nfsd4: reshuffle lease-setting code to allow reuse
[safe/jmp/linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92                                      struct inode *inode,  struct inode *dir)
93 {
94         int err;
95
96         err = btrfs_init_acl(trans, inode, dir);
97         if (!err)
98                 err = btrfs_xattr_security_init(trans, inode, dir);
99         return err;
100 }
101
102 /*
103  * this does all the hard work for inserting an inline extent into
104  * the btree.  The caller should have done a btrfs_drop_extents so that
105  * no overlapping inline items exist in the btree
106  */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108                                 struct btrfs_root *root, struct inode *inode,
109                                 u64 start, size_t size, size_t compressed_size,
110                                 struct page **compressed_pages)
111 {
112         struct btrfs_key key;
113         struct btrfs_path *path;
114         struct extent_buffer *leaf;
115         struct page *page = NULL;
116         char *kaddr;
117         unsigned long ptr;
118         struct btrfs_file_extent_item *ei;
119         int err = 0;
120         int ret;
121         size_t cur_size = size;
122         size_t datasize;
123         unsigned long offset;
124         int use_compress = 0;
125
126         if (compressed_size && compressed_pages) {
127                 use_compress = 1;
128                 cur_size = compressed_size;
129         }
130
131         path = btrfs_alloc_path();
132         if (!path)
133                 return -ENOMEM;
134
135         path->leave_spinning = 1;
136         btrfs_set_trans_block_group(trans, inode);
137
138         key.objectid = inode->i_ino;
139         key.offset = start;
140         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141         datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143         inode_add_bytes(inode, size);
144         ret = btrfs_insert_empty_item(trans, root, path, &key,
145                                       datasize);
146         BUG_ON(ret);
147         if (ret) {
148                 err = ret;
149                 goto fail;
150         }
151         leaf = path->nodes[0];
152         ei = btrfs_item_ptr(leaf, path->slots[0],
153                             struct btrfs_file_extent_item);
154         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156         btrfs_set_file_extent_encryption(leaf, ei, 0);
157         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159         ptr = btrfs_file_extent_inline_start(ei);
160
161         if (use_compress) {
162                 struct page *cpage;
163                 int i = 0;
164                 while (compressed_size > 0) {
165                         cpage = compressed_pages[i];
166                         cur_size = min_t(unsigned long, compressed_size,
167                                        PAGE_CACHE_SIZE);
168
169                         kaddr = kmap_atomic(cpage, KM_USER0);
170                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
171                         kunmap_atomic(kaddr, KM_USER0);
172
173                         i++;
174                         ptr += cur_size;
175                         compressed_size -= cur_size;
176                 }
177                 btrfs_set_file_extent_compression(leaf, ei,
178                                                   BTRFS_COMPRESS_ZLIB);
179         } else {
180                 page = find_get_page(inode->i_mapping,
181                                      start >> PAGE_CACHE_SHIFT);
182                 btrfs_set_file_extent_compression(leaf, ei, 0);
183                 kaddr = kmap_atomic(page, KM_USER0);
184                 offset = start & (PAGE_CACHE_SIZE - 1);
185                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186                 kunmap_atomic(kaddr, KM_USER0);
187                 page_cache_release(page);
188         }
189         btrfs_mark_buffer_dirty(leaf);
190         btrfs_free_path(path);
191
192         /*
193          * we're an inline extent, so nobody can
194          * extend the file past i_size without locking
195          * a page we already have locked.
196          *
197          * We must do any isize and inode updates
198          * before we unlock the pages.  Otherwise we
199          * could end up racing with unlink.
200          */
201         BTRFS_I(inode)->disk_i_size = inode->i_size;
202         btrfs_update_inode(trans, root, inode);
203
204         return 0;
205 fail:
206         btrfs_free_path(path);
207         return err;
208 }
209
210
211 /*
212  * conditionally insert an inline extent into the file.  This
213  * does the checks required to make sure the data is small enough
214  * to fit as an inline extent.
215  */
216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
217                                  struct btrfs_root *root,
218                                  struct inode *inode, u64 start, u64 end,
219                                  size_t compressed_size,
220                                  struct page **compressed_pages)
221 {
222         u64 isize = i_size_read(inode);
223         u64 actual_end = min(end + 1, isize);
224         u64 inline_len = actual_end - start;
225         u64 aligned_end = (end + root->sectorsize - 1) &
226                         ~((u64)root->sectorsize - 1);
227         u64 hint_byte;
228         u64 data_len = inline_len;
229         int ret;
230
231         if (compressed_size)
232                 data_len = compressed_size;
233
234         if (start > 0 ||
235             actual_end >= PAGE_CACHE_SIZE ||
236             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237             (!compressed_size &&
238             (actual_end & (root->sectorsize - 1)) == 0) ||
239             end + 1 < isize ||
240             data_len > root->fs_info->max_inline) {
241                 return 1;
242         }
243
244         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
245                                  &hint_byte, 1);
246         BUG_ON(ret);
247
248         if (isize > actual_end)
249                 inline_len = min_t(u64, isize, actual_end);
250         ret = insert_inline_extent(trans, root, inode, start,
251                                    inline_len, compressed_size,
252                                    compressed_pages);
253         BUG_ON(ret);
254         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
255         return 0;
256 }
257
258 struct async_extent {
259         u64 start;
260         u64 ram_size;
261         u64 compressed_size;
262         struct page **pages;
263         unsigned long nr_pages;
264         struct list_head list;
265 };
266
267 struct async_cow {
268         struct inode *inode;
269         struct btrfs_root *root;
270         struct page *locked_page;
271         u64 start;
272         u64 end;
273         struct list_head extents;
274         struct btrfs_work work;
275 };
276
277 static noinline int add_async_extent(struct async_cow *cow,
278                                      u64 start, u64 ram_size,
279                                      u64 compressed_size,
280                                      struct page **pages,
281                                      unsigned long nr_pages)
282 {
283         struct async_extent *async_extent;
284
285         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286         async_extent->start = start;
287         async_extent->ram_size = ram_size;
288         async_extent->compressed_size = compressed_size;
289         async_extent->pages = pages;
290         async_extent->nr_pages = nr_pages;
291         list_add_tail(&async_extent->list, &cow->extents);
292         return 0;
293 }
294
295 /*
296  * we create compressed extents in two phases.  The first
297  * phase compresses a range of pages that have already been
298  * locked (both pages and state bits are locked).
299  *
300  * This is done inside an ordered work queue, and the compression
301  * is spread across many cpus.  The actual IO submission is step
302  * two, and the ordered work queue takes care of making sure that
303  * happens in the same order things were put onto the queue by
304  * writepages and friends.
305  *
306  * If this code finds it can't get good compression, it puts an
307  * entry onto the work queue to write the uncompressed bytes.  This
308  * makes sure that both compressed inodes and uncompressed inodes
309  * are written in the same order that pdflush sent them down.
310  */
311 static noinline int compress_file_range(struct inode *inode,
312                                         struct page *locked_page,
313                                         u64 start, u64 end,
314                                         struct async_cow *async_cow,
315                                         int *num_added)
316 {
317         struct btrfs_root *root = BTRFS_I(inode)->root;
318         struct btrfs_trans_handle *trans;
319         u64 num_bytes;
320         u64 orig_start;
321         u64 disk_num_bytes;
322         u64 blocksize = root->sectorsize;
323         u64 actual_end;
324         u64 isize = i_size_read(inode);
325         int ret = 0;
326         struct page **pages = NULL;
327         unsigned long nr_pages;
328         unsigned long nr_pages_ret = 0;
329         unsigned long total_compressed = 0;
330         unsigned long total_in = 0;
331         unsigned long max_compressed = 128 * 1024;
332         unsigned long max_uncompressed = 128 * 1024;
333         int i;
334         int will_compress;
335
336         orig_start = start;
337
338         actual_end = min_t(u64, isize, end + 1);
339 again:
340         will_compress = 0;
341         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343
344         /*
345          * we don't want to send crud past the end of i_size through
346          * compression, that's just a waste of CPU time.  So, if the
347          * end of the file is before the start of our current
348          * requested range of bytes, we bail out to the uncompressed
349          * cleanup code that can deal with all of this.
350          *
351          * It isn't really the fastest way to fix things, but this is a
352          * very uncommon corner.
353          */
354         if (actual_end <= start)
355                 goto cleanup_and_bail_uncompressed;
356
357         total_compressed = actual_end - start;
358
359         /* we want to make sure that amount of ram required to uncompress
360          * an extent is reasonable, so we limit the total size in ram
361          * of a compressed extent to 128k.  This is a crucial number
362          * because it also controls how easily we can spread reads across
363          * cpus for decompression.
364          *
365          * We also want to make sure the amount of IO required to do
366          * a random read is reasonably small, so we limit the size of
367          * a compressed extent to 128k.
368          */
369         total_compressed = min(total_compressed, max_uncompressed);
370         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
371         num_bytes = max(blocksize,  num_bytes);
372         disk_num_bytes = num_bytes;
373         total_in = 0;
374         ret = 0;
375
376         /*
377          * we do compression for mount -o compress and when the
378          * inode has not been flagged as nocompress.  This flag can
379          * change at any time if we discover bad compression ratios.
380          */
381         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
382             btrfs_test_opt(root, COMPRESS)) {
383                 WARN_ON(pages);
384                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
385
386                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387                                                 total_compressed, pages,
388                                                 nr_pages, &nr_pages_ret,
389                                                 &total_in,
390                                                 &total_compressed,
391                                                 max_compressed);
392
393                 if (!ret) {
394                         unsigned long offset = total_compressed &
395                                 (PAGE_CACHE_SIZE - 1);
396                         struct page *page = pages[nr_pages_ret - 1];
397                         char *kaddr;
398
399                         /* zero the tail end of the last page, we might be
400                          * sending it down to disk
401                          */
402                         if (offset) {
403                                 kaddr = kmap_atomic(page, KM_USER0);
404                                 memset(kaddr + offset, 0,
405                                        PAGE_CACHE_SIZE - offset);
406                                 kunmap_atomic(kaddr, KM_USER0);
407                         }
408                         will_compress = 1;
409                 }
410         }
411         if (start == 0) {
412                 trans = btrfs_join_transaction(root, 1);
413                 BUG_ON(!trans);
414                 btrfs_set_trans_block_group(trans, inode);
415
416                 /* lets try to make an inline extent */
417                 if (ret || total_in < (actual_end - start)) {
418                         /* we didn't compress the entire range, try
419                          * to make an uncompressed inline extent.
420                          */
421                         ret = cow_file_range_inline(trans, root, inode,
422                                                     start, end, 0, NULL);
423                 } else {
424                         /* try making a compressed inline extent */
425                         ret = cow_file_range_inline(trans, root, inode,
426                                                     start, end,
427                                                     total_compressed, pages);
428                 }
429                 if (ret == 0) {
430                         /*
431                          * inline extent creation worked, we don't need
432                          * to create any more async work items.  Unlock
433                          * and free up our temp pages.
434                          */
435                         extent_clear_unlock_delalloc(inode,
436                              &BTRFS_I(inode)->io_tree,
437                              start, end, NULL,
438                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
439                              EXTENT_CLEAR_DELALLOC |
440                              EXTENT_CLEAR_ACCOUNTING |
441                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
442
443                         btrfs_end_transaction(trans, root);
444                         goto free_pages_out;
445                 }
446                 btrfs_end_transaction(trans, root);
447         }
448
449         if (will_compress) {
450                 /*
451                  * we aren't doing an inline extent round the compressed size
452                  * up to a block size boundary so the allocator does sane
453                  * things
454                  */
455                 total_compressed = (total_compressed + blocksize - 1) &
456                         ~(blocksize - 1);
457
458                 /*
459                  * one last check to make sure the compression is really a
460                  * win, compare the page count read with the blocks on disk
461                  */
462                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463                         ~(PAGE_CACHE_SIZE - 1);
464                 if (total_compressed >= total_in) {
465                         will_compress = 0;
466                 } else {
467                         disk_num_bytes = total_compressed;
468                         num_bytes = total_in;
469                 }
470         }
471         if (!will_compress && pages) {
472                 /*
473                  * the compression code ran but failed to make things smaller,
474                  * free any pages it allocated and our page pointer array
475                  */
476                 for (i = 0; i < nr_pages_ret; i++) {
477                         WARN_ON(pages[i]->mapping);
478                         page_cache_release(pages[i]);
479                 }
480                 kfree(pages);
481                 pages = NULL;
482                 total_compressed = 0;
483                 nr_pages_ret = 0;
484
485                 /* flag the file so we don't compress in the future */
486                 if (!btrfs_test_opt(root, FORCE_COMPRESS))
487                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
488         }
489         if (will_compress) {
490                 *num_added += 1;
491
492                 /* the async work queues will take care of doing actual
493                  * allocation on disk for these compressed pages,
494                  * and will submit them to the elevator.
495                  */
496                 add_async_extent(async_cow, start, num_bytes,
497                                  total_compressed, pages, nr_pages_ret);
498
499                 if (start + num_bytes < end && start + num_bytes < actual_end) {
500                         start += num_bytes;
501                         pages = NULL;
502                         cond_resched();
503                         goto again;
504                 }
505         } else {
506 cleanup_and_bail_uncompressed:
507                 /*
508                  * No compression, but we still need to write the pages in
509                  * the file we've been given so far.  redirty the locked
510                  * page if it corresponds to our extent and set things up
511                  * for the async work queue to run cow_file_range to do
512                  * the normal delalloc dance
513                  */
514                 if (page_offset(locked_page) >= start &&
515                     page_offset(locked_page) <= end) {
516                         __set_page_dirty_nobuffers(locked_page);
517                         /* unlocked later on in the async handlers */
518                 }
519                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
520                 *num_added += 1;
521         }
522
523 out:
524         return 0;
525
526 free_pages_out:
527         for (i = 0; i < nr_pages_ret; i++) {
528                 WARN_ON(pages[i]->mapping);
529                 page_cache_release(pages[i]);
530         }
531         kfree(pages);
532
533         goto out;
534 }
535
536 /*
537  * phase two of compressed writeback.  This is the ordered portion
538  * of the code, which only gets called in the order the work was
539  * queued.  We walk all the async extents created by compress_file_range
540  * and send them down to the disk.
541  */
542 static noinline int submit_compressed_extents(struct inode *inode,
543                                               struct async_cow *async_cow)
544 {
545         struct async_extent *async_extent;
546         u64 alloc_hint = 0;
547         struct btrfs_trans_handle *trans;
548         struct btrfs_key ins;
549         struct extent_map *em;
550         struct btrfs_root *root = BTRFS_I(inode)->root;
551         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
552         struct extent_io_tree *io_tree;
553         int ret = 0;
554
555         if (list_empty(&async_cow->extents))
556                 return 0;
557
558
559         while (!list_empty(&async_cow->extents)) {
560                 async_extent = list_entry(async_cow->extents.next,
561                                           struct async_extent, list);
562                 list_del(&async_extent->list);
563
564                 io_tree = &BTRFS_I(inode)->io_tree;
565
566 retry:
567                 /* did the compression code fall back to uncompressed IO? */
568                 if (!async_extent->pages) {
569                         int page_started = 0;
570                         unsigned long nr_written = 0;
571
572                         lock_extent(io_tree, async_extent->start,
573                                     async_extent->start +
574                                     async_extent->ram_size - 1, GFP_NOFS);
575
576                         /* allocate blocks */
577                         ret = cow_file_range(inode, async_cow->locked_page,
578                                              async_extent->start,
579                                              async_extent->start +
580                                              async_extent->ram_size - 1,
581                                              &page_started, &nr_written, 0);
582
583                         /*
584                          * if page_started, cow_file_range inserted an
585                          * inline extent and took care of all the unlocking
586                          * and IO for us.  Otherwise, we need to submit
587                          * all those pages down to the drive.
588                          */
589                         if (!page_started && !ret)
590                                 extent_write_locked_range(io_tree,
591                                                   inode, async_extent->start,
592                                                   async_extent->start +
593                                                   async_extent->ram_size - 1,
594                                                   btrfs_get_extent,
595                                                   WB_SYNC_ALL);
596                         kfree(async_extent);
597                         cond_resched();
598                         continue;
599                 }
600
601                 lock_extent(io_tree, async_extent->start,
602                             async_extent->start + async_extent->ram_size - 1,
603                             GFP_NOFS);
604
605                 trans = btrfs_join_transaction(root, 1);
606                 ret = btrfs_reserve_extent(trans, root,
607                                            async_extent->compressed_size,
608                                            async_extent->compressed_size,
609                                            0, alloc_hint,
610                                            (u64)-1, &ins, 1);
611                 btrfs_end_transaction(trans, root);
612
613                 if (ret) {
614                         int i;
615                         for (i = 0; i < async_extent->nr_pages; i++) {
616                                 WARN_ON(async_extent->pages[i]->mapping);
617                                 page_cache_release(async_extent->pages[i]);
618                         }
619                         kfree(async_extent->pages);
620                         async_extent->nr_pages = 0;
621                         async_extent->pages = NULL;
622                         unlock_extent(io_tree, async_extent->start,
623                                       async_extent->start +
624                                       async_extent->ram_size - 1, GFP_NOFS);
625                         goto retry;
626                 }
627
628                 /*
629                  * here we're doing allocation and writeback of the
630                  * compressed pages
631                  */
632                 btrfs_drop_extent_cache(inode, async_extent->start,
633                                         async_extent->start +
634                                         async_extent->ram_size - 1, 0);
635
636                 em = alloc_extent_map(GFP_NOFS);
637                 em->start = async_extent->start;
638                 em->len = async_extent->ram_size;
639                 em->orig_start = em->start;
640
641                 em->block_start = ins.objectid;
642                 em->block_len = ins.offset;
643                 em->bdev = root->fs_info->fs_devices->latest_bdev;
644                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
645                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
646
647                 while (1) {
648                         write_lock(&em_tree->lock);
649                         ret = add_extent_mapping(em_tree, em);
650                         write_unlock(&em_tree->lock);
651                         if (ret != -EEXIST) {
652                                 free_extent_map(em);
653                                 break;
654                         }
655                         btrfs_drop_extent_cache(inode, async_extent->start,
656                                                 async_extent->start +
657                                                 async_extent->ram_size - 1, 0);
658                 }
659
660                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
661                                                ins.objectid,
662                                                async_extent->ram_size,
663                                                ins.offset,
664                                                BTRFS_ORDERED_COMPRESSED);
665                 BUG_ON(ret);
666
667                 /*
668                  * clear dirty, set writeback and unlock the pages.
669                  */
670                 extent_clear_unlock_delalloc(inode,
671                                 &BTRFS_I(inode)->io_tree,
672                                 async_extent->start,
673                                 async_extent->start +
674                                 async_extent->ram_size - 1,
675                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
676                                 EXTENT_CLEAR_UNLOCK |
677                                 EXTENT_CLEAR_DELALLOC |
678                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
679
680                 ret = btrfs_submit_compressed_write(inode,
681                                     async_extent->start,
682                                     async_extent->ram_size,
683                                     ins.objectid,
684                                     ins.offset, async_extent->pages,
685                                     async_extent->nr_pages);
686
687                 BUG_ON(ret);
688                 alloc_hint = ins.objectid + ins.offset;
689                 kfree(async_extent);
690                 cond_resched();
691         }
692
693         return 0;
694 }
695
696 /*
697  * when extent_io.c finds a delayed allocation range in the file,
698  * the call backs end up in this code.  The basic idea is to
699  * allocate extents on disk for the range, and create ordered data structs
700  * in ram to track those extents.
701  *
702  * locked_page is the page that writepage had locked already.  We use
703  * it to make sure we don't do extra locks or unlocks.
704  *
705  * *page_started is set to one if we unlock locked_page and do everything
706  * required to start IO on it.  It may be clean and already done with
707  * IO when we return.
708  */
709 static noinline int cow_file_range(struct inode *inode,
710                                    struct page *locked_page,
711                                    u64 start, u64 end, int *page_started,
712                                    unsigned long *nr_written,
713                                    int unlock)
714 {
715         struct btrfs_root *root = BTRFS_I(inode)->root;
716         struct btrfs_trans_handle *trans;
717         u64 alloc_hint = 0;
718         u64 num_bytes;
719         unsigned long ram_size;
720         u64 disk_num_bytes;
721         u64 cur_alloc_size;
722         u64 blocksize = root->sectorsize;
723         u64 actual_end;
724         u64 isize = i_size_read(inode);
725         struct btrfs_key ins;
726         struct extent_map *em;
727         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
728         int ret = 0;
729
730         trans = btrfs_join_transaction(root, 1);
731         BUG_ON(!trans);
732         btrfs_set_trans_block_group(trans, inode);
733
734         actual_end = min_t(u64, isize, end + 1);
735
736         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
737         num_bytes = max(blocksize,  num_bytes);
738         disk_num_bytes = num_bytes;
739         ret = 0;
740
741         if (start == 0) {
742                 /* lets try to make an inline extent */
743                 ret = cow_file_range_inline(trans, root, inode,
744                                             start, end, 0, NULL);
745                 if (ret == 0) {
746                         extent_clear_unlock_delalloc(inode,
747                                      &BTRFS_I(inode)->io_tree,
748                                      start, end, NULL,
749                                      EXTENT_CLEAR_UNLOCK_PAGE |
750                                      EXTENT_CLEAR_UNLOCK |
751                                      EXTENT_CLEAR_DELALLOC |
752                                      EXTENT_CLEAR_ACCOUNTING |
753                                      EXTENT_CLEAR_DIRTY |
754                                      EXTENT_SET_WRITEBACK |
755                                      EXTENT_END_WRITEBACK);
756
757                         *nr_written = *nr_written +
758                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
759                         *page_started = 1;
760                         ret = 0;
761                         goto out;
762                 }
763         }
764
765         BUG_ON(disk_num_bytes >
766                btrfs_super_total_bytes(&root->fs_info->super_copy));
767
768
769         read_lock(&BTRFS_I(inode)->extent_tree.lock);
770         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
771                                    start, num_bytes);
772         if (em) {
773                 /*
774                  * if block start isn't an actual block number then find the
775                  * first block in this inode and use that as a hint.  If that
776                  * block is also bogus then just don't worry about it.
