Btrfs: Change the remaining radix trees used by extent-tree.c to extent_map trees
[safe/jmp/linux-2.6] / fs / btrfs / extent_map.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include "extent_map.h"
12
13 /* temporary define until extent_map moves out of btrfs */
14 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
15                                        unsigned long extra_flags,
16                                        void (*ctor)(void *, struct kmem_cache *,
17                                                     unsigned long));
18
19 static struct kmem_cache *extent_map_cache;
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22
23 static LIST_HEAD(extent_buffers);
24 static LIST_HEAD(buffers);
25 static LIST_HEAD(states);
26
27 static spinlock_t extent_buffers_lock;
28 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
29 static int nr_extent_buffers;
30 #define MAX_EXTENT_BUFFER_CACHE 128
31
32 struct tree_entry {
33         u64 start;
34         u64 end;
35         int in_tree;
36         struct rb_node rb_node;
37 };
38
39 void __init extent_map_init(void)
40 {
41         extent_map_cache = btrfs_cache_create("extent_map",
42                                             sizeof(struct extent_map), 0,
43                                             NULL);
44         extent_state_cache = btrfs_cache_create("extent_state",
45                                             sizeof(struct extent_state), 0,
46                                             NULL);
47         extent_buffer_cache = btrfs_cache_create("extent_buffers",
48                                             sizeof(struct extent_buffer), 0,
49                                             NULL);
50         spin_lock_init(&extent_buffers_lock);
51 }
52
53 void __exit extent_map_exit(void)
54 {
55         struct extent_buffer *eb;
56         struct extent_state *state;
57
58         while (!list_empty(&extent_buffers)) {
59                 eb = list_entry(extent_buffers.next,
60                                 struct extent_buffer, list);
61                 list_del(&eb->list);
62                 kmem_cache_free(extent_buffer_cache, eb);
63         }
64         while (!list_empty(&states)) {
65                 state = list_entry(states.next, struct extent_state, list);
66                 printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
67                 list_del(&state->list);
68                 kmem_cache_free(extent_state_cache, state);
69
70         }
71         while (!list_empty(&buffers)) {
72                 eb = list_entry(buffers.next,
73                                 struct extent_buffer, leak_list);
74                 printk("buffer leak start %Lu len %lu return %lX\n", eb->start, eb->len, eb->alloc_addr);
75                 list_del(&eb->leak_list);
76                 kmem_cache_free(extent_buffer_cache, eb);
77         }
78
79
80         if (extent_map_cache)
81                 kmem_cache_destroy(extent_map_cache);
82         if (extent_state_cache)
83                 kmem_cache_destroy(extent_state_cache);
84         if (extent_buffer_cache)
85                 kmem_cache_destroy(extent_buffer_cache);
86 }
87
88 void extent_map_tree_init(struct extent_map_tree *tree,
89                           struct address_space *mapping, gfp_t mask)
90 {
91         tree->map.rb_node = NULL;
92         tree->state.rb_node = NULL;
93         tree->ops = NULL;
94         rwlock_init(&tree->lock);
95         tree->mapping = mapping;
96 }
97 EXPORT_SYMBOL(extent_map_tree_init);
98
99 struct extent_map *alloc_extent_map(gfp_t mask)
100 {
101         struct extent_map *em;
102         em = kmem_cache_alloc(extent_map_cache, mask);
103         if (!em || IS_ERR(em))
104                 return em;
105         em->in_tree = 0;
106         atomic_set(&em->refs, 1);
107         return em;
108 }
109 EXPORT_SYMBOL(alloc_extent_map);
110
111 void free_extent_map(struct extent_map *em)
112 {
113         if (!em)
114                 return;
115         if (atomic_dec_and_test(&em->refs)) {
116                 WARN_ON(em->in_tree);
117                 kmem_cache_free(extent_map_cache, em);
118         }
119 }
120 EXPORT_SYMBOL(free_extent_map);
121
122
123 struct extent_state *alloc_extent_state(gfp_t mask)
124 {
125         struct extent_state *state;
126         unsigned long flags;
127
128         state = kmem_cache_alloc(extent_state_cache, mask);
129         if (!state || IS_ERR(state))
130                 return state;
131         state->state = 0;
132         state->in_tree = 0;
133         state->private = 0;
134
135         spin_lock_irqsave(&state_lock, flags);
136         list_add(&state->list, &states);
137         spin_unlock_irqrestore(&state_lock, flags);
138
139         atomic_set(&state->refs, 1);
140         init_waitqueue_head(&state->wq);
141         return state;
142 }
143 EXPORT_SYMBOL(alloc_extent_state);
144
145 void free_extent_state(struct extent_state *state)
146 {
147         unsigned long flags;
148         if (!state)
149                 return;
150         if (atomic_dec_and_test(&state->refs)) {
151                 WARN_ON(state->in_tree);
152                 spin_lock_irqsave(&state_lock, flags);
153                 list_del(&state->list);
154                 spin_unlock_irqrestore(&state_lock, flags);
155                 kmem_cache_free(extent_state_cache, state);
156         }
157 }
158 EXPORT_SYMBOL(free_extent_state);
159
160 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
161                                    struct rb_node *node)
162 {
163         struct rb_node ** p = &root->rb_node;
164         struct rb_node * parent = NULL;
165         struct tree_entry *entry;
166
167         while(*p) {
168                 parent = *p;
169                 entry = rb_entry(parent, struct tree_entry, rb_node);
170
171                 if (offset < entry->start)
172                         p = &(*p)->rb_left;
173                 else if (offset > entry->end)
174                         p = &(*p)->rb_right;
175                 else
176                         return parent;
177         }
178
179         entry = rb_entry(node, struct tree_entry, rb_node);
180         entry->in_tree = 1;
181         rb_link_node(node, parent, p);
182         rb_insert_color(node, root);
183         return NULL;
184 }
185
186 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
187                                    struct rb_node **prev_ret)
188 {
189         struct rb_node * n = root->rb_node;
190         struct rb_node *prev = NULL;
191         struct tree_entry *entry;
192         struct tree_entry *prev_entry = NULL;
193
194         while(n) {
195                 entry = rb_entry(n, struct tree_entry, rb_node);
196                 prev = n;
197                 prev_entry = entry;
198
199                 if (offset < entry->start)
200                         n = n->rb_left;
201                 else if (offset > entry->end)
202                         n = n->rb_right;
203                 else
204                         return n;
205         }
206         if (!prev_ret)
207                 return NULL;
208         while(prev && offset > prev_entry->end) {
209                 prev = rb_next(prev);
210                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211         }
212         *prev_ret = prev;
213         return NULL;
214 }
215
216 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
217 {
218         struct rb_node *prev;
219         struct rb_node *ret;
220         ret = __tree_search(root, offset, &prev);
221         if (!ret)
222                 return prev;
223         return ret;
224 }
225
226 static int tree_delete(struct rb_root *root, u64 offset)
227 {
228         struct rb_node *node;
229         struct tree_entry *entry;
230
231         node = __tree_search(root, offset, NULL);
232         if (!node)
233                 return -ENOENT;
234         entry = rb_entry(node, struct tree_entry, rb_node);
235         entry->in_tree = 0;
236         rb_erase(node, root);
237         return 0;
238 }
239
240 /*
241  * add_extent_mapping tries a simple backward merge with existing
242  * mappings.  The extent_map struct passed in will be inserted into
243  * the tree directly (no copies made, just a reference taken).
244  */
245 int add_extent_mapping(struct extent_map_tree *tree,
246                        struct extent_map *em)
247 {
248         int ret = 0;
249         struct extent_map *prev = NULL;
250         struct rb_node *rb;
251
252         write_lock_irq(&tree->lock);
253         rb = tree_insert(&tree->map, em->end, &em->rb_node);
254         if (rb) {
255                 prev = rb_entry(rb, struct extent_map, rb_node);
256                 printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
257                 ret = -EEXIST;
258                 goto out;
259         }
260         atomic_inc(&em->refs);
261         if (em->start != 0) {
262                 rb = rb_prev(&em->rb_node);
263                 if (rb)
264                         prev = rb_entry(rb, struct extent_map, rb_node);
265                 if (prev && prev->end + 1 == em->start &&
266                     ((em->block_start == EXTENT_MAP_HOLE &&
267                       prev->block_start == EXTENT_MAP_HOLE) ||
268                              (em->block_start == prev->block_end + 1))) {
269                         em->start = prev->start;
270                         em->block_start = prev->block_start;
271                         rb_erase(&prev->rb_node, &tree->map);
272                         prev->in_tree = 0;
273                         free_extent_map(prev);
274                 }
275          }
276 out:
277         write_unlock_irq(&tree->lock);
278         return ret;
279 }
280 EXPORT_SYMBOL(add_extent_mapping);
281
282 /*
283  * lookup_extent_mapping returns the first extent_map struct in the
284  * tree that intersects the [start, end] (inclusive) range.  There may
285  * be additional objects in the tree that intersect, so check the object
286  * returned carefully to make sure you don't need additional lookups.
287  */
288 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
289                                          u64 start, u64 end)
290 {
291         struct extent_map *em;
292         struct rb_node *rb_node;
293
294         read_lock_irq(&tree->lock);
295         rb_node = tree_search(&tree->map, start);
296         if (!rb_node) {
297                 em = NULL;
298                 goto out;
299         }
300         if (IS_ERR(rb_node)) {
301                 em = ERR_PTR(PTR_ERR(rb_node));
302                 goto out;
303         }
304         em = rb_entry(rb_node, struct extent_map, rb_node);
305         if (em->end < start || em->start > end) {
306                 em = NULL;
307                 goto out;
308         }
309         atomic_inc(&em->refs);
310 out:
311         read_unlock_irq(&tree->lock);
312         return em;
313 }
314 EXPORT_SYMBOL(lookup_extent_mapping);
315
316 /*
317  * removes an extent_map struct from the tree.  No reference counts are
318  * dropped, and no checks are done to  see if the range is in use
319  */
320 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
321 {
322         int ret;
323
324         write_lock_irq(&tree->lock);
325         ret = tree_delete(&tree->map, em->end);
326         write_unlock_irq(&tree->lock);
327         return ret;
328 }
329 EXPORT_SYMBOL(remove_extent_mapping);
330
331 /*
332  * utility function to look for merge candidates inside a given range.
