                                 root_objectid,
5414                                                 new_dentry->d_name.name,
5415                                                 new_dentry->d_name.len);
5416                         BUG_ON(new_inode->i_nlink == 0);
5417                 } else {
5418                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5419                                                  new_dentry->d_inode,
5420                                                  new_dentry->d_name.name,
5421                                                  new_dentry->d_name.len);
5422                 }
5423                 BUG_ON(ret);
5424                 if (new_inode->i_nlink == 0) {
5425                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5426                         BUG_ON(ret);
5427                 }
5428         }
5429
5430         ret = btrfs_add_link(trans, new_dir, old_inode,
5431                              new_dentry->d_name.name,
5432                              new_dentry->d_name.len, 0, index);
5433         BUG_ON(ret);
5434
5435         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5436                 btrfs_log_new_name(trans, old_inode, old_dir,
5437                                    new_dentry->d_parent);
5438                 btrfs_end_log_trans(root);
5439         }
5440 out_fail:
5441         btrfs_end_transaction_throttle(trans, root);
5442
5443         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5444                 up_read(&root->fs_info->subvol_sem);
5445
5446         btrfs_unreserve_metadata_space(root, 11);
5447         return ret;
5448 }
5449
5450 /*
5451  * some fairly slow code that needs optimization. This walks the list
5452  * of all the inodes with pending delalloc and forces them to disk.
5453  */
5454 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5455 {
5456         struct list_head *head = &root->fs_info->delalloc_inodes;
5457         struct btrfs_inode *binode;
5458         struct inode *inode;
5459
5460         if (root->fs_info->sb->s_flags & MS_RDONLY)
5461                 return -EROFS;
5462
5463         spin_lock(&root->fs_info->delalloc_lock);
5464         while (!list_empty(head)) {
5465                 binode = list_entry(head->next, struct btrfs_inode,
5466                                     delalloc_inodes);
5467                 inode = igrab(&binode->vfs_inode);
5468                 if (!inode)
5469                         list_del_init(&binode->delalloc_inodes);
5470                 spin_unlock(&root->fs_info->delalloc_lock);
5471                 if (inode) {
5472                         filemap_flush(inode->i_mapping);
5473                         iput(inode);
5474                 }
5475                 cond_resched();
5476                 spin_lock(&root->fs_info->delalloc_lock);
5477         }
5478         spin_unlock(&root->fs_info->delalloc_lock);
5479
5480         /* the filemap_flush will queue IO into the worker threads, but
5481          * we have to make sure the IO is actually started and that
5482          * ordered extents get created before we return
5483          */
5484         atomic_inc(&root->fs_info->async_submit_draining);
5485         while (atomic_read(&root->fs_info->nr_async_submits) ||
5486               atomic_read(&root->fs_info->async_delalloc_pages)) {
5487                 wait_event(root->fs_info->async_submit_wait,
5488                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5489                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5490         }
5491         atomic_dec(&root->fs_info->async_submit_draining);
5492         return 0;
5493 }
5494
5495 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5496                          const char *symname)
5497 {
5498         struct btrfs_trans_handle *trans;
5499         struct btrfs_root *root = BTRFS_I(dir)->root;
5500         struct btrfs_path *path;
5501         struct btrfs_key key;
5502         struct inode *inode = NULL;
5503         int err;
5504         int drop_inode = 0;
5505         u64 objectid;
5506         u64 index = 0 ;
5507         int name_len;
5508         int datasize;
5509         unsigned long ptr;
5510         struct btrfs_file_extent_item *ei;
5511         struct extent_buffer *leaf;
5512         unsigned long nr = 0;
5513
5514         name_len = strlen(symname) + 1;
5515         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5516                 return -ENAMETOOLONG;
5517
5518         /*
5519          * 2 items for inode item and ref
5520          * 2 items for dir items
5521          * 1 item for xattr if selinux is on
5522          */
5523         err = btrfs_reserve_metadata_space(root, 5);
5524         if (err)
5525                 return err;
5526
5527         trans = btrfs_start_transaction(root, 1);
5528         if (!trans)
5529                 goto out_fail;
5530         btrfs_set_trans_block_group(trans, dir);
5531
5532         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5533         if (err) {
5534                 err = -ENOSPC;
5535                 goto out_unlock;
5536         }
5537
5538         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5539                                 dentry->d_name.len,
5540                                 dentry->d_parent->d_inode->i_ino, objectid,
5541                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5542                                 &index);
5543         err = PTR_ERR(inode);
5544         if (IS_ERR(inode))
5545                 goto out_unlock;
5546
5547         err = btrfs_init_inode_security(inode, dir);
5548         if (err) {
5549                 drop_inode = 1;
5550                 goto out_unlock;
5551         }
5552
5553         btrfs_set_trans_block_group(trans, inode);
5554         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5555         if (err)
5556                 drop_inode = 1;
