Btrfs: Fix checkpatch.pl warnings
[safe/jmp/linux-2.6] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20
21 /* temporary define until extent_map moves out of btrfs */
22 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
23                                        unsigned long extra_flags,
24                                        void (*ctor)(void *, struct kmem_cache *,
25                                                     unsigned long));
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29
30 static LIST_HEAD(buffers);
31 static LIST_HEAD(states);
32
33 #define LEAK_DEBUG 0
34 #ifdef LEAK_DEBUG
35 static DEFINE_SPINLOCK(leak_lock);
36 #endif
37
38 #define BUFFER_LRU_MAX 64
39
40 struct tree_entry {
41         u64 start;
42         u64 end;
43         struct rb_node rb_node;
44 };
45
46 struct extent_page_data {
47         struct bio *bio;
48         struct extent_io_tree *tree;
49         get_extent_t *get_extent;
50
51         /* tells writepage not to lock the state bits for this range
52          * it still does the unlocking
53          */
54         int extent_locked;
55 };
56
57 int __init extent_io_init(void)
58 {
59         extent_state_cache = btrfs_cache_create("extent_state",
60                                             sizeof(struct extent_state), 0,
61                                             NULL);
62         if (!extent_state_cache)
63                 return -ENOMEM;
64
65         extent_buffer_cache = btrfs_cache_create("extent_buffers",
66                                             sizeof(struct extent_buffer), 0,
67                                             NULL);
68         if (!extent_buffer_cache)
69                 goto free_state_cache;
70         return 0;
71
72 free_state_cache:
73         kmem_cache_destroy(extent_state_cache);
74         return -ENOMEM;
75 }
76
77 void extent_io_exit(void)
78 {
79         struct extent_state *state;
80         struct extent_buffer *eb;
81
82         while (!list_empty(&states)) {
83                 state = list_entry(states.next, struct extent_state, leak_list);
84                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
85                        "state %lu in tree %p refs %d\n",
86                        (unsigned long long)state->start,
87                        (unsigned long long)state->end,
88                        state->state, state->tree, atomic_read(&state->refs));
89                 list_del(&state->leak_list);
90                 kmem_cache_free(extent_state_cache, state);
91
92         }
93
94         while (!list_empty(&buffers)) {
95                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
96                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
97                        "refs %d\n", (unsigned long long)eb->start,
98                        eb->len, atomic_read(&eb->refs));
99                 list_del(&eb->leak_list);
100                 kmem_cache_free(extent_buffer_cache, eb);
101         }
102         if (extent_state_cache)
103                 kmem_cache_destroy(extent_state_cache);
104         if (extent_buffer_cache)
105                 kmem_cache_destroy(extent_buffer_cache);
106 }
107
108 void extent_io_tree_init(struct extent_io_tree *tree,
109                           struct address_space *mapping, gfp_t mask)
110 {
111         tree->state.rb_node = NULL;
112         tree->buffer.rb_node = NULL;
113         tree->ops = NULL;
114         tree->dirty_bytes = 0;
115         spin_lock_init(&tree->lock);
116         spin_lock_init(&tree->buffer_lock);
117         tree->mapping = mapping;
118 }
119 EXPORT_SYMBOL(extent_io_tree_init);
120
121 static struct extent_state *alloc_extent_state(gfp_t mask)
122 {
123         struct extent_state *state;
124 #ifdef LEAK_DEBUG
125         unsigned long flags;
126 #endif
127
128         state = kmem_cache_alloc(extent_state_cache, mask);
129         if (!state)
130                 return state;
131         state->state = 0;
132         state->private = 0;
133         state->tree = NULL;
134 #ifdef LEAK_DEBUG
135         spin_lock_irqsave(&leak_lock, flags);
136         list_add(&state->leak_list, &states);
137         spin_unlock_irqrestore(&leak_lock, flags);
138 #endif
139         atomic_set(&state->refs, 1);
140         init_waitqueue_head(&state->wq);
141         return state;
142 }
143 EXPORT_SYMBOL(alloc_extent_state);
144
145 static void free_extent_state(struct extent_state *state)
146 {
147         if (!state)
148                 return;
149         if (atomic_dec_and_test(&state->refs)) {
150 #ifdef LEAK_DEBUG
151                 unsigned long flags;
152 #endif
153                 WARN_ON(state->tree);
154 #ifdef LEAK_DEBUG
155                 spin_lock_irqsave(&leak_lock, flags);
156                 list_del(&state->leak_list);
157                 spin_unlock_irqrestore(&leak_lock, flags);
158 #endif
159                 kmem_cache_free(extent_state_cache, state);
160         }
161 }
162 EXPORT_SYMBOL(free_extent_state);
163
164 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
165                                    struct rb_node *node)
166 {
167         struct rb_node **p = &root->rb_node;
168         struct rb_node *parent = NULL;
169         struct tree_entry *entry;
170
171         while (*p) {
172                 parent = *p;
173                 entry = rb_entry(parent, struct tree_entry, rb_node);
174
175                 if (offset < entry->start)
176                         p = &(*p)->rb_left;
177                 else if (offset > entry->end)
178                         p = &(*p)->rb_right;
179                 else
180                         return parent;
181         }
182
183         entry = rb_entry(node, struct tree_entry, rb_node);
184         rb_link_node(node, parent, p);
185         rb_insert_color(node, root);
186         return NULL;
187 }
188
189 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
190                                      struct rb_node **prev_ret,
191                                      struct rb_node **next_ret)
192 {
193         struct rb_root *root = &tree->state;
194         struct rb_node *n = root->rb_node;
195         struct rb_node *prev = NULL;
196         struct rb_node *orig_prev = NULL;
197         struct tree_entry *entry;
198         struct tree_entry *prev_entry = NULL;
199
200         while (n) {
201                 entry = rb_entry(n, struct tree_entry, rb_node);
202                 prev = n;
203                 prev_entry = entry;
204
205                 if (offset < entry->start)
206                         n = n->rb_left;
207                 else if (offset > entry->end)
208                         n = n->rb_right;
209                 else
210                         return n;
211         }
212
213         if (prev_ret) {
214                 orig_prev = prev;
215                 while (prev && offset > prev_entry->end) {
216                         prev = rb_next(prev);
217                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218                 }
219                 *prev_ret = prev;
220                 prev = orig_prev;
221         }
222
223         if (next_ret) {
224                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
225                 while (prev && offset < prev_entry->start) {
226                         prev = rb_prev(prev);
227                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
228                 }
229                 *next_ret = prev;
230         }
231         return NULL;
232 }
233
234 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
235                                           u64 offset)
236 {
237         struct rb_node *prev = NULL;
238         struct rb_node *ret;
239
240         ret = __etree_search(tree, offset, &prev, NULL);
241         if (!ret)
242                 return prev;
243         return ret;
244 }
245
246 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
247                                           u64 offset, struct rb_node *node)
248 {
249         struct rb_root *root = &tree->buffer;
250         struct rb_node **p = &root->rb_node;
251         struct rb_node *parent = NULL;
252         struct extent_buffer *eb;
253
254         while (*p) {
255                 parent = *p;
256                 eb = rb_entry(parent, struct extent_buffer, rb_node);
257
258                 if (offset < eb->start)
259                         p = &(*p)->rb_left;
260                 else if (offset > eb->start)
261                         p = &(*p)->rb_right;
262                 else
263                         return eb;
264         }
265
266         rb_link_node(node, parent, p);
267         rb_insert_color(node, root);
268         return NULL;
269 }
270
271 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
272                                            u64 offset)
273 {
274         struct rb_root *root = &tree->buffer;
275         struct rb_node *n = root->rb_node;
276         struct extent_buffer *eb;
277
278         while (n) {
279                 eb = rb_entry(n, struct extent_buffer, rb_node);
280                 if (offset < eb->start)
281                         n = n->rb_left;
282                 else if (offset > eb->start)
283                         n = n->rb_right;
284                 else
285                         return eb;
286         }
287         return NULL;
288 }
289
290 /*
291  * utility function to look for merge candidates inside a given range.
292  * Any extents with matching state are merged together into a single
293  * extent in the tree.  Extents with EXTENT_IO in their state field
294  * are not merged because the end_io handlers need to be able to do
295  * operations on them without sleeping (or doing allocations/splits).
296  *
297  * This should be called with the tree lock held.
298  */
299 static int merge_state(struct extent_io_tree *tree,
300                        struct extent_state *state)
301 {
302         struct extent_state *other;
303         struct rb_node *other_node;
304
305         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
306                 return 0;
307
308         other_node = rb_prev(&state->rb_node);
309         if (other_node) {
310                 other = rb_entry(other_node, struct extent_state, rb_node);
311                 if (other->end == state->start - 1 &&
312                     other->state == state->state) {
313                         state->start = other->start;
314                         other->tree = NULL;
315                         rb_erase(&other->rb_node, &tree->state);
316                         free_extent_state(other);
317                 }
318         }
319         other_node = rb_next(&state->rb_node);
320         if (other_node) {
321                 other = rb_entry(other_node, struct extent_state, rb_node);
322                 if (other->start == state->end + 1 &&
323                     other->state == state->state) {
324                         other->start = state->start;
325                         state->tree = NULL;
326                         rb_erase(&state->rb_node, &tree->state);
327                         free_extent_state(state);
328                 }
329         }
330         return 0;
331 }
332
333 static void set_state_cb(struct extent_io_tree *tree,
334                          struct extent_state *state,
335                          unsigned long bits)
336 {
337         if (tree->ops && tree->ops->set_bit_hook) {
338                 tree->ops->set_bit_hook(tree->mapping->host, state->start,
339                                         state->end, state->state, bits);
340         }
341 }
342
343 static void clear_state_cb(struct extent_io_tree *tree,
344                            struct extent_state *state,
345                            unsigned long bits)
346 {
347         if (tree->ops && tree->ops->clear_bit_hook) {
348                 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
349                                           state->end, state->state, bits);
350         }
351 }
352
353 /*
354  * insert an extent_state struct into the tree.  'bits' are set on the
355  * struct before it is inserted.
356  *
357  * This may return -EEXIST if the extent is already there, in which case the
358  * state struct is freed.
359  *
360  * The tree lock is not taken internally.  This is a utility function and
361  * probably isn't what you want to call (see set/clear_extent_bit).
362  */
363 static int insert_state(struct extent_io_tree *tree,
364                         struct extent_state *state, u64 start, u64 end,
365                         int bits)
366 {
367         struct rb_node *node;
368
369         if (end < start) {
370                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
371                        (unsigned long long)end,
372                        (unsigned long long)start);
373                 WARN_ON(1);
374         }
375         if (bits & EXTENT_DIRTY)
376                 tree->dirty_bytes += end - start + 1;
377         set_state_cb(tree, state, bits);
378         state->state |= bits;
379         state->start = start;
380         state->end = end;
381         node = tree_insert(&tree->state, end, &state->rb_node);
382         if (node) {
383                 struct extent_state *found;
384                 found = rb_entry(node, struct extent_state, rb_node);
385                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
386                        "%llu %llu\n", (unsigned long long)found->start,
387                        (unsigned long long)found->end,
388                        (unsigned long long)start, (unsigned long long)end);
389                 free_extent_state(state);
390                 return -EEXIST;
391         }
392         state->tree = tree;
393         merge_state(tree, state);
394         return 0;
395 }
396
397 /*
398  * split a given extent state struct in two, inserting the preallocated
399  * struct 'prealloc' as the newly created second half.  'split' indicates an
400  * offset inside 'orig' where it should be split.
401  *
402  * Before calling,
403  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
404  * are two extent state structs in the tree:
405  * prealloc: [orig->start, split - 1]
406  * orig: [ split, orig->end ]
407  *
408  * The tree locks are not taken by this function. They need to be held
409  * by the caller.
410  */
411 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
412                        struct extent_state *prealloc, u64 split)
413 {
414         struct rb_node *node;
415         prealloc->start = orig->start;
416         prealloc->end = split - 1;
417         prealloc->state = orig->state;
418         orig->start = split;
419
420         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
421         if (node) {
422                 struct extent_state *found;
423                 found = rb_entry(node, struct extent_state, rb_node);
424                 free_extent_state(prealloc);
425                 return -EEXIST;
426         }
427         prealloc->tree = tree;
428         return 0;
429 }
430
431 /*
432  * utility function to clear some bits in an extent state struct.
433  * it will optionally wake up any one waiting on this state (wake == 1), or
434  * forcibly remove the state from the tree (delete == 1).
435  *
436  * If no bits are set on the state struct after clearing things, the
437  * struct is freed and removed from the tree
438  */
439 static int clear_state_bit(struct extent_io_tree *tree,
440                             struct extent_state *state, int bits, int wake,
441                             int delete)
442 {
443         int ret = state->state & bits;
444
445         if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
446                 u64 range = state->end - state->start + 1;
447                 WARN_ON(range > tree->dirty_bytes);
448                 tree->dirty_bytes -= range;
449         }
450         clear_state_cb(tree, state, bits);
451         state->state &= ~bits;
452         if (wake)
453                 wake_up(&state->wq);
454         if (delete || state->state == 0) {
455                 if (state->tree) {
456                         clear_state_cb(tree, state, state->state);
457                         rb_erase(&state->rb_node, &tree->state);
458                         state->tree = NULL;
459                         free_extent_state(state);
460                 } else {
461                         WARN_ON(1);
462                 }
463         } else {
464                 merge_state(tree, state);
465         }
466         return ret;
467 }
468
469 /*
470  * clear some bits on a range in the tree.  This may require splitting
471  * or inserting elements in the tree, so the gfp mask is used to
472  * indicate which allocations or sleeping are allowed.
473  *
474  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475  * the given range from the tree regardless of state (ie for truncate).
476  *
477  * the range [start, end] is inclusive.
478  *
479  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
480  * bits were already set, or zero if none of the bits were already set.
