Btrfs: avoid tree log commit when there are no changes
[safe/jmp/linux-2.6] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 static void free_fs_root(struct btrfs_root *root);
45
46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
47
48 /*
49  * end_io_wq structs are used to do processing in task context when an IO is
50  * complete.  This is used during reads to verify checksums, and it is used
51  * by writes to insert metadata for new file extents after IO is complete.
52  */
53 struct end_io_wq {
54         struct bio *bio;
55         bio_end_io_t *end_io;
56         void *private;
57         struct btrfs_fs_info *info;
58         int error;
59         int metadata;
60         struct list_head list;
61         struct btrfs_work work;
62 };
63
64 /*
65  * async submit bios are used to offload expensive checksumming
66  * onto the worker threads.  They checksum file and metadata bios
67  * just before they are sent down the IO stack.
68  */
69 struct async_submit_bio {
70         struct inode *inode;
71         struct bio *bio;
72         struct list_head list;
73         extent_submit_bio_hook_t *submit_bio_start;
74         extent_submit_bio_hook_t *submit_bio_done;
75         int rw;
76         int mirror_num;
77         unsigned long bio_flags;
78         struct btrfs_work work;
79 };
80
81 /* These are used to set the lockdep class on the extent buffer locks.
82  * The class is set by the readpage_end_io_hook after the buffer has
83  * passed csum validation but before the pages are unlocked.
84  *
85  * The lockdep class is also set by btrfs_init_new_buffer on freshly
86  * allocated blocks.
87  *
88  * The class is based on the level in the tree block, which allows lockdep
89  * to know that lower nodes nest inside the locks of higher nodes.
90  *
91  * We also add a check to make sure the highest level of the tree is
92  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
93  * code needs update as well.
94  */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
97 #  error
98 # endif
99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
101         /* leaf */
102         "btrfs-extent-00",
103         "btrfs-extent-01",
104         "btrfs-extent-02",
105         "btrfs-extent-03",
106         "btrfs-extent-04",
107         "btrfs-extent-05",
108         "btrfs-extent-06",
109         "btrfs-extent-07",
110         /* highest possible level */
111         "btrfs-extent-08",
112 };
113 #endif
114
115 /*
116  * extents on the btree inode are pretty simple, there's one extent
117  * that covers the entire device
118  */
119 static struct extent_map *btree_get_extent(struct inode *inode,
120                 struct page *page, size_t page_offset, u64 start, u64 len,
121                 int create)
122 {
123         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
124         struct extent_map *em;
125         int ret;
126
127         read_lock(&em_tree->lock);
128         em = lookup_extent_mapping(em_tree, start, len);
129         if (em) {
130                 em->bdev =
131                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
132                 read_unlock(&em_tree->lock);
133                 goto out;
134         }
135         read_unlock(&em_tree->lock);
136
137         em = alloc_extent_map(GFP_NOFS);
138         if (!em) {
139                 em = ERR_PTR(-ENOMEM);
140                 goto out;
141         }
142         em->start = 0;
143         em->len = (u64)-1;
144         em->block_len = (u64)-1;
145         em->block_start = 0;
146         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
147
148         write_lock(&em_tree->lock);
149         ret = add_extent_mapping(em_tree, em);
150         if (ret == -EEXIST) {
151                 u64 failed_start = em->start;
152                 u64 failed_len = em->len;
153
154                 free_extent_map(em);
155                 em = lookup_extent_mapping(em_tree, start, len);
156                 if (em) {
157                         ret = 0;
158                 } else {
159                         em = lookup_extent_mapping(em_tree, failed_start,
160                                                    failed_len);
161                         ret = -EIO;
162                 }
163         } else if (ret) {
164                 free_extent_map(em);
165                 em = NULL;
166         }
167         write_unlock(&em_tree->lock);
168
169         if (ret)
170                 em = ERR_PTR(ret);
171 out:
172         return em;
173 }
174
175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
176 {
177         return crc32c(seed, data, len);
178 }
179
180 void btrfs_csum_final(u32 crc, char *result)
181 {
182         *(__le32 *)result = ~cpu_to_le32(crc);
183 }
184
185 /*
186  * compute the csum for a btree block, and either verify it or write it
187  * into the csum field of the block.