777                  */
778                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779                         free_extent_map(em);
780                         em = search_extent_mapping(em_tree, 0, 0);
781                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
782                                 alloc_hint = em->block_start;
783                         if (em)
784                                 free_extent_map(em);
785                 } else {
786                         alloc_hint = em->block_start;
787                         free_extent_map(em);
788                 }
789         }
790         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
791         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
792
793         while (disk_num_bytes > 0) {
794                 unsigned long op;
795
796                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
797                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
798                                            root->sectorsize, 0, alloc_hint,
799                                            (u64)-1, &ins, 1);
800                 BUG_ON(ret);
801
802                 em = alloc_extent_map(GFP_NOFS);
803                 em->start = start;
804                 em->orig_start = em->start;
805                 ram_size = ins.offset;
806                 em->len = ins.offset;
807
808                 em->block_start = ins.objectid;
809                 em->block_len = ins.offset;
810                 em->bdev = root->fs_info->fs_devices->latest_bdev;
811                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
812
813                 while (1) {
814                         write_lock(&em_tree->lock);
815                         ret = add_extent_mapping(em_tree, em);
816                         write_unlock(&em_tree->lock);
817                         if (ret != -EEXIST) {
818                                 free_extent_map(em);
819                                 break;
820                         }
821                         btrfs_drop_extent_cache(inode, start,
822                                                 start + ram_size - 1, 0);
823                 }
824
825                 cur_alloc_size = ins.offset;
826                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
827                                                ram_size, cur_alloc_size, 0);
828                 BUG_ON(ret);
829
830                 if (root->root_key.objectid ==
831                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
832                         ret = btrfs_reloc_clone_csums(inode, start,
833                                                       cur_alloc_size);
834                         BUG_ON(ret);
835                 }
836
837                 if (disk_num_bytes < cur_alloc_size)
838                         break;
839
840                 /* we're not doing compressed IO, don't unlock the first
841                  * page (which the caller expects to stay locked), don't
842                  * clear any dirty bits and don't set any writeback bits
843                  *
844                  * Do set the Private2 bit so we know this page was properly
845                  * setup for writepage
846                  */
847                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
848                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
849                         EXTENT_SET_PRIVATE2;
850
851                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
852                                              start, start + ram_size - 1,
853                                              locked_page, op);
854                 disk_num_bytes -= cur_alloc_size;
855                 num_bytes -= cur_alloc_size;
856                 alloc_hint = ins.objectid + ins.offset;
857                 start += cur_alloc_size;
858         }
859 out:
860         ret = 0;
861         btrfs_end_transaction(trans, root);
862
863         return ret;
864 }
865
866 /*
867  * work queue call back to started compression on a file and pages
868  */
869 static noinline void async_cow_start(struct btrfs_work *work)
870 {
871         struct async_cow *async_cow;
872         int num_added = 0;
873         async_cow = container_of(work, struct async_cow, work);
874
875         compress_file_range(async_cow->inode, async_cow->locked_page,
876                             async_cow->start, async_cow->end, async_cow,
877                             &num_added);
878         if (num_added == 0)
879                 async_cow->inode = NULL;
880 }
881
882 /*
883  * work queue call back to submit previously compressed pages
884  */
885 static noinline void async_cow_submit(struct btrfs_work *work)
886 {
887         struct async_cow *async_cow;
888         struct btrfs_root *root;
889         unsigned long nr_pages;
890
891         async_cow = container_of(work, struct async_cow, work);
892
893         root = async_cow->root;
894         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
895                 PAGE_CACHE_SHIFT;
896
897         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
898
899         if (atomic_read(&root->fs_info->async_delalloc_pages) <
900             5 * 1042 * 1024 &&
901             waitqueue_active(&root->fs_info->async_submit_wait))
902                 wake_up(&root->fs_info->async_submit_wait);
903
904         if (async_cow->inode)
905                 submit_compressed_extents(async_cow->inode, async_cow);
906 }
907
908 static noinline void async_cow_free(struct btrfs_work *work)
909 {
910         struct async_cow *async_cow;
911         async_cow = container_of(work, struct async_cow, work);
912         kfree(async_cow);
913 }
914
915 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
916                                 u64 start, u64 end, int *page_started,
917                                 unsigned long *nr_written)
918 {
919         struct async_cow *async_cow;
920         struct btrfs_root *root = BTRFS_I(inode)->root;
921         unsigned long nr_pages;
922         u64 cur_end;
923         int limit = 10 * 1024 * 1042;
924
925         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
926                          1, 0, NULL, GFP_NOFS);
927         while (start < end) {
928                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
929                 async_cow->inode = inode;
930                 async_cow->root = root;
931                 async_cow->locked_page = locked_page;
932                 async_cow->start = start;
933
934                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
935                         cur_end = end;
936                 else
937                         cur_end = min(end, start + 512 * 1024 - 1);
938
939                 async_cow->end = cur_end;
940                 INIT_LIST_HEAD(&async_cow->extents);
941
942                 async_cow->work.func = async_cow_start;
943                 async_cow->work.ordered_func = async_cow_submit;
944                 async_cow->work.ordered_free = async_cow_free;
945                 async_cow->work.flags = 0;
946
947                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
948                         PAGE_CACHE_SHIFT;
949                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
950
951                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
952                                    &async_cow->work);
953
954                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
955                         wait_event(root->fs_info->async_submit_wait,
956                            (atomic_read(&root->fs_info->async_delalloc_pages) <
957                             limit));
958                 }
959
960                 while (atomic_read(&root->fs_info->async_submit_draining) &&
961                       atomic_read(&root->fs_info->async_delalloc_pages)) {
962                         wait_event(root->fs_info->async_submit_wait,
963                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
964                            0));
965                 }
966
967                 *nr_written += nr_pages;
968                 start = cur_end + 1;
969         }
970         *page_started = 1;
971         return 0;
972 }
973
974 static noinline int csum_exist_in_range(struct btrfs_root *root,
975                                         u64 bytenr, u64 num_bytes)
976 {
977         int ret;
978         struct btrfs_ordered_sum *sums;
979         LIST_HEAD(list);
980
981         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
982                                        bytenr + num_bytes - 1, &list);
983         if (ret == 0 && list_empty(&list))
984                 return 0;
985
986         while (!list_empty(&list)) {
987                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
988                 list_del(&sums->list);
989                 kfree(sums);
990         }
991         return 1;
992 }
993
994 /*
995  * when nowcow writeback call back.  This checks for snapshots or COW copies
996  * of the extents that exist in the file, and COWs the file as required.
997  *
998  * If no cow copies or snapshots exist, we write directly to the existing
999  * blocks on disk
1000  */
1001 static noinline int run_delalloc_nocow(struct inode *inode,
1002                                        struct page *locked_page,
1003                               u64 start, u64 end, int *page_started, int force,
1004                               unsigned long *nr_written)
1005 {
1006         struct btrfs_root *root = BTRFS_I(inode)->root;
1007         struct btrfs_trans_handle *trans;
1008         struct extent_buffer *leaf;
1009         struct btrfs_path *path;
1010         struct btrfs_file_extent_item *fi;
1011         struct btrfs_key found_key;
1012         u64 cow_start;
1013         u64 cur_offset;
1014         u64 extent_end;
1015         u64 extent_offset;
1016         u64 disk_bytenr;
1017         u64 num_bytes;
1018         int extent_type;
1019         int ret;
1020         int type;
1021         int nocow;
1022         int check_prev = 1;
1023
1024         path = btrfs_alloc_path();
1025         BUG_ON(!path);
1026         trans = btrfs_join_transaction(root, 1);
1027         BUG_ON(!trans);
1028
1029         cow_start = (u64)-1;
1030         cur_offset = start;
1031         while (1) {
1032                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1033                                                cur_offset, 0);
1034                 BUG_ON(ret < 0);
1035                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1036                         leaf = path->nodes[0];
1037                         btrfs_item_key_to_cpu(leaf, &found_key,
1038                                               path->slots[0] - 1);
1039                         if (found_key.objectid == inode->i_ino &&
1040                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1041                                 path->slots[0]--;
1042                 }
1043                 check_prev = 0;
1044 next_slot:
1045                 leaf = path->nodes[0];
1046                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1047                         ret = btrfs_next_leaf(root, path);
1048                         if (ret < 0)
1049                                 BUG_ON(1);
1050                         if (ret > 0)
1051                                 break;
1052                         leaf = path->nodes[0];
1053                 }
1054
1055                 nocow = 0;
1056                 disk_bytenr = 0;
1057                 num_bytes = 0;
1058                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1059
1060                 if (found_key.objectid > inode->i_ino ||
1061                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1062                     found_key.offset > end)
1063                         break;
1064
1065                 if (found_key.offset > cur_offset) {
1066                         extent_end = found_key.offset;
1067                         extent_type = 0;
1068                         goto out_check;
1069                 }
1070
1071                 fi = btrfs_item_ptr(leaf, path->slots[0],
1072                                     struct btrfs_file_extent_item);
1073                 extent_type = btrfs_file_extent_type(leaf, fi);
1074
1075                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1076                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1077                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1078                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1079                         extent_end = found_key.offset +
1080                                 btrfs_file_extent_num_bytes(leaf, fi);
1081                         if (extent_end <= start) {
1082                                 path->slots[0]++;
1083                                 goto next_slot;
1084                         }
1085                         if (disk_bytenr == 0)
1086                                 goto out_check;
1087                         if (btrfs_file_extent_compression(leaf, fi) ||
1088                             btrfs_file_extent_encryption(leaf, fi) ||
1089                             btrfs_file_extent_other_encoding(leaf, fi))
1090                                 goto out_check;
1091                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1092                                 goto out_check;
1093                         if (btrfs_extent_readonly(root, disk_bytenr))
1094                                 goto out_check;
1095                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1096                                                   found_key.offset -
1097                                                   extent_offset, disk_bytenr))
1098                                 goto out_check;
1099                         disk_bytenr += extent_offset;
1100                         disk_bytenr += cur_offset - found_key.offset;
1101                         num_bytes = min(end + 1, extent_end) - cur_offset;
1102                         /*
1103                          * force cow if csum exists in the range.
1104                          * this ensure that csum for a given extent are
1105                          * either valid or do not exist.
1106                          */
1107                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1108                                 goto out_check;
1109                         nocow = 1;
1110                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1111                         extent_end = found_key.offset +
1112                                 btrfs_file_extent_inline_len(leaf, fi);
1113                         extent_end = ALIGN(extent_end, root->sectorsize);
1114                 } else {
1115                         BUG_ON(1);
1116                 }
1117 out_check:
1118                 if (extent_end <= start) {
1119                         path->slots[0]++;
1120                         goto next_slot;
1121                 }
1122                 if (!nocow) {
1123                         if (cow_start == (u64)-1)
1124                                 cow_start = cur_offset;
1125                         cur_offset = extent_end;
1126                         if (cur_offset > end)
1127                                 break;
1128                         path->slots[0]++;
1129                         goto next_slot;
1130                 }
1131
1132                 btrfs_release_path(root, path);
1133                 if (cow_start != (u64)-1) {
1134                         ret = cow_file_range(inode, locked_page, cow_start,
1135                                         found_key.offset - 1, page_started,
1136                                         nr_written, 1);
1137                         BUG_ON(ret);
1138                         cow_start = (u64)-1;
1139                 }
1140
1141                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1142                         struct extent_map *em;
1143                         struct extent_map_tree *em_tree;
1144                         em_tree = &BTRFS_I(inode)->extent_tree;
1145                         em = alloc_extent_map(GFP_NOFS);
1146                         em->start = cur_offset;
1147                         em->orig_start = em->start;
1148                         em->len = num_bytes;
1149                         em->block_len = num_bytes;
1150                         em->block_start = disk_bytenr;
1151                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1152                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1153                         while (1) {
1154                                 write_lock(&em_tree->lock);
1155                                 ret = add_extent_mapping(em_tree, em);
1156                                 write_unlock(&em_tree->lock);
1157                                 if (ret != -EEXIST) {
1158                                         free_extent_map(em);
1159                                         break;
1160                                 }
1161                                 btrfs_drop_extent_cache(inode, em->start,
1162                                                 em->start + em->len - 1, 0);
1163                         }
1164                         type = BTRFS_ORDERED_PREALLOC;
1165                 } else {
1166                         type = BTRFS_ORDERED_NOCOW;
1167                 }
1168
1169                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1170                                                num_bytes, num_bytes, type);
1171                 BUG_ON(ret);
1172
1173                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1174                                 cur_offset, cur_offset + num_bytes - 1,
1175                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1176                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1177                                 EXTENT_SET_PRIVATE2);
1178                 cur_offset = extent_end;
1179                 if (cur_offset > end)
1180                         break;
1181         }
1182         btrfs_release_path(root, path);
1183
1184         if (cur_offset <= end && cow_start == (u64)-1)
1185                 cow_start = cur_offset;
1186         if (cow_start != (u64)-1) {
1187                 ret = cow_file_range(inode, locked_page, cow_start, end,
1188                                      page_started, nr_written, 1);
1189                 BUG_ON(ret);
1190         }
1191
1192         ret = btrfs_end_transaction(trans, root);
1193         BUG_ON(ret);
1194         btrfs_free_path(path);
1195         return 0;
1196 }
1197
1198 /*
1199  * extent_io.c call back to do delayed allocation processing
1200  */
1201 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1202                               u64 start, u64 end, int *page_started,
1203                               unsigned long *nr_written)
1204 {
1205         int ret;
1206         struct btrfs_root *root = BTRFS_I(inode)->root;
1207
1208         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1209                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1210                                          page_started, 1, nr_written);
1211         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1212                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1213                                          page_started, 0, nr_written);
1214         else if (!btrfs_test_opt(root, COMPRESS))
1215                 ret = cow_file_range(inode, locked_page, start, end,
1216                                       page_started, nr_written, 1);
1217         else
1218                 ret = cow_file_range_async(inode, locked_page, start, end,
1219                                            page_started, nr_written);
1220         return ret;
1221 }
1222
1223 static int btrfs_split_extent_hook(struct inode *inode,
1224                                     struct extent_state *orig, u64 split)
1225 {
1226         struct btrfs_root *root = BTRFS_I(inode)->root;
1227         u64 size;
1228
1229         if (!(orig->state & EXTENT_DELALLOC))
1230                 return 0;
1231
1232         size = orig->end - orig->start + 1;
1233         if (size > root->fs_info->max_extent) {
1234                 u64 num_extents;
1235                 u64 new_size;
1236
1237                 new_size = orig->end - split + 1;
1238                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1239                                         root->fs_info->max_extent);
1240
1241                 /*
1242                  * if we break a large extent up then leave oustanding_extents
1243                  * be, since we've already accounted for the large extent.
1244                  */
1245                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1246                               root->fs_info->max_extent) < num_extents)
1247                         return 0;
1248         }
1249
1250         spin_lock(&BTRFS_I(inode)->accounting_lock);
1251         BTRFS_I(inode)->outstanding_extents++;
1252         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1253
1254         return 0;
1255 }
1256
1257 /*
1258  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259  * extents so we can keep track of new extents that are just merged onto old
1260  * extents, such as when we are doing sequential writes, so we can properly
1261  * account for the metadata space we'll need.
1262  */
1263 static int btrfs_merge_extent_hook(struct inode *inode,
1264                                    struct extent_state *new,
1265                                    struct extent_state *other)
1266 {
1267         struct btrfs_root *root = BTRFS_I(inode)->root;
1268         u64 new_size, old_size;
1269         u64 num_extents;
1270
1271         /* not delalloc, ignore it */
1272         if (!(other->state & EXTENT_DELALLOC))
1273                 return 0;
1274
1275         old_size = other->end - other->start + 1;
1276         if (new->start < other->start)
1277                 new_size = other->end - new->start + 1;
1278         else
1279                 new_size = new->end - other->start + 1;
1280
1281         /* we're not bigger than the max, unreserve the space and go */
1282         if (new_size <= root->fs_info->max_extent) {
1283                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1284                 BTRFS_I(inode)->outstanding_extents--;
1285                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1286                 return 0;
1287         }
1288
1289         /*
1290          * If we grew by another max_extent, just return, we want to keep that
1291          * reserved amount.
1292          */
1293         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1294                                 root->fs_info->max_extent);
1295         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1296                       root->fs_info->max_extent) > num_extents)
1297                 return 0;
1298
1299         spin_lock(&BTRFS_I(inode)->accounting_lock);
1300         BTRFS_I(inode)->outstanding_extents--;
1301         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1302
1303         return 0;
1304 }
1305
1306 /*
1307  * extent_io.c set_bit_hook, used to track delayed allocation
1308  * bytes in this file, and to maintain the list of inodes that
1309  * have pending delalloc work to be done.
1310  */
1311 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1312                        unsigned long old, unsigned long bits)
1313 {
1314
1315         /*
1316          * set_bit and clear bit hooks normally require _irqsave/restore
1317          * but in this case, we are only testeing for the DELALLOC
1318          * bit, which is only set or cleared with irqs on
1319          */
1320         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1321                 struct btrfs_root *root = BTRFS_I(inode)->root;
1322
1323                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1324                 BTRFS_I(inode)->outstanding_extents++;
1325                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1326                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1327                 spin_lock(&root->fs_info->delalloc_lock);
1328                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1329                 root->fs_info->delalloc_bytes += end - start + 1;
1330                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1331                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1332                                       &root->fs_info->delalloc_inodes);
1333                 }
1334                 spin_unlock(&root->fs_info->delalloc_lock);
1335         }
1336         return 0;
1337 }
1338
1339 /*
1340  * extent_io.c clear_bit_hook, see set_bit_hook for why
1341  */
1342 static int btrfs_clear_bit_hook(struct inode *inode,
1343                                 struct extent_state *state, unsigned long bits)
1344 {
1345         /*
1346          * set_bit and clear bit hooks normally require _irqsave/restore
1347          * but in this case, we are only testeing for the DELALLOC
1348          * bit, which is only set or cleared with irqs on
1349          */
1350         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1351                 struct btrfs_root *root = BTRFS_I(inode)->root;
1352
1353                 if (bits & EXTENT_DO_ACCOUNTING) {
1354                         spin_lock(&BTRFS_I(inode)->accounting_lock);
1355                         BTRFS_I(inode)->outstanding_extents--;
1356                         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1357                         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1358                 }
1359
1360                 spin_lock(&root->fs_info->delalloc_lock);
1361                 if (state->end - state->start + 1 >
1362                     root->fs_info->delalloc_bytes) {
1363                         printk(KERN_INFO "btrfs warning: delalloc account "
1364                                "%llu %llu\n",
1365                                (unsigned long long)
1366                                state->end - state->start + 1,
1367                                (unsigned long long)
1368                                root->fs_info->delalloc_bytes);
1369                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1370                         root->fs_info->delalloc_bytes = 0;
1371                         BTRFS_I(inode)->delalloc_bytes = 0;
1372                 } else {
1373                         btrfs_delalloc_free_space(root, inode,
1374                                                   state->end -
1375                                                   state->start + 1);
1376                         root->fs_info->delalloc_bytes -= state->end -
1377                                 state->start + 1;
1378                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1379                                 state->start + 1;
1380                 }
1381                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1382                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1383                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1384                 }
1385                 spin_unlock(&root->fs_info->delalloc_lock);
1386         }
1387         return 0;
1388 }
1389
1390 /*
1391  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1392  * we don't create bios that span stripes or chunks
1393  */
1394 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1395                          size_t size, struct bio *bio,
1396                          unsigned long bio_flags)
1397 {
1398         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1399         struct btrfs_mapping_tree *map_tree;
1400         u64 logical = (u64)bio->bi_sector << 9;
1401         u64 length = 0;
1402         u64 map_length;
1403         int ret;
1404
1405         if (bio_flags & EXTENT_BIO_COMPRESSED)
1406                 return 0;
1407
1408         length = bio->bi_size;
1409         map_tree = &root->fs_info->mapping_tree;
1410         map_length = length;
1411         ret = btrfs_map_block(map_tree, READ, logical,
1412                               &map_length, NULL, 0);
1413
1414         if (map_length < length + size)
1415                 return 1;
1416         return 0;
1417 }
1418
1419 /*
1420  * in order to insert checksums into the metadata in large chunks,
1421  * we wait until bio submission time.   All the pages in the bio are
1422  * checksummed and sums are attached onto the ordered extent record.
1423  *
1424  * At IO completion time the cums attached on the ordered extent record
1425  * are inserted into the btree
1426  */
1427 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1428                                     struct bio *bio, int mirror_num,
1429                                     unsigned long bio_flags)
1430 {
1431         struct btrfs_root *root = BTRFS_I(inode)->root;
1432         int ret = 0;
1433
1434         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1435         BUG_ON(ret);
1436         return 0;
1437 }
1438
1439 /*
1440  * in order to insert checksums into the metadata in large chunks,
1441  * we wait until bio submission time.   All the pages in the bio are
1442  * checksummed and sums are attached onto the ordered extent record.
1443  *
1444  * At IO completion time the cums attached on the ordered extent record
1445  * are inserted into the btree
1446  */
1447 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1448                           int mirror_num, unsigned long bio_flags)
1449 {
1450         struct btrfs_root *root = BTRFS_I(inode)->root;
1451         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1452 }
1453
1454 /*
1455  * extent_io.c submission hook. This does the right thing for csum calculation
1456  * on write, or reading the csums from the tree before a read
1457  */
1458 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1459                           int mirror_num, unsigned long bio_flags)
1460 {
1461         struct btrfs_root *root = BTRFS_I(inode)->root;
1462         int ret = 0;
1463         int skip_sum;
1464
1465         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1466
1467         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1468         BUG_ON(ret);
1469
1470         if (!(rw & (1 << BIO_RW))) {
1471                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1472                         return btrfs_submit_compressed_read(inode, bio,
1473                                                     mirror_num, bio_flags);
1474                 } else if (!skip_sum)
1475                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1476                 goto mapit;
1477         } else if (!skip_sum) {
1478                 /* csum items have already been cloned */
1479                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1480                         goto mapit;
1481                 /* we're doing a write, do the async checksumming */
1482                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1483                                    inode, rw, bio, mirror_num,
1484                                    bio_flags, __btrfs_submit_bio_start,
1485                                    __btrfs_submit_bio_done);
1486         }
1487
1488 mapit:
1489         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491
1492 /*
1493  * given a list of ordered sums record them in the inode.  This happens
1494  * at IO completion time based on sums calculated at bio submission time.
1495  */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497                              struct inode *inode, u64 file_offset,
1498                              struct list_head *list)
1499 {
1500         struct btrfs_ordered_sum *sum;
1501
1502         btrfs_set_trans_block_group(trans, inode);
1503
1504         list_for_each_entry(sum, list, list) {
1505                 btrfs_csum_file_blocks(trans,
1506                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507         }
1508         return 0;
1509 }
1510
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1512 {
1513         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514                 WARN_ON(1);
1515         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516                                    GFP_NOFS);
1517 }
1518
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521         struct page *page;
1522         struct btrfs_work work;
1523 };
1524
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1526 {
1527         struct btrfs_writepage_fixup *fixup;
1528         struct btrfs_ordered_extent *ordered;
1529         struct page *page;
1530         struct inode *inode;
1531         u64 page_start;
1532         u64 page_end;
1533
1534         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1535         page = fixup->page;
1536 again:
1537         lock_page(page);
1538         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1539                 ClearPageChecked(page);
1540                 goto out_page;
1541         }
1542
1543         inode = page->mapping->host;
1544         page_start = page_offset(page);
1545         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1546
1547         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1548
1549         /* already ordered? We're done */
1550         if (PagePrivate2(page))
1551                 goto out;
1552
1553         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1554         if (ordered) {
1555                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1556                               page_end, GFP_NOFS);
1557                 unlock_page(page);
1558                 btrfs_start_ordered_extent(inode, ordered, 1);
1559                 goto again;
1560         }
1561
1562         btrfs_set_extent_delalloc(inode, page_start, page_end);
1563         ClearPageChecked(page);
1564 out:
1565         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1566 out_page:
1567         unlock_page(page);
1568         page_cache_release(page);
1569 }
1570
1571 /*
1572  * There are a few paths in the higher layers of the kernel that directly
1573  * set the page dirty bit without asking the filesystem if it is a
1574  * good idea.  This causes problems because we want to make sure COW
1575  * properly happens and the data=ordered rules are followed.