481  */
482 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
483                      int bits, int wake, int delete, gfp_t mask)
484 {
485         struct extent_state *state;
486         struct extent_state *prealloc = NULL;
487         struct rb_node *node;
488         int err;
489         int set = 0;
490
491 again:
492         if (!prealloc && (mask & __GFP_WAIT)) {
493                 prealloc = alloc_extent_state(mask);
494                 if (!prealloc)
495                         return -ENOMEM;
496         }
497
498         spin_lock(&tree->lock);
499         /*
500          * this search will find the extents that end after
501          * our range starts
502          */
503         node = tree_search(tree, start);
504         if (!node)
505                 goto out;
506         state = rb_entry(node, struct extent_state, rb_node);
507         if (state->start > end)
508                 goto out;
509         WARN_ON(state->end < start);
510
511         /*
512          *     | ---- desired range ---- |
513          *  | state | or
514          *  | ------------- state -------------- |
515          *
516          * We need to split the extent we found, and may flip
517          * bits on second half.
518          *
519          * If the extent we found extends past our range, we
520          * just split and search again.  It'll get split again
521          * the next time though.
522          *
523          * If the extent we found is inside our range, we clear
524          * the desired bit on it.
525          */
526
527         if (state->start < start) {
528                 if (!prealloc)
529                         prealloc = alloc_extent_state(GFP_ATOMIC);
530                 err = split_state(tree, state, prealloc, start);
531                 BUG_ON(err == -EEXIST);
532                 prealloc = NULL;
533                 if (err)
534                         goto out;
535                 if (state->end <= end) {
536                         start = state->end + 1;
537                         set |= clear_state_bit(tree, state, bits,
538                                         wake, delete);
539                 } else {
540                         start = state->start;
541                 }
542                 goto search_again;
543         }
544         /*
545          * | ---- desired range ---- |
546          *                        | state |
547          * We need to split the extent, and clear the bit
548          * on the first half
549          */
550         if (state->start <= end && state->end > end) {
551                 if (!prealloc)
552                         prealloc = alloc_extent_state(GFP_ATOMIC);
553                 err = split_state(tree, state, prealloc, end + 1);
554                 BUG_ON(err == -EEXIST);
555
556                 if (wake)
557                         wake_up(&state->wq);
558                 set |= clear_state_bit(tree, prealloc, bits,
559                                        wake, delete);
560                 prealloc = NULL;
561                 goto out;
562         }
563
564         start = state->end + 1;
565         set |= clear_state_bit(tree, state, bits, wake, delete);
566         goto search_again;
567
568 out:
569         spin_unlock(&tree->lock);
570         if (prealloc)
571                 free_extent_state(prealloc);
572
573         return set;
574
575 search_again:
576         if (start > end)
577                 goto out;
578         spin_unlock(&tree->lock);
579         if (mask & __GFP_WAIT)
580                 cond_resched();
581         goto again;
582 }
583 EXPORT_SYMBOL(clear_extent_bit);
584
585 static int wait_on_state(struct extent_io_tree *tree,
586                          struct extent_state *state)
587                 __releases(tree->lock)
588                 __acquires(tree->lock)
589 {
590         DEFINE_WAIT(wait);
591         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
592         spin_unlock(&tree->lock);
593         schedule();
594         spin_lock(&tree->lock);
595         finish_wait(&state->wq, &wait);
596         return 0;
597 }
598
599 /*
600  * waits for one or more bits to clear on a range in the state tree.
601  * The range [start, end] is inclusive.
602  * The tree lock is taken by this function
603  */
604 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
605 {
606         struct extent_state *state;
607         struct rb_node *node;
608
609         spin_lock(&tree->lock);
610 again:
611         while (1) {
612                 /*
613                  * this search will find all the extents that end after
614                  * our range starts
615                  */
616                 node = tree_search(tree, start);
617                 if (!node)
618                         break;
619
620                 state = rb_entry(node, struct extent_state, rb_node);
621
622                 if (state->start > end)
623                         goto out;
624
625                 if (state->state & bits) {
626                         start = state->start;
627                         atomic_inc(&state->refs);
628                         wait_on_state(tree, state);
629                         free_extent_state(state);
630                         goto again;
631                 }
632                 start = state->end + 1;
633
634                 if (start > end)
635                         break;
636
637                 if (need_resched()) {
638                         spin_unlock(&tree->lock);
639                         cond_resched();
640                         spin_lock(&tree->lock);
641                 }
642         }
643 out:
644         spin_unlock(&tree->lock);
645         return 0;
646 }
647 EXPORT_SYMBOL(wait_extent_bit);
648
649 static void set_state_bits(struct extent_io_tree *tree,
650                            struct extent_state *state,
651                            int bits)
652 {
653         if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
654                 u64 range = state->end - state->start + 1;
655                 tree->dirty_bytes += range;
656         }
657         set_state_cb(tree, state, bits);
658         state->state |= bits;
659 }
660
661 /*
662  * set some bits on a range in the tree.  This may require allocations
663  * or sleeping, so the gfp mask is used to indicate what is allowed.
664  *
665  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
666  * range already has the desired bits set.  The start of the existing
667  * range is returned in failed_start in this case.
668  *
669  * [start, end] is inclusive
670  * This takes the tree lock.
671  */
672 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
673                           int bits, int exclusive, u64 *failed_start,
674                           gfp_t mask)
675 {
676         struct extent_state *state;
677         struct extent_state *prealloc = NULL;
678         struct rb_node *node;
679         int err = 0;
680         int set;
681         u64 last_start;
682         u64 last_end;
683 again:
684         if (!prealloc && (mask & __GFP_WAIT)) {
685                 prealloc = alloc_extent_state(mask);
686                 if (!prealloc)
687                         return -ENOMEM;
688         }
689
690         spin_lock(&tree->lock);
691         /*
692          * this search will find all the extents that end after
693          * our range starts.
694          */
695         node = tree_search(tree, start);
696         if (!node) {
697                 err = insert_state(tree, prealloc, start, end, bits);
698                 prealloc = NULL;
699                 BUG_ON(err == -EEXIST);
700                 goto out;
701         }
702
703         state = rb_entry(node, struct extent_state, rb_node);
704         last_start = state->start;
705         last_end = state->end;
706
707         /*
708          * | ---- desired range ---- |
709          * | state |
710          *
711          * Just lock what we found and keep going
712          */
713         if (state->start == start && state->end <= end) {
714                 set = state->state & bits;
715                 if (set && exclusive) {
716                         *failed_start = state->start;
717                         err = -EEXIST;
718                         goto out;
719                 }
720                 set_state_bits(tree, state, bits);
721                 start = state->end + 1;
722                 merge_state(tree, state);
723                 goto search_again;
724         }
725
726         /*
727          *     | ---- desired range ---- |
728          * | state |
729          *   or
730          * | ------------- state -------------- |
731          *
732          * We need to split the extent we found, and may flip bits on
733          * second half.
734          *
735          * If the extent we found extends past our
736          * range, we just split and search again.  It'll get split
737          * again the next time though.
738          *
739          * If the extent we found is inside our range, we set the
740          * desired bit on it.
741          */
742         if (state->start < start) {
743                 set = state->state & bits;
744                 if (exclusive && set) {
745                         *failed_start = start;
746                         err = -EEXIST;
747                         goto out;
748                 }
749                 err = split_state(tree, state, prealloc, start);
750                 BUG_ON(err == -EEXIST);
751                 prealloc = NULL;
752                 if (err)
753                         goto out;
754                 if (state->end <= end) {
755                         set_state_bits(tree, state, bits);
756                         start = state->end + 1;
757                         merge_state(tree, state);
758                 } else {
759                         start = state->start;
760                 }
761                 goto search_again;
762         }
763         /*
764          * | ---- desired range ---- |
765          *     | state | or               | state |
766          *
767          * There's a hole, we need to insert something in it and
768          * ignore the extent we found.
769          */
770         if (state->start > start) {
771                 u64 this_end;
772                 if (end < last_start)
773                         this_end = end;
774                 else
775                         this_end = last_start - 1;
776                 err = insert_state(tree, prealloc, start, this_end,
777                                    bits);
778                 prealloc = NULL;
779                 BUG_ON(err == -EEXIST);
780                 if (err)
781                         goto out;
782                 start = this_end + 1;
783                 goto search_again;
784         }
785         /*
786          * | ---- desired range ---- |
787          *                        | state |
788          * We need to split the extent, and set the bit
789          * on the first half
790          */
791         if (state->start <= end && state->end > end) {
792                 set = state->state & bits;
793                 if (exclusive && set) {
794                         *failed_start = start;
795                         err = -EEXIST;
796                         goto out;
797                 }
798                 err = split_state(tree, state, prealloc, end + 1);
799                 BUG_ON(err == -EEXIST);
800
801                 set_state_bits(tree, prealloc, bits);
802                 merge_state(tree, prealloc);
803                 prealloc = NULL;
804                 goto out;
805         }
806
807         goto search_again;
808
809 out:
810         spin_unlock(&tree->lock);
811         if (prealloc)
812                 free_extent_state(prealloc);
813
814         return err;
815
816 search_again:
817         if (start > end)
818                 goto out;
819         spin_unlock(&tree->lock);
820         if (mask & __GFP_WAIT)
821                 cond_resched();
822         goto again;
823 }
824 EXPORT_SYMBOL(set_extent_bit);
825
826 /* wrappers around set/clear extent bit */
827 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
828                      gfp_t mask)
829 {
830         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
831                               mask);
832 }
833 EXPORT_SYMBOL(set_extent_dirty);
834
835 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
836                        gfp_t mask)
837 {
838         return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
839 }
840 EXPORT_SYMBOL(set_extent_ordered);
841
842 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
843                     int bits, gfp_t mask)
844 {
845         return set_extent_bit(tree, start, end, bits, 0, NULL,
846                               mask);
847 }
848 EXPORT_SYMBOL(set_extent_bits);
849
850 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
851                       int bits, gfp_t mask)
852 {
853         return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
854 }
855 EXPORT_SYMBOL(clear_extent_bits);
856
857 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
858                      gfp_t mask)
859 {
860         return set_extent_bit(tree, start, end,
861                               EXTENT_DELALLOC | EXTENT_DIRTY,
862                               0, NULL, mask);
863 }
864 EXPORT_SYMBOL(set_extent_delalloc);
865
866 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
867                        gfp_t mask)
868 {
869         return clear_extent_bit(tree, start, end,
870                                 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
871 }
872 EXPORT_SYMBOL(clear_extent_dirty);
873
874 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
875                          gfp_t mask)
876 {
877         return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
878 }
879 EXPORT_SYMBOL(clear_extent_ordered);
880
881 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
882                      gfp_t mask)
883 {
884         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
885                               mask);
886 }
887 EXPORT_SYMBOL(set_extent_new);
888
889 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
890                        gfp_t mask)
891 {
892         return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
893 }
894
895 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
896                         gfp_t mask)
897 {
898         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
899                               mask);
900 }
901 EXPORT_SYMBOL(set_extent_uptodate);
902
903 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
904                                  u64 end, gfp_t mask)
905 {
906         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
907 }
908
909 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
910                          gfp_t mask)
911 {
912         return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
913                               0, NULL, mask);
914 }
915
916 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start,
917                                   u64 end, gfp_t mask)
918 {
919         return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
920 }
921
922 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
923 {
924         return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
925 }
926 EXPORT_SYMBOL(wait_on_extent_writeback);
927
928 /*
929  * either insert or lock state struct between start and end use mask to tell
930  * us if waiting is desired.
931  */
932 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
933 {
934         int err;
935         u64 failed_start;
936         while (1) {
937                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
938                                      &failed_start, mask);
939                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
940                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
941                         start = failed_start;
942                 } else {
943                         break;
944                 }
945                 WARN_ON(start > end);
946         }
947         return err;
948 }
949 EXPORT_SYMBOL(lock_extent);
950
951 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
952                     gfp_t mask)
953 {
954         int err;
955         u64 failed_start;
956
957         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
958                              &failed_start, mask);
959         if (err == -EEXIST) {
960                 if (failed_start > start)
961                         clear_extent_bit(tree, start, failed_start - 1,
962                                          EXTENT_LOCKED, 1, 0, mask);
963                 return 0;
964         }
965         return 1;
966 }
967 EXPORT_SYMBOL(try_lock_extent);
968
969 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
970                   gfp_t mask)
971 {
972         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
973 }
974 EXPORT_SYMBOL(unlock_extent);
975
976 /*
977  * helper function to set pages and extents in the tree dirty
978  */
979 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
980 {
981         unsigned long index = start >> PAGE_CACHE_SHIFT;
982         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
983         struct page *page;
984
985         while (index <= end_index) {
986                 page = find_get_page(tree->mapping, index);
987                 BUG_ON(!page);
988                 __set_page_dirty_nobuffers(page);
989                 page_cache_release(page);
990                 index++;
991         }
992         set_extent_dirty(tree, start, end, GFP_NOFS);
993         return 0;
994 }
995 EXPORT_SYMBOL(set_range_dirty);
996
997 /*
998  * helper function to set both pages and extents in the tree writeback
999  */
1000 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1001 {
1002         unsigned long index = start >> PAGE_CACHE_SHIFT;
1003         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1004         struct page *page;
1005
1006         while (index <= end_index) {
1007                 page = find_get_page(tree->mapping, index);
1008                 BUG_ON(!page);
1009                 set_page_writeback(page);
1010                 page_cache_release(page);
1011                 index++;
1012         }
1013         set_extent_writeback(tree, start, end, GFP_NOFS);
1014         return 0;
1015 }
1016
1017 /*
1018  * find the first offset in the io tree with 'bits' set. zero is
1019  * returned if we find something, and *start_ret and *end_ret are
1020  * set to reflect the state struct that was found.
1021  *
1022  * If nothing was found, 1 is returned, < 0 on error
1023  */
1024 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1025                           u64 *start_ret, u64 *end_ret, int bits)
1026 {
1027         struct rb_node *node;
1028         struct extent_state *state;
1029         int ret = 1;
1030
1031         spin_lock(&tree->lock);
1032         /*
1033          * this search will find all the extents that end after
1034          * our range starts.
1035          */
1036         node = tree_search(tree, start);
1037         if (!node)
1038                 goto out;
1039
1040         while (1) {
1041                 state = rb_entry(node, struct extent_state, rb_node);
1042                 if (state->end >= start && (state->state & bits)) {
1043                         *start_ret = state->start;
1044                         *end_ret = state->end;
1045                         ret = 0;
1046                         break;
1047                 }
1048                 node = rb_next(node);
1049                 if (!node)
1050                         break;
1051         }
1052 out:
1053         spin_unlock(&tree->lock);
1054         return ret;
1055 }
1056 EXPORT_SYMBOL(find_first_extent_bit);
1057
1058 /* find the first state struct with 'bits' set after 'start', and
1059  * return it.  tree->lock must be held.  NULL will returned if
1060  * nothing was found after 'start'
1061  */
1062 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1063                                                  u64 start, int bits)
1064 {
1065         struct rb_node *node;
1066         struct extent_state *state;
1067
1068         /*
1069          * this search will find all the extents that end after
1070          * our range starts.