333  * Any extents with matching state are merged together into a single
334  * extent in the tree.  Extents with EXTENT_IO in their state field
335  * are not merged because the end_io handlers need to be able to do
336  * operations on them without sleeping (or doing allocations/splits).
337  *
338  * This should be called with the tree lock held.
339  */
340 static int merge_state(struct extent_map_tree *tree,
341                        struct extent_state *state)
342 {
343         struct extent_state *other;
344         struct rb_node *other_node;
345
346         if (state->state & EXTENT_IOBITS)
347                 return 0;
348
349         other_node = rb_prev(&state->rb_node);
350         if (other_node) {
351                 other = rb_entry(other_node, struct extent_state, rb_node);
352                 if (other->end == state->start - 1 &&
353                     other->state == state->state) {
354                         state->start = other->start;
355                         other->in_tree = 0;
356                         rb_erase(&other->rb_node, &tree->state);
357                         free_extent_state(other);
358                 }
359         }
360         other_node = rb_next(&state->rb_node);
361         if (other_node) {
362                 other = rb_entry(other_node, struct extent_state, rb_node);
363                 if (other->start == state->end + 1 &&
364                     other->state == state->state) {
365                         other->start = state->start;
366                         state->in_tree = 0;
367                         rb_erase(&state->rb_node, &tree->state);
368                         free_extent_state(state);
369                 }
370         }
371         return 0;
372 }
373
374 /*
375  * insert an extent_state struct into the tree.  'bits' are set on the
376  * struct before it is inserted.
377  *
378  * This may return -EEXIST if the extent is already there, in which case the
379  * state struct is freed.
380  *
381  * The tree lock is not taken internally.  This is a utility function and
382  * probably isn't what you want to call (see set/clear_extent_bit).
383  */
384 static int insert_state(struct extent_map_tree *tree,
385                         struct extent_state *state, u64 start, u64 end,
386                         int bits)
387 {
388         struct rb_node *node;
389
390         if (end < start) {
391                 printk("end < start %Lu %Lu\n", end, start);
392                 WARN_ON(1);
393         }
394         state->state |= bits;
395         state->start = start;
396         state->end = end;
397         node = tree_insert(&tree->state, end, &state->rb_node);
398         if (node) {
399                 struct extent_state *found;
400                 found = rb_entry(node, struct extent_state, rb_node);
401                 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
402                 free_extent_state(state);
403                 return -EEXIST;
404         }
405         merge_state(tree, state);
406         return 0;
407 }
408
409 /*
410  * split a given extent state struct in two, inserting the preallocated
411  * struct 'prealloc' as the newly created second half.  'split' indicates an
412  * offset inside 'orig' where it should be split.
413  *
414  * Before calling,
415  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
416  * are two extent state structs in the tree:
417  * prealloc: [orig->start, split - 1]
418  * orig: [ split, orig->end ]
419  *
420  * The tree locks are not taken by this function. They need to be held
421  * by the caller.
422  */
423 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
424                        struct extent_state *prealloc, u64 split)
425 {
426         struct rb_node *node;
427         prealloc->start = orig->start;
428         prealloc->end = split - 1;
429         prealloc->state = orig->state;
430         orig->start = split;
431
432         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
433         if (node) {
434                 struct extent_state *found;
435                 found = rb_entry(node, struct extent_state, rb_node);
436                 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
437                 free_extent_state(prealloc);
438                 return -EEXIST;
439         }
440         return 0;
441 }
442
443 /*
444  * utility function to clear some bits in an extent state struct.
445  * it will optionally wake up any one waiting on this state (wake == 1), or
446  * forcibly remove the state from the tree (delete == 1).
447  *
448  * If no bits are set on the state struct after clearing things, the
449  * struct is freed and removed from the tree
450  */
451 static int clear_state_bit(struct extent_map_tree *tree,
452                             struct extent_state *state, int bits, int wake,
453                             int delete)
454 {
455         int ret = state->state & bits;
456         state->state &= ~bits;
457         if (wake)
458                 wake_up(&state->wq);
459         if (delete || state->state == 0) {
460                 if (state->in_tree) {
461                         rb_erase(&state->rb_node, &tree->state);
462                         state->in_tree = 0;
463                         free_extent_state(state);
464                 } else {
465                         WARN_ON(1);
466                 }
467         } else {
468                 merge_state(tree, state);
469         }
470         return ret;
471 }
472
473 /*
474  * clear some bits on a range in the tree.  This may require splitting
475  * or inserting elements in the tree, so the gfp mask is used to
476  * indicate which allocations or sleeping are allowed.
477  *
478  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
479  * the given range from the tree regardless of state (ie for truncate).
480  *
481  * the range [start, end] is inclusive.
482  *
483  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
484  * bits were already set, or zero if none of the bits were already set.
485  */
486 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
487                      int bits, int wake, int delete, gfp_t mask)
488 {
489         struct extent_state *state;
490         struct extent_state *prealloc = NULL;
491         struct rb_node *node;
492         unsigned long flags;
493         int err;
494         int set = 0;
495
496 again:
497         if (!prealloc && (mask & __GFP_WAIT)) {
498                 prealloc = alloc_extent_state(mask);
499                 if (!prealloc)
500                         return -ENOMEM;
501         }
502
503         write_lock_irqsave(&tree->lock, flags);
504         /*
505          * this search will find the extents that end after
506          * our range starts
507          */
508         node = tree_search(&tree->state, start);
509         if (!node)
510                 goto out;
511         state = rb_entry(node, struct extent_state, rb_node);
512         if (state->start > end)
513                 goto out;
514         WARN_ON(state->end < start);
515
516         /*
517          *     | ---- desired range ---- |
518          *  | state | or
519          *  | ------------- state -------------- |
520          *
521          * We need to split the extent we found, and may flip
522          * bits on second half.
523          *
524          * If the extent we found extends past our range, we
525          * just split and search again.  It'll get split again
526          * the next time though.
527          *
528          * If the extent we found is inside our range, we clear
529          * the desired bit on it.
530          */
531
532         if (state->start < start) {
533                 err = split_state(tree, state, prealloc, start);
534                 BUG_ON(err == -EEXIST);
535                 prealloc = NULL;
536                 if (err)
537                         goto out;
538                 if (state->end <= end) {
539                         start = state->end + 1;
540                         set |= clear_state_bit(tree, state, bits,
541                                         wake, delete);
542                 } else {
543                         start = state->start;
544                 }
545                 goto search_again;
546         }
547         /*
548          * | ---- desired range ---- |
549          *                        | state |
550          * We need to split the extent, and clear the bit
551          * on the first half
552          */
553         if (state->start <= end && state->end > end) {
554                 err = split_state(tree, state, prealloc, end + 1);
555                 BUG_ON(err == -EEXIST);
556
557                 if (wake)
558                         wake_up(&state->wq);
559                 set |= clear_state_bit(tree, prealloc, bits,
560                                        wake, delete);
561                 prealloc = NULL;
562                 goto out;
563         }
564
565         start = state->end + 1;
566         set |= clear_state_bit(tree, state, bits, wake, delete);
567         goto search_again;
568
569 out:
570         write_unlock_irqrestore(&tree->lock, flags);
571         if (prealloc)
572                 free_extent_state(prealloc);
573
574         return set;
575
576 search_again:
577         if (start > end)
578                 goto out;
579         write_unlock_irqrestore(&tree->lock, flags);
580         if (mask & __GFP_WAIT)
581                 cond_resched();
582         goto again;
583 }
584 EXPORT_SYMBOL(clear_extent_bit);
585
586 static int wait_on_state(struct extent_map_tree *tree,
587                          struct extent_state *state)
588 {
589         DEFINE_WAIT(wait);
590         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
591         read_unlock_irq(&tree->lock);
592         schedule();
593         read_lock_irq(&tree->lock);
594         finish_wait(&state->wq, &wait);
595         return 0;
596 }
597
598 /*
599  * waits for one or more bits to clear on a range in the state tree.
600  * The range [start, end] is inclusive.
601  * The tree lock is taken by this function
602  */
603 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
604 {
605         struct extent_state *state;
606         struct rb_node *node;
607
608         read_lock_irq(&tree->lock);
609 again:
610         while (1) {
611                 /*
612                  * this search will find all the extents that end after
613                  * our range starts
614                  */
615                 node = tree_search(&tree->state, start);
616                 if (!node)
617                         break;
618
619                 state = rb_entry(node, struct extent_state, rb_node);
620
621                 if (state->start > end)
622                         goto out;
623
624                 if (state->state & bits) {
625                         start = state->start;
626                         atomic_inc(&state->refs);
627                         wait_on_state(tree, state);
628                         free_extent_state(state);
629                         goto again;
630                 }
631                 start = state->end + 1;
632
633                 if (start > end)
634                         break;
635
636                 if (need_resched()) {
637                         read_unlock_irq(&tree->lock);
638                         cond_resched();
639                         read_lock_irq(&tree->lock);
640                 }
641         }
642 out:
643         read_unlock_irq(&tree->lock);
644         return 0;
645 }
646 EXPORT_SYMBOL(wait_extent_bit);
647
648 /*
649  * set some bits on a range in the tree.  This may require allocations
650  * or sleeping, so the gfp mask is used to indicate what is allowed.
651  *
652  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
653  * range already has the desired bits set.  The start of the existing
654  * range is returned in failed_start in this case.
655  *
656  * [start, end] is inclusive
657  * This takes the tree lock.
