Btrfs: cleanup extent_clear_unlock_delalloc flags
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93         int err;
94
95         err = btrfs_init_acl(inode, dir);
96         if (!err)
97                 err = btrfs_xattr_security_init(inode, dir);
98         return err;
99 }
100
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107                                 struct btrfs_root *root, struct inode *inode,
108                                 u64 start, size_t size, size_t compressed_size,
109                                 struct page **compressed_pages)
110 {
111         struct btrfs_key key;
112         struct btrfs_path *path;
113         struct extent_buffer *leaf;
114         struct page *page = NULL;
115         char *kaddr;
116         unsigned long ptr;
117         struct btrfs_file_extent_item *ei;
118         int err = 0;
119         int ret;
120         size_t cur_size = size;
121         size_t datasize;
122         unsigned long offset;
123         int use_compress = 0;
124
125         if (compressed_size && compressed_pages) {
126                 use_compress = 1;
127                 cur_size = compressed_size;
128         }
129
130         path = btrfs_alloc_path();
131         if (!path)
132                 return -ENOMEM;
133
134         path->leave_spinning = 1;
135         btrfs_set_trans_block_group(trans, inode);
136
137         key.objectid = inode->i_ino;
138         key.offset = start;
139         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140         datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142         inode_add_bytes(inode, size);
143         ret = btrfs_insert_empty_item(trans, root, path, &key,
144                                       datasize);
145         BUG_ON(ret);
146         if (ret) {
147                 err = ret;
148                 goto fail;
149         }
150         leaf = path->nodes[0];
151         ei = btrfs_item_ptr(leaf, path->slots[0],
152                             struct btrfs_file_extent_item);
153         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155         btrfs_set_file_extent_encryption(leaf, ei, 0);
156         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158         ptr = btrfs_file_extent_inline_start(ei);
159
160         if (use_compress) {
161                 struct page *cpage;
162                 int i = 0;
163                 while (compressed_size > 0) {
164                         cpage = compressed_pages[i];
165                         cur_size = min_t(unsigned long, compressed_size,
166                                        PAGE_CACHE_SIZE);
167
168                         kaddr = kmap_atomic(cpage, KM_USER0);
169                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
170                         kunmap_atomic(kaddr, KM_USER0);
171
172                         i++;
173                         ptr += cur_size;
174                         compressed_size -= cur_size;
175                 }
176                 btrfs_set_file_extent_compression(leaf, ei,
177                                                   BTRFS_COMPRESS_ZLIB);
178         } else {
179                 page = find_get_page(inode->i_mapping,
180                                      start >> PAGE_CACHE_SHIFT);
181                 btrfs_set_file_extent_compression(leaf, ei, 0);
182                 kaddr = kmap_atomic(page, KM_USER0);
183                 offset = start & (PAGE_CACHE_SIZE - 1);
184                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185                 kunmap_atomic(kaddr, KM_USER0);
186                 page_cache_release(page);
187         }
188         btrfs_mark_buffer_dirty(leaf);
189         btrfs_free_path(path);
190
191         BTRFS_I(inode)->disk_i_size = inode->i_size;
192         btrfs_update_inode(trans, root, inode);
193         return 0;
194 fail:
195         btrfs_free_path(path);
196         return err;
197 }
198
199
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206                                  struct btrfs_root *root,
207                                  struct inode *inode, u64 start, u64 end,
208                                  size_t compressed_size,
209                                  struct page **compressed_pages)
210 {
211         u64 isize = i_size_read(inode);
212         u64 actual_end = min(end + 1, isize);
213         u64 inline_len = actual_end - start;
214         u64 aligned_end = (end + root->sectorsize - 1) &
215                         ~((u64)root->sectorsize - 1);
216         u64 hint_byte;
217         u64 data_len = inline_len;
218         int ret;
219
220         if (compressed_size)
221                 data_len = compressed_size;
222
223         if (start > 0 ||
224             actual_end >= PAGE_CACHE_SIZE ||
225             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226             (!compressed_size &&
227             (actual_end & (root->sectorsize - 1)) == 0) ||
228             end + 1 < isize ||
229             data_len > root->fs_info->max_inline) {
230                 return 1;
231         }
232
233         ret = btrfs_drop_extents(trans, root, inode, start,
234                                  aligned_end, aligned_end, start,
235                                  &hint_byte, 1);
236         BUG_ON(ret);
237
238         if (isize > actual_end)
239                 inline_len = min_t(u64, isize, actual_end);
240         ret = insert_inline_extent(trans, root, inode, start,
241                                    inline_len, compressed_size,
242                                    compressed_pages);
243         BUG_ON(ret);
244         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245         return 0;
246 }
247
248 struct async_extent {
249         u64 start;
250         u64 ram_size;
251         u64 compressed_size;
252         struct page **pages;
253         unsigned long nr_pages;
254         struct list_head list;
255 };
256
257 struct async_cow {
258         struct inode *inode;
259         struct btrfs_root *root;
260         struct page *locked_page;
261         u64 start;
262         u64 end;
263         struct list_head extents;
264         struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268                                      u64 start, u64 ram_size,
269                                      u64 compressed_size,
270                                      struct page **pages,
271                                      unsigned long nr_pages)
272 {
273         struct async_extent *async_extent;
274
275         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276         async_extent->start = start;
277         async_extent->ram_size = ram_size;
278         async_extent->compressed_size = compressed_size;
279         async_extent->pages = pages;
280         async_extent->nr_pages = nr_pages;
281         list_add_tail(&async_extent->list, &cow->extents);
282         return 0;
283 }
284
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302                                         struct page *locked_page,
303                                         u64 start, u64 end,
304                                         struct async_cow *async_cow,
305                                         int *num_added)
306 {
307         struct btrfs_root *root = BTRFS_I(inode)->root;
308         struct btrfs_trans_handle *trans;
309         u64 num_bytes;
310         u64 orig_start;
311         u64 disk_num_bytes;
312         u64 blocksize = root->sectorsize;
313         u64 actual_end;
314         u64 isize = i_size_read(inode);
315         int ret = 0;
316         struct page **pages = NULL;
317         unsigned long nr_pages;
318         unsigned long nr_pages_ret = 0;
319         unsigned long total_compressed = 0;
320         unsigned long total_in = 0;
321         unsigned long max_compressed = 128 * 1024;
322         unsigned long max_uncompressed = 128 * 1024;
323         int i;
324         int will_compress;
325
326         orig_start = start;
327
328         actual_end = min_t(u64, isize, end + 1);
329 again:
330         will_compress = 0;
331         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334         /*
335          * we don't want to send crud past the end of i_size through
336          * compression, that's just a waste of CPU time.  So, if the
337          * end of the file is before the start of our current
338          * requested range of bytes, we bail out to the uncompressed
339          * cleanup code that can deal with all of this.
340          *
341          * It isn't really the fastest way to fix things, but this is a
342          * very uncommon corner.
343          */
344         if (actual_end <= start)
345                 goto cleanup_and_bail_uncompressed;
346
347         total_compressed = actual_end - start;
348
349         /* we want to make sure that amount of ram required to uncompress
350          * an extent is reasonable, so we limit the total size in ram
351          * of a compressed extent to 128k.  This is a crucial number
352          * because it also controls how easily we can spread reads across
353          * cpus for decompression.
354          *
355          * We also want to make sure the amount of IO required to do
356          * a random read is reasonably small, so we limit the size of
357          * a compressed extent to 128k.
358          */
359         total_compressed = min(total_compressed, max_uncompressed);
360         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361         num_bytes = max(blocksize,  num_bytes);
362         disk_num_bytes = num_bytes;
363         total_in = 0;
364         ret = 0;
365
366         /*
367          * we do compression for mount -o compress and when the
368          * inode has not been flagged as nocompress.  This flag can
369          * change at any time if we discover bad compression ratios.
370          */
371         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372             btrfs_test_opt(root, COMPRESS)) {
373                 WARN_ON(pages);
374                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377                                                 total_compressed, pages,
378                                                 nr_pages, &nr_pages_ret,
379                                                 &total_in,
380                                                 &total_compressed,
381                                                 max_compressed);
382
383                 if (!ret) {
384                         unsigned long offset = total_compressed &
385                                 (PAGE_CACHE_SIZE - 1);
386                         struct page *page = pages[nr_pages_ret - 1];
387                         char *kaddr;
388
389                         /* zero the tail end of the last page, we might be
390                          * sending it down to disk
391                          */
392                         if (offset) {
393                                 kaddr = kmap_atomic(page, KM_USER0);
394                                 memset(kaddr + offset, 0,
395                                        PAGE_CACHE_SIZE - offset);
396                                 kunmap_atomic(kaddr, KM_USER0);
397                         }
398                         will_compress = 1;
399                 }
400         }
401         if (start == 0) {
402                 trans = btrfs_join_transaction(root, 1);
403                 BUG_ON(!trans);
404                 btrfs_set_trans_block_group(trans, inode);
405
406                 /* lets try to make an inline extent */
407                 if (ret || total_in < (actual_end - start)) {
408                         /* we didn't compress the entire range, try
409                          * to make an uncompressed inline extent.
410                          */
411                         ret = cow_file_range_inline(trans, root, inode,
412                                                     start, end, 0, NULL);
413                 } else {
414                         /* try making a compressed inline extent */
415                         ret = cow_file_range_inline(trans, root, inode,
416                                                     start, end,
417                                                     total_compressed, pages);
418                 }
419                 btrfs_end_transaction(trans, root);
420                 if (ret == 0) {
421                         /*
422                          * inline extent creation worked, we don't need
423                          * to create any more async work items.  Unlock
424                          * and free up our temp pages.
425                          */
426                         extent_clear_unlock_delalloc(inode,
427                              &BTRFS_I(inode)->io_tree,
428                              start, end, NULL,
429                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
431                         ret = 0;
432                         goto free_pages_out;
433                 }
434         }
435
436         if (will_compress) {
437                 /*
438                  * we aren't doing an inline extent round the compressed size
439                  * up to a block size boundary so the allocator does sane
440                  * things
441                  */
442                 total_compressed = (total_compressed + blocksize - 1) &
443                         ~(blocksize - 1);
444
445                 /*
446                  * one last check to make sure the compression is really a
447                  * win, compare the page count read with the blocks on disk
448                  */
449                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450                         ~(PAGE_CACHE_SIZE - 1);
451                 if (total_compressed >= total_in) {
452                         will_compress = 0;
453                 } else {
454                         disk_num_bytes = total_compressed;
455                         num_bytes = total_in;
456                 }
457         }
458         if (!will_compress && pages) {
459                 /*
460                  * the compression code ran but failed to make things smaller,
461                  * free any pages it allocated and our page pointer array
462                  */
463                 for (i = 0; i < nr_pages_ret; i++) {
464                         WARN_ON(pages[i]->mapping);
465                         page_cache_release(pages[i]);
466                 }
467                 kfree(pages);
468                 pages = NULL;
469                 total_compressed = 0;
470                 nr_pages_ret = 0;
471
472                 /* flag the file so we don't compress in the future */
473                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
474         }
475         if (will_compress) {
476                 *num_added += 1;
477
478                 /* the async work queues will take care of doing actual
479                  * allocation on disk for these compressed pages,
480                  * and will submit them to the elevator.
481                  */
482                 add_async_extent(async_cow, start, num_bytes,
483                                  total_compressed, pages, nr_pages_ret);
484
485                 if (start + num_bytes < end && start + num_bytes < actual_end) {
486                         start += num_bytes;
487                         pages = NULL;
488                         cond_resched();
489                         goto again;
490                 }
491         } else {
492 cleanup_and_bail_uncompressed:
493                 /*
494                  * No compression, but we still need to write the pages in
495                  * the file we've been given so far.  redirty the locked
496                  * page if it corresponds to our extent and set things up
497                  * for the async work queue to run cow_file_range to do
498                  * the normal delalloc dance
499                  */
500                 if (page_offset(locked_page) >= start &&
501                     page_offset(locked_page) <= end) {
502                         __set_page_dirty_nobuffers(locked_page);
503                         /* unlocked later on in the async handlers */
504                 }
505                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
506                 *num_added += 1;
507         }
508
509 out:
510         return 0;
511
512 free_pages_out:
513         for (i = 0; i < nr_pages_ret; i++) {
514                 WARN_ON(pages[i]->mapping);
515                 page_cache_release(pages[i]);
516         }
517         kfree(pages);
518
519         goto out;
520 }
521
522 /*
523  * phase two of compressed writeback.  This is the ordered portion
524  * of the code, which only gets called in the order the work was
525  * queued.  We walk all the async extents created by compress_file_range
526  * and send them down to the disk.
527  */
528 static noinline int submit_compressed_extents(struct inode *inode,
529                                               struct async_cow *async_cow)
530 {
531         struct async_extent *async_extent;
532         u64 alloc_hint = 0;
533         struct btrfs_trans_handle *trans;
534         struct btrfs_key ins;
535         struct extent_map *em;
536         struct btrfs_root *root = BTRFS_I(inode)->root;
537         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538         struct extent_io_tree *io_tree;
539         int ret;
540
541         if (list_empty(&async_cow->extents))
542                 return 0;
543
544         trans = btrfs_join_transaction(root, 1);
545
546         while (!list_empty(&async_cow->extents)) {
547                 async_extent = list_entry(async_cow->extents.next,
548                                           struct async_extent, list);
549                 list_del(&async_extent->list);
550
551                 io_tree = &BTRFS_I(inode)->io_tree;
552
553                 /* did the compression code fall back to uncompressed IO? */
554                 if (!async_extent->pages) {
555                         int page_started = 0;
556                         unsigned long nr_written = 0;
557
558                         lock_extent(io_tree, async_extent->start,
559                                     async_extent->start +
560                                     async_extent->ram_size - 1, GFP_NOFS);
561
562                         /* allocate blocks */
563                         cow_file_range(inode, async_cow->locked_page,
564                                        async_extent->start,
565                                        async_extent->start +
566                                        async_extent->ram_size - 1,
567                                        &page_started, &nr_written, 0);
568
569                         /*
570                          * if page_started, cow_file_range inserted an
571                          * inline extent and took care of all the unlocking
572                          * and IO for us.  Otherwise, we need to submit
573                          * all those pages down to the drive.
574                          */
575                         if (!page_started)
576                                 extent_write_locked_range(io_tree,
577                                                   inode, async_extent->start,
578                                                   async_extent->start +
579                                                   async_extent->ram_size - 1,
580                                                   btrfs_get_extent,
581                                                   WB_SYNC_ALL);
582                         kfree(async_extent);
583                         cond_resched();
584                         continue;
585                 }
586
587                 lock_extent(io_tree, async_extent->start,
588                             async_extent->start + async_extent->ram_size - 1,
589                             GFP_NOFS);
590                 /*
591                  * here we're doing allocation and writeback of the
592                  * compressed pages
593                  */
594                 btrfs_drop_extent_cache(inode, async_extent->start,
595                                         async_extent->start +
596                                         async_extent->ram_size - 1, 0);
597
598                 ret = btrfs_reserve_extent(trans, root,
599                                            async_extent->compressed_size,
600                                            async_extent->compressed_size,
601                                            0, alloc_hint,
602                                            (u64)-1, &ins, 1);
603                 BUG_ON(ret);
604                 em = alloc_extent_map(GFP_NOFS);
605                 em->start = async_extent->start;
606                 em->len = async_extent->ram_size;
607                 em->orig_start = em->start;
608
609                 em->block_start = ins.objectid;
610                 em->block_len = ins.offset;
611                 em->bdev = root->fs_info->fs_devices->latest_bdev;
612                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
613                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614
615                 while (1) {
616                         write_lock(&em_tree->lock);
617                         ret = add_extent_mapping(em_tree, em);
618                         write_unlock(&em_tree->lock);
619                         if (ret != -EEXIST) {
620                                 free_extent_map(em);
621                                 break;
622                         }
623                         btrfs_drop_extent_cache(inode, async_extent->start,
624                                                 async_extent->start +
625                                                 async_extent->ram_size - 1, 0);
626                 }
627
628                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
629                                                ins.objectid,
630                                                async_extent->ram_size,
631                                                ins.offset,
632                                                BTRFS_ORDERED_COMPRESSED);
633                 BUG_ON(ret);
634
635                 btrfs_end_transaction(trans, root);
636
637                 /*
638                  * clear dirty, set writeback and unlock the pages.
639                  */
640                 extent_clear_unlock_delalloc(inode,
641                                 &BTRFS_I(inode)->io_tree,
642                                 async_extent->start,
643                                 async_extent->start +
644                                 async_extent->ram_size - 1,
645                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
646                                 EXTENT_CLEAR_UNLOCK |
647                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
648
649                 ret = btrfs_submit_compressed_write(inode,
650                                     async_extent->start,
651                                     async_extent->ram_size,
652                                     ins.objectid,
653                                     ins.offset, async_extent->pages,
654                                     async_extent->nr_pages);
655
656                 BUG_ON(ret);
657                 trans = btrfs_join_transaction(root, 1);
658                 alloc_hint = ins.objectid + ins.offset;
659                 kfree(async_extent);
660                 cond_resched();
661         }
662
663         btrfs_end_transaction(trans, root);
664         return 0;
665 }
666
667 /*
668  * when extent_io.c finds a delayed allocation range in the file,
669  * the call backs end up in this code.  The basic idea is to
670  * allocate extents on disk for the range, and create ordered data structs
671  * in ram to track those extents.
672  *
673  * locked_page is the page that writepage had locked already.  We use
674  * it to make sure we don't do extra locks or unlocks.
675  *
676  * *page_started is set to one if we unlock locked_page and do everything
677  * required to start IO on it.  It may be clean and already done with
678  * IO when we return.
679  */
680 static noinline int cow_file_range(struct inode *inode,
681                                    struct page *locked_page,
682                                    u64 start, u64 end, int *page_started,
683                                    unsigned long *nr_written,
684                                    int unlock)
685 {
686         struct btrfs_root *root = BTRFS_I(inode)->root;
687         struct btrfs_trans_handle *trans;
688         u64 alloc_hint = 0;
689         u64 num_bytes;
690         unsigned long ram_size;
691         u64 disk_num_bytes;
692         u64 cur_alloc_size;
693         u64 blocksize = root->sectorsize;
694         u64 actual_end;
695         u64 isize = i_size_read(inode);
696         struct btrfs_key ins;
697         struct extent_map *em;
698         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
699         int ret = 0;
700
701         trans = btrfs_join_transaction(root, 1);
702         BUG_ON(!trans);
703         btrfs_set_trans_block_group(trans, inode);
704
705         actual_end = min_t(u64, isize, end + 1);
706
707         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
708         num_bytes = max(blocksize,  num_bytes);
709         disk_num_bytes = num_bytes;
710         ret = 0;
711
712         if (start == 0) {
713                 /* lets try to make an inline extent */
714                 ret = cow_file_range_inline(trans, root, inode,
715                                             start, end, 0, NULL);
716                 if (ret == 0) {
717                         extent_clear_unlock_delalloc(inode,
718                                      &BTRFS_I(inode)->io_tree,
719                                      start, end, NULL,
720                                      EXTENT_CLEAR_UNLOCK_PAGE |
721                                      EXTENT_CLEAR_UNLOCK |
722                                      EXTENT_CLEAR_DELALLOC |
723                                      EXTENT_CLEAR_DIRTY |
724                                      EXTENT_SET_WRITEBACK |
725                                      EXTENT_END_WRITEBACK);
726                         *nr_written = *nr_written +
727                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
728                         *page_started = 1;
729                         ret = 0;
730                         goto out;
731                 }
732         }
733
734         BUG_ON(disk_num_bytes >
735                btrfs_super_total_bytes(&root->fs_info->super_copy));
736
737
738         read_lock(&BTRFS_I(inode)->extent_tree.lock);
739         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
740                                    start, num_bytes);
741         if (em) {
742                 alloc_hint = em->block_start;
743                 free_extent_map(em);
744         }
745         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
746         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
747
748         while (disk_num_bytes > 0) {
749                 unsigned long op;
750
751                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
752                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
753                                            root->sectorsize, 0, alloc_hint,
754                                            (u64)-1, &ins, 1);
755                 BUG_ON(ret);
756
757                 em = alloc_extent_map(GFP_NOFS);
758                 em->start = start;
759                 em->orig_start = em->start;
760                 ram_size = ins.offset;
761                 em->len = ins.offset;
762
763                 em->block_start = ins.objectid;
764                 em->block_len = ins.offset;
765                 em->bdev = root->fs_info->fs_devices->latest_bdev;
766                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
767
768                 while (1) {
769                         write_lock(&em_tree->lock);
770                         ret = add_extent_mapping(em_tree, em);
771                         write_unlock(&em_tree->lock);
772                         if (ret != -EEXIST) {
773                                 free_extent_map(em);
774                                 break;
775                         }
776                         btrfs_drop_extent_cache(inode, start,
777                                                 start + ram_size - 1, 0);
778                 }
779
780                 cur_alloc_size = ins.offset;
781                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
782                                                ram_size, cur_alloc_size, 0);
783                 BUG_ON(ret);
784
785                 if (root->root_key.objectid ==
786                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
787                         ret = btrfs_reloc_clone_csums(inode, start,
788                                                       cur_alloc_size);
789                         BUG_ON(ret);
790                 }
791
792                 if (disk_num_bytes < cur_alloc_size)
793                         break;
794
795                 /* we're not doing compressed IO, don't unlock the first
796                  * page (which the caller expects to stay locked), don't
797                  * clear any dirty bits and don't set any writeback bits
798                  *
799                  * Do set the Private2 bit so we know this page was properly
800                  * setup for writepage
801                  */
802                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
803                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
804                         EXTENT_SET_PRIVATE2;
805
806                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
807                                              start, start + ram_size - 1,
808                                              locked_page, op);
809                 disk_num_bytes -= cur_alloc_size;
810                 num_bytes -= cur_alloc_size;
811                 alloc_hint = ins.objectid + ins.offset;
812                 start += cur_alloc_size;
813         }
814 out:
815         ret = 0;
816         btrfs_end_transaction(trans, root);
817
818         return ret;
819 }
820
821 /*
822  * work queue call back to started compression on a file and pages
823  */
824 static noinline void async_cow_start(struct btrfs_work *work)
825 {
826         struct async_cow *async_cow;
827         int num_added = 0;
828         async_cow = container_of(work, struct async_cow, work);
829
830         compress_file_range(async_cow->inode, async_cow->locked_page,
831                             async_cow->start, async_cow->end, async_cow,
832                             &num_added);
833         if (num_added == 0)
834                 async_cow->inode = NULL;
835 }
836
837 /*
838  * work queue call back to submit previously compressed pages
839  */
840 static noinline void async_cow_submit(struct btrfs_work *work)
841 {
842         struct async_cow *async_cow;
843         struct btrfs_root *root;
844         unsigned long nr_pages;
845
846         async_cow = container_of(work, struct async_cow, work);
847
848         root = async_cow->root;
849         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
850                 PAGE_CACHE_SHIFT;
851
852         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
853
854         if (atomic_read(&root->fs_info->async_delalloc_pages) <
855             5 * 1042 * 1024 &&
856             waitqueue_active(&root->fs_info->async_submit_wait))
857                 wake_up(&root->fs_info->async_submit_wait);
858
859         if (async_cow->inode)
860                 submit_compressed_extents(async_cow->inode, async_cow);
861 }
862
863 static noinline void async_cow_free(struct btrfs_work *work)
864 {
865         struct async_cow *async_cow;
866         async_cow = container_of(work, struct async_cow, work);
867         kfree(async_cow);
868 }
869
870 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
871                                 u64 start, u64 end, int *page_started,
872                                 unsigned long *nr_written)
873 {
874         struct async_cow *async_cow;
875         struct btrfs_root *root = BTRFS_I(inode)->root;
876         unsigned long nr_pages;
877         u64 cur_end;
878         int limit = 10 * 1024 * 1042;
879
880         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
881                          EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
882         while (start < end) {
883                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
884                 async_cow->inode = inode;
885                 async_cow->root = root;
886                 async_cow->locked_page = locked_page;
887                 async_cow->start = start;
888
889                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
890                         cur_end = end;
891                 else
892                         cur_end = min(end, start + 512 * 1024 - 1);
893
894                 async_cow->end = cur_end;
895                 INIT_LIST_HEAD(&async_cow->extents);
896
897                 async_cow->work.func = async_cow_start;
898                 async_cow->work.ordered_func = async_cow_submit;
899                 async_cow->work.ordered_free = async_cow_free;
900                 async_cow->work.flags = 0;
901
902                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
903                         PAGE_CACHE_SHIFT;
904                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
905
906                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
907                                    &async_cow->work);
908
909                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
910                         wait_event(root->fs_info->async_submit_wait,
911                            (atomic_read(&root->fs_info->async_delalloc_pages) <
912                             limit));
913                 }
914
915                 while (atomic_read(&root->fs_info->async_submit_draining) &&
916                       atomic_read(&root->fs_info->async_delalloc_pages)) {
917                         wait_event(root->fs_info->async_submit_wait,
918                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
919                            0));
920                 }
921
922                 *nr_written += nr_pages;
923                 start = cur_end + 1;
924         }
925         *page_started = 1;
926         return 0;
927 }
928
929 static noinline int csum_exist_in_range(struct btrfs_root *root,
930                                         u64 bytenr, u64 num_bytes)
931 {
932         int ret;
933         struct btrfs_ordered_sum *sums;
934         LIST_HEAD(list);
935
936         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
937                                        bytenr + num_bytes - 1, &list);
938         if (ret == 0 && list_empty(&list))
939                 return 0;
940
941         while (!list_empty(&list)) {
942                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
943                 list_del(&sums->list);
944                 kfree(sums);
945         }
946         return 1;
947 }
948
949 /*
950  * when nowcow writeback call back.  This checks for snapshots or COW copies
951  * of the extents that exist in the file, and COWs the file as required.