1071          */
1072         node = tree_search(tree, start);
1073         if (!node)
1074                 goto out;
1075
1076         while (1) {
1077                 state = rb_entry(node, struct extent_state, rb_node);
1078                 if (state->end >= start && (state->state & bits))
1079                         return state;
1080
1081                 node = rb_next(node);
1082                 if (!node)
1083                         break;
1084         }
1085 out:
1086         return NULL;
1087 }
1088 EXPORT_SYMBOL(find_first_extent_bit_state);
1089
1090 /*
1091  * find a contiguous range of bytes in the file marked as delalloc, not
1092  * more than 'max_bytes'.  start and end are used to return the range,
1093  *
1094  * 1 is returned if we find something, 0 if nothing was in the tree
1095  */
1096 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1097                                         u64 *start, u64 *end, u64 max_bytes)
1098 {
1099         struct rb_node *node;
1100         struct extent_state *state;
1101         u64 cur_start = *start;
1102         u64 found = 0;
1103         u64 total_bytes = 0;
1104
1105         spin_lock(&tree->lock);
1106
1107         /*
1108          * this search will find all the extents that end after
1109          * our range starts.
1110          */
1111         node = tree_search(tree, cur_start);
1112         if (!node) {
1113                 if (!found)
1114                         *end = (u64)-1;
1115                 goto out;
1116         }
1117
1118         while (1) {
1119                 state = rb_entry(node, struct extent_state, rb_node);
1120                 if (found && (state->start != cur_start ||
1121                               (state->state & EXTENT_BOUNDARY))) {
1122                         goto out;
1123                 }
1124                 if (!(state->state & EXTENT_DELALLOC)) {
1125                         if (!found)
1126                                 *end = state->end;
1127                         goto out;
1128                 }
1129                 if (!found)
1130                         *start = state->start;
1131                 found++;
1132                 *end = state->end;
1133                 cur_start = state->end + 1;
1134                 node = rb_next(node);
1135                 if (!node)
1136                         break;
1137                 total_bytes += state->end - state->start + 1;
1138                 if (total_bytes >= max_bytes)
1139                         break;
1140         }
1141 out:
1142         spin_unlock(&tree->lock);
1143         return found;
1144 }
1145
1146 static noinline int __unlock_for_delalloc(struct inode *inode,
1147                                           struct page *locked_page,
1148                                           u64 start, u64 end)
1149 {
1150         int ret;
1151         struct page *pages[16];
1152         unsigned long index = start >> PAGE_CACHE_SHIFT;
1153         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1154         unsigned long nr_pages = end_index - index + 1;
1155         int i;
1156
1157         if (index == locked_page->index && end_index == index)
1158                 return 0;
1159
1160         while (nr_pages > 0) {
1161                 ret = find_get_pages_contig(inode->i_mapping, index,
1162                                      min_t(unsigned long, nr_pages,
1163                                      ARRAY_SIZE(pages)), pages);
1164                 for (i = 0; i < ret; i++) {
1165                         if (pages[i] != locked_page)
1166                                 unlock_page(pages[i]);
1167                         page_cache_release(pages[i]);
1168                 }
1169                 nr_pages -= ret;
1170                 index += ret;
1171                 cond_resched();
1172         }
1173         return 0;
1174 }
1175
1176 static noinline int lock_delalloc_pages(struct inode *inode,
1177                                         struct page *locked_page,
1178                                         u64 delalloc_start,
1179                                         u64 delalloc_end)
1180 {
1181         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1182         unsigned long start_index = index;
1183         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1184         unsigned long pages_locked = 0;
1185         struct page *pages[16];
1186         unsigned long nrpages;
1187         int ret;
1188         int i;
1189
1190         /* the caller is responsible for locking the start index */
1191         if (index == locked_page->index && index == end_index)
1192                 return 0;
1193
1194         /* skip the page at the start index */
1195         nrpages = end_index - index + 1;
1196         while (nrpages > 0) {
1197                 ret = find_get_pages_contig(inode->i_mapping, index,
1198                                      min_t(unsigned long,
1199                                      nrpages, ARRAY_SIZE(pages)), pages);
1200                 if (ret == 0) {
1201                         ret = -EAGAIN;
1202                         goto done;
1203                 }
1204                 /* now we have an array of pages, lock them all */
1205                 for (i = 0; i < ret; i++) {
1206                         /*
1207                          * the caller is taking responsibility for
1208                          * locked_page
1209                          */
1210                         if (pages[i] != locked_page) {
1211                                 lock_page(pages[i]);
1212                                 if (!PageDirty(pages[i]) ||
1213                                     pages[i]->mapping != inode->i_mapping) {
1214                                         ret = -EAGAIN;
1215                                         unlock_page(pages[i]);
1216                                         page_cache_release(pages[i]);
1217                                         goto done;
1218                                 }
1219                         }
1220                         page_cache_release(pages[i]);
1221                         pages_locked++;
1222                 }
1223                 nrpages -= ret;
1224                 index += ret;
1225                 cond_resched();
1226         }
1227         ret = 0;
1228 done:
1229         if (ret && pages_locked) {
1230                 __unlock_for_delalloc(inode, locked_page,
1231                               delalloc_start,
1232                               ((u64)(start_index + pages_locked - 1)) <<
1233                               PAGE_CACHE_SHIFT);
1234         }
1235         return ret;
1236 }
1237
1238 /*
1239  * find a contiguous range of bytes in the file marked as delalloc, not
1240  * more than 'max_bytes'.  start and end are used to return the range,
1241  *
1242  * 1 is returned if we find something, 0 if nothing was in the tree
1243  */
1244 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1245                                              struct extent_io_tree *tree,
1246                                              struct page *locked_page,
1247                                              u64 *start, u64 *end,
1248                                              u64 max_bytes)
1249 {
1250         u64 delalloc_start;
1251         u64 delalloc_end;
1252         u64 found;
1253         int ret;
1254         int loops = 0;
1255
1256 again:
1257         /* step one, find a bunch of delalloc bytes starting at start */
1258         delalloc_start = *start;
1259         delalloc_end = 0;
1260         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1261                                     max_bytes);
1262         if (!found || delalloc_end <= *start) {
1263                 *start = delalloc_start;
1264                 *end = delalloc_end;
1265                 return found;
1266         }
1267
1268         /*
1269          * start comes from the offset of locked_page.  We have to lock
1270          * pages in order, so we can't process delalloc bytes before
1271          * locked_page
1272          */
1273         if (delalloc_start < *start)
1274                 delalloc_start = *start;
1275
1276         /*
1277          * make sure to limit the number of pages we try to lock down
1278          * if we're looping.
1279          */
1280         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1281                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1282
1283         /* step two, lock all the pages after the page that has start */
1284         ret = lock_delalloc_pages(inode, locked_page,
1285                                   delalloc_start, delalloc_end);
1286         if (ret == -EAGAIN) {
1287                 /* some of the pages are gone, lets avoid looping by
1288                  * shortening the size of the delalloc range we're searching
1289                  */
1290                 if (!loops) {
1291                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1292                         max_bytes = PAGE_CACHE_SIZE - offset;
1293                         loops = 1;
1294                         goto again;
1295                 } else {
1296                         found = 0;
1297                         goto out_failed;
1298                 }
1299         }
1300         BUG_ON(ret);
1301
1302         /* step three, lock the state bits for the whole range */
1303         lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1304
1305         /* then test to make sure it is all still delalloc */
1306         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1307                              EXTENT_DELALLOC, 1);
1308         if (!ret) {
1309                 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1310                 __unlock_for_delalloc(inode, locked_page,
1311                               delalloc_start, delalloc_end);
1312                 cond_resched();
1313                 goto again;
1314         }
1315         *start = delalloc_start;
1316         *end = delalloc_end;
1317 out_failed:
1318         return found;
1319 }
1320
1321 int extent_clear_unlock_delalloc(struct inode *inode,
1322                                 struct extent_io_tree *tree,
1323                                 u64 start, u64 end, struct page *locked_page,
1324                                 int unlock_pages,
1325                                 int clear_unlock,
1326                                 int clear_delalloc, int clear_dirty,
1327                                 int set_writeback,
1328                                 int end_writeback)
1329 {
1330         int ret;
1331         struct page *pages[16];
1332         unsigned long index = start >> PAGE_CACHE_SHIFT;
1333         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1334         unsigned long nr_pages = end_index - index + 1;
1335         int i;
1336         int clear_bits = 0;
1337
1338         if (clear_unlock)
1339                 clear_bits |= EXTENT_LOCKED;
1340         if (clear_dirty)
1341                 clear_bits |= EXTENT_DIRTY;
1342
1343         if (clear_delalloc)
1344                 clear_bits |= EXTENT_DELALLOC;
1345
1346         clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1347         if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1348                 return 0;
1349
1350         while (nr_pages > 0) {
1351                 ret = find_get_pages_contig(inode->i_mapping, index,
1352                                      min_t(unsigned long,
1353                                      nr_pages, ARRAY_SIZE(pages)), pages);
1354                 for (i = 0; i < ret; i++) {
1355                         if (pages[i] == locked_page) {
1356                                 page_cache_release(pages[i]);
1357                                 continue;
1358                         }
1359                         if (clear_dirty)
1360                                 clear_page_dirty_for_io(pages[i]);
1361                         if (set_writeback)
1362                                 set_page_writeback(pages[i]);
1363                         if (end_writeback)
1364                                 end_page_writeback(pages[i]);
1365                         if (unlock_pages)
1366                                 unlock_page(pages[i]);
1367                         page_cache_release(pages[i]);
1368                 }
1369                 nr_pages -= ret;
1370                 index += ret;
1371                 cond_resched();
1372         }
1373         return 0;
1374 }
1375 EXPORT_SYMBOL(extent_clear_unlock_delalloc);
1376
1377 /*
1378  * count the number of bytes in the tree that have a given bit(s)
1379  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1380  * cached.  The total number found is returned.
1381  */
1382 u64 count_range_bits(struct extent_io_tree *tree,
1383                      u64 *start, u64 search_end, u64 max_bytes,
1384                      unsigned long bits)
1385 {
1386         struct rb_node *node;
1387         struct extent_state *state;
1388         u64 cur_start = *start;
1389         u64 total_bytes = 0;
1390         int found = 0;
1391
1392         if (search_end <= cur_start) {
1393                 WARN_ON(1);
1394                 return 0;
1395         }
1396
1397         spin_lock(&tree->lock);
1398         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1399                 total_bytes = tree->dirty_bytes;
1400                 goto out;
1401         }
1402         /*
1403          * this search will find all the extents that end after
1404          * our range starts.
1405          */
1406         node = tree_search(tree, cur_start);
1407         if (!node)
1408                 goto out;
1409
1410         while (1) {
1411                 state = rb_entry(node, struct extent_state, rb_node);
1412                 if (state->start > search_end)
1413                         break;
1414                 if (state->end >= cur_start && (state->state & bits)) {
1415                         total_bytes += min(search_end, state->end) + 1 -
1416                                        max(cur_start, state->start);
1417                         if (total_bytes >= max_bytes)
1418                                 break;
1419                         if (!found) {
1420                                 *start = state->start;
1421                                 found = 1;
1422                         }
1423                 }
1424                 node = rb_next(node);
1425                 if (!node)
1426                         break;
1427         }
1428 out:
1429         spin_unlock(&tree->lock);
1430         return total_bytes;
1431 }
1432
1433 #if 0
1434 /*
1435  * helper function to lock both pages and extents in the tree.
1436  * pages must be locked first.
1437  */
1438 static int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1439 {
1440         unsigned long index = start >> PAGE_CACHE_SHIFT;
1441         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1442         struct page *page;
1443         int err;
1444
1445         while (index <= end_index) {
1446                 page = grab_cache_page(tree->mapping, index);
1447                 if (!page) {
1448                         err = -ENOMEM;
1449                         goto failed;
1450                 }
1451                 if (IS_ERR(page)) {
1452                         err = PTR_ERR(page);
1453                         goto failed;
1454                 }
1455                 index++;
1456         }
1457         lock_extent(tree, start, end, GFP_NOFS);
1458         return 0;
1459
1460 failed:
1461         /*
1462          * we failed above in getting the page at 'index', so we undo here
1463          * up to but not including the page at 'index'
1464          */
1465         end_index = index;
1466         index = start >> PAGE_CACHE_SHIFT;
1467         while (index < end_index) {
1468                 page = find_get_page(tree->mapping, index);
1469                 unlock_page(page);
1470                 page_cache_release(page);
1471                 index++;
1472         }
1473         return err;
1474 }
1475
1476 /*
1477  * helper function to unlock both pages and extents in the tree.
1478  */
1479 static int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1480 {
1481         unsigned long index = start >> PAGE_CACHE_SHIFT;
1482         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1483         struct page *page;
1484
1485         while (index <= end_index) {
1486                 page = find_get_page(tree->mapping, index);
1487                 unlock_page(page);
1488                 page_cache_release(page);
1489                 index++;
1490         }
1491         unlock_extent(tree, start, end, GFP_NOFS);
1492         return 0;
1493 }
1494 #endif
1495
1496 /*
1497  * set the private field for a given byte offset in the tree.  If there isn't
1498  * an extent_state there already, this does nothing.
1499  */
1500 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1501 {
1502         struct rb_node *node;
1503         struct extent_state *state;
1504         int ret = 0;
1505
1506         spin_lock(&tree->lock);
1507         /*
1508          * this search will find all the extents that end after
1509          * our range starts.
1510          */
1511         node = tree_search(tree, start);
1512         if (!node) {
1513                 ret = -ENOENT;
1514                 goto out;
1515         }
1516         state = rb_entry(node, struct extent_state, rb_node);
1517         if (state->start != start) {
1518                 ret = -ENOENT;
1519                 goto out;
1520         }
1521         state->private = private;
1522 out:
1523         spin_unlock(&tree->lock);
1524         return ret;
1525 }
1526
1527 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1528 {
1529         struct rb_node *node;
1530         struct extent_state *state;
1531         int ret = 0;
1532
1533         spin_lock(&tree->lock);
1534         /*
1535          * this search will find all the extents that end after
1536          * our range starts.
