Btrfs: add basic DIO read/write support
[safe/jmp/linux-2.6] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/statfs.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "ioctl.h"
37 #include "print-tree.h"
38 #include "tree-log.h"
39 #include "locking.h"
40 #include "compat.h"
41
42
43 /* simple helper to fault in pages and copy.  This should go away
44  * and be replaced with calls into generic code.
45  */
46 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
47                                          int write_bytes,
48                                          struct page **prepared_pages,
49                                          const char __user *buf)
50 {
51         long page_fault = 0;
52         int i;
53         int offset = pos & (PAGE_CACHE_SIZE - 1);
54
55         for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
56                 size_t count = min_t(size_t,
57                                      PAGE_CACHE_SIZE - offset, write_bytes);
58                 struct page *page = prepared_pages[i];
59                 fault_in_pages_readable(buf, count);
60
61                 /* Copy data from userspace to the current page */
62                 kmap(page);
63                 page_fault = __copy_from_user(page_address(page) + offset,
64                                               buf, count);
65                 /* Flush processor's dcache for this page */
66                 flush_dcache_page(page);
67                 kunmap(page);
68                 buf += count;
69                 write_bytes -= count;
70
71                 if (page_fault)
72                         break;
73         }
74         return page_fault ? -EFAULT : 0;
75 }
76
77 /*
78  * unlocks pages after btrfs_file_write is done with them
79  */
80 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
81 {
82         size_t i;
83         for (i = 0; i < num_pages; i++) {
84                 if (!pages[i])
85                         break;
86                 /* page checked is some magic around finding pages that
87                  * have been modified without going through btrfs_set_page_dirty
88                  * clear it here
89                  */
90                 ClearPageChecked(pages[i]);
91                 unlock_page(pages[i]);
92                 mark_page_accessed(pages[i]);
93                 page_cache_release(pages[i]);
94         }
95 }
96
97 /*
98  * after copy_from_user, pages need to be dirtied and we need to make
99  * sure holes are created between the current EOF and the start of
100  * any next extents (if required).
101  *
102  * this also makes the decision about creating an inline extent vs
103  * doing real data extents, marking pages dirty and delalloc as required.
104  */
105 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
106                                    struct btrfs_root *root,
107                                    struct file *file,
108                                    struct page **pages,
109                                    size_t num_pages,
110                                    loff_t pos,
111                                    size_t write_bytes)
112 {
113         int err = 0;
114         int i;
115         struct inode *inode = fdentry(file)->d_inode;
116         u64 num_bytes;
117         u64 start_pos;
118         u64 end_of_last_block;
119         u64 end_pos = pos + write_bytes;
120         loff_t isize = i_size_read(inode);
121
122         start_pos = pos & ~((u64)root->sectorsize - 1);
123         num_bytes = (write_bytes + pos - start_pos +
124                     root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
125
126         end_of_last_block = start_pos + num_bytes - 1;
127         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
128                                         NULL);
129         BUG_ON(err);
130
131         for (i = 0; i < num_pages; i++) {
132                 struct page *p = pages[i];
133                 SetPageUptodate(p);
134                 ClearPageChecked(p);
135                 set_page_dirty(p);
136         }
137         if (end_pos > isize) {
138                 i_size_write(inode, end_pos);
139                 /* we've only changed i_size in ram, and we haven't updated
140                  * the disk i_size.  There is no need to log the inode
141                  * at this time.
142                  */
143         }
144         return 0;
145 }
146
147 /*
148  * this drops all the extents in the cache that intersect the range
149  * [start, end].  Existing extents are split as required.