1576  *
1577  * In our case any range that doesn't have the ORDERED bit set
1578  * hasn't been properly setup for IO.  We kick off an async process
1579  * to fix it up.  The async helper will wait for ordered extents, set
1580  * the delalloc bit and make it safe to write the page.
1581  */
1582 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1583 {
1584         struct inode *inode = page->mapping->host;
1585         struct btrfs_writepage_fixup *fixup;
1586         struct btrfs_root *root = BTRFS_I(inode)->root;
1587
1588         /* this page is properly in the ordered list */
1589         if (TestClearPagePrivate2(page))
1590                 return 0;
1591
1592         if (PageChecked(page))
1593                 return -EAGAIN;
1594
1595         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1596         if (!fixup)
1597                 return -EAGAIN;
1598
1599         SetPageChecked(page);
1600         page_cache_get(page);
1601         fixup->work.func = btrfs_writepage_fixup_worker;
1602         fixup->page = page;
1603         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1604         return -EAGAIN;
1605 }
1606
1607 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1608                                        struct inode *inode, u64 file_pos,
1609                                        u64 disk_bytenr, u64 disk_num_bytes,
1610                                        u64 num_bytes, u64 ram_bytes,
1611                                        u8 compression, u8 encryption,
1612                                        u16 other_encoding, int extent_type)
1613 {
1614         struct btrfs_root *root = BTRFS_I(inode)->root;
1615         struct btrfs_file_extent_item *fi;
1616         struct btrfs_path *path;
1617         struct extent_buffer *leaf;
1618         struct btrfs_key ins;
1619         u64 hint;
1620         int ret;
1621
1622         path = btrfs_alloc_path();
1623         BUG_ON(!path);
1624
1625         path->leave_spinning = 1;
1626
1627         /*
1628          * we may be replacing one extent in the tree with another.
1629          * The new extent is pinned in the extent map, and we don't want
1630          * to drop it from the cache until it is completely in the btree.
1631          *
1632          * So, tell btrfs_drop_extents to leave this extent in the cache.
1633          * the caller is expected to unpin it and allow it to be merged
1634          * with the others.
1635          */
1636         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1637                                  &hint, 0);
1638         BUG_ON(ret);
1639
1640         ins.objectid = inode->i_ino;
1641         ins.offset = file_pos;
1642         ins.type = BTRFS_EXTENT_DATA_KEY;
1643         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1644         BUG_ON(ret);
1645         leaf = path->nodes[0];
1646         fi = btrfs_item_ptr(leaf, path->slots[0],
1647                             struct btrfs_file_extent_item);
1648         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1649         btrfs_set_file_extent_type(leaf, fi, extent_type);
1650         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1651         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1652         btrfs_set_file_extent_offset(leaf, fi, 0);
1653         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1654         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1655         btrfs_set_file_extent_compression(leaf, fi, compression);
1656         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1657         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1658
1659         btrfs_unlock_up_safe(path, 1);
1660         btrfs_set_lock_blocking(leaf);
1661
1662         btrfs_mark_buffer_dirty(leaf);
1663
1664         inode_add_bytes(inode, num_bytes);
1665
1666         ins.objectid = disk_bytenr;
1667         ins.offset = disk_num_bytes;
1668         ins.type = BTRFS_EXTENT_ITEM_KEY;
1669         ret = btrfs_alloc_reserved_file_extent(trans, root,
1670                                         root->root_key.objectid,
1671                                         inode->i_ino, file_pos, &ins);
1672         BUG_ON(ret);
1673         btrfs_free_path(path);
1674
1675         return 0;
1676 }
1677
1678 /*
1679  * helper function for btrfs_finish_ordered_io, this
1680  * just reads in some of the csum leaves to prime them into ram
1681  * before we start the transaction.  It limits the amount of btree
1682  * reads required while inside the transaction.
1683  */
1684 /* as ordered data IO finishes, this gets called so we can finish
1685  * an ordered extent if the range of bytes in the file it covers are
1686  * fully written.
1687  */
1688 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1689 {
1690         struct btrfs_root *root = BTRFS_I(inode)->root;
1691         struct btrfs_trans_handle *trans;
1692         struct btrfs_ordered_extent *ordered_extent = NULL;
1693         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1694         int compressed = 0;
1695         int ret;
1696
1697         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1698         if (!ret)
1699                 return 0;
1700
1701         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1702         BUG_ON(!ordered_extent);
1703
1704         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1705                 BUG_ON(!list_empty(&ordered_extent->list));
1706                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1707                 if (!ret) {
1708                         trans = btrfs_join_transaction(root, 1);
1709                         ret = btrfs_update_inode(trans, root, inode);
1710                         BUG_ON(ret);
1711                         btrfs_end_transaction(trans, root);
1712                 }
1713                 goto out;
1714         }
1715
1716         lock_extent(io_tree, ordered_extent->file_offset,
1717                     ordered_extent->file_offset + ordered_extent->len - 1,
1718                     GFP_NOFS);
1719
1720         trans = btrfs_join_transaction(root, 1);
1721
1722         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1723                 compressed = 1;
1724         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1725                 BUG_ON(compressed);
1726                 ret = btrfs_mark_extent_written(trans, inode,
1727                                                 ordered_extent->file_offset,
1728                                                 ordered_extent->file_offset +
1729                                                 ordered_extent->len);
1730                 BUG_ON(ret);
1731         } else {
1732                 ret = insert_reserved_file_extent(trans, inode,
1733                                                 ordered_extent->file_offset,
1734                                                 ordered_extent->start,
1735                                                 ordered_extent->disk_len,
1736                                                 ordered_extent->len,
1737                                                 ordered_extent->len,
1738                                                 compressed, 0, 0,
1739                                                 BTRFS_FILE_EXTENT_REG);
1740                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1741                                    ordered_extent->file_offset,
1742                                    ordered_extent->len);
1743                 BUG_ON(ret);
1744         }
1745         unlock_extent(io_tree, ordered_extent->file_offset,
1746                     ordered_extent->file_offset + ordered_extent->len - 1,
1747                     GFP_NOFS);
1748         add_pending_csums(trans, inode, ordered_extent->file_offset,
1749                           &ordered_extent->list);
1750
1751         /* this also removes the ordered extent from the tree */
1752         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1753         ret = btrfs_update_inode(trans, root, inode);
1754         BUG_ON(ret);
1755         btrfs_end_transaction(trans, root);
1756 out:
1757         /* once for us */
1758         btrfs_put_ordered_extent(ordered_extent);
1759         /* once for the tree */
1760         btrfs_put_ordered_extent(ordered_extent);
1761
1762         return 0;
1763 }
1764
1765 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1766                                 struct extent_state *state, int uptodate)
1767 {
1768         ClearPagePrivate2(page);
1769         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1770 }
1771
1772 /*
1773  * When IO fails, either with EIO or csum verification fails, we
1774  * try other mirrors that might have a good copy of the data.  This
1775  * io_failure_record is used to record state as we go through all the
1776  * mirrors.  If another mirror has good data, the page is set up to date
1777  * and things continue.  If a good mirror can't be found, the original
1778  * bio end_io callback is called to indicate things have failed.
1779  */
1780 struct io_failure_record {
1781         struct page *page;
1782         u64 start;
1783         u64 len;
1784         u64 logical;
1785         unsigned long bio_flags;
1786         int last_mirror;
1787 };
1788
1789 static int btrfs_io_failed_hook(struct bio *failed_bio,
1790                          struct page *page, u64 start, u64 end,
1791                          struct extent_state *state)
1792 {
1793         struct io_failure_record *failrec = NULL;
1794         u64 private;
1795         struct extent_map *em;
1796         struct inode *inode = page->mapping->host;
1797         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1798         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1799         struct bio *bio;
1800         int num_copies;
1801         int ret;
1802         int rw;
1803         u64 logical;
1804
1805         ret = get_state_private(failure_tree, start, &private);
1806         if (ret) {
1807                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1808                 if (!failrec)
1809                         return -ENOMEM;
1810                 failrec->start = start;
1811                 failrec->len = end - start + 1;
1812                 failrec->last_mirror = 0;
1813                 failrec->bio_flags = 0;
1814
1815                 read_lock(&em_tree->lock);
1816                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1817                 if (em->start > start || em->start + em->len < start) {
1818                         free_extent_map(em);
1819                         em = NULL;
1820                 }
1821                 read_unlock(&em_tree->lock);
1822
1823                 if (!em || IS_ERR(em)) {
1824                         kfree(failrec);
1825                         return -EIO;
1826                 }
1827                 logical = start - em->start;
1828                 logical = em->block_start + logical;
1829                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1830                         logical = em->block_start;
1831                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1832                 }
1833                 failrec->logical = logical;
1834                 free_extent_map(em);
1835                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1836                                 EXTENT_DIRTY, GFP_NOFS);
1837                 set_state_private(failure_tree, start,
1838                                  (u64)(unsigned long)failrec);
1839         } else {
1840                 failrec = (struct io_failure_record *)(unsigned long)private;
1841         }
1842         num_copies = btrfs_num_copies(
1843                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1844                               failrec->logical, failrec->len);
1845         failrec->last_mirror++;
1846         if (!state) {
1847                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1848                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1849                                                     failrec->start,
1850                                                     EXTENT_LOCKED);
1851                 if (state && state->start != failrec->start)
1852                         state = NULL;
1853                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1854         }
1855         if (!state || failrec->last_mirror > num_copies) {
1856                 set_state_private(failure_tree, failrec->start, 0);
1857                 clear_extent_bits(failure_tree, failrec->start,
1858                                   failrec->start + failrec->len - 1,
1859                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1860                 kfree(failrec);
1861                 return -EIO;
1862         }
1863         bio = bio_alloc(GFP_NOFS, 1);
1864         bio->bi_private = state;
1865         bio->bi_end_io = failed_bio->bi_end_io;
1866         bio->bi_sector = failrec->logical >> 9;
1867         bio->bi_bdev = failed_bio->bi_bdev;
1868         bio->bi_size = 0;
1869
1870         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1871         if (failed_bio->bi_rw & (1 << BIO_RW))
1872                 rw = WRITE;
1873         else
1874                 rw = READ;
1875
1876         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1877                                                       failrec->last_mirror,
1878                                                       failrec->bio_flags);
1879         return 0;
1880 }
1881
1882 /*
1883  * each time an IO finishes, we do a fast check in the IO failure tree
1884  * to see if we need to process or clean up an io_failure_record
1885  */
1886 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1887 {
1888         u64 private;
1889         u64 private_failure;
1890         struct io_failure_record *failure;
1891         int ret;
1892
1893         private = 0;
1894         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1895                              (u64)-1, 1, EXTENT_DIRTY)) {
1896                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1897                                         start, &private_failure);
1898                 if (ret == 0) {
1899                         failure = (struct io_failure_record *)(unsigned long)
1900                                    private_failure;
1901                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1902                                           failure->start, 0);
1903                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1904                                           failure->start,
1905                                           failure->start + failure->len - 1,
1906                                           EXTENT_DIRTY | EXTENT_LOCKED,
1907                                           GFP_NOFS);
1908                         kfree(failure);
1909                 }
1910         }
1911         return 0;
1912 }
1913
1914 /*
1915  * when reads are done, we need to check csums to verify the data is correct
1916  * if there's a match, we allow the bio to finish.  If not, we go through
1917  * the io_failure_record routines to find good copies
1918  */
1919 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1920                                struct extent_state *state)
1921 {
1922         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1923         struct inode *inode = page->mapping->host;
1924         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1925         char *kaddr;
1926         u64 private = ~(u32)0;
1927         int ret;
1928         struct btrfs_root *root = BTRFS_I(inode)->root;
1929         u32 csum = ~(u32)0;
1930
1931         if (PageChecked(page)) {
1932                 ClearPageChecked(page);
1933                 goto good;
1934         }
1935
1936         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1937                 return 0;
1938
1939         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1940             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1941                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1942                                   GFP_NOFS);
1943                 return 0;
1944         }
1945
1946         if (state && state->start == start) {
1947                 private = state->private;
1948                 ret = 0;
1949         } else {
1950                 ret = get_state_private(io_tree, start, &private);
1951         }
1952         kaddr = kmap_atomic(page, KM_USER0);
1953         if (ret)
1954                 goto zeroit;
1955
1956         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1957         btrfs_csum_final(csum, (char *)&csum);
1958         if (csum != private)
1959                 goto zeroit;
1960
1961         kunmap_atomic(kaddr, KM_USER0);
1962 good:
1963         /* if the io failure tree for this inode is non-empty,
1964          * check to see if we've recovered from a failed IO
1965          */
1966         btrfs_clean_io_failures(inode, start);
1967         return 0;
1968
1969 zeroit:
1970         if (printk_ratelimit()) {
1971                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1972                        "private %llu\n", page->mapping->host->i_ino,
1973                        (unsigned long long)start, csum,
1974                        (unsigned long long)private);
1975         }
1976         memset(kaddr + offset, 1, end - start + 1);
1977         flush_dcache_page(page);
1978         kunmap_atomic(kaddr, KM_USER0);
1979         if (private == 0)
1980                 return 0;
1981         return -EIO;
1982 }
1983
1984 struct delayed_iput {
1985         struct list_head list;
1986         struct inode *inode;
1987 };
1988
1989 void btrfs_add_delayed_iput(struct inode *inode)
1990 {
1991         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1992         struct delayed_iput *delayed;
1993
1994         if (atomic_add_unless(&inode->i_count, -1, 1))
1995                 return;
1996
1997         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1998         delayed->inode = inode;
1999
2000         spin_lock(&fs_info->delayed_iput_lock);
2001         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2002         spin_unlock(&fs_info->delayed_iput_lock);
2003 }
2004
2005 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2006 {
2007         LIST_HEAD(list);
2008         struct btrfs_fs_info *fs_info = root->fs_info;
2009         struct delayed_iput *delayed;
2010         int empty;
2011
2012         spin_lock(&fs_info->delayed_iput_lock);
2013         empty = list_empty(&fs_info->delayed_iputs);
2014         spin_unlock(&fs_info->delayed_iput_lock);
2015         if (empty)
2016                 return;
2017
2018         down_read(&root->fs_info->cleanup_work_sem);
2019         spin_lock(&fs_info->delayed_iput_lock);
2020         list_splice_init(&fs_info->delayed_iputs, &list);
2021         spin_unlock(&fs_info->delayed_iput_lock);
2022
2023         while (!list_empty(&list)) {
2024                 delayed = list_entry(list.next, struct delayed_iput, list);
2025                 list_del(&delayed->list);
2026                 iput(delayed->inode);
2027                 kfree(delayed);
2028         }
2029         up_read(&root->fs_info->cleanup_work_sem);
2030 }
2031
2032 /*
2033  * This creates an orphan entry for the given inode in case something goes
2034  * wrong in the middle of an unlink/truncate.
2035  */
2036 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2037 {
2038         struct btrfs_root *root = BTRFS_I(inode)->root;
2039         int ret = 0;
2040
2041         spin_lock(&root->list_lock);
2042
2043         /* already on the orphan list, we're good */
2044         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2045                 spin_unlock(&root->list_lock);
2046                 return 0;
2047         }
2048
2049         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2050
2051         spin_unlock(&root->list_lock);
2052
2053         /*
2054          * insert an orphan item to track this unlinked/truncated file
2055          */
2056         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2057
2058         return ret;
2059 }
2060
2061 /*
2062  * We have done the truncate/delete so we can go ahead and remove the orphan
2063  * item for this particular inode.
2064  */
2065 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2066 {
2067         struct btrfs_root *root = BTRFS_I(inode)->root;
2068         int ret = 0;
2069
2070         spin_lock(&root->list_lock);
2071
2072         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2073                 spin_unlock(&root->list_lock);
2074                 return 0;
2075         }
2076
2077         list_del_init(&BTRFS_I(inode)->i_orphan);
2078         if (!trans) {
2079                 spin_unlock(&root->list_lock);
2080                 return 0;
2081         }
2082
2083         spin_unlock(&root->list_lock);
2084
2085         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2086
2087         return ret;
2088 }
2089
2090 /*
2091  * this cleans up any orphans that may be left on the list from the last use
2092  * of this root.
2093  */
2094 void btrfs_orphan_cleanup(struct btrfs_root *root)
2095 {
2096         struct btrfs_path *path;
2097         struct extent_buffer *leaf;
2098         struct btrfs_item *item;
2099         struct btrfs_key key, found_key;
2100         struct btrfs_trans_handle *trans;
2101         struct inode *inode;
2102         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2103
2104         if (!xchg(&root->clean_orphans, 0))
2105                 return;
2106
2107         path = btrfs_alloc_path();
2108         BUG_ON(!path);
2109         path->reada = -1;
2110
2111         key.objectid = BTRFS_ORPHAN_OBJECTID;
2112         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2113         key.offset = (u64)-1;
2114
2115         while (1) {
2116                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2117                 if (ret < 0) {
2118                         printk(KERN_ERR "Error searching slot for orphan: %d"
2119                                "\n", ret);
2120                         break;
2121                 }
2122
2123                 /*
2124                  * if ret == 0 means we found what we were searching for, which
2125                  * is weird, but possible, so only screw with path if we didnt
2126                  * find the key and see if we have stuff that matches
2127                  */
2128                 if (ret > 0) {
2129                         if (path->slots[0] == 0)
2130                                 break;
2131                         path->slots[0]--;
2132                 }
2133
2134                 /* pull out the item */
2135                 leaf = path->nodes[0];
2136                 item = btrfs_item_nr(leaf, path->slots[0]);
2137                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2138
2139                 /* make sure the item matches what we want */
2140                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2141                         break;
2142                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2143                         break;
2144
2145                 /* release the path since we're done with it */
2146                 btrfs_release_path(root, path);
2147
2148                 /*
2149                  * this is where we are basically btrfs_lookup, without the
2150                  * crossing root thing.  we store the inode number in the
2151                  * offset of the orphan item.
2152                  */
2153                 found_key.objectid = found_key.offset;
2154                 found_key.type = BTRFS_INODE_ITEM_KEY;
2155                 found_key.offset = 0;
2156                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2157                 if (IS_ERR(inode))
2158                         break;
2159
2160                 /*
2161                  * add this inode to the orphan list so btrfs_orphan_del does
2162                  * the proper thing when we hit it
2163                  */
2164                 spin_lock(&root->list_lock);
2165                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2166                 spin_unlock(&root->list_lock);
2167
2168                 /*
2169                  * if this is a bad inode, means we actually succeeded in
2170                  * removing the inode, but not the orphan record, which means
2171                  * we need to manually delete the orphan since iput will just
2172                  * do a destroy_inode
2173                  */
2174                 if (is_bad_inode(inode)) {
2175                         trans = btrfs_start_transaction(root, 1);
2176                         btrfs_orphan_del(trans, inode);
2177                         btrfs_end_transaction(trans, root);
2178                         iput(inode);
2179                         continue;
2180                 }
2181
2182                 /* if we have links, this was a truncate, lets do that */
2183                 if (inode->i_nlink) {
2184                         nr_truncate++;
2185                         btrfs_truncate(inode);
2186                 } else {
2187                         nr_unlink++;
2188                 }
2189
2190                 /* this will do delete_inode and everything for us */
2191                 iput(inode);
2192         }
2193
2194         if (nr_unlink)
2195                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2196         if (nr_truncate)
2197                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2198
2199         btrfs_free_path(path);
2200 }
2201
2202 /*
2203  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2204  * don't find any xattrs, we know there can't be any acls.
2205  *
2206  * slot is the slot the inode is in, objectid is the objectid of the inode
2207  */
2208 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2209                                           int slot, u64 objectid)
2210 {
2211         u32 nritems = btrfs_header_nritems(leaf);
2212         struct btrfs_key found_key;
2213         int scanned = 0;
2214
2215         slot++;
2216         while (slot < nritems) {
2217                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2218
2219                 /* we found a different objectid, there must not be acls */
2220                 if (found_key.objectid != objectid)
2221                         return 0;
2222
2223                 /* we found an xattr, assume we've got an acl */
2224                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2225                         return 1;
2226
2227                 /*
2228                  * we found a key greater than an xattr key, there can't
2229                  * be any acls later on
2230                  */
2231                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2232                         return 0;
2233
2234                 slot++;
2235                 scanned++;
2236
2237                 /*
2238                  * it goes inode, inode backrefs, xattrs, extents,
2239                  * so if there are a ton of hard links to an inode there can
2240                  * be a lot of backrefs.  Don't waste time searching too hard,
2241                  * this is just an optimization
2242                  */
2243                 if (scanned >= 8)
2244                         break;
2245         }
2246         /* we hit the end of the leaf before we found an xattr or
2247          * something larger than an xattr.  We have to assume the inode
2248          * has acls
2249          */
2250         return 1;
2251 }
2252
2253 /*
2254  * read an inode from the btree into the in-memory inode
2255  */
2256 static void btrfs_read_locked_inode(struct inode *inode)
2257 {
2258         struct btrfs_path *path;
2259         struct extent_buffer *leaf;
2260         struct btrfs_inode_item *inode_item;
2261         struct btrfs_timespec *tspec;
2262         struct btrfs_root *root = BTRFS_I(inode)->root;
2263         struct btrfs_key location;
2264         int maybe_acls;
2265         u64 alloc_group_block;
2266         u32 rdev;
2267         int ret;
2268
2269         path = btrfs_alloc_path();
2270         BUG_ON(!path);
2271         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2272
2273         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2274         if (ret)
2275                 goto make_bad;
2276
2277         leaf = path->nodes[0];
2278         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2279                                     struct btrfs_inode_item);
2280
2281         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2282         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2283         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2284         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2285         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2286
2287         tspec = btrfs_inode_atime(inode_item);
2288         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2289         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2290
2291         tspec = btrfs_inode_mtime(inode_item);
2292         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2293         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2294
2295         tspec = btrfs_inode_ctime(inode_item);
2296         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2297         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2298
2299         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2300         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2301         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2302         inode->i_generation = BTRFS_I(inode)->generation;
2303         inode->i_rdev = 0;
2304         rdev = btrfs_inode_rdev(leaf, inode_item);
2305
2306         BTRFS_I(inode)->index_cnt = (u64)-1;
2307         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2308
2309         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2310
2311         /*
2312          * try to precache a NULL acl entry for files that don't have
2313          * any xattrs or acls
2314          */
2315         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2316         if (!maybe_acls)
2317                 cache_no_acl(inode);
2318
2319         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2320                                                 alloc_group_block, 0);
2321         btrfs_free_path(path);
2322         inode_item = NULL;
2323
2324         switch (inode->i_mode & S_IFMT) {
2325         case S_IFREG:
2326                 inode->i_mapping->a_ops = &btrfs_aops;
2327                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2328                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2329                 inode->i_fop = &btrfs_file_operations;
2330                 inode->i_op = &btrfs_file_inode_operations;
2331                 break;
2332         case S_IFDIR:
2333                 inode->i_fop = &btrfs_dir_file_operations;
2334                 if (root == root->fs_info->tree_root)
2335                         inode->i_op = &btrfs_dir_ro_inode_operations;
2336                 else
2337                         inode->i_op = &btrfs_dir_inode_operations;
2338                 break;
2339         case S_IFLNK:
2340                 inode->i_op = &btrfs_symlink_inode_operations;
2341                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2342                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2343                 break;
2344         default:
2345                 inode->i_op = &btrfs_special_inode_operations;
2346                 init_special_inode(inode, inode->i_mode, rdev);
2347                 break;
2348         }
2349
2350         btrfs_update_iflags(inode);
2351         return;
2352
2353 make_bad:
2354         btrfs_free_path(path);
2355         make_bad_inode(inode);
2356 }
2357
2358 /*
2359  * given a leaf and an inode, copy the inode fields into the leaf
2360  */
2361 static void fill_inode_item(struct btrfs_trans_handle *trans,
2362                             struct extent_buffer *leaf,
2363                             struct btrfs_inode_item *item,
2364                             struct inode *inode)
2365 {
2366         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2367         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2368         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2369         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2370         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2371
2372         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2373                                inode->i_atime.tv_sec);
2374         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2375                                 inode->i_atime.tv_nsec);
2376
2377         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2378                                inode->i_mtime.tv_sec);
2379         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2380                                 inode->i_mtime.tv_nsec);
2381
2382         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2383                                inode->i_ctime.tv_sec);
2384         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2385                                 inode->i_ctime.tv_nsec);
2386
2387         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2388         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2389         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2390         btrfs_set_inode_transid(leaf, item, trans->transid);
2391         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2392         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2393         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2394 }
2395
2396 /*
2397  * copy everything in the in-memory inode into the btree.