1537          */
1538         node = tree_search(tree, start);
1539         if (!node) {
1540                 ret = -ENOENT;
1541                 goto out;
1542         }
1543         state = rb_entry(node, struct extent_state, rb_node);
1544         if (state->start != start) {
1545                 ret = -ENOENT;
1546                 goto out;
1547         }
1548         *private = state->private;
1549 out:
1550         spin_unlock(&tree->lock);
1551         return ret;
1552 }
1553
1554 /*
1555  * searches a range in the state tree for a given mask.
1556  * If 'filled' == 1, this returns 1 only if every extent in the tree
1557  * has the bits set.  Otherwise, 1 is returned if any bit in the
1558  * range is found set.
1559  */
1560 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1561                    int bits, int filled)
1562 {
1563         struct extent_state *state = NULL;
1564         struct rb_node *node;
1565         int bitset = 0;
1566
1567         spin_lock(&tree->lock);
1568         node = tree_search(tree, start);
1569         while (node && start <= end) {
1570                 state = rb_entry(node, struct extent_state, rb_node);
1571
1572                 if (filled && state->start > start) {
1573                         bitset = 0;
1574                         break;
1575                 }
1576
1577                 if (state->start > end)
1578                         break;
1579
1580                 if (state->state & bits) {
1581                         bitset = 1;
1582                         if (!filled)
1583                                 break;
1584                 } else if (filled) {
1585                         bitset = 0;
1586                         break;
1587                 }
1588                 start = state->end + 1;
1589                 if (start > end)
1590                         break;
1591                 node = rb_next(node);
1592                 if (!node) {
1593                         if (filled)
1594                                 bitset = 0;
1595                         break;
1596                 }
1597         }
1598         spin_unlock(&tree->lock);
1599         return bitset;
1600 }
1601 EXPORT_SYMBOL(test_range_bit);
1602
1603 /*
1604  * helper function to set a given page up to date if all the
1605  * extents in the tree for that page are up to date
1606  */
1607 static int check_page_uptodate(struct extent_io_tree *tree,
1608                                struct page *page)
1609 {
1610         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1611         u64 end = start + PAGE_CACHE_SIZE - 1;
1612         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1613                 SetPageUptodate(page);
1614         return 0;
1615 }
1616
1617 /*
1618  * helper function to unlock a page if all the extents in the tree
1619  * for that page are unlocked
1620  */
1621 static int check_page_locked(struct extent_io_tree *tree,
1622                              struct page *page)
1623 {
1624         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1625         u64 end = start + PAGE_CACHE_SIZE - 1;
1626         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1627                 unlock_page(page);
1628         return 0;
1629 }
1630
1631 /*
1632  * helper function to end page writeback if all the extents
1633  * in the tree for that page are done with writeback
1634  */
1635 static int check_page_writeback(struct extent_io_tree *tree,
1636                              struct page *page)
1637 {
1638         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1639         u64 end = start + PAGE_CACHE_SIZE - 1;
1640         if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1641                 end_page_writeback(page);
1642         return 0;
1643 }
1644
1645 /* lots and lots of room for performance fixes in the end_bio funcs */
1646
1647 /*
1648  * after a writepage IO is done, we need to:
1649  * clear the uptodate bits on error
1650  * clear the writeback bits in the extent tree for this IO
1651  * end_page_writeback if the page has no more pending IO
1652  *
1653  * Scheduling is not allowed, so the extent state tree is expected
1654  * to have one and only one object corresponding to this IO.
1655  */
1656 static void end_bio_extent_writepage(struct bio *bio, int err)
1657 {
1658         int uptodate = err == 0;
1659         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1660         struct extent_io_tree *tree;
1661         u64 start;
1662         u64 end;
1663         int whole_page;
1664         int ret;
1665
1666         do {
1667                 struct page *page = bvec->bv_page;
1668                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1669
1670                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1671                          bvec->bv_offset;
1672                 end = start + bvec->bv_len - 1;
1673
1674                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1675                         whole_page = 1;
1676                 else
1677                         whole_page = 0;
1678
1679                 if (--bvec >= bio->bi_io_vec)
1680                         prefetchw(&bvec->bv_page->flags);
1681                 if (tree->ops && tree->ops->writepage_end_io_hook) {
1682                         ret = tree->ops->writepage_end_io_hook(page, start,
1683                                                        end, NULL, uptodate);
1684                         if (ret)
1685                                 uptodate = 0;
1686                 }
1687
1688                 if (!uptodate && tree->ops &&
1689                     tree->ops->writepage_io_failed_hook) {
1690                         ret = tree->ops->writepage_io_failed_hook(bio, page,
1691                                                          start, end, NULL);
1692                         if (ret == 0) {
1693                                 uptodate = (err == 0);
1694                                 continue;
1695                         }
1696                 }
1697
1698                 if (!uptodate) {
1699                         clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1700                         ClearPageUptodate(page);
1701                         SetPageError(page);
1702                 }
1703
1704                 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1705
1706                 if (whole_page)
1707                         end_page_writeback(page);
1708                 else
1709                         check_page_writeback(tree, page);
1710         } while (bvec >= bio->bi_io_vec);
1711
1712         bio_put(bio);
1713 }
1714
1715 /*
1716  * after a readpage IO is done, we need to:
1717  * clear the uptodate bits on error
1718  * set the uptodate bits if things worked
1719  * set the page up to date if all extents in the tree are uptodate
1720  * clear the lock bit in the extent tree
1721  * unlock the page if there are no other extents locked for it
1722  *
1723  * Scheduling is not allowed, so the extent state tree is expected
1724  * to have one and only one object corresponding to this IO.
1725  */
1726 static void end_bio_extent_readpage(struct bio *bio, int err)
1727 {
1728         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1729         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1730         struct extent_io_tree *tree;
1731         u64 start;
1732         u64 end;
1733         int whole_page;
1734         int ret;
1735
1736         if (err)
1737                 uptodate = 0;
1738
1739         do {
1740                 struct page *page = bvec->bv_page;
1741                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1742
1743                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1744                         bvec->bv_offset;
1745                 end = start + bvec->bv_len - 1;
1746
1747                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1748                         whole_page = 1;
1749                 else
1750                         whole_page = 0;
1751
1752                 if (--bvec >= bio->bi_io_vec)
1753                         prefetchw(&bvec->bv_page->flags);
1754
1755                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1756                         ret = tree->ops->readpage_end_io_hook(page, start, end,
1757                                                               NULL);
1758                         if (ret)
1759                                 uptodate = 0;
1760                 }
1761                 if (!uptodate && tree->ops &&
1762                     tree->ops->readpage_io_failed_hook) {
1763                         ret = tree->ops->readpage_io_failed_hook(bio, page,
1764                                                          start, end, NULL);
1765                         if (ret == 0) {
1766                                 uptodate =
1767                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
1768                                 if (err)
1769                                         uptodate = 0;
1770                                 continue;
1771                         }
1772                 }
1773
1774                 if (uptodate) {
1775                         set_extent_uptodate(tree, start, end,
1776                                             GFP_ATOMIC);
1777                 }
1778                 unlock_extent(tree, start, end, GFP_ATOMIC);
1779
1780                 if (whole_page) {
1781                         if (uptodate) {
1782                                 SetPageUptodate(page);
1783                         } else {
1784                                 ClearPageUptodate(page);
1785                                 SetPageError(page);
1786                         }
1787                         unlock_page(page);
1788                 } else {
1789                         if (uptodate) {
1790                                 check_page_uptodate(tree, page);
1791                         } else {
1792                                 ClearPageUptodate(page);
1793                                 SetPageError(page);
1794                         }
1795                         check_page_locked(tree, page);
1796                 }
1797         } while (bvec >= bio->bi_io_vec);
1798
1799         bio_put(bio);
1800 }
1801
1802 /*
1803  * IO done from prepare_write is pretty simple, we just unlock
1804  * the structs in the extent tree when done, and set the uptodate bits
1805  * as appropriate.
1806  */
1807 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1808 {
1809         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1810         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1811         struct extent_io_tree *tree;
1812         u64 start;
1813         u64 end;
1814
1815         do {
1816                 struct page *page = bvec->bv_page;
1817                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1818
1819                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1820                         bvec->bv_offset;
1821                 end = start + bvec->bv_len - 1;
1822
1823                 if (--bvec >= bio->bi_io_vec)
1824                         prefetchw(&bvec->bv_page->flags);
1825
1826                 if (uptodate) {
1827                         set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1828                 } else {
1829                         ClearPageUptodate(page);
1830                         SetPageError(page);
1831                 }
1832
1833                 unlock_extent(tree, start, end, GFP_ATOMIC);
1834
1835         } while (bvec >= bio->bi_io_vec);
1836
1837         bio_put(bio);
1838 }
1839
1840 static struct bio *
1841 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1842                  gfp_t gfp_flags)
1843 {
1844         struct bio *bio;
1845
1846         bio = bio_alloc(gfp_flags, nr_vecs);
1847
1848         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1849                 while (!bio && (nr_vecs /= 2))
1850                         bio = bio_alloc(gfp_flags, nr_vecs);
1851         }
1852
1853         if (bio) {
1854                 bio->bi_size = 0;
1855                 bio->bi_bdev = bdev;
1856                 bio->bi_sector = first_sector;
1857         }
1858         return bio;
1859 }
1860
1861 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1862                           unsigned long bio_flags)
1863 {
1864         int ret = 0;
1865         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1866         struct page *page = bvec->bv_page;
1867         struct extent_io_tree *tree = bio->bi_private;
1868         u64 start;
1869         u64 end;
1870
1871         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1872         end = start + bvec->bv_len - 1;
1873
1874         bio->bi_private = NULL;
1875
1876         bio_get(bio);
1877
1878         if (tree->ops && tree->ops->submit_bio_hook)
1879                 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1880                                            mirror_num, bio_flags);
1881         else
1882                 submit_bio(rw, bio);
1883         if (bio_flagged(bio, BIO_EOPNOTSUPP))
1884                 ret = -EOPNOTSUPP;
1885         bio_put(bio);
1886         return ret;
1887 }
1888
1889 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1890                               struct page *page, sector_t sector,
1891                               size_t size, unsigned long offset,
1892                               struct block_device *bdev,
1893                               struct bio **bio_ret,
1894                               unsigned long max_pages,
1895                               bio_end_io_t end_io_func,
1896                               int mirror_num,
1897                               unsigned long prev_bio_flags,
1898                               unsigned long bio_flags)
1899 {
1900         int ret = 0;
1901         struct bio *bio;
1902         int nr;
1903         int contig = 0;
1904         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1905         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1906         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1907
1908         if (bio_ret && *bio_ret) {
1909                 bio = *bio_ret;
1910                 if (old_compressed)
1911                         contig = bio->bi_sector == sector;
1912                 else
1913                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
1914                                 sector;
1915
1916                 if (prev_bio_flags != bio_flags || !contig ||
1917                     (tree->ops && tree->ops->merge_bio_hook &&
1918                      tree->ops->merge_bio_hook(page, offset, page_size, bio,
1919                                                bio_flags)) ||
1920                     bio_add_page(bio, page, page_size, offset) < page_size) {
1921                         ret = submit_one_bio(rw, bio, mirror_num,
1922                                              prev_bio_flags);
1923                         bio = NULL;
1924                 } else {
1925                         return 0;
1926                 }
1927         }
1928         if (this_compressed)
1929                 nr = BIO_MAX_PAGES;
1930         else
1931                 nr = bio_get_nr_vecs(bdev);
1932
1933         bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1934
1935         bio_add_page(bio, page, page_size, offset);
1936         bio->bi_end_io = end_io_func;
1937         bio->bi_private = tree;
1938
1939         if (bio_ret)
1940                 *bio_ret = bio;
1941         else
1942                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1943
1944         return ret;
1945 }
1946
1947 void set_page_extent_mapped(struct page *page)
1948 {
1949         if (!PagePrivate(page)) {
1950                 SetPagePrivate(page);
1951                 page_cache_get(page);
1952                 set_page_private(page, EXTENT_PAGE_PRIVATE);
1953         }
1954 }
1955 EXPORT_SYMBOL(set_page_extent_mapped);
1956
1957 static void set_page_extent_head(struct page *page, unsigned long len)
1958 {
1959         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1960 }
1961
1962 /*
1963  * basic readpage implementation.  Locked extent state structs are inserted
1964  * into the tree that are removed when the IO is done (by the end_io
1965  * handlers)
1966  */
1967 static int __extent_read_full_page(struct extent_io_tree *tree,
1968                                    struct page *page,
1969                                    get_extent_t *get_extent,
1970                                    struct bio **bio, int mirror_num,
1971                                    unsigned long *bio_flags)
1972 {
1973         struct inode *inode = page->mapping->host;
1974         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1975         u64 page_end = start + PAGE_CACHE_SIZE - 1;
1976         u64 end;
1977         u64 cur = start;
1978         u64 extent_offset;
1979         u64 last_byte = i_size_read(inode);
1980         u64 block_start;
1981         u64 cur_end;
1982         sector_t sector;
1983         struct extent_map *em;
1984         struct block_device *bdev;
1985         int ret;
1986         int nr = 0;
1987         size_t page_offset = 0;
1988         size_t iosize;
1989         size_t disk_io_size;
1990         size_t blocksize = inode->i_sb->s_blocksize;
1991         unsigned long this_bio_flag = 0;
1992
1993         set_page_extent_mapped(page);
1994
1995         end = page_end;
1996         lock_extent(tree, start, end, GFP_NOFS);
1997
1998         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1999                 char *userpage;
2000                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2001
2002                 if (zero_offset) {
2003                         iosize = PAGE_CACHE_SIZE - zero_offset;
2004                         userpage = kmap_atomic(page, KM_USER0);