150  */
151 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
152                             int skip_pinned)
153 {
154         struct extent_map *em;
155         struct extent_map *split = NULL;
156         struct extent_map *split2 = NULL;
157         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
158         u64 len = end - start + 1;
159         int ret;
160         int testend = 1;
161         unsigned long flags;
162         int compressed = 0;
163
164         WARN_ON(end < start);
165         if (end == (u64)-1) {
166                 len = (u64)-1;
167                 testend = 0;
168         }
169         while (1) {
170                 if (!split)
171                         split = alloc_extent_map(GFP_NOFS);
172                 if (!split2)
173                         split2 = alloc_extent_map(GFP_NOFS);
174
175                 write_lock(&em_tree->lock);
176                 em = lookup_extent_mapping(em_tree, start, len);
177                 if (!em) {
178                         write_unlock(&em_tree->lock);
179                         break;
180                 }
181                 flags = em->flags;
182                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
183                         if (testend && em->start + em->len >= start + len) {
184                                 free_extent_map(em);
185                                 write_unlock(&em_tree->lock);
186                                 break;
187                         }
188                         start = em->start + em->len;
189                         if (testend)
190                                 len = start + len - (em->start + em->len);
191                         free_extent_map(em);
192                         write_unlock(&em_tree->lock);
193                         continue;
194                 }
195                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
196                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
197                 remove_extent_mapping(em_tree, em);
198
199                 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
200                     em->start < start) {
201                         split->start = em->start;
202                         split->len = start - em->start;
203                         split->orig_start = em->orig_start;
204                         split->block_start = em->block_start;
205
206                         if (compressed)
207                                 split->block_len = em->block_len;
208                         else
209                                 split->block_len = split->len;
210
211                         split->bdev = em->bdev;
212                         split->flags = flags;
213                         ret = add_extent_mapping(em_tree, split);
214                         BUG_ON(ret);
215                         free_extent_map(split);
216                         split = split2;
217                         split2 = NULL;
218                 }
219                 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
220                     testend && em->start + em->len > start + len) {
221                         u64 diff = start + len - em->start;
222
223                         split->start = start + len;
224                         split->len = em->start + em->len - (start + len);
225                         split->bdev = em->bdev;
226                         split->flags = flags;
227
228                         if (compressed) {
229                                 split->block_len = em->block_len;
230                                 split->block_start = em->block_start;
231                                 split->orig_start = em->orig_start;
232                         } else {
233                                 split->block_len = split->len;
234                                 split->block_start = em->block_start + diff;
235                                 split->orig_start = split->start;
236                         }
237
238                         ret = add_extent_mapping(em_tree, split);
239                         BUG_ON(ret);
240                         free_extent_map(split);
241                         split = NULL;
242                 }
243                 write_unlock(&em_tree->lock);
244
245                 /* once for us */
246                 free_extent_map(em);
247                 /* once for the tree*/
248                 free_extent_map(em);
249         }
250         if (split)
251                 free_extent_map(split);
252         if (split2)
253                 free_extent_map(split2);
254         return 0;
255 }
256
257 /*
258  * this is very complex, but the basic idea is to drop all extents
259  * in the range start - end.  hint_block is filled in with a block number
260  * that would be a good hint to the block allocator for this file.
261  *
262  * If an extent intersects the range but is not entirely inside the range
263  * it is either truncated or split.  Anything entirely inside the range
264  * is deleted from the tree.
265  */
266 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
267                        u64 start, u64 end, u64 *hint_byte, int drop_cache)
268 {
269         struct btrfs_root *root = BTRFS_I(inode)->root;
270         struct extent_buffer *leaf;
271         struct btrfs_file_extent_item *fi;
272         struct btrfs_path *path;
273         struct btrfs_key key;
274         struct btrfs_key new_key;
275         u64 search_start = start;
276         u64 disk_bytenr = 0;
277         u64 num_bytes = 0;
278         u64 extent_offset = 0;
279         u64 extent_end = 0;
280         int del_nr = 0;
281         int del_slot = 0;
282         int extent_type;
283         int recow;
284         int ret;
285
286         if (drop_cache)
287                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
288
289         path = btrfs_alloc_path();
290         if (!path)
291                 return -ENOMEM;
292
293         while (1) {
294                 recow = 0;
295                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
296                                                search_start, -1);
297                 if (ret < 0)
298                         break;
299                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
300                         leaf = path->nodes[0];
301                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
302                         if (key.objectid == inode->i_ino &&
303                             key.type == BTRFS_EXTENT_DATA_KEY)
304                                 path->slots[0]--;
305                 }
306                 ret = 0;
307 next_slot:
308                 leaf = path->nodes[0];
309                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
310                         BUG_ON(del_nr > 0);
311                         ret = btrfs_next_leaf(root, path);
312                         if (ret < 0)
313                                 break;
314                         if (ret > 0) {
315                                 ret = 0;
316                                 break;
317                         }
318                         leaf = path->nodes[0];
319                         recow = 1;
320                 }
321
322                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
323                 if (key.objectid > inode->i_ino ||
324                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
325                         break;
326
327                 fi = btrfs_item_ptr(leaf, path->slots[0],
328                                     struct btrfs_file_extent_item);
329                 extent_type = btrfs_file_extent_type(leaf, fi);
330
331                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
332                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
333                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
334                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
335                         extent_offset = btrfs_file_extent_offset(leaf, fi);
336                         extent_end = key.offset +
337                                 btrfs_file_extent_num_bytes(leaf, fi);
338                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
339                         extent_end = key.offset +
340                                 btrfs_file_extent_inline_len(leaf, fi);
341                 } else {
342                         WARN_ON(1);
343                         extent_end = search_start;
344                 }
345
346                 if (extent_end <= search_start) {
347                         path->slots[0]++;
348                         goto next_slot;
349                 }
350