658  */
659 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
660                    int exclusive, u64 *failed_start, gfp_t mask)
661 {
662         struct extent_state *state;
663         struct extent_state *prealloc = NULL;
664         struct rb_node *node;
665         unsigned long flags;
666         int err = 0;
667         int set;
668         u64 last_start;
669         u64 last_end;
670 again:
671         if (!prealloc && (mask & __GFP_WAIT)) {
672                 prealloc = alloc_extent_state(mask);
673                 if (!prealloc)
674                         return -ENOMEM;
675         }
676
677         write_lock_irqsave(&tree->lock, flags);
678         /*
679          * this search will find all the extents that end after
680          * our range starts.
681          */
682         node = tree_search(&tree->state, start);
683         if (!node) {
684                 err = insert_state(tree, prealloc, start, end, bits);
685                 prealloc = NULL;
686                 BUG_ON(err == -EEXIST);
687                 goto out;
688         }
689
690         state = rb_entry(node, struct extent_state, rb_node);
691         last_start = state->start;
692         last_end = state->end;
693
694         /*
695          * | ---- desired range ---- |
696          * | state |
697          *
698          * Just lock what we found and keep going
699          */
700         if (state->start == start && state->end <= end) {
701                 set = state->state & bits;
702                 if (set && exclusive) {
703                         *failed_start = state->start;
704                         err = -EEXIST;
705                         goto out;
706                 }
707                 state->state |= bits;
708                 start = state->end + 1;
709                 merge_state(tree, state);
710                 goto search_again;
711         }
712
713         /*
714          *     | ---- desired range ---- |
715          * | state |
716          *   or
717          * | ------------- state -------------- |
718          *
719          * We need to split the extent we found, and may flip bits on
720          * second half.
721          *
722          * If the extent we found extends past our
723          * range, we just split and search again.  It'll get split
724          * again the next time though.
725          *
726          * If the extent we found is inside our range, we set the
727          * desired bit on it.
728          */
729         if (state->start < start) {
730                 set = state->state & bits;
731                 if (exclusive && set) {
732                         *failed_start = start;
733                         err = -EEXIST;
734                         goto out;
735                 }
736                 err = split_state(tree, state, prealloc, start);
737                 BUG_ON(err == -EEXIST);
738                 prealloc = NULL;
739                 if (err)
740                         goto out;
741                 if (state->end <= end) {
742                         state->state |= bits;
743                         start = state->end + 1;
744                         merge_state(tree, state);
745                 } else {
746                         start = state->start;
747                 }
748                 goto search_again;
749         }
750         /*
751          * | ---- desired range ---- |
752          *     | state | or               | state |
753          *
754          * There's a hole, we need to insert something in it and
755          * ignore the extent we found.
756          */
757         if (state->start > start) {
758                 u64 this_end;
759                 if (end < last_start)
760                         this_end = end;
761                 else
762                         this_end = last_start -1;
763                 err = insert_state(tree, prealloc, start, this_end,
764                                    bits);
765                 prealloc = NULL;
766                 BUG_ON(err == -EEXIST);
767                 if (err)
768                         goto out;
769                 start = this_end + 1;
770                 goto search_again;
771         }
772         /*
773          * | ---- desired range ---- |
774          *                        | state |
775          * We need to split the extent, and set the bit
776          * on the first half
777          */
778         if (state->start <= end && state->end > end) {
779                 set = state->state & bits;
780                 if (exclusive && set) {
781                         *failed_start = start;
782                         err = -EEXIST;
783                         goto out;
784                 }
785                 err = split_state(tree, state, prealloc, end + 1);
786                 BUG_ON(err == -EEXIST);
787
788                 prealloc->state |= bits;
789                 merge_state(tree, prealloc);
790                 prealloc = NULL;
791                 goto out;
792         }
793
794         goto search_again;
795
796 out:
797         write_unlock_irqrestore(&tree->lock, flags);
798         if (prealloc)
799                 free_extent_state(prealloc);
800
801         return err;
802
803 search_again:
804         if (start > end)
805                 goto out;
806         write_unlock_irqrestore(&tree->lock, flags);
807         if (mask & __GFP_WAIT)
808                 cond_resched();
809         goto again;
810 }
811 EXPORT_SYMBOL(set_extent_bit);
812
813 /* wrappers around set/clear extent bit */
814 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
815                      gfp_t mask)
816 {
817         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
818                               mask);
819 }
820 EXPORT_SYMBOL(set_extent_dirty);
821
822 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
823                     int bits, gfp_t mask)
824 {
825         return set_extent_bit(tree, start, end, bits, 0, NULL,
826                               mask);
827 }
828 EXPORT_SYMBOL(set_extent_bits);
829
830 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
831                       int bits, gfp_t mask)
832 {
833         return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
834 }
835 EXPORT_SYMBOL(clear_extent_bits);
836
837 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
838                      gfp_t mask)
839 {
840         return set_extent_bit(tree, start, end,
841                               EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
842                               mask);
843 }
844 EXPORT_SYMBOL(set_extent_delalloc);
845
846 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
847                        gfp_t mask)
848 {
849         return clear_extent_bit(tree, start, end,
850                                 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
851 }
852 EXPORT_SYMBOL(clear_extent_dirty);
853
854 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
855                      gfp_t mask)
856 {
857         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
858                               mask);
859 }
860 EXPORT_SYMBOL(set_extent_new);
861
862 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
863                        gfp_t mask)
864 {
865         return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
866 }
867 EXPORT_SYMBOL(clear_extent_new);
868
869 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
870                         gfp_t mask)
871 {
872         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
873                               mask);
874 }
875 EXPORT_SYMBOL(set_extent_uptodate);
876
877 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
878                           gfp_t mask)
879 {
880         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
881 }
882 EXPORT_SYMBOL(clear_extent_uptodate);
883
884 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
885                          gfp_t mask)
886 {
887         return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
888                               0, NULL, mask);
889 }
890 EXPORT_SYMBOL(set_extent_writeback);
891
892 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
893                            gfp_t mask)
894 {
895         return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
896 }
897 EXPORT_SYMBOL(clear_extent_writeback);
898
899 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
900 {
901         return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
902 }
903 EXPORT_SYMBOL(wait_on_extent_writeback);
904
905 /*
906  * locks a range in ascending order, waiting for any locked regions
907  * it hits on the way.  [start,end] are inclusive, and this will sleep.
908  */
909 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
910 {
911         int err;
912         u64 failed_start;
913         while (1) {
914                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
915                                      &failed_start, mask);
916                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
917                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
918                         start = failed_start;
919                 } else {
920                         break;
921                 }
922                 WARN_ON(start > end);
923         }
924         return err;
925 }
926 EXPORT_SYMBOL(lock_extent);
927
928 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
929                   gfp_t mask)
930 {
931         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
932 }
933 EXPORT_SYMBOL(unlock_extent);
934
935 /*
936  * helper function to set pages and extents in the tree dirty
937  */
938 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
939 {
940         unsigned long index = start >> PAGE_CACHE_SHIFT;
941         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
942         struct page *page;
943
944         while (index <= end_index) {
945                 page = find_get_page(tree->mapping, index);
946                 BUG_ON(!page);
947                 __set_page_dirty_nobuffers(page);
948                 page_cache_release(page);
949                 index++;
950         }
951         set_extent_dirty(tree, start, end, GFP_NOFS);
952         return 0;
953 }
954 EXPORT_SYMBOL(set_range_dirty);
955
956 /*
957  * helper function to set both pages and extents in the tree writeback
958  */
959 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
960 {
961         unsigned long index = start >> PAGE_CACHE_SHIFT;
962         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
963         struct page *page;
964
965         while (index <= end_index) {
966                 page = find_get_page(tree->mapping, index);
967                 BUG_ON(!page);
968                 set_page_writeback(page);
969                 page_cache_release(page);
970                 index++;
971         }
972         set_extent_writeback(tree, start, end, GFP_NOFS);
973         return 0;
974 }
975 EXPORT_SYMBOL(set_range_writeback);
976
977 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
978                           u64 *start_ret, u64 *end_ret, int bits)
979 {
980         struct rb_node *node;
981         struct extent_state *state;
982         int ret = 1;
983
984         write_lock_irq(&tree->lock);
985         /*
986          * this search will find all the extents that end after
987          * our range starts.
988          */
989         node = tree_search(&tree->state, start);
990         if (!node || IS_ERR(node)) {
991                 goto out;
992         }
993
994         while(1) {
995                 state = rb_entry(node, struct extent_state, rb_node);
996                 if (state->state & bits) {
997                         *start_ret = state->start;
998                         *end_ret = state->end;
999                         ret = 0;
1000                         break;
1001                 }
1002                 node = rb_next(node);
1003                 if (!node)
1004                         break;
1005         }
1006 out:
1007         write_unlock_irq(&tree->lock);
1008         return ret;
1009 }
1010 EXPORT_SYMBOL(find_first_extent_bit);
1011
1012 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1013                              u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1014 {
1015         struct rb_node *node;
1016         struct extent_state *state;
1017         u64 cur_start = start;
1018         u64 found = 0;
1019         u64 total_bytes = 0;
1020
1021         write_lock_irq(&tree->lock);
1022         /*
1023          * this search will find all the extents that end after
1024          * our range starts.
1025          */
1026 search_again:
1027         node = tree_search(&tree->state, cur_start);
1028         if (!node || IS_ERR(node)) {
1029                 goto out;
1030         }
1031
1032         while(1) {
1033                 state = rb_entry(node, struct extent_state, rb_node);
1034                 if (state->start != cur_start) {
1035                         goto out;
1036                 }
1037                 if (!(state->state & EXTENT_DELALLOC)) {
1038                         goto out;
1039                 }
1040                 if (state->start >= lock_start) {
1041                         if (state->state & EXTENT_LOCKED) {
1042                                 DEFINE_WAIT(wait);
1043                                 atomic_inc(&state->refs);
1044                                 write_unlock_irq(&tree->lock);
1045                                 schedule();
1046                                 write_lock_irq(&tree->lock);
1047                                 finish_wait(&state->wq, &wait);
1048                                 free_extent_state(state);
1049                                 goto search_again;
1050                         }
1051                         state->state |= EXTENT_LOCKED;
1052                 }
1053                 found++;
1054                 *end = state->end;
1055                 cur_start = state->end + 1;
1056                 node = rb_next(node);
1057                 if (!node)
1058                         break;
1059                 total_bytes = state->end - state->start + 1;
1060                 if (total_bytes >= max_bytes)
1061                         break;
1062         }
1063 out:
1064         write_unlock_irq(&tree->lock);
1065         return found;
1066 }
1067
1068 /*
1069  * helper function to lock both pages and extents in the tree.