2005                         memset(userpage + zero_offset, 0, iosize);
2006                         flush_dcache_page(page);
2007                         kunmap_atomic(userpage, KM_USER0);
2008                 }
2009         }
2010         while (cur <= end) {
2011                 if (cur >= last_byte) {
2012                         char *userpage;
2013                         iosize = PAGE_CACHE_SIZE - page_offset;
2014                         userpage = kmap_atomic(page, KM_USER0);
2015                         memset(userpage + page_offset, 0, iosize);
2016                         flush_dcache_page(page);
2017                         kunmap_atomic(userpage, KM_USER0);
2018                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2019                                             GFP_NOFS);
2020                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2021                         break;
2022                 }
2023                 em = get_extent(inode, page, page_offset, cur,
2024                                 end - cur + 1, 0);
2025                 if (IS_ERR(em) || !em) {
2026                         SetPageError(page);
2027                         unlock_extent(tree, cur, end, GFP_NOFS);
2028                         break;
2029                 }
2030                 extent_offset = cur - em->start;
2031                 BUG_ON(extent_map_end(em) <= cur);
2032                 BUG_ON(end < cur);
2033
2034                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2035                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2036
2037                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2038                 cur_end = min(extent_map_end(em) - 1, end);
2039                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2040                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2041                         disk_io_size = em->block_len;
2042                         sector = em->block_start >> 9;
2043                 } else {
2044                         sector = (em->block_start + extent_offset) >> 9;
2045                         disk_io_size = iosize;
2046                 }
2047                 bdev = em->bdev;
2048                 block_start = em->block_start;
2049                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2050                         block_start = EXTENT_MAP_HOLE;
2051                 free_extent_map(em);
2052                 em = NULL;
2053
2054                 /* we've found a hole, just zero and go on */
2055                 if (block_start == EXTENT_MAP_HOLE) {
2056                         char *userpage;
2057                         userpage = kmap_atomic(page, KM_USER0);
2058                         memset(userpage + page_offset, 0, iosize);
2059                         flush_dcache_page(page);
2060                         kunmap_atomic(userpage, KM_USER0);
2061
2062                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2063                                             GFP_NOFS);
2064                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2065                         cur = cur + iosize;
2066                         page_offset += iosize;
2067                         continue;
2068                 }
2069                 /* the get_extent function already copied into the page */
2070                 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
2071                         check_page_uptodate(tree, page);
2072                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2073                         cur = cur + iosize;
2074                         page_offset += iosize;
2075                         continue;
2076                 }
2077                 /* we have an inline extent but it didn't get marked up
2078                  * to date.  Error out
2079                  */
2080                 if (block_start == EXTENT_MAP_INLINE) {
2081                         SetPageError(page);
2082                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2083                         cur = cur + iosize;
2084                         page_offset += iosize;
2085                         continue;
2086                 }
2087
2088                 ret = 0;
2089                 if (tree->ops && tree->ops->readpage_io_hook) {
2090                         ret = tree->ops->readpage_io_hook(page, cur,
2091                                                           cur + iosize - 1);
2092                 }
2093                 if (!ret) {
2094                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2095                         pnr -= page->index;
2096                         ret = submit_extent_page(READ, tree, page,
2097                                          sector, disk_io_size, page_offset,
2098                                          bdev, bio, pnr,
2099                                          end_bio_extent_readpage, mirror_num,
2100                                          *bio_flags,
2101                                          this_bio_flag);
2102                         nr++;
2103                         *bio_flags = this_bio_flag;
2104                 }
2105                 if (ret)
2106                         SetPageError(page);
2107                 cur = cur + iosize;
2108                 page_offset += iosize;
2109         }
2110         if (!nr) {
2111                 if (!PageError(page))
2112                         SetPageUptodate(page);
2113                 unlock_page(page);
2114         }
2115         return 0;
2116 }
2117
2118 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2119                             get_extent_t *get_extent)
2120 {
2121         struct bio *bio = NULL;
2122         unsigned long bio_flags = 0;
2123         int ret;
2124
2125         ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2126                                       &bio_flags);
2127         if (bio)
2128                 submit_one_bio(READ, bio, 0, bio_flags);
2129         return ret;
2130 }
2131 EXPORT_SYMBOL(extent_read_full_page);
2132
2133 /*
2134  * the writepage semantics are similar to regular writepage.  extent
2135  * records are inserted to lock ranges in the tree, and as dirty areas
2136  * are found, they are marked writeback.  Then the lock bits are removed
2137  * and the end_io handler clears the writeback ranges
2138  */
2139 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2140                               void *data)
2141 {
2142         struct inode *inode = page->mapping->host;
2143         struct extent_page_data *epd = data;
2144         struct extent_io_tree *tree = epd->tree;
2145         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2146         u64 delalloc_start;
2147         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2148         u64 end;
2149         u64 cur = start;
2150         u64 extent_offset;
2151         u64 last_byte = i_size_read(inode);
2152         u64 block_start;
2153         u64 iosize;
2154         u64 unlock_start;
2155         sector_t sector;
2156         struct extent_map *em;
2157         struct block_device *bdev;
2158         int ret;
2159         int nr = 0;
2160         size_t pg_offset = 0;
2161         size_t blocksize;
2162         loff_t i_size = i_size_read(inode);
2163         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2164         u64 nr_delalloc;
2165         u64 delalloc_end;
2166         int page_started;
2167         int compressed;
2168         unsigned long nr_written = 0;
2169
2170         WARN_ON(!PageLocked(page));
2171         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2172         if (page->index > end_index ||
2173            (page->index == end_index && !pg_offset)) {
2174                 page->mapping->a_ops->invalidatepage(page, 0);
2175                 unlock_page(page);
2176                 return 0;
2177         }
2178
2179         if (page->index == end_index) {
2180                 char *userpage;
2181
2182                 userpage = kmap_atomic(page, KM_USER0);
2183                 memset(userpage + pg_offset, 0,
2184                        PAGE_CACHE_SIZE - pg_offset);
2185                 kunmap_atomic(userpage, KM_USER0);
2186                 flush_dcache_page(page);
2187         }
2188         pg_offset = 0;
2189
2190         set_page_extent_mapped(page);
2191
2192         delalloc_start = start;
2193         delalloc_end = 0;
2194         page_started = 0;
2195         if (!epd->extent_locked) {
2196                 while (delalloc_end < page_end) {
2197                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2198                                                        page,
2199                                                        &delalloc_start,
2200                                                        &delalloc_end,
2201                                                        128 * 1024 * 1024);
2202                         if (nr_delalloc == 0) {
2203                                 delalloc_start = delalloc_end + 1;
2204                                 continue;
2205                         }
2206                         tree->ops->fill_delalloc(inode, page, delalloc_start,
2207                                                  delalloc_end, &page_started,
2208                                                  &nr_written);
2209                         delalloc_start = delalloc_end + 1;
2210                 }
2211
2212                 /* did the fill delalloc function already unlock and start
2213                  * the IO?
2214                  */
2215                 if (page_started) {
2216                         ret = 0;
2217                         goto update_nr_written;
2218                 }
2219         }
2220         lock_extent(tree, start, page_end, GFP_NOFS);
2221
2222         unlock_start = start;
2223
2224         if (tree->ops && tree->ops->writepage_start_hook) {
2225                 ret = tree->ops->writepage_start_hook(page, start,
2226                                                       page_end);
2227                 if (ret == -EAGAIN) {
2228                         unlock_extent(tree, start, page_end, GFP_NOFS);
2229                         redirty_page_for_writepage(wbc, page);
2230                         unlock_page(page);
2231                         ret = 0;
2232                         goto update_nr_written;
2233                 }
2234         }
2235
2236         nr_written++;
2237
2238         end = page_end;
2239         if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0))
2240                 printk(KERN_ERR "btrfs delalloc bits after lock_extent\n");
2241
2242         if (last_byte <= start) {
2243                 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2244                 unlock_extent(tree, start, page_end, GFP_NOFS);
2245                 if (tree->ops && tree->ops->writepage_end_io_hook)
2246                         tree->ops->writepage_end_io_hook(page, start,
2247                                                          page_end, NULL, 1);
2248                 unlock_start = page_end + 1;
2249                 goto done;
2250         }
2251
2252         set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2253         blocksize = inode->i_sb->s_blocksize;
2254
2255         while (cur <= end) {
2256                 if (cur >= last_byte) {
2257                         clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2258                         unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2259                         if (tree->ops && tree->ops->writepage_end_io_hook)
2260                                 tree->ops->writepage_end_io_hook(page, cur,
2261                                                          page_end, NULL, 1);
2262                         unlock_start = page_end + 1;
2263                         break;
2264                 }
2265                 em = epd->get_extent(inode, page, pg_offset, cur,
2266                                      end - cur + 1, 1);
2267                 if (IS_ERR(em) || !em) {
2268                         SetPageError(page);
2269                         break;
2270                 }
2271
2272                 extent_offset = cur - em->start;
2273                 BUG_ON(extent_map_end(em) <= cur);
2274                 BUG_ON(end < cur);
2275                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2276                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2277                 sector = (em->block_start + extent_offset) >> 9;
2278                 bdev = em->bdev;
2279                 block_start = em->block_start;
2280                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2281                 free_extent_map(em);
2282                 em = NULL;
2283
2284                 /*
2285                  * compressed and inline extents are written through other
2286                  * paths in the FS
2287                  */
2288                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2289                     block_start == EXTENT_MAP_INLINE) {
2290                         clear_extent_dirty(tree, cur,
2291                                            cur + iosize - 1, GFP_NOFS);
2292
2293                         unlock_extent(tree, unlock_start, cur + iosize - 1,
2294                                       GFP_NOFS);
2295
2296                         /*
2297                          * end_io notification does not happen here for
2298                          * compressed extents
2299                          */
2300                         if (!compressed && tree->ops &&
2301                             tree->ops->writepage_end_io_hook)
2302                                 tree->ops->writepage_end_io_hook(page, cur,
2303                                                          cur + iosize - 1,
2304                                                          NULL, 1);
2305                         else if (compressed) {
2306                                 /* we don't want to end_page_writeback on
2307                                  * a compressed extent.  this happens
2308                                  * elsewhere
2309                                  */
2310                                 nr++;
2311                         }
2312
2313                         cur += iosize;
2314                         pg_offset += iosize;
2315                         unlock_start = cur;
2316                         continue;
2317                 }
2318                 /* leave this out until we have a page_mkwrite call */
2319                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2320                                    EXTENT_DIRTY, 0)) {
2321                         cur = cur + iosize;
2322                         pg_offset += iosize;
2323                         continue;
2324                 }
2325
2326                 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2327                 if (tree->ops && tree->ops->writepage_io_hook) {
2328                         ret = tree->ops->writepage_io_hook(page, cur,
2329                                                 cur + iosize - 1);
2330                 } else {
2331                         ret = 0;
2332                 }
2333                 if (ret) {
2334                         SetPageError(page);
2335                 } else {
2336                         unsigned long max_nr = end_index + 1;
2337
2338                         set_range_writeback(tree, cur, cur + iosize - 1);
2339                         if (!PageWriteback(page)) {
2340                                 printk(KERN_ERR "btrfs warning page %lu not "
2341                                        "writeback, cur %llu end %llu\n",
2342                                        page->index, (unsigned long long)cur,
2343                                        (unsigned long long)end);
2344                         }
2345
2346                         ret = submit_extent_page(WRITE, tree, page, sector,
2347                                                  iosize, pg_offset, bdev,
2348                                                  &epd->bio, max_nr,
2349                                                  end_bio_extent_writepage,
2350                                                  0, 0, 0);
2351                         if (ret)
2352                                 SetPageError(page);
2353                 }
2354                 cur = cur + iosize;
2355                 pg_offset += iosize;
2356                 nr++;
2357         }
2358 done:
2359         if (nr == 0) {
2360                 /* make sure the mapping tag for page dirty gets cleared */
2361                 set_page_writeback(page);
2362                 end_page_writeback(page);
2363         }
2364         if (unlock_start <= page_end)
2365                 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2366         unlock_page(page);
2367
2368 update_nr_written:
2369         wbc->nr_to_write -= nr_written;
2370         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2371             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2372                 page->mapping->writeback_index = page->index + nr_written;
2373         return 0;
2374 }
2375
2376 /**
2377  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2378  * @mapping: address space structure to write
2379  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2380  * @writepage: function called for each page
2381  * @data: data passed to writepage function
2382  *
2383  * If a page is already under I/O, write_cache_pages() skips it, even
2384  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2385  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2386  * and msync() need to guarantee that all the data which was dirty at the time
2387  * the call was made get new I/O started against them.  If wbc->sync_mode is
2388  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2389  * existing IO to complete.