351                 search_start = max(key.offset, start);
352                 if (recow) {
353                         btrfs_release_path(root, path);
354                         continue;
355                 }
356
357                 /*
358                  *     | - range to drop - |
359                  *  | -------- extent -------- |
360                  */
361                 if (start > key.offset && end < extent_end) {
362                         BUG_ON(del_nr > 0);
363                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
364
365                         memcpy(&new_key, &key, sizeof(new_key));
366                         new_key.offset = start;
367                         ret = btrfs_duplicate_item(trans, root, path,
368                                                    &new_key);
369                         if (ret == -EAGAIN) {
370                                 btrfs_release_path(root, path);
371                                 continue;
372                         }
373                         if (ret < 0)
374                                 break;
375
376                         leaf = path->nodes[0];
377                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
378                                             struct btrfs_file_extent_item);
379                         btrfs_set_file_extent_num_bytes(leaf, fi,
380                                                         start - key.offset);
381
382                         fi = btrfs_item_ptr(leaf, path->slots[0],
383                                             struct btrfs_file_extent_item);
384
385                         extent_offset += start - key.offset;
386                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
387                         btrfs_set_file_extent_num_bytes(leaf, fi,
388                                                         extent_end - start);
389                         btrfs_mark_buffer_dirty(leaf);
390
391                         if (disk_bytenr > 0) {
392                                 ret = btrfs_inc_extent_ref(trans, root,
393                                                 disk_bytenr, num_bytes, 0,
394                                                 root->root_key.objectid,
395                                                 new_key.objectid,
396                                                 start - extent_offset);
397                                 BUG_ON(ret);
398                                 *hint_byte = disk_bytenr;
399                         }
400                         key.offset = start;
401                 }
402                 /*
403                  *  | ---- range to drop ----- |
404                  *      | -------- extent -------- |
405                  */
406                 if (start <= key.offset && end < extent_end) {
407                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
408
409                         memcpy(&new_key, &key, sizeof(new_key));
410                         new_key.offset = end;
411                         btrfs_set_item_key_safe(trans, root, path, &new_key);
412
413                         extent_offset += end - key.offset;
414                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
415                         btrfs_set_file_extent_num_bytes(leaf, fi,
416                                                         extent_end - end);
417                         btrfs_mark_buffer_dirty(leaf);
418                         if (disk_bytenr > 0) {
419                                 inode_sub_bytes(inode, end - key.offset);
420                                 *hint_byte = disk_bytenr;
421                         }
422                         break;
423                 }
424
425                 search_start = extent_end;
426                 /*
427                  *       | ---- range to drop ----- |
428                  *  | -------- extent -------- |
429                  */
430                 if (start > key.offset && end >= extent_end) {
431                         BUG_ON(del_nr > 0);
432                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
433
434                         btrfs_set_file_extent_num_bytes(leaf, fi,
435                                                         start - key.offset);
436                         btrfs_mark_buffer_dirty(leaf);
437                         if (disk_bytenr > 0) {
438                                 inode_sub_bytes(inode, extent_end - start);
439                                 *hint_byte = disk_bytenr;
440                         }
441                         if (end == extent_end)
442                                 break;
443
444                         path->slots[0]++;
445                         goto next_slot;
446                 }
447
448                 /*
449                  *  | ---- range to drop ----- |
450                  *    | ------ extent ------ |
451                  */
452                 if (start <= key.offset && end >= extent_end) {
453                         if (del_nr == 0) {
454                                 del_slot = path->slots[0];
455                                 del_nr = 1;
456                         } else {
457                                 BUG_ON(del_slot + del_nr != path->slots[0]);
458                                 del_nr++;
459                         }
460
461                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
462                                 inode_sub_bytes(inode,
463                                                 extent_end - key.offset);
464                                 extent_end = ALIGN(extent_end,
465                                                    root->sectorsize);
466                         } else if (disk_bytenr > 0) {
467                                 ret = btrfs_free_extent(trans, root,
468                                                 disk_bytenr, num_bytes, 0,
469                                                 root->root_key.objectid,
470                                                 key.objectid, key.offset -
471                                                 extent_offset);
472                                 BUG_ON(ret);
473                                 inode_sub_bytes(inode,
474                                                 extent_end - key.offset);
475                                 *hint_byte = disk_bytenr;
476                         }
477
478                         if (end == extent_end)
479                                 break;
480
481                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
482                                 path->slots[0]++;
483                                 goto next_slot;
484                         }
485
486                         ret = btrfs_del_items(trans, root, path, del_slot,
487                                               del_nr);
488                         BUG_ON(ret);
489
490                         del_nr = 0;
491                         del_slot = 0;
492
493                         btrfs_release_path(root, path);
494                         continue;
495                 }
496
497                 BUG_ON(1);
498         }
499
500         if (del_nr > 0) {
501                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
502                 BUG_ON(ret);
503         }
504
505         btrfs_free_path(path);
506         return ret;
507 }
508
509 static int extent_mergeable(struct extent_buffer *leaf, int slot,
510                             u64 objectid, u64 bytenr, u64 orig_offset,
511                             u64 *start, u64 *end)
512 {
513         struct btrfs_file_extent_item *fi;
514         struct btrfs_key key;
515         u64 extent_end;
516
517         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
518                 return 0;
519
520         btrfs_item_key_to_cpu(leaf, &key, slot);
521         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
522                 return 0;
523
524         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
525         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
526             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
527             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
528             btrfs_file_extent_compression(leaf, fi) ||
529             btrfs_file_extent_encryption(leaf, fi) ||
530             btrfs_file_extent_other_encoding(leaf, fi))
531                 return 0;
532
533         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
534         if ((*start && *start != key.offset) || (*end && *end != extent_end))
535                 return 0;
536
537         *start = key.offset;
538         *end = extent_end;
539         return 1;
540 }
541
542 /*
543  * Mark extent in the range start - end as written.