1070  * pages must be locked first.
1071  */
1072 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1073 {
1074         unsigned long index = start >> PAGE_CACHE_SHIFT;
1075         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1076         struct page *page;
1077         int err;
1078
1079         while (index <= end_index) {
1080                 page = grab_cache_page(tree->mapping, index);
1081                 if (!page) {
1082                         err = -ENOMEM;
1083                         goto failed;
1084                 }
1085                 if (IS_ERR(page)) {
1086                         err = PTR_ERR(page);
1087                         goto failed;
1088                 }
1089                 index++;
1090         }
1091         lock_extent(tree, start, end, GFP_NOFS);
1092         return 0;
1093
1094 failed:
1095         /*
1096          * we failed above in getting the page at 'index', so we undo here
1097          * up to but not including the page at 'index'
1098          */
1099         end_index = index;
1100         index = start >> PAGE_CACHE_SHIFT;
1101         while (index < end_index) {
1102                 page = find_get_page(tree->mapping, index);
1103                 unlock_page(page);
1104                 page_cache_release(page);
1105                 index++;
1106         }
1107         return err;
1108 }
1109 EXPORT_SYMBOL(lock_range);
1110
1111 /*
1112  * helper function to unlock both pages and extents in the tree.
1113  */
1114 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1115 {
1116         unsigned long index = start >> PAGE_CACHE_SHIFT;
1117         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1118         struct page *page;
1119
1120         while (index <= end_index) {
1121                 page = find_get_page(tree->mapping, index);
1122                 unlock_page(page);
1123                 page_cache_release(page);
1124                 index++;
1125         }
1126         unlock_extent(tree, start, end, GFP_NOFS);
1127         return 0;
1128 }
1129 EXPORT_SYMBOL(unlock_range);
1130
1131 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1132 {
1133         struct rb_node *node;
1134         struct extent_state *state;
1135         int ret = 0;
1136
1137         write_lock_irq(&tree->lock);
1138         /*
1139          * this search will find all the extents that end after
1140          * our range starts.
1141          */
1142         node = tree_search(&tree->state, start);
1143         if (!node || IS_ERR(node)) {
1144                 ret = -ENOENT;
1145                 goto out;
1146         }
1147         state = rb_entry(node, struct extent_state, rb_node);
1148         if (state->start != start) {
1149                 ret = -ENOENT;
1150                 goto out;
1151         }
1152         state->private = private;
1153 out:
1154         write_unlock_irq(&tree->lock);
1155         return ret;
1156 }
1157
1158 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1159 {
1160         struct rb_node *node;
1161         struct extent_state *state;
1162         int ret = 0;
1163
1164         read_lock_irq(&tree->lock);
1165         /*
1166          * this search will find all the extents that end after
1167          * our range starts.
1168          */
1169         node = tree_search(&tree->state, start);
1170         if (!node || IS_ERR(node)) {
1171                 ret = -ENOENT;
1172                 goto out;
1173         }
1174         state = rb_entry(node, struct extent_state, rb_node);
1175         if (state->start != start) {
1176                 ret = -ENOENT;
1177                 goto out;
1178         }
1179         *private = state->private;
1180 out:
1181         read_unlock_irq(&tree->lock);
1182         return ret;
1183 }
1184
1185 /*
1186  * searches a range in the state tree for a given mask.
1187  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1188  * has the bits set.  Otherwise, 1 is returned if any bit in the
1189  * range is found set.
1190  */
1191 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1192                    int bits, int filled)
1193 {
1194         struct extent_state *state = NULL;
1195         struct rb_node *node;
1196         int bitset = 0;
1197
1198         read_lock_irq(&tree->lock);
1199         node = tree_search(&tree->state, start);
1200         while (node && start <= end) {
1201                 state = rb_entry(node, struct extent_state, rb_node);
1202                 if (state->start > end)
1203                         break;
1204
1205                 if (filled && state->start > start) {
1206                         bitset = 0;
1207                         break;
1208                 }
1209                 if (state->state & bits) {
1210                         bitset = 1;
1211                         if (!filled)
1212                                 break;
1213                 } else if (filled) {
1214                         bitset = 0;
1215                         break;
1216                 }
1217                 start = state->end + 1;
1218                 if (start > end)
1219                         break;
1220                 node = rb_next(node);
1221         }
1222         read_unlock_irq(&tree->lock);
1223         return bitset;
1224 }
1225 EXPORT_SYMBOL(test_range_bit);
1226
1227 /*
1228  * helper function to set a given page up to date if all the
1229  * extents in the tree for that page are up to date
1230  */
1231 static int check_page_uptodate(struct extent_map_tree *tree,
1232                                struct page *page)
1233 {
1234         u64 start = page->index << PAGE_CACHE_SHIFT;
1235         u64 end = start + PAGE_CACHE_SIZE - 1;
1236         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1237                 SetPageUptodate(page);
1238         return 0;
1239 }
1240
1241 /*
1242  * helper function to unlock a page if all the extents in the tree
1243  * for that page are unlocked
1244  */
1245 static int check_page_locked(struct extent_map_tree *tree,
1246                              struct page *page)
1247 {
1248         u64 start = page->index << PAGE_CACHE_SHIFT;
1249         u64 end = start + PAGE_CACHE_SIZE - 1;
1250         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1251                 unlock_page(page);
1252         return 0;
1253 }
1254
1255 /*
1256  * helper function to end page writeback if all the extents
1257  * in the tree for that page are done with writeback
1258  */
1259 static int check_page_writeback(struct extent_map_tree *tree,
1260                              struct page *page)
1261 {
1262         u64 start = page->index << PAGE_CACHE_SHIFT;
1263         u64 end = start + PAGE_CACHE_SIZE - 1;
1264         if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1265                 end_page_writeback(page);
1266         return 0;
1267 }
1268
1269 /* lots and lots of room for performance fixes in the end_bio funcs */
1270
1271 /*
1272  * after a writepage IO is done, we need to:
1273  * clear the uptodate bits on error
1274  * clear the writeback bits in the extent tree for this IO
1275  * end_page_writeback if the page has no more pending IO
1276  *
1277  * Scheduling is not allowed, so the extent state tree is expected
1278  * to have one and only one object corresponding to this IO.
1279  */
1280 static int end_bio_extent_writepage(struct bio *bio,
1281                                    unsigned int bytes_done, int err)
1282 {
1283         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1284         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1285         struct extent_map_tree *tree = bio->bi_private;
1286         u64 start;
1287         u64 end;
1288         int whole_page;
1289
1290         if (bio->bi_size)
1291                 return 1;
1292
1293         do {
1294                 struct page *page = bvec->bv_page;
1295                 start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1296                 end = start + bvec->bv_len - 1;
1297
1298                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1299                         whole_page = 1;
1300                 else
1301                         whole_page = 0;
1302
1303                 if (--bvec >= bio->bi_io_vec)
1304                         prefetchw(&bvec->bv_page->flags);
1305
1306                 if (!uptodate) {
1307                         clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1308                         ClearPageUptodate(page);
1309                         SetPageError(page);
1310                 }
1311                 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1312
1313                 if (whole_page)
1314                         end_page_writeback(page);
1315                 else
1316                         check_page_writeback(tree, page);
1317                 if (tree->ops && tree->ops->writepage_end_io_hook)
1318                         tree->ops->writepage_end_io_hook(page, start, end);
1319         } while (bvec >= bio->bi_io_vec);
1320
1321         bio_put(bio);
1322         return 0;
1323 }
1324
1325 /*
1326  * after a readpage IO is done, we need to:
1327  * clear the uptodate bits on error
1328  * set the uptodate bits if things worked
1329  * set the page up to date if all extents in the tree are uptodate
1330  * clear the lock bit in the extent tree
1331  * unlock the page if there are no other extents locked for it
1332  *
1333  * Scheduling is not allowed, so the extent state tree is expected
1334  * to have one and only one object corresponding to this IO.
1335  */
1336 static int end_bio_extent_readpage(struct bio *bio,
1337                                    unsigned int bytes_done, int err)
1338 {
1339         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1340         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1341         struct extent_map_tree *tree = bio->bi_private;
1342         u64 start;
1343         u64 end;
1344         int whole_page;
1345         int ret;
1346
1347         if (bio->bi_size)
1348                 return 1;
1349
1350         do {
1351                 struct page *page = bvec->bv_page;
1352                 start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1353                 end = start + bvec->bv_len - 1;
1354
1355                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1356                         whole_page = 1;
1357                 else
1358                         whole_page = 0;
1359
1360                 if (--bvec >= bio->bi_io_vec)
1361                         prefetchw(&bvec->bv_page->flags);
1362
1363                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1364                         ret = tree->ops->readpage_end_io_hook(page, start, end);
1365                         if (ret)
1366                                 uptodate = 0;
1367                 }
1368                 if (uptodate) {
1369                         set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1370                         if (whole_page)
1371                                 SetPageUptodate(page);
1372                         else
1373                                 check_page_uptodate(tree, page);
1374                 } else {
1375                         ClearPageUptodate(page);
1376                         SetPageError(page);
1377                 }
1378
1379                 unlock_extent(tree, start, end, GFP_ATOMIC);
1380
1381                 if (whole_page)
1382                         unlock_page(page);
1383                 else
1384                         check_page_locked(tree, page);
1385         } while (bvec >= bio->bi_io_vec);
1386
1387         bio_put(bio);
1388         return 0;
1389 }
1390
1391 /*
1392  * IO done from prepare_write is pretty simple, we just unlock
1393  * the structs in the extent tree when done, and set the uptodate bits
1394  * as appropriate.