2398  */
2399 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2400                                 struct btrfs_root *root, struct inode *inode)
2401 {
2402         struct btrfs_inode_item *inode_item;
2403         struct btrfs_path *path;
2404         struct extent_buffer *leaf;
2405         int ret;
2406
2407         path = btrfs_alloc_path();
2408         BUG_ON(!path);
2409         path->leave_spinning = 1;
2410         ret = btrfs_lookup_inode(trans, root, path,
2411                                  &BTRFS_I(inode)->location, 1);
2412         if (ret) {
2413                 if (ret > 0)
2414                         ret = -ENOENT;
2415                 goto failed;
2416         }
2417
2418         btrfs_unlock_up_safe(path, 1);
2419         leaf = path->nodes[0];
2420         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2421                                   struct btrfs_inode_item);
2422
2423         fill_inode_item(trans, leaf, inode_item, inode);
2424         btrfs_mark_buffer_dirty(leaf);
2425         btrfs_set_inode_last_trans(trans, inode);
2426         ret = 0;
2427 failed:
2428         btrfs_free_path(path);
2429         return ret;
2430 }
2431
2432
2433 /*
2434  * unlink helper that gets used here in inode.c and in the tree logging
2435  * recovery code.  It remove a link in a directory with a given name, and
2436  * also drops the back refs in the inode to the directory
2437  */
2438 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2439                        struct btrfs_root *root,
2440                        struct inode *dir, struct inode *inode,
2441                        const char *name, int name_len)
2442 {
2443         struct btrfs_path *path;
2444         int ret = 0;
2445         struct extent_buffer *leaf;
2446         struct btrfs_dir_item *di;
2447         struct btrfs_key key;
2448         u64 index;
2449
2450         path = btrfs_alloc_path();
2451         if (!path) {
2452                 ret = -ENOMEM;
2453                 goto err;
2454         }
2455
2456         path->leave_spinning = 1;
2457         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2458                                     name, name_len, -1);
2459         if (IS_ERR(di)) {
2460                 ret = PTR_ERR(di);
2461                 goto err;
2462         }
2463         if (!di) {
2464                 ret = -ENOENT;
2465                 goto err;
2466         }
2467         leaf = path->nodes[0];
2468         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2469         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2470         if (ret)
2471                 goto err;
2472         btrfs_release_path(root, path);
2473
2474         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2475                                   inode->i_ino,
2476                                   dir->i_ino, &index);
2477         if (ret) {
2478                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2479                        "inode %lu parent %lu\n", name_len, name,
2480                        inode->i_ino, dir->i_ino);
2481                 goto err;
2482         }
2483
2484         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2485                                          index, name, name_len, -1);
2486         if (IS_ERR(di)) {
2487                 ret = PTR_ERR(di);
2488                 goto err;
2489         }
2490         if (!di) {
2491                 ret = -ENOENT;
2492                 goto err;
2493         }
2494         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2495         btrfs_release_path(root, path);
2496
2497         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2498                                          inode, dir->i_ino);
2499         BUG_ON(ret != 0 && ret != -ENOENT);
2500
2501         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2502                                            dir, index);
2503         BUG_ON(ret);
2504 err:
2505         btrfs_free_path(path);
2506         if (ret)
2507                 goto out;
2508
2509         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2510         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2511         btrfs_update_inode(trans, root, dir);
2512         btrfs_drop_nlink(inode);
2513         ret = btrfs_update_inode(trans, root, inode);
2514 out:
2515         return ret;
2516 }
2517
2518 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2519 {
2520         struct btrfs_root *root;
2521         struct btrfs_trans_handle *trans;
2522         struct inode *inode = dentry->d_inode;
2523         int ret;
2524         unsigned long nr = 0;
2525
2526         root = BTRFS_I(dir)->root;
2527
2528         /*
2529          * 5 items for unlink inode
2530          * 1 for orphan
2531          */
2532         ret = btrfs_reserve_metadata_space(root, 6);
2533         if (ret)
2534                 return ret;
2535
2536         trans = btrfs_start_transaction(root, 1);
2537         if (IS_ERR(trans)) {
2538                 btrfs_unreserve_metadata_space(root, 6);
2539                 return PTR_ERR(trans);
2540         }
2541
2542         btrfs_set_trans_block_group(trans, dir);
2543
2544         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2545
2546         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2547                                  dentry->d_name.name, dentry->d_name.len);
2548
2549         if (inode->i_nlink == 0)
2550                 ret = btrfs_orphan_add(trans, inode);
2551
2552         nr = trans->blocks_used;
2553
2554         btrfs_end_transaction_throttle(trans, root);
2555         btrfs_unreserve_metadata_space(root, 6);
2556         btrfs_btree_balance_dirty(root, nr);
2557         return ret;
2558 }
2559
2560 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2561                         struct btrfs_root *root,
2562                         struct inode *dir, u64 objectid,
2563                         const char *name, int name_len)
2564 {
2565         struct btrfs_path *path;
2566         struct extent_buffer *leaf;
2567         struct btrfs_dir_item *di;
2568         struct btrfs_key key;
2569         u64 index;
2570         int ret;
2571
2572         path = btrfs_alloc_path();
2573         if (!path)
2574                 return -ENOMEM;
2575
2576         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2577                                    name, name_len, -1);
2578         BUG_ON(!di || IS_ERR(di));
2579
2580         leaf = path->nodes[0];
2581         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2582         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2583         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2584         BUG_ON(ret);
2585         btrfs_release_path(root, path);
2586
2587         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2588                                  objectid, root->root_key.objectid,
2589                                  dir->i_ino, &index, name, name_len);
2590         if (ret < 0) {
2591                 BUG_ON(ret != -ENOENT);
2592                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2593                                                  name, name_len);
2594                 BUG_ON(!di || IS_ERR(di));
2595
2596                 leaf = path->nodes[0];
2597                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598                 btrfs_release_path(root, path);
2599                 index = key.offset;
2600         }
2601
2602         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2603                                          index, name, name_len, -1);
2604         BUG_ON(!di || IS_ERR(di));
2605
2606         leaf = path->nodes[0];
2607         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2608         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2609         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2610         BUG_ON(ret);
2611         btrfs_release_path(root, path);
2612
2613         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2614         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2615         ret = btrfs_update_inode(trans, root, dir);
2616         BUG_ON(ret);
2617         dir->i_sb->s_dirt = 1;
2618
2619         btrfs_free_path(path);
2620         return 0;
2621 }
2622
2623 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2624 {
2625         struct inode *inode = dentry->d_inode;
2626         int err = 0;
2627         int ret;
2628         struct btrfs_root *root = BTRFS_I(dir)->root;
2629         struct btrfs_trans_handle *trans;
2630         unsigned long nr = 0;
2631
2632         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2633             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2634                 return -ENOTEMPTY;
2635
2636         ret = btrfs_reserve_metadata_space(root, 5);
2637         if (ret)
2638                 return ret;
2639
2640         trans = btrfs_start_transaction(root, 1);
2641         if (IS_ERR(trans)) {
2642                 btrfs_unreserve_metadata_space(root, 5);
2643                 return PTR_ERR(trans);
2644         }
2645
2646         btrfs_set_trans_block_group(trans, dir);
2647
2648         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2649                 err = btrfs_unlink_subvol(trans, root, dir,
2650                                           BTRFS_I(inode)->location.objectid,
2651                                           dentry->d_name.name,
2652                                           dentry->d_name.len);
2653                 goto out;
2654         }
2655
2656         err = btrfs_orphan_add(trans, inode);
2657         if (err)
2658                 goto out;
2659
2660         /* now the directory is empty */
2661         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2662                                  dentry->d_name.name, dentry->d_name.len);
2663         if (!err)
2664                 btrfs_i_size_write(inode, 0);
2665 out:
2666         nr = trans->blocks_used;
2667         ret = btrfs_end_transaction_throttle(trans, root);
2668         btrfs_unreserve_metadata_space(root, 5);
2669         btrfs_btree_balance_dirty(root, nr);
2670
2671         if (ret && !err)
2672                 err = ret;
2673         return err;
2674 }
2675
2676 #if 0
2677 /*
2678  * when truncating bytes in a file, it is possible to avoid reading
2679  * the leaves that contain only checksum items.  This can be the
2680  * majority of the IO required to delete a large file, but it must
2681  * be done carefully.
2682  *
2683  * The keys in the level just above the leaves are checked to make sure
2684  * the lowest key in a given leaf is a csum key, and starts at an offset
2685  * after the new  size.
2686  *
2687  * Then the key for the next leaf is checked to make sure it also has
2688  * a checksum item for the same file.  If it does, we know our target leaf
2689  * contains only checksum items, and it can be safely freed without reading
2690  * it.
2691  *
2692  * This is just an optimization targeted at large files.  It may do
2693  * nothing.  It will return 0 unless things went badly.
2694  */
2695 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2696                                      struct btrfs_root *root,
2697                                      struct btrfs_path *path,
2698                                      struct inode *inode, u64 new_size)
2699 {
2700         struct btrfs_key key;
2701         int ret;
2702         int nritems;
2703         struct btrfs_key found_key;
2704         struct btrfs_key other_key;
2705         struct btrfs_leaf_ref *ref;
2706         u64 leaf_gen;
2707         u64 leaf_start;
2708
2709         path->lowest_level = 1;
2710         key.objectid = inode->i_ino;
2711         key.type = BTRFS_CSUM_ITEM_KEY;
2712         key.offset = new_size;
2713 again:
2714         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2715         if (ret < 0)
2716                 goto out;
2717
2718         if (path->nodes[1] == NULL) {
2719                 ret = 0;
2720                 goto out;
2721         }
2722         ret = 0;
2723         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2724         nritems = btrfs_header_nritems(path->nodes[1]);
2725
2726         if (!nritems)
2727                 goto out;
2728
2729         if (path->slots[1] >= nritems)
2730                 goto next_node;
2731
2732         /* did we find a key greater than anything we want to delete? */
2733         if (found_key.objectid > inode->i_ino ||
2734            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2735                 goto out;
2736
2737         /* we check the next key in the node to make sure the leave contains
2738          * only checksum items.  This comparison doesn't work if our
2739          * leaf is the last one in the node
2740          */
2741         if (path->slots[1] + 1 >= nritems) {
2742 next_node:
2743                 /* search forward from the last key in the node, this
2744                  * will bring us into the next node in the tree
2745                  */
2746                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2747
2748                 /* unlikely, but we inc below, so check to be safe */
2749                 if (found_key.offset == (u64)-1)
2750                         goto out;
2751
2752                 /* search_forward needs a path with locks held, do the
2753                  * search again for the original key.  It is possible
2754                  * this will race with a balance and return a path that
2755                  * we could modify, but this drop is just an optimization
2756                  * and is allowed to miss some leaves.
2757                  */
2758                 btrfs_release_path(root, path);
2759                 found_key.offset++;
2760
2761                 /* setup a max key for search_forward */
2762                 other_key.offset = (u64)-1;
2763                 other_key.type = key.type;
2764                 other_key.objectid = key.objectid;
2765
2766                 path->keep_locks = 1;
2767                 ret = btrfs_search_forward(root, &found_key, &other_key,
2768                                            path, 0, 0);
2769                 path->keep_locks = 0;
2770                 if (ret || found_key.objectid != key.objectid ||
2771                     found_key.type != key.type) {
2772                         ret = 0;
2773                         goto out;
2774                 }
2775
2776                 key.offset = found_key.offset;
2777                 btrfs_release_path(root, path);
2778                 cond_resched();
2779                 goto again;
2780         }
2781
2782         /* we know there's one more slot after us in the tree,
2783          * read that key so we can verify it is also a checksum item
2784          */
2785         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2786
2787         if (found_key.objectid < inode->i_ino)
2788                 goto next_key;
2789
2790         if (found_key.type != key.type || found_key.offset < new_size)
2791                 goto next_key;
2792
2793         /*
2794          * if the key for the next leaf isn't a csum key from this objectid,
2795          * we can't be sure there aren't good items inside this leaf.
2796          * Bail out
2797          */
2798         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2799                 goto out;
2800
2801         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2802         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2803         /*
2804          * it is safe to delete this leaf, it contains only
2805          * csum items from this inode at an offset >= new_size
2806          */
2807         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2808         BUG_ON(ret);
2809
2810         if (root->ref_cows && leaf_gen < trans->transid) {
2811                 ref = btrfs_alloc_leaf_ref(root, 0);
2812                 if (ref) {
2813                         ref->root_gen = root->root_key.offset;
2814                         ref->bytenr = leaf_start;
2815                         ref->owner = 0;
2816                         ref->generation = leaf_gen;
2817                         ref->nritems = 0;
2818
2819                         btrfs_sort_leaf_ref(ref);
2820
2821                         ret = btrfs_add_leaf_ref(root, ref, 0);
2822                         WARN_ON(ret);
2823                         btrfs_free_leaf_ref(root, ref);
2824                 } else {
2825                         WARN_ON(1);
2826                 }
2827         }
2828 next_key:
2829         btrfs_release_path(root, path);
2830
2831         if (other_key.objectid == inode->i_ino &&
2832             other_key.type == key.type && other_key.offset > key.offset) {
2833                 key.offset = other_key.offset;
2834                 cond_resched();
2835                 goto again;
2836         }
2837         ret = 0;
2838 out:
2839         /* fixup any changes we've made to the path */
2840         path->lowest_level = 0;
2841         path->keep_locks = 0;
2842         btrfs_release_path(root, path);
2843         return ret;
2844 }
2845
2846 #endif
2847
2848 /*
2849  * this can truncate away extent items, csum items and directory items.
2850  * It starts at a high offset and removes keys until it can't find
2851  * any higher than new_size
2852  *
2853  * csum items that cross the new i_size are truncated to the new size
2854  * as well.
2855  *
2856  * min_type is the minimum key type to truncate down to.  If set to 0, this
2857  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2858  */
2859 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2860                                struct btrfs_root *root,
2861                                struct inode *inode,
2862                                u64 new_size, u32 min_type)
2863 {
2864         struct btrfs_path *path;
2865         struct extent_buffer *leaf;
2866         struct btrfs_file_extent_item *fi;
2867         struct btrfs_key key;
2868         struct btrfs_key found_key;
2869         u64 extent_start = 0;
2870         u64 extent_num_bytes = 0;
2871         u64 extent_offset = 0;
2872         u64 item_end = 0;
2873         u64 mask = root->sectorsize - 1;
2874         u32 found_type = (u8)-1;
2875         int found_extent;
2876         int del_item;
2877         int pending_del_nr = 0;
2878         int pending_del_slot = 0;
2879         int extent_type = -1;
2880         int encoding;
2881         int ret;
2882         int err = 0;
2883
2884         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2885
2886         if (root->ref_cows)
2887                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2888
2889         path = btrfs_alloc_path();
2890         BUG_ON(!path);
2891         path->reada = -1;
2892
2893         key.objectid = inode->i_ino;
2894         key.offset = (u64)-1;
2895         key.type = (u8)-1;
2896
2897 search_again:
2898         path->leave_spinning = 1;
2899         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2900         if (ret < 0) {
2901                 err = ret;
2902                 goto out;
2903         }
2904
2905         if (ret > 0) {
2906                 /* there are no items in the tree for us to truncate, we're
2907                  * done
2908                  */
2909                 if (path->slots[0] == 0)
2910                         goto out;
2911                 path->slots[0]--;
2912         }
2913
2914         while (1) {
2915                 fi = NULL;
2916                 leaf = path->nodes[0];
2917                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2918                 found_type = btrfs_key_type(&found_key);
2919                 encoding = 0;
2920
2921                 if (found_key.objectid != inode->i_ino)
2922                         break;
2923
2924                 if (found_type < min_type)
2925                         break;
2926
2927                 item_end = found_key.offset;
2928                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2929                         fi = btrfs_item_ptr(leaf, path->slots[0],
2930                                             struct btrfs_file_extent_item);
2931                         extent_type = btrfs_file_extent_type(leaf, fi);
2932                         encoding = btrfs_file_extent_compression(leaf, fi);
2933                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2934                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2935
2936                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2937                                 item_end +=
2938                                     btrfs_file_extent_num_bytes(leaf, fi);
2939                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2940                                 item_end += btrfs_file_extent_inline_len(leaf,
2941                                                                          fi);
2942                         }
2943                         item_end--;
2944                 }
2945                 if (found_type > min_type) {
2946                         del_item = 1;
2947                 } else {
2948                         if (item_end < new_size)
2949                                 break;
2950                         if (found_key.offset >= new_size)
2951                                 del_item = 1;
2952                         else
2953                                 del_item = 0;
2954                 }
2955                 found_extent = 0;
2956                 /* FIXME, shrink the extent if the ref count is only 1 */
2957                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2958                         goto delete;
2959
2960                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2961                         u64 num_dec;
2962                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2963                         if (!del_item && !encoding) {
2964                                 u64 orig_num_bytes =
2965                                         btrfs_file_extent_num_bytes(leaf, fi);
2966                                 extent_num_bytes = new_size -
2967                                         found_key.offset + root->sectorsize - 1;
2968                                 extent_num_bytes = extent_num_bytes &
2969                                         ~((u64)root->sectorsize - 1);
2970                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2971                                                          extent_num_bytes);
2972                                 num_dec = (orig_num_bytes -
2973                                            extent_num_bytes);
2974                                 if (root->ref_cows && extent_start != 0)
2975                                         inode_sub_bytes(inode, num_dec);
2976                                 btrfs_mark_buffer_dirty(leaf);
2977                         } else {
2978                                 extent_num_bytes =
2979                                         btrfs_file_extent_disk_num_bytes(leaf,
2980                                                                          fi);
2981                                 extent_offset = found_key.offset -
2982                                         btrfs_file_extent_offset(leaf, fi);
2983
2984                                 /* FIXME blocksize != 4096 */
2985                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2986                                 if (extent_start != 0) {
2987                                         found_extent = 1;
2988                                         if (root->ref_cows)
2989                                                 inode_sub_bytes(inode, num_dec);
2990                                 }
2991                         }
2992                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2993                         /*
2994                          * we can't truncate inline items that have had
2995                          * special encodings
2996                          */
2997                         if (!del_item &&
2998                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2999                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3000                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3001                                 u32 size = new_size - found_key.offset;
3002
3003                                 if (root->ref_cows) {
3004                                         inode_sub_bytes(inode, item_end + 1 -
3005                                                         new_size);
3006                                 }
3007                                 size =
3008                                     btrfs_file_extent_calc_inline_size(size);
3009                                 ret = btrfs_truncate_item(trans, root, path,
3010                                                           size, 1);
3011                                 BUG_ON(ret);
3012                         } else if (root->ref_cows) {
3013                                 inode_sub_bytes(inode, item_end + 1 -
3014                                                 found_key.offset);
3015                         }
3016                 }
3017 delete:
3018                 if (del_item) {
3019                         if (!pending_del_nr) {
3020                                 /* no pending yet, add ourselves */
3021                                 pending_del_slot = path->slots[0];
3022                                 pending_del_nr = 1;
3023                         } else if (pending_del_nr &&
3024                                    path->slots[0] + 1 == pending_del_slot) {
3025                                 /* hop on the pending chunk */
3026                                 pending_del_nr++;
3027                                 pending_del_slot = path->slots[0];
3028                         } else {
3029                                 BUG();
3030                         }
3031                 } else {
3032                         break;
3033                 }
3034                 if (found_extent && root->ref_cows) {
3035                         btrfs_set_path_blocking(path);
3036                         ret = btrfs_free_extent(trans, root, extent_start,
3037                                                 extent_num_bytes, 0,
3038                                                 btrfs_header_owner(leaf),
3039                                                 inode->i_ino, extent_offset);
3040                         BUG_ON(ret);
3041                 }
3042
3043                 if (found_type == BTRFS_INODE_ITEM_KEY)
3044                         break;
3045
3046                 if (path->slots[0] == 0 ||
3047                     path->slots[0] != pending_del_slot) {
3048                         if (root->ref_cows) {
3049                                 err = -EAGAIN;
3050                                 goto out;
3051                         }
3052                         if (pending_del_nr) {
3053                                 ret = btrfs_del_items(trans, root, path,
3054                                                 pending_del_slot,
3055                                                 pending_del_nr);
3056                                 BUG_ON(ret);
3057                                 pending_del_nr = 0;
3058                         }
3059                         btrfs_release_path(root, path);
3060                         goto search_again;
3061                 } else {
3062                         path->slots[0]--;
3063                 }
3064         }
3065 out:
3066         if (pending_del_nr) {
3067                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3068                                       pending_del_nr);
3069         }
3070         btrfs_free_path(path);
3071         return err;
3072 }
3073
3074 /*
3075  * taken from block_truncate_page, but does cow as it zeros out
3076  * any bytes left in the last page in the file.