952  *
953  * If no cow copies or snapshots exist, we write directly to the existing
954  * blocks on disk
955  */
956 static noinline int run_delalloc_nocow(struct inode *inode,
957                                        struct page *locked_page,
958                               u64 start, u64 end, int *page_started, int force,
959                               unsigned long *nr_written)
960 {
961         struct btrfs_root *root = BTRFS_I(inode)->root;
962         struct btrfs_trans_handle *trans;
963         struct extent_buffer *leaf;
964         struct btrfs_path *path;
965         struct btrfs_file_extent_item *fi;
966         struct btrfs_key found_key;
967         u64 cow_start;
968         u64 cur_offset;
969         u64 extent_end;
970         u64 extent_offset;
971         u64 disk_bytenr;
972         u64 num_bytes;
973         int extent_type;
974         int ret;
975         int type;
976         int nocow;
977         int check_prev = 1;
978
979         path = btrfs_alloc_path();
980         BUG_ON(!path);
981         trans = btrfs_join_transaction(root, 1);
982         BUG_ON(!trans);
983
984         cow_start = (u64)-1;
985         cur_offset = start;
986         while (1) {
987                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
988                                                cur_offset, 0);
989                 BUG_ON(ret < 0);
990                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
991                         leaf = path->nodes[0];
992                         btrfs_item_key_to_cpu(leaf, &found_key,
993                                               path->slots[0] - 1);
994                         if (found_key.objectid == inode->i_ino &&
995                             found_key.type == BTRFS_EXTENT_DATA_KEY)
996                                 path->slots[0]--;
997                 }
998                 check_prev = 0;
999 next_slot:
1000                 leaf = path->nodes[0];
1001                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1002                         ret = btrfs_next_leaf(root, path);
1003                         if (ret < 0)
1004                                 BUG_ON(1);
1005                         if (ret > 0)
1006                                 break;
1007                         leaf = path->nodes[0];
1008                 }
1009
1010                 nocow = 0;
1011                 disk_bytenr = 0;
1012                 num_bytes = 0;
1013                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1014
1015                 if (found_key.objectid > inode->i_ino ||
1016                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1017                     found_key.offset > end)
1018                         break;
1019
1020                 if (found_key.offset > cur_offset) {
1021                         extent_end = found_key.offset;
1022                         goto out_check;
1023                 }
1024
1025                 fi = btrfs_item_ptr(leaf, path->slots[0],
1026                                     struct btrfs_file_extent_item);
1027                 extent_type = btrfs_file_extent_type(leaf, fi);
1028
1029                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1030                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1031                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1032                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1033                         extent_end = found_key.offset +
1034                                 btrfs_file_extent_num_bytes(leaf, fi);
1035                         if (extent_end <= start) {
1036                                 path->slots[0]++;
1037                                 goto next_slot;
1038                         }
1039                         if (disk_bytenr == 0)
1040                                 goto out_check;
1041                         if (btrfs_file_extent_compression(leaf, fi) ||
1042                             btrfs_file_extent_encryption(leaf, fi) ||
1043                             btrfs_file_extent_other_encoding(leaf, fi))
1044                                 goto out_check;
1045                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1046                                 goto out_check;
1047                         if (btrfs_extent_readonly(root, disk_bytenr))
1048                                 goto out_check;
1049                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1050                                                   found_key.offset -
1051                                                   extent_offset, disk_bytenr))
1052                                 goto out_check;
1053                         disk_bytenr += extent_offset;
1054                         disk_bytenr += cur_offset - found_key.offset;
1055                         num_bytes = min(end + 1, extent_end) - cur_offset;
1056                         /*
1057                          * force cow if csum exists in the range.
1058                          * this ensure that csum for a given extent are
1059                          * either valid or do not exist.
1060                          */
1061                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1062                                 goto out_check;
1063                         nocow = 1;
1064                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1065                         extent_end = found_key.offset +
1066                                 btrfs_file_extent_inline_len(leaf, fi);
1067                         extent_end = ALIGN(extent_end, root->sectorsize);
1068                 } else {
1069                         BUG_ON(1);
1070                 }
1071 out_check:
1072                 if (extent_end <= start) {
1073                         path->slots[0]++;
1074                         goto next_slot;
1075                 }
1076                 if (!nocow) {
1077                         if (cow_start == (u64)-1)
1078                                 cow_start = cur_offset;
1079                         cur_offset = extent_end;
1080                         if (cur_offset > end)
1081                                 break;
1082                         path->slots[0]++;
1083                         goto next_slot;
1084                 }
1085
1086                 btrfs_release_path(root, path);
1087                 if (cow_start != (u64)-1) {
1088                         ret = cow_file_range(inode, locked_page, cow_start,
1089                                         found_key.offset - 1, page_started,
1090                                         nr_written, 1);
1091                         BUG_ON(ret);
1092                         cow_start = (u64)-1;
1093                 }
1094
1095                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1096                         struct extent_map *em;
1097                         struct extent_map_tree *em_tree;
1098                         em_tree = &BTRFS_I(inode)->extent_tree;
1099                         em = alloc_extent_map(GFP_NOFS);
1100                         em->start = cur_offset;
1101                         em->orig_start = em->start;
1102                         em->len = num_bytes;
1103                         em->block_len = num_bytes;
1104                         em->block_start = disk_bytenr;
1105                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1106                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1107                         while (1) {
1108                                 write_lock(&em_tree->lock);
1109                                 ret = add_extent_mapping(em_tree, em);
1110                                 write_unlock(&em_tree->lock);
1111                                 if (ret != -EEXIST) {
1112                                         free_extent_map(em);
1113                                         break;
1114                                 }
1115                                 btrfs_drop_extent_cache(inode, em->start,
1116                                                 em->start + em->len - 1, 0);
1117                         }
1118                         type = BTRFS_ORDERED_PREALLOC;
1119                 } else {
1120                         type = BTRFS_ORDERED_NOCOW;
1121                 }
1122
1123                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1124                                                num_bytes, num_bytes, type);
1125                 BUG_ON(ret);
1126
1127                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1128                                 cur_offset, cur_offset + num_bytes - 1,
1129                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1130                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1131                                 EXTENT_SET_PRIVATE2);
1132                 cur_offset = extent_end;
1133                 if (cur_offset > end)
1134                         break;
1135         }
1136         btrfs_release_path(root, path);
1137
1138         if (cur_offset <= end && cow_start == (u64)-1)
1139                 cow_start = cur_offset;
1140         if (cow_start != (u64)-1) {
1141                 ret = cow_file_range(inode, locked_page, cow_start, end,
1142                                      page_started, nr_written, 1);
1143                 BUG_ON(ret);
1144         }
1145
1146         ret = btrfs_end_transaction(trans, root);
1147         BUG_ON(ret);
1148         btrfs_free_path(path);
1149         return 0;
1150 }
1151
1152 /*
1153  * extent_io.c call back to do delayed allocation processing
1154  */
1155 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1156                               u64 start, u64 end, int *page_started,
1157                               unsigned long *nr_written)
1158 {
1159         int ret;
1160         struct btrfs_root *root = BTRFS_I(inode)->root;
1161
1162         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1163                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1164                                          page_started, 1, nr_written);
1165         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1166                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1167                                          page_started, 0, nr_written);
1168         else if (!btrfs_test_opt(root, COMPRESS))
1169                 ret = cow_file_range(inode, locked_page, start, end,
1170                                       page_started, nr_written, 1);
1171         else
1172                 ret = cow_file_range_async(inode, locked_page, start, end,
1173                                            page_started, nr_written);
1174         return ret;
1175 }
1176
1177 static int btrfs_split_extent_hook(struct inode *inode,
1178                                     struct extent_state *orig, u64 split)
1179 {
1180         struct btrfs_root *root = BTRFS_I(inode)->root;
1181         u64 size;
1182
1183         if (!(orig->state & EXTENT_DELALLOC))
1184                 return 0;
1185
1186         size = orig->end - orig->start + 1;
1187         if (size > root->fs_info->max_extent) {
1188                 u64 num_extents;
1189                 u64 new_size;
1190
1191                 new_size = orig->end - split + 1;
1192                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1193                                         root->fs_info->max_extent);
1194
1195                 /*
1196                  * if we break a large extent up then leave delalloc_extents be,
1197                  * since we've already accounted for the large extent.
1198                  */
1199                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1200                               root->fs_info->max_extent) < num_extents)
1201                         return 0;
1202         }
1203
1204         BTRFS_I(inode)->delalloc_extents++;
1205
1206         return 0;
1207 }
1208
1209 /*
1210  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1211  * extents so we can keep track of new extents that are just merged onto old
1212  * extents, such as when we are doing sequential writes, so we can properly
1213  * account for the metadata space we'll need.
1214  */
1215 static int btrfs_merge_extent_hook(struct inode *inode,
1216                                    struct extent_state *new,
1217                                    struct extent_state *other)
1218 {
1219         struct btrfs_root *root = BTRFS_I(inode)->root;
1220         u64 new_size, old_size;
1221         u64 num_extents;
1222
1223         /* not delalloc, ignore it */
1224         if (!(other->state & EXTENT_DELALLOC))
1225                 return 0;
1226
1227         old_size = other->end - other->start + 1;
1228         if (new->start < other->start)
1229                 new_size = other->end - new->start + 1;
1230         else
1231                 new_size = new->end - other->start + 1;
1232
1233         /* we're not bigger than the max, unreserve the space and go */
1234         if (new_size <= root->fs_info->max_extent) {
1235                 BTRFS_I(inode)->delalloc_extents--;
1236                 return 0;
1237         }
1238
1239         /*
1240          * If we grew by another max_extent, just return, we want to keep that
1241          * reserved amount.
1242          */
1243         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1244                                 root->fs_info->max_extent);
1245         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1246                       root->fs_info->max_extent) > num_extents)
1247                 return 0;
1248
1249         BTRFS_I(inode)->delalloc_extents--;
1250
1251         return 0;
1252 }
1253
1254 /*
1255  * extent_io.c set_bit_hook, used to track delayed allocation
1256  * bytes in this file, and to maintain the list of inodes that
1257  * have pending delalloc work to be done.
1258  */
1259 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1260                        unsigned long old, unsigned long bits)
1261 {
1262
1263         /*
1264          * set_bit and clear bit hooks normally require _irqsave/restore
1265          * but in this case, we are only testeing for the DELALLOC
1266          * bit, which is only set or cleared with irqs on
1267          */
1268         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1269                 struct btrfs_root *root = BTRFS_I(inode)->root;
1270
1271                 BTRFS_I(inode)->delalloc_extents++;
1272                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1273                 spin_lock(&root->fs_info->delalloc_lock);
1274                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1275                 root->fs_info->delalloc_bytes += end - start + 1;
1276                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1277                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1278                                       &root->fs_info->delalloc_inodes);
1279                 }
1280                 spin_unlock(&root->fs_info->delalloc_lock);
1281         }
1282         return 0;
1283 }
1284
1285 /*
1286  * extent_io.c clear_bit_hook, see set_bit_hook for why
1287  */
1288 static int btrfs_clear_bit_hook(struct inode *inode,
1289                                 struct extent_state *state, unsigned long bits)
1290 {
1291         /*
1292          * set_bit and clear bit hooks normally require _irqsave/restore
1293          * but in this case, we are only testeing for the DELALLOC
1294          * bit, which is only set or cleared with irqs on
1295          */
1296         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1297                 struct btrfs_root *root = BTRFS_I(inode)->root;
1298
1299                 BTRFS_I(inode)->delalloc_extents--;
1300                 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1301
1302                 spin_lock(&root->fs_info->delalloc_lock);
1303                 if (state->end - state->start + 1 >
1304                     root->fs_info->delalloc_bytes) {
1305                         printk(KERN_INFO "btrfs warning: delalloc account "
1306                                "%llu %llu\n",
1307                                (unsigned long long)
1308                                state->end - state->start + 1,
1309                                (unsigned long long)
1310                                root->fs_info->delalloc_bytes);
1311                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1312                         root->fs_info->delalloc_bytes = 0;
1313                         BTRFS_I(inode)->delalloc_bytes = 0;
1314                 } else {
1315                         btrfs_delalloc_free_space(root, inode,
1316                                                   state->end -
1317                                                   state->start + 1);
1318                         root->fs_info->delalloc_bytes -= state->end -
1319                                 state->start + 1;
1320                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1321                                 state->start + 1;
1322                 }
1323                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1324                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1325                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1326                 }
1327                 spin_unlock(&root->fs_info->delalloc_lock);
1328         }
1329         return 0;
1330 }
1331
1332 /*
1333  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1334  * we don't create bios that span stripes or chunks
1335  */
1336 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1337                          size_t size, struct bio *bio,
1338                          unsigned long bio_flags)
1339 {
1340         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1341         struct btrfs_mapping_tree *map_tree;
1342         u64 logical = (u64)bio->bi_sector << 9;
1343         u64 length = 0;
1344         u64 map_length;
1345         int ret;
1346
1347         if (bio_flags & EXTENT_BIO_COMPRESSED)
1348                 return 0;
1349
1350         length = bio->bi_size;
1351         map_tree = &root->fs_info->mapping_tree;
1352         map_length = length;
1353         ret = btrfs_map_block(map_tree, READ, logical,
1354                               &map_length, NULL, 0);
1355
1356         if (map_length < length + size)
1357                 return 1;
1358         return 0;
1359 }
1360
1361 /*
1362  * in order to insert checksums into the metadata in large chunks,
1363  * we wait until bio submission time.   All the pages in the bio are
1364  * checksummed and sums are attached onto the ordered extent record.
1365  *
1366  * At IO completion time the cums attached on the ordered extent record
1367  * are inserted into the btree
1368  */
1369 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1370                                     struct bio *bio, int mirror_num,
1371                                     unsigned long bio_flags)
1372 {
1373         struct btrfs_root *root = BTRFS_I(inode)->root;
1374         int ret = 0;
1375
1376         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1377         BUG_ON(ret);
1378         return 0;
1379 }
1380
1381 /*
1382  * in order to insert checksums into the metadata in large chunks,
1383  * we wait until bio submission time.   All the pages in the bio are
1384  * checksummed and sums are attached onto the ordered extent record.
1385  *
1386  * At IO completion time the cums attached on the ordered extent record
1387  * are inserted into the btree
1388  */
1389 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1390                           int mirror_num, unsigned long bio_flags)
1391 {
1392         struct btrfs_root *root = BTRFS_I(inode)->root;
1393         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1394 }
1395
1396 /*
1397  * extent_io.c submission hook. This does the right thing for csum calculation
1398  * on write, or reading the csums from the tree before a read
1399  */
1400 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1401                           int mirror_num, unsigned long bio_flags)
1402 {
1403         struct btrfs_root *root = BTRFS_I(inode)->root;
1404         int ret = 0;
1405         int skip_sum;
1406
1407         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1408
1409         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1410         BUG_ON(ret);
1411
1412         if (!(rw & (1 << BIO_RW))) {
1413                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1414                         return btrfs_submit_compressed_read(inode, bio,
1415                                                     mirror_num, bio_flags);
1416                 } else if (!skip_sum)
1417                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1418                 goto mapit;
1419         } else if (!skip_sum) {
1420                 /* csum items have already been cloned */
1421                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1422                         goto mapit;
1423                 /* we're doing a write, do the async checksumming */
1424                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1425                                    inode, rw, bio, mirror_num,
1426                                    bio_flags, __btrfs_submit_bio_start,
1427                                    __btrfs_submit_bio_done);
1428         }
1429
1430 mapit:
1431         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1432 }
1433
1434 /*
1435  * given a list of ordered sums record them in the inode.  This happens
1436  * at IO completion time based on sums calculated at bio submission time.
1437  */
1438 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1439                              struct inode *inode, u64 file_offset,
1440                              struct list_head *list)
1441 {
1442         struct btrfs_ordered_sum *sum;
1443
1444         btrfs_set_trans_block_group(trans, inode);
1445
1446         list_for_each_entry(sum, list, list) {
1447                 btrfs_csum_file_blocks(trans,
1448                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1449         }
1450         return 0;
1451 }
1452
1453 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1454 {
1455         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1456                 WARN_ON(1);
1457         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1458                                    GFP_NOFS);
1459 }
1460
1461 /* see btrfs_writepage_start_hook for details on why this is required */
1462 struct btrfs_writepage_fixup {
1463         struct page *page;
1464         struct btrfs_work work;
1465 };
1466
1467 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1468 {
1469         struct btrfs_writepage_fixup *fixup;
1470         struct btrfs_ordered_extent *ordered;
1471         struct page *page;
1472         struct inode *inode;
1473         u64 page_start;
1474         u64 page_end;
1475
1476         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1477         page = fixup->page;
1478 again:
1479         lock_page(page);
1480         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1481                 ClearPageChecked(page);
1482                 goto out_page;
1483         }
1484
1485         inode = page->mapping->host;
1486         page_start = page_offset(page);
1487         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1488
1489         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1490
1491         /* already ordered? We're done */
1492         if (PagePrivate2(page))
1493                 goto out;
1494
1495         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1496         if (ordered) {
1497                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1498                               page_end, GFP_NOFS);
1499                 unlock_page(page);
1500                 btrfs_start_ordered_extent(inode, ordered, 1);
1501                 goto again;
1502         }
1503
1504         btrfs_set_extent_delalloc(inode, page_start, page_end);
1505         ClearPageChecked(page);
1506 out:
1507         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1508 out_page:
1509         unlock_page(page);
1510         page_cache_release(page);
1511 }
1512
1513 /*
1514  * There are a few paths in the higher layers of the kernel that directly
1515  * set the page dirty bit without asking the filesystem if it is a
1516  * good idea.  This causes problems because we want to make sure COW
1517  * properly happens and the data=ordered rules are followed.
1518  *
1519  * In our case any range that doesn't have the ORDERED bit set
1520  * hasn't been properly setup for IO.  We kick off an async process
1521  * to fix it up.  The async helper will wait for ordered extents, set
1522  * the delalloc bit and make it safe to write the page.