2390  */
2391 static int extent_write_cache_pages(struct extent_io_tree *tree,
2392                              struct address_space *mapping,
2393                              struct writeback_control *wbc,
2394                              writepage_t writepage, void *data,
2395                              void (*flush_fn)(void *))
2396 {
2397         struct backing_dev_info *bdi = mapping->backing_dev_info;
2398         int ret = 0;
2399         int done = 0;
2400         struct pagevec pvec;
2401         int nr_pages;
2402         pgoff_t index;
2403         pgoff_t end;            /* Inclusive */
2404         int scanned = 0;
2405         int range_whole = 0;
2406
2407         if (wbc->nonblocking && bdi_write_congested(bdi)) {
2408                 wbc->encountered_congestion = 1;
2409                 return 0;
2410         }
2411
2412         pagevec_init(&pvec, 0);
2413         if (wbc->range_cyclic) {
2414                 index = mapping->writeback_index; /* Start from prev offset */
2415                 end = -1;
2416         } else {
2417                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2418                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2419                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2420                         range_whole = 1;
2421                 scanned = 1;
2422         }
2423 retry:
2424         while (!done && (index <= end) &&
2425                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2426                               PAGECACHE_TAG_DIRTY, min(end - index,
2427                                   (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2428                 unsigned i;
2429
2430                 scanned = 1;
2431                 for (i = 0; i < nr_pages; i++) {
2432                         struct page *page = pvec.pages[i];
2433
2434                         /*
2435                          * At this point we hold neither mapping->tree_lock nor
2436                          * lock on the page itself: the page may be truncated or
2437                          * invalidated (changing page->mapping to NULL), or even
2438                          * swizzled back from swapper_space to tmpfs file
2439                          * mapping
2440                          */
2441                         if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2442                                 tree->ops->write_cache_pages_lock_hook(page);
2443                         else
2444                                 lock_page(page);
2445
2446                         if (unlikely(page->mapping != mapping)) {
2447                                 unlock_page(page);
2448                                 continue;
2449                         }
2450
2451                         if (!wbc->range_cyclic && page->index > end) {
2452                                 done = 1;
2453                                 unlock_page(page);
2454                                 continue;
2455                         }
2456
2457                         if (wbc->sync_mode != WB_SYNC_NONE) {
2458                                 if (PageWriteback(page))
2459                                         flush_fn(data);
2460                                 wait_on_page_writeback(page);
2461                         }
2462
2463                         if (PageWriteback(page) ||
2464                             !clear_page_dirty_for_io(page)) {
2465                                 unlock_page(page);
2466                                 continue;
2467                         }
2468
2469                         ret = (*writepage)(page, wbc, data);
2470
2471                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2472                                 unlock_page(page);
2473                                 ret = 0;
2474                         }
2475                         if (ret || wbc->nr_to_write <= 0)
2476                                 done = 1;
2477                         if (wbc->nonblocking && bdi_write_congested(bdi)) {
2478                                 wbc->encountered_congestion = 1;
2479                                 done = 1;
2480                         }
2481                 }
2482                 pagevec_release(&pvec);
2483                 cond_resched();
2484         }
2485         if (!scanned && !done) {
2486                 /*
2487                  * We hit the last page and there is more work to be done: wrap
2488                  * back to the start of the file
2489                  */
2490                 scanned = 1;
2491                 index = 0;
2492                 goto retry;
2493         }
2494         return ret;
2495 }
2496
2497 static noinline void flush_write_bio(void *data)
2498 {
2499         struct extent_page_data *epd = data;
2500         if (epd->bio) {
2501                 submit_one_bio(WRITE, epd->bio, 0, 0);
2502                 epd->bio = NULL;
2503         }
2504 }
2505
2506 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2507                           get_extent_t *get_extent,
2508                           struct writeback_control *wbc)
2509 {
2510         int ret;
2511         struct address_space *mapping = page->mapping;
2512         struct extent_page_data epd = {
2513                 .bio = NULL,
2514                 .tree = tree,
2515                 .get_extent = get_extent,
2516                 .extent_locked = 0,
2517         };
2518         struct writeback_control wbc_writepages = {
2519                 .bdi            = wbc->bdi,
2520                 .sync_mode      = WB_SYNC_NONE,
2521                 .older_than_this = NULL,
2522                 .nr_to_write    = 64,
2523                 .range_start    = page_offset(page) + PAGE_CACHE_SIZE,
2524                 .range_end      = (loff_t)-1,
2525         };
2526
2527
2528         ret = __extent_writepage(page, wbc, &epd);
2529
2530         extent_write_cache_pages(tree, mapping, &wbc_writepages,
2531                                  __extent_writepage, &epd, flush_write_bio);
2532         if (epd.bio)
2533                 submit_one_bio(WRITE, epd.bio, 0, 0);
2534         return ret;
2535 }
2536 EXPORT_SYMBOL(extent_write_full_page);
2537
2538 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2539                               u64 start, u64 end, get_extent_t *get_extent,
2540                               int mode)
2541 {
2542         int ret = 0;
2543         struct address_space *mapping = inode->i_mapping;
2544         struct page *page;
2545         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2546                 PAGE_CACHE_SHIFT;
2547
2548         struct extent_page_data epd = {
2549                 .bio = NULL,
2550                 .tree = tree,
2551                 .get_extent = get_extent,
2552                 .extent_locked = 1,
2553         };
2554         struct writeback_control wbc_writepages = {
2555                 .bdi            = inode->i_mapping->backing_dev_info,
2556                 .sync_mode      = mode,
2557                 .older_than_this = NULL,
2558                 .nr_to_write    = nr_pages * 2,
2559                 .range_start    = start,
2560                 .range_end      = end + 1,
2561         };
2562
2563         while (start <= end) {
2564                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2565                 if (clear_page_dirty_for_io(page))
2566                         ret = __extent_writepage(page, &wbc_writepages, &epd);
2567                 else {
2568                         if (tree->ops && tree->ops->writepage_end_io_hook)
2569                                 tree->ops->writepage_end_io_hook(page, start,
2570                                                  start + PAGE_CACHE_SIZE - 1,
2571                                                  NULL, 1);
2572                         unlock_page(page);
2573                 }
2574                 page_cache_release(page);
2575                 start += PAGE_CACHE_SIZE;
2576         }
2577
2578         if (epd.bio)
2579                 submit_one_bio(WRITE, epd.bio, 0, 0);
2580         return ret;
2581 }
2582 EXPORT_SYMBOL(extent_write_locked_range);
2583
2584
2585 int extent_writepages(struct extent_io_tree *tree,
2586                       struct address_space *mapping,
2587                       get_extent_t *get_extent,
2588                       struct writeback_control *wbc)
2589 {
2590         int ret = 0;
2591         struct extent_page_data epd = {
2592                 .bio = NULL,
2593                 .tree = tree,
2594                 .get_extent = get_extent,
2595                 .extent_locked = 0,
2596         };
2597
2598         ret = extent_write_cache_pages(tree, mapping, wbc,
2599                                        __extent_writepage, &epd,
2600                                        flush_write_bio);
2601         if (epd.bio)
2602                 submit_one_bio(WRITE, epd.bio, 0, 0);
2603         return ret;
2604 }
2605 EXPORT_SYMBOL(extent_writepages);
2606
2607 int extent_readpages(struct extent_io_tree *tree,
2608                      struct address_space *mapping,
2609                      struct list_head *pages, unsigned nr_pages,
2610                      get_extent_t get_extent)
2611 {
2612         struct bio *bio = NULL;
2613         unsigned page_idx;
2614         struct pagevec pvec;
2615         unsigned long bio_flags = 0;
2616
2617         pagevec_init(&pvec, 0);
2618         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2619                 struct page *page = list_entry(pages->prev, struct page, lru);
2620
2621                 prefetchw(&page->flags);
2622                 list_del(&page->lru);
2623                 /*
2624                  * what we want to do here is call add_to_page_cache_lru,
2625                  * but that isn't exported, so we reproduce it here
2626                  */
2627                 if (!add_to_page_cache(page, mapping,
2628                                         page->index, GFP_KERNEL)) {
2629
2630                         /* open coding of lru_cache_add, also not exported */
2631                         page_cache_get(page);
2632                         if (!pagevec_add(&pvec, page))
2633                                 __pagevec_lru_add_file(&pvec);
2634                         __extent_read_full_page(tree, page, get_extent,
2635                                                 &bio, 0, &bio_flags);
2636                 }
2637                 page_cache_release(page);
2638         }
2639         if (pagevec_count(&pvec))
2640                 __pagevec_lru_add_file(&pvec);
2641         BUG_ON(!list_empty(pages));
2642         if (bio)
2643                 submit_one_bio(READ, bio, 0, bio_flags);
2644         return 0;
2645 }
2646 EXPORT_SYMBOL(extent_readpages);
2647
2648 /*
2649  * basic invalidatepage code, this waits on any locked or writeback
2650  * ranges corresponding to the page, and then deletes any extent state
2651  * records from the tree
2652  */
2653 int extent_invalidatepage(struct extent_io_tree *tree,
2654                           struct page *page, unsigned long offset)
2655 {
2656         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2657         u64 end = start + PAGE_CACHE_SIZE - 1;
2658         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2659
2660         start += (offset + blocksize - 1) & ~(blocksize - 1);
2661         if (start > end)
2662                 return 0;
2663
2664         lock_extent(tree, start, end, GFP_NOFS);
2665         wait_on_extent_writeback(tree, start, end);
2666         clear_extent_bit(tree, start, end,
2667                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2668                          1, 1, GFP_NOFS);
2669         return 0;
2670 }
2671 EXPORT_SYMBOL(extent_invalidatepage);
2672
2673 /*
2674  * simple commit_write call, set_range_dirty is used to mark both
2675  * the pages and the extent records as dirty
2676  */
2677 int extent_commit_write(struct extent_io_tree *tree,
2678                         struct inode *inode, struct page *page,
2679                         unsigned from, unsigned to)
2680 {
2681         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2682
2683         set_page_extent_mapped(page);
2684         set_page_dirty(page);
2685
2686         if (pos > inode->i_size) {
2687                 i_size_write(inode, pos);
2688                 mark_inode_dirty(inode);
2689         }
2690         return 0;
2691 }
2692 EXPORT_SYMBOL(extent_commit_write);
2693
2694 int extent_prepare_write(struct extent_io_tree *tree,
2695                          struct inode *inode, struct page *page,
2696                          unsigned from, unsigned to, get_extent_t *get_extent)
2697 {
2698         u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2699         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2700         u64 block_start;
2701         u64 orig_block_start;
2702         u64 block_end;
2703         u64 cur_end;
2704         struct extent_map *em;
2705         unsigned blocksize = 1 << inode->i_blkbits;
2706         size_t page_offset = 0;
2707         size_t block_off_start;
2708         size_t block_off_end;
2709         int err = 0;
2710         int iocount = 0;
2711         int ret = 0;
2712         int isnew;
2713
2714         set_page_extent_mapped(page);
2715
2716         block_start = (page_start + from) & ~((u64)blocksize - 1);
2717         block_end = (page_start + to - 1) | (blocksize - 1);
2718         orig_block_start = block_start;
2719
2720         lock_extent(tree, page_start, page_end, GFP_NOFS);
2721         while (block_start <= block_end) {
2722                 em = get_extent(inode, page, page_offset, block_start,
2723                                 block_end - block_start + 1, 1);
2724                 if (IS_ERR(em) || !em)
2725                         goto err;
2726
2727                 cur_end = min(block_end, extent_map_end(em) - 1);
2728                 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2729                 block_off_end = block_off_start + blocksize;
2730                 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2731
2732                 if (!PageUptodate(page) && isnew &&
2733                     (block_off_end > to || block_off_start < from)) {
2734                         void *kaddr;
2735
2736                         kaddr = kmap_atomic(page, KM_USER0);
2737                         if (block_off_end > to)
2738                                 memset(kaddr + to, 0, block_off_end - to);
2739                         if (block_off_start < from)
2740                                 memset(kaddr + block_off_start, 0,
2741                                        from - block_off_start);
2742                         flush_dcache_page(page);
2743                         kunmap_atomic(kaddr, KM_USER0);
2744                 }
2745                 if ((em->block_start != EXTENT_MAP_HOLE &&
2746                      em->block_start != EXTENT_MAP_INLINE) &&
2747                     !isnew && !PageUptodate(page) &&
2748                     (block_off_end > to || block_off_start < from) &&
2749                     !test_range_bit(tree, block_start, cur_end,
2750                                     EXTENT_UPTODATE, 1)) {
2751                         u64 sector;
2752                         u64 extent_offset = block_start - em->start;
2753                         size_t iosize;
2754                         sector = (em->block_start + extent_offset) >> 9;
2755                         iosize = (cur_end - block_start + blocksize) &
2756                                 ~((u64)blocksize - 1);
2757                         /*
2758                          * we've already got the extent locked, but we
2759                          * need to split the state such that our end_bio
2760                          * handler can clear the lock.
2761                          */
2762                         set_extent_bit(tree, block_start,
2763                                        block_start + iosize - 1,
2764                                        EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2765                         ret = submit_extent_page(READ, tree, page,
2766                                          sector, iosize, page_offset, em->bdev,
2767                                          NULL, 1,
2768                                          end_bio_extent_preparewrite, 0,
2769                                          0, 0);
2770                         iocount++;
2771                         block_start = block_start + iosize;
2772                 } else {
2773                         set_extent_uptodate(tree, block_start, cur_end,
2774                                             GFP_NOFS);
2775                         unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2776                         block_start = cur_end + 1;
2777                 }
2778                 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2779                 free_extent_map(em);
2780         }
2781         if (iocount) {
2782                 wait_extent_bit(tree, orig_block_start,
2783                                 block_end, EXTENT_LOCKED);
2784         }
2785         check_page_uptodate(tree, page);
2786 err:
2787         /* FIXME, zero out newly allocated blocks on error */
2788         return err;
2789 }
2790 EXPORT_SYMBOL(extent_prepare_write);
2791
2792 /*
2793  * a helper for releasepage, this tests for areas of the page that
2794  * are locked or under IO and drops the related state bits if it is safe
2795  * to drop the page.
2796  */
2797 int try_release_extent_state(struct extent_map_tree *map,
2798                              struct extent_io_tree *tree, struct page *page,
2799                              gfp_t mask)
2800 {
2801         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2802         u64 end = start + PAGE_CACHE_SIZE - 1;
2803         int ret = 1;
2804
2805         if (test_range_bit(tree, start, end,
2806                            EXTENT_IOBITS | EXTENT_ORDERED, 0))
2807                 ret = 0;
2808         else {
2809                 if ((mask & GFP_NOFS) == GFP_NOFS)
2810                         mask = GFP_NOFS;
2811                 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2812                                  1, 1, mask);
2813         }
2814         return ret;
2815 }
2816 EXPORT_SYMBOL(try_release_extent_state);
2817
2818 /*
2819  * a helper for releasepage.  As long as there are no locked extents
2820  * in the range corresponding to the page, both state records and extent
2821  * map records are removed
2822  */
2823 int try_release_extent_mapping(struct extent_map_tree *map,
2824                                struct extent_io_tree *tree, struct page *page,
2825                                gfp_t mask)
2826 {
2827         struct extent_map *em;
2828         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2829         u64 end = start + PAGE_CACHE_SIZE - 1;
2830
2831         if ((mask & __GFP_WAIT) &&
2832             page->mapping->host->i_size > 16 * 1024 * 1024) {
2833                 u64 len;
2834                 while (start <= end) {
2835                         len = end - start + 1;
2836                         spin_lock(&map->lock);
2837                         em = lookup_extent_mapping(map, start, len);
2838                         if (!em || IS_ERR(em)) {
2839                                 spin_unlock(&map->lock);
2840                                 break;
2841                         }
2842                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2843                             em->start != start) {
2844                                 spin_unlock(&map->lock);
2845                                 free_extent_map(em);
2846                                 break;
2847                         }
2848                         if (!test_range_bit(tree, em->start,
2849                                             extent_map_end(em) - 1,
2850                                             EXTENT_LOCKED | EXTENT_WRITEBACK |
2851                                             EXTENT_ORDERED,
2852                                             0)) {
2853                                 remove_extent_mapping(map, em);
2854                                 /* once for the rb tree */
2855                                 free_extent_map(em);
2856                         }
2857                         start = extent_map_end(em);
2858                         spin_unlock(&map->lock);
2859
2860                         /* once for us */
2861                         free_extent_map(em);
2862                 }
2863         }
2864         return try_release_extent_state(map, tree, page, mask);
2865 }
2866 EXPORT_SYMBOL(try_release_extent_mapping);
2867
2868 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2869                 get_extent_t *get_extent)
2870 {
2871         struct inode *inode = mapping->host;
2872         u64 start = iblock << inode->i_blkbits;
2873         sector_t sector = 0;
2874         size_t blksize = (1 << inode->i_blkbits);
2875         struct extent_map *em;
2876
2877         lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2878                     GFP_NOFS);
2879         em = get_extent(inode, NULL, 0, start, blksize, 0);
2880         unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2881                       GFP_NOFS);
2882         if (!em || IS_ERR(em))
2883                 return 0;
2884
2885         if (em->block_start > EXTENT_MAP_LAST_BYTE)
2886                 goto out;
2887
2888         sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2889 out:
2890         free_extent_map(em);
2891         return sector;
2892 }
2893
2894 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2895                                               unsigned long i)
2896 {
2897         struct page *p;
2898         struct address_space *mapping;
2899
2900         if (i == 0)
2901                 return eb->first_page;
2902         i += eb->start >> PAGE_CACHE_SHIFT;
2903         mapping = eb->first_page->mapping;
2904         if (!mapping)
2905                 return NULL;
2906
2907         /*
2908          * extent_buffer_page is only called after pinning the page
2909          * by increasing the reference count.  So we know the page must
2910          * be in the radix tree.