544  *
545  * This changes extent type from 'pre-allocated' to 'regular'. If only
546  * part of extent is marked as written, the extent will be split into
547  * two or three.
548  */
549 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
550                               struct inode *inode, u64 start, u64 end)
551 {
552         struct btrfs_root *root = BTRFS_I(inode)->root;
553         struct extent_buffer *leaf;
554         struct btrfs_path *path;
555         struct btrfs_file_extent_item *fi;
556         struct btrfs_key key;
557         struct btrfs_key new_key;
558         u64 bytenr;
559         u64 num_bytes;
560         u64 extent_end;
561         u64 orig_offset;
562         u64 other_start;
563         u64 other_end;
564         u64 split;
565         int del_nr = 0;
566         int del_slot = 0;
567         int recow;
568         int ret;
569
570         btrfs_drop_extent_cache(inode, start, end - 1, 0);
571
572         path = btrfs_alloc_path();
573         BUG_ON(!path);
574 again:
575         recow = 0;
576         split = start;
577         key.objectid = inode->i_ino;
578         key.type = BTRFS_EXTENT_DATA_KEY;
579         key.offset = split;
580
581         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
582         if (ret > 0 && path->slots[0] > 0)
583                 path->slots[0]--;
584
585         leaf = path->nodes[0];
586         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
587         BUG_ON(key.objectid != inode->i_ino ||
588                key.type != BTRFS_EXTENT_DATA_KEY);
589         fi = btrfs_item_ptr(leaf, path->slots[0],
590                             struct btrfs_file_extent_item);
591         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
592                BTRFS_FILE_EXTENT_PREALLOC);
593         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
594         BUG_ON(key.offset > start || extent_end < end);
595
596         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
597         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
598         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
599         memcpy(&new_key, &key, sizeof(new_key));
600
601         if (start == key.offset && end < extent_end) {
602                 other_start = 0;
603                 other_end = start;
604                 if (extent_mergeable(leaf, path->slots[0] - 1,
605                                      inode->i_ino, bytenr, orig_offset,
606                                      &other_start, &other_end)) {
607                         new_key.offset = end;
608                         btrfs_set_item_key_safe(trans, root, path, &new_key);
609                         fi = btrfs_item_ptr(leaf, path->slots[0],
610                                             struct btrfs_file_extent_item);
611                         btrfs_set_file_extent_num_bytes(leaf, fi,
612                                                         extent_end - end);
613                         btrfs_set_file_extent_offset(leaf, fi,
614                                                      end - orig_offset);
615                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
616                                             struct btrfs_file_extent_item);
617                         btrfs_set_file_extent_num_bytes(leaf, fi,
618                                                         end - other_start);
619                         btrfs_mark_buffer_dirty(leaf);
620                         goto out;
621                 }
622         }
623
624         if (start > key.offset && end == extent_end) {
625                 other_start = end;
626                 other_end = 0;
627                 if (extent_mergeable(leaf, path->slots[0] + 1,
628                                      inode->i_ino, bytenr, orig_offset,
629                                      &other_start, &other_end)) {
630                         fi = btrfs_item_ptr(leaf, path->slots[0],
631                                             struct btrfs_file_extent_item);
632                         btrfs_set_file_extent_num_bytes(leaf, fi,
633                                                         start - key.offset);
634                         path->slots[0]++;
635                         new_key.offset = start;
636                         btrfs_set_item_key_safe(trans, root, path, &new_key);
637
638                         fi = btrfs_item_ptr(leaf, path->slots[0],
639                                             struct btrfs_file_extent_item);
640                         btrfs_set_file_extent_num_bytes(leaf, fi,
641                                                         other_end - start);
642                         btrfs_set_file_extent_offset(leaf, fi,
643                                                      start - orig_offset);
644                         btrfs_mark_buffer_dirty(leaf);
645                         goto out;
646                 }
647         }
648
649         while (start > key.offset || end < extent_end) {
650                 if (key.offset == start)
651                         split = end;
652
653                 new_key.offset = split;
654                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
655                 if (ret == -EAGAIN) {
656                         btrfs_release_path(root, path);
657                         goto again;
658                 }
659                 BUG_ON(ret < 0);
660
661                 leaf = path->nodes[0];
662                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
663                                     struct btrfs_file_extent_item);
664                 btrfs_set_file_extent_num_bytes(leaf, fi,
665                                                 split - key.offset);
666
667                 fi = btrfs_item_ptr(leaf, path->slots[0],
668                                     struct btrfs_file_extent_item);
669
670                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
671                 btrfs_set_file_extent_num_bytes(leaf, fi,
672                                                 extent_end - split);
673                 btrfs_mark_buffer_dirty(leaf);
674
675                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
676                                            root->root_key.objectid,
677                                            inode->i_ino, orig_offset);
678                 BUG_ON(ret);
679
680                 if (split == start) {
681                         key.offset = start;
682                 } else {
683                         BUG_ON(start != key.offset);
684                         path->slots[0]--;
685                         extent_end = end;
686                 }