5557         else {
5558                 inode->i_mapping->a_ops = &btrfs_aops;
5559                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5560                 inode->i_fop = &btrfs_file_operations;
5561                 inode->i_op = &btrfs_file_inode_operations;
5562                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5563         }
5564         btrfs_update_inode_block_group(trans, inode);
5565         btrfs_update_inode_block_group(trans, dir);
5566         if (drop_inode)
5567                 goto out_unlock;
5568
5569         path = btrfs_alloc_path();
5570         BUG_ON(!path);
5571         key.objectid = inode->i_ino;
5572         key.offset = 0;
5573         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5574         datasize = btrfs_file_extent_calc_inline_size(name_len);
5575         err = btrfs_insert_empty_item(trans, root, path, &key,
5576                                       datasize);
5577         if (err) {
5578                 drop_inode = 1;
5579                 goto out_unlock;
5580         }
5581         leaf = path->nodes[0];
5582         ei = btrfs_item_ptr(leaf, path->slots[0],
5583                             struct btrfs_file_extent_item);
5584         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5585         btrfs_set_file_extent_type(leaf, ei,
5586                                    BTRFS_FILE_EXTENT_INLINE);
5587         btrfs_set_file_extent_encryption(leaf, ei, 0);
5588         btrfs_set_file_extent_compression(leaf, ei, 0);
5589         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5590         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5591
5592         ptr = btrfs_file_extent_inline_start(ei);
5593         write_extent_buffer(leaf, symname, ptr, name_len);
5594         btrfs_mark_buffer_dirty(leaf);
5595         btrfs_free_path(path);
5596
5597         inode->i_op = &btrfs_symlink_inode_operations;
5598         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5599         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5600         inode_set_bytes(inode, name_len);
5601         btrfs_i_size_write(inode, name_len - 1);
5602         err = btrfs_update_inode(trans, root, inode);
5603         if (err)
5604                 drop_inode = 1;
5605
5606 out_unlock:
5607         nr = trans->blocks_used;
5608         btrfs_end_transaction_throttle(trans, root);
5609 out_fail:
5610         btrfs_unreserve_metadata_space(root, 5);
5611         if (drop_inode) {
5612                 inode_dec_link_count(inode);
5613                 iput(inode);
5614         }
5615         btrfs_btree_balance_dirty(root, nr);
5616         return err;
5617 }
5618
5619 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5620                                struct inode *inode, u64 start, u64 end,
5621                                u64 locked_end, u64 alloc_hint, int mode)
5622 {
5623         struct btrfs_root *root = BTRFS_I(inode)->root;
5624         struct btrfs_key ins;
5625         u64 alloc_size;
5626         u64 cur_offset = start;
5627         u64 num_bytes = end - start;
5628         int ret = 0;
5629
5630         while (num_bytes > 0) {
5631                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5632
5633                 ret = btrfs_reserve_metadata_space(root, 1);
5634                 if (ret)
5635                         goto out;
5636
5637                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5638                                            root->sectorsize, 0, alloc_hint,
5639                                            (u64)-1, &ins, 1);
5640                 if (ret) {
5641                         WARN_ON(1);
5642                         goto out;
5643                 }
5644                 ret = insert_reserved_file_extent(trans, inode,
5645                                                   cur_offset, ins.objectid,
5646                                                   ins.offset, ins.offset,
5647                                                   ins.offset, locked_end,
5648                                                   0, 0, 0,
5649                                                   BTRFS_FILE_EXTENT_PREALLOC);
5650                 BUG_ON(ret);
5651                 btrfs_drop_extent_cache(inode, cur_offset,
5652                                         cur_offset + ins.offset -1, 0);
5653                 num_bytes -= ins.offset;
5654                 cur_offset += ins.offset;
5655                 alloc_hint = ins.objectid + ins.offset;
5656                 btrfs_unreserve_metadata_space(root, 1);
5657         }
5658 out:
5659         if (cur_offset > start) {
5660                 inode->i_ctime = CURRENT_TIME;
5661                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5662                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5663                     cur_offset > i_size_read(inode))
5664                         btrfs_i_size_write(inode, cur_offset);
5665                 ret = btrfs_update_inode(trans, root, inode);
5666                 BUG_ON(ret);
5667         }
5668
5669         return ret;
5670 }
5671
5672 static long btrfs_fallocate(struct inode *inode, int mode,
5673                             loff_t offset, loff_t len)
5674 {
5675         u64 cur_offset;
5676         u64 last_byte;
5677         u64 alloc_start;
5678         u64 alloc_end;
5679         u64 alloc_hint = 0;
5680         u64 locked_end;
5681         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5682         struct extent_map *em;
5683         struct btrfs_trans_handle *trans;
5684         struct btrfs_root *root;
5685         int ret;
5686
5687         alloc_start = offset & ~mask;
5688         alloc_end =  (offset + len + mask) & ~mask;
5689
5690         /*
5691          * wait for ordered IO before we have any locks.  We'll loop again
5692          * below with the locks held.