1395  */
1396 static int end_bio_extent_preparewrite(struct bio *bio,
1397                                        unsigned int bytes_done, int err)
1398 {
1399         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1400         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1401         struct extent_map_tree *tree = bio->bi_private;
1402         u64 start;
1403         u64 end;
1404
1405         if (bio->bi_size)
1406                 return 1;
1407
1408         do {
1409                 struct page *page = bvec->bv_page;
1410                 start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1411                 end = start + bvec->bv_len - 1;
1412
1413                 if (--bvec >= bio->bi_io_vec)
1414                         prefetchw(&bvec->bv_page->flags);
1415
1416                 if (uptodate) {
1417                         set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1418                 } else {
1419                         ClearPageUptodate(page);
1420                         SetPageError(page);
1421                 }
1422
1423                 unlock_extent(tree, start, end, GFP_ATOMIC);
1424
1425         } while (bvec >= bio->bi_io_vec);
1426
1427         bio_put(bio);
1428         return 0;
1429 }
1430
1431 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1432                               struct page *page, sector_t sector,
1433                               size_t size, unsigned long offset,
1434                               struct block_device *bdev,
1435                               bio_end_io_t end_io_func)
1436 {
1437         struct bio *bio;
1438         int ret = 0;
1439
1440         bio = bio_alloc(GFP_NOIO, 1);
1441
1442         bio->bi_sector = sector;
1443         bio->bi_bdev = bdev;
1444         bio->bi_io_vec[0].bv_page = page;
1445         bio->bi_io_vec[0].bv_len = size;
1446         bio->bi_io_vec[0].bv_offset = offset;
1447
1448         bio->bi_vcnt = 1;
1449         bio->bi_idx = 0;
1450         bio->bi_size = size;
1451
1452         bio->bi_end_io = end_io_func;
1453         bio->bi_private = tree;
1454
1455         bio_get(bio);
1456         submit_bio(rw, bio);
1457
1458         if (bio_flagged(bio, BIO_EOPNOTSUPP))
1459                 ret = -EOPNOTSUPP;
1460
1461         bio_put(bio);
1462         return ret;
1463 }
1464
1465 void set_page_extent_mapped(struct page *page)
1466 {
1467         if (!PagePrivate(page)) {
1468                 SetPagePrivate(page);
1469                 WARN_ON(!page->mapping->a_ops->invalidatepage);
1470                 set_page_private(page, 1);
1471                 page_cache_get(page);
1472         }
1473 }
1474
1475 /*
1476  * basic readpage implementation.  Locked extent state structs are inserted
1477  * into the tree that are removed when the IO is done (by the end_io
1478  * handlers)
1479  */
1480 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1481                           get_extent_t *get_extent)
1482 {
1483         struct inode *inode = page->mapping->host;
1484         u64 start = page->index << PAGE_CACHE_SHIFT;
1485         u64 page_end = start + PAGE_CACHE_SIZE - 1;
1486         u64 end;
1487         u64 cur = start;
1488         u64 extent_offset;
1489         u64 last_byte = i_size_read(inode);
1490         u64 block_start;
1491         u64 cur_end;
1492         sector_t sector;
1493         struct extent_map *em;
1494         struct block_device *bdev;
1495         int ret;
1496         int nr = 0;
1497         size_t page_offset = 0;
1498         size_t iosize;
1499         size_t blocksize = inode->i_sb->s_blocksize;
1500
1501         set_page_extent_mapped(page);
1502
1503         end = page_end;
1504         lock_extent(tree, start, end, GFP_NOFS);
1505
1506         while (cur <= end) {
1507                 if (cur >= last_byte) {
1508                         iosize = PAGE_CACHE_SIZE - page_offset;
1509                         zero_user_page(page, page_offset, iosize, KM_USER0);
1510                         set_extent_uptodate(tree, cur, cur + iosize - 1,
1511                                             GFP_NOFS);
1512                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1513                         break;
1514                 }
1515                 em = get_extent(inode, page, page_offset, cur, end, 0);
1516                 if (IS_ERR(em) || !em) {
1517                         SetPageError(page);
1518                         unlock_extent(tree, cur, end, GFP_NOFS);
1519                         break;
1520                 }
1521
1522                 extent_offset = cur - em->start;
1523                 BUG_ON(em->end < cur);
1524                 BUG_ON(end < cur);
1525
1526                 iosize = min(em->end - cur, end - cur) + 1;
1527                 cur_end = min(em->end, end);
1528                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1529                 sector = (em->block_start + extent_offset) >> 9;
1530                 bdev = em->bdev;
1531                 block_start = em->block_start;
1532                 free_extent_map(em);
1533                 em = NULL;
1534
1535                 /* we've found a hole, just zero and go on */
1536                 if (block_start == EXTENT_MAP_HOLE) {
1537                         zero_user_page(page, page_offset, iosize, KM_USER0);
1538                         set_extent_uptodate(tree, cur, cur + iosize - 1,
1539                                             GFP_NOFS);
1540                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1541                         cur = cur + iosize;
1542                         page_offset += iosize;
1543                         continue;
1544                 }
1545                 /* the get_extent function already copied into the page */
1546                 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1547                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1548                         cur = cur + iosize;
1549                         page_offset += iosize;
1550                         continue;
1551                 }
1552
1553                 ret = 0;
1554                 if (tree->ops && tree->ops->readpage_io_hook) {
1555                         ret = tree->ops->readpage_io_hook(page, cur,
1556                                                           cur + iosize - 1);
1557                 }
1558                 if (!ret) {
1559                         ret = submit_extent_page(READ, tree, page,
1560                                                  sector, iosize, page_offset,
1561                                                  bdev, end_bio_extent_readpage);
1562                 }
1563                 if (ret)
1564                         SetPageError(page);
1565                 cur = cur + iosize;
1566                 page_offset += iosize;
1567                 nr++;
1568         }
1569         if (!nr) {
1570                 if (!PageError(page))
1571                         SetPageUptodate(page);
1572                 unlock_page(page);
1573         }
1574         return 0;
1575 }
1576 EXPORT_SYMBOL(extent_read_full_page);
1577
1578 /*
1579  * the writepage semantics are similar to regular writepage.  extent
1580  * records are inserted to lock ranges in the tree, and as dirty areas
1581  * are found, they are marked writeback.  Then the lock bits are removed
1582  * and the end_io handler clears the writeback ranges
1583  */
1584 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1585                           get_extent_t *get_extent,
1586                           struct writeback_control *wbc)
1587 {
1588         struct inode *inode = page->mapping->host;
1589         u64 start = page->index << PAGE_CACHE_SHIFT;
1590         u64 page_end = start + PAGE_CACHE_SIZE - 1;
1591         u64 end;
1592         u64 cur = start;
1593         u64 extent_offset;
1594         u64 last_byte = i_size_read(inode);
1595         u64 block_start;
1596         sector_t sector;
1597         struct extent_map *em;
1598         struct block_device *bdev;
1599         int ret;
1600         int nr = 0;
1601         size_t page_offset = 0;
1602         size_t iosize;
1603         size_t blocksize;
1604         loff_t i_size = i_size_read(inode);
1605         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1606         u64 nr_delalloc;
1607         u64 delalloc_end;
1608
1609         WARN_ON(!PageLocked(page));
1610         if (page->index > end_index) {
1611                 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1612                 unlock_page(page);
1613                 return 0;
1614         }
1615
1616         if (page->index == end_index) {
1617                 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1618                 zero_user_page(page, offset,
1619                                PAGE_CACHE_SIZE - offset, KM_USER0);
1620         }
1621
1622         set_page_extent_mapped(page);
1623
1624         lock_extent(tree, start, page_end, GFP_NOFS);
1625         nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1626                                                &delalloc_end,
1627                                                128 * 1024 * 1024);
1628         if (nr_delalloc) {
1629                 tree->ops->fill_delalloc(inode, start, delalloc_end);
1630                 if (delalloc_end >= page_end + 1) {
1631                         clear_extent_bit(tree, page_end + 1, delalloc_end,
1632                                          EXTENT_LOCKED | EXTENT_DELALLOC,
1633                                          1, 0, GFP_NOFS);
1634                 }
1635                 clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1636                                  0, 0, GFP_NOFS);
1637                 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1638                         printk("found delalloc bits after clear extent_bit\n");
1639                 }
1640         } else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1641                 printk("found delalloc bits after find_delalloc_range returns 0\n");
1642         }
1643
1644         end = page_end;
1645         if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1646                 printk("found delalloc bits after lock_extent\n");
1647         }
1648
1649         if (last_byte <= start) {
1650                 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1651                 goto done;
1652         }
1653
1654         set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1655         blocksize = inode->i_sb->s_blocksize;
1656
1657         while (cur <= end) {
1658                 if (cur >= last_byte) {
1659                         clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1660                         break;
1661                 }
1662                 em = get_extent(inode, page, page_offset, cur, end, 0);
1663                 if (IS_ERR(em) || !em) {
1664                         SetPageError(page);
1665                         break;
1666                 }
1667
1668                 extent_offset = cur - em->start;
1669                 BUG_ON(em->end < cur);
1670                 BUG_ON(end < cur);
1671                 iosize = min(em->end - cur, end - cur) + 1;
1672                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1673                 sector = (em->block_start + extent_offset) >> 9;
1674                 bdev = em->bdev;
1675                 block_start = em->block_start;
1676                 free_extent_map(em);
1677                 em = NULL;
1678
1679                 if (block_start == EXTENT_MAP_HOLE ||
1680                     block_start == EXTENT_MAP_INLINE) {
1681                         clear_extent_dirty(tree, cur,
1682                                            cur + iosize - 1, GFP_NOFS);
1683                         cur = cur + iosize;
1684                         page_offset += iosize;
1685                         continue;