2911          */
2912         rcu_read_lock();
2913         p = radix_tree_lookup(&mapping->page_tree, i);
2914         rcu_read_unlock();
2915
2916         return p;
2917 }
2918
2919 static inline unsigned long num_extent_pages(u64 start, u64 len)
2920 {
2921         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2922                 (start >> PAGE_CACHE_SHIFT);
2923 }
2924
2925 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2926                                                    u64 start,
2927                                                    unsigned long len,
2928                                                    gfp_t mask)
2929 {
2930         struct extent_buffer *eb = NULL;
2931 #ifdef LEAK_DEBUG
2932         unsigned long flags;
2933 #endif
2934
2935         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2936         eb->start = start;
2937         eb->len = len;
2938         mutex_init(&eb->mutex);
2939 #ifdef LEAK_DEBUG
2940         spin_lock_irqsave(&leak_lock, flags);
2941         list_add(&eb->leak_list, &buffers);
2942         spin_unlock_irqrestore(&leak_lock, flags);
2943 #endif
2944         atomic_set(&eb->refs, 1);
2945
2946         return eb;
2947 }
2948
2949 static void __free_extent_buffer(struct extent_buffer *eb)
2950 {
2951 #ifdef LEAK_DEBUG
2952         unsigned long flags;
2953         spin_lock_irqsave(&leak_lock, flags);
2954         list_del(&eb->leak_list);
2955         spin_unlock_irqrestore(&leak_lock, flags);
2956 #endif
2957         kmem_cache_free(extent_buffer_cache, eb);
2958 }
2959
2960 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2961                                           u64 start, unsigned long len,
2962                                           struct page *page0,
2963                                           gfp_t mask)
2964 {
2965         unsigned long num_pages = num_extent_pages(start, len);
2966         unsigned long i;
2967         unsigned long index = start >> PAGE_CACHE_SHIFT;
2968         struct extent_buffer *eb;
2969         struct extent_buffer *exists = NULL;
2970         struct page *p;
2971         struct address_space *mapping = tree->mapping;
2972         int uptodate = 1;
2973
2974         spin_lock(&tree->buffer_lock);
2975         eb = buffer_search(tree, start);
2976         if (eb) {
2977                 atomic_inc(&eb->refs);
2978                 spin_unlock(&tree->buffer_lock);
2979                 mark_page_accessed(eb->first_page);
2980                 return eb;
2981         }
2982         spin_unlock(&tree->buffer_lock);
2983
2984         eb = __alloc_extent_buffer(tree, start, len, mask);
2985         if (!eb)
2986                 return NULL;
2987
2988         if (page0) {
2989                 eb->first_page = page0;
2990                 i = 1;
2991                 index++;
2992                 page_cache_get(page0);
2993                 mark_page_accessed(page0);
2994                 set_page_extent_mapped(page0);
2995                 set_page_extent_head(page0, len);
2996                 uptodate = PageUptodate(page0);
2997         } else {
2998                 i = 0;
2999         }
3000         for (; i < num_pages; i++, index++) {
3001                 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3002                 if (!p) {
3003                         WARN_ON(1);
3004                         goto free_eb;
3005                 }
3006                 set_page_extent_mapped(p);
3007                 mark_page_accessed(p);
3008                 if (i == 0) {
3009                         eb->first_page = p;
3010                         set_page_extent_head(p, len);
3011                 } else {
3012                         set_page_private(p, EXTENT_PAGE_PRIVATE);
3013                 }
3014                 if (!PageUptodate(p))
3015                         uptodate = 0;
3016                 unlock_page(p);
3017         }
3018         if (uptodate)
3019                 eb->flags |= EXTENT_UPTODATE;
3020         eb->flags |= EXTENT_BUFFER_FILLED;
3021
3022         spin_lock(&tree->buffer_lock);
3023         exists = buffer_tree_insert(tree, start, &eb->rb_node);
3024         if (exists) {
3025                 /* add one reference for the caller */
3026                 atomic_inc(&exists->refs);
3027                 spin_unlock(&tree->buffer_lock);
3028                 goto free_eb;
3029         }
3030         spin_unlock(&tree->buffer_lock);
3031
3032         /* add one reference for the tree */
3033         atomic_inc(&eb->refs);
3034         return eb;
3035
3036 free_eb:
3037         if (!atomic_dec_and_test(&eb->refs))
3038                 return exists;
3039         for (index = 1; index < i; index++)
3040                 page_cache_release(extent_buffer_page(eb, index));
3041         page_cache_release(extent_buffer_page(eb, 0));
3042         __free_extent_buffer(eb);
3043         return exists;
3044 }
3045 EXPORT_SYMBOL(alloc_extent_buffer);
3046
3047 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3048                                          u64 start, unsigned long len,
3049                                           gfp_t mask)
3050 {
3051         struct extent_buffer *eb;
3052
3053         spin_lock(&tree->buffer_lock);
3054         eb = buffer_search(tree, start);
3055         if (eb)
3056                 atomic_inc(&eb->refs);
3057         spin_unlock(&tree->buffer_lock);
3058
3059         if (eb)
3060                 mark_page_accessed(eb->first_page);
3061
3062         return eb;
3063 }
3064 EXPORT_SYMBOL(find_extent_buffer);
3065
3066 void free_extent_buffer(struct extent_buffer *eb)
3067 {
3068         if (!eb)
3069                 return;
3070
3071         if (!atomic_dec_and_test(&eb->refs))
3072                 return;
3073
3074         WARN_ON(1);
3075 }
3076 EXPORT_SYMBOL(free_extent_buffer);
3077
3078 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3079                               struct extent_buffer *eb)
3080 {
3081         int set;
3082         unsigned long i;
3083         unsigned long num_pages;
3084         struct page *page;
3085
3086         u64 start = eb->start;
3087         u64 end = start + eb->len - 1;
3088
3089         set = clear_extent_dirty(tree, start, end, GFP_NOFS);
3090         num_pages = num_extent_pages(eb->start, eb->len);
3091
3092         for (i = 0; i < num_pages; i++) {
3093                 page = extent_buffer_page(eb, i);
3094                 if (!set && !PageDirty(page))
3095                         continue;
3096
3097                 lock_page(page);
3098                 if (i == 0)
3099                         set_page_extent_head(page, eb->len);
3100                 else
3101                         set_page_private(page, EXTENT_PAGE_PRIVATE);
3102
3103                 /*
3104                  * if we're on the last page or the first page and the
3105                  * block isn't aligned on a page boundary, do extra checks
3106                  * to make sure we don't clean page that is partially dirty
3107                  */
3108                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3109                     ((i == num_pages - 1) &&
3110                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3111                         start = (u64)page->index << PAGE_CACHE_SHIFT;
3112                         end  = start + PAGE_CACHE_SIZE - 1;
3113                         if (test_range_bit(tree, start, end,
3114                                            EXTENT_DIRTY, 0)) {
3115                                 unlock_page(page);
3116                                 continue;
3117                         }
3118                 }
3119                 clear_page_dirty_for_io(page);
3120                 spin_lock_irq(&page->mapping->tree_lock);
3121                 if (!PageDirty(page)) {
3122                         radix_tree_tag_clear(&page->mapping->page_tree,
3123                                                 page_index(page),
3124                                                 PAGECACHE_TAG_DIRTY);
3125                 }
3126                 spin_unlock_irq(&page->mapping->tree_lock);
3127                 unlock_page(page);
3128         }
3129         return 0;
3130 }
3131 EXPORT_SYMBOL(clear_extent_buffer_dirty);
3132
3133 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3134                                     struct extent_buffer *eb)
3135 {
3136         return wait_on_extent_writeback(tree, eb->start,
3137                                         eb->start + eb->len - 1);
3138 }
3139 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
3140
3141 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3142                              struct extent_buffer *eb)
3143 {
3144         unsigned long i;
3145         unsigned long num_pages;
3146
3147         num_pages = num_extent_pages(eb->start, eb->len);
3148         for (i = 0; i < num_pages; i++) {
3149                 struct page *page = extent_buffer_page(eb, i);
3150                 /* writepage may need to do something special for the
3151                  * first page, we have to make sure page->private is
3152                  * properly set.  releasepage may drop page->private
3153                  * on us if the page isn't already dirty.
3154                  */
3155                 lock_page(page);
3156                 if (i == 0) {
3157                         set_page_extent_head(page, eb->len);
3158                 } else if (PagePrivate(page) &&
3159                            page->private != EXTENT_PAGE_PRIVATE) {
3160                         set_page_extent_mapped(page);
3161                 }
3162                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3163                 set_extent_dirty(tree, page_offset(page),
3164                                  page_offset(page) + PAGE_CACHE_SIZE - 1,
3165                                  GFP_NOFS);
3166                 unlock_page(page);
3167         }
3168         return 0;
3169 }
3170 EXPORT_SYMBOL(set_extent_buffer_dirty);
3171
3172 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3173                                 struct extent_buffer *eb)
3174 {
3175         unsigned long i;
3176         struct page *page;
3177         unsigned long num_pages;
3178
3179         num_pages = num_extent_pages(eb->start, eb->len);
3180         eb->flags &= ~EXTENT_UPTODATE;
3181
3182         clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3183                               GFP_NOFS);
3184         for (i = 0; i < num_pages; i++) {
3185                 page = extent_buffer_page(eb, i);
3186                 if (page)
3187                         ClearPageUptodate(page);
3188         }
3189         return 0;
3190 }
3191
3192 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3193                                 struct extent_buffer *eb)
3194 {
3195         unsigned long i;
3196         struct page *page;
3197         unsigned long num_pages;
3198
3199         num_pages = num_extent_pages(eb->start, eb->len);
3200
3201         set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3202                             GFP_NOFS);
3203         for (i = 0; i < num_pages; i++) {
3204                 page = extent_buffer_page(eb, i);
3205                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3206                     ((i == num_pages - 1) &&
3207                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3208                         check_page_uptodate(tree, page);
3209                         continue;
3210                 }
3211                 SetPageUptodate(page);
3212         }
3213         return 0;
3214 }
3215 EXPORT_SYMBOL(set_extent_buffer_uptodate);
3216
3217 int extent_range_uptodate(struct extent_io_tree *tree,
3218                           u64 start, u64 end)
3219 {
3220         struct page *page;
3221         int ret;
3222         int pg_uptodate = 1;
3223         int uptodate;
3224         unsigned long index;
3225
3226         ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3227         if (ret)
3228                 return 1;
3229         while (start <= end) {
3230                 index = start >> PAGE_CACHE_SHIFT;
3231                 page = find_get_page(tree->mapping, index);
3232                 uptodate = PageUptodate(page);
3233                 page_cache_release(page);
3234                 if (!uptodate) {
3235                         pg_uptodate = 0;
3236                         break;
3237                 }
3238                 start += PAGE_CACHE_SIZE;
3239         }
3240         return pg_uptodate;
3241 }
3242
3243 int extent_buffer_uptodate(struct extent_io_tree *tree,
3244                            struct extent_buffer *eb)
3245 {
3246         int ret = 0;
3247         unsigned long num_pages;
3248         unsigned long i;
3249         struct page *page;
3250         int pg_uptodate = 1;
3251
3252         if (eb->flags & EXTENT_UPTODATE)
3253                 return 1;
3254
3255         ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3256                            EXTENT_UPTODATE, 1);
3257         if (ret)
3258                 return ret;
3259
3260         num_pages = num_extent_pages(eb->start, eb->len);
3261         for (i = 0; i < num_pages; i++) {
3262                 page = extent_buffer_page(eb, i);
3263                 if (!PageUptodate(page)) {
3264                         pg_uptodate = 0;
3265                         break;
3266                 }
3267         }
3268         return pg_uptodate;
3269 }
3270 EXPORT_SYMBOL(extent_buffer_uptodate);
3271
3272 int read_extent_buffer_pages(struct extent_io_tree *tree,
3273                              struct extent_buffer *eb,
3274                              u64 start, int wait,
3275                              get_extent_t *get_extent, int mirror_num)
3276 {
3277         unsigned long i;
3278         unsigned long start_i;
3279         struct page *page;
3280         int err;
3281         int ret = 0;
3282         int locked_pages = 0;
3283         int all_uptodate = 1;
3284         int inc_all_pages = 0;
3285         unsigned long num_pages;
3286         struct bio *bio = NULL;
3287         unsigned long bio_flags = 0;
3288
3289         if (eb->flags & EXTENT_UPTODATE)
3290                 return 0;
3291
3292         if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3293                            EXTENT_UPTODATE, 1)) {
3294                 return 0;
3295         }
3296
3297         if (start) {
3298                 WARN_ON(start < eb->start);
3299                 start_i = (start >> PAGE_CACHE_SHIFT) -
3300                         (eb->start >> PAGE_CACHE_SHIFT);
3301         } else {
3302                 start_i = 0;
3303         }
3304
3305         num_pages = num_extent_pages(eb->start, eb->len);
3306         for (i = start_i; i < num_pages; i++) {
3307                 page = extent_buffer_page(eb, i);
3308                 if (!wait) {
3309                         if (!trylock_page(page))
3310                                 goto unlock_exit;
3311                 } else {
3312                         lock_page(page);
3313                 }
3314                 locked_pages++;
3315                 if (!PageUptodate(page))
3316                         all_uptodate = 0;
3317         }
3318         if (all_uptodate) {
3319                 if (start_i == 0)
3320                         eb->flags |= EXTENT_UPTODATE;
3321                 goto unlock_exit;
3322         }
3323
3324         for (i = start_i; i < num_pages; i++) {
3325                 page = extent_buffer_page(eb, i);
3326                 if (inc_all_pages)
3327                         page_cache_get(page);
3328                 if (!PageUptodate(page)) {
3329                         if (start_i == 0)
3330                                 inc_all_pages = 1;
3331                         ClearPageError(page);
3332                         err = __extent_read_full_page(tree, page,
3333                                                       get_extent, &bio,
3334                                                       mirror_num, &bio_flags);
3335                         if (err)
3336                                 ret = err;
3337                 } else {
3338                         unlock_page(page);