188  */
189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
190                            int verify)
191 {
192         u16 csum_size =
193                 btrfs_super_csum_size(&root->fs_info->super_copy);
194         char *result = NULL;
195         unsigned long len;
196         unsigned long cur_len;
197         unsigned long offset = BTRFS_CSUM_SIZE;
198         char *map_token = NULL;
199         char *kaddr;
200         unsigned long map_start;
201         unsigned long map_len;
202         int err;
203         u32 crc = ~(u32)0;
204         unsigned long inline_result;
205
206         len = buf->len - offset;
207         while (len > 0) {
208                 err = map_private_extent_buffer(buf, offset, 32,
209                                         &map_token, &kaddr,
210                                         &map_start, &map_len, KM_USER0);
211                 if (err)
212                         return 1;
213                 cur_len = min(len, map_len - (offset - map_start));
214                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
215                                       crc, cur_len);
216                 len -= cur_len;
217                 offset += cur_len;
218                 unmap_extent_buffer(buf, map_token, KM_USER0);
219         }
220         if (csum_size > sizeof(inline_result)) {
221                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
222                 if (!result)
223                         return 1;
224         } else {
225                 result = (char *)&inline_result;
226         }
227
228         btrfs_csum_final(crc, result);
229
230         if (verify) {
231                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232                         u32 val;
233                         u32 found = 0;
234                         memcpy(&found, result, csum_size);
235
236                         read_extent_buffer(buf, &val, 0, csum_size);
237                         if (printk_ratelimit()) {
238                                 printk(KERN_INFO "btrfs: %s checksum verify "
239                                        "failed on %llu wanted %X found %X "
240                                        "level %d\n",
241                                        root->fs_info->sb->s_id,
242                                        (unsigned long long)buf->start, val, found,
243                                        btrfs_header_level(buf));
244                         }
245                         if (result != (char *)&inline_result)
246                                 kfree(result);
247                         return 1;
248                 }
249         } else {
250                 write_extent_buffer(buf, result, 0, csum_size);
251         }
252         if (result != (char *)&inline_result)
253                 kfree(result);
254         return 0;
255 }
256
257 /*
258  * we can't consider a given block up to date unless the transid of the
259  * block matches the transid in the parent node's pointer.  This is how we
260  * detect blocks that either didn't get written at all or got written
261  * in the wrong place.
262  */
263 static int verify_parent_transid(struct extent_io_tree *io_tree,
264                                  struct extent_buffer *eb, u64 parent_transid)
265 {
266         int ret;
267
268         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269                 return 0;
270
271         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
272         if (extent_buffer_uptodate(io_tree, eb) &&
273             btrfs_header_generation(eb) == parent_transid) {
274                 ret = 0;
275                 goto out;
276         }
277         if (printk_ratelimit()) {
278                 printk("parent transid verify failed on %llu wanted %llu "
279                        "found %llu\n",
280                        (unsigned long long)eb->start,
281                        (unsigned long long)parent_transid,
282                        (unsigned long long)btrfs_header_generation(eb));
283         }
284         ret = 1;
285         clear_extent_buffer_uptodate(io_tree, eb);
286 out:
287         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
288                       GFP_NOFS);
289         return ret;
290 }
291
292 /*
293  * helper to read a given tree block, doing retries as required when
294  * the checksums don't match and we have alternate mirrors to try.