1686                 }
1687
1688                 /* leave this out until we have a page_mkwrite call */
1689                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1690                                    EXTENT_DIRTY, 0)) {
1691                         cur = cur + iosize;
1692                         page_offset += iosize;
1693                         continue;
1694                 }
1695                 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1696                 if (tree->ops && tree->ops->writepage_io_hook) {
1697                         ret = tree->ops->writepage_io_hook(page, cur,
1698                                                 cur + iosize - 1);
1699                 } else {
1700                         ret = 0;
1701                 }
1702                 if (ret)
1703                         SetPageError(page);
1704                 else {
1705                         set_range_writeback(tree, cur, cur + iosize - 1);
1706                         ret = submit_extent_page(WRITE, tree, page, sector,
1707                                                  iosize, page_offset, bdev,
1708                                                  end_bio_extent_writepage);
1709                         if (ret)
1710                                 SetPageError(page);
1711                 }
1712                 cur = cur + iosize;
1713                 page_offset += iosize;
1714                 nr++;
1715         }
1716 done:
1717         unlock_extent(tree, start, page_end, GFP_NOFS);
1718         unlock_page(page);
1719         return 0;
1720 }
1721 EXPORT_SYMBOL(extent_write_full_page);
1722
1723 /*
1724  * basic invalidatepage code, this waits on any locked or writeback
1725  * ranges corresponding to the page, and then deletes any extent state
1726  * records from the tree
1727  */
1728 int extent_invalidatepage(struct extent_map_tree *tree,
1729                           struct page *page, unsigned long offset)
1730 {
1731         u64 start = (page->index << PAGE_CACHE_SHIFT);
1732         u64 end = start + PAGE_CACHE_SIZE - 1;
1733         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1734
1735         start += (offset + blocksize -1) & ~(blocksize - 1);
1736         if (start > end)
1737                 return 0;
1738
1739         lock_extent(tree, start, end, GFP_NOFS);
1740         wait_on_extent_writeback(tree, start, end);
1741         clear_extent_bit(tree, start, end,
1742                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1743                          1, 1, GFP_NOFS);
1744         return 0;
1745 }
1746 EXPORT_SYMBOL(extent_invalidatepage);
1747
1748 /*
1749  * simple commit_write call, set_range_dirty is used to mark both
1750  * the pages and the extent records as dirty
1751  */
1752 int extent_commit_write(struct extent_map_tree *tree,
1753                         struct inode *inode, struct page *page,
1754                         unsigned from, unsigned to)
1755 {
1756         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1757
1758         set_page_extent_mapped(page);
1759         set_page_dirty(page);
1760
1761         if (pos > inode->i_size) {
1762                 i_size_write(inode, pos);
1763                 mark_inode_dirty(inode);
1764         }
1765         return 0;
1766 }
1767 EXPORT_SYMBOL(extent_commit_write);
1768
1769 int extent_prepare_write(struct extent_map_tree *tree,
1770                          struct inode *inode, struct page *page,
1771                          unsigned from, unsigned to, get_extent_t *get_extent)
1772 {
1773         u64 page_start = page->index << PAGE_CACHE_SHIFT;
1774         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1775         u64 block_start;
1776         u64 orig_block_start;
1777         u64 block_end;
1778         u64 cur_end;
1779         struct extent_map *em;
1780         unsigned blocksize = 1 << inode->i_blkbits;
1781         size_t page_offset = 0;
1782         size_t block_off_start;
1783         size_t block_off_end;
1784         int err = 0;
1785         int iocount = 0;
1786         int ret = 0;
1787         int isnew;
1788
1789         set_page_extent_mapped(page);
1790
1791         block_start = (page_start + from) & ~((u64)blocksize - 1);
1792         block_end = (page_start + to - 1) | (blocksize - 1);
1793         orig_block_start = block_start;
1794
1795         lock_extent(tree, page_start, page_end, GFP_NOFS);
1796         while(block_start <= block_end) {
1797                 em = get_extent(inode, page, page_offset, block_start,
1798                                 block_end, 1);
1799                 if (IS_ERR(em) || !em) {
1800                         goto err;
1801                 }
1802                 cur_end = min(block_end, em->end);
1803                 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1804                 block_off_end = block_off_start + blocksize;
1805                 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1806
1807                 if (!PageUptodate(page) && isnew &&
1808                     (block_off_end > to || block_off_start < from)) {
1809                         void *kaddr;
1810
1811                         kaddr = kmap_atomic(page, KM_USER0);
1812                         if (block_off_end > to)
1813                                 memset(kaddr + to, 0, block_off_end - to);
1814                         if (block_off_start < from)
1815                                 memset(kaddr + block_off_start, 0,
1816                                        from - block_off_start);
1817                         flush_dcache_page(page);
1818                         kunmap_atomic(kaddr, KM_USER0);
1819                 }
1820                 if (!isnew && !PageUptodate(page) &&
1821                     (block_off_end > to || block_off_start < from) &&
1822                     !test_range_bit(tree, block_start, cur_end,
1823                                     EXTENT_UPTODATE, 1)) {
1824                         u64 sector;
1825                         u64 extent_offset = block_start - em->start;
1826                         size_t iosize;
1827                         sector = (em->block_start + extent_offset) >> 9;
1828                         iosize = (cur_end - block_start + blocksize - 1) &
1829                                 ~((u64)blocksize - 1);
1830                         /*
1831                          * we've already got the extent locked, but we
1832                          * need to split the state such that our end_bio
1833                          * handler can clear the lock.
1834                          */
1835                         set_extent_bit(tree, block_start,
1836                                        block_start + iosize - 1,
1837                                        EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1838                         ret = submit_extent_page(READ, tree, page,
1839                                          sector, iosize, page_offset, em->bdev,
1840                                          end_bio_extent_preparewrite);
1841                         iocount++;
1842                         block_start = block_start + iosize;
1843                 } else {
1844                         set_extent_uptodate(tree, block_start, cur_end,
1845                                             GFP_NOFS);
1846                         unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1847                         block_start = cur_end + 1;
1848                 }
1849                 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1850                 free_extent_map(em);
1851         }
1852         if (iocount) {
1853                 wait_extent_bit(tree, orig_block_start,
1854                                 block_end, EXTENT_LOCKED);
1855         }
1856         check_page_uptodate(tree, page);
1857 err:
1858         /* FIXME, zero out newly allocated blocks on error */
1859         return err;
1860 }
1861 EXPORT_SYMBOL(extent_prepare_write);
1862
1863 /*
1864  * a helper for releasepage.  As long as there are no locked extents
1865  * in the range corresponding to the page, both state records and extent
1866  * map records are removed
1867  */
1868 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1869 {
1870         struct extent_map *em;
1871         u64 start = page->index << PAGE_CACHE_SHIFT;
1872         u64 end = start + PAGE_CACHE_SIZE - 1;
1873         u64 orig_start = start;
1874         int ret = 1;
1875
1876         while (start <= end) {
1877                 em = lookup_extent_mapping(tree, start, end);
1878                 if (!em || IS_ERR(em))
1879                         break;
1880                 if (!test_range_bit(tree, em->start, em->end,
1881                                     EXTENT_LOCKED, 0)) {
1882                         remove_extent_mapping(tree, em);
1883                         /* once for the rb tree */
1884                         free_extent_map(em);
1885                 }
1886                 start = em->end + 1;
1887                 /* once for us */
1888                 free_extent_map(em);
1889         }
1890         if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1891                 ret = 0;
1892         else
1893                 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1894                                  1, 1, GFP_NOFS);
1895         return ret;
1896 }
1897 EXPORT_SYMBOL(try_release_extent_mapping);
1898
1899 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
1900                 get_extent_t *get_extent)
1901 {
1902         struct inode *inode = mapping->host;
1903         u64 start = iblock << inode->i_blkbits;
1904         u64 end = start + (1 << inode->i_blkbits) - 1;
1905         struct extent_map *em;
1906
1907         em = get_extent(inode, NULL, 0, start, end, 0);
1908         if (!em || IS_ERR(em))
1909                 return 0;
1910
1911         if (em->block_start == EXTENT_MAP_INLINE ||
1912             em->block_start == EXTENT_MAP_HOLE)
1913                 return 0;
1914
1915         return (em->block_start + start - em->start) >> inode->i_blkbits;
1916 }
1917
1918 static struct extent_buffer *__alloc_extent_buffer(gfp_t mask)
1919 {
1920         struct extent_buffer *eb = NULL;
1921
1922         spin_lock(&extent_buffers_lock);
1923         if (!list_empty(&extent_buffers)) {
1924                 eb = list_entry(extent_buffers.next, struct extent_buffer,
1925                                 list);
1926                 list_del(&eb->list);
1927                 WARN_ON(nr_extent_buffers == 0);
1928                 nr_extent_buffers--;
1929         }
1930         spin_unlock(&extent_buffers_lock);
1931
1932         if (eb) {
1933                 memset(eb, 0, sizeof(*eb));
1934         } else {
1935                 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
1936         }
1937         spin_lock(&extent_buffers_lock);
1938         list_add(&eb->leak_list, &buffers);
1939         spin_unlock(&extent_buffers_lock);
1940
1941         return eb;
1942 }
1943
1944 static void __free_extent_buffer(struct extent_buffer *eb)
1945 {
1946
1947         spin_lock(&extent_buffers_lock);
1948         list_del_init(&eb->leak_list);
1949         spin_unlock(&extent_buffers_lock);
1950
1951         if (nr_extent_buffers >= MAX_EXTENT_BUFFER_CACHE) {
1952                 kmem_cache_free(extent_buffer_cache, eb);
1953         } else {
1954                 spin_lock(&extent_buffers_lock);
1955                 list_add(&eb->list, &extent_buffers);
1956                 nr_extent_buffers++;
1957                 spin_unlock(&extent_buffers_lock);
1958         }
1959 }
1960
1961 static inline struct page *extent_buffer_page(struct extent_buffer *eb, int i)
1962 {
1963         struct page *p;
1964         if (i == 0)
1965                 return eb->first_page;
1966         i += eb->start >> PAGE_CACHE_SHIFT;
1967         p = find_get_page(eb->first_page->mapping, i);