1523  */
1524 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1525 {
1526         struct inode *inode = page->mapping->host;
1527         struct btrfs_writepage_fixup *fixup;
1528         struct btrfs_root *root = BTRFS_I(inode)->root;
1529
1530         /* this page is properly in the ordered list */
1531         if (TestClearPagePrivate2(page))
1532                 return 0;
1533
1534         if (PageChecked(page))
1535                 return -EAGAIN;
1536
1537         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1538         if (!fixup)
1539                 return -EAGAIN;
1540
1541         SetPageChecked(page);
1542         page_cache_get(page);
1543         fixup->work.func = btrfs_writepage_fixup_worker;
1544         fixup->page = page;
1545         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1546         return -EAGAIN;
1547 }
1548
1549 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1550                                        struct inode *inode, u64 file_pos,
1551                                        u64 disk_bytenr, u64 disk_num_bytes,
1552                                        u64 num_bytes, u64 ram_bytes,
1553                                        u64 locked_end,
1554                                        u8 compression, u8 encryption,
1555                                        u16 other_encoding, int extent_type)
1556 {
1557         struct btrfs_root *root = BTRFS_I(inode)->root;
1558         struct btrfs_file_extent_item *fi;
1559         struct btrfs_path *path;
1560         struct extent_buffer *leaf;
1561         struct btrfs_key ins;
1562         u64 hint;
1563         int ret;
1564
1565         path = btrfs_alloc_path();
1566         BUG_ON(!path);
1567
1568         path->leave_spinning = 1;
1569
1570         /*
1571          * we may be replacing one extent in the tree with another.
1572          * The new extent is pinned in the extent map, and we don't want
1573          * to drop it from the cache until it is completely in the btree.
1574          *
1575          * So, tell btrfs_drop_extents to leave this extent in the cache.
1576          * the caller is expected to unpin it and allow it to be merged
1577          * with the others.
1578          */
1579         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1580                                  file_pos + num_bytes, locked_end,
1581                                  file_pos, &hint, 0);
1582         BUG_ON(ret);
1583
1584         ins.objectid = inode->i_ino;
1585         ins.offset = file_pos;
1586         ins.type = BTRFS_EXTENT_DATA_KEY;
1587         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1588         BUG_ON(ret);
1589         leaf = path->nodes[0];
1590         fi = btrfs_item_ptr(leaf, path->slots[0],
1591                             struct btrfs_file_extent_item);
1592         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1593         btrfs_set_file_extent_type(leaf, fi, extent_type);
1594         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1595         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1596         btrfs_set_file_extent_offset(leaf, fi, 0);
1597         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1598         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1599         btrfs_set_file_extent_compression(leaf, fi, compression);
1600         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1601         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1602
1603         btrfs_unlock_up_safe(path, 1);
1604         btrfs_set_lock_blocking(leaf);
1605
1606         btrfs_mark_buffer_dirty(leaf);
1607
1608         inode_add_bytes(inode, num_bytes);
1609
1610         ins.objectid = disk_bytenr;
1611         ins.offset = disk_num_bytes;
1612         ins.type = BTRFS_EXTENT_ITEM_KEY;
1613         ret = btrfs_alloc_reserved_file_extent(trans, root,
1614                                         root->root_key.objectid,
1615                                         inode->i_ino, file_pos, &ins);
1616         BUG_ON(ret);
1617         btrfs_free_path(path);
1618
1619         return 0;
1620 }
1621
1622 /*
1623  * helper function for btrfs_finish_ordered_io, this
1624  * just reads in some of the csum leaves to prime them into ram
1625  * before we start the transaction.  It limits the amount of btree
1626  * reads required while inside the transaction.
1627  */
1628 static noinline void reada_csum(struct btrfs_root *root,
1629                                 struct btrfs_path *path,
1630                                 struct btrfs_ordered_extent *ordered_extent)
1631 {
1632         struct btrfs_ordered_sum *sum;
1633         u64 bytenr;
1634
1635         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1636                          list);
1637         bytenr = sum->sums[0].bytenr;
1638
1639         /*
1640          * we don't care about the results, the point of this search is
1641          * just to get the btree leaves into ram
1642          */
1643         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1644 }
1645
1646 /* as ordered data IO finishes, this gets called so we can finish
1647  * an ordered extent if the range of bytes in the file it covers are
1648  * fully written.
1649  */
1650 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1651 {
1652         struct btrfs_root *root = BTRFS_I(inode)->root;
1653         struct btrfs_trans_handle *trans;
1654         struct btrfs_ordered_extent *ordered_extent = NULL;
1655         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1656         struct btrfs_path *path;
1657         int compressed = 0;
1658         int ret;
1659
1660         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1661         if (!ret)
1662                 return 0;
1663
1664         /*
1665          * before we join the transaction, try to do some of our IO.
1666          * This will limit the amount of IO that we have to do with
1667          * the transaction running.  We're unlikely to need to do any
1668          * IO if the file extents are new, the disk_i_size checks
1669          * covers the most common case.
1670          */
1671         if (start < BTRFS_I(inode)->disk_i_size) {
1672                 path = btrfs_alloc_path();
1673                 if (path) {
1674                         ret = btrfs_lookup_file_extent(NULL, root, path,
1675                                                        inode->i_ino,
1676                                                        start, 0);
1677                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1678                                                                      start);
1679                         if (!list_empty(&ordered_extent->list)) {
1680                                 btrfs_release_path(root, path);
1681                                 reada_csum(root, path, ordered_extent);
1682                         }
1683                         btrfs_free_path(path);
1684                 }
1685         }
1686
1687         trans = btrfs_join_transaction(root, 1);
1688
1689         if (!ordered_extent)
1690                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1691         BUG_ON(!ordered_extent);
1692         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1693                 goto nocow;
1694
1695         lock_extent(io_tree, ordered_extent->file_offset,
1696                     ordered_extent->file_offset + ordered_extent->len - 1,
1697                     GFP_NOFS);
1698
1699         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1700                 compressed = 1;
1701         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1702                 BUG_ON(compressed);
1703                 ret = btrfs_mark_extent_written(trans, root, inode,
1704                                                 ordered_extent->file_offset,
1705                                                 ordered_extent->file_offset +
1706                                                 ordered_extent->len);
1707                 BUG_ON(ret);
1708         } else {
1709                 ret = insert_reserved_file_extent(trans, inode,
1710                                                 ordered_extent->file_offset,
1711                                                 ordered_extent->start,
1712                                                 ordered_extent->disk_len,
1713                                                 ordered_extent->len,
1714                                                 ordered_extent->len,
1715                                                 ordered_extent->file_offset +
1716                                                 ordered_extent->len,
1717                                                 compressed, 0, 0,
1718                                                 BTRFS_FILE_EXTENT_REG);
1719                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1720                                    ordered_extent->file_offset,
1721                                    ordered_extent->len);
1722                 BUG_ON(ret);
1723         }
1724         unlock_extent(io_tree, ordered_extent->file_offset,
1725                     ordered_extent->file_offset + ordered_extent->len - 1,
1726                     GFP_NOFS);
1727 nocow:
1728         add_pending_csums(trans, inode, ordered_extent->file_offset,
1729                           &ordered_extent->list);
1730
1731         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1732         btrfs_ordered_update_i_size(inode, ordered_extent);
1733         btrfs_update_inode(trans, root, inode);
1734         btrfs_remove_ordered_extent(inode, ordered_extent);
1735         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1736
1737         /* once for us */
1738         btrfs_put_ordered_extent(ordered_extent);
1739         /* once for the tree */
1740         btrfs_put_ordered_extent(ordered_extent);
1741
1742         btrfs_end_transaction(trans, root);
1743         return 0;
1744 }
1745
1746 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1747                                 struct extent_state *state, int uptodate)
1748 {
1749         ClearPagePrivate2(page);
1750         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1751 }
1752
1753 /*
1754  * When IO fails, either with EIO or csum verification fails, we
1755  * try other mirrors that might have a good copy of the data.  This
1756  * io_failure_record is used to record state as we go through all the
1757  * mirrors.  If another mirror has good data, the page is set up to date
1758  * and things continue.  If a good mirror can't be found, the original
1759  * bio end_io callback is called to indicate things have failed.
1760  */
1761 struct io_failure_record {
1762         struct page *page;
1763         u64 start;
1764         u64 len;
1765         u64 logical;
1766         unsigned long bio_flags;
1767         int last_mirror;
1768 };
1769
1770 static int btrfs_io_failed_hook(struct bio *failed_bio,
1771                          struct page *page, u64 start, u64 end,
1772                          struct extent_state *state)
1773 {
1774         struct io_failure_record *failrec = NULL;
1775         u64 private;
1776         struct extent_map *em;
1777         struct inode *inode = page->mapping->host;
1778         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1779         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1780         struct bio *bio;
1781         int num_copies;
1782         int ret;
1783         int rw;
1784         u64 logical;
1785
1786         ret = get_state_private(failure_tree, start, &private);
1787         if (ret) {
1788                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1789                 if (!failrec)
1790                         return -ENOMEM;
1791                 failrec->start = start;
1792                 failrec->len = end - start + 1;
1793                 failrec->last_mirror = 0;
1794                 failrec->bio_flags = 0;
1795
1796                 read_lock(&em_tree->lock);
1797                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1798                 if (em->start > start || em->start + em->len < start) {
1799                         free_extent_map(em);
1800                         em = NULL;
1801                 }
1802                 read_unlock(&em_tree->lock);
1803
1804                 if (!em || IS_ERR(em)) {
1805                         kfree(failrec);
1806                         return -EIO;
1807                 }
1808                 logical = start - em->start;
1809                 logical = em->block_start + logical;
1810                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1811                         logical = em->block_start;
1812                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1813                 }
1814                 failrec->logical = logical;
1815                 free_extent_map(em);
1816                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1817                                 EXTENT_DIRTY, GFP_NOFS);
1818                 set_state_private(failure_tree, start,
1819                                  (u64)(unsigned long)failrec);
1820         } else {
1821                 failrec = (struct io_failure_record *)(unsigned long)private;
1822         }
1823         num_copies = btrfs_num_copies(
1824                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1825                               failrec->logical, failrec->len);
1826         failrec->last_mirror++;
1827         if (!state) {
1828                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1829                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1830                                                     failrec->start,
1831                                                     EXTENT_LOCKED);
1832                 if (state && state->start != failrec->start)
1833                         state = NULL;
1834                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1835         }
1836         if (!state || failrec->last_mirror > num_copies) {
1837                 set_state_private(failure_tree, failrec->start, 0);
1838                 clear_extent_bits(failure_tree, failrec->start,
1839                                   failrec->start + failrec->len - 1,
1840                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1841                 kfree(failrec);
1842                 return -EIO;
1843         }
1844         bio = bio_alloc(GFP_NOFS, 1);
1845         bio->bi_private = state;
1846         bio->bi_end_io = failed_bio->bi_end_io;
1847         bio->bi_sector = failrec->logical >> 9;
1848         bio->bi_bdev = failed_bio->bi_bdev;
1849         bio->bi_size = 0;
1850
1851         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1852         if (failed_bio->bi_rw & (1 << BIO_RW))
1853                 rw = WRITE;
1854         else
1855                 rw = READ;
1856
1857         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1858                                                       failrec->last_mirror,
1859                                                       failrec->bio_flags);
1860         return 0;
1861 }
1862
1863 /*
1864  * each time an IO finishes, we do a fast check in the IO failure tree
1865  * to see if we need to process or clean up an io_failure_record
1866  */
1867 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1868 {
1869         u64 private;
1870         u64 private_failure;
1871         struct io_failure_record *failure;
1872         int ret;
1873
1874         private = 0;
1875         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1876                              (u64)-1, 1, EXTENT_DIRTY)) {
1877                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1878                                         start, &private_failure);
1879                 if (ret == 0) {
1880                         failure = (struct io_failure_record *)(unsigned long)
1881                                    private_failure;
1882                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1883                                           failure->start, 0);
1884                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1885                                           failure->start,
1886                                           failure->start + failure->len - 1,
1887                                           EXTENT_DIRTY | EXTENT_LOCKED,
1888                                           GFP_NOFS);
1889                         kfree(failure);
1890                 }
1891         }
1892         return 0;
1893 }
1894
1895 /*
1896  * when reads are done, we need to check csums to verify the data is correct
1897  * if there's a match, we allow the bio to finish.  If not, we go through
1898  * the io_failure_record routines to find good copies
1899  */
1900 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1901                                struct extent_state *state)
1902 {
1903         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1904         struct inode *inode = page->mapping->host;
1905         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1906         char *kaddr;
1907         u64 private = ~(u32)0;
1908         int ret;
1909         struct btrfs_root *root = BTRFS_I(inode)->root;
1910         u32 csum = ~(u32)0;
1911
1912         if (PageChecked(page)) {
1913                 ClearPageChecked(page);
1914                 goto good;
1915         }
1916
1917         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1918                 return 0;
1919
1920         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1921             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1922                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1923                                   GFP_NOFS);
1924                 return 0;
1925         }
1926
1927         if (state && state->start == start) {
1928                 private = state->private;
1929                 ret = 0;
1930         } else {
1931                 ret = get_state_private(io_tree, start, &private);
1932         }
1933         kaddr = kmap_atomic(page, KM_USER0);
1934         if (ret)
1935                 goto zeroit;
1936
1937         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1938         btrfs_csum_final(csum, (char *)&csum);
1939         if (csum != private)
1940                 goto zeroit;
1941
1942         kunmap_atomic(kaddr, KM_USER0);
1943 good:
1944         /* if the io failure tree for this inode is non-empty,
1945          * check to see if we've recovered from a failed IO
1946          */
1947         btrfs_clean_io_failures(inode, start);
1948         return 0;
1949
1950 zeroit:
1951         if (printk_ratelimit()) {
1952                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1953                        "private %llu\n", page->mapping->host->i_ino,
1954                        (unsigned long long)start, csum,
1955                        (unsigned long long)private);
1956         }
1957         memset(kaddr + offset, 1, end - start + 1);
1958         flush_dcache_page(page);
1959         kunmap_atomic(kaddr, KM_USER0);
1960         if (private == 0)
1961                 return 0;
1962         return -EIO;
1963 }
1964
1965 /*
1966  * This creates an orphan entry for the given inode in case something goes
1967  * wrong in the middle of an unlink/truncate.
1968  */
1969 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1970 {
1971         struct btrfs_root *root = BTRFS_I(inode)->root;
1972         int ret = 0;
1973
1974         spin_lock(&root->list_lock);
1975
1976         /* already on the orphan list, we're good */
1977         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1978                 spin_unlock(&root->list_lock);
1979                 return 0;
1980         }
1981
1982         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1983
1984         spin_unlock(&root->list_lock);
1985
1986         /*
1987          * insert an orphan item to track this unlinked/truncated file
1988          */
1989         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1990
1991         return ret;
1992 }
1993
1994 /*
1995  * We have done the truncate/delete so we can go ahead and remove the orphan
1996  * item for this particular inode.
1997  */
1998 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1999 {
2000         struct btrfs_root *root = BTRFS_I(inode)->root;
2001         int ret = 0;
2002
2003         spin_lock(&root->list_lock);
2004
2005         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2006                 spin_unlock(&root->list_lock);
2007                 return 0;
2008         }
2009
2010         list_del_init(&BTRFS_I(inode)->i_orphan);
2011         if (!trans) {
2012                 spin_unlock(&root->list_lock);
2013                 return 0;
2014         }
2015
2016         spin_unlock(&root->list_lock);
2017
2018         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2019
2020         return ret;
2021 }
2022
2023 /*
2024  * this cleans up any orphans that may be left on the list from the last use
2025  * of this root.
2026  */
2027 void btrfs_orphan_cleanup(struct btrfs_root *root)
2028 {
2029         struct btrfs_path *path;
2030         struct extent_buffer *leaf;
2031         struct btrfs_item *item;
2032         struct btrfs_key key, found_key;
2033         struct btrfs_trans_handle *trans;
2034         struct inode *inode;
2035         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2036
2037         path = btrfs_alloc_path();
2038         if (!path)
2039                 return;
2040         path->reada = -1;
2041
2042         key.objectid = BTRFS_ORPHAN_OBJECTID;
2043         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2044         key.offset = (u64)-1;
2045
2046
2047         while (1) {
2048                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2049                 if (ret < 0) {
2050                         printk(KERN_ERR "Error searching slot for orphan: %d"
2051                                "\n", ret);
2052                         break;
2053                 }
2054
2055                 /*
2056                  * if ret == 0 means we found what we were searching for, which
2057                  * is weird, but possible, so only screw with path if we didnt
2058                  * find the key and see if we have stuff that matches
2059                  */
2060                 if (ret > 0) {
2061                         if (path->slots[0] == 0)
2062                                 break;
2063                         path->slots[0]--;
2064                 }
2065
2066                 /* pull out the item */
2067                 leaf = path->nodes[0];
2068                 item = btrfs_item_nr(leaf, path->slots[0]);
2069                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2070
2071                 /* make sure the item matches what we want */
2072                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2073                         break;
2074                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2075                         break;
2076
2077                 /* release the path since we're done with it */
2078                 btrfs_release_path(root, path);
2079
2080                 /*
2081                  * this is where we are basically btrfs_lookup, without the
2082                  * crossing root thing.  we store the inode number in the
2083                  * offset of the orphan item.
2084                  */
2085                 found_key.objectid = found_key.offset;
2086                 found_key.type = BTRFS_INODE_ITEM_KEY;
2087                 found_key.offset = 0;
2088                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2089                 if (IS_ERR(inode))
2090                         break;
2091
2092                 /*
2093                  * add this inode to the orphan list so btrfs_orphan_del does
2094                  * the proper thing when we hit it
2095                  */
2096                 spin_lock(&root->list_lock);
2097                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2098                 spin_unlock(&root->list_lock);
2099
2100                 /*
2101                  * if this is a bad inode, means we actually succeeded in
2102                  * removing the inode, but not the orphan record, which means
2103                  * we need to manually delete the orphan since iput will just
2104                  * do a destroy_inode
2105                  */
2106                 if (is_bad_inode(inode)) {
2107                         trans = btrfs_start_transaction(root, 1);
2108                         btrfs_orphan_del(trans, inode);
2109                         btrfs_end_transaction(trans, root);
2110                         iput(inode);
2111                         continue;
2112                 }
2113
2114                 /* if we have links, this was a truncate, lets do that */
2115                 if (inode->i_nlink) {
2116                         nr_truncate++;
2117                         btrfs_truncate(inode);
2118                 } else {
2119                         nr_unlink++;
2120                 }
2121
2122                 /* this will do delete_inode and everything for us */
2123                 iput(inode);
2124         }
2125
2126         if (nr_unlink)
2127                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2128         if (nr_truncate)
2129                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2130
2131         btrfs_free_path(path);
2132 }
2133
2134 /*
2135  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2136  * don't find any xattrs, we know there can't be any acls.
2137  *
2138  * slot is the slot the inode is in, objectid is the objectid of the inode
2139  */
2140 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2141                                           int slot, u64 objectid)
2142 {
2143         u32 nritems = btrfs_header_nritems(leaf);
2144         struct btrfs_key found_key;
2145         int scanned = 0;
2146
2147         slot++;
2148         while (slot < nritems) {
2149                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2150
2151                 /* we found a different objectid, there must not be acls */
2152                 if (found_key.objectid != objectid)
2153                         return 0;
2154
2155                 /* we found an xattr, assume we've got an acl */
2156                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2157                         return 1;
2158
2159                 /*
2160                  * we found a key greater than an xattr key, there can't
2161                  * be any acls later on
2162                  */
2163                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2164                         return 0;
2165
2166                 slot++;
2167                 scanned++;
2168
2169                 /*
2170                  * it goes inode, inode backrefs, xattrs, extents,
2171                  * so if there are a ton of hard links to an inode there can
2172                  * be a lot of backrefs.  Don't waste time searching too hard,
2173                  * this is just an optimization
2174                  */
2175                 if (scanned >= 8)
2176                         break;
2177         }
2178         /* we hit the end of the leaf before we found an xattr or
2179          * something larger than an xattr.  We have to assume the inode
2180          * has acls
2181          */
2182         return 1;
2183 }
2184
2185 /*
2186  * read an inode from the btree into the in-memory inode
2187  */
2188 static void btrfs_read_locked_inode(struct inode *inode)
2189 {
2190         struct btrfs_path *path;
2191         struct extent_buffer *leaf;
2192         struct btrfs_inode_item *inode_item;
2193         struct btrfs_timespec *tspec;
2194         struct btrfs_root *root = BTRFS_I(inode)->root;
2195         struct btrfs_key location;
2196         int maybe_acls;
2197         u64 alloc_group_block;
2198         u32 rdev;
2199         int ret;
2200
2201         path = btrfs_alloc_path();
2202         BUG_ON(!path);
2203         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2204
2205         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2206         if (ret)
2207                 goto make_bad;
2208
2209         leaf = path->nodes[0];
2210         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2211                                     struct btrfs_inode_item);
2212
2213         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2214         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2215         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2216         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2217         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2218
2219         tspec = btrfs_inode_atime(inode_item);
2220         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2221         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2222
2223         tspec = btrfs_inode_mtime(inode_item);
2224         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2225         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2226
2227         tspec = btrfs_inode_ctime(inode_item);
2228         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2229         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2230
2231         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2232         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2233         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2234         inode->i_generation = BTRFS_I(inode)->generation;
2235         inode->i_rdev = 0;
2236         rdev = btrfs_inode_rdev(leaf, inode_item);
2237
2238         BTRFS_I(inode)->index_cnt = (u64)-1;
2239         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2240
2241         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2242
2243         /*
2244          * try to precache a NULL acl entry for files that don't have
2245          * any xattrs or acls
2246          */
2247         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2248         if (!maybe_acls)
2249                 cache_no_acl(inode);
2250
2251         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2252                                                 alloc_group_block, 0);
2253         btrfs_free_path(path);
2254         inode_item = NULL;
2255
2256         switch (inode->i_mode & S_IFMT) {
2257         case S_IFREG:
2258                 inode->i_mapping->a_ops = &btrfs_aops;
2259                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2260                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2261                 inode->i_fop = &btrfs_file_operations;
2262                 inode->i_op = &btrfs_file_inode_operations;
2263                 break;
2264         case S_IFDIR:
2265                 inode->i_fop = &btrfs_dir_file_operations;
2266                 if (root == root->fs_info->tree_root)
2267                         inode->i_op = &btrfs_dir_ro_inode_operations;
2268                 else
2269                         inode->i_op = &btrfs_dir_inode_operations;
2270                 break;
2271         case S_IFLNK:
2272                 inode->i_op = &btrfs_symlink_inode_operations;
2273                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2274                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2275                 break;
2276         default:
2277                 inode->i_op = &btrfs_special_inode_operations;
2278                 init_special_inode(inode, inode->i_mode, rdev);
2279                 break;
2280         }
2281
2282         btrfs_update_iflags(inode);
2283         return;
2284
2285 make_bad:
2286         btrfs_free_path(path);
2287         make_bad_inode(inode);
2288 }
2289
2290 /*
2291  * given a leaf and an inode, copy the inode fields into the leaf
2292  */
2293 static void fill_inode_item(struct btrfs_trans_handle *trans,
2294                             struct extent_buffer *leaf,
2295                             struct btrfs_inode_item *item,
2296                             struct inode *inode)
2297 {
2298         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2299         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2300         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2301         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2302         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2303
2304         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2305                                inode->i_atime.tv_sec);
2306         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2307                                 inode->i_atime.tv_nsec);
2308
2309         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2310                                inode->i_mtime.tv_sec);
2311         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2312                                 inode->i_mtime.tv_nsec);
2313
2314         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2315                                inode->i_ctime.tv_sec);
2316         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2317                                 inode->i_ctime.tv_nsec);
2318
2319         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2320         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2321         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2322         btrfs_set_inode_transid(leaf, item, trans->transid);
2323         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2324         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2325         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2326 }
2327
2328 /*
2329  * copy everything in the in-memory inode into the btree.