295  */
296 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
297                                           struct extent_buffer *eb,
298                                           u64 start, u64 parent_transid)
299 {
300         struct extent_io_tree *io_tree;
301         int ret;
302         int num_copies = 0;
303         int mirror_num = 0;
304
305         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
306         while (1) {
307                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
308                                                btree_get_extent, mirror_num);
309                 if (!ret &&
310                     !verify_parent_transid(io_tree, eb, parent_transid))
311                         return ret;
312
313                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
314                                               eb->start, eb->len);
315                 if (num_copies == 1)
316                         return ret;
317
318                 mirror_num++;
319                 if (mirror_num > num_copies)
320                         return ret;
321         }
322         return -EIO;
323 }
324
325 /*
326  * checksum a dirty tree block before IO.  This has extra checks to make sure
327  * we only fill in the checksum field in the first page of a multi-page block
328  */
329
330 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
331 {
332         struct extent_io_tree *tree;
333         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
334         u64 found_start;
335         int found_level;
336         unsigned long len;
337         struct extent_buffer *eb;
338         int ret;
339
340         tree = &BTRFS_I(page->mapping->host)->io_tree;
341
342         if (page->private == EXTENT_PAGE_PRIVATE)
343                 goto out;
344         if (!page->private)
345                 goto out;
346         len = page->private >> 2;
347         WARN_ON(len == 0);
348
349         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
351                                              btrfs_header_generation(eb));
352         BUG_ON(ret);
353         found_start = btrfs_header_bytenr(eb);
354         if (found_start != start) {
355                 WARN_ON(1);
356                 goto err;
357         }
358         if (eb->first_page != page) {
359                 WARN_ON(1);
360                 goto err;
361         }
362         if (!PageUptodate(page)) {
363                 WARN_ON(1);
364                 goto err;
365         }
366         found_level = btrfs_header_level(eb);
367
368         csum_tree_block(root, eb, 0);
369 err:
370         free_extent_buffer(eb);
371 out:
372         return 0;
373 }
374
375 static int check_tree_block_fsid(struct btrfs_root *root,
376                                  struct extent_buffer *eb)
377 {
378         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
379         u8 fsid[BTRFS_UUID_SIZE];
380         int ret = 1;
381
382         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
383                            BTRFS_FSID_SIZE);
384         while (fs_devices) {
385                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
386                         ret = 0;
387                         break;
388                 }
389                 fs_devices = fs_devices->seed;
390         }
391         return ret;
392 }
393
394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
395 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
396 {
397         lockdep_set_class_and_name(&eb->lock,
398                            &btrfs_eb_class[level],
399                            btrfs_eb_name[level]);
400 }
401 #endif
402
403 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
404                                struct extent_state *state)
405 {
406         struct extent_io_tree *tree;
407         u64 found_start;
408         int found_level;
409         unsigned long len;
410         struct extent_buffer *eb;
411         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
412         int ret = 0;
413
414         tree = &BTRFS_I(page->mapping->host)->io_tree;
415         if (page->private == EXTENT_PAGE_PRIVATE)
416                 goto out;
417         if (!page->private)
418                 goto out;
419
420         len = page->private >> 2;
421         WARN_ON(len == 0);
422
423         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
424
425         found_start = btrfs_header_bytenr(eb);
426         if (found_start != start) {
427                 if (printk_ratelimit()) {
428                         printk(KERN_INFO "btrfs bad tree block start "
429                                "%llu %llu\n",
430                                (unsigned long long)found_start,
431                                (unsigned long long)eb->start);
432                 }
433                 ret = -EIO;
434                 goto err;
435         }
436         if (eb->first_page != page) {
437                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
438                        eb->first_page->index, page->index);