1968         page_cache_release(p);
1969         return p;
1970 }
1971
1972 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
1973                                           u64 start, unsigned long len,
1974                                           gfp_t mask)
1975 {
1976         unsigned long num_pages = ((start + len - 1) >> PAGE_CACHE_SHIFT) -
1977                                   (start >> PAGE_CACHE_SHIFT) + 1;
1978         unsigned long i;
1979         unsigned long index = start >> PAGE_CACHE_SHIFT;
1980         struct extent_buffer *eb;
1981         struct page *p;
1982         struct address_space *mapping = tree->mapping;
1983         int uptodate = 0;
1984
1985         eb = __alloc_extent_buffer(mask);
1986         if (!eb || IS_ERR(eb))
1987                 return NULL;
1988
1989         eb->alloc_addr = __builtin_return_address(0);
1990         eb->start = start;
1991         eb->len = len;
1992         atomic_set(&eb->refs, 1);
1993
1994         for (i = 0; i < num_pages; i++, index++) {
1995                 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
1996                 if (!p) {
1997                         /* make sure the free only frees the pages we've
1998                          * grabbed a reference on
1999                          */
2000                         eb->len = i << PAGE_CACHE_SHIFT;
2001                         eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2002                         goto fail;
2003                 }
2004                 set_page_extent_mapped(p);
2005                 if (i == 0)
2006                         eb->first_page = p;
2007                 if (!PageUptodate(p))
2008                         uptodate = 0;
2009                 unlock_page(p);
2010         }
2011         if (uptodate)
2012                 eb->flags |= EXTENT_UPTODATE;
2013         return eb;
2014 fail:
2015         free_extent_buffer(eb);
2016         return NULL;
2017 }
2018 EXPORT_SYMBOL(alloc_extent_buffer);
2019
2020 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2021                                          u64 start, unsigned long len,
2022                                           gfp_t mask)
2023 {
2024         unsigned long num_pages = ((start + len - 1) >> PAGE_CACHE_SHIFT) -
2025                                   (start >> PAGE_CACHE_SHIFT) + 1;
2026         unsigned long i;
2027         unsigned long index = start >> PAGE_CACHE_SHIFT;
2028         struct extent_buffer *eb;
2029         struct page *p;
2030         struct address_space *mapping = tree->mapping;
2031
2032         eb = __alloc_extent_buffer(mask);
2033         if (!eb || IS_ERR(eb))
2034                 return NULL;
2035
2036         eb->alloc_addr = __builtin_return_address(0);
2037         eb->start = start;
2038         eb->len = len;
2039         atomic_set(&eb->refs, 1);
2040
2041         for (i = 0; i < num_pages; i++, index++) {
2042                 p = find_get_page(mapping, index);
2043                 if (!p) {
2044                         /* make sure the free only frees the pages we've
2045                          * grabbed a reference on
2046                          */
2047                         eb->len = i << PAGE_CACHE_SHIFT;
2048                         eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2049                         goto fail;
2050                 }
2051                 set_page_extent_mapped(p);
2052                 if (i == 0)
2053                         eb->first_page = p;
2054         }
2055         return eb;
2056 fail:
2057         free_extent_buffer(eb);
2058         return NULL;
2059 }
2060 EXPORT_SYMBOL(find_extent_buffer);
2061
2062 void free_extent_buffer(struct extent_buffer *eb)
2063 {
2064         unsigned long i;
2065         unsigned long num_pages;
2066
2067         if (!eb)
2068                 return;
2069
2070         if (!atomic_dec_and_test(&eb->refs))
2071                 return;
2072
2073         num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2074                 (eb->start >> PAGE_CACHE_SHIFT) + 1;
2075
2076         if (eb->first_page)
2077                 page_cache_release(eb->first_page);
2078         for (i = 1; i < num_pages; i++) {
2079                 page_cache_release(extent_buffer_page(eb, i));
2080         }
2081         __free_extent_buffer(eb);
2082 }
2083 EXPORT_SYMBOL(free_extent_buffer);
2084
2085 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2086                               struct extent_buffer *eb)
2087 {
2088         int set;
2089         unsigned long i;
2090         unsigned long num_pages;
2091         struct page *page;
2092
2093         u64 start = eb->start;
2094         u64 end = start + eb->len - 1;
2095
2096         set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2097         num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2098                 (eb->start >> PAGE_CACHE_SHIFT) + 1;
2099
2100         for (i = 0; i < num_pages; i++) {
2101                 page = extent_buffer_page(eb, i);
2102                 lock_page(page);
2103                 /*
2104                  * if we're on the last page or the first page and the
2105                  * block isn't aligned on a page boundary, do extra checks
2106                  * to make sure we don't clean page that is partially dirty
2107                  */
2108                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2109                     ((i == num_pages - 1) &&
2110                      ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2111                         start = page->index << PAGE_CACHE_SHIFT;
2112                         end  = start + PAGE_CACHE_SIZE - 1;
2113                         if (test_range_bit(tree, start, end,
2114                                            EXTENT_DIRTY, 0)) {
2115                                 unlock_page(page);
2116                                 continue;
2117                         }
2118                 }
2119                 clear_page_dirty_for_io(page);
2120                 unlock_page(page);
2121         }
2122         return 0;
2123 }
2124 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2125
2126 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2127                                     struct extent_buffer *eb)
2128 {
2129         return wait_on_extent_writeback(tree, eb->start,
2130                                         eb->start + eb->len - 1);
2131 }
2132 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2133
2134 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2135                              struct extent_buffer *eb)
2136 {
2137         return set_range_dirty(tree, eb->start, eb->start + eb->len - 1);
2138 }
2139 EXPORT_SYMBOL(set_extent_buffer_dirty);
2140
2141 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2142                                 struct extent_buffer *eb)
2143 {
2144         unsigned long i;
2145         struct page *page;
2146         unsigned long num_pages;
2147
2148         num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2149                 (eb->start >> PAGE_CACHE_SHIFT) + 1;
2150
2151         set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2152                             GFP_NOFS);
2153         for (i = 0; i < num_pages; i++) {
2154                 page = extent_buffer_page(eb, i);
2155                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2156                     ((i == num_pages - 1) &&
2157                      ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2158                         check_page_uptodate(tree, page);
2159                         continue;
2160                 }
2161                 SetPageUptodate(page);
2162         }
2163         return 0;
2164 }
2165 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2166
2167 int extent_buffer_uptodate(struct extent_map_tree *tree,
2168                              struct extent_buffer *eb)
2169 {
2170         if (eb->flags & EXTENT_UPTODATE)
2171                 return 1;
2172         return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2173                            EXTENT_UPTODATE, 1);
2174 }
2175 EXPORT_SYMBOL(extent_buffer_uptodate);
2176
2177 int read_extent_buffer_pages(struct extent_map_tree *tree,
2178                              struct extent_buffer *eb, int wait)
2179 {
2180         unsigned long i;
2181         struct page *page;
2182         int err;
2183         int ret = 0;
2184         unsigned long num_pages;
2185
2186         if (eb->flags & EXTENT_UPTODATE)
2187                 return 0;
2188
2189         if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2190                            EXTENT_UPTODATE, 1)) {
2191                 return 0;
2192         }
2193
2194         num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2195                 (eb->start >> PAGE_CACHE_SHIFT) + 1;
2196         for (i = 0; i < num_pages; i++) {
2197                 page = extent_buffer_page(eb, i);
2198                 if (PageUptodate(page)) {
2199                         continue;
2200                 }
2201                 if (!wait) {
2202                         if (TestSetPageLocked(page)) {
2203                                 continue;
2204                         }
2205                 } else {
2206                         lock_page(page);
2207                 }
2208                 if (!PageUptodate(page)) {
2209                         err = page->mapping->a_ops->readpage(NULL, page);
2210                         if (err) {
2211                                 ret = err;
2212                         }
2213                 } else {
2214                         unlock_page(page);
2215                 }
2216         }
2217
2218         if (ret || !wait) {
2219                 return ret;
2220         }
2221
2222         for (i = 0; i < num_pages; i++) {
2223                 page = extent_buffer_page(eb, i);
2224                 wait_on_page_locked(page);
2225                 if (!PageUptodate(page)) {
2226                         ret = -EIO;
2227                 }
2228         }
2229         eb->flags |= EXTENT_UPTODATE;
2230         return ret;
2231 }
2232 EXPORT_SYMBOL(read_extent_buffer_pages);
2233
2234 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2235                         unsigned long start,
2236                         unsigned long len)
2237 {
2238         size_t cur;
2239         size_t offset;
2240         struct page *page;
2241         char *kaddr;
2242         char *dst = (char *)dstv;
2243         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2244         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2245
2246         WARN_ON(start > eb->len);
2247         WARN_ON(start + len > eb->start + eb->len);
2248
2249         offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2250         if (i == 0)
2251                 offset += start_offset;
2252
2253         while(len > 0) {
2254                 page = extent_buffer_page(eb, i);
2255                 WARN_ON(!PageUptodate(page));
2256
2257                 cur = min(len, (PAGE_CACHE_SIZE - offset));
2258                 kaddr = kmap_atomic(page, KM_USER0);
2259                 memcpy(dst, kaddr + offset, cur);
2260                 kunmap_atomic(kaddr, KM_USER0);
2261
2262                 dst += cur;
2263                 len -= cur;
2264                 offset = 0;
2265                 i++;
2266         }
2267 }
2268 EXPORT_SYMBOL(read_extent_buffer);
2269
2270 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2271                       unsigned long min_len,
2272                       char **token, char **map,
2273                       unsigned long *map_start,
2274                       unsigned long *map_len, int km)
2275 {
2276         size_t offset = start & (PAGE_CACHE_SIZE - 1);
2277         char *kaddr;