687                 recow = 1;
688         }
689
690         other_start = end;
691         other_end = 0;
692         if (extent_mergeable(leaf, path->slots[0] + 1,
693                              inode->i_ino, bytenr, orig_offset,
694                              &other_start, &other_end)) {
695                 if (recow) {
696                         btrfs_release_path(root, path);
697                         goto again;
698                 }
699                 extent_end = other_end;
700                 del_slot = path->slots[0] + 1;
701                 del_nr++;
702                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
703                                         0, root->root_key.objectid,
704                                         inode->i_ino, orig_offset);
705                 BUG_ON(ret);
706         }
707         other_start = 0;
708         other_end = start;
709         if (extent_mergeable(leaf, path->slots[0] - 1,
710                              inode->i_ino, bytenr, orig_offset,
711                              &other_start, &other_end)) {
712                 if (recow) {
713                         btrfs_release_path(root, path);
714                         goto again;
715                 }
716                 key.offset = other_start;
717                 del_slot = path->slots[0];
718                 del_nr++;
719                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
720                                         0, root->root_key.objectid,
721                                         inode->i_ino, orig_offset);
722                 BUG_ON(ret);
723         }
724         if (del_nr == 0) {
725                 fi = btrfs_item_ptr(leaf, path->slots[0],
726                            struct btrfs_file_extent_item);
727                 btrfs_set_file_extent_type(leaf, fi,
728                                            BTRFS_FILE_EXTENT_REG);
729                 btrfs_mark_buffer_dirty(leaf);
730         } else {
731                 fi = btrfs_item_ptr(leaf, del_slot - 1,
732                            struct btrfs_file_extent_item);
733                 btrfs_set_file_extent_type(leaf, fi,
734                                            BTRFS_FILE_EXTENT_REG);
735                 btrfs_set_file_extent_num_bytes(leaf, fi,
736                                                 extent_end - key.offset);
737                 btrfs_mark_buffer_dirty(leaf);
738
739                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
740                 BUG_ON(ret);
741         }
742 out:
743         btrfs_free_path(path);
744         return 0;
745 }
746
747 /*
748  * this gets pages into the page cache and locks them down, it also properly
749  * waits for data=ordered extents to finish before allowing the pages to be
750  * modified.
751  */
752 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
753                          struct page **pages, size_t num_pages,
754                          loff_t pos, unsigned long first_index,
755                          unsigned long last_index, size_t write_bytes)
756 {
757         struct extent_state *cached_state = NULL;
758         int i;
759         unsigned long index = pos >> PAGE_CACHE_SHIFT;
760         struct inode *inode = fdentry(file)->d_inode;
761         int err = 0;
762         u64 start_pos;
763         u64 last_pos;
764
765         start_pos = pos & ~((u64)root->sectorsize - 1);
766         last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
767
768         if (start_pos > inode->i_size) {
769                 err = btrfs_cont_expand(inode, start_pos);
770                 if (err)
771                         return err;
772         }
773
774         memset(pages, 0, num_pages * sizeof(struct page *));
775 again:
776         for (i = 0; i < num_pages; i++) {
777                 pages[i] = grab_cache_page(inode->i_mapping, index + i);
778                 if (!pages[i]) {
779                         err = -ENOMEM;
780                         BUG_ON(1);
781                 }
782                 wait_on_page_writeback(pages[i]);
783         }
784         if (start_pos < inode->i_size) {
785                 struct btrfs_ordered_extent *ordered;
786                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
787                                  start_pos, last_pos - 1, 0, &cached_state,
788                                  GFP_NOFS);
789                 ordered = btrfs_lookup_first_ordered_extent(inode,
790                                                             last_pos - 1);
791                 if (ordered &&
792                     ordered->file_offset + ordered->len > start_pos &&
793                     ordered->file_offset < last_pos) {
794                         btrfs_put_ordered_extent(ordered);
795                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
796                                              start_pos, last_pos - 1,
797                                              &cached_state, GFP_NOFS);
798                         for (i = 0; i < num_pages; i++) {
799                                 unlock_page(pages[i]);
800                                 page_cache_release(pages[i]);
801                         }
802                         btrfs_wait_ordered_range(inode, start_pos,
803                                                  last_pos - start_pos);
804                         goto again;
805                 }
806                 if (ordered)
807                         btrfs_put_ordered_extent(ordered);
808
809                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
810                                   last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
811                                   EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
812                                   GFP_NOFS);
813                 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
814                                      start_pos, last_pos - 1, &cached_state,
815                                      GFP_NOFS);
816         }
817         for (i = 0; i < num_pages; i++) {
818                 clear_page_dirty_for_io(pages[i]);
819                 set_page_extent_mapped(pages[i]);
820                 WARN_ON(!PageLocked(pages[i]));
821         }
822         return 0;
823 }
824
825 /* Copied from read-write.c */
826 static void wait_on_retry_sync_kiocb(struct kiocb *iocb)
827 {
828         set_current_state(TASK_UNINTERRUPTIBLE);
829         if (!kiocbIsKicked(iocb))
830                 schedule();
831         else
832                 kiocbClearKicked(iocb);
833         __set_current_state(TASK_RUNNING);
834 }
835
836 /*
837  * Just a copy of what do_sync_write does.