2330  */
2331 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2332                                 struct btrfs_root *root, struct inode *inode)
2333 {
2334         struct btrfs_inode_item *inode_item;
2335         struct btrfs_path *path;
2336         struct extent_buffer *leaf;
2337         int ret;
2338
2339         path = btrfs_alloc_path();
2340         BUG_ON(!path);
2341         path->leave_spinning = 1;
2342         ret = btrfs_lookup_inode(trans, root, path,
2343                                  &BTRFS_I(inode)->location, 1);
2344         if (ret) {
2345                 if (ret > 0)
2346                         ret = -ENOENT;
2347                 goto failed;
2348         }
2349
2350         btrfs_unlock_up_safe(path, 1);
2351         leaf = path->nodes[0];
2352         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2353                                   struct btrfs_inode_item);
2354
2355         fill_inode_item(trans, leaf, inode_item, inode);
2356         btrfs_mark_buffer_dirty(leaf);
2357         btrfs_set_inode_last_trans(trans, inode);
2358         ret = 0;
2359 failed:
2360         btrfs_free_path(path);
2361         return ret;
2362 }
2363
2364
2365 /*
2366  * unlink helper that gets used here in inode.c and in the tree logging
2367  * recovery code.  It remove a link in a directory with a given name, and
2368  * also drops the back refs in the inode to the directory
2369  */
2370 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2371                        struct btrfs_root *root,
2372                        struct inode *dir, struct inode *inode,
2373                        const char *name, int name_len)
2374 {
2375         struct btrfs_path *path;
2376         int ret = 0;
2377         struct extent_buffer *leaf;
2378         struct btrfs_dir_item *di;
2379         struct btrfs_key key;
2380         u64 index;
2381
2382         path = btrfs_alloc_path();
2383         if (!path) {
2384                 ret = -ENOMEM;
2385                 goto err;
2386         }
2387
2388         path->leave_spinning = 1;
2389         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2390                                     name, name_len, -1);
2391         if (IS_ERR(di)) {
2392                 ret = PTR_ERR(di);
2393                 goto err;
2394         }
2395         if (!di) {
2396                 ret = -ENOENT;
2397                 goto err;
2398         }
2399         leaf = path->nodes[0];
2400         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2401         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2402         if (ret)
2403                 goto err;
2404         btrfs_release_path(root, path);
2405
2406         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2407                                   inode->i_ino,
2408                                   dir->i_ino, &index);
2409         if (ret) {
2410                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2411                        "inode %lu parent %lu\n", name_len, name,
2412                        inode->i_ino, dir->i_ino);
2413                 goto err;
2414         }
2415
2416         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2417                                          index, name, name_len, -1);
2418         if (IS_ERR(di)) {
2419                 ret = PTR_ERR(di);
2420                 goto err;
2421         }
2422         if (!di) {
2423                 ret = -ENOENT;
2424                 goto err;
2425         }
2426         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2427         btrfs_release_path(root, path);
2428
2429         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2430                                          inode, dir->i_ino);
2431         BUG_ON(ret != 0 && ret != -ENOENT);
2432
2433         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2434                                            dir, index);
2435         BUG_ON(ret);
2436 err:
2437         btrfs_free_path(path);
2438         if (ret)
2439                 goto out;
2440
2441         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2442         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2443         btrfs_update_inode(trans, root, dir);
2444         btrfs_drop_nlink(inode);
2445         ret = btrfs_update_inode(trans, root, inode);
2446 out:
2447         return ret;
2448 }
2449
2450 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2451 {
2452         struct btrfs_root *root;
2453         struct btrfs_trans_handle *trans;
2454         struct inode *inode = dentry->d_inode;
2455         int ret;
2456         unsigned long nr = 0;
2457
2458         root = BTRFS_I(dir)->root;
2459
2460         trans = btrfs_start_transaction(root, 1);
2461
2462         btrfs_set_trans_block_group(trans, dir);
2463
2464         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2465
2466         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2467                                  dentry->d_name.name, dentry->d_name.len);
2468
2469         if (inode->i_nlink == 0)
2470                 ret = btrfs_orphan_add(trans, inode);
2471
2472         nr = trans->blocks_used;
2473
2474         btrfs_end_transaction_throttle(trans, root);
2475         btrfs_btree_balance_dirty(root, nr);
2476         return ret;
2477 }
2478
2479 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2480                         struct btrfs_root *root,
2481                         struct inode *dir, u64 objectid,
2482                         const char *name, int name_len)
2483 {
2484         struct btrfs_path *path;
2485         struct extent_buffer *leaf;
2486         struct btrfs_dir_item *di;
2487         struct btrfs_key key;
2488         u64 index;
2489         int ret;
2490
2491         path = btrfs_alloc_path();
2492         if (!path)
2493                 return -ENOMEM;
2494
2495         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2496                                    name, name_len, -1);
2497         BUG_ON(!di || IS_ERR(di));
2498
2499         leaf = path->nodes[0];
2500         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2501         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2502         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2503         BUG_ON(ret);
2504         btrfs_release_path(root, path);
2505
2506         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2507                                  objectid, root->root_key.objectid,
2508                                  dir->i_ino, &index, name, name_len);
2509         if (ret < 0) {
2510                 BUG_ON(ret != -ENOENT);
2511                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2512                                                  name, name_len);
2513                 BUG_ON(!di || IS_ERR(di));
2514
2515                 leaf = path->nodes[0];
2516                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517                 btrfs_release_path(root, path);
2518                 index = key.offset;
2519         }
2520
2521         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2522                                          index, name, name_len, -1);
2523         BUG_ON(!di || IS_ERR(di));
2524
2525         leaf = path->nodes[0];
2526         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2527         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2528         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2529         BUG_ON(ret);
2530         btrfs_release_path(root, path);
2531
2532         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2533         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2534         ret = btrfs_update_inode(trans, root, dir);
2535         BUG_ON(ret);
2536         dir->i_sb->s_dirt = 1;
2537
2538         btrfs_free_path(path);
2539         return 0;
2540 }
2541
2542 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2543 {
2544         struct inode *inode = dentry->d_inode;
2545         int err = 0;
2546         int ret;
2547         struct btrfs_root *root = BTRFS_I(dir)->root;
2548         struct btrfs_trans_handle *trans;
2549         unsigned long nr = 0;
2550
2551         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2552             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2553                 return -ENOTEMPTY;
2554
2555         trans = btrfs_start_transaction(root, 1);
2556         btrfs_set_trans_block_group(trans, dir);
2557
2558         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2559                 err = btrfs_unlink_subvol(trans, root, dir,
2560                                           BTRFS_I(inode)->location.objectid,
2561                                           dentry->d_name.name,
2562                                           dentry->d_name.len);
2563                 goto out;
2564         }
2565
2566         err = btrfs_orphan_add(trans, inode);
2567         if (err)
2568                 goto out;
2569
2570         /* now the directory is empty */
2571         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2572                                  dentry->d_name.name, dentry->d_name.len);
2573         if (!err)
2574                 btrfs_i_size_write(inode, 0);
2575 out:
2576         nr = trans->blocks_used;
2577         ret = btrfs_end_transaction_throttle(trans, root);
2578         btrfs_btree_balance_dirty(root, nr);
2579
2580         if (ret && !err)
2581                 err = ret;
2582         return err;
2583 }
2584
2585 #if 0
2586 /*
2587  * when truncating bytes in a file, it is possible to avoid reading
2588  * the leaves that contain only checksum items.  This can be the
2589  * majority of the IO required to delete a large file, but it must
2590  * be done carefully.
2591  *
2592  * The keys in the level just above the leaves are checked to make sure
2593  * the lowest key in a given leaf is a csum key, and starts at an offset
2594  * after the new  size.
2595  *
2596  * Then the key for the next leaf is checked to make sure it also has
2597  * a checksum item for the same file.  If it does, we know our target leaf
2598  * contains only checksum items, and it can be safely freed without reading
2599  * it.
2600  *
2601  * This is just an optimization targeted at large files.  It may do
2602  * nothing.  It will return 0 unless things went badly.
2603  */
2604 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2605                                      struct btrfs_root *root,
2606                                      struct btrfs_path *path,
2607                                      struct inode *inode, u64 new_size)
2608 {
2609         struct btrfs_key key;
2610         int ret;
2611         int nritems;
2612         struct btrfs_key found_key;
2613         struct btrfs_key other_key;
2614         struct btrfs_leaf_ref *ref;
2615         u64 leaf_gen;
2616         u64 leaf_start;
2617
2618         path->lowest_level = 1;
2619         key.objectid = inode->i_ino;
2620         key.type = BTRFS_CSUM_ITEM_KEY;
2621         key.offset = new_size;
2622 again:
2623         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2624         if (ret < 0)
2625                 goto out;
2626
2627         if (path->nodes[1] == NULL) {
2628                 ret = 0;
2629                 goto out;
2630         }
2631         ret = 0;
2632         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2633         nritems = btrfs_header_nritems(path->nodes[1]);
2634
2635         if (!nritems)
2636                 goto out;
2637
2638         if (path->slots[1] >= nritems)
2639                 goto next_node;
2640
2641         /* did we find a key greater than anything we want to delete? */
2642         if (found_key.objectid > inode->i_ino ||
2643            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2644                 goto out;
2645
2646         /* we check the next key in the node to make sure the leave contains
2647          * only checksum items.  This comparison doesn't work if our
2648          * leaf is the last one in the node
2649          */
2650         if (path->slots[1] + 1 >= nritems) {
2651 next_node:
2652                 /* search forward from the last key in the node, this
2653                  * will bring us into the next node in the tree
2654                  */
2655                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2656
2657                 /* unlikely, but we inc below, so check to be safe */
2658                 if (found_key.offset == (u64)-1)
2659                         goto out;
2660
2661                 /* search_forward needs a path with locks held, do the
2662                  * search again for the original key.  It is possible
2663                  * this will race with a balance and return a path that
2664                  * we could modify, but this drop is just an optimization
2665                  * and is allowed to miss some leaves.
2666                  */
2667                 btrfs_release_path(root, path);
2668                 found_key.offset++;
2669
2670                 /* setup a max key for search_forward */
2671                 other_key.offset = (u64)-1;
2672                 other_key.type = key.type;
2673                 other_key.objectid = key.objectid;
2674
2675                 path->keep_locks = 1;
2676                 ret = btrfs_search_forward(root, &found_key, &other_key,
2677                                            path, 0, 0);
2678                 path->keep_locks = 0;
2679                 if (ret || found_key.objectid != key.objectid ||
2680                     found_key.type != key.type) {
2681                         ret = 0;
2682                         goto out;
2683                 }
2684
2685                 key.offset = found_key.offset;
2686                 btrfs_release_path(root, path);
2687                 cond_resched();
2688                 goto again;
2689         }
2690
2691         /* we know there's one more slot after us in the tree,
2692          * read that key so we can verify it is also a checksum item
2693          */
2694         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2695
2696         if (found_key.objectid < inode->i_ino)
2697                 goto next_key;
2698
2699         if (found_key.type != key.type || found_key.offset < new_size)
2700                 goto next_key;
2701
2702         /*
2703          * if the key for the next leaf isn't a csum key from this objectid,
2704          * we can't be sure there aren't good items inside this leaf.
2705          * Bail out
2706          */
2707         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2708                 goto out;
2709
2710         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2711         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2712         /*
2713          * it is safe to delete this leaf, it contains only
2714          * csum items from this inode at an offset >= new_size
2715          */
2716         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2717         BUG_ON(ret);
2718
2719         if (root->ref_cows && leaf_gen < trans->transid) {
2720                 ref = btrfs_alloc_leaf_ref(root, 0);
2721                 if (ref) {
2722                         ref->root_gen = root->root_key.offset;
2723                         ref->bytenr = leaf_start;
2724                         ref->owner = 0;
2725                         ref->generation = leaf_gen;
2726                         ref->nritems = 0;
2727
2728                         btrfs_sort_leaf_ref(ref);
2729
2730                         ret = btrfs_add_leaf_ref(root, ref, 0);
2731                         WARN_ON(ret);
2732                         btrfs_free_leaf_ref(root, ref);
2733                 } else {
2734                         WARN_ON(1);
2735                 }
2736         }
2737 next_key:
2738         btrfs_release_path(root, path);
2739
2740         if (other_key.objectid == inode->i_ino &&
2741             other_key.type == key.type && other_key.offset > key.offset) {
2742                 key.offset = other_key.offset;
2743                 cond_resched();
2744                 goto again;
2745         }
2746         ret = 0;
2747 out:
2748         /* fixup any changes we've made to the path */
2749         path->lowest_level = 0;
2750         path->keep_locks = 0;
2751         btrfs_release_path(root, path);
2752         return ret;
2753 }
2754
2755 #endif
2756
2757 /*
2758  * this can truncate away extent items, csum items and directory items.
2759  * It starts at a high offset and removes keys until it can't find
2760  * any higher than new_size
2761  *
2762  * csum items that cross the new i_size are truncated to the new size
2763  * as well.
2764  *
2765  * min_type is the minimum key type to truncate down to.  If set to 0, this
2766  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2767  */
2768 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2769                                         struct btrfs_root *root,
2770                                         struct inode *inode,
2771                                         u64 new_size, u32 min_type)
2772 {
2773         int ret;
2774         struct btrfs_path *path;
2775         struct btrfs_key key;
2776         struct btrfs_key found_key;
2777         u32 found_type = (u8)-1;
2778         struct extent_buffer *leaf;
2779         struct btrfs_file_extent_item *fi;
2780         u64 extent_start = 0;
2781         u64 extent_num_bytes = 0;
2782         u64 extent_offset = 0;
2783         u64 item_end = 0;
2784         int found_extent;
2785         int del_item;
2786         int pending_del_nr = 0;
2787         int pending_del_slot = 0;
2788         int extent_type = -1;
2789         int encoding;
2790         u64 mask = root->sectorsize - 1;
2791
2792         if (root->ref_cows)
2793                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2794         path = btrfs_alloc_path();
2795         BUG_ON(!path);
2796         path->reada = -1;
2797
2798         /* FIXME, add redo link to tree so we don't leak on crash */
2799         key.objectid = inode->i_ino;
2800         key.offset = (u64)-1;
2801         key.type = (u8)-1;
2802
2803 search_again:
2804         path->leave_spinning = 1;
2805         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2806         if (ret < 0)
2807                 goto error;
2808
2809         if (ret > 0) {
2810                 /* there are no items in the tree for us to truncate, we're
2811                  * done
2812                  */
2813                 if (path->slots[0] == 0) {
2814                         ret = 0;
2815                         goto error;
2816                 }
2817                 path->slots[0]--;
2818         }
2819
2820         while (1) {
2821                 fi = NULL;
2822                 leaf = path->nodes[0];
2823                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2824                 found_type = btrfs_key_type(&found_key);
2825                 encoding = 0;
2826
2827                 if (found_key.objectid != inode->i_ino)
2828                         break;
2829
2830                 if (found_type < min_type)
2831                         break;
2832
2833                 item_end = found_key.offset;
2834                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2835                         fi = btrfs_item_ptr(leaf, path->slots[0],
2836                                             struct btrfs_file_extent_item);
2837                         extent_type = btrfs_file_extent_type(leaf, fi);
2838                         encoding = btrfs_file_extent_compression(leaf, fi);
2839                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2840                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2841
2842                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2843                                 item_end +=
2844                                     btrfs_file_extent_num_bytes(leaf, fi);
2845                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2846                                 item_end += btrfs_file_extent_inline_len(leaf,
2847                                                                          fi);
2848                         }
2849                         item_end--;
2850                 }
2851                 if (item_end < new_size) {
2852                         if (found_type == BTRFS_DIR_ITEM_KEY)
2853                                 found_type = BTRFS_INODE_ITEM_KEY;
2854                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2855                                 found_type = BTRFS_EXTENT_DATA_KEY;
2856                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2857                                 found_type = BTRFS_XATTR_ITEM_KEY;
2858                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2859                                 found_type = BTRFS_INODE_REF_KEY;
2860                         else if (found_type)
2861                                 found_type--;
2862                         else
2863                                 break;
2864                         btrfs_set_key_type(&key, found_type);
2865                         goto next;
2866                 }
2867                 if (found_key.offset >= new_size)
2868                         del_item = 1;
2869                 else
2870                         del_item = 0;
2871                 found_extent = 0;
2872
2873                 /* FIXME, shrink the extent if the ref count is only 1 */
2874                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2875                         goto delete;
2876
2877                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2878                         u64 num_dec;
2879                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2880                         if (!del_item && !encoding) {
2881                                 u64 orig_num_bytes =
2882                                         btrfs_file_extent_num_bytes(leaf, fi);
2883                                 extent_num_bytes = new_size -
2884                                         found_key.offset + root->sectorsize - 1;
2885                                 extent_num_bytes = extent_num_bytes &
2886                                         ~((u64)root->sectorsize - 1);
2887                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2888                                                          extent_num_bytes);
2889                                 num_dec = (orig_num_bytes -
2890                                            extent_num_bytes);
2891                                 if (root->ref_cows && extent_start != 0)
2892                                         inode_sub_bytes(inode, num_dec);
2893                                 btrfs_mark_buffer_dirty(leaf);
2894                         } else {
2895                                 extent_num_bytes =
2896                                         btrfs_file_extent_disk_num_bytes(leaf,
2897                                                                          fi);
2898                                 extent_offset = found_key.offset -
2899                                         btrfs_file_extent_offset(leaf, fi);
2900
2901                                 /* FIXME blocksize != 4096 */
2902                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2903                                 if (extent_start != 0) {
2904                                         found_extent = 1;
2905                                         if (root->ref_cows)
2906                                                 inode_sub_bytes(inode, num_dec);
2907                                 }
2908                         }
2909                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2910                         /*
2911                          * we can't truncate inline items that have had
2912                          * special encodings
2913                          */
2914                         if (!del_item &&
2915                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2916                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2917                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2918                                 u32 size = new_size - found_key.offset;
2919
2920                                 if (root->ref_cows) {
2921                                         inode_sub_bytes(inode, item_end + 1 -
2922                                                         new_size);
2923                                 }
2924                                 size =
2925                                     btrfs_file_extent_calc_inline_size(size);
2926                                 ret = btrfs_truncate_item(trans, root, path,
2927                                                           size, 1);
2928                                 BUG_ON(ret);
2929                         } else if (root->ref_cows) {
2930                                 inode_sub_bytes(inode, item_end + 1 -
2931                                                 found_key.offset);
2932                         }
2933                 }
2934 delete:
2935                 if (del_item) {
2936                         if (!pending_del_nr) {
2937                                 /* no pending yet, add ourselves */
2938                                 pending_del_slot = path->slots[0];
2939                                 pending_del_nr = 1;
2940                         } else if (pending_del_nr &&
2941                                    path->slots[0] + 1 == pending_del_slot) {
2942                                 /* hop on the pending chunk */
2943                                 pending_del_nr++;
2944                                 pending_del_slot = path->slots[0];
2945                         } else {
2946                                 BUG();
2947                         }
2948                 } else {
2949                         break;
2950                 }
2951                 if (found_extent && root->ref_cows) {
2952                         btrfs_set_path_blocking(path);
2953                         ret = btrfs_free_extent(trans, root, extent_start,
2954                                                 extent_num_bytes, 0,
2955                                                 btrfs_header_owner(leaf),
2956                                                 inode->i_ino, extent_offset);
2957                         BUG_ON(ret);
2958                 }
2959 next:
2960                 if (path->slots[0] == 0) {
2961                         if (pending_del_nr)
2962                                 goto del_pending;
2963                         btrfs_release_path(root, path);
2964                         if (found_type == BTRFS_INODE_ITEM_KEY)
2965                                 break;
2966                         goto search_again;
2967                 }
2968
2969                 path->slots[0]--;
2970                 if (pending_del_nr &&
2971                     path->slots[0] + 1 != pending_del_slot) {
2972                         struct btrfs_key debug;
2973 del_pending:
2974                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2975                                               pending_del_slot);
2976                         ret = btrfs_del_items(trans, root, path,
2977                                               pending_del_slot,
2978                                               pending_del_nr);
2979                         BUG_ON(ret);
2980                         pending_del_nr = 0;
2981                         btrfs_release_path(root, path);
2982                         if (found_type == BTRFS_INODE_ITEM_KEY)
2983                                 break;
2984                         goto search_again;
2985                 }
2986         }
2987         ret = 0;
2988 error:
2989         if (pending_del_nr) {
2990                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2991                                       pending_del_nr);
2992         }
2993         btrfs_free_path(path);
2994         return ret;
2995 }
2996
2997 /*
2998  * taken from block_truncate_page, but does cow as it zeros out
2999  * any bytes left in the last page in the file.