439                 WARN_ON(1);
440                 ret = -EIO;
441                 goto err;
442         }
443         if (check_tree_block_fsid(root, eb)) {
444                 if (printk_ratelimit()) {
445                         printk(KERN_INFO "btrfs bad fsid on block %llu\n",
446                                (unsigned long long)eb->start);
447                 }
448                 ret = -EIO;
449                 goto err;
450         }
451         found_level = btrfs_header_level(eb);
452
453         btrfs_set_buffer_lockdep_class(eb, found_level);
454
455         ret = csum_tree_block(root, eb, 1);
456         if (ret)
457                 ret = -EIO;
458
459         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
460         end = eb->start + end - 1;
461 err:
462         free_extent_buffer(eb);
463 out:
464         return ret;
465 }
466
467 static void end_workqueue_bio(struct bio *bio, int err)
468 {
469         struct end_io_wq *end_io_wq = bio->bi_private;
470         struct btrfs_fs_info *fs_info;
471
472         fs_info = end_io_wq->info;
473         end_io_wq->error = err;
474         end_io_wq->work.func = end_workqueue_fn;
475         end_io_wq->work.flags = 0;
476
477         if (bio->bi_rw & (1 << BIO_RW)) {
478                 if (end_io_wq->metadata)
479                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
480                                            &end_io_wq->work);
481                 else
482                         btrfs_queue_worker(&fs_info->endio_write_workers,
483                                            &end_io_wq->work);
484         } else {
485                 if (end_io_wq->metadata)
486                         btrfs_queue_worker(&fs_info->endio_meta_workers,
487                                            &end_io_wq->work);
488                 else
489                         btrfs_queue_worker(&fs_info->endio_workers,
490                                            &end_io_wq->work);
491         }
492 }
493
494 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
495                         int metadata)
496 {
497         struct end_io_wq *end_io_wq;
498         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
499         if (!end_io_wq)
500                 return -ENOMEM;
501
502         end_io_wq->private = bio->bi_private;
503         end_io_wq->end_io = bio->bi_end_io;
504         end_io_wq->info = info;
505         end_io_wq->error = 0;
506         end_io_wq->bio = bio;
507         end_io_wq->metadata = metadata;
508
509         bio->bi_private = end_io_wq;
510         bio->bi_end_io = end_workqueue_bio;
511         return 0;
512 }
513
514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
515 {
516         unsigned long limit = min_t(unsigned long,
517                                     info->workers.max_workers,
518                                     info->fs_devices->open_devices);
519         return 256 * limit;
520 }
521
522 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
523 {
524         return atomic_read(&info->nr_async_bios) >
525                 btrfs_async_submit_limit(info);
526 }
527
528 static void run_one_async_start(struct btrfs_work *work)
529 {
530         struct btrfs_fs_info *fs_info;
531         struct async_submit_bio *async;
532
533         async = container_of(work, struct  async_submit_bio, work);
534         fs_info = BTRFS_I(async->inode)->root->fs_info;
535         async->submit_bio_start(async->inode, async->rw, async->bio,
536                                async->mirror_num, async->bio_flags);
537 }
538
539 static void run_one_async_done(struct btrfs_work *work)
540 {
541         struct btrfs_fs_info *fs_info;
542         struct async_submit_bio *async;
543         int limit;
544
545         async = container_of(work, struct  async_submit_bio, work);
546         fs_info = BTRFS_I(async->inode)->root->fs_info;
547
548         limit = btrfs_async_submit_limit(fs_info);
549         limit = limit * 2 / 3;
550
551         atomic_dec(&fs_info->nr_async_submits);
552
553         if (atomic_read(&fs_info->nr_async_submits) < limit &&
554             waitqueue_active(&fs_info->async_submit_wait))
555                 wake_up(&fs_info->async_submit_wait);
556
557         async->submit_bio_done(async->inode, async->rw, async->bio,
558                                async->mirror_num, async->bio_flags);
559 }
560
561 static void run_one_async_free(struct btrfs_work *work)
562 {
563         struct async_submit_bio *async;
564
565         async = container_of(work, struct  async_submit_bio, work);
566         kfree(async);
567 }
568
569 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
570                         int rw, struct bio *bio, int mirror_num,
571                         unsigned long bio_flags,
572                         extent_submit_bio_hook_t *submit_bio_start,
573                         extent_submit_bio_hook_t *submit_bio_done)
574 {
575         struct async_submit_bio *async;
576
577         async = kmalloc(sizeof(*async), GFP_NOFS);
578         if (!async)
579                 return -ENOMEM;
580