3077  */
3078 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3079 {
3080         struct inode *inode = mapping->host;
3081         struct btrfs_root *root = BTRFS_I(inode)->root;
3082         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3083         struct btrfs_ordered_extent *ordered;
3084         char *kaddr;
3085         u32 blocksize = root->sectorsize;
3086         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3087         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3088         struct page *page;
3089         int ret = 0;
3090         u64 page_start;
3091         u64 page_end;
3092
3093         if ((offset & (blocksize - 1)) == 0)
3094                 goto out;
3095         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3096         if (ret)
3097                 goto out;
3098
3099         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3100         if (ret)
3101                 goto out;
3102
3103         ret = -ENOMEM;
3104 again:
3105         page = grab_cache_page(mapping, index);
3106         if (!page) {
3107                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3108                 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3109                 goto out;
3110         }
3111
3112         page_start = page_offset(page);
3113         page_end = page_start + PAGE_CACHE_SIZE - 1;
3114
3115         if (!PageUptodate(page)) {
3116                 ret = btrfs_readpage(NULL, page);
3117                 lock_page(page);
3118                 if (page->mapping != mapping) {
3119                         unlock_page(page);
3120                         page_cache_release(page);
3121                         goto again;
3122                 }
3123                 if (!PageUptodate(page)) {
3124                         ret = -EIO;
3125                         goto out_unlock;
3126                 }
3127         }
3128         wait_on_page_writeback(page);
3129
3130         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3131         set_page_extent_mapped(page);
3132
3133         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3134         if (ordered) {
3135                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3136                 unlock_page(page);
3137                 page_cache_release(page);
3138                 btrfs_start_ordered_extent(inode, ordered, 1);
3139                 btrfs_put_ordered_extent(ordered);
3140                 goto again;
3141         }
3142
3143         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3144                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3145                           GFP_NOFS);
3146
3147         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3148         if (ret) {
3149                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3150                 goto out_unlock;
3151         }
3152
3153         ret = 0;
3154         if (offset != PAGE_CACHE_SIZE) {
3155                 kaddr = kmap(page);
3156                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3157                 flush_dcache_page(page);
3158                 kunmap(page);
3159         }
3160         ClearPageChecked(page);
3161         set_page_dirty(page);
3162         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3163
3164 out_unlock:
3165         if (ret)
3166                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3167         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3168         unlock_page(page);
3169         page_cache_release(page);
3170 out:
3171         return ret;
3172 }
3173
3174 int btrfs_cont_expand(struct inode *inode, loff_t size)
3175 {
3176         struct btrfs_trans_handle *trans;
3177         struct btrfs_root *root = BTRFS_I(inode)->root;
3178         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3179         struct extent_map *em;
3180         u64 mask = root->sectorsize - 1;
3181         u64 hole_start = (inode->i_size + mask) & ~mask;
3182         u64 block_end = (size + mask) & ~mask;
3183         u64 last_byte;
3184         u64 cur_offset;
3185         u64 hole_size;
3186         int err = 0;
3187
3188         if (size <= hole_start)
3189                 return 0;
3190
3191         while (1) {
3192                 struct btrfs_ordered_extent *ordered;
3193                 btrfs_wait_ordered_range(inode, hole_start,
3194                                          block_end - hole_start);
3195                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3196                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3197                 if (!ordered)
3198                         break;
3199                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3200                 btrfs_put_ordered_extent(ordered);
3201         }
3202
3203         cur_offset = hole_start;
3204         while (1) {
3205                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3206                                 block_end - cur_offset, 0);
3207                 BUG_ON(IS_ERR(em) || !em);
3208                 last_byte = min(extent_map_end(em), block_end);
3209                 last_byte = (last_byte + mask) & ~mask;
3210                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3211                         u64 hint_byte = 0;
3212                         hole_size = last_byte - cur_offset;
3213
3214                         err = btrfs_reserve_metadata_space(root, 2);
3215                         if (err)
3216                                 break;
3217
3218                         trans = btrfs_start_transaction(root, 1);
3219                         btrfs_set_trans_block_group(trans, inode);
3220
3221                         err = btrfs_drop_extents(trans, inode, cur_offset,
3222                                                  cur_offset + hole_size,
3223                                                  &hint_byte, 1);
3224                         BUG_ON(err);
3225
3226                         err = btrfs_insert_file_extent(trans, root,
3227                                         inode->i_ino, cur_offset, 0,
3228                                         0, hole_size, 0, hole_size,
3229                                         0, 0, 0);
3230                         BUG_ON(err);
3231
3232                         btrfs_drop_extent_cache(inode, hole_start,
3233                                         last_byte - 1, 0);
3234
3235                         btrfs_end_transaction(trans, root);
3236                         btrfs_unreserve_metadata_space(root, 2);
3237                 }
3238                 free_extent_map(em);
3239                 cur_offset = last_byte;
3240                 if (cur_offset >= block_end)
3241                         break;
3242         }
3243
3244         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3245         return err;
3246 }
3247
3248 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3249 {
3250         struct btrfs_root *root = BTRFS_I(inode)->root;
3251         struct btrfs_trans_handle *trans;
3252         unsigned long nr;
3253         int ret;
3254
3255         if (attr->ia_size == inode->i_size)
3256                 return 0;
3257
3258         if (attr->ia_size > inode->i_size) {
3259                 unsigned long limit;
3260                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3261                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3262                         return -EFBIG;
3263                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3264                         send_sig(SIGXFSZ, current, 0);
3265                         return -EFBIG;
3266                 }
3267         }
3268
3269         ret = btrfs_reserve_metadata_space(root, 1);
3270         if (ret)
3271                 return ret;
3272
3273         trans = btrfs_start_transaction(root, 1);
3274         btrfs_set_trans_block_group(trans, inode);
3275
3276         ret = btrfs_orphan_add(trans, inode);
3277         BUG_ON(ret);
3278
3279         nr = trans->blocks_used;
3280         btrfs_end_transaction(trans, root);
3281         btrfs_unreserve_metadata_space(root, 1);
3282         btrfs_btree_balance_dirty(root, nr);
3283
3284         if (attr->ia_size > inode->i_size) {
3285                 ret = btrfs_cont_expand(inode, attr->ia_size);
3286                 if (ret) {
3287                         btrfs_truncate(inode);
3288                         return ret;
3289                 }
3290
3291                 i_size_write(inode, attr->ia_size);
3292                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3293
3294                 trans = btrfs_start_transaction(root, 1);
3295                 btrfs_set_trans_block_group(trans, inode);
3296
3297                 ret = btrfs_update_inode(trans, root, inode);
3298                 BUG_ON(ret);
3299                 if (inode->i_nlink > 0) {
3300                         ret = btrfs_orphan_del(trans, inode);
3301                         BUG_ON(ret);
3302                 }
3303                 nr = trans->blocks_used;
3304                 btrfs_end_transaction(trans, root);
3305                 btrfs_btree_balance_dirty(root, nr);
3306                 return 0;
3307         }
3308
3309         /*
3310          * We're truncating a file that used to have good data down to
3311          * zero. Make sure it gets into the ordered flush list so that
3312          * any new writes get down to disk quickly.
3313          */
3314         if (attr->ia_size == 0)
3315                 BTRFS_I(inode)->ordered_data_close = 1;
3316
3317         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3318         ret = vmtruncate(inode, attr->ia_size);
3319         BUG_ON(ret);
3320
3321         return 0;
3322 }
3323
3324 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3325 {
3326         struct inode *inode = dentry->d_inode;
3327         int err;
3328
3329         err = inode_change_ok(inode, attr);
3330         if (err)
3331                 return err;
3332
3333         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3334                 err = btrfs_setattr_size(inode, attr);
3335                 if (err)
3336                         return err;
3337         }
3338         attr->ia_valid &= ~ATTR_SIZE;
3339
3340         if (attr->ia_valid)
3341                 err = inode_setattr(inode, attr);
3342
3343         if (!err && ((attr->ia_valid & ATTR_MODE)))
3344                 err = btrfs_acl_chmod(inode);
3345         return err;
3346 }
3347
3348 void btrfs_delete_inode(struct inode *inode)
3349 {
3350         struct btrfs_trans_handle *trans;
3351         struct btrfs_root *root = BTRFS_I(inode)->root;
3352         unsigned long nr;
3353         int ret;
3354
3355         truncate_inode_pages(&inode->i_data, 0);
3356         if (is_bad_inode(inode)) {
3357                 btrfs_orphan_del(NULL, inode);
3358                 goto no_delete;
3359         }
3360         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3361
3362         if (root->fs_info->log_root_recovering) {
3363                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3364                 goto no_delete;
3365         }
3366
3367         if (inode->i_nlink > 0) {
3368                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3369                 goto no_delete;
3370         }
3371
3372         btrfs_i_size_write(inode, 0);
3373
3374         while (1) {
3375                 trans = btrfs_start_transaction(root, 1);
3376                 btrfs_set_trans_block_group(trans, inode);
3377                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3378
3379                 if (ret != -EAGAIN)
3380                         break;
3381
3382                 nr = trans->blocks_used;
3383                 btrfs_end_transaction(trans, root);
3384                 trans = NULL;
3385                 btrfs_btree_balance_dirty(root, nr);
3386         }
3387
3388         if (ret == 0) {
3389                 ret = btrfs_orphan_del(trans, inode);
3390                 BUG_ON(ret);
3391         }
3392
3393         nr = trans->blocks_used;
3394         btrfs_end_transaction(trans, root);
3395         btrfs_btree_balance_dirty(root, nr);
3396 no_delete:
3397         clear_inode(inode);
3398         return;
3399 }
3400
3401 /*
3402  * this returns the key found in the dir entry in the location pointer.
3403  * If no dir entries were found, location->objectid is 0.
3404  */
3405 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3406                                struct btrfs_key *location)
3407 {
3408         const char *name = dentry->d_name.name;
3409         int namelen = dentry->d_name.len;
3410         struct btrfs_dir_item *di;
3411         struct btrfs_path *path;
3412         struct btrfs_root *root = BTRFS_I(dir)->root;
3413         int ret = 0;
3414
3415         path = btrfs_alloc_path();
3416         BUG_ON(!path);
3417
3418         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3419                                     namelen, 0);
3420         if (IS_ERR(di))
3421                 ret = PTR_ERR(di);
3422
3423         if (!di || IS_ERR(di))
3424                 goto out_err;
3425
3426         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3427 out:
3428         btrfs_free_path(path);
3429         return ret;
3430 out_err:
3431         location->objectid = 0;
3432         goto out;
3433 }
3434
3435 /*
3436  * when we hit a tree root in a directory, the btrfs part of the inode
3437  * needs to be changed to reflect the root directory of the tree root.  This
3438  * is kind of like crossing a mount point.
3439  */
3440 static int fixup_tree_root_location(struct btrfs_root *root,
3441                                     struct inode *dir,
3442                                     struct dentry *dentry,
3443                                     struct btrfs_key *location,
3444                                     struct btrfs_root **sub_root)
3445 {
3446         struct btrfs_path *path;
3447         struct btrfs_root *new_root;
3448         struct btrfs_root_ref *ref;
3449         struct extent_buffer *leaf;
3450         int ret;
3451         int err = 0;
3452
3453         path = btrfs_alloc_path();
3454         if (!path) {
3455                 err = -ENOMEM;
3456                 goto out;
3457         }
3458
3459         err = -ENOENT;
3460         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3461                                   BTRFS_I(dir)->root->root_key.objectid,
3462                                   location->objectid);
3463         if (ret) {
3464                 if (ret < 0)
3465                         err = ret;
3466                 goto out;
3467         }
3468
3469         leaf = path->nodes[0];
3470         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3471         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3472             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3473                 goto out;
3474
3475         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3476                                    (unsigned long)(ref + 1),
3477                                    dentry->d_name.len);
3478         if (ret)
3479                 goto out;
3480
3481         btrfs_release_path(root->fs_info->tree_root, path);
3482
3483         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3484         if (IS_ERR(new_root)) {
3485                 err = PTR_ERR(new_root);
3486                 goto out;
3487         }
3488
3489         if (btrfs_root_refs(&new_root->root_item) == 0) {
3490                 err = -ENOENT;
3491                 goto out;
3492         }
3493
3494         *sub_root = new_root;
3495         location->objectid = btrfs_root_dirid(&new_root->root_item);
3496         location->type = BTRFS_INODE_ITEM_KEY;
3497         location->offset = 0;
3498         err = 0;
3499 out:
3500         btrfs_free_path(path);
3501         return err;
3502 }
3503
3504 static void inode_tree_add(struct inode *inode)
3505 {
3506         struct btrfs_root *root = BTRFS_I(inode)->root;
3507         struct btrfs_inode *entry;
3508         struct rb_node **p;
3509         struct rb_node *parent;
3510 again:
3511         p = &root->inode_tree.rb_node;
3512         parent = NULL;
3513
3514         if (hlist_unhashed(&inode->i_hash))
3515                 return;
3516
3517         spin_lock(&root->inode_lock);
3518         while (*p) {
3519                 parent = *p;
3520                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3521
3522                 if (inode->i_ino < entry->vfs_inode.i_ino)
3523                         p = &parent->rb_left;
3524                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3525                         p = &parent->rb_right;
3526                 else {
3527                         WARN_ON(!(entry->vfs_inode.i_state &
3528                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3529                         rb_erase(parent, &root->inode_tree);
3530                         RB_CLEAR_NODE(parent);
3531                         spin_unlock(&root->inode_lock);
3532                         goto again;
3533                 }
3534         }
3535         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3536         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3537         spin_unlock(&root->inode_lock);
3538 }
3539
3540 static void inode_tree_del(struct inode *inode)
3541 {
3542         struct btrfs_root *root = BTRFS_I(inode)->root;
3543         int empty = 0;
3544
3545         spin_lock(&root->inode_lock);
3546         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3547                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3548                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3549                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3550         }
3551         spin_unlock(&root->inode_lock);
3552
3553         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3554                 synchronize_srcu(&root->fs_info->subvol_srcu);
3555                 spin_lock(&root->inode_lock);
3556                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3557                 spin_unlock(&root->inode_lock);
3558                 if (empty)
3559                         btrfs_add_dead_root(root);
3560         }
3561 }
3562
3563 int btrfs_invalidate_inodes(struct btrfs_root *root)
3564 {
3565         struct rb_node *node;
3566         struct rb_node *prev;
3567         struct btrfs_inode *entry;
3568         struct inode *inode;
3569         u64 objectid = 0;
3570
3571         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3572
3573         spin_lock(&root->inode_lock);
3574 again:
3575         node = root->inode_tree.rb_node;
3576         prev = NULL;
3577         while (node) {
3578                 prev = node;
3579                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3580
3581                 if (objectid < entry->vfs_inode.i_ino)
3582                         node = node->rb_left;
3583                 else if (objectid > entry->vfs_inode.i_ino)
3584                         node = node->rb_right;
3585                 else
3586                         break;
3587         }
3588         if (!node) {
3589                 while (prev) {
3590                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3591                         if (objectid <= entry->vfs_inode.i_ino) {
3592                                 node = prev;
3593                                 break;
3594                         }
3595                         prev = rb_next(prev);
3596                 }
3597         }
3598         while (node) {
3599                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3600                 objectid = entry->vfs_inode.i_ino + 1;
3601                 inode = igrab(&entry->vfs_inode);
3602                 if (inode) {
3603                         spin_unlock(&root->inode_lock);
3604                         if (atomic_read(&inode->i_count) > 1)
3605                                 d_prune_aliases(inode);
3606                         /*
3607                          * btrfs_drop_inode will remove it from
3608                          * the inode cache when its usage count
3609                          * hits zero.
3610                          */
3611                         iput(inode);
3612                         cond_resched();
3613                         spin_lock(&root->inode_lock);
3614                         goto again;
3615                 }
3616
3617                 if (cond_resched_lock(&root->inode_lock))
3618                         goto again;
3619
3620                 node = rb_next(node);
3621         }
3622         spin_unlock(&root->inode_lock);
3623         return 0;
3624 }
3625
3626 static noinline void init_btrfs_i(struct inode *inode)
3627 {
3628         struct btrfs_inode *bi = BTRFS_I(inode);
3629
3630         bi->generation = 0;
3631         bi->sequence = 0;
3632         bi->last_trans = 0;
3633         bi->last_sub_trans = 0;
3634         bi->logged_trans = 0;
3635         bi->delalloc_bytes = 0;
3636         bi->reserved_bytes = 0;
3637         bi->disk_i_size = 0;
3638         bi->flags = 0;
3639         bi->index_cnt = (u64)-1;
3640         bi->last_unlink_trans = 0;
3641         bi->ordered_data_close = 0;
3642         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3643         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3644                              inode->i_mapping, GFP_NOFS);
3645         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3646                              inode->i_mapping, GFP_NOFS);
3647         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3648         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3649         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3650         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3651         mutex_init(&BTRFS_I(inode)->log_mutex);
3652 }
3653
3654 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3655 {
3656         struct btrfs_iget_args *args = p;
3657         inode->i_ino = args->ino;
3658         init_btrfs_i(inode);
3659         BTRFS_I(inode)->root = args->root;
3660         btrfs_set_inode_space_info(args->root, inode);
3661         return 0;
3662 }
3663
3664 static int btrfs_find_actor(struct inode *inode, void *opaque)
3665 {
3666         struct btrfs_iget_args *args = opaque;
3667         return args->ino == inode->i_ino &&
3668                 args->root == BTRFS_I(inode)->root;
3669 }
3670
3671 static struct inode *btrfs_iget_locked(struct super_block *s,
3672                                        u64 objectid,
3673                                        struct btrfs_root *root)
3674 {
3675         struct inode *inode;
3676         struct btrfs_iget_args args;
3677         args.ino = objectid;
3678         args.root = root;
3679
3680         inode = iget5_locked(s, objectid, btrfs_find_actor,
3681                              btrfs_init_locked_inode,
3682                              (void *)&args);
3683         return inode;
3684 }
3685
3686 /* Get an inode object given its location and corresponding root.
3687  * Returns in *is_new if the inode was read from disk
3688  */
3689 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3690                          struct btrfs_root *root)
3691 {
3692         struct inode *inode;
3693
3694         inode = btrfs_iget_locked(s, location->objectid, root);
3695         if (!inode)
3696                 return ERR_PTR(-ENOMEM);
3697
3698         if (inode->i_state & I_NEW) {
3699                 BTRFS_I(inode)->root = root;
3700                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3701                 btrfs_read_locked_inode(inode);
3702
3703                 inode_tree_add(inode);
3704                 unlock_new_inode(inode);
3705         }
3706
3707         return inode;
3708 }
3709
3710 static struct inode *new_simple_dir(struct super_block *s,
3711                                     struct btrfs_key *key,
3712                                     struct btrfs_root *root)
3713 {
3714         struct inode *inode = new_inode(s);
3715
3716         if (!inode)
3717                 return ERR_PTR(-ENOMEM);
3718
3719         init_btrfs_i(inode);
3720
3721         BTRFS_I(inode)->root = root;
3722         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3723         BTRFS_I(inode)->dummy_inode = 1;
3724
3725         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3726         inode->i_op = &simple_dir_inode_operations;
3727         inode->i_fop = &simple_dir_operations;
3728         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3729         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3730
3731         return inode;
3732 }
3733
3734 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3735 {
3736         struct inode *inode;
3737         struct btrfs_root *root = BTRFS_I(dir)->root;
3738         struct btrfs_root *sub_root = root;
3739         struct btrfs_key location;
3740         int index;
3741         int ret;
3742
3743         dentry->d_op = &btrfs_dentry_operations;
3744
3745         if (dentry->d_name.len > BTRFS_NAME_LEN)
3746                 return ERR_PTR(-ENAMETOOLONG);
3747
3748         ret = btrfs_inode_by_name(dir, dentry, &location);
3749
3750         if (ret < 0)
3751                 return ERR_PTR(ret);
3752
3753         if (location.objectid == 0)
3754                 return NULL;
3755
3756         if (location.type == BTRFS_INODE_ITEM_KEY) {
3757                 inode = btrfs_iget(dir->i_sb, &location, root);
3758                 return inode;
3759         }
3760
3761         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3762
3763         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3764         ret = fixup_tree_root_location(root, dir, dentry,
3765                                        &location, &sub_root);
3766         if (ret < 0) {
3767                 if (ret != -ENOENT)
3768                         inode = ERR_PTR(ret);
3769                 else
3770                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3771         } else {
3772                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3773         }
3774         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3775
3776         if (root != sub_root) {
3777                 down_read(&root->fs_info->cleanup_work_sem);
3778                 if (!(inode->i_sb->s_flags & MS_RDONLY))
3779                         btrfs_orphan_cleanup(sub_root);
3780                 up_read(&root->fs_info->cleanup_work_sem);
3781         }
3782
3783         return inode;
3784 }
3785
3786 static int btrfs_dentry_delete(struct dentry *dentry)
3787 {
3788         struct btrfs_root *root;
3789
3790         if (!dentry->d_inode && !IS_ROOT(dentry))
3791                 dentry = dentry->d_parent;
3792
3793         if (dentry->d_inode) {
3794                 root = BTRFS_I(dentry->d_inode)->root;
3795                 if (btrfs_root_refs(&root->root_item) == 0)
3796                         return 1;
3797         }
3798         return 0;
3799 }
3800
3801 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3802                                    struct nameidata *nd)
3803 {
3804         struct inode *inode;
3805
3806         inode = btrfs_lookup_dentry(dir, dentry);
3807         if (IS_ERR(inode))
3808                 return ERR_CAST(inode);
3809
3810         return d_splice_alias(inode, dentry);
3811 }
3812
3813 static unsigned char btrfs_filetype_table[] = {
3814         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3815 };
3816
3817 static int btrfs_real_readdir(struct file *filp, void *dirent,
3818                               filldir_t filldir)
3819 {
3820         struct inode *inode = filp->f_dentry->d_inode;
3821         struct btrfs_root *root = BTRFS_I(inode)->root;
3822         struct btrfs_item *item;
3823         struct btrfs_dir_item *di;
3824         struct btrfs_key key;
3825         struct btrfs_key found_key;
3826         struct btrfs_path *path;
3827         int ret;
3828         u32 nritems;
3829         struct extent_buffer *leaf;
3830         int slot;
3831         int advance;
3832         unsigned char d_type;
3833         int over = 0;
3834         u32 di_cur;
3835         u32 di_total;
3836         u32 di_len;
3837         int key_type = BTRFS_DIR_INDEX_KEY;
3838         char tmp_name[32];
3839         char *name_ptr;
3840         int name_len;
3841
3842         /* FIXME, use a real flag for deciding about the key type */
3843         if (root->fs_info->tree_root == root)
3844                 key_type = BTRFS_DIR_ITEM_KEY;
3845
3846         /* special case for "." */
3847         if (filp->f_pos == 0) {
3848                 over = filldir(dirent, ".", 1,
3849                                1, inode->i_ino,
3850                                DT_DIR);
3851                 if (over)
3852                         return 0;
3853                 filp->f_pos = 1;
3854         }
3855         /* special case for .., just use the back ref */
3856         if (filp->f_pos == 1) {
3857                 u64 pino = parent_ino(filp->f_path.dentry);
3858                 over = filldir(dirent, "..", 2,
3859                                2, pino, DT_DIR);
3860                 if (over)
3861                         return 0;
3862                 filp->f_pos = 2;
3863         }
3864         path = btrfs_alloc_path();
3865         path->reada = 2;
3866
3867         btrfs_set_key_type(&key, key_type);
3868         key.offset = filp->f_pos;
3869         key.objectid = inode->i_ino;
3870
3871         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3872         if (ret < 0)
3873                 goto err;
3874         advance = 0;
3875
3876         while (1) {
3877                 leaf = path->nodes[0];
3878                 nritems = btrfs_header_nritems(leaf);
3879                 slot = path->slots[0];
3880                 if (advance || slot >= nritems) {
3881                         if (slot >= nritems - 1) {
3882                                 ret = btrfs_next_leaf(root, path);
3883                                 if (ret)
3884                                         break;
3885                                 leaf = path->nodes[0];
3886                                 nritems = btrfs_header_nritems(leaf);
3887                                 slot = path->slots[0];
3888                         } else {
3889                                 slot++;
3890                                 path->slots[0]++;
3891                         }
3892                 }
3893
3894                 advance = 1;
3895                 item = btrfs_item_nr(leaf, slot);
3896                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3897
3898                 if (found_key.objectid != key.objectid)
3899                         break;
3900                 if (btrfs_key_type(&found_key) != key_type)
3901                         break;
3902                 if (found_key.offset < filp->f_pos)
3903                         continue;
3904
3905                 filp->f_pos = found_key.offset;
3906
3907                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3908                 di_cur = 0;
3909                 di_total = btrfs_item_size(leaf, item);
3910
3911                 while (di_cur < di_total) {
3912                         struct btrfs_key location;
3913
3914                         name_len = btrfs_dir_name_len(leaf, di);
3915                         if (name_len <= sizeof(tmp_name)) {
3916                                 name_ptr = tmp_name;
3917                         } else {
3918                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3919                                 if (!name_ptr) {
3920                                         ret = -ENOMEM;
3921                                         goto err;
3922                                 }
3923                         }
3924                         read_extent_buffer(leaf, name_ptr,
3925                                            (unsigned long)(di + 1), name_len);
3926
3927                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3928                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3929
3930                         /* is this a reference to our own snapshot? If so
3931                          * skip it
3932                          */
3933                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3934                             location.objectid == root->root_key.objectid) {
3935                                 over = 0;
3936                                 goto skip;
3937                         }
3938                         over = filldir(dirent, name_ptr, name_len,
3939                                        found_key.offset, location.objectid,
3940                                        d_type);
3941
3942 skip:
3943                         if (name_ptr != tmp_name)
3944                                 kfree(name_ptr);
3945
3946                         if (over)
3947                                 goto nopos;
3948                         di_len = btrfs_dir_name_len(leaf, di) +
3949                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3950                         di_cur += di_len;
3951                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3952                 }
3953         }
3954
3955         /* Reached end of directory/root. Bump pos past the last item. */
3956         if (key_type == BTRFS_DIR_INDEX_KEY)
3957                 /*
3958                  * 32-bit glibc will use getdents64, but then strtol -
3959                  * so the last number we can serve is this.