5693          */
5694         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5695
5696         mutex_lock(&inode->i_mutex);
5697         if (alloc_start > inode->i_size) {
5698                 ret = btrfs_cont_expand(inode, alloc_start);
5699                 if (ret)
5700                         goto out;
5701         }
5702
5703         root = BTRFS_I(inode)->root;
5704
5705         ret = btrfs_check_data_free_space(root, inode,
5706                                           alloc_end - alloc_start);
5707         if (ret)
5708                 goto out;
5709
5710         locked_end = alloc_end - 1;
5711         while (1) {
5712                 struct btrfs_ordered_extent *ordered;
5713
5714                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5715                 if (!trans) {
5716                         ret = -EIO;
5717                         goto out_free;
5718                 }
5719
5720                 /* the extent lock is ordered inside the running
5721                  * transaction
5722                  */
5723                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5724                             GFP_NOFS);
5725                 ordered = btrfs_lookup_first_ordered_extent(inode,
5726                                                             alloc_end - 1);
5727                 if (ordered &&
5728                     ordered->file_offset + ordered->len > alloc_start &&
5729                     ordered->file_offset < alloc_end) {
5730                         btrfs_put_ordered_extent(ordered);
5731                         unlock_extent(&BTRFS_I(inode)->io_tree,
5732                                       alloc_start, locked_end, GFP_NOFS);
5733                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5734
5735                         /*
5736                          * we can't wait on the range with the transaction
5737                          * running or with the extent lock held
5738                          */
5739                         btrfs_wait_ordered_range(inode, alloc_start,
5740                                                  alloc_end - alloc_start);
5741                 } else {
5742                         if (ordered)
5743                                 btrfs_put_ordered_extent(ordered);
5744                         break;
5745                 }
5746         }
5747
5748         cur_offset = alloc_start;
5749         while (1) {
5750                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5751                                       alloc_end - cur_offset, 0);
5752                 BUG_ON(IS_ERR(em) || !em);
5753                 last_byte = min(extent_map_end(em), alloc_end);
5754                 last_byte = (last_byte + mask) & ~mask;
5755                 if (em->block_start == EXTENT_MAP_HOLE) {
5756                         ret = prealloc_file_range(trans, inode, cur_offset,
5757                                         last_byte, locked_end + 1,
5758                                         alloc_hint, mode);
5759                         if (ret < 0) {
5760                                 free_extent_map(em);
5761                                 break;
5762                         }
5763                 }
5764                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5765                         alloc_hint = em->block_start;
5766                 free_extent_map(em);
5767
5768                 cur_offset = last_byte;
5769                 if (cur_offset >= alloc_end) {
5770                         ret = 0;
5771                         break;
5772                 }
5773         }
5774         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5775                       GFP_NOFS);
5776
5777         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5778 out_free:
5779         btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5780 out:
5781         mutex_unlock(&inode->i_mutex);
5782         return ret;
5783 }
5784
5785 static int btrfs_set_page_dirty(struct page *page)
5786 {
5787         return __set_page_dirty_nobuffers(page);
5788 }
5789
5790 static int btrfs_permission(struct inode *inode, int mask)
5791 {
5792         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5793                 return -EACCES;
5794         return generic_permission(inode, mask, btrfs_check_acl);
5795 }
5796
5797 static struct inode_operations btrfs_dir_inode_operations = {
5798         .getattr        = btrfs_getattr,
5799         .lookup         = btrfs_lookup,
5800         .create         = btrfs_create,
5801         .unlink         = btrfs_unlink,
5802         .link           = btrfs_link,
5803         .mkdir          = btrfs_mkdir,