581         async->inode = inode;
582         async->rw = rw;
583         async->bio = bio;
584         async->mirror_num = mirror_num;
585         async->submit_bio_start = submit_bio_start;
586         async->submit_bio_done = submit_bio_done;
587
588         async->work.func = run_one_async_start;
589         async->work.ordered_func = run_one_async_done;
590         async->work.ordered_free = run_one_async_free;
591
592         async->work.flags = 0;
593         async->bio_flags = bio_flags;
594
595         atomic_inc(&fs_info->nr_async_submits);
596
597         if (rw & (1 << BIO_RW_SYNCIO))
598                 btrfs_set_work_high_prio(&async->work);
599
600         btrfs_queue_worker(&fs_info->workers, &async->work);
601
602         while (atomic_read(&fs_info->async_submit_draining) &&
603               atomic_read(&fs_info->nr_async_submits)) {
604                 wait_event(fs_info->async_submit_wait,
605                            (atomic_read(&fs_info->nr_async_submits) == 0));
606         }
607
608         return 0;
609 }
610
611 static int btree_csum_one_bio(struct bio *bio)
612 {
613         struct bio_vec *bvec = bio->bi_io_vec;
614         int bio_index = 0;
615         struct btrfs_root *root;
616
617         WARN_ON(bio->bi_vcnt <= 0);
618         while (bio_index < bio->bi_vcnt) {
619                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
620                 csum_dirty_buffer(root, bvec->bv_page);
621                 bio_index++;
622                 bvec++;
623         }
624         return 0;
625 }
626
627 static int __btree_submit_bio_start(struct inode *inode, int rw,
628                                     struct bio *bio, int mirror_num,
629                                     unsigned long bio_flags)
630 {
631         /*
632          * when we're called for a write, we're already in the async
633          * submission context.  Just jump into btrfs_map_bio
634          */
635         btree_csum_one_bio(bio);
636         return 0;
637 }
638
639 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
640                                  int mirror_num, unsigned long bio_flags)
641 {
642         /*
643          * when we're called for a write, we're already in the async
644          * submission context.  Just jump into btrfs_map_bio
645          */
646         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
647 }
648
649 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
650                                  int mirror_num, unsigned long bio_flags)
651 {
652         int ret;
653
654         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
655                                           bio, 1);
656         BUG_ON(ret);
657
658         if (!(rw & (1 << BIO_RW))) {
659                 /*
660                  * called for a read, do the setup so that checksum validation
661                  * can happen in the async kernel threads
662                  */
663                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
664                                      mirror_num, 0);
665         }
666
667         /*
668          * kthread helpers are used to submit writes so that checksumming
669          * can happen in parallel across all CPUs
670          */
671         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
672                                    inode, rw, bio, mirror_num, 0,
673                                    __btree_submit_bio_start,
674                                    __btree_submit_bio_done);
675 }
676
677 static int btree_writepage(struct page *page, struct writeback_control *wbc)
678 {
679         struct extent_io_tree *tree;
680         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681         struct extent_buffer *eb;
682         int was_dirty;
683
684         tree = &BTRFS_I(page->mapping->host)->io_tree;
685         if (!(current->flags & PF_MEMALLOC)) {
686                 return extent_write_full_page(tree, page,
687                                               btree_get_extent, wbc);
688         }
689
690         redirty_page_for_writepage(wbc, page);
691         eb = btrfs_find_tree_block(root, page_offset(page),
692                                       PAGE_CACHE_SIZE);
693         WARN_ON(!eb);
694
695         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
696         if (!was_dirty) {
697                 spin_lock(&root->fs_info->delalloc_lock);
698                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
699                 spin_unlock(&root->fs_info->delalloc_lock);
700         }
701         free_extent_buffer(eb);
702
703         unlock_page(page);
704         return 0;
705 }
706
707 static int btree_writepages(struct address_space *mapping,
708                             struct writeback_control *wbc)
709 {
710         struct extent_io_tree *tree;
711         tree = &BTRFS_I(mapping->host)->io_tree;
712         if (wbc->sync_mode == WB_SYNC_NONE) {
713                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
714                 u64 num_dirty;
715                 unsigned long thresh = 32 * 1024 * 1024;