3339                 }
3340         }
3341
3342         if (bio)
3343                 submit_one_bio(READ, bio, mirror_num, bio_flags);
3344
3345         if (ret || !wait)
3346                 return ret;
3347
3348         for (i = start_i; i < num_pages; i++) {
3349                 page = extent_buffer_page(eb, i);
3350                 wait_on_page_locked(page);
3351                 if (!PageUptodate(page))
3352                         ret = -EIO;
3353         }
3354
3355         if (!ret)
3356                 eb->flags |= EXTENT_UPTODATE;
3357         return ret;
3358
3359 unlock_exit:
3360         i = start_i;
3361         while (locked_pages > 0) {
3362                 page = extent_buffer_page(eb, i);
3363                 i++;
3364                 unlock_page(page);
3365                 locked_pages--;
3366         }
3367         return ret;
3368 }
3369 EXPORT_SYMBOL(read_extent_buffer_pages);
3370
3371 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3372                         unsigned long start,
3373                         unsigned long len)
3374 {
3375         size_t cur;
3376         size_t offset;
3377         struct page *page;
3378         char *kaddr;
3379         char *dst = (char *)dstv;
3380         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3381         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3382
3383         WARN_ON(start > eb->len);
3384         WARN_ON(start + len > eb->start + eb->len);
3385
3386         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3387
3388         while (len > 0) {
3389                 page = extent_buffer_page(eb, i);
3390
3391                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3392                 kaddr = kmap_atomic(page, KM_USER1);
3393                 memcpy(dst, kaddr + offset, cur);
3394                 kunmap_atomic(kaddr, KM_USER1);
3395
3396                 dst += cur;
3397                 len -= cur;
3398                 offset = 0;
3399                 i++;
3400         }
3401 }
3402 EXPORT_SYMBOL(read_extent_buffer);
3403
3404 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3405                                unsigned long min_len, char **token, char **map,
3406                                unsigned long *map_start,
3407                                unsigned long *map_len, int km)
3408 {
3409         size_t offset = start & (PAGE_CACHE_SIZE - 1);
3410         char *kaddr;
3411         struct page *p;
3412         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3413         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3414         unsigned long end_i = (start_offset + start + min_len - 1) >>
3415                 PAGE_CACHE_SHIFT;
3416
3417         if (i != end_i)
3418                 return -EINVAL;
3419
3420         if (i == 0) {
3421                 offset = start_offset;
3422                 *map_start = 0;
3423         } else {
3424                 offset = 0;
3425                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3426         }
3427
3428         if (start + min_len > eb->len) {
3429                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3430                        "wanted %lu %lu\n", (unsigned long long)eb->start,
3431                        eb->len, start, min_len);
3432                 WARN_ON(1);
3433         }
3434
3435         p = extent_buffer_page(eb, i);
3436         kaddr = kmap_atomic(p, km);
3437         *token = kaddr;
3438         *map = kaddr + offset;
3439         *map_len = PAGE_CACHE_SIZE - offset;
3440         return 0;
3441 }
3442 EXPORT_SYMBOL(map_private_extent_buffer);
3443
3444 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3445                       unsigned long min_len,
3446                       char **token, char **map,
3447                       unsigned long *map_start,
3448                       unsigned long *map_len, int km)
3449 {
3450         int err;
3451         int save = 0;
3452         if (eb->map_token) {
3453                 unmap_extent_buffer(eb, eb->map_token, km);
3454                 eb->map_token = NULL;
3455                 save = 1;
3456                 WARN_ON(!mutex_is_locked(&eb->mutex));
3457         }
3458         err = map_private_extent_buffer(eb, start, min_len, token, map,
3459                                        map_start, map_len, km);
3460         if (!err && save) {
3461                 eb->map_token = *token;
3462                 eb->kaddr = *map;
3463                 eb->map_start = *map_start;
3464                 eb->map_len = *map_len;
3465         }
3466         return err;
3467 }
3468 EXPORT_SYMBOL(map_extent_buffer);
3469
3470 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3471 {
3472         kunmap_atomic(token, km);
3473 }
3474 EXPORT_SYMBOL(unmap_extent_buffer);
3475
3476 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3477                           unsigned long start,
3478                           unsigned long len)
3479 {
3480         size_t cur;
3481         size_t offset;
3482         struct page *page;
3483         char *kaddr;
3484         char *ptr = (char *)ptrv;
3485         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3486         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3487         int ret = 0;
3488
3489         WARN_ON(start > eb->len);
3490         WARN_ON(start + len > eb->start + eb->len);
3491
3492         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3493
3494         while (len > 0) {
3495                 page = extent_buffer_page(eb, i);
3496
3497                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3498
3499                 kaddr = kmap_atomic(page, KM_USER0);
3500                 ret = memcmp(ptr, kaddr + offset, cur);
3501                 kunmap_atomic(kaddr, KM_USER0);
3502                 if (ret)
3503                         break;
3504
3505                 ptr += cur;
3506                 len -= cur;
3507                 offset = 0;
3508                 i++;
3509         }
3510         return ret;
3511 }
3512 EXPORT_SYMBOL(memcmp_extent_buffer);
3513
3514 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3515                          unsigned long start, unsigned long len)
3516 {
3517         size_t cur;
3518         size_t offset;
3519         struct page *page;
3520         char *kaddr;
3521         char *src = (char *)srcv;
3522         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3523         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3524
3525         WARN_ON(start > eb->len);
3526         WARN_ON(start + len > eb->start + eb->len);
3527
3528         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3529
3530         while (len > 0) {
3531                 page = extent_buffer_page(eb, i);
3532                 WARN_ON(!PageUptodate(page));
3533
3534                 cur = min(len, PAGE_CACHE_SIZE - offset);
3535                 kaddr = kmap_atomic(page, KM_USER1);
3536                 memcpy(kaddr + offset, src, cur);
3537                 kunmap_atomic(kaddr, KM_USER1);
3538
3539                 src += cur;
3540                 len -= cur;
3541                 offset = 0;
3542                 i++;
3543         }
3544 }
3545 EXPORT_SYMBOL(write_extent_buffer);
3546
3547 void memset_extent_buffer(struct extent_buffer *eb, char c,
3548                           unsigned long start, unsigned long len)
3549 {
3550         size_t cur;
3551         size_t offset;
3552         struct page *page;
3553         char *kaddr;
3554         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3555         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3556
3557         WARN_ON(start > eb->len);
3558         WARN_ON(start + len > eb->start + eb->len);
3559
3560         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3561
3562         while (len > 0) {
3563                 page = extent_buffer_page(eb, i);
3564                 WARN_ON(!PageUptodate(page));
3565
3566                 cur = min(len, PAGE_CACHE_SIZE - offset);
3567                 kaddr = kmap_atomic(page, KM_USER0);
3568                 memset(kaddr + offset, c, cur);
3569                 kunmap_atomic(kaddr, KM_USER0);
3570
3571                 len -= cur;
3572                 offset = 0;
3573                 i++;
3574         }
3575 }
3576 EXPORT_SYMBOL(memset_extent_buffer);
3577
3578 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3579                         unsigned long dst_offset, unsigned long src_offset,
3580                         unsigned long len)
3581 {
3582         u64 dst_len = dst->len;
3583         size_t cur;
3584         size_t offset;
3585         struct page *page;
3586         char *kaddr;
3587         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3588         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3589
3590         WARN_ON(src->len != dst_len);
3591
3592         offset = (start_offset + dst_offset) &
3593                 ((unsigned long)PAGE_CACHE_SIZE - 1);
3594
3595         while (len > 0) {
3596                 page = extent_buffer_page(dst, i);
3597                 WARN_ON(!PageUptodate(page));
3598
3599                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3600
3601                 kaddr = kmap_atomic(page, KM_USER0);
3602                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3603                 kunmap_atomic(kaddr, KM_USER0);
3604
3605                 src_offset += cur;
3606                 len -= cur;
3607                 offset = 0;
3608                 i++;
3609         }
3610 }
3611 EXPORT_SYMBOL(copy_extent_buffer);
3612
3613 static void move_pages(struct page *dst_page, struct page *src_page,
3614                        unsigned long dst_off, unsigned long src_off,
3615                        unsigned long len)
3616 {
3617         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3618         if (dst_page == src_page) {
3619                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3620         } else {
3621                 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3622                 char *p = dst_kaddr + dst_off + len;
3623                 char *s = src_kaddr + src_off + len;
3624
3625                 while (len--)
3626                         *--p = *--s;
3627
3628                 kunmap_atomic(src_kaddr, KM_USER1);
3629         }
3630         kunmap_atomic(dst_kaddr, KM_USER0);
3631 }
3632
3633 static void copy_pages(struct page *dst_page, struct page *src_page,
3634                        unsigned long dst_off, unsigned long src_off,
3635                        unsigned long len)
3636 {
3637         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3638         char *src_kaddr;
3639
3640         if (dst_page != src_page)
3641                 src_kaddr = kmap_atomic(src_page, KM_USER1);
3642         else
3643                 src_kaddr = dst_kaddr;
3644
3645         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3646         kunmap_atomic(dst_kaddr, KM_USER0);
3647         if (dst_page != src_page)
3648                 kunmap_atomic(src_kaddr, KM_USER1);
3649 }
3650
3651 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3652                            unsigned long src_offset, unsigned long len)
3653 {
3654         size_t cur;
3655         size_t dst_off_in_page;
3656         size_t src_off_in_page;
3657         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3658         unsigned long dst_i;
3659         unsigned long src_i;
3660
3661         if (src_offset + len > dst->len) {
3662                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3663                        "len %lu dst len %lu\n", src_offset, len, dst->len);
3664                 BUG_ON(1);
3665         }
3666         if (dst_offset + len > dst->len) {
3667                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3668                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
3669                 BUG_ON(1);
3670         }
3671
3672         while (len > 0) {
3673                 dst_off_in_page = (start_offset + dst_offset) &
3674                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3675                 src_off_in_page = (start_offset + src_offset) &
3676                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3677
3678                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3679                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3680
3681                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3682                                                src_off_in_page));
3683                 cur = min_t(unsigned long, cur,
3684                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3685
3686                 copy_pages(extent_buffer_page(dst, dst_i),
3687                            extent_buffer_page(dst, src_i),
3688                            dst_off_in_page, src_off_in_page, cur);
3689
3690                 src_offset += cur;
3691                 dst_offset += cur;
3692                 len -= cur;
3693         }
3694 }
3695 EXPORT_SYMBOL(memcpy_extent_buffer);
3696
3697 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3698                            unsigned long src_offset, unsigned long len)
3699 {
3700         size_t cur;
3701         size_t dst_off_in_page;
3702         size_t src_off_in_page;
3703         unsigned long dst_end = dst_offset + len - 1;
3704         unsigned long src_end = src_offset + len - 1;
3705         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3706         unsigned long dst_i;
3707         unsigned long src_i;
3708
3709         if (src_offset + len > dst->len) {
3710                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3711                        "len %lu len %lu\n", src_offset, len, dst->len);
3712                 BUG_ON(1);
3713         }
3714         if (dst_offset + len > dst->len) {
3715                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3716                        "len %lu len %lu\n", dst_offset, len, dst->len);
3717                 BUG_ON(1);
3718         }
3719         if (dst_offset < src_offset) {
3720                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3721                 return;
3722         }
3723         while (len > 0) {
3724                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3725                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3726
3727                 dst_off_in_page = (start_offset + dst_end) &
3728                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3729                 src_off_in_page = (start_offset + src_end) &
3730                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3731
3732                 cur = min_t(unsigned long, len, src_off_in_page + 1);
3733                 cur = min(cur, dst_off_in_page + 1);
3734                 move_pages(extent_buffer_page(dst, dst_i),
3735                            extent_buffer_page(dst, src_i),
3736                            dst_off_in_page - cur + 1,
3737                            src_off_in_page - cur + 1, cur);
3738
3739                 dst_end -= cur;
3740                 src_end -= cur;
3741                 len -= cur;
3742         }
3743 }
3744 EXPORT_SYMBOL(memmove_extent_buffer);
3745
3746 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3747 {
3748         u64 start = page_offset(page);
3749         struct extent_buffer *eb;
3750         int ret = 1;
3751         unsigned long i;
3752         unsigned long num_pages;
3753
3754         spin_lock(&tree->buffer_lock);
3755         eb = buffer_search(tree, start);
3756         if (!eb)
3757                 goto out;
3758
3759         if (atomic_read(&eb->refs) > 1) {
3760                 ret = 0;
3761                 goto out;
3762         }
3763         /* at this point we can safely release the extent buffer */
3764         num_pages = num_extent_pages(eb->start, eb->len);
3765         for (i = 0; i < num_pages; i++)
3766                 page_cache_release(extent_buffer_page(eb, i));
3767         rb_erase(&eb->rb_node, &tree->buffer);
3768         __free_extent_buffer(eb);
3769 out:
3770         spin_unlock(&tree->buffer_lock);
3771         return ret;
3772 }
3773 EXPORT_SYMBOL(try_release_extent_buffer);