838  */
839 static ssize_t __btrfs_direct_write(struct file *file, const char __user *buf,
840                                     size_t count, loff_t pos, loff_t *ppos)
841 {
842         struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = count };
843         unsigned long nr_segs = 1;
844         struct kiocb kiocb;
845         ssize_t ret;
846
847         init_sync_kiocb(&kiocb, file);
848         kiocb.ki_pos = pos;
849         kiocb.ki_left = count;
850         kiocb.ki_nbytes = count;
851
852         while (1) {
853                 ret = generic_file_direct_write(&kiocb, &iov, &nr_segs, pos,
854                                                 ppos, count, count);
855                 if (ret != -EIOCBRETRY)
856                         break;
857                 wait_on_retry_sync_kiocb(&kiocb);
858         }
859
860         if (ret == -EIOCBQUEUED)
861                 ret = wait_on_sync_kiocb(&kiocb);
862         *ppos = kiocb.ki_pos;
863         return ret;
864 }
865
866 static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
867                                 size_t count, loff_t *ppos)
868 {
869         loff_t pos;
870         loff_t start_pos;
871         ssize_t num_written = 0;
872         ssize_t err = 0;
873         int ret = 0;
874         struct inode *inode = fdentry(file)->d_inode;
875         struct btrfs_root *root = BTRFS_I(inode)->root;
876         struct page **pages = NULL;
877         int nrptrs;
878         struct page *pinned[2];
879         unsigned long first_index;
880         unsigned long last_index;
881         int will_write;
882         int buffered = 0;
883
884         will_write = ((file->f_flags & O_DSYNC) || IS_SYNC(inode) ||
885                       (file->f_flags & O_DIRECT));
886
887         pinned[0] = NULL;
888         pinned[1] = NULL;
889
890         pos = *ppos;
891         start_pos = pos;
892
893         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
894
895         mutex_lock(&inode->i_mutex);
896
897         current->backing_dev_info = inode->i_mapping->backing_dev_info;
898         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
899         if (err)
900                 goto out;
901
902         if (count == 0)
903                 goto out;
904
905         err = file_remove_suid(file);
906         if (err)
907                 goto out;
908
909         file_update_time(file);
910         BTRFS_I(inode)->sequence++;
911
912         if (unlikely(file->f_flags & O_DIRECT)) {
913                 num_written = __btrfs_direct_write(file, buf, count, pos,
914                                                    ppos);
915                 pos += num_written;
916                 count -= num_written;
917
918                 /* We've written everything we wanted to, exit */
919                 if (num_written < 0 || !count)
920                         goto out;
921
922                 /*
923                  * We are going to do buffered for the rest of the range, so we
924                  * need to make sure to invalidate the buffered pages when we're
925                  * done.