3960                  */
3961                 filp->f_pos = 0x7fffffff;
3962         else
3963                 filp->f_pos++;
3964 nopos:
3965         ret = 0;
3966 err:
3967         btrfs_free_path(path);
3968         return ret;
3969 }
3970
3971 int btrfs_write_inode(struct inode *inode, int wait)
3972 {
3973         struct btrfs_root *root = BTRFS_I(inode)->root;
3974         struct btrfs_trans_handle *trans;
3975         int ret = 0;
3976
3977         if (root->fs_info->btree_inode == inode)
3978                 return 0;
3979
3980         if (wait) {
3981                 trans = btrfs_join_transaction(root, 1);
3982                 btrfs_set_trans_block_group(trans, inode);
3983                 ret = btrfs_commit_transaction(trans, root);
3984         }
3985         return ret;
3986 }
3987
3988 /*
3989  * This is somewhat expensive, updating the tree every time the
3990  * inode changes.  But, it is most likely to find the inode in cache.
3991  * FIXME, needs more benchmarking...there are no reasons other than performance
3992  * to keep or drop this code.
3993  */
3994 void btrfs_dirty_inode(struct inode *inode)
3995 {
3996         struct btrfs_root *root = BTRFS_I(inode)->root;
3997         struct btrfs_trans_handle *trans;
3998
3999         trans = btrfs_join_transaction(root, 1);
4000         btrfs_set_trans_block_group(trans, inode);
4001         btrfs_update_inode(trans, root, inode);
4002         btrfs_end_transaction(trans, root);
4003 }
4004
4005 /*
4006  * find the highest existing sequence number in a directory
4007  * and then set the in-memory index_cnt variable to reflect
4008  * free sequence numbers
4009  */
4010 static int btrfs_set_inode_index_count(struct inode *inode)
4011 {
4012         struct btrfs_root *root = BTRFS_I(inode)->root;
4013         struct btrfs_key key, found_key;
4014         struct btrfs_path *path;
4015         struct extent_buffer *leaf;
4016         int ret;
4017
4018         key.objectid = inode->i_ino;
4019         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4020         key.offset = (u64)-1;
4021
4022         path = btrfs_alloc_path();
4023         if (!path)
4024                 return -ENOMEM;
4025
4026         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4027         if (ret < 0)
4028                 goto out;
4029         /* FIXME: we should be able to handle this */
4030         if (ret == 0)
4031                 goto out;
4032         ret = 0;
4033
4034         /*
4035          * MAGIC NUMBER EXPLANATION:
4036          * since we search a directory based on f_pos we have to start at 2
4037          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4038          * else has to start at 2
4039          */
4040         if (path->slots[0] == 0) {
4041                 BTRFS_I(inode)->index_cnt = 2;
4042                 goto out;
4043         }
4044
4045         path->slots[0]--;
4046
4047         leaf = path->nodes[0];
4048         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4049
4050         if (found_key.objectid != inode->i_ino ||
4051             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4052                 BTRFS_I(inode)->index_cnt = 2;
4053                 goto out;
4054         }
4055
4056         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4057 out:
4058         btrfs_free_path(path);
4059         return ret;
4060 }
4061
4062 /*
4063  * helper to find a free sequence number in a given directory.  This current
4064  * code is very simple, later versions will do smarter things in the btree
4065  */
4066 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4067 {
4068         int ret = 0;
4069
4070         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4071                 ret = btrfs_set_inode_index_count(dir);
4072                 if (ret)
4073                         return ret;
4074         }
4075
4076         *index = BTRFS_I(dir)->index_cnt;
4077         BTRFS_I(dir)->index_cnt++;
4078
4079         return ret;
4080 }
4081
4082 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4083                                      struct btrfs_root *root,
4084                                      struct inode *dir,
4085                                      const char *name, int name_len,
4086                                      u64 ref_objectid, u64 objectid,
4087                                      u64 alloc_hint, int mode, u64 *index)
4088 {
4089         struct inode *inode;
4090         struct btrfs_inode_item *inode_item;
4091         struct btrfs_key *location;
4092         struct btrfs_path *path;
4093         struct btrfs_inode_ref *ref;
4094         struct btrfs_key key[2];
4095         u32 sizes[2];
4096         unsigned long ptr;
4097         int ret;
4098         int owner;
4099
4100         path = btrfs_alloc_path();
4101         BUG_ON(!path);
4102
4103         inode = new_inode(root->fs_info->sb);
4104         if (!inode)
4105                 return ERR_PTR(-ENOMEM);
4106
4107         if (dir) {
4108                 ret = btrfs_set_inode_index(dir, index);
4109                 if (ret) {
4110                         iput(inode);
4111                         return ERR_PTR(ret);
4112                 }
4113         }
4114         /*
4115          * index_cnt is ignored for everything but a dir,
4116          * btrfs_get_inode_index_count has an explanation for the magic
4117          * number
4118          */
4119         init_btrfs_i(inode);
4120         BTRFS_I(inode)->index_cnt = 2;
4121         BTRFS_I(inode)->root = root;
4122         BTRFS_I(inode)->generation = trans->transid;
4123         btrfs_set_inode_space_info(root, inode);
4124
4125         if (mode & S_IFDIR)
4126                 owner = 0;
4127         else
4128                 owner = 1;
4129         BTRFS_I(inode)->block_group =
4130                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4131
4132         key[0].objectid = objectid;
4133         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4134         key[0].offset = 0;
4135
4136         key[1].objectid = objectid;
4137         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4138         key[1].offset = ref_objectid;
4139
4140         sizes[0] = sizeof(struct btrfs_inode_item);
4141         sizes[1] = name_len + sizeof(*ref);
4142
4143         path->leave_spinning = 1;
4144         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4145         if (ret != 0)
4146                 goto fail;
4147
4148         inode->i_uid = current_fsuid();
4149
4150         if (dir && (dir->i_mode & S_ISGID)) {
4151                 inode->i_gid = dir->i_gid;
4152                 if (S_ISDIR(mode))
4153                         mode |= S_ISGID;
4154         } else
4155                 inode->i_gid = current_fsgid();
4156
4157         inode->i_mode = mode;
4158         inode->i_ino = objectid;
4159         inode_set_bytes(inode, 0);
4160         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4161         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4162                                   struct btrfs_inode_item);
4163         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4164
4165         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4166                              struct btrfs_inode_ref);
4167         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4168         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4169         ptr = (unsigned long)(ref + 1);
4170         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4171
4172         btrfs_mark_buffer_dirty(path->nodes[0]);
4173         btrfs_free_path(path);
4174
4175         location = &BTRFS_I(inode)->location;
4176         location->objectid = objectid;
4177         location->offset = 0;
4178         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4179
4180         btrfs_inherit_iflags(inode, dir);
4181
4182         if ((mode & S_IFREG)) {
4183                 if (btrfs_test_opt(root, NODATASUM))
4184                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4185                 if (btrfs_test_opt(root, NODATACOW))
4186                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4187         }
4188
4189         insert_inode_hash(inode);
4190         inode_tree_add(inode);
4191         return inode;
4192 fail:
4193         if (dir)
4194                 BTRFS_I(dir)->index_cnt--;
4195         btrfs_free_path(path);
4196         iput(inode);
4197         return ERR_PTR(ret);
4198 }
4199
4200 static inline u8 btrfs_inode_type(struct inode *inode)
4201 {
4202         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4203 }
4204
4205 /*
4206  * utility function to add 'inode' into 'parent_inode' with
4207  * a give name and a given sequence number.
4208  * if 'add_backref' is true, also insert a backref from the
4209  * inode to the parent directory.
4210  */
4211 int btrfs_add_link(struct btrfs_trans_handle *trans,
4212                    struct inode *parent_inode, struct inode *inode,
4213                    const char *name, int name_len, int add_backref, u64 index)
4214 {
4215         int ret = 0;
4216         struct btrfs_key key;
4217         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4218
4219         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4220                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4221         } else {
4222                 key.objectid = inode->i_ino;
4223                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4224                 key.offset = 0;
4225         }
4226
4227         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4228                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4229                                          key.objectid, root->root_key.objectid,
4230                                          parent_inode->i_ino,
4231                                          index, name, name_len);
4232         } else if (add_backref) {
4233                 ret = btrfs_insert_inode_ref(trans, root,
4234                                              name, name_len, inode->i_ino,
4235                                              parent_inode->i_ino, index);
4236         }
4237
4238         if (ret == 0) {
4239                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4240                                             parent_inode->i_ino, &key,
4241                                             btrfs_inode_type(inode), index);
4242                 BUG_ON(ret);
4243
4244                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4245                                    name_len * 2);
4246                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4247                 ret = btrfs_update_inode(trans, root, parent_inode);
4248         }
4249         return ret;
4250 }
4251
4252 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4253                             struct dentry *dentry, struct inode *inode,
4254                             int backref, u64 index)
4255 {
4256         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4257                                  inode, dentry->d_name.name,
4258                                  dentry->d_name.len, backref, index);
4259         if (!err) {
4260                 d_instantiate(dentry, inode);
4261                 return 0;
4262         }
4263         if (err > 0)
4264                 err = -EEXIST;
4265         return err;
4266 }
4267
4268 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4269                         int mode, dev_t rdev)
4270 {
4271         struct btrfs_trans_handle *trans;
4272         struct btrfs_root *root = BTRFS_I(dir)->root;
4273         struct inode *inode = NULL;
4274         int err;
4275         int drop_inode = 0;
4276         u64 objectid;
4277         unsigned long nr = 0;
4278         u64 index = 0;
4279
4280         if (!new_valid_dev(rdev))
4281                 return -EINVAL;
4282
4283         /*
4284          * 2 for inode item and ref
4285          * 2 for dir items
4286          * 1 for xattr if selinux is on
4287          */
4288         err = btrfs_reserve_metadata_space(root, 5);
4289         if (err)
4290                 return err;
4291
4292         trans = btrfs_start_transaction(root, 1);
4293         if (!trans)
4294                 goto fail;
4295         btrfs_set_trans_block_group(trans, dir);
4296
4297         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4298         if (err) {
4299                 err = -ENOSPC;
4300                 goto out_unlock;
4301         }
4302
4303         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4304                                 dentry->d_name.len,
4305                                 dentry->d_parent->d_inode->i_ino, objectid,
4306                                 BTRFS_I(dir)->block_group, mode, &index);
4307         err = PTR_ERR(inode);
4308         if (IS_ERR(inode))
4309                 goto out_unlock;
4310
4311         err = btrfs_init_inode_security(trans, inode, dir);
4312         if (err) {
4313                 drop_inode = 1;
4314                 goto out_unlock;
4315         }
4316
4317         btrfs_set_trans_block_group(trans, inode);
4318         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4319         if (err)
4320                 drop_inode = 1;
4321         else {
4322                 inode->i_op = &btrfs_special_inode_operations;
4323                 init_special_inode(inode, inode->i_mode, rdev);
4324                 btrfs_update_inode(trans, root, inode);
4325         }
4326         btrfs_update_inode_block_group(trans, inode);
4327         btrfs_update_inode_block_group(trans, dir);
4328 out_unlock:
4329         nr = trans->blocks_used;
4330         btrfs_end_transaction_throttle(trans, root);
4331 fail:
4332         btrfs_unreserve_metadata_space(root, 5);
4333         if (drop_inode) {
4334                 inode_dec_link_count(inode);
4335                 iput(inode);
4336         }
4337         btrfs_btree_balance_dirty(root, nr);
4338         return err;
4339 }
4340
4341 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4342                         int mode, struct nameidata *nd)
4343 {
4344         struct btrfs_trans_handle *trans;
4345         struct btrfs_root *root = BTRFS_I(dir)->root;
4346         struct inode *inode = NULL;
4347         int err;
4348         int drop_inode = 0;
4349         unsigned long nr = 0;
4350         u64 objectid;
4351         u64 index = 0;
4352
4353         /*
4354          * 2 for inode item and ref
4355          * 2 for dir items
4356          * 1 for xattr if selinux is on
4357          */
4358         err = btrfs_reserve_metadata_space(root, 5);
4359         if (err)
4360                 return err;
4361
4362         trans = btrfs_start_transaction(root, 1);
4363         if (!trans)
4364                 goto fail;
4365         btrfs_set_trans_block_group(trans, dir);
4366
4367         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4368         if (err) {
4369                 err = -ENOSPC;
4370                 goto out_unlock;
4371         }
4372
4373         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4374                                 dentry->d_name.len,
4375                                 dentry->d_parent->d_inode->i_ino,
4376                                 objectid, BTRFS_I(dir)->block_group, mode,
4377                                 &index);
4378         err = PTR_ERR(inode);
4379         if (IS_ERR(inode))
4380                 goto out_unlock;
4381
4382         err = btrfs_init_inode_security(trans, inode, dir);
4383         if (err) {
4384                 drop_inode = 1;
4385                 goto out_unlock;
4386         }
4387
4388         btrfs_set_trans_block_group(trans, inode);
4389         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4390         if (err)
4391                 drop_inode = 1;
4392         else {
4393                 inode->i_mapping->a_ops = &btrfs_aops;
4394                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4395                 inode->i_fop = &btrfs_file_operations;
4396                 inode->i_op = &btrfs_file_inode_operations;
4397                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4398         }
4399         btrfs_update_inode_block_group(trans, inode);
4400         btrfs_update_inode_block_group(trans, dir);
4401 out_unlock:
4402         nr = trans->blocks_used;
4403         btrfs_end_transaction_throttle(trans, root);
4404 fail:
4405         btrfs_unreserve_metadata_space(root, 5);
4406         if (drop_inode) {
4407                 inode_dec_link_count(inode);
4408                 iput(inode);
4409         }
4410         btrfs_btree_balance_dirty(root, nr);
4411         return err;
4412 }
4413
4414 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4415                       struct dentry *dentry)
4416 {
4417         struct btrfs_trans_handle *trans;
4418         struct btrfs_root *root = BTRFS_I(dir)->root;
4419         struct inode *inode = old_dentry->d_inode;
4420         u64 index;
4421         unsigned long nr = 0;
4422         int err;
4423         int drop_inode = 0;
4424
4425         if (inode->i_nlink == 0)
4426                 return -ENOENT;
4427
4428         /* do not allow sys_link's with other subvols of the same device */
4429         if (root->objectid != BTRFS_I(inode)->root->objectid)
4430                 return -EPERM;
4431
4432         /*
4433          * 1 item for inode ref
4434          * 2 items for dir items
4435          */
4436         err = btrfs_reserve_metadata_space(root, 3);
4437         if (err)
4438                 return err;
4439
4440         btrfs_inc_nlink(inode);
4441
4442         err = btrfs_set_inode_index(dir, &index);
4443         if (err)
4444                 goto fail;
4445
4446         trans = btrfs_start_transaction(root, 1);
4447
4448         btrfs_set_trans_block_group(trans, dir);
4449         atomic_inc(&inode->i_count);
4450
4451         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4452
4453         if (err) {
4454                 drop_inode = 1;
4455         } else {
4456                 btrfs_update_inode_block_group(trans, dir);
4457                 err = btrfs_update_inode(trans, root, inode);
4458                 BUG_ON(err);
4459                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4460         }
4461
4462         nr = trans->blocks_used;
4463         btrfs_end_transaction_throttle(trans, root);
4464 fail:
4465         btrfs_unreserve_metadata_space(root, 3);
4466         if (drop_inode) {
4467                 inode_dec_link_count(inode);
4468                 iput(inode);
4469         }
4470         btrfs_btree_balance_dirty(root, nr);
4471         return err;
4472 }
4473
4474 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4475 {
4476         struct inode *inode = NULL;
4477         struct btrfs_trans_handle *trans;
4478         struct btrfs_root *root = BTRFS_I(dir)->root;
4479         int err = 0;
4480         int drop_on_err = 0;
4481         u64 objectid = 0;
4482         u64 index = 0;
4483         unsigned long nr = 1;
4484
4485         /*
4486          * 2 items for inode and ref
4487          * 2 items for dir items
4488          * 1 for xattr if selinux is on
4489          */
4490         err = btrfs_reserve_metadata_space(root, 5);
4491         if (err)
4492                 return err;
4493
4494         trans = btrfs_start_transaction(root, 1);
4495         if (!trans) {
4496                 err = -ENOMEM;
4497                 goto out_unlock;
4498         }
4499         btrfs_set_trans_block_group(trans, dir);
4500
4501         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4502         if (err) {
4503                 err = -ENOSPC;
4504                 goto out_unlock;
4505         }
4506
4507         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4508                                 dentry->d_name.len,
4509                                 dentry->d_parent->d_inode->i_ino, objectid,
4510                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4511                                 &index);
4512         if (IS_ERR(inode)) {
4513                 err = PTR_ERR(inode);
4514                 goto out_fail;
4515         }
4516
4517         drop_on_err = 1;
4518
4519         err = btrfs_init_inode_security(trans, inode, dir);
4520         if (err)
4521                 goto out_fail;
4522
4523         inode->i_op = &btrfs_dir_inode_operations;
4524         inode->i_fop = &btrfs_dir_file_operations;
4525         btrfs_set_trans_block_group(trans, inode);
4526
4527         btrfs_i_size_write(inode, 0);
4528         err = btrfs_update_inode(trans, root, inode);
4529         if (err)
4530                 goto out_fail;
4531
4532         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4533                                  inode, dentry->d_name.name,
4534                                  dentry->d_name.len, 0, index);
4535         if (err)
4536                 goto out_fail;
4537
4538         d_instantiate(dentry, inode);
4539         drop_on_err = 0;
4540         btrfs_update_inode_block_group(trans, inode);
4541         btrfs_update_inode_block_group(trans, dir);
4542
4543 out_fail:
4544         nr = trans->blocks_used;
4545         btrfs_end_transaction_throttle(trans, root);
4546
4547 out_unlock:
4548         btrfs_unreserve_metadata_space(root, 5);
4549         if (drop_on_err)
4550                 iput(inode);
4551         btrfs_btree_balance_dirty(root, nr);
4552         return err;
4553 }
4554
4555 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4556  * and an extent that you want to insert, deal with overlap and insert
4557  * the new extent into the tree.
4558  */
4559 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4560                                 struct extent_map *existing,
4561                                 struct extent_map *em,
4562                                 u64 map_start, u64 map_len)
4563 {
4564         u64 start_diff;
4565
4566         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4567         start_diff = map_start - em->start;
4568         em->start = map_start;
4569         em->len = map_len;
4570         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4571             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4572                 em->block_start += start_diff;
4573                 em->block_len -= start_diff;
4574         }
4575         return add_extent_mapping(em_tree, em);
4576 }
4577
4578 static noinline int uncompress_inline(struct btrfs_path *path,
4579                                       struct inode *inode, struct page *page,
4580                                       size_t pg_offset, u64 extent_offset,
4581                                       struct btrfs_file_extent_item *item)
4582 {
4583         int ret;
4584         struct extent_buffer *leaf = path->nodes[0];
4585         char *tmp;
4586         size_t max_size;
4587         unsigned long inline_size;
4588         unsigned long ptr;
4589
4590         WARN_ON(pg_offset != 0);
4591         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4592         inline_size = btrfs_file_extent_inline_item_len(leaf,
4593                                         btrfs_item_nr(leaf, path->slots[0]));
4594         tmp = kmalloc(inline_size, GFP_NOFS);
4595         ptr = btrfs_file_extent_inline_start(item);
4596
4597         read_extent_buffer(leaf, tmp, ptr, inline_size);
4598
4599         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4600         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4601                                     inline_size, max_size);
4602         if (ret) {
4603                 char *kaddr = kmap_atomic(page, KM_USER0);
4604                 unsigned long copy_size = min_t(u64,
4605                                   PAGE_CACHE_SIZE - pg_offset,
4606                                   max_size - extent_offset);
4607                 memset(kaddr + pg_offset, 0, copy_size);
4608                 kunmap_atomic(kaddr, KM_USER0);
4609         }
4610         kfree(tmp);
4611         return 0;
4612 }
4613
4614 /*
4615  * a bit scary, this does extent mapping from logical file offset to the disk.
4616  * the ugly parts come from merging extents from the disk with the in-ram
4617  * representation.  This gets more complex because of the data=ordered code,
4618  * where the in-ram extents might be locked pending data=ordered completion.
4619  *
4620  * This also copies inline extents directly into the page.