3000  */
3001 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3002 {
3003         struct inode *inode = mapping->host;
3004         struct btrfs_root *root = BTRFS_I(inode)->root;
3005         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3006         struct btrfs_ordered_extent *ordered;
3007         char *kaddr;
3008         u32 blocksize = root->sectorsize;
3009         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3010         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3011         struct page *page;
3012         int ret = 0;
3013         u64 page_start;
3014         u64 page_end;
3015
3016         if ((offset & (blocksize - 1)) == 0)
3017                 goto out;
3018
3019         ret = -ENOMEM;
3020 again:
3021         page = grab_cache_page(mapping, index);
3022         if (!page)
3023                 goto out;
3024
3025         page_start = page_offset(page);
3026         page_end = page_start + PAGE_CACHE_SIZE - 1;
3027
3028         if (!PageUptodate(page)) {
3029                 ret = btrfs_readpage(NULL, page);
3030                 lock_page(page);
3031                 if (page->mapping != mapping) {
3032                         unlock_page(page);
3033                         page_cache_release(page);
3034                         goto again;
3035                 }
3036                 if (!PageUptodate(page)) {
3037                         ret = -EIO;
3038                         goto out_unlock;
3039                 }
3040         }
3041         wait_on_page_writeback(page);
3042
3043         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3044         set_page_extent_mapped(page);
3045
3046         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3047         if (ordered) {
3048                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3049                 unlock_page(page);
3050                 page_cache_release(page);
3051                 btrfs_start_ordered_extent(inode, ordered, 1);
3052                 btrfs_put_ordered_extent(ordered);
3053                 goto again;
3054         }
3055
3056         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3057         if (ret) {
3058                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3059                 goto out_unlock;
3060         }
3061
3062         ret = 0;
3063         if (offset != PAGE_CACHE_SIZE) {
3064                 kaddr = kmap(page);
3065                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3066                 flush_dcache_page(page);
3067                 kunmap(page);
3068         }
3069         ClearPageChecked(page);
3070         set_page_dirty(page);
3071         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3072
3073 out_unlock:
3074         unlock_page(page);
3075         page_cache_release(page);
3076 out:
3077         return ret;
3078 }
3079
3080 int btrfs_cont_expand(struct inode *inode, loff_t size)
3081 {
3082         struct btrfs_trans_handle *trans;
3083         struct btrfs_root *root = BTRFS_I(inode)->root;
3084         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3085         struct extent_map *em;
3086         u64 mask = root->sectorsize - 1;
3087         u64 hole_start = (inode->i_size + mask) & ~mask;
3088         u64 block_end = (size + mask) & ~mask;
3089         u64 last_byte;
3090         u64 cur_offset;
3091         u64 hole_size;
3092         int err = 0;
3093
3094         if (size <= hole_start)
3095                 return 0;
3096
3097         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3098
3099         while (1) {
3100                 struct btrfs_ordered_extent *ordered;
3101                 btrfs_wait_ordered_range(inode, hole_start,
3102                                          block_end - hole_start);
3103                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3104                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3105                 if (!ordered)
3106                         break;
3107                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3108                 btrfs_put_ordered_extent(ordered);
3109         }
3110
3111         trans = btrfs_start_transaction(root, 1);
3112         btrfs_set_trans_block_group(trans, inode);
3113
3114         cur_offset = hole_start;
3115         while (1) {
3116                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3117                                 block_end - cur_offset, 0);
3118                 BUG_ON(IS_ERR(em) || !em);
3119                 last_byte = min(extent_map_end(em), block_end);
3120                 last_byte = (last_byte + mask) & ~mask;
3121                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3122                         u64 hint_byte = 0;
3123                         hole_size = last_byte - cur_offset;
3124                         err = btrfs_drop_extents(trans, root, inode,
3125                                                  cur_offset,
3126                                                  cur_offset + hole_size,
3127                                                  block_end,
3128                                                  cur_offset, &hint_byte, 1);
3129                         if (err)
3130                                 break;
3131
3132                         err = btrfs_reserve_metadata_space(root, 1);
3133                         if (err)
3134                                 break;
3135
3136                         err = btrfs_insert_file_extent(trans, root,
3137                                         inode->i_ino, cur_offset, 0,
3138                                         0, hole_size, 0, hole_size,
3139                                         0, 0, 0);
3140                         btrfs_drop_extent_cache(inode, hole_start,
3141                                         last_byte - 1, 0);
3142                         btrfs_unreserve_metadata_space(root, 1);
3143                 }
3144                 free_extent_map(em);
3145                 cur_offset = last_byte;
3146                 if (err || cur_offset >= block_end)
3147                         break;
3148         }
3149
3150         btrfs_end_transaction(trans, root);
3151         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3152         return err;
3153 }
3154
3155 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3156 {
3157         struct inode *inode = dentry->d_inode;
3158         int err;
3159
3160         err = inode_change_ok(inode, attr);
3161         if (err)
3162                 return err;
3163
3164         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3165                 if (attr->ia_size > inode->i_size) {
3166                         err = btrfs_cont_expand(inode, attr->ia_size);
3167                         if (err)
3168                                 return err;
3169                 } else if (inode->i_size > 0 &&
3170                            attr->ia_size == 0) {
3171
3172                         /* we're truncating a file that used to have good
3173                          * data down to zero.  Make sure it gets into
3174                          * the ordered flush list so that any new writes
3175                          * get down to disk quickly.
3176                          */
3177                         BTRFS_I(inode)->ordered_data_close = 1;
3178                 }
3179         }
3180
3181         err = inode_setattr(inode, attr);
3182
3183         if (!err && ((attr->ia_valid & ATTR_MODE)))
3184                 err = btrfs_acl_chmod(inode);
3185         return err;
3186 }
3187
3188 void btrfs_delete_inode(struct inode *inode)
3189 {
3190         struct btrfs_trans_handle *trans;
3191         struct btrfs_root *root = BTRFS_I(inode)->root;
3192         unsigned long nr;
3193         int ret;
3194
3195         truncate_inode_pages(&inode->i_data, 0);
3196         if (is_bad_inode(inode)) {
3197                 btrfs_orphan_del(NULL, inode);
3198                 goto no_delete;
3199         }
3200         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3201
3202         if (inode->i_nlink > 0) {
3203                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3204                 goto no_delete;
3205         }
3206
3207         btrfs_i_size_write(inode, 0);
3208         trans = btrfs_join_transaction(root, 1);
3209
3210         btrfs_set_trans_block_group(trans, inode);
3211         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3212         if (ret) {
3213                 btrfs_orphan_del(NULL, inode);
3214                 goto no_delete_lock;
3215         }
3216
3217         btrfs_orphan_del(trans, inode);
3218
3219         nr = trans->blocks_used;
3220         clear_inode(inode);
3221
3222         btrfs_end_transaction(trans, root);
3223         btrfs_btree_balance_dirty(root, nr);
3224         return;
3225
3226 no_delete_lock:
3227         nr = trans->blocks_used;
3228         btrfs_end_transaction(trans, root);
3229         btrfs_btree_balance_dirty(root, nr);
3230 no_delete:
3231         clear_inode(inode);
3232 }
3233
3234 /*
3235  * this returns the key found in the dir entry in the location pointer.
3236  * If no dir entries were found, location->objectid is 0.
3237  */
3238 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3239                                struct btrfs_key *location)
3240 {
3241         const char *name = dentry->d_name.name;
3242         int namelen = dentry->d_name.len;
3243         struct btrfs_dir_item *di;
3244         struct btrfs_path *path;
3245         struct btrfs_root *root = BTRFS_I(dir)->root;
3246         int ret = 0;
3247
3248         path = btrfs_alloc_path();
3249         BUG_ON(!path);
3250
3251         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3252                                     namelen, 0);
3253         if (IS_ERR(di))
3254                 ret = PTR_ERR(di);
3255
3256         if (!di || IS_ERR(di))
3257                 goto out_err;
3258
3259         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3260 out:
3261         btrfs_free_path(path);
3262         return ret;
3263 out_err:
3264         location->objectid = 0;
3265         goto out;
3266 }
3267
3268 /*
3269  * when we hit a tree root in a directory, the btrfs part of the inode
3270  * needs to be changed to reflect the root directory of the tree root.  This
3271  * is kind of like crossing a mount point.
3272  */
3273 static int fixup_tree_root_location(struct btrfs_root *root,
3274                                     struct inode *dir,
3275                                     struct dentry *dentry,
3276                                     struct btrfs_key *location,
3277                                     struct btrfs_root **sub_root)
3278 {
3279         struct btrfs_path *path;
3280         struct btrfs_root *new_root;
3281         struct btrfs_root_ref *ref;
3282         struct extent_buffer *leaf;
3283         int ret;
3284         int err = 0;
3285
3286         path = btrfs_alloc_path();
3287         if (!path) {
3288                 err = -ENOMEM;
3289                 goto out;
3290         }
3291
3292         err = -ENOENT;
3293         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3294                                   BTRFS_I(dir)->root->root_key.objectid,
3295                                   location->objectid);
3296         if (ret) {
3297                 if (ret < 0)
3298                         err = ret;
3299                 goto out;
3300         }
3301
3302         leaf = path->nodes[0];
3303         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3304         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3305             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3306                 goto out;
3307
3308         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3309                                    (unsigned long)(ref + 1),
3310                                    dentry->d_name.len);
3311         if (ret)
3312                 goto out;
3313
3314         btrfs_release_path(root->fs_info->tree_root, path);
3315
3316         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3317         if (IS_ERR(new_root)) {
3318                 err = PTR_ERR(new_root);
3319                 goto out;
3320         }
3321
3322         if (btrfs_root_refs(&new_root->root_item) == 0) {
3323                 err = -ENOENT;
3324                 goto out;
3325         }
3326
3327         *sub_root = new_root;
3328         location->objectid = btrfs_root_dirid(&new_root->root_item);
3329         location->type = BTRFS_INODE_ITEM_KEY;
3330         location->offset = 0;
3331         err = 0;
3332 out:
3333         btrfs_free_path(path);
3334         return err;
3335 }
3336
3337 static void inode_tree_add(struct inode *inode)
3338 {
3339         struct btrfs_root *root = BTRFS_I(inode)->root;
3340         struct btrfs_inode *entry;
3341         struct rb_node **p;
3342         struct rb_node *parent;
3343 again:
3344         p = &root->inode_tree.rb_node;
3345         parent = NULL;
3346
3347         if (hlist_unhashed(&inode->i_hash))
3348                 return;
3349
3350         spin_lock(&root->inode_lock);
3351         while (*p) {
3352                 parent = *p;
3353                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3354
3355                 if (inode->i_ino < entry->vfs_inode.i_ino)
3356                         p = &parent->rb_left;
3357                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3358                         p = &parent->rb_right;
3359                 else {
3360                         WARN_ON(!(entry->vfs_inode.i_state &
3361                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3362                         rb_erase(parent, &root->inode_tree);
3363                         RB_CLEAR_NODE(parent);
3364                         spin_unlock(&root->inode_lock);
3365                         goto again;
3366                 }
3367         }
3368         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3369         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3370         spin_unlock(&root->inode_lock);
3371 }
3372
3373 static void inode_tree_del(struct inode *inode)
3374 {
3375         struct btrfs_root *root = BTRFS_I(inode)->root;
3376         int empty = 0;
3377
3378         spin_lock(&root->inode_lock);
3379         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3380                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3381                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3382                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3383         }
3384         spin_unlock(&root->inode_lock);
3385
3386         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3387                 synchronize_srcu(&root->fs_info->subvol_srcu);
3388                 spin_lock(&root->inode_lock);
3389                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3390                 spin_unlock(&root->inode_lock);
3391                 if (empty)
3392                         btrfs_add_dead_root(root);
3393         }
3394 }
3395
3396 int btrfs_invalidate_inodes(struct btrfs_root *root)
3397 {
3398         struct rb_node *node;
3399         struct rb_node *prev;
3400         struct btrfs_inode *entry;
3401         struct inode *inode;
3402         u64 objectid = 0;
3403
3404         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3405
3406         spin_lock(&root->inode_lock);
3407 again:
3408         node = root->inode_tree.rb_node;
3409         prev = NULL;
3410         while (node) {
3411                 prev = node;
3412                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3413
3414                 if (objectid < entry->vfs_inode.i_ino)
3415                         node = node->rb_left;
3416                 else if (objectid > entry->vfs_inode.i_ino)
3417                         node = node->rb_right;
3418                 else
3419                         break;
3420         }
3421         if (!node) {
3422                 while (prev) {
3423                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3424                         if (objectid <= entry->vfs_inode.i_ino) {
3425                                 node = prev;
3426                                 break;
3427                         }
3428                         prev = rb_next(prev);
3429                 }
3430         }
3431         while (node) {
3432                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3433                 objectid = entry->vfs_inode.i_ino + 1;
3434                 inode = igrab(&entry->vfs_inode);
3435                 if (inode) {
3436                         spin_unlock(&root->inode_lock);
3437                         if (atomic_read(&inode->i_count) > 1)
3438                                 d_prune_aliases(inode);
3439                         /*
3440                          * btrfs_drop_inode will remove it from
3441                          * the inode cache when its usage count
3442                          * hits zero.
3443                          */
3444                         iput(inode);
3445                         cond_resched();
3446                         spin_lock(&root->inode_lock);
3447                         goto again;
3448                 }
3449
3450                 if (cond_resched_lock(&root->inode_lock))
3451                         goto again;
3452
3453                 node = rb_next(node);
3454         }
3455         spin_unlock(&root->inode_lock);
3456         return 0;
3457 }
3458
3459 static noinline void init_btrfs_i(struct inode *inode)
3460 {
3461         struct btrfs_inode *bi = BTRFS_I(inode);
3462
3463         bi->generation = 0;
3464         bi->sequence = 0;
3465         bi->last_trans = 0;
3466         bi->logged_trans = 0;
3467         bi->delalloc_bytes = 0;
3468         bi->reserved_bytes = 0;
3469         bi->disk_i_size = 0;
3470         bi->flags = 0;
3471         bi->index_cnt = (u64)-1;
3472         bi->last_unlink_trans = 0;
3473         bi->ordered_data_close = 0;
3474         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3475         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3476                              inode->i_mapping, GFP_NOFS);
3477         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3478                              inode->i_mapping, GFP_NOFS);
3479         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3480         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3481         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3482         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3483         mutex_init(&BTRFS_I(inode)->extent_mutex);
3484         mutex_init(&BTRFS_I(inode)->log_mutex);
3485 }
3486
3487 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3488 {
3489         struct btrfs_iget_args *args = p;
3490         inode->i_ino = args->ino;
3491         init_btrfs_i(inode);
3492         BTRFS_I(inode)->root = args->root;
3493         btrfs_set_inode_space_info(args->root, inode);
3494         return 0;
3495 }
3496
3497 static int btrfs_find_actor(struct inode *inode, void *opaque)
3498 {
3499         struct btrfs_iget_args *args = opaque;
3500         return args->ino == inode->i_ino &&
3501                 args->root == BTRFS_I(inode)->root;
3502 }
3503
3504 static struct inode *btrfs_iget_locked(struct super_block *s,
3505                                        u64 objectid,
3506                                        struct btrfs_root *root)
3507 {
3508         struct inode *inode;
3509         struct btrfs_iget_args args;
3510         args.ino = objectid;
3511         args.root = root;
3512
3513         inode = iget5_locked(s, objectid, btrfs_find_actor,
3514                              btrfs_init_locked_inode,
3515                              (void *)&args);
3516         return inode;
3517 }
3518
3519 /* Get an inode object given its location and corresponding root.
3520  * Returns in *is_new if the inode was read from disk
3521  */
3522 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3523                          struct btrfs_root *root)
3524 {
3525         struct inode *inode;
3526
3527         inode = btrfs_iget_locked(s, location->objectid, root);
3528         if (!inode)
3529                 return ERR_PTR(-ENOMEM);
3530
3531         if (inode->i_state & I_NEW) {
3532                 BTRFS_I(inode)->root = root;
3533                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3534                 btrfs_read_locked_inode(inode);
3535
3536                 inode_tree_add(inode);
3537                 unlock_new_inode(inode);
3538         }
3539
3540         return inode;
3541 }
3542
3543 static struct inode *new_simple_dir(struct super_block *s,
3544                                     struct btrfs_key *key,
3545                                     struct btrfs_root *root)
3546 {
3547         struct inode *inode = new_inode(s);
3548
3549         if (!inode)
3550                 return ERR_PTR(-ENOMEM);
3551
3552         init_btrfs_i(inode);
3553
3554         BTRFS_I(inode)->root = root;
3555         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3556         BTRFS_I(inode)->dummy_inode = 1;
3557
3558         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3559         inode->i_op = &simple_dir_inode_operations;
3560         inode->i_fop = &simple_dir_operations;
3561         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3562         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3563
3564         return inode;
3565 }
3566
3567 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3568 {
3569         struct inode *inode;
3570         struct btrfs_root *root = BTRFS_I(dir)->root;
3571         struct btrfs_root *sub_root = root;
3572         struct btrfs_key location;
3573         int index;
3574         int ret;
3575
3576         dentry->d_op = &btrfs_dentry_operations;
3577
3578         if (dentry->d_name.len > BTRFS_NAME_LEN)
3579                 return ERR_PTR(-ENAMETOOLONG);
3580
3581         ret = btrfs_inode_by_name(dir, dentry, &location);
3582
3583         if (ret < 0)
3584                 return ERR_PTR(ret);
3585
3586         if (location.objectid == 0)
3587                 return NULL;
3588
3589         if (location.type == BTRFS_INODE_ITEM_KEY) {
3590                 inode = btrfs_iget(dir->i_sb, &location, root);
3591                 return inode;
3592         }
3593
3594         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3595
3596         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3597         ret = fixup_tree_root_location(root, dir, dentry,
3598                                        &location, &sub_root);
3599         if (ret < 0) {
3600                 if (ret != -ENOENT)
3601                         inode = ERR_PTR(ret);
3602                 else
3603                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3604         } else {
3605                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3606         }
3607         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3608
3609         return inode;
3610 }
3611
3612 static int btrfs_dentry_delete(struct dentry *dentry)
3613 {
3614         struct btrfs_root *root;
3615
3616         if (!dentry->d_inode)
3617                 return 0;
3618
3619         root = BTRFS_I(dentry->d_inode)->root;
3620         if (btrfs_root_refs(&root->root_item) == 0)
3621                 return 1;
3622         return 0;
3623 }
3624
3625 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3626                                    struct nameidata *nd)
3627 {
3628         struct inode *inode;
3629
3630         inode = btrfs_lookup_dentry(dir, dentry);
3631         if (IS_ERR(inode))
3632                 return ERR_CAST(inode);
3633
3634         return d_splice_alias(inode, dentry);
3635 }
3636
3637 static unsigned char btrfs_filetype_table[] = {
3638         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3639 };
3640
3641 static int btrfs_real_readdir(struct file *filp, void *dirent,
3642                               filldir_t filldir)
3643 {
3644         struct inode *inode = filp->f_dentry->d_inode;
3645         struct btrfs_root *root = BTRFS_I(inode)->root;
3646         struct btrfs_item *item;
3647         struct btrfs_dir_item *di;
3648         struct btrfs_key key;
3649         struct btrfs_key found_key;
3650         struct btrfs_path *path;
3651         int ret;
3652         u32 nritems;
3653         struct extent_buffer *leaf;
3654         int slot;
3655         int advance;
3656         unsigned char d_type;
3657         int over = 0;
3658         u32 di_cur;
3659         u32 di_total;
3660         u32 di_len;
3661         int key_type = BTRFS_DIR_INDEX_KEY;
3662         char tmp_name[32];
3663         char *name_ptr;
3664         int name_len;
3665
3666         /* FIXME, use a real flag for deciding about the key type */
3667         if (root->fs_info->tree_root == root)
3668                 key_type = BTRFS_DIR_ITEM_KEY;
3669
3670         /* special case for "." */
3671         if (filp->f_pos == 0) {
3672                 over = filldir(dirent, ".", 1,
3673                                1, inode->i_ino,
3674                                DT_DIR);
3675                 if (over)
3676                         return 0;
3677                 filp->f_pos = 1;
3678         }
3679         /* special case for .., just use the back ref */
3680         if (filp->f_pos == 1) {
3681                 u64 pino = parent_ino(filp->f_path.dentry);
3682                 over = filldir(dirent, "..", 2,
3683                                2, pino, DT_DIR);
3684                 if (over)
3685                         return 0;
3686                 filp->f_pos = 2;
3687         }
3688         path = btrfs_alloc_path();
3689         path->reada = 2;
3690
3691         btrfs_set_key_type(&key, key_type);
3692         key.offset = filp->f_pos;
3693         key.objectid = inode->i_ino;
3694
3695         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3696         if (ret < 0)
3697                 goto err;
3698         advance = 0;
3699
3700         while (1) {
3701                 leaf = path->nodes[0];
3702                 nritems = btrfs_header_nritems(leaf);
3703                 slot = path->slots[0];
3704                 if (advance || slot >= nritems) {
3705                         if (slot >= nritems - 1) {
3706                                 ret = btrfs_next_leaf(root, path);
3707                                 if (ret)
3708                                         break;
3709                                 leaf = path->nodes[0];
3710                                 nritems = btrfs_header_nritems(leaf);
3711                                 slot = path->slots[0];
3712                         } else {
3713                                 slot++;
3714                                 path->slots[0]++;
3715                         }
3716                 }
3717
3718                 advance = 1;
3719                 item = btrfs_item_nr(leaf, slot);
3720                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3721
3722                 if (found_key.objectid != key.objectid)
3723                         break;
3724                 if (btrfs_key_type(&found_key) != key_type)
3725                         break;
3726                 if (found_key.offset < filp->f_pos)
3727                         continue;
3728
3729                 filp->f_pos = found_key.offset;
3730
3731                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3732                 di_cur = 0;
3733                 di_total = btrfs_item_size(leaf, item);
3734
3735                 while (di_cur < di_total) {
3736                         struct btrfs_key location;
3737
3738                         name_len = btrfs_dir_name_len(leaf, di);
3739                         if (name_len <= sizeof(tmp_name)) {
3740                                 name_ptr = tmp_name;
3741                         } else {
3742                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3743                                 if (!name_ptr) {
3744                                         ret = -ENOMEM;
3745                                         goto err;
3746                                 }
3747                         }
3748                         read_extent_buffer(leaf, name_ptr,
3749                                            (unsigned long)(di + 1), name_len);
3750
3751                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3752                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3753
3754                         /* is this a reference to our own snapshot? If so
3755                          * skip it
3756                          */
3757                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3758                             location.objectid == root->root_key.objectid) {
3759                                 over = 0;
3760                                 goto skip;
3761                         }
3762                         over = filldir(dirent, name_ptr, name_len,
3763                                        found_key.offset, location.objectid,
3764                                        d_type);
3765
3766 skip:
3767                         if (name_ptr != tmp_name)
3768                                 kfree(name_ptr);
3769
3770                         if (over)
3771                                 goto nopos;
3772                         di_len = btrfs_dir_name_len(leaf, di) +
3773                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3774                         di_cur += di_len;
3775                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3776                 }
3777         }
3778
3779         /* Reached end of directory/root. Bump pos past the last item. */
3780         if (key_type == BTRFS_DIR_INDEX_KEY)
3781                 filp->f_pos = INT_LIMIT(off_t);
3782         else
3783                 filp->f_pos++;
3784 nopos:
3785         ret = 0;
3786 err:
3787         btrfs_free_path(path);
3788         return ret;
3789 }
3790
3791 int btrfs_write_inode(struct inode *inode, int wait)
3792 {
3793         struct btrfs_root *root = BTRFS_I(inode)->root;
3794         struct btrfs_trans_handle *trans;
3795         int ret = 0;
3796
3797         if (root->fs_info->btree_inode == inode)
3798                 return 0;
3799
3800         if (wait) {
3801                 trans = btrfs_join_transaction(root, 1);
3802                 btrfs_set_trans_block_group(trans, inode);
3803                 ret = btrfs_commit_transaction(trans, root);
3804         }
3805         return ret;
3806 }
3807
3808 /*
3809  * This is somewhat expensive, updating the tree every time the
3810  * inode changes.  But, it is most likely to find the inode in cache.