716
717                 if (wbc->for_kupdate)
718                         return 0;
719
720                 /* this is a bit racy, but that's ok */
721                 num_dirty = root->fs_info->dirty_metadata_bytes;
722                 if (num_dirty < thresh)
723                         return 0;
724         }
725         return extent_writepages(tree, mapping, btree_get_extent, wbc);
726 }
727
728 static int btree_readpage(struct file *file, struct page *page)
729 {
730         struct extent_io_tree *tree;
731         tree = &BTRFS_I(page->mapping->host)->io_tree;
732         return extent_read_full_page(tree, page, btree_get_extent);
733 }
734
735 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
736 {
737         struct extent_io_tree *tree;
738         struct extent_map_tree *map;
739         int ret;
740
741         if (PageWriteback(page) || PageDirty(page))
742                 return 0;
743
744         tree = &BTRFS_I(page->mapping->host)->io_tree;
745         map = &BTRFS_I(page->mapping->host)->extent_tree;
746
747         ret = try_release_extent_state(map, tree, page, gfp_flags);
748         if (!ret)
749                 return 0;
750
751         ret = try_release_extent_buffer(tree, page);
752         if (ret == 1) {
753                 ClearPagePrivate(page);
754                 set_page_private(page, 0);
755                 page_cache_release(page);
756         }
757
758         return ret;
759 }
760
761 static void btree_invalidatepage(struct page *page, unsigned long offset)
762 {
763         struct extent_io_tree *tree;
764         tree = &BTRFS_I(page->mapping->host)->io_tree;
765         extent_invalidatepage(tree, page, offset);
766         btree_releasepage(page, GFP_NOFS);
767         if (PagePrivate(page)) {
768                 printk(KERN_WARNING "btrfs warning page private not zero "
769                        "on page %llu\n", (unsigned long long)page_offset(page));
770                 ClearPagePrivate(page);
771                 set_page_private(page, 0);
772                 page_cache_release(page);
773         }
774 }
775
776 static struct address_space_operations btree_aops = {
777         .readpage       = btree_readpage,
778         .writepage      = btree_writepage,
779         .writepages     = btree_writepages,
780         .releasepage    = btree_releasepage,
781         .invalidatepage = btree_invalidatepage,
782         .sync_page      = block_sync_page,
783 };
784
785 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
786                          u64 parent_transid)
787 {
788         struct extent_buffer *buf = NULL;
789         struct inode *btree_inode = root->fs_info->btree_inode;
790         int ret = 0;
791
792         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
793         if (!buf)
794                 return 0;
795         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
796                                  buf, 0, 0, btree_get_extent, 0);
797         free_extent_buffer(buf);
798         return ret;
799 }
800
801 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
802                                             u64 bytenr, u32 blocksize)
803 {
804         struct inode *btree_inode = root->fs_info->btree_inode;
805         struct extent_buffer *eb;
806         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
807                                 bytenr, blocksize, GFP_NOFS);
808         return eb;
809 }
810
811 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
812                                                  u64 bytenr, u32 blocksize)
813 {
814         struct inode *btree_inode = root->fs_info->btree_inode;
815         struct extent_buffer *eb;
816
817         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
818                                  bytenr, blocksize, NULL, GFP_NOFS);
819         return eb;
820 }
821
822
823 int btrfs_write_tree_block(struct extent_buffer *buf)
824 {
825         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
826                                       buf->start + buf->len - 1, WB_SYNC_ALL);
827 }
828
829 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
830 {
831         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
832                                   buf->start >> PAGE_CACHE_SHIFT,
833                                   (buf->start + buf->len - 1) >>
834                                    PAGE_CACHE_SHIFT);
835 }
836
837 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
838                                       u32 blocksize, u64 parent_transid)
839 {
840         struct extent_buffer *buf = NULL;
841         struct inode *btree_inode = root->fs_info->btree_inode;
842         struct extent_io_tree *io_tree;
843         int ret;
844
845         io_tree = &BTRFS_I(btree_inode)->io_tree;
846
847         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
848         if (!buf)
849                 return NULL;
850
851         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
852
853         if (ret == 0)
854                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