5804         .rmdir          = btrfs_rmdir,
5805         .rename         = btrfs_rename,
5806         .symlink        = btrfs_symlink,
5807         .setattr        = btrfs_setattr,
5808         .mknod          = btrfs_mknod,
5809         .setxattr       = btrfs_setxattr,
5810         .getxattr       = btrfs_getxattr,
5811         .listxattr      = btrfs_listxattr,
5812         .removexattr    = btrfs_removexattr,
5813         .permission     = btrfs_permission,
5814 };
5815 static struct inode_operations btrfs_dir_ro_inode_operations = {
5816         .lookup         = btrfs_lookup,
5817         .permission     = btrfs_permission,
5818 };
5819
5820 static struct file_operations btrfs_dir_file_operations = {
5821         .llseek         = generic_file_llseek,
5822         .read           = generic_read_dir,
5823         .readdir        = btrfs_real_readdir,
5824         .unlocked_ioctl = btrfs_ioctl,
5825 #ifdef CONFIG_COMPAT
5826         .compat_ioctl   = btrfs_ioctl,
5827 #endif
5828         .release        = btrfs_release_file,
5829         .fsync          = btrfs_sync_file,
5830 };
5831
5832 static struct extent_io_ops btrfs_extent_io_ops = {
5833         .fill_delalloc = run_delalloc_range,
5834         .submit_bio_hook = btrfs_submit_bio_hook,
5835         .merge_bio_hook = btrfs_merge_bio_hook,
5836         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5837         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5838         .writepage_start_hook = btrfs_writepage_start_hook,
5839         .readpage_io_failed_hook = btrfs_io_failed_hook,
5840         .set_bit_hook = btrfs_set_bit_hook,
5841         .clear_bit_hook = btrfs_clear_bit_hook,
5842         .merge_extent_hook = btrfs_merge_extent_hook,
5843         .split_extent_hook = btrfs_split_extent_hook,
5844 };
5845
5846 /*
5847  * btrfs doesn't support the bmap operation because swapfiles
5848  * use bmap to make a mapping of extents in the file.  They assume
5849  * these extents won't change over the life of the file and they
5850  * use the bmap result to do IO directly to the drive.
5851  *
5852  * the btrfs bmap call would return logical addresses that aren't
5853  * suitable for IO and they also will change frequently as COW
5854  * operations happen.  So, swapfile + btrfs == corruption.
5855  *
5856  * For now we're avoiding this by dropping bmap.
5857  */
5858 static struct address_space_operations btrfs_aops = {
5859         .readpage       = btrfs_readpage,
5860         .writepage      = btrfs_writepage,
5861         .writepages     = btrfs_writepages,
5862         .readpages      = btrfs_readpages,
5863         .sync_page      = block_sync_page,
5864         .direct_IO      = btrfs_direct_IO,
5865         .invalidatepage = btrfs_invalidatepage,
5866         .releasepage    = btrfs_releasepage,
5867         .set_page_dirty = btrfs_set_page_dirty,
5868 };
5869
5870 static struct address_space_operations btrfs_symlink_aops = {
5871         .readpage       = btrfs_readpage,
5872         .writepage      = btrfs_writepage,
5873         .invalidatepage = btrfs_invalidatepage,
5874         .releasepage    = btrfs_releasepage,
5875 };
5876
5877 static struct inode_operations btrfs_file_inode_operations = {
5878         .truncate       = btrfs_truncate,
5879         .getattr        = btrfs_getattr,
5880         .setattr        = btrfs_setattr,
5881         .setxattr       = btrfs_setxattr,
5882         .getxattr       = btrfs_getxattr,
5883         .listxattr      = btrfs_listxattr,
5884         .removexattr    = btrfs_removexattr,
5885         .permission     = btrfs_permission,
5886         .fallocate      = btrfs_fallocate,
5887         .fiemap         = btrfs_fiemap,
5888 };
5889 static struct inode_operations btrfs_special_inode_operations = {
5890         .getattr        = btrfs_getattr,
5891         .setattr        = btrfs_setattr,
5892         .permission     = btrfs_permission,
5893         .setxattr       = btrfs_setxattr,
5894         .getxattr       = btrfs_getxattr,
5895         .listxattr      = btrfs_listxattr,
5896         .removexattr    = btrfs_removexattr,
5897 };
5898 static struct inode_operations btrfs_symlink_inode_operations = {
5899         .readlink       = generic_readlink,
5900         .follow_link    = page_follow_link_light,
5901         .put_link       = page_put_link,
5902         .permission     = btrfs_permission,
5903         .setxattr       = btrfs_setxattr,
5904         .getxattr       = btrfs_getxattr,
5905         .listxattr      = btrfs_listxattr,
5906         .removexattr    = btrfs_removexattr,
5907 };
5908
5909 const struct dentry_operations btrfs_dentry_operations = {
5910         .d_delete       = btrfs_dentry_delete,
5911 };