3811  * FIXME, needs more benchmarking...there are no reasons other than performance
3812  * to keep or drop this code.
3813  */
3814 void btrfs_dirty_inode(struct inode *inode)
3815 {
3816         struct btrfs_root *root = BTRFS_I(inode)->root;
3817         struct btrfs_trans_handle *trans;
3818
3819         trans = btrfs_join_transaction(root, 1);
3820         btrfs_set_trans_block_group(trans, inode);
3821         btrfs_update_inode(trans, root, inode);
3822         btrfs_end_transaction(trans, root);
3823 }
3824
3825 /*
3826  * find the highest existing sequence number in a directory
3827  * and then set the in-memory index_cnt variable to reflect
3828  * free sequence numbers
3829  */
3830 static int btrfs_set_inode_index_count(struct inode *inode)
3831 {
3832         struct btrfs_root *root = BTRFS_I(inode)->root;
3833         struct btrfs_key key, found_key;
3834         struct btrfs_path *path;
3835         struct extent_buffer *leaf;
3836         int ret;
3837
3838         key.objectid = inode->i_ino;
3839         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3840         key.offset = (u64)-1;
3841
3842         path = btrfs_alloc_path();
3843         if (!path)
3844                 return -ENOMEM;
3845
3846         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3847         if (ret < 0)
3848                 goto out;
3849         /* FIXME: we should be able to handle this */
3850         if (ret == 0)
3851                 goto out;
3852         ret = 0;
3853
3854         /*
3855          * MAGIC NUMBER EXPLANATION:
3856          * since we search a directory based on f_pos we have to start at 2
3857          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3858          * else has to start at 2
3859          */
3860         if (path->slots[0] == 0) {
3861                 BTRFS_I(inode)->index_cnt = 2;
3862                 goto out;
3863         }
3864
3865         path->slots[0]--;
3866
3867         leaf = path->nodes[0];
3868         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3869
3870         if (found_key.objectid != inode->i_ino ||
3871             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3872                 BTRFS_I(inode)->index_cnt = 2;
3873                 goto out;
3874         }
3875
3876         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3877 out:
3878         btrfs_free_path(path);
3879         return ret;
3880 }
3881
3882 /*
3883  * helper to find a free sequence number in a given directory.  This current
3884  * code is very simple, later versions will do smarter things in the btree
3885  */
3886 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3887 {
3888         int ret = 0;
3889
3890         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3891                 ret = btrfs_set_inode_index_count(dir);
3892                 if (ret)
3893                         return ret;
3894         }
3895
3896         *index = BTRFS_I(dir)->index_cnt;
3897         BTRFS_I(dir)->index_cnt++;
3898
3899         return ret;
3900 }
3901
3902 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3903                                      struct btrfs_root *root,
3904                                      struct inode *dir,
3905                                      const char *name, int name_len,
3906                                      u64 ref_objectid, u64 objectid,
3907                                      u64 alloc_hint, int mode, u64 *index)
3908 {
3909         struct inode *inode;
3910         struct btrfs_inode_item *inode_item;
3911         struct btrfs_key *location;
3912         struct btrfs_path *path;
3913         struct btrfs_inode_ref *ref;
3914         struct btrfs_key key[2];
3915         u32 sizes[2];
3916         unsigned long ptr;
3917         int ret;
3918         int owner;
3919
3920         path = btrfs_alloc_path();
3921         BUG_ON(!path);
3922
3923         inode = new_inode(root->fs_info->sb);
3924         if (!inode)
3925                 return ERR_PTR(-ENOMEM);
3926
3927         if (dir) {
3928                 ret = btrfs_set_inode_index(dir, index);
3929                 if (ret) {
3930                         iput(inode);
3931                         return ERR_PTR(ret);
3932                 }
3933         }
3934         /*
3935          * index_cnt is ignored for everything but a dir,
3936          * btrfs_get_inode_index_count has an explanation for the magic
3937          * number
3938          */
3939         init_btrfs_i(inode);
3940         BTRFS_I(inode)->index_cnt = 2;
3941         BTRFS_I(inode)->root = root;
3942         BTRFS_I(inode)->generation = trans->transid;
3943         btrfs_set_inode_space_info(root, inode);
3944
3945         if (mode & S_IFDIR)
3946                 owner = 0;
3947         else
3948                 owner = 1;
3949         BTRFS_I(inode)->block_group =
3950                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3951
3952         key[0].objectid = objectid;
3953         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3954         key[0].offset = 0;
3955
3956         key[1].objectid = objectid;
3957         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3958         key[1].offset = ref_objectid;
3959
3960         sizes[0] = sizeof(struct btrfs_inode_item);
3961         sizes[1] = name_len + sizeof(*ref);
3962
3963         path->leave_spinning = 1;
3964         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3965         if (ret != 0)
3966                 goto fail;
3967
3968         inode->i_uid = current_fsuid();
3969
3970         if (dir && (dir->i_mode & S_ISGID)) {
3971                 inode->i_gid = dir->i_gid;
3972                 if (S_ISDIR(mode))
3973                         mode |= S_ISGID;
3974         } else
3975                 inode->i_gid = current_fsgid();
3976
3977         inode->i_mode = mode;
3978         inode->i_ino = objectid;
3979         inode_set_bytes(inode, 0);
3980         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3981         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3982                                   struct btrfs_inode_item);
3983         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3984
3985         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3986                              struct btrfs_inode_ref);
3987         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3988         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3989         ptr = (unsigned long)(ref + 1);
3990         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3991
3992         btrfs_mark_buffer_dirty(path->nodes[0]);
3993         btrfs_free_path(path);
3994
3995         location = &BTRFS_I(inode)->location;
3996         location->objectid = objectid;
3997         location->offset = 0;
3998         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3999
4000         btrfs_inherit_iflags(inode, dir);
4001
4002         if ((mode & S_IFREG)) {
4003                 if (btrfs_test_opt(root, NODATASUM))
4004                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4005                 if (btrfs_test_opt(root, NODATACOW))
4006                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4007         }
4008
4009         insert_inode_hash(inode);
4010         inode_tree_add(inode);
4011         return inode;
4012 fail:
4013         if (dir)
4014                 BTRFS_I(dir)->index_cnt--;
4015         btrfs_free_path(path);
4016         iput(inode);
4017         return ERR_PTR(ret);
4018 }
4019
4020 static inline u8 btrfs_inode_type(struct inode *inode)
4021 {
4022         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4023 }
4024
4025 /*
4026  * utility function to add 'inode' into 'parent_inode' with
4027  * a give name and a given sequence number.
4028  * if 'add_backref' is true, also insert a backref from the
4029  * inode to the parent directory.
4030  */
4031 int btrfs_add_link(struct btrfs_trans_handle *trans,
4032                    struct inode *parent_inode, struct inode *inode,
4033                    const char *name, int name_len, int add_backref, u64 index)
4034 {
4035         int ret = 0;
4036         struct btrfs_key key;
4037         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4038
4039         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4040                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4041         } else {
4042                 key.objectid = inode->i_ino;
4043                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4044                 key.offset = 0;
4045         }
4046
4047         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4048                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4049                                          key.objectid, root->root_key.objectid,
4050                                          parent_inode->i_ino,
4051                                          index, name, name_len);
4052         } else if (add_backref) {
4053                 ret = btrfs_insert_inode_ref(trans, root,
4054                                              name, name_len, inode->i_ino,
4055                                              parent_inode->i_ino, index);
4056         }
4057
4058         if (ret == 0) {
4059                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4060                                             parent_inode->i_ino, &key,
4061                                             btrfs_inode_type(inode), index);
4062                 BUG_ON(ret);
4063
4064                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4065                                    name_len * 2);
4066                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4067                 ret = btrfs_update_inode(trans, root, parent_inode);
4068         }
4069         return ret;
4070 }
4071
4072 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4073                             struct dentry *dentry, struct inode *inode,
4074                             int backref, u64 index)
4075 {
4076         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4077                                  inode, dentry->d_name.name,
4078                                  dentry->d_name.len, backref, index);
4079         if (!err) {
4080                 d_instantiate(dentry, inode);
4081                 return 0;
4082         }
4083         if (err > 0)
4084                 err = -EEXIST;
4085         return err;
4086 }
4087
4088 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4089                         int mode, dev_t rdev)
4090 {
4091         struct btrfs_trans_handle *trans;
4092         struct btrfs_root *root = BTRFS_I(dir)->root;
4093         struct inode *inode = NULL;
4094         int err;
4095         int drop_inode = 0;
4096         u64 objectid;
4097         unsigned long nr = 0;
4098         u64 index = 0;
4099
4100         if (!new_valid_dev(rdev))
4101                 return -EINVAL;
4102
4103         /*
4104          * 2 for inode item and ref
4105          * 2 for dir items
4106          * 1 for xattr if selinux is on
4107          */
4108         err = btrfs_reserve_metadata_space(root, 5);
4109         if (err)
4110                 return err;
4111
4112         trans = btrfs_start_transaction(root, 1);
4113         if (!trans)
4114                 goto fail;
4115         btrfs_set_trans_block_group(trans, dir);
4116
4117         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4118         if (err) {
4119                 err = -ENOSPC;
4120                 goto out_unlock;
4121         }
4122
4123         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4124                                 dentry->d_name.len,
4125                                 dentry->d_parent->d_inode->i_ino, objectid,
4126                                 BTRFS_I(dir)->block_group, mode, &index);
4127         err = PTR_ERR(inode);
4128         if (IS_ERR(inode))
4129                 goto out_unlock;
4130
4131         err = btrfs_init_inode_security(inode, dir);
4132         if (err) {
4133                 drop_inode = 1;
4134                 goto out_unlock;
4135         }
4136
4137         btrfs_set_trans_block_group(trans, inode);
4138         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4139         if (err)
4140                 drop_inode = 1;
4141         else {
4142                 inode->i_op = &btrfs_special_inode_operations;
4143                 init_special_inode(inode, inode->i_mode, rdev);
4144                 btrfs_update_inode(trans, root, inode);
4145         }
4146         btrfs_update_inode_block_group(trans, inode);
4147         btrfs_update_inode_block_group(trans, dir);
4148 out_unlock:
4149         nr = trans->blocks_used;
4150         btrfs_end_transaction_throttle(trans, root);
4151 fail:
4152         btrfs_unreserve_metadata_space(root, 5);
4153         if (drop_inode) {
4154                 inode_dec_link_count(inode);
4155                 iput(inode);
4156         }
4157         btrfs_btree_balance_dirty(root, nr);
4158         return err;
4159 }
4160
4161 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4162                         int mode, struct nameidata *nd)
4163 {
4164         struct btrfs_trans_handle *trans;
4165         struct btrfs_root *root = BTRFS_I(dir)->root;
4166         struct inode *inode = NULL;
4167         int err;
4168         int drop_inode = 0;
4169         unsigned long nr = 0;
4170         u64 objectid;
4171         u64 index = 0;
4172
4173         /*
4174          * 2 for inode item and ref
4175          * 2 for dir items
4176          * 1 for xattr if selinux is on
4177          */
4178         err = btrfs_reserve_metadata_space(root, 5);
4179         if (err)
4180                 return err;
4181
4182         trans = btrfs_start_transaction(root, 1);
4183         if (!trans)
4184                 goto fail;
4185         btrfs_set_trans_block_group(trans, dir);
4186
4187         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4188         if (err) {
4189                 err = -ENOSPC;
4190                 goto out_unlock;
4191         }
4192
4193         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4194                                 dentry->d_name.len,
4195                                 dentry->d_parent->d_inode->i_ino,
4196                                 objectid, BTRFS_I(dir)->block_group, mode,
4197                                 &index);
4198         err = PTR_ERR(inode);
4199         if (IS_ERR(inode))
4200                 goto out_unlock;
4201
4202         err = btrfs_init_inode_security(inode, dir);
4203         if (err) {
4204                 drop_inode = 1;
4205                 goto out_unlock;
4206         }
4207
4208         btrfs_set_trans_block_group(trans, inode);
4209         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4210         if (err)
4211                 drop_inode = 1;
4212         else {
4213                 inode->i_mapping->a_ops = &btrfs_aops;
4214                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4215                 inode->i_fop = &btrfs_file_operations;
4216                 inode->i_op = &btrfs_file_inode_operations;
4217                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4218         }
4219         btrfs_update_inode_block_group(trans, inode);
4220         btrfs_update_inode_block_group(trans, dir);
4221 out_unlock:
4222         nr = trans->blocks_used;
4223         btrfs_end_transaction_throttle(trans, root);
4224 fail:
4225         btrfs_unreserve_metadata_space(root, 5);
4226         if (drop_inode) {
4227                 inode_dec_link_count(inode);
4228                 iput(inode);
4229         }
4230         btrfs_btree_balance_dirty(root, nr);
4231         return err;
4232 }
4233
4234 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4235                       struct dentry *dentry)
4236 {
4237         struct btrfs_trans_handle *trans;
4238         struct btrfs_root *root = BTRFS_I(dir)->root;
4239         struct inode *inode = old_dentry->d_inode;
4240         u64 index;
4241         unsigned long nr = 0;
4242         int err;
4243         int drop_inode = 0;
4244
4245         if (inode->i_nlink == 0)
4246                 return -ENOENT;
4247
4248         /*
4249          * 1 item for inode ref
4250          * 2 items for dir items
4251          */
4252         err = btrfs_reserve_metadata_space(root, 3);
4253         if (err)
4254                 return err;
4255
4256         btrfs_inc_nlink(inode);
4257
4258         err = btrfs_set_inode_index(dir, &index);
4259         if (err)
4260                 goto fail;
4261
4262         trans = btrfs_start_transaction(root, 1);
4263
4264         btrfs_set_trans_block_group(trans, dir);
4265         atomic_inc(&inode->i_count);
4266
4267         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4268
4269         if (err) {
4270                 drop_inode = 1;
4271         } else {
4272                 btrfs_update_inode_block_group(trans, dir);
4273                 err = btrfs_update_inode(trans, root, inode);
4274                 BUG_ON(err);
4275                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4276         }
4277
4278         nr = trans->blocks_used;
4279         btrfs_end_transaction_throttle(trans, root);
4280 fail:
4281         btrfs_unreserve_metadata_space(root, 3);
4282         if (drop_inode) {
4283                 inode_dec_link_count(inode);
4284                 iput(inode);
4285         }
4286         btrfs_btree_balance_dirty(root, nr);
4287         return err;
4288 }
4289
4290 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4291 {
4292         struct inode *inode = NULL;
4293         struct btrfs_trans_handle *trans;
4294         struct btrfs_root *root = BTRFS_I(dir)->root;
4295         int err = 0;
4296         int drop_on_err = 0;
4297         u64 objectid = 0;
4298         u64 index = 0;
4299         unsigned long nr = 1;
4300
4301         /*
4302          * 2 items for inode and ref
4303          * 2 items for dir items
4304          * 1 for xattr if selinux is on
4305          */
4306         err = btrfs_reserve_metadata_space(root, 5);
4307         if (err)
4308                 return err;
4309
4310         trans = btrfs_start_transaction(root, 1);
4311         if (!trans) {
4312                 err = -ENOMEM;
4313                 goto out_unlock;
4314         }
4315         btrfs_set_trans_block_group(trans, dir);
4316
4317         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4318         if (err) {
4319                 err = -ENOSPC;
4320                 goto out_unlock;
4321         }
4322
4323         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4324                                 dentry->d_name.len,
4325                                 dentry->d_parent->d_inode->i_ino, objectid,
4326                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4327                                 &index);
4328         if (IS_ERR(inode)) {
4329                 err = PTR_ERR(inode);
4330                 goto out_fail;
4331         }
4332
4333         drop_on_err = 1;
4334
4335         err = btrfs_init_inode_security(inode, dir);
4336         if (err)
4337                 goto out_fail;
4338
4339         inode->i_op = &btrfs_dir_inode_operations;
4340         inode->i_fop = &btrfs_dir_file_operations;
4341         btrfs_set_trans_block_group(trans, inode);
4342
4343         btrfs_i_size_write(inode, 0);
4344         err = btrfs_update_inode(trans, root, inode);
4345         if (err)
4346                 goto out_fail;
4347
4348         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4349                                  inode, dentry->d_name.name,
4350                                  dentry->d_name.len, 0, index);
4351         if (err)
4352                 goto out_fail;
4353
4354         d_instantiate(dentry, inode);
4355         drop_on_err = 0;
4356         btrfs_update_inode_block_group(trans, inode);
4357         btrfs_update_inode_block_group(trans, dir);
4358
4359 out_fail:
4360         nr = trans->blocks_used;
4361         btrfs_end_transaction_throttle(trans, root);
4362
4363 out_unlock:
4364         btrfs_unreserve_metadata_space(root, 5);
4365         if (drop_on_err)
4366                 iput(inode);
4367         btrfs_btree_balance_dirty(root, nr);
4368         return err;
4369 }
4370
4371 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4372  * and an extent that you want to insert, deal with overlap and insert
4373  * the new extent into the tree.
4374  */
4375 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4376                                 struct extent_map *existing,
4377                                 struct extent_map *em,
4378                                 u64 map_start, u64 map_len)
4379 {
4380         u64 start_diff;
4381
4382         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4383         start_diff = map_start - em->start;
4384         em->start = map_start;
4385         em->len = map_len;
4386         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4387             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4388                 em->block_start += start_diff;
4389                 em->block_len -= start_diff;
4390         }
4391         return add_extent_mapping(em_tree, em);
4392 }
4393
4394 static noinline int uncompress_inline(struct btrfs_path *path,
4395                                       struct inode *inode, struct page *page,
4396                                       size_t pg_offset, u64 extent_offset,
4397                                       struct btrfs_file_extent_item *item)
4398 {
4399         int ret;
4400         struct extent_buffer *leaf = path->nodes[0];
4401         char *tmp;
4402         size_t max_size;
4403         unsigned long inline_size;
4404         unsigned long ptr;
4405
4406         WARN_ON(pg_offset != 0);
4407         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4408         inline_size = btrfs_file_extent_inline_item_len(leaf,
4409                                         btrfs_item_nr(leaf, path->slots[0]));
4410         tmp = kmalloc(inline_size, GFP_NOFS);
4411         ptr = btrfs_file_extent_inline_start(item);
4412
4413         read_extent_buffer(leaf, tmp, ptr, inline_size);
4414
4415         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4416         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4417                                     inline_size, max_size);
4418         if (ret) {
4419                 char *kaddr = kmap_atomic(page, KM_USER0);
4420                 unsigned long copy_size = min_t(u64,
4421                                   PAGE_CACHE_SIZE - pg_offset,
4422                                   max_size - extent_offset);
4423                 memset(kaddr + pg_offset, 0, copy_size);
4424                 kunmap_atomic(kaddr, KM_USER0);
4425         }
4426         kfree(tmp);
4427         return 0;
4428 }
4429
4430 /*
4431  * a bit scary, this does extent mapping from logical file offset to the disk.
4432  * the ugly parts come from merging extents from the disk with the in-ram
4433  * representation.  This gets more complex because of the data=ordered code,
4434  * where the in-ram extents might be locked pending data=ordered completion.
4435  *
4436  * This also copies inline extents directly into the page.