2278         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2279         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2280         unsigned long end_i = (start_offset + start + min_len) >>
2281                                 PAGE_CACHE_SHIFT;
2282
2283         if (i != end_i)
2284                 return -EINVAL;
2285
2286         WARN_ON(start > eb->len);
2287
2288         if (i == 0) {
2289                 offset = start_offset;
2290                 *map_start = 0;
2291         } else {
2292                 *map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2293         }
2294
2295         kaddr = kmap_atomic(extent_buffer_page(eb, i), km);
2296         *token = kaddr;
2297         *map = kaddr + offset;
2298         *map_len = PAGE_CACHE_SIZE - offset;
2299         return 0;
2300 }
2301 EXPORT_SYMBOL(map_extent_buffer);
2302
2303 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2304 {
2305         kunmap_atomic(token, km);
2306 }
2307 EXPORT_SYMBOL(unmap_extent_buffer);
2308
2309 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2310                           unsigned long start,
2311                           unsigned long len)
2312 {
2313         size_t cur;
2314         size_t offset;
2315         struct page *page;
2316         char *kaddr;
2317         char *ptr = (char *)ptrv;
2318         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2319         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2320         int ret = 0;
2321
2322         WARN_ON(start > eb->len);
2323         WARN_ON(start + len > eb->start + eb->len);
2324
2325         offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2326         if (i == 0)
2327                 offset += start_offset;
2328
2329         while(len > 0) {
2330                 page = extent_buffer_page(eb, i);
2331                 WARN_ON(!PageUptodate(page));
2332
2333                 cur = min(len, (PAGE_CACHE_SIZE - offset));
2334
2335                 kaddr = kmap_atomic(page, KM_USER0);
2336                 ret = memcmp(ptr, kaddr + offset, cur);
2337                 kunmap_atomic(kaddr, KM_USER0);
2338                 if (ret)
2339                         break;
2340
2341                 ptr += cur;
2342                 len -= cur;
2343                 offset = 0;
2344                 i++;
2345         }
2346         return ret;
2347 }
2348 EXPORT_SYMBOL(memcmp_extent_buffer);
2349
2350 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2351                          unsigned long start, unsigned long len)
2352 {
2353         size_t cur;
2354         size_t offset;
2355         struct page *page;
2356         char *kaddr;
2357         char *src = (char *)srcv;
2358         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2359         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2360
2361         WARN_ON(start > eb->len);
2362         WARN_ON(start + len > eb->start + eb->len);
2363
2364         offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2365         if (i == 0)
2366                 offset += start_offset;
2367
2368         while(len > 0) {
2369                 page = extent_buffer_page(eb, i);
2370                 WARN_ON(!PageUptodate(page));
2371
2372                 cur = min(len, PAGE_CACHE_SIZE - offset);
2373                 kaddr = kmap_atomic(page, KM_USER0);
2374                 memcpy(kaddr + offset, src, cur);
2375                 kunmap_atomic(kaddr, KM_USER0);
2376
2377                 src += cur;
2378                 len -= cur;
2379                 offset = 0;
2380                 i++;
2381         }
2382 }
2383 EXPORT_SYMBOL(write_extent_buffer);
2384
2385 void memset_extent_buffer(struct extent_buffer *eb, char c,
2386                           unsigned long start, unsigned long len)
2387 {
2388         size_t cur;
2389         size_t offset;
2390         struct page *page;
2391         char *kaddr;
2392         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2393         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2394
2395         WARN_ON(start > eb->len);
2396         WARN_ON(start + len > eb->start + eb->len);
2397
2398         offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2399         if (i == 0)
2400                 offset += start_offset;
2401
2402         while(len > 0) {
2403                 page = extent_buffer_page(eb, i);
2404                 WARN_ON(!PageUptodate(page));
2405
2406                 cur = min(len, PAGE_CACHE_SIZE - offset);
2407                 kaddr = kmap_atomic(page, KM_USER0);
2408                 memset(kaddr + offset, c, cur);
2409                 kunmap_atomic(kaddr, KM_USER0);
2410
2411                 len -= cur;
2412                 offset = 0;
2413                 i++;
2414         }
2415 }
2416 EXPORT_SYMBOL(memset_extent_buffer);
2417
2418 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2419                         unsigned long dst_offset, unsigned long src_offset,
2420                         unsigned long len)
2421 {
2422         u64 dst_len = dst->len;
2423         size_t cur;
2424         size_t offset;
2425         struct page *page;
2426         char *kaddr;
2427         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2428         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2429
2430         WARN_ON(src->len != dst_len);
2431
2432         offset = dst_offset & ((unsigned long)PAGE_CACHE_SIZE - 1);
2433         if (i == 0)
2434                 offset += start_offset;
2435
2436         while(len > 0) {
2437                 page = extent_buffer_page(dst, i);
2438                 WARN_ON(!PageUptodate(page));
2439
2440                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2441
2442                 kaddr = kmap_atomic(page, KM_USER1);
2443                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
2444                 kunmap_atomic(kaddr, KM_USER1);
2445
2446                 src_offset += cur;
2447                 len -= cur;
2448                 offset = 0;
2449                 i++;
2450         }
2451 }
2452 EXPORT_SYMBOL(copy_extent_buffer);
2453
2454 static void move_pages(struct page *dst_page, struct page *src_page,
2455                        unsigned long dst_off, unsigned long src_off,
2456                        unsigned long len)
2457 {
2458         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2459         if (dst_page == src_page) {
2460                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2461         } else {
2462                 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2463                 char *p = dst_kaddr + dst_off + len;
2464                 char *s = src_kaddr + src_off + len;
2465
2466                 while (len--)
2467                         *--p = *--s;
2468
2469                 kunmap_atomic(src_kaddr, KM_USER1);
2470         }
2471         kunmap_atomic(dst_kaddr, KM_USER0);
2472 }
2473
2474 static void copy_pages(struct page *dst_page, struct page *src_page,
2475                        unsigned long dst_off, unsigned long src_off,
2476                        unsigned long len)
2477 {
2478         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2479         char *src_kaddr;
2480
2481         if (dst_page != src_page)
2482                 src_kaddr = kmap_atomic(src_page, KM_USER1);
2483         else
2484                 src_kaddr = dst_kaddr;
2485
2486         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2487         kunmap_atomic(dst_kaddr, KM_USER0);
2488         if (dst_page != src_page)
2489                 kunmap_atomic(src_kaddr, KM_USER1);
2490 }
2491
2492 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2493                            unsigned long src_offset, unsigned long len)
2494 {
2495         size_t cur;
2496         size_t dst_off_in_page;
2497         size_t src_off_in_page;
2498         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2499         unsigned long dst_i;
2500         unsigned long src_i;
2501
2502         if (src_offset + len > dst->len) {
2503                 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2504                        src_offset, len, dst->len);
2505                 BUG_ON(1);
2506         }
2507         if (dst_offset + len > dst->len) {
2508                 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2509                        dst_offset, len, dst->len);
2510                 BUG_ON(1);
2511         }
2512
2513         while(len > 0) {
2514                 dst_off_in_page = dst_offset &
2515                         ((unsigned long)PAGE_CACHE_SIZE - 1);
2516                 src_off_in_page = src_offset &
2517                         ((unsigned long)PAGE_CACHE_SIZE - 1);
2518
2519                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2520                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2521
2522                 if (src_i == 0)
2523                         src_off_in_page += start_offset;
2524                 if (dst_i == 0)
2525                         dst_off_in_page += start_offset;
2526
2527                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2528                                                src_off_in_page));
2529                 cur = min(cur, (unsigned long)(PAGE_CACHE_SIZE -
2530                                                dst_off_in_page));
2531
2532                 copy_pages(extent_buffer_page(dst, dst_i),
2533                            extent_buffer_page(dst, src_i),
2534                            dst_off_in_page, src_off_in_page, cur);
2535
2536                 src_offset += cur;
2537                 dst_offset += cur;
2538                 len -= cur;
2539         }
2540 }
2541 EXPORT_SYMBOL(memcpy_extent_buffer);
2542
2543 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2544                            unsigned long src_offset, unsigned long len)
2545 {
2546         size_t cur;
2547         size_t dst_off_in_page;
2548         size_t src_off_in_page;
2549         unsigned long dst_end = dst_offset + len - 1;
2550         unsigned long src_end = src_offset + len - 1;
2551         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2552         unsigned long dst_i;
2553         unsigned long src_i;
2554
2555         if (src_offset + len > dst->len) {
2556                 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2557                        src_offset, len, dst->len);
2558                 BUG_ON(1);
2559         }
2560         if (dst_offset + len > dst->len) {
2561                 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2562                        dst_offset, len, dst->len);
2563                 BUG_ON(1);
2564         }
2565         if (dst_offset < src_offset) {
2566                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2567                 return;
2568         }
2569         while(len > 0) {
2570                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2571                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2572
2573                 dst_off_in_page = dst_end &
2574                         ((unsigned long)PAGE_CACHE_SIZE - 1);
2575                 src_off_in_page = src_end &
2576                         ((unsigned long)PAGE_CACHE_SIZE - 1);
2577
2578                 if (src_i == 0)
2579                         src_off_in_page += start_offset;
2580                 if (dst_i == 0)
2581                         dst_off_in_page += start_offset;
2582
2583                 cur = min(len, src_off_in_page + 1);
2584                 cur = min(cur, dst_off_in_page + 1);
2585
2586                 move_pages(extent_buffer_page(dst, dst_i),
2587                            extent_buffer_page(dst, src_i),
2588                            dst_off_in_page - cur + 1,
2589                            src_off_in_page - cur + 1, cur);
2590
2591                 dst_end -= cur - 1;
2592                 src_end -= cur - 1;
2593                 len -= cur;
2594         }
2595 }
2596 EXPORT_SYMBOL(memmove_extent_buffer);