4621  */
4622
4623 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4624                                     size_t pg_offset, u64 start, u64 len,
4625                                     int create)
4626 {
4627         int ret;
4628         int err = 0;
4629         u64 bytenr;
4630         u64 extent_start = 0;
4631         u64 extent_end = 0;
4632         u64 objectid = inode->i_ino;
4633         u32 found_type;
4634         struct btrfs_path *path = NULL;
4635         struct btrfs_root *root = BTRFS_I(inode)->root;
4636         struct btrfs_file_extent_item *item;
4637         struct extent_buffer *leaf;
4638         struct btrfs_key found_key;
4639         struct extent_map *em = NULL;
4640         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4641         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4642         struct btrfs_trans_handle *trans = NULL;
4643         int compressed;
4644
4645 again:
4646         read_lock(&em_tree->lock);
4647         em = lookup_extent_mapping(em_tree, start, len);
4648         if (em)
4649                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4650         read_unlock(&em_tree->lock);
4651
4652         if (em) {
4653                 if (em->start > start || em->start + em->len <= start)
4654                         free_extent_map(em);
4655                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4656                         free_extent_map(em);
4657                 else
4658                         goto out;
4659         }
4660         em = alloc_extent_map(GFP_NOFS);
4661         if (!em) {
4662                 err = -ENOMEM;
4663                 goto out;
4664         }
4665         em->bdev = root->fs_info->fs_devices->latest_bdev;
4666         em->start = EXTENT_MAP_HOLE;
4667         em->orig_start = EXTENT_MAP_HOLE;
4668         em->len = (u64)-1;
4669         em->block_len = (u64)-1;
4670
4671         if (!path) {
4672                 path = btrfs_alloc_path();
4673                 BUG_ON(!path);
4674         }
4675
4676         ret = btrfs_lookup_file_extent(trans, root, path,
4677                                        objectid, start, trans != NULL);
4678         if (ret < 0) {
4679                 err = ret;
4680                 goto out;
4681         }
4682
4683         if (ret != 0) {
4684                 if (path->slots[0] == 0)
4685                         goto not_found;
4686                 path->slots[0]--;
4687         }
4688
4689         leaf = path->nodes[0];
4690         item = btrfs_item_ptr(leaf, path->slots[0],
4691                               struct btrfs_file_extent_item);
4692         /* are we inside the extent that was found? */
4693         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4694         found_type = btrfs_key_type(&found_key);
4695         if (found_key.objectid != objectid ||
4696             found_type != BTRFS_EXTENT_DATA_KEY) {
4697                 goto not_found;
4698         }
4699
4700         found_type = btrfs_file_extent_type(leaf, item);
4701         extent_start = found_key.offset;
4702         compressed = btrfs_file_extent_compression(leaf, item);
4703         if (found_type == BTRFS_FILE_EXTENT_REG ||
4704             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4705                 extent_end = extent_start +
4706                        btrfs_file_extent_num_bytes(leaf, item);
4707         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4708                 size_t size;
4709                 size = btrfs_file_extent_inline_len(leaf, item);
4710                 extent_end = (extent_start + size + root->sectorsize - 1) &
4711                         ~((u64)root->sectorsize - 1);
4712         }
4713
4714         if (start >= extent_end) {
4715                 path->slots[0]++;
4716                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4717                         ret = btrfs_next_leaf(root, path);
4718                         if (ret < 0) {
4719                                 err = ret;
4720                                 goto out;
4721                         }
4722                         if (ret > 0)
4723                                 goto not_found;
4724                         leaf = path->nodes[0];
4725                 }
4726                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4727                 if (found_key.objectid != objectid ||
4728                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4729                         goto not_found;
4730                 if (start + len <= found_key.offset)
4731                         goto not_found;
4732                 em->start = start;
4733                 em->len = found_key.offset - start;
4734                 goto not_found_em;
4735         }
4736
4737         if (found_type == BTRFS_FILE_EXTENT_REG ||
4738             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4739                 em->start = extent_start;
4740                 em->len = extent_end - extent_start;
4741                 em->orig_start = extent_start -
4742                                  btrfs_file_extent_offset(leaf, item);
4743                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4744                 if (bytenr == 0) {
4745                         em->block_start = EXTENT_MAP_HOLE;
4746                         goto insert;
4747                 }
4748                 if (compressed) {
4749                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4750                         em->block_start = bytenr;
4751                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4752                                                                          item);
4753                 } else {
4754                         bytenr += btrfs_file_extent_offset(leaf, item);
4755                         em->block_start = bytenr;
4756                         em->block_len = em->len;
4757                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4758                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4759                 }
4760                 goto insert;
4761         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4762                 unsigned long ptr;
4763                 char *map;
4764                 size_t size;
4765                 size_t extent_offset;
4766                 size_t copy_size;
4767
4768                 em->block_start = EXTENT_MAP_INLINE;
4769                 if (!page || create) {
4770                         em->start = extent_start;
4771                         em->len = extent_end - extent_start;
4772                         goto out;
4773                 }
4774
4775                 size = btrfs_file_extent_inline_len(leaf, item);
4776                 extent_offset = page_offset(page) + pg_offset - extent_start;
4777                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4778                                 size - extent_offset);
4779                 em->start = extent_start + extent_offset;
4780                 em->len = (copy_size + root->sectorsize - 1) &
4781                         ~((u64)root->sectorsize - 1);
4782                 em->orig_start = EXTENT_MAP_INLINE;
4783                 if (compressed)
4784                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4785                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4786                 if (create == 0 && !PageUptodate(page)) {
4787                         if (btrfs_file_extent_compression(leaf, item) ==
4788                             BTRFS_COMPRESS_ZLIB) {
4789                                 ret = uncompress_inline(path, inode, page,
4790                                                         pg_offset,
4791                                                         extent_offset, item);
4792                                 BUG_ON(ret);
4793                         } else {
4794                                 map = kmap(page);
4795                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4796                                                    copy_size);
4797                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4798                                         memset(map + pg_offset + copy_size, 0,
4799                                                PAGE_CACHE_SIZE - pg_offset -
4800                                                copy_size);
4801                                 }
4802                                 kunmap(page);
4803                         }
4804                         flush_dcache_page(page);
4805                 } else if (create && PageUptodate(page)) {
4806                         if (!trans) {
4807                                 kunmap(page);
4808                                 free_extent_map(em);
4809                                 em = NULL;
4810                                 btrfs_release_path(root, path);
4811                                 trans = btrfs_join_transaction(root, 1);
4812                                 goto again;
4813                         }
4814                         map = kmap(page);
4815                         write_extent_buffer(leaf, map + pg_offset, ptr,
4816                                             copy_size);
4817                         kunmap(page);
4818                         btrfs_mark_buffer_dirty(leaf);
4819                 }
4820                 set_extent_uptodate(io_tree, em->start,
4821                                     extent_map_end(em) - 1, GFP_NOFS);
4822                 goto insert;
4823         } else {
4824                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4825                 WARN_ON(1);
4826         }
4827 not_found:
4828         em->start = start;
4829         em->len = len;
4830 not_found_em:
4831         em->block_start = EXTENT_MAP_HOLE;
4832         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4833 insert:
4834         btrfs_release_path(root, path);
4835         if (em->start > start || extent_map_end(em) <= start) {
4836                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4837                        "[%llu %llu]\n", (unsigned long long)em->start,
4838                        (unsigned long long)em->len,
4839                        (unsigned long long)start,
4840                        (unsigned long long)len);
4841                 err = -EIO;
4842                 goto out;
4843         }
4844
4845         err = 0;
4846         write_lock(&em_tree->lock);
4847         ret = add_extent_mapping(em_tree, em);
4848         /* it is possible that someone inserted the extent into the tree
4849          * while we had the lock dropped.  It is also possible that
4850          * an overlapping map exists in the tree
4851          */
4852         if (ret == -EEXIST) {
4853                 struct extent_map *existing;
4854
4855                 ret = 0;
4856
4857                 existing = lookup_extent_mapping(em_tree, start, len);
4858                 if (existing && (existing->start > start ||
4859                     existing->start + existing->len <= start)) {
4860                         free_extent_map(existing);
4861                         existing = NULL;
4862                 }
4863                 if (!existing) {
4864                         existing = lookup_extent_mapping(em_tree, em->start,
4865                                                          em->len);
4866                         if (existing) {
4867                                 err = merge_extent_mapping(em_tree, existing,
4868                                                            em, start,
4869                                                            root->sectorsize);
4870                                 free_extent_map(existing);
4871                                 if (err) {
4872                                         free_extent_map(em);
4873                                         em = NULL;
4874                                 }
4875                         } else {
4876                                 err = -EIO;
4877                                 free_extent_map(em);
4878                                 em = NULL;
4879                         }
4880                 } else {
4881                         free_extent_map(em);
4882                         em = existing;
4883                         err = 0;
4884                 }
4885         }
4886         write_unlock(&em_tree->lock);
4887 out:
4888         if (path)
4889                 btrfs_free_path(path);
4890         if (trans) {
4891                 ret = btrfs_end_transaction(trans, root);
4892                 if (!err)
4893                         err = ret;
4894         }
4895         if (err) {
4896                 free_extent_map(em);
4897                 return ERR_PTR(err);
4898         }
4899         return em;
4900 }
4901
4902 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4903                         const struct iovec *iov, loff_t offset,
4904                         unsigned long nr_segs)
4905 {
4906         return -EINVAL;
4907 }
4908
4909 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4910                 __u64 start, __u64 len)
4911 {
4912         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4913 }
4914
4915 int btrfs_readpage(struct file *file, struct page *page)
4916 {
4917         struct extent_io_tree *tree;
4918         tree = &BTRFS_I(page->mapping->host)->io_tree;
4919         return extent_read_full_page(tree, page, btrfs_get_extent);
4920 }
4921
4922 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4923 {
4924         struct extent_io_tree *tree;
4925
4926
4927         if (current->flags & PF_MEMALLOC) {
4928                 redirty_page_for_writepage(wbc, page);
4929                 unlock_page(page);
4930                 return 0;
4931         }
4932         tree = &BTRFS_I(page->mapping->host)->io_tree;
4933         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4934 }
4935
4936 int btrfs_writepages(struct address_space *mapping,
4937                      struct writeback_control *wbc)
4938 {
4939         struct extent_io_tree *tree;
4940
4941         tree = &BTRFS_I(mapping->host)->io_tree;
4942         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4943 }
4944
4945 static int
4946 btrfs_readpages(struct file *file, struct address_space *mapping,
4947                 struct list_head *pages, unsigned nr_pages)
4948 {
4949         struct extent_io_tree *tree;
4950         tree = &BTRFS_I(mapping->host)->io_tree;
4951         return extent_readpages(tree, mapping, pages, nr_pages,
4952                                 btrfs_get_extent);
4953 }
4954 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4955 {
4956         struct extent_io_tree *tree;
4957         struct extent_map_tree *map;
4958         int ret;
4959
4960         tree = &BTRFS_I(page->mapping->host)->io_tree;
4961         map = &BTRFS_I(page->mapping->host)->extent_tree;
4962         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4963         if (ret == 1) {
4964                 ClearPagePrivate(page);
4965                 set_page_private(page, 0);
4966                 page_cache_release(page);
4967         }
4968         return ret;
4969 }
4970
4971 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4972 {
4973         if (PageWriteback(page) || PageDirty(page))
4974                 return 0;
4975         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4976 }
4977
4978 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4979 {
4980         struct extent_io_tree *tree;
4981         struct btrfs_ordered_extent *ordered;
4982         u64 page_start = page_offset(page);
4983         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4984
4985
4986         /*
4987          * we have the page locked, so new writeback can't start,
4988          * and the dirty bit won't be cleared while we are here.
4989          *
4990          * Wait for IO on this page so that we can safely clear
4991          * the PagePrivate2 bit and do ordered accounting
4992          */
4993         wait_on_page_writeback(page);
4994
4995         tree = &BTRFS_I(page->mapping->host)->io_tree;
4996         if (offset) {
4997                 btrfs_releasepage(page, GFP_NOFS);
4998                 return;
4999         }
5000         lock_extent(tree, page_start, page_end, GFP_NOFS);
5001         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5002                                            page_offset(page));
5003         if (ordered) {
5004                 /*
5005                  * IO on this page will never be started, so we need
5006                  * to account for any ordered extents now
5007                  */
5008                 clear_extent_bit(tree, page_start, page_end,
5009                                  EXTENT_DIRTY | EXTENT_DELALLOC |
5010                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5011                                  NULL, GFP_NOFS);
5012                 /*
5013                  * whoever cleared the private bit is responsible
5014                  * for the finish_ordered_io
5015                  */
5016                 if (TestClearPagePrivate2(page)) {
5017                         btrfs_finish_ordered_io(page->mapping->host,
5018                                                 page_start, page_end);
5019                 }
5020                 btrfs_put_ordered_extent(ordered);
5021                 lock_extent(tree, page_start, page_end, GFP_NOFS);
5022         }
5023         clear_extent_bit(tree, page_start, page_end,
5024                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5025                  EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
5026         __btrfs_releasepage(page, GFP_NOFS);
5027
5028         ClearPageChecked(page);
5029         if (PagePrivate(page)) {
5030                 ClearPagePrivate(page);
5031                 set_page_private(page, 0);
5032                 page_cache_release(page);
5033         }
5034 }
5035
5036 /*
5037  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5038  * called from a page fault handler when a page is first dirtied. Hence we must
5039  * be careful to check for EOF conditions here. We set the page up correctly
5040  * for a written page which means we get ENOSPC checking when writing into
5041  * holes and correct delalloc and unwritten extent mapping on filesystems that
5042  * support these features.
5043  *
5044  * We are not allowed to take the i_mutex here so we have to play games to
5045  * protect against truncate races as the page could now be beyond EOF.  Because
5046  * vmtruncate() writes the inode size before removing pages, once we have the
5047  * page lock we can determine safely if the page is beyond EOF. If it is not
5048  * beyond EOF, then the page is guaranteed safe against truncation until we
5049  * unlock the page.
5050  */
5051 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5052 {
5053         struct page *page = vmf->page;
5054         struct inode *inode = fdentry(vma->vm_file)->d_inode;
5055         struct btrfs_root *root = BTRFS_I(inode)->root;
5056         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5057         struct btrfs_ordered_extent *ordered;
5058         char *kaddr;
5059         unsigned long zero_start;
5060         loff_t size;
5061         int ret;
5062         u64 page_start;
5063         u64 page_end;
5064
5065         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5066         if (ret) {
5067                 if (ret == -ENOMEM)
5068                         ret = VM_FAULT_OOM;
5069                 else /* -ENOSPC, -EIO, etc */
5070                         ret = VM_FAULT_SIGBUS;
5071                 goto out;
5072         }
5073
5074         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5075         if (ret) {
5076                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5077                 ret = VM_FAULT_SIGBUS;
5078                 goto out;
5079         }
5080
5081         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5082 again:
5083         lock_page(page);
5084         size = i_size_read(inode);
5085         page_start = page_offset(page);
5086         page_end = page_start + PAGE_CACHE_SIZE - 1;
5087
5088         if ((page->mapping != inode->i_mapping) ||
5089             (page_start >= size)) {
5090                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5091                 /* page got truncated out from underneath us */
5092                 goto out_unlock;
5093         }
5094         wait_on_page_writeback(page);
5095
5096         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5097         set_page_extent_mapped(page);
5098
5099         /*
5100          * we can't set the delalloc bits if there are pending ordered
5101          * extents.  Drop our locks and wait for them to finish
5102          */
5103         ordered = btrfs_lookup_ordered_extent(inode, page_start);
5104         if (ordered) {
5105                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5106                 unlock_page(page);
5107                 btrfs_start_ordered_extent(inode, ordered, 1);
5108                 btrfs_put_ordered_extent(ordered);
5109                 goto again;
5110         }
5111
5112         /*
5113          * XXX - page_mkwrite gets called every time the page is dirtied, even
5114          * if it was already dirty, so for space accounting reasons we need to
5115          * clear any delalloc bits for the range we are fixing to save.  There
5116          * is probably a better way to do this, but for now keep consistent with
5117          * prepare_pages in the normal write path.
5118          */
5119         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5120                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5121                           GFP_NOFS);
5122
5123         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5124         if (ret) {
5125                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5126                 ret = VM_FAULT_SIGBUS;
5127                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5128                 goto out_unlock;
5129         }
5130         ret = 0;
5131
5132         /* page is wholly or partially inside EOF */
5133         if (page_start + PAGE_CACHE_SIZE > size)
5134                 zero_start = size & ~PAGE_CACHE_MASK;
5135         else
5136                 zero_start = PAGE_CACHE_SIZE;
5137
5138         if (zero_start != PAGE_CACHE_SIZE) {
5139                 kaddr = kmap(page);
5140                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5141                 flush_dcache_page(page);
5142                 kunmap(page);
5143         }
5144         ClearPageChecked(page);
5145         set_page_dirty(page);
5146         SetPageUptodate(page);
5147
5148         BTRFS_I(inode)->last_trans = root->fs_info->generation;
5149         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5150
5151         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5152
5153 out_unlock:
5154         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5155         if (!ret)
5156                 return VM_FAULT_LOCKED;
5157         unlock_page(page);
5158 out:
5159         return ret;
5160 }
5161
5162 static void btrfs_truncate(struct inode *inode)
5163 {
5164         struct btrfs_root *root = BTRFS_I(inode)->root;
5165         int ret;
5166         struct btrfs_trans_handle *trans;
5167         unsigned long nr;
5168         u64 mask = root->sectorsize - 1;
5169
5170         if (!S_ISREG(inode->i_mode)) {
5171                 WARN_ON(1);
5172                 return;
5173         }
5174
5175         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5176         if (ret)
5177                 return;
5178
5179         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5180         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5181
5182         trans = btrfs_start_transaction(root, 1);
5183         btrfs_set_trans_block_group(trans, inode);
5184
5185         /*
5186          * setattr is responsible for setting the ordered_data_close flag,
5187          * but that is only tested during the last file release.  That
5188          * could happen well after the next commit, leaving a great big
5189          * window where new writes may get lost if someone chooses to write
5190          * to this file after truncating to zero
5191          *
5192          * The inode doesn't have any dirty data here, and so if we commit
5193          * this is a noop.  If someone immediately starts writing to the inode
5194          * it is very likely we'll catch some of their writes in this
5195          * transaction, and the commit will find this file on the ordered
5196          * data list with good things to send down.
5197          *
5198          * This is a best effort solution, there is still a window where
5199          * using truncate to replace the contents of the file will
5200          * end up with a zero length file after a crash.
5201          */
5202         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5203                 btrfs_add_ordered_operation(trans, root, inode);
5204
5205         while (1) {
5206                 ret = btrfs_truncate_inode_items(trans, root, inode,
5207                                                  inode->i_size,
5208                                                  BTRFS_EXTENT_DATA_KEY);
5209                 if (ret != -EAGAIN)
5210                         break;
5211
5212                 ret = btrfs_update_inode(trans, root, inode);
5213                 BUG_ON(ret);
5214
5215                 nr = trans->blocks_used;
5216                 btrfs_end_transaction(trans, root);
5217                 btrfs_btree_balance_dirty(root, nr);
5218
5219                 trans = btrfs_start_transaction(root, 1);
5220                 btrfs_set_trans_block_group(trans, inode);
5221         }
5222
5223         if (ret == 0 && inode->i_nlink > 0) {
5224                 ret = btrfs_orphan_del(trans, inode);
5225                 BUG_ON(ret);
5226         }
5227
5228         ret = btrfs_update_inode(trans, root, inode);
5229         BUG_ON(ret);
5230
5231         nr = trans->blocks_used;
5232         ret = btrfs_end_transaction_throttle(trans, root);
5233         BUG_ON(ret);
5234         btrfs_btree_balance_dirty(root, nr);
5235 }
5236
5237 /*
5238  * create a new subvolume directory/inode (helper for the ioctl).
5239  */
5240 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5241                              struct btrfs_root *new_root,
5242                              u64 new_dirid, u64 alloc_hint)
5243 {
5244         struct inode *inode;
5245         int err;
5246         u64 index = 0;
5247
5248         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5249                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5250         if (IS_ERR(inode))
5251                 return PTR_ERR(inode);
5252         inode->i_op = &btrfs_dir_inode_operations;
5253         inode->i_fop = &btrfs_dir_file_operations;
5254
5255         inode->i_nlink = 1;
5256         btrfs_i_size_write(inode, 0);
5257
5258         err = btrfs_update_inode(trans, new_root, inode);
5259         BUG_ON(err);
5260
5261         iput(inode);
5262         return 0;
5263 }
5264
5265 /* helper function for file defrag and space balancing.  This
5266  * forces readahead on a given range of bytes in an inode
5267  */
5268 unsigned long btrfs_force_ra(struct address_space *mapping,
5269                               struct file_ra_state *ra, struct file *file,
5270                               pgoff_t offset, pgoff_t last_index)
5271 {
5272         pgoff_t req_size = last_index - offset + 1;
5273
5274         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5275         return offset + req_size;
5276 }
5277
5278 struct inode *btrfs_alloc_inode(struct super_block *sb)
5279 {
5280         struct btrfs_inode *ei;
5281
5282         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5283         if (!ei)
5284                 return NULL;
5285         ei->last_trans = 0;
5286         ei->last_sub_trans = 0;
5287         ei->logged_trans = 0;
5288         ei->outstanding_extents = 0;
5289         ei->reserved_extents = 0;
5290         ei->root = NULL;
5291         spin_lock_init(&ei->accounting_lock);
5292         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5293         INIT_LIST_HEAD(&ei->i_orphan);
5294         INIT_LIST_HEAD(&ei->ordered_operations);
5295         return &ei->vfs_inode;
5296 }
5297
5298 void btrfs_destroy_inode(struct inode *inode)
5299 {
5300         struct btrfs_ordered_extent *ordered;
5301         struct btrfs_root *root = BTRFS_I(inode)->root;
5302
5303         WARN_ON(!list_empty(&inode->i_dentry));
5304         WARN_ON(inode->i_data.nrpages);
5305
5306         /*
5307          * This can happen where we create an inode, but somebody else also
5308          * created the same inode and we need to destroy the one we already
5309          * created.
5310          */
5311         if (!root)
5312                 goto free;
5313
5314         /*
5315          * Make sure we're properly removed from the ordered operation
5316          * lists.
5317          */
5318         smp_mb();
5319         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5320                 spin_lock(&root->fs_info->ordered_extent_lock);
5321                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5322                 spin_unlock(&root->fs_info->ordered_extent_lock);
5323         }
5324
5325         spin_lock(&root->list_lock);
5326         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5327                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5328                        inode->i_ino);
5329                 list_del_init(&BTRFS_I(inode)->i_orphan);
5330         }
5331         spin_unlock(&root->list_lock);
5332
5333         while (1) {
5334                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5335                 if (!ordered)
5336                         break;
5337                 else {
5338                         printk(KERN_ERR "btrfs found ordered "
5339                                "extent %llu %llu on inode cleanup\n",
5340                                (unsigned long long)ordered->file_offset,
5341                                (unsigned long long)ordered->len);
5342                         btrfs_remove_ordered_extent(inode, ordered);
5343                         btrfs_put_ordered_extent(ordered);
5344                         btrfs_put_ordered_extent(ordered);
5345                 }
5346         }
5347         inode_tree_del(inode);
5348         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5349 free:
5350         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5351 }
5352
5353 void btrfs_drop_inode(struct inode *inode)
5354 {
5355         struct btrfs_root *root = BTRFS_I(inode)->root;
5356
5357         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5358                 generic_delete_inode(inode);
5359         else
5360                 generic_drop_inode(inode);
5361 }
5362
5363 static void init_once(void *foo)
5364 {
5365         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5366
5367         inode_init_once(&ei->vfs_inode);
5368 }
5369
5370 void btrfs_destroy_cachep(void)
5371 {
5372         if (btrfs_inode_cachep)
5373                 kmem_cache_destroy(btrfs_inode_cachep);
5374         if (btrfs_trans_handle_cachep)
5375                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5376         if (btrfs_transaction_cachep)
5377                 kmem_cache_destroy(btrfs_transaction_cachep);
5378         if (btrfs_path_cachep)
5379                 kmem_cache_destroy(btrfs_path_cachep);
5380 }
5381
5382 int btrfs_init_cachep(void)
5383 {
5384         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5385                         sizeof(struct btrfs_inode), 0,
5386                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5387         if (!btrfs_inode_cachep)
5388                 goto fail;
5389
5390         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5391                         sizeof(struct btrfs_trans_handle), 0,
5392                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5393         if (!btrfs_trans_handle_cachep)
5394                 goto fail;
5395
5396         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5397                         sizeof(struct btrfs_transaction), 0,
5398                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5399         if (!btrfs_transaction_cachep)
5400                 goto fail;
5401
5402         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5403                         sizeof(struct btrfs_path), 0,
5404                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5405         if (!btrfs_path_cachep)
5406                 goto fail;
5407
5408         return 0;
5409 fail:
5410         btrfs_destroy_cachep();
5411         return -ENOMEM;
5412 }
5413
5414 static int btrfs_getattr(struct vfsmount *mnt,
5415                          struct dentry *dentry, struct kstat *stat)
5416 {
5417         struct inode *inode = dentry->d_inode;
5418         generic_fillattr(inode, stat);
5419         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5420         stat->blksize = PAGE_CACHE_SIZE;
5421         stat->blocks = (inode_get_bytes(inode) +
5422                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5423         return 0;
5424 }
5425
5426 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5427                            struct inode *new_dir, struct dentry *new_dentry)
5428 {
5429         struct btrfs_trans_handle *trans;
5430         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5431         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5432         struct inode *new_inode = new_dentry->d_inode;
5433         struct inode *old_inode = old_dentry->d_inode;
5434         struct timespec ctime = CURRENT_TIME;
5435         u64 index = 0;
5436         u64 root_objectid;
5437         int ret;
5438
5439         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5440                 return -EPERM;
5441
5442         /* we only allow rename subvolume link between subvolumes */
5443         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5444                 return -EXDEV;
5445
5446         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5447             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5448                 return -ENOTEMPTY;
5449
5450         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5451             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5452                 return -ENOTEMPTY;
5453
5454         /*
5455          * We want to reserve the absolute worst case amount of items.  So if
5456          * both inodes are subvols and we need to unlink them then that would
5457          * require 4 item modifications, but if they are both normal inodes it
5458          * would require 5 item modifications, so we'll assume their normal
5459          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5460          * should cover the worst case number of items we'll modify.