4437  */
4438
4439 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4440                                     size_t pg_offset, u64 start, u64 len,
4441                                     int create)
4442 {
4443         int ret;
4444         int err = 0;
4445         u64 bytenr;
4446         u64 extent_start = 0;
4447         u64 extent_end = 0;
4448         u64 objectid = inode->i_ino;
4449         u32 found_type;
4450         struct btrfs_path *path = NULL;
4451         struct btrfs_root *root = BTRFS_I(inode)->root;
4452         struct btrfs_file_extent_item *item;
4453         struct extent_buffer *leaf;
4454         struct btrfs_key found_key;
4455         struct extent_map *em = NULL;
4456         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4457         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4458         struct btrfs_trans_handle *trans = NULL;
4459         int compressed;
4460
4461 again:
4462         read_lock(&em_tree->lock);
4463         em = lookup_extent_mapping(em_tree, start, len);
4464         if (em)
4465                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4466         read_unlock(&em_tree->lock);
4467
4468         if (em) {
4469                 if (em->start > start || em->start + em->len <= start)
4470                         free_extent_map(em);
4471                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4472                         free_extent_map(em);
4473                 else
4474                         goto out;
4475         }
4476         em = alloc_extent_map(GFP_NOFS);
4477         if (!em) {
4478                 err = -ENOMEM;
4479                 goto out;
4480         }
4481         em->bdev = root->fs_info->fs_devices->latest_bdev;
4482         em->start = EXTENT_MAP_HOLE;
4483         em->orig_start = EXTENT_MAP_HOLE;
4484         em->len = (u64)-1;
4485         em->block_len = (u64)-1;
4486
4487         if (!path) {
4488                 path = btrfs_alloc_path();
4489                 BUG_ON(!path);
4490         }
4491
4492         ret = btrfs_lookup_file_extent(trans, root, path,
4493                                        objectid, start, trans != NULL);
4494         if (ret < 0) {
4495                 err = ret;
4496                 goto out;
4497         }
4498
4499         if (ret != 0) {
4500                 if (path->slots[0] == 0)
4501                         goto not_found;
4502                 path->slots[0]--;
4503         }
4504
4505         leaf = path->nodes[0];
4506         item = btrfs_item_ptr(leaf, path->slots[0],
4507                               struct btrfs_file_extent_item);
4508         /* are we inside the extent that was found? */
4509         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4510         found_type = btrfs_key_type(&found_key);
4511         if (found_key.objectid != objectid ||
4512             found_type != BTRFS_EXTENT_DATA_KEY) {
4513                 goto not_found;
4514         }
4515
4516         found_type = btrfs_file_extent_type(leaf, item);
4517         extent_start = found_key.offset;
4518         compressed = btrfs_file_extent_compression(leaf, item);
4519         if (found_type == BTRFS_FILE_EXTENT_REG ||
4520             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4521                 extent_end = extent_start +
4522                        btrfs_file_extent_num_bytes(leaf, item);
4523         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4524                 size_t size;
4525                 size = btrfs_file_extent_inline_len(leaf, item);
4526                 extent_end = (extent_start + size + root->sectorsize - 1) &
4527                         ~((u64)root->sectorsize - 1);
4528         }
4529
4530         if (start >= extent_end) {
4531                 path->slots[0]++;
4532                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4533                         ret = btrfs_next_leaf(root, path);
4534                         if (ret < 0) {
4535                                 err = ret;
4536                                 goto out;
4537                         }
4538                         if (ret > 0)
4539                                 goto not_found;
4540                         leaf = path->nodes[0];
4541                 }
4542                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4543                 if (found_key.objectid != objectid ||
4544                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4545                         goto not_found;
4546                 if (start + len <= found_key.offset)
4547                         goto not_found;
4548                 em->start = start;
4549                 em->len = found_key.offset - start;
4550                 goto not_found_em;
4551         }
4552
4553         if (found_type == BTRFS_FILE_EXTENT_REG ||
4554             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4555                 em->start = extent_start;
4556                 em->len = extent_end - extent_start;
4557                 em->orig_start = extent_start -
4558                                  btrfs_file_extent_offset(leaf, item);
4559                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4560                 if (bytenr == 0) {
4561                         em->block_start = EXTENT_MAP_HOLE;
4562                         goto insert;
4563                 }
4564                 if (compressed) {
4565                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4566                         em->block_start = bytenr;
4567                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4568                                                                          item);
4569                 } else {
4570                         bytenr += btrfs_file_extent_offset(leaf, item);
4571                         em->block_start = bytenr;
4572                         em->block_len = em->len;
4573                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4574                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4575                 }
4576                 goto insert;
4577         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4578                 unsigned long ptr;
4579                 char *map;
4580                 size_t size;
4581                 size_t extent_offset;
4582                 size_t copy_size;
4583
4584                 em->block_start = EXTENT_MAP_INLINE;
4585                 if (!page || create) {
4586                         em->start = extent_start;
4587                         em->len = extent_end - extent_start;
4588                         goto out;
4589                 }
4590
4591                 size = btrfs_file_extent_inline_len(leaf, item);
4592                 extent_offset = page_offset(page) + pg_offset - extent_start;
4593                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4594                                 size - extent_offset);
4595                 em->start = extent_start + extent_offset;
4596                 em->len = (copy_size + root->sectorsize - 1) &
4597                         ~((u64)root->sectorsize - 1);
4598                 em->orig_start = EXTENT_MAP_INLINE;
4599                 if (compressed)
4600                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4601                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4602                 if (create == 0 && !PageUptodate(page)) {
4603                         if (btrfs_file_extent_compression(leaf, item) ==
4604                             BTRFS_COMPRESS_ZLIB) {
4605                                 ret = uncompress_inline(path, inode, page,
4606                                                         pg_offset,
4607                                                         extent_offset, item);
4608                                 BUG_ON(ret);
4609                         } else {
4610                                 map = kmap(page);
4611                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4612                                                    copy_size);
4613                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4614                                         memset(map + pg_offset + copy_size, 0,
4615                                                PAGE_CACHE_SIZE - pg_offset -
4616                                                copy_size);
4617                                 }
4618                                 kunmap(page);
4619                         }
4620                         flush_dcache_page(page);
4621                 } else if (create && PageUptodate(page)) {
4622                         if (!trans) {
4623                                 kunmap(page);
4624                                 free_extent_map(em);
4625                                 em = NULL;
4626                                 btrfs_release_path(root, path);
4627                                 trans = btrfs_join_transaction(root, 1);
4628                                 goto again;
4629                         }
4630                         map = kmap(page);
4631                         write_extent_buffer(leaf, map + pg_offset, ptr,
4632                                             copy_size);
4633                         kunmap(page);
4634                         btrfs_mark_buffer_dirty(leaf);
4635                 }
4636                 set_extent_uptodate(io_tree, em->start,
4637                                     extent_map_end(em) - 1, GFP_NOFS);
4638                 goto insert;
4639         } else {
4640                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4641                 WARN_ON(1);
4642         }
4643 not_found:
4644         em->start = start;
4645         em->len = len;
4646 not_found_em:
4647         em->block_start = EXTENT_MAP_HOLE;
4648         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4649 insert:
4650         btrfs_release_path(root, path);
4651         if (em->start > start || extent_map_end(em) <= start) {
4652                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4653                        "[%llu %llu]\n", (unsigned long long)em->start,
4654                        (unsigned long long)em->len,
4655                        (unsigned long long)start,
4656                        (unsigned long long)len);
4657                 err = -EIO;
4658                 goto out;
4659         }
4660
4661         err = 0;
4662         write_lock(&em_tree->lock);
4663         ret = add_extent_mapping(em_tree, em);
4664         /* it is possible that someone inserted the extent into the tree
4665          * while we had the lock dropped.  It is also possible that
4666          * an overlapping map exists in the tree
4667          */
4668         if (ret == -EEXIST) {
4669                 struct extent_map *existing;
4670
4671                 ret = 0;
4672
4673                 existing = lookup_extent_mapping(em_tree, start, len);
4674                 if (existing && (existing->start > start ||
4675                     existing->start + existing->len <= start)) {
4676                         free_extent_map(existing);
4677                         existing = NULL;
4678                 }
4679                 if (!existing) {
4680                         existing = lookup_extent_mapping(em_tree, em->start,
4681                                                          em->len);
4682                         if (existing) {
4683                                 err = merge_extent_mapping(em_tree, existing,
4684                                                            em, start,
4685                                                            root->sectorsize);
4686                                 free_extent_map(existing);
4687                                 if (err) {
4688                                         free_extent_map(em);
4689                                         em = NULL;
4690                                 }
4691                         } else {
4692                                 err = -EIO;
4693                                 free_extent_map(em);
4694                                 em = NULL;
4695                         }
4696                 } else {
4697                         free_extent_map(em);
4698                         em = existing;
4699                         err = 0;
4700                 }
4701         }
4702         write_unlock(&em_tree->lock);
4703 out:
4704         if (path)
4705                 btrfs_free_path(path);
4706         if (trans) {
4707                 ret = btrfs_end_transaction(trans, root);
4708                 if (!err)
4709                         err = ret;
4710         }
4711         if (err) {
4712                 free_extent_map(em);
4713                 return ERR_PTR(err);
4714         }
4715         return em;
4716 }
4717
4718 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4719                         const struct iovec *iov, loff_t offset,
4720                         unsigned long nr_segs)
4721 {
4722         return -EINVAL;
4723 }
4724
4725 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4726                 __u64 start, __u64 len)
4727 {
4728         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4729 }
4730
4731 int btrfs_readpage(struct file *file, struct page *page)
4732 {
4733         struct extent_io_tree *tree;
4734         tree = &BTRFS_I(page->mapping->host)->io_tree;
4735         return extent_read_full_page(tree, page, btrfs_get_extent);
4736 }
4737
4738 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4739 {
4740         struct extent_io_tree *tree;
4741
4742
4743         if (current->flags & PF_MEMALLOC) {
4744                 redirty_page_for_writepage(wbc, page);
4745                 unlock_page(page);
4746                 return 0;
4747         }
4748         tree = &BTRFS_I(page->mapping->host)->io_tree;
4749         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4750 }
4751
4752 int btrfs_writepages(struct address_space *mapping,
4753                      struct writeback_control *wbc)
4754 {
4755         struct extent_io_tree *tree;
4756
4757         tree = &BTRFS_I(mapping->host)->io_tree;
4758         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4759 }
4760
4761 static int
4762 btrfs_readpages(struct file *file, struct address_space *mapping,
4763                 struct list_head *pages, unsigned nr_pages)
4764 {
4765         struct extent_io_tree *tree;
4766         tree = &BTRFS_I(mapping->host)->io_tree;
4767         return extent_readpages(tree, mapping, pages, nr_pages,
4768                                 btrfs_get_extent);
4769 }
4770 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4771 {
4772         struct extent_io_tree *tree;
4773         struct extent_map_tree *map;
4774         int ret;
4775
4776         tree = &BTRFS_I(page->mapping->host)->io_tree;
4777         map = &BTRFS_I(page->mapping->host)->extent_tree;
4778         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4779         if (ret == 1) {
4780                 ClearPagePrivate(page);
4781                 set_page_private(page, 0);
4782                 page_cache_release(page);
4783         }
4784         return ret;
4785 }
4786
4787 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4788 {
4789         if (PageWriteback(page) || PageDirty(page))
4790                 return 0;
4791         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4792 }
4793
4794 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4795 {
4796         struct extent_io_tree *tree;
4797         struct btrfs_ordered_extent *ordered;
4798         u64 page_start = page_offset(page);
4799         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4800
4801
4802         /*
4803          * we have the page locked, so new writeback can't start,
4804          * and the dirty bit won't be cleared while we are here.
4805          *
4806          * Wait for IO on this page so that we can safely clear
4807          * the PagePrivate2 bit and do ordered accounting
4808          */
4809         wait_on_page_writeback(page);
4810
4811         tree = &BTRFS_I(page->mapping->host)->io_tree;
4812         if (offset) {
4813                 btrfs_releasepage(page, GFP_NOFS);
4814                 return;
4815         }
4816         lock_extent(tree, page_start, page_end, GFP_NOFS);
4817         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4818                                            page_offset(page));
4819         if (ordered) {
4820                 /*
4821                  * IO on this page will never be started, so we need
4822                  * to account for any ordered extents now
4823                  */
4824                 clear_extent_bit(tree, page_start, page_end,
4825                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4826                                  EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
4827                 /*
4828                  * whoever cleared the private bit is responsible
4829                  * for the finish_ordered_io
4830                  */
4831                 if (TestClearPagePrivate2(page)) {
4832                         btrfs_finish_ordered_io(page->mapping->host,
4833                                                 page_start, page_end);
4834                 }
4835                 btrfs_put_ordered_extent(ordered);
4836                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4837         }
4838         clear_extent_bit(tree, page_start, page_end,
4839                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
4840                  1, 1, NULL, GFP_NOFS);
4841         __btrfs_releasepage(page, GFP_NOFS);
4842
4843         ClearPageChecked(page);
4844         if (PagePrivate(page)) {
4845                 ClearPagePrivate(page);
4846                 set_page_private(page, 0);
4847                 page_cache_release(page);
4848         }
4849 }
4850
4851 /*
4852  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4853  * called from a page fault handler when a page is first dirtied. Hence we must
4854  * be careful to check for EOF conditions here. We set the page up correctly
4855  * for a written page which means we get ENOSPC checking when writing into
4856  * holes and correct delalloc and unwritten extent mapping on filesystems that
4857  * support these features.
4858  *
4859  * We are not allowed to take the i_mutex here so we have to play games to
4860  * protect against truncate races as the page could now be beyond EOF.  Because
4861  * vmtruncate() writes the inode size before removing pages, once we have the
4862  * page lock we can determine safely if the page is beyond EOF. If it is not
4863  * beyond EOF, then the page is guaranteed safe against truncation until we
4864  * unlock the page.
4865  */
4866 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4867 {
4868         struct page *page = vmf->page;
4869         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4870         struct btrfs_root *root = BTRFS_I(inode)->root;
4871         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4872         struct btrfs_ordered_extent *ordered;
4873         char *kaddr;
4874         unsigned long zero_start;
4875         loff_t size;
4876         int ret;
4877         u64 page_start;
4878         u64 page_end;
4879
4880         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4881         if (ret) {
4882                 if (ret == -ENOMEM)
4883                         ret = VM_FAULT_OOM;
4884                 else /* -ENOSPC, -EIO, etc */
4885                         ret = VM_FAULT_SIGBUS;
4886                 goto out;
4887         }
4888
4889         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4890         if (ret) {
4891                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4892                 ret = VM_FAULT_SIGBUS;
4893                 goto out;
4894         }
4895
4896         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4897 again:
4898         lock_page(page);
4899         size = i_size_read(inode);
4900         page_start = page_offset(page);
4901         page_end = page_start + PAGE_CACHE_SIZE - 1;
4902
4903         if ((page->mapping != inode->i_mapping) ||
4904             (page_start >= size)) {
4905                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4906                 /* page got truncated out from underneath us */
4907                 goto out_unlock;
4908         }
4909         wait_on_page_writeback(page);
4910
4911         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4912         set_page_extent_mapped(page);
4913
4914         /*
4915          * we can't set the delalloc bits if there are pending ordered
4916          * extents.  Drop our locks and wait for them to finish
4917          */
4918         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4919         if (ordered) {
4920                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4921                 unlock_page(page);
4922                 btrfs_start_ordered_extent(inode, ordered, 1);
4923                 btrfs_put_ordered_extent(ordered);
4924                 goto again;
4925         }
4926
4927         /*
4928          * XXX - page_mkwrite gets called every time the page is dirtied, even
4929          * if it was already dirty, so for space accounting reasons we need to
4930          * clear any delalloc bits for the range we are fixing to save.  There
4931          * is probably a better way to do this, but for now keep consistent with
4932          * prepare_pages in the normal write path.
4933          */
4934         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
4935                           EXTENT_DIRTY | EXTENT_DELALLOC, GFP_NOFS);
4936
4937         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4938         if (ret) {
4939                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4940                 ret = VM_FAULT_SIGBUS;
4941                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4942                 goto out_unlock;
4943         }
4944         ret = 0;
4945
4946         /* page is wholly or partially inside EOF */
4947         if (page_start + PAGE_CACHE_SIZE > size)
4948                 zero_start = size & ~PAGE_CACHE_MASK;
4949         else
4950                 zero_start = PAGE_CACHE_SIZE;
4951
4952         if (zero_start != PAGE_CACHE_SIZE) {
4953                 kaddr = kmap(page);
4954                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4955                 flush_dcache_page(page);
4956                 kunmap(page);
4957         }
4958         ClearPageChecked(page);
4959         set_page_dirty(page);
4960         SetPageUptodate(page);
4961
4962         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4963         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4964
4965 out_unlock:
4966         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
4967         if (!ret)
4968                 return VM_FAULT_LOCKED;
4969         unlock_page(page);
4970 out:
4971         return ret;
4972 }
4973
4974 static void btrfs_truncate(struct inode *inode)
4975 {
4976         struct btrfs_root *root = BTRFS_I(inode)->root;
4977         int ret;
4978         struct btrfs_trans_handle *trans;
4979         unsigned long nr;
4980         u64 mask = root->sectorsize - 1;
4981
4982         if (!S_ISREG(inode->i_mode))
4983                 return;
4984         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4985                 return;
4986
4987         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4988         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4989
4990         trans = btrfs_start_transaction(root, 1);
4991
4992         /*
4993          * setattr is responsible for setting the ordered_data_close flag,
4994          * but that is only tested during the last file release.  That
4995          * could happen well after the next commit, leaving a great big
4996          * window where new writes may get lost if someone chooses to write
4997          * to this file after truncating to zero
4998          *
4999          * The inode doesn't have any dirty data here, and so if we commit
5000          * this is a noop.  If someone immediately starts writing to the inode
5001          * it is very likely we'll catch some of their writes in this
5002          * transaction, and the commit will find this file on the ordered
5003          * data list with good things to send down.
5004          *
5005          * This is a best effort solution, there is still a window where
5006          * using truncate to replace the contents of the file will
5007          * end up with a zero length file after a crash.
5008          */
5009         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5010                 btrfs_add_ordered_operation(trans, root, inode);
5011
5012         btrfs_set_trans_block_group(trans, inode);
5013         btrfs_i_size_write(inode, inode->i_size);
5014
5015         ret = btrfs_orphan_add(trans, inode);
5016         if (ret)
5017                 goto out;
5018         /* FIXME, add redo link to tree so we don't leak on crash */
5019         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5020                                       BTRFS_EXTENT_DATA_KEY);
5021         btrfs_update_inode(trans, root, inode);
5022
5023         ret = btrfs_orphan_del(trans, inode);
5024         BUG_ON(ret);
5025
5026 out:
5027         nr = trans->blocks_used;
5028         ret = btrfs_end_transaction_throttle(trans, root);
5029         BUG_ON(ret);
5030         btrfs_btree_balance_dirty(root, nr);
5031 }
5032
5033 /*
5034  * create a new subvolume directory/inode (helper for the ioctl).
5035  */
5036 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5037                              struct btrfs_root *new_root,
5038                              u64 new_dirid, u64 alloc_hint)
5039 {
5040         struct inode *inode;
5041         int err;
5042         u64 index = 0;
5043
5044         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5045                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5046         if (IS_ERR(inode))
5047                 return PTR_ERR(inode);
5048         inode->i_op = &btrfs_dir_inode_operations;
5049         inode->i_fop = &btrfs_dir_file_operations;
5050
5051         inode->i_nlink = 1;
5052         btrfs_i_size_write(inode, 0);
5053
5054         err = btrfs_update_inode(trans, new_root, inode);
5055         BUG_ON(err);
5056
5057         iput(inode);
5058         return 0;
5059 }
5060
5061 /* helper function for file defrag and space balancing.  This
5062  * forces readahead on a given range of bytes in an inode
5063  */
5064 unsigned long btrfs_force_ra(struct address_space *mapping,
5065                               struct file_ra_state *ra, struct file *file,
5066                               pgoff_t offset, pgoff_t last_index)
5067 {
5068         pgoff_t req_size = last_index - offset + 1;
5069
5070         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5071         return offset + req_size;
5072 }
5073
5074 struct inode *btrfs_alloc_inode(struct super_block *sb)
5075 {
5076         struct btrfs_inode *ei;
5077
5078         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5079         if (!ei)
5080                 return NULL;
5081         ei->last_trans = 0;
5082         ei->logged_trans = 0;
5083         ei->delalloc_extents = 0;
5084         ei->delalloc_reserved_extents = 0;
5085         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5086         INIT_LIST_HEAD(&ei->i_orphan);
5087         INIT_LIST_HEAD(&ei->ordered_operations);
5088         return &ei->vfs_inode;
5089 }
5090
5091 void btrfs_destroy_inode(struct inode *inode)
5092 {
5093         struct btrfs_ordered_extent *ordered;
5094         struct btrfs_root *root = BTRFS_I(inode)->root;
5095
5096         WARN_ON(!list_empty(&inode->i_dentry));
5097         WARN_ON(inode->i_data.nrpages);
5098
5099         /*
5100          * Make sure we're properly removed from the ordered operation
5101          * lists.
5102          */
5103         smp_mb();
5104         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5105                 spin_lock(&root->fs_info->ordered_extent_lock);
5106                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5107                 spin_unlock(&root->fs_info->ordered_extent_lock);
5108         }
5109
5110         spin_lock(&root->list_lock);
5111         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5112                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5113                        " list\n", inode->i_ino);
5114                 dump_stack();
5115         }
5116         spin_unlock(&root->list_lock);
5117
5118         while (1) {
5119                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5120                 if (!ordered)
5121                         break;
5122                 else {
5123                         printk(KERN_ERR "btrfs found ordered "
5124                                "extent %llu %llu on inode cleanup\n",
5125                                (unsigned long long)ordered->file_offset,
5126                                (unsigned long long)ordered->len);
5127                         btrfs_remove_ordered_extent(inode, ordered);
5128                         btrfs_put_ordered_extent(ordered);
5129                         btrfs_put_ordered_extent(ordered);
5130                 }
5131         }
5132         inode_tree_del(inode);
5133         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5134         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5135 }
5136
5137 void btrfs_drop_inode(struct inode *inode)
5138 {
5139         struct btrfs_root *root = BTRFS_I(inode)->root;
5140
5141         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5142                 generic_delete_inode(inode);
5143         else
5144                 generic_drop_inode(inode);
5145 }
5146
5147 static void init_once(void *foo)
5148 {
5149         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5150
5151         inode_init_once(&ei->vfs_inode);
5152 }
5153
5154 void btrfs_destroy_cachep(void)
5155 {
5156         if (btrfs_inode_cachep)
5157                 kmem_cache_destroy(btrfs_inode_cachep);
5158         if (btrfs_trans_handle_cachep)
5159                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5160         if (btrfs_transaction_cachep)
5161                 kmem_cache_destroy(btrfs_transaction_cachep);
5162         if (btrfs_path_cachep)
5163                 kmem_cache_destroy(btrfs_path_cachep);
5164 }
5165
5166 int btrfs_init_cachep(void)
5167 {
5168         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5169                         sizeof(struct btrfs_inode), 0,
5170                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5171         if (!btrfs_inode_cachep)
5172                 goto fail;
5173
5174         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5175                         sizeof(struct btrfs_trans_handle), 0,
5176                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5177         if (!btrfs_trans_handle_cachep)
5178                 goto fail;
5179
5180         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5181                         sizeof(struct btrfs_transaction), 0,
5182                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5183         if (!btrfs_transaction_cachep)
5184                 goto fail;
5185
5186         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5187                         sizeof(struct btrfs_path), 0,
5188                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5189         if (!btrfs_path_cachep)
5190                 goto fail;
5191
5192         return 0;
5193 fail:
5194         btrfs_destroy_cachep();
5195         return -ENOMEM;
5196 }
5197
5198 static int btrfs_getattr(struct vfsmount *mnt,
5199                          struct dentry *dentry, struct kstat *stat)
5200 {
5201         struct inode *inode = dentry->d_inode;
5202         generic_fillattr(inode, stat);
5203         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5204         stat->blksize = PAGE_CACHE_SIZE;
5205         stat->blocks = (inode_get_bytes(inode) +
5206                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5207         return 0;
5208 }
5209
5210 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5211                            struct inode *new_dir, struct dentry *new_dentry)
5212 {
5213         struct btrfs_trans_handle *trans;
5214         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5215         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5216         struct inode *new_inode = new_dentry->d_inode;
5217         struct inode *old_inode = old_dentry->d_inode;
5218         struct timespec ctime = CURRENT_TIME;
5219         u64 index = 0;
5220         u64 root_objectid;
5221         int ret;
5222
5223         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5224                 return -EPERM;
5225
5226         /* we only allow rename subvolume link between subvolumes */
5227         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5228                 return -EXDEV;
5229
5230         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5231             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5232                 return -ENOTEMPTY;
5233
5234         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5235             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5236                 return -ENOTEMPTY;
5237
5238         /*
5239          * 2 items for dir items
5240          * 1 item for orphan entry
5241          * 1 item for ref
5242          */
5243         ret = btrfs_reserve_metadata_space(root, 4);
5244         if (ret)
5245                 return ret;
5246
5247         /*
5248          * we're using rename to replace one file with another.