926                  */
927                 buffered = 1;
928                 buf += num_written;
929         }
930
931         nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
932                      PAGE_CACHE_SIZE / (sizeof(struct page *)));
933         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
934
935         /* generic_write_checks can change our pos */
936         start_pos = pos;
937
938         first_index = pos >> PAGE_CACHE_SHIFT;
939         last_index = (pos + count) >> PAGE_CACHE_SHIFT;
940
941         /*
942          * there are lots of better ways to do this, but this code
943          * makes sure the first and last page in the file range are
944          * up to date and ready for cow
945          */
946         if ((pos & (PAGE_CACHE_SIZE - 1))) {
947                 pinned[0] = grab_cache_page(inode->i_mapping, first_index);
948                 if (!PageUptodate(pinned[0])) {
949                         ret = btrfs_readpage(NULL, pinned[0]);
950                         BUG_ON(ret);
951                         wait_on_page_locked(pinned[0]);
952                 } else {
953                         unlock_page(pinned[0]);
954                 }
955         }
956         if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
957                 pinned[1] = grab_cache_page(inode->i_mapping, last_index);
958                 if (!PageUptodate(pinned[1])) {
959                         ret = btrfs_readpage(NULL, pinned[1]);
960                         BUG_ON(ret);
961                         wait_on_page_locked(pinned[1]);
962                 } else {
963                         unlock_page(pinned[1]);
964                 }
965         }
966
967         while (count > 0) {
968                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
969                 size_t write_bytes = min(count, nrptrs *
970                                         (size_t)PAGE_CACHE_SIZE -
971                                          offset);
972                 size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
973                                         PAGE_CACHE_SHIFT;
974
975                 WARN_ON(num_pages > nrptrs);
976                 memset(pages, 0, sizeof(struct page *) * nrptrs);
977
978                 ret = btrfs_delalloc_reserve_space(inode, write_bytes);
979                 if (ret)
980                         goto out;
981
982                 ret = prepare_pages(root, file, pages, num_pages,
983                                     pos, first_index, last_index,
984                                     write_bytes);
985                 if (ret) {
986                         btrfs_delalloc_release_space(inode, write_bytes);
987                         goto out;
988                 }
989
990                 ret = btrfs_copy_from_user(pos, num_pages,
991                                            write_bytes, pages, buf);
992                 if (ret == 0) {
993                         dirty_and_release_pages(NULL, root, file, pages,
994                                                 num_pages, pos, write_bytes);
995                 }
996
997                 btrfs_drop_pages(pages, num_pages);
998                 if (ret) {
999                         btrfs_delalloc_release_space(inode, write_bytes);
1000                         goto out;
1001                 }
1002
1003                 if (will_write) {
1004                         filemap_fdatawrite_range(inode->i_mapping, pos,
1005                                                  pos + write_bytes - 1);
1006                 } else {
1007                         balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1008                                                            num_pages);
1009                         if (num_pages <
1010                             (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1011                                 btrfs_btree_balance_dirty(root, 1);
1012                         btrfs_throttle(root);
1013                 }
1014
1015                 buf += write_bytes;
1016                 count -= write_bytes;
1017                 pos += write_bytes;
1018                 num_written += write_bytes;
1019
1020                 cond_resched();
1021         }
1022 out:
1023         mutex_unlock(&inode->i_mutex);
1024         if (ret)
1025                 err = ret;
1026
1027         kfree(pages);
1028         if (pinned[0])
1029                 page_cache_release(pinned[0]);
1030         if (pinned[1])
1031                 page_cache_release(pinned[1]);
1032         *ppos = pos;
1033
1034         /*
1035          * we want to make sure fsync finds this change
1036          * but we haven't joined a transaction running right now.
1037          *
1038          * Later on, someone is sure to update the inode and get the
1039          * real transid recorded.
1040          *
1041          * We set last_trans now to the fs_info generation + 1,
1042          * this will either be one more than the running transaction
1043          * or the generation used for the next transaction if there isn't
1044          * one running right now.
1045          */
1046         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1047
1048         if (num_written > 0 && will_write) {
1049                 struct btrfs_trans_handle *trans;
1050
1051                 err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1052                 if (err)
1053                         num_written = err;
1054
1055                 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
1056                         trans = btrfs_start_transaction(root, 0);
1057                         ret = btrfs_log_dentry_safe(trans, root,
1058                                                     file->f_dentry);
1059                         if (ret == 0) {
1060                                 ret = btrfs_sync_log(trans, root);
1061                                 if (ret == 0)
1062                                         btrfs_end_transaction(trans, root);
1063                                 else
1064                                         btrfs_commit_transaction(trans, root);
1065                         } else if (ret != BTRFS_NO_LOG_SYNC) {
1066                                 btrfs_commit_transaction(trans, root);
1067                         } else {
1068                                 btrfs_end_transaction(trans, root);
1069                         }
1070                 }
1071                 if (file->f_flags & O_DIRECT && buffered) {
1072                         invalidate_mapping_pages(inode->i_mapping,
1073                               start_pos >> PAGE_CACHE_SHIFT,
1074                              (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1075                 }
1076         }
1077         current->backing_dev_info = NULL;
1078         return num_written ? num_written : err;
1079 }
1080
1081 int btrfs_release_file(struct inode *inode, struct file *filp)
1082 {
1083         /*
1084          * ordered_data_close is set by settattr when we are about to truncate
1085          * a file from a non-zero size to a zero size.  This tries to
1086          * flush down new bytes that may have been written if the
1087          * application were using truncate to replace a file in place.