5461          */
5462         ret = btrfs_reserve_metadata_space(root, 11);
5463         if (ret)
5464                 return ret;
5465
5466         /*
5467          * we're using rename to replace one file with another.
5468          * and the replacement file is large.  Start IO on it now so
5469          * we don't add too much work to the end of the transaction
5470          */
5471         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5472             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5473                 filemap_flush(old_inode->i_mapping);
5474
5475         /* close the racy window with snapshot create/destroy ioctl */
5476         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5477                 down_read(&root->fs_info->subvol_sem);
5478
5479         trans = btrfs_start_transaction(root, 1);
5480         btrfs_set_trans_block_group(trans, new_dir);
5481
5482         if (dest != root)
5483                 btrfs_record_root_in_trans(trans, dest);
5484
5485         ret = btrfs_set_inode_index(new_dir, &index);
5486         if (ret)
5487                 goto out_fail;
5488
5489         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5490                 /* force full log commit if subvolume involved. */
5491                 root->fs_info->last_trans_log_full_commit = trans->transid;
5492         } else {
5493                 ret = btrfs_insert_inode_ref(trans, dest,
5494                                              new_dentry->d_name.name,
5495                                              new_dentry->d_name.len,
5496                                              old_inode->i_ino,
5497                                              new_dir->i_ino, index);
5498                 if (ret)
5499                         goto out_fail;
5500                 /*
5501                  * this is an ugly little race, but the rename is required
5502                  * to make sure that if we crash, the inode is either at the
5503                  * old name or the new one.  pinning the log transaction lets
5504                  * us make sure we don't allow a log commit to come in after
5505                  * we unlink the name but before we add the new name back in.
5506                  */
5507                 btrfs_pin_log_trans(root);
5508         }
5509         /*
5510          * make sure the inode gets flushed if it is replacing
5511          * something.
5512          */
5513         if (new_inode && new_inode->i_size &&
5514             old_inode && S_ISREG(old_inode->i_mode)) {
5515                 btrfs_add_ordered_operation(trans, root, old_inode);
5516         }
5517
5518         old_dir->i_ctime = old_dir->i_mtime = ctime;
5519         new_dir->i_ctime = new_dir->i_mtime = ctime;
5520         old_inode->i_ctime = ctime;
5521
5522         if (old_dentry->d_parent != new_dentry->d_parent)
5523                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5524
5525         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5526                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5527                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5528                                         old_dentry->d_name.name,
5529                                         old_dentry->d_name.len);
5530         } else {
5531                 btrfs_inc_nlink(old_dentry->d_inode);
5532                 ret = btrfs_unlink_inode(trans, root, old_dir,
5533                                          old_dentry->d_inode,
5534                                          old_dentry->d_name.name,
5535                                          old_dentry->d_name.len);
5536         }
5537         BUG_ON(ret);
5538
5539         if (new_inode) {
5540                 new_inode->i_ctime = CURRENT_TIME;
5541                 if (unlikely(new_inode->i_ino ==
5542                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5543                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5544                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5545                                                 root_objectid,
5546                                                 new_dentry->d_name.name,
5547                                                 new_dentry->d_name.len);
5548                         BUG_ON(new_inode->i_nlink == 0);
5549                 } else {
5550                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5551                                                  new_dentry->d_inode,
5552                                                  new_dentry->d_name.name,
5553                                                  new_dentry->d_name.len);
5554                 }
5555                 BUG_ON(ret);
5556                 if (new_inode->i_nlink == 0) {
5557                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5558                         BUG_ON(ret);
5559                 }
5560         }
5561
5562         ret = btrfs_add_link(trans, new_dir, old_inode,
5563                              new_dentry->d_name.name,
5564                              new_dentry->d_name.len, 0, index);
5565         BUG_ON(ret);
5566
5567         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5568                 btrfs_log_new_name(trans, old_inode, old_dir,
5569                                    new_dentry->d_parent);
5570                 btrfs_end_log_trans(root);
5571         }
5572 out_fail:
5573         btrfs_end_transaction_throttle(trans, root);
5574
5575         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5576                 up_read(&root->fs_info->subvol_sem);
5577
5578         btrfs_unreserve_metadata_space(root, 11);
5579         return ret;
5580 }
5581
5582 /*
5583  * some fairly slow code that needs optimization. This walks the list
5584  * of all the inodes with pending delalloc and forces them to disk.
5585  */
5586 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5587 {
5588         struct list_head *head = &root->fs_info->delalloc_inodes;
5589         struct btrfs_inode *binode;
5590         struct inode *inode;
5591
5592         if (root->fs_info->sb->s_flags & MS_RDONLY)
5593                 return -EROFS;
5594
5595         spin_lock(&root->fs_info->delalloc_lock);
5596         while (!list_empty(head)) {
5597                 binode = list_entry(head->next, struct btrfs_inode,
5598                                     delalloc_inodes);
5599                 inode = igrab(&binode->vfs_inode);
5600                 if (!inode)
5601                         list_del_init(&binode->delalloc_inodes);
5602                 spin_unlock(&root->fs_info->delalloc_lock);
5603                 if (inode) {
5604                         filemap_flush(inode->i_mapping);
5605                         if (delay_iput)
5606                                 btrfs_add_delayed_iput(inode);
5607                         else
5608                                 iput(inode);
5609                 }
5610                 cond_resched();
5611                 spin_lock(&root->fs_info->delalloc_lock);
5612         }
5613         spin_unlock(&root->fs_info->delalloc_lock);
5614
5615         /* the filemap_flush will queue IO into the worker threads, but
5616          * we have to make sure the IO is actually started and that
5617          * ordered extents get created before we return
5618          */
5619         atomic_inc(&root->fs_info->async_submit_draining);
5620         while (atomic_read(&root->fs_info->nr_async_submits) ||
5621               atomic_read(&root->fs_info->async_delalloc_pages)) {
5622                 wait_event(root->fs_info->async_submit_wait,
5623                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5624                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5625         }
5626         atomic_dec(&root->fs_info->async_submit_draining);
5627         return 0;
5628 }
5629
5630 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5631                          const char *symname)
5632 {
5633         struct btrfs_trans_handle *trans;
5634         struct btrfs_root *root = BTRFS_I(dir)->root;
5635         struct btrfs_path *path;
5636         struct btrfs_key key;
5637         struct inode *inode = NULL;
5638         int err;
5639         int drop_inode = 0;
5640         u64 objectid;
5641         u64 index = 0 ;
5642         int name_len;
5643         int datasize;
5644         unsigned long ptr;
5645         struct btrfs_file_extent_item *ei;
5646         struct extent_buffer *leaf;
5647         unsigned long nr = 0;
5648
5649         name_len = strlen(symname) + 1;
5650         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5651                 return -ENAMETOOLONG;
5652
5653         /*
5654          * 2 items for inode item and ref
5655          * 2 items for dir items
5656          * 1 item for xattr if selinux is on
5657          */
5658         err = btrfs_reserve_metadata_space(root, 5);
5659         if (err)
5660                 return err;
5661
5662         trans = btrfs_start_transaction(root, 1);
5663         if (!trans)
5664                 goto out_fail;
5665         btrfs_set_trans_block_group(trans, dir);
5666
5667         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5668         if (err) {
5669                 err = -ENOSPC;
5670                 goto out_unlock;
5671         }
5672
5673         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5674                                 dentry->d_name.len,
5675                                 dentry->d_parent->d_inode->i_ino, objectid,
5676                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5677                                 &index);
5678         err = PTR_ERR(inode);
5679         if (IS_ERR(inode))
5680                 goto out_unlock;
5681
5682         err = btrfs_init_inode_security(trans, inode, dir);
5683         if (err) {
5684                 drop_inode = 1;
5685                 goto out_unlock;
5686         }
5687
5688         btrfs_set_trans_block_group(trans, inode);
5689         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5690         if (err)
5691                 drop_inode = 1;
5692         else {
5693                 inode->i_mapping->a_ops = &btrfs_aops;
5694                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5695                 inode->i_fop = &btrfs_file_operations;
5696                 inode->i_op = &btrfs_file_inode_operations;
5697                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5698         }
5699         btrfs_update_inode_block_group(trans, inode);
5700         btrfs_update_inode_block_group(trans, dir);
5701         if (drop_inode)
5702                 goto out_unlock;
5703
5704         path = btrfs_alloc_path();
5705         BUG_ON(!path);
5706         key.objectid = inode->i_ino;
5707         key.offset = 0;
5708         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5709         datasize = btrfs_file_extent_calc_inline_size(name_len);
5710         err = btrfs_insert_empty_item(trans, root, path, &key,
5711                                       datasize);
5712         if (err) {
5713                 drop_inode = 1;
5714                 goto out_unlock;
5715         }
5716         leaf = path->nodes[0];
5717         ei = btrfs_item_ptr(leaf, path->slots[0],
5718                             struct btrfs_file_extent_item);
5719         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5720         btrfs_set_file_extent_type(leaf, ei,
5721                                    BTRFS_FILE_EXTENT_INLINE);
5722         btrfs_set_file_extent_encryption(leaf, ei, 0);
5723         btrfs_set_file_extent_compression(leaf, ei, 0);
5724         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5725         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5726
5727         ptr = btrfs_file_extent_inline_start(ei);
5728         write_extent_buffer(leaf, symname, ptr, name_len);
5729         btrfs_mark_buffer_dirty(leaf);
5730         btrfs_free_path(path);
5731
5732         inode->i_op = &btrfs_symlink_inode_operations;
5733         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5734         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5735         inode_set_bytes(inode, name_len);
5736         btrfs_i_size_write(inode, name_len - 1);
5737         err = btrfs_update_inode(trans, root, inode);
5738         if (err)
5739                 drop_inode = 1;
5740
5741 out_unlock:
5742         nr = trans->blocks_used;
5743         btrfs_end_transaction_throttle(trans, root);
5744 out_fail:
5745         btrfs_unreserve_metadata_space(root, 5);
5746         if (drop_inode) {
5747                 inode_dec_link_count(inode);
5748                 iput(inode);
5749         }
5750         btrfs_btree_balance_dirty(root, nr);
5751         return err;
5752 }
5753
5754 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5755                         u64 alloc_hint, int mode, loff_t actual_len)
5756 {
5757         struct btrfs_trans_handle *trans;
5758         struct btrfs_root *root = BTRFS_I(inode)->root;
5759         struct btrfs_key ins;
5760         u64 alloc_size;
5761         u64 cur_offset = start;
5762         u64 num_bytes = end - start;
5763         int ret = 0;
5764         u64 i_size;
5765
5766         while (num_bytes > 0) {
5767                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5768
5769                 trans = btrfs_start_transaction(root, 1);
5770
5771                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5772                                            root->sectorsize, 0, alloc_hint,
5773                                            (u64)-1, &ins, 1);
5774                 if (ret) {
5775                         WARN_ON(1);
5776                         goto stop_trans;
5777                 }
5778
5779                 ret = btrfs_reserve_metadata_space(root, 3);
5780                 if (ret) {
5781                         btrfs_free_reserved_extent(root, ins.objectid,
5782                                                    ins.offset);
5783                         goto stop_trans;
5784                 }
5785
5786                 ret = insert_reserved_file_extent(trans, inode,
5787                                                   cur_offset, ins.objectid,
5788                                                   ins.offset, ins.offset,
5789                                                   ins.offset, 0, 0, 0,
5790                                                   BTRFS_FILE_EXTENT_PREALLOC);
5791                 BUG_ON(ret);
5792                 btrfs_drop_extent_cache(inode, cur_offset,
5793                                         cur_offset + ins.offset -1, 0);
5794
5795                 num_bytes -= ins.offset;
5796                 cur_offset += ins.offset;
5797                 alloc_hint = ins.objectid + ins.offset;
5798
5799                 inode->i_ctime = CURRENT_TIME;
5800                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5801                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5802                         (actual_len > inode->i_size) &&
5803                         (cur_offset > inode->i_size)) {
5804
5805                         if (cur_offset > actual_len)
5806                                 i_size  = actual_len;
5807                         else
5808                                 i_size = cur_offset;
5809                         i_size_write(inode, i_size);
5810                         btrfs_ordered_update_i_size(inode, i_size, NULL);
5811                 }
5812
5813                 ret = btrfs_update_inode(trans, root, inode);
5814                 BUG_ON(ret);
5815
5816                 btrfs_end_transaction(trans, root);
5817                 btrfs_unreserve_metadata_space(root, 3);
5818         }
5819         return ret;
5820
5821 stop_trans:
5822         btrfs_end_transaction(trans, root);
5823         return ret;
5824
5825 }
5826
5827 static long btrfs_fallocate(struct inode *inode, int mode,
5828                             loff_t offset, loff_t len)
5829 {
5830         u64 cur_offset;
5831         u64 last_byte;
5832         u64 alloc_start;
5833         u64 alloc_end;
5834         u64 alloc_hint = 0;
5835         u64 locked_end;
5836         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5837         struct extent_map *em;
5838         int ret;
5839
5840         alloc_start = offset & ~mask;
5841         alloc_end =  (offset + len + mask) & ~mask;
5842
5843         /*
5844          * wait for ordered IO before we have any locks.  We'll loop again
5845          * below with the locks held.
5846          */
5847         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5848
5849         mutex_lock(&inode->i_mutex);
5850         if (alloc_start > inode->i_size) {
5851                 ret = btrfs_cont_expand(inode, alloc_start);
5852                 if (ret)
5853                         goto out;
5854         }
5855
5856         ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5857                                           alloc_end - alloc_start);
5858         if (ret)
5859                 goto out;
5860
5861         locked_end = alloc_end - 1;
5862         while (1) {
5863                 struct btrfs_ordered_extent *ordered;
5864
5865                 /* the extent lock is ordered inside the running
5866                  * transaction
5867                  */
5868                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5869                             GFP_NOFS);
5870                 ordered = btrfs_lookup_first_ordered_extent(inode,
5871                                                             alloc_end - 1);
5872                 if (ordered &&
5873                     ordered->file_offset + ordered->len > alloc_start &&
5874                     ordered->file_offset < alloc_end) {
5875                         btrfs_put_ordered_extent(ordered);
5876                         unlock_extent(&BTRFS_I(inode)->io_tree,
5877                                       alloc_start, locked_end, GFP_NOFS);
5878                         /*
5879                          * we can't wait on the range with the transaction
5880                          * running or with the extent lock held
5881                          */
5882                         btrfs_wait_ordered_range(inode, alloc_start,
5883                                                  alloc_end - alloc_start);
5884                 } else {
5885                         if (ordered)
5886                                 btrfs_put_ordered_extent(ordered);
5887                         break;
5888                 }
5889         }
5890
5891         cur_offset = alloc_start;
5892         while (1) {
5893                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5894                                       alloc_end - cur_offset, 0);
5895                 BUG_ON(IS_ERR(em) || !em);
5896                 last_byte = min(extent_map_end(em), alloc_end);
5897                 last_byte = (last_byte + mask) & ~mask;
5898                 if (em->block_start == EXTENT_MAP_HOLE ||
5899                     (cur_offset >= inode->i_size &&
5900                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5901                         ret = prealloc_file_range(inode,
5902                                                   cur_offset, last_byte,
5903                                                 alloc_hint, mode, offset+len);
5904                         if (ret < 0) {
5905                                 free_extent_map(em);
5906                                 break;
5907                         }
5908                 }
5909                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5910                         alloc_hint = em->block_start;
5911                 free_extent_map(em);
5912
5913                 cur_offset = last_byte;
5914                 if (cur_offset >= alloc_end) {
5915                         ret = 0;
5916                         break;
5917                 }
5918         }
5919         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5920                       GFP_NOFS);
5921
5922         btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5923                                        alloc_end - alloc_start);
5924 out:
5925         mutex_unlock(&inode->i_mutex);
5926         return ret;
5927 }
5928
5929 static int btrfs_set_page_dirty(struct page *page)
5930 {
5931         return __set_page_dirty_nobuffers(page);
5932 }
5933
5934 static int btrfs_permission(struct inode *inode, int mask)
5935 {
5936         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5937                 return -EACCES;
5938         return generic_permission(inode, mask, btrfs_check_acl);
5939 }
5940
5941 static const struct inode_operations btrfs_dir_inode_operations = {
5942         .getattr        = btrfs_getattr,
5943         .lookup         = btrfs_lookup,
5944         .create         = btrfs_create,
5945         .unlink         = btrfs_unlink,
5946         .link           = btrfs_link,
5947         .mkdir          = btrfs_mkdir,
5948         .rmdir          = btrfs_rmdir,
5949         .rename         = btrfs_rename,
5950         .symlink        = btrfs_symlink,
5951         .setattr        = btrfs_setattr,
5952         .mknod          = btrfs_mknod,
5953         .setxattr       = btrfs_setxattr,
5954         .getxattr       = btrfs_getxattr,
5955         .listxattr      = btrfs_listxattr,
5956         .removexattr    = btrfs_removexattr,
5957         .permission     = btrfs_permission,
5958 };
5959 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5960         .lookup         = btrfs_lookup,
5961         .permission     = btrfs_permission,
5962 };
5963
5964 static const struct file_operations btrfs_dir_file_operations = {
5965         .llseek         = generic_file_llseek,
5966         .read           = generic_read_dir,
5967         .readdir        = btrfs_real_readdir,
5968         .unlocked_ioctl = btrfs_ioctl,
5969 #ifdef CONFIG_COMPAT
5970         .compat_ioctl   = btrfs_ioctl,
5971 #endif
5972         .release        = btrfs_release_file,
5973         .fsync          = btrfs_sync_file,
5974 };
5975
5976 static struct extent_io_ops btrfs_extent_io_ops = {
5977         .fill_delalloc = run_delalloc_range,
5978         .submit_bio_hook = btrfs_submit_bio_hook,
5979         .merge_bio_hook = btrfs_merge_bio_hook,
5980         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5981         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5982         .writepage_start_hook = btrfs_writepage_start_hook,
5983         .readpage_io_failed_hook = btrfs_io_failed_hook,
5984         .set_bit_hook = btrfs_set_bit_hook,
5985         .clear_bit_hook = btrfs_clear_bit_hook,
5986         .merge_extent_hook = btrfs_merge_extent_hook,
5987         .split_extent_hook = btrfs_split_extent_hook,
5988 };
5989
5990 /*
5991  * btrfs doesn't support the bmap operation because swapfiles
5992  * use bmap to make a mapping of extents in the file.  They assume
5993  * these extents won't change over the life of the file and they
5994  * use the bmap result to do IO directly to the drive.
5995  *
5996  * the btrfs bmap call would return logical addresses that aren't
5997  * suitable for IO and they also will change frequently as COW
5998  * operations happen.  So, swapfile + btrfs == corruption.
5999  *
6000  * For now we're avoiding this by dropping bmap.
6001  */
6002 static const struct address_space_operations btrfs_aops = {
6003         .readpage       = btrfs_readpage,
6004         .writepage      = btrfs_writepage,
6005         .writepages     = btrfs_writepages,
6006         .readpages      = btrfs_readpages,
6007         .sync_page      = block_sync_page,
6008         .direct_IO      = btrfs_direct_IO,
6009         .invalidatepage = btrfs_invalidatepage,
6010         .releasepage    = btrfs_releasepage,
6011         .set_page_dirty = btrfs_set_page_dirty,
6012         .error_remove_page = generic_error_remove_page,
6013 };
6014
6015 static const struct address_space_operations btrfs_symlink_aops = {
6016         .readpage       = btrfs_readpage,
6017         .writepage      = btrfs_writepage,
6018         .invalidatepage = btrfs_invalidatepage,
6019         .releasepage    = btrfs_releasepage,
6020 };
6021
6022 static const struct inode_operations btrfs_file_inode_operations = {
6023         .truncate       = btrfs_truncate,
6024         .getattr        = btrfs_getattr,
6025         .setattr        = btrfs_setattr,
6026         .setxattr       = btrfs_setxattr,
6027         .getxattr       = btrfs_getxattr,
6028         .listxattr      = btrfs_listxattr,
6029         .removexattr    = btrfs_removexattr,
6030         .permission     = btrfs_permission,
6031         .fallocate      = btrfs_fallocate,
6032         .fiemap         = btrfs_fiemap,
6033 };
6034 static const struct inode_operations btrfs_special_inode_operations = {
6035         .getattr        = btrfs_getattr,
6036         .setattr        = btrfs_setattr,
6037         .permission     = btrfs_permission,
6038         .setxattr       = btrfs_setxattr,
6039         .getxattr       = btrfs_getxattr,
6040         .listxattr      = btrfs_listxattr,
6041         .removexattr    = btrfs_removexattr,
6042 };
6043 static const struct inode_operations btrfs_symlink_inode_operations = {
6044         .readlink       = generic_readlink,
6045         .follow_link    = page_follow_link_light,
6046         .put_link       = page_put_link,
6047         .permission     = btrfs_permission,
6048         .setxattr       = btrfs_setxattr,
6049         .getxattr       = btrfs_getxattr,
6050         .listxattr      = btrfs_listxattr,
6051         .removexattr    = btrfs_removexattr,
6052 };
6053
6054 const struct dentry_operations btrfs_dentry_operations = {
6055         .d_delete       = btrfs_dentry_delete,
6056 };