5249          * and the replacement file is large.  Start IO on it now so
5250          * we don't add too much work to the end of the transaction
5251          */
5252         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5253             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5254                 filemap_flush(old_inode->i_mapping);
5255
5256         /* close the racy window with snapshot create/destroy ioctl */
5257         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5258                 down_read(&root->fs_info->subvol_sem);
5259
5260         trans = btrfs_start_transaction(root, 1);
5261         btrfs_set_trans_block_group(trans, new_dir);
5262
5263         if (dest != root)
5264                 btrfs_record_root_in_trans(trans, dest);
5265
5266         ret = btrfs_set_inode_index(new_dir, &index);
5267         if (ret)
5268                 goto out_fail;
5269
5270         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5271                 /* force full log commit if subvolume involved. */
5272                 root->fs_info->last_trans_log_full_commit = trans->transid;
5273         } else {
5274                 ret = btrfs_insert_inode_ref(trans, dest,
5275                                              new_dentry->d_name.name,
5276                                              new_dentry->d_name.len,
5277                                              old_inode->i_ino,
5278                                              new_dir->i_ino, index);
5279                 if (ret)
5280                         goto out_fail;
5281                 /*
5282                  * this is an ugly little race, but the rename is required
5283                  * to make sure that if we crash, the inode is either at the
5284                  * old name or the new one.  pinning the log transaction lets
5285                  * us make sure we don't allow a log commit to come in after
5286                  * we unlink the name but before we add the new name back in.
5287                  */
5288                 btrfs_pin_log_trans(root);
5289         }
5290         /*
5291          * make sure the inode gets flushed if it is replacing
5292          * something.
5293          */
5294         if (new_inode && new_inode->i_size &&
5295             old_inode && S_ISREG(old_inode->i_mode)) {
5296                 btrfs_add_ordered_operation(trans, root, old_inode);
5297         }
5298
5299         old_dir->i_ctime = old_dir->i_mtime = ctime;
5300         new_dir->i_ctime = new_dir->i_mtime = ctime;
5301         old_inode->i_ctime = ctime;
5302
5303         if (old_dentry->d_parent != new_dentry->d_parent)
5304                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5305
5306         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5307                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5308                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5309                                         old_dentry->d_name.name,
5310                                         old_dentry->d_name.len);
5311         } else {
5312                 btrfs_inc_nlink(old_dentry->d_inode);
5313                 ret = btrfs_unlink_inode(trans, root, old_dir,
5314                                          old_dentry->d_inode,
5315                                          old_dentry->d_name.name,
5316                                          old_dentry->d_name.len);
5317         }
5318         BUG_ON(ret);
5319
5320         if (new_inode) {
5321                 new_inode->i_ctime = CURRENT_TIME;
5322                 if (unlikely(new_inode->i_ino ==
5323                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5324                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5325                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5326                                                 root_objectid,
5327                                                 new_dentry->d_name.name,
5328                                                 new_dentry->d_name.len);
5329                         BUG_ON(new_inode->i_nlink == 0);
5330                 } else {
5331                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5332                                                  new_dentry->d_inode,
5333                                                  new_dentry->d_name.name,
5334                                                  new_dentry->d_name.len);
5335                 }
5336                 BUG_ON(ret);
5337                 if (new_inode->i_nlink == 0) {
5338                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5339                         BUG_ON(ret);
5340                 }
5341         }
5342
5343         ret = btrfs_add_link(trans, new_dir, old_inode,
5344                              new_dentry->d_name.name,
5345                              new_dentry->d_name.len, 0, index);
5346         BUG_ON(ret);
5347
5348         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5349                 btrfs_log_new_name(trans, old_inode, old_dir,
5350                                    new_dentry->d_parent);
5351                 btrfs_end_log_trans(root);
5352         }
5353 out_fail:
5354         btrfs_end_transaction_throttle(trans, root);
5355
5356         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5357                 up_read(&root->fs_info->subvol_sem);
5358
5359         btrfs_unreserve_metadata_space(root, 4);
5360         return ret;
5361 }
5362
5363 /*
5364  * some fairly slow code that needs optimization. This walks the list
5365  * of all the inodes with pending delalloc and forces them to disk.
5366  */
5367 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5368 {
5369         struct list_head *head = &root->fs_info->delalloc_inodes;
5370         struct btrfs_inode *binode;
5371         struct inode *inode;
5372
5373         if (root->fs_info->sb->s_flags & MS_RDONLY)
5374                 return -EROFS;
5375
5376         spin_lock(&root->fs_info->delalloc_lock);
5377         while (!list_empty(head)) {
5378                 binode = list_entry(head->next, struct btrfs_inode,
5379                                     delalloc_inodes);
5380                 inode = igrab(&binode->vfs_inode);
5381                 if (!inode)
5382                         list_del_init(&binode->delalloc_inodes);
5383                 spin_unlock(&root->fs_info->delalloc_lock);
5384                 if (inode) {
5385                         filemap_flush(inode->i_mapping);
5386                         iput(inode);
5387                 }
5388                 cond_resched();
5389                 spin_lock(&root->fs_info->delalloc_lock);
5390         }
5391         spin_unlock(&root->fs_info->delalloc_lock);
5392
5393         /* the filemap_flush will queue IO into the worker threads, but
5394          * we have to make sure the IO is actually started and that
5395          * ordered extents get created before we return
5396          */
5397         atomic_inc(&root->fs_info->async_submit_draining);
5398         while (atomic_read(&root->fs_info->nr_async_submits) ||
5399               atomic_read(&root->fs_info->async_delalloc_pages)) {
5400                 wait_event(root->fs_info->async_submit_wait,
5401                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5402                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5403         }
5404         atomic_dec(&root->fs_info->async_submit_draining);
5405         return 0;
5406 }
5407
5408 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5409                          const char *symname)
5410 {
5411         struct btrfs_trans_handle *trans;
5412         struct btrfs_root *root = BTRFS_I(dir)->root;
5413         struct btrfs_path *path;
5414         struct btrfs_key key;
5415         struct inode *inode = NULL;
5416         int err;
5417         int drop_inode = 0;
5418         u64 objectid;
5419         u64 index = 0 ;
5420         int name_len;
5421         int datasize;
5422         unsigned long ptr;
5423         struct btrfs_file_extent_item *ei;
5424         struct extent_buffer *leaf;
5425         unsigned long nr = 0;
5426
5427         name_len = strlen(symname) + 1;
5428         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5429                 return -ENAMETOOLONG;
5430
5431         /*
5432          * 2 items for inode item and ref
5433          * 2 items for dir items
5434          * 1 item for xattr if selinux is on
5435          */
5436         err = btrfs_reserve_metadata_space(root, 5);
5437         if (err)
5438                 return err;
5439
5440         trans = btrfs_start_transaction(root, 1);
5441         if (!trans)
5442                 goto out_fail;
5443         btrfs_set_trans_block_group(trans, dir);
5444
5445         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5446         if (err) {
5447                 err = -ENOSPC;
5448                 goto out_unlock;
5449         }
5450
5451         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5452                                 dentry->d_name.len,
5453                                 dentry->d_parent->d_inode->i_ino, objectid,
5454                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5455                                 &index);
5456         err = PTR_ERR(inode);
5457         if (IS_ERR(inode))
5458                 goto out_unlock;
5459
5460         err = btrfs_init_inode_security(inode, dir);
5461         if (err) {
5462                 drop_inode = 1;
5463                 goto out_unlock;
5464         }
5465
5466         btrfs_set_trans_block_group(trans, inode);
5467         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5468         if (err)
5469                 drop_inode = 1;
5470         else {
5471                 inode->i_mapping->a_ops = &btrfs_aops;
5472                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5473                 inode->i_fop = &btrfs_file_operations;
5474                 inode->i_op = &btrfs_file_inode_operations;
5475                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5476         }
5477         btrfs_update_inode_block_group(trans, inode);
5478         btrfs_update_inode_block_group(trans, dir);
5479         if (drop_inode)
5480                 goto out_unlock;
5481
5482         path = btrfs_alloc_path();
5483         BUG_ON(!path);
5484         key.objectid = inode->i_ino;
5485         key.offset = 0;
5486         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5487         datasize = btrfs_file_extent_calc_inline_size(name_len);
5488         err = btrfs_insert_empty_item(trans, root, path, &key,
5489                                       datasize);
5490         if (err) {
5491                 drop_inode = 1;
5492                 goto out_unlock;
5493         }
5494         leaf = path->nodes[0];
5495         ei = btrfs_item_ptr(leaf, path->slots[0],
5496                             struct btrfs_file_extent_item);
5497         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5498         btrfs_set_file_extent_type(leaf, ei,
5499                                    BTRFS_FILE_EXTENT_INLINE);
5500         btrfs_set_file_extent_encryption(leaf, ei, 0);
5501         btrfs_set_file_extent_compression(leaf, ei, 0);
5502         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5503         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5504
5505         ptr = btrfs_file_extent_inline_start(ei);
5506         write_extent_buffer(leaf, symname, ptr, name_len);
5507         btrfs_mark_buffer_dirty(leaf);
5508         btrfs_free_path(path);
5509
5510         inode->i_op = &btrfs_symlink_inode_operations;
5511         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5512         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5513         inode_set_bytes(inode, name_len);
5514         btrfs_i_size_write(inode, name_len - 1);
5515         err = btrfs_update_inode(trans, root, inode);
5516         if (err)
5517                 drop_inode = 1;
5518
5519 out_unlock:
5520         nr = trans->blocks_used;
5521         btrfs_end_transaction_throttle(trans, root);
5522 out_fail:
5523         btrfs_unreserve_metadata_space(root, 5);
5524         if (drop_inode) {
5525                 inode_dec_link_count(inode);
5526                 iput(inode);
5527         }
5528         btrfs_btree_balance_dirty(root, nr);
5529         return err;
5530 }
5531
5532 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5533                                struct inode *inode, u64 start, u64 end,
5534                                u64 locked_end, u64 alloc_hint, int mode)
5535 {
5536         struct btrfs_root *root = BTRFS_I(inode)->root;
5537         struct btrfs_key ins;
5538         u64 alloc_size;
5539         u64 cur_offset = start;
5540         u64 num_bytes = end - start;
5541         int ret = 0;
5542
5543         while (num_bytes > 0) {
5544                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5545
5546                 ret = btrfs_reserve_metadata_space(root, 1);
5547                 if (ret)
5548                         goto out;
5549
5550                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5551                                            root->sectorsize, 0, alloc_hint,
5552                                            (u64)-1, &ins, 1);
5553                 if (ret) {
5554                         WARN_ON(1);
5555                         goto out;
5556                 }
5557                 ret = insert_reserved_file_extent(trans, inode,
5558                                                   cur_offset, ins.objectid,
5559                                                   ins.offset, ins.offset,
5560                                                   ins.offset, locked_end,
5561                                                   0, 0, 0,
5562                                                   BTRFS_FILE_EXTENT_PREALLOC);
5563                 BUG_ON(ret);
5564                 btrfs_drop_extent_cache(inode, cur_offset,
5565                                         cur_offset + ins.offset -1, 0);
5566                 num_bytes -= ins.offset;
5567                 cur_offset += ins.offset;
5568                 alloc_hint = ins.objectid + ins.offset;
5569                 btrfs_unreserve_metadata_space(root, 1);
5570         }
5571 out:
5572         if (cur_offset > start) {
5573                 inode->i_ctime = CURRENT_TIME;
5574                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5575                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5576                     cur_offset > i_size_read(inode))
5577                         btrfs_i_size_write(inode, cur_offset);
5578                 ret = btrfs_update_inode(trans, root, inode);
5579                 BUG_ON(ret);
5580         }
5581
5582         return ret;
5583 }
5584
5585 static long btrfs_fallocate(struct inode *inode, int mode,
5586                             loff_t offset, loff_t len)
5587 {
5588         u64 cur_offset;
5589         u64 last_byte;
5590         u64 alloc_start;
5591         u64 alloc_end;
5592         u64 alloc_hint = 0;
5593         u64 locked_end;
5594         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5595         struct extent_map *em;
5596         struct btrfs_trans_handle *trans;
5597         struct btrfs_root *root;
5598         int ret;
5599
5600         alloc_start = offset & ~mask;
5601         alloc_end =  (offset + len + mask) & ~mask;
5602
5603         /*
5604          * wait for ordered IO before we have any locks.  We'll loop again
5605          * below with the locks held.
5606          */
5607         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5608
5609         mutex_lock(&inode->i_mutex);
5610         if (alloc_start > inode->i_size) {
5611                 ret = btrfs_cont_expand(inode, alloc_start);
5612                 if (ret)
5613                         goto out;
5614         }
5615
5616         root = BTRFS_I(inode)->root;
5617
5618         ret = btrfs_check_data_free_space(root, inode,
5619                                           alloc_end - alloc_start);
5620         if (ret)
5621                 goto out;
5622
5623         locked_end = alloc_end - 1;
5624         while (1) {
5625                 struct btrfs_ordered_extent *ordered;
5626
5627                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5628                 if (!trans) {
5629                         ret = -EIO;
5630                         goto out_free;
5631                 }
5632
5633                 /* the extent lock is ordered inside the running
5634                  * transaction
5635                  */
5636                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5637                             GFP_NOFS);
5638                 ordered = btrfs_lookup_first_ordered_extent(inode,
5639                                                             alloc_end - 1);
5640                 if (ordered &&
5641                     ordered->file_offset + ordered->len > alloc_start &&
5642                     ordered->file_offset < alloc_end) {
5643                         btrfs_put_ordered_extent(ordered);
5644                         unlock_extent(&BTRFS_I(inode)->io_tree,
5645                                       alloc_start, locked_end, GFP_NOFS);
5646                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5647
5648                         /*
5649                          * we can't wait on the range with the transaction
5650                          * running or with the extent lock held
5651                          */
5652                         btrfs_wait_ordered_range(inode, alloc_start,
5653                                                  alloc_end - alloc_start);
5654                 } else {
5655                         if (ordered)
5656                                 btrfs_put_ordered_extent(ordered);
5657                         break;
5658                 }
5659         }
5660
5661         cur_offset = alloc_start;
5662         while (1) {
5663                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5664                                       alloc_end - cur_offset, 0);
5665                 BUG_ON(IS_ERR(em) || !em);
5666                 last_byte = min(extent_map_end(em), alloc_end);
5667                 last_byte = (last_byte + mask) & ~mask;
5668                 if (em->block_start == EXTENT_MAP_HOLE) {
5669                         ret = prealloc_file_range(trans, inode, cur_offset,
5670                                         last_byte, locked_end + 1,
5671                                         alloc_hint, mode);
5672                         if (ret < 0) {
5673                                 free_extent_map(em);
5674                                 break;
5675                         }
5676                 }
5677                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5678                         alloc_hint = em->block_start;
5679                 free_extent_map(em);
5680
5681                 cur_offset = last_byte;
5682                 if (cur_offset >= alloc_end) {
5683                         ret = 0;
5684                         break;
5685                 }
5686         }
5687         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5688                       GFP_NOFS);
5689
5690         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5691 out_free:
5692         btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5693 out:
5694         mutex_unlock(&inode->i_mutex);
5695         return ret;
5696 }
5697
5698 static int btrfs_set_page_dirty(struct page *page)
5699 {
5700         return __set_page_dirty_nobuffers(page);
5701 }
5702
5703 static int btrfs_permission(struct inode *inode, int mask)
5704 {
5705         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5706                 return -EACCES;
5707         return generic_permission(inode, mask, btrfs_check_acl);
5708 }
5709
5710 static struct inode_operations btrfs_dir_inode_operations = {
5711         .getattr        = btrfs_getattr,
5712         .lookup         = btrfs_lookup,
5713         .create         = btrfs_create,
5714         .unlink         = btrfs_unlink,
5715         .link           = btrfs_link,
5716         .mkdir          = btrfs_mkdir,
5717         .rmdir          = btrfs_rmdir,
5718         .rename         = btrfs_rename,
5719         .symlink        = btrfs_symlink,
5720         .setattr        = btrfs_setattr,
5721         .mknod          = btrfs_mknod,
5722         .setxattr       = btrfs_setxattr,
5723         .getxattr       = btrfs_getxattr,
5724         .listxattr      = btrfs_listxattr,
5725         .removexattr    = btrfs_removexattr,
5726         .permission     = btrfs_permission,
5727 };
5728 static struct inode_operations btrfs_dir_ro_inode_operations = {
5729         .lookup         = btrfs_lookup,
5730         .permission     = btrfs_permission,
5731 };
5732
5733 static struct file_operations btrfs_dir_file_operations = {
5734         .llseek         = generic_file_llseek,
5735         .read           = generic_read_dir,
5736         .readdir        = btrfs_real_readdir,
5737         .unlocked_ioctl = btrfs_ioctl,
5738 #ifdef CONFIG_COMPAT
5739         .compat_ioctl   = btrfs_ioctl,
5740 #endif
5741         .release        = btrfs_release_file,
5742         .fsync          = btrfs_sync_file,
5743 };
5744
5745 static struct extent_io_ops btrfs_extent_io_ops = {
5746         .fill_delalloc = run_delalloc_range,
5747         .submit_bio_hook = btrfs_submit_bio_hook,
5748         .merge_bio_hook = btrfs_merge_bio_hook,
5749         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5750         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5751         .writepage_start_hook = btrfs_writepage_start_hook,
5752         .readpage_io_failed_hook = btrfs_io_failed_hook,
5753         .set_bit_hook = btrfs_set_bit_hook,
5754         .clear_bit_hook = btrfs_clear_bit_hook,
5755         .merge_extent_hook = btrfs_merge_extent_hook,
5756         .split_extent_hook = btrfs_split_extent_hook,
5757 };
5758
5759 /*
5760  * btrfs doesn't support the bmap operation because swapfiles
5761  * use bmap to make a mapping of extents in the file.  They assume
5762  * these extents won't change over the life of the file and they
5763  * use the bmap result to do IO directly to the drive.
5764  *
5765  * the btrfs bmap call would return logical addresses that aren't
5766  * suitable for IO and they also will change frequently as COW
5767  * operations happen.  So, swapfile + btrfs == corruption.
5768  *
5769  * For now we're avoiding this by dropping bmap.
5770  */
5771 static struct address_space_operations btrfs_aops = {
5772         .readpage       = btrfs_readpage,
5773         .writepage      = btrfs_writepage,
5774         .writepages     = btrfs_writepages,
5775         .readpages      = btrfs_readpages,
5776         .sync_page      = block_sync_page,
5777         .direct_IO      = btrfs_direct_IO,
5778         .invalidatepage = btrfs_invalidatepage,
5779         .releasepage    = btrfs_releasepage,
5780         .set_page_dirty = btrfs_set_page_dirty,
5781 };
5782
5783 static struct address_space_operations btrfs_symlink_aops = {
5784         .readpage       = btrfs_readpage,
5785         .writepage      = btrfs_writepage,
5786         .invalidatepage = btrfs_invalidatepage,
5787         .releasepage    = btrfs_releasepage,
5788 };
5789
5790 static struct inode_operations btrfs_file_inode_operations = {
5791         .truncate       = btrfs_truncate,
5792         .getattr        = btrfs_getattr,
5793         .setattr        = btrfs_setattr,
5794         .setxattr       = btrfs_setxattr,
5795         .getxattr       = btrfs_getxattr,
5796         .listxattr      = btrfs_listxattr,
5797         .removexattr    = btrfs_removexattr,
5798         .permission     = btrfs_permission,
5799         .fallocate      = btrfs_fallocate,
5800         .fiemap         = btrfs_fiemap,
5801 };
5802 static struct inode_operations btrfs_special_inode_operations = {
5803         .getattr        = btrfs_getattr,
5804         .setattr        = btrfs_setattr,
5805         .permission     = btrfs_permission,
5806         .setxattr       = btrfs_setxattr,
5807         .getxattr       = btrfs_getxattr,
5808         .listxattr      = btrfs_listxattr,
5809         .removexattr    = btrfs_removexattr,
5810 };
5811 static struct inode_operations btrfs_symlink_inode_operations = {
5812         .readlink       = generic_readlink,
5813         .follow_link    = page_follow_link_light,
5814         .put_link       = page_put_link,
5815         .permission     = btrfs_permission,
5816         .setxattr       = btrfs_setxattr,
5817         .getxattr       = btrfs_getxattr,
5818         .listxattr      = btrfs_listxattr,
5819         .removexattr    = btrfs_removexattr,
5820 };
5821
5822 struct dentry_operations btrfs_dentry_operations = {
5823         .d_delete       = btrfs_dentry_delete,
5824 };