1088          */
1089         if (BTRFS_I(inode)->ordered_data_close) {
1090                 BTRFS_I(inode)->ordered_data_close = 0;
1091                 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1092                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1093                         filemap_flush(inode->i_mapping);
1094         }
1095         if (filp->private_data)
1096                 btrfs_ioctl_trans_end(filp);
1097         return 0;
1098 }
1099
1100 /*
1101  * fsync call for both files and directories.  This logs the inode into
1102  * the tree log instead of forcing full commits whenever possible.
1103  *
1104  * It needs to call filemap_fdatawait so that all ordered extent updates are
1105  * in the metadata btree are up to date for copying to the log.
1106  *
1107  * It drops the inode mutex before doing the tree log commit.  This is an
1108  * important optimization for directories because holding the mutex prevents
1109  * new operations on the dir while we write to disk.
1110  */
1111 int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
1112 {
1113         struct inode *inode = dentry->d_inode;
1114         struct btrfs_root *root = BTRFS_I(inode)->root;
1115         int ret = 0;
1116         struct btrfs_trans_handle *trans;
1117
1118
1119         /* we wait first, since the writeback may change the inode */
1120         root->log_batch++;
1121         /* the VFS called filemap_fdatawrite for us */
1122         btrfs_wait_ordered_range(inode, 0, (u64)-1);
1123         root->log_batch++;
1124
1125         /*
1126          * check the transaction that last modified this inode
1127          * and see if its already been committed
1128          */
1129         if (!BTRFS_I(inode)->last_trans)
1130                 goto out;
1131
1132         /*
1133          * if the last transaction that changed this file was before
1134          * the current transaction, we can bail out now without any
1135          * syncing
1136          */
1137         mutex_lock(&root->fs_info->trans_mutex);
1138         if (BTRFS_I(inode)->last_trans <=
1139             root->fs_info->last_trans_committed) {
1140                 BTRFS_I(inode)->last_trans = 0;
1141                 mutex_unlock(&root->fs_info->trans_mutex);
1142                 goto out;
1143         }
1144         mutex_unlock(&root->fs_info->trans_mutex);
1145
1146         /*
1147          * ok we haven't committed the transaction yet, lets do a commit
1148          */
1149         if (file && file->private_data)
1150                 btrfs_ioctl_trans_end(file);
1151
1152         trans = btrfs_start_transaction(root, 0);
1153         if (IS_ERR(trans)) {
1154                 ret = PTR_ERR(trans);
1155                 goto out;
1156         }
1157
1158         ret = btrfs_log_dentry_safe(trans, root, dentry);
1159         if (ret < 0)
1160                 goto out;
1161
1162         /* we've logged all the items and now have a consistent
1163          * version of the file in the log.  It is possible that
1164          * someone will come in and modify the file, but that's
1165          * fine because the log is consistent on disk, and we
1166          * have references to all of the file's extents
1167          *
1168          * It is possible that someone will come in and log the
1169          * file again, but that will end up using the synchronization
1170          * inside btrfs_sync_log to keep things safe.
1171          */
1172         mutex_unlock(&dentry->d_inode->i_mutex);
1173
1174         if (ret != BTRFS_NO_LOG_SYNC) {
1175                 if (ret > 0) {
1176                         ret = btrfs_commit_transaction(trans, root);
1177                 } else {
1178                         ret = btrfs_sync_log(trans, root);
1179                         if (ret == 0)
1180                                 ret = btrfs_end_transaction(trans, root);
1181                         else
1182                                 ret = btrfs_commit_transaction(trans, root);
1183                 }
1184         } else {
1185                 ret = btrfs_end_transaction(trans, root);
1186         }
1187         mutex_lock(&dentry->d_inode->i_mutex);
1188 out:
1189         return ret > 0 ? -EIO : ret;
1190 }
1191
1192 static const struct vm_operations_struct btrfs_file_vm_ops = {
1193         .fault          = filemap_fault,
1194         .page_mkwrite   = btrfs_page_mkwrite,
1195 };
1196
1197 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
1198 {
1199         vma->vm_ops = &btrfs_file_vm_ops;
1200         file_accessed(filp);
1201         return 0;
1202 }
1203
1204 const struct file_operations btrfs_file_operations = {
1205         .llseek         = generic_file_llseek,
1206         .read           = do_sync_read,
1207         .aio_read       = generic_file_aio_read,
1208         .splice_read    = generic_file_splice_read,
1209         .write          = btrfs_file_write,
1210         .mmap           = btrfs_file_mmap,
1211         .open           = generic_file_open,
1212         .release        = btrfs_release_file,
1213         .fsync          = btrfs_sync_file,
1214         .unlocked_ioctl = btrfs_ioctl,
1215 #ifdef CONFIG_COMPAT
1216         .compat_ioctl   = btrfs_ioctl,
1217 #endif
1218 };