855         return buf;
856
857 }
858
859 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
860                      struct extent_buffer *buf)
861 {
862         struct inode *btree_inode = root->fs_info->btree_inode;
863         if (btrfs_header_generation(buf) ==
864             root->fs_info->running_transaction->transid) {
865                 btrfs_assert_tree_locked(buf);
866
867                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
868                         spin_lock(&root->fs_info->delalloc_lock);
869                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
870                                 root->fs_info->dirty_metadata_bytes -= buf->len;
871                         else
872                                 WARN_ON(1);
873                         spin_unlock(&root->fs_info->delalloc_lock);
874                 }
875
876                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
877                 btrfs_set_lock_blocking(buf);
878                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
879                                           buf);
880         }
881         return 0;
882 }
883
884 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
885                         u32 stripesize, struct btrfs_root *root,
886                         struct btrfs_fs_info *fs_info,
887                         u64 objectid)
888 {
889         root->node = NULL;
890         root->commit_root = NULL;
891         root->sectorsize = sectorsize;
892         root->nodesize = nodesize;
893         root->leafsize = leafsize;
894         root->stripesize = stripesize;
895         root->ref_cows = 0;
896         root->track_dirty = 0;
897
898         root->fs_info = fs_info;
899         root->objectid = objectid;
900         root->last_trans = 0;
901         root->highest_objectid = 0;
902         root->name = NULL;
903         root->in_sysfs = 0;
904         root->inode_tree.rb_node = NULL;
905
906         INIT_LIST_HEAD(&root->dirty_list);
907         INIT_LIST_HEAD(&root->orphan_list);
908         INIT_LIST_HEAD(&root->root_list);
909         spin_lock_init(&root->node_lock);
910         spin_lock_init(&root->list_lock);
911         spin_lock_init(&root->inode_lock);
912         mutex_init(&root->objectid_mutex);
913         mutex_init(&root->log_mutex);
914         init_waitqueue_head(&root->log_writer_wait);
915         init_waitqueue_head(&root->log_commit_wait[0]);
916         init_waitqueue_head(&root->log_commit_wait[1]);
917         atomic_set(&root->log_commit[0], 0);
918         atomic_set(&root->log_commit[1], 0);
919         atomic_set(&root->log_writers, 0);
920         root->log_batch = 0;
921         root->log_transid = 0;
922         root->last_log_commit = 0;
923         extent_io_tree_init(&root->dirty_log_pages,
924                              fs_info->btree_inode->i_mapping, GFP_NOFS);
925
926         memset(&root->root_key, 0, sizeof(root->root_key));
927         memset(&root->root_item, 0, sizeof(root->root_item));
928         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
929         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
930         root->defrag_trans_start = fs_info->generation;
931         init_completion(&root->kobj_unregister);
932         root->defrag_running = 0;
933         root->defrag_level = 0;
934         root->root_key.objectid = objectid;
935         root->anon_super.s_root = NULL;
936         root->anon_super.s_dev = 0;
937         INIT_LIST_HEAD(&root->anon_super.s_list);
938         INIT_LIST_HEAD(&root->anon_super.s_instances);
939         init_rwsem(&root->anon_super.s_umount);
940
941         return 0;
942 }
943
944 static int find_and_setup_root(struct btrfs_root *tree_root,
945                                struct btrfs_fs_info *fs_info,
946                                u64 objectid,
947                                struct btrfs_root *root)
948 {
949         int ret;
950         u32 blocksize;
951         u64 generation;
952
953         __setup_root(tree_root->nodesize, tree_root->leafsize,
954                      tree_root->sectorsize, tree_root->stripesize,
955                      root, fs_info, objectid);
956         ret = btrfs_find_last_root(tree_root, objectid,
957                                    &root->root_item, &root->root_key);
958         if (ret > 0)
959                 return -ENOENT;
960         BUG_ON(ret);
961
962         generation = btrfs_root_generation(&root->root_item);
963         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
964         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
965                                      blocksize, generation);
966         BUG_ON(!root->node);
967         root->commit_root = btrfs_root_node(root);
968         return 0;
969 }
970
971 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
972                              struct btrfs_fs_info *fs_info)
973 {
974         struct extent_buffer *eb;
975         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
976         u64 start = 0;
977         u64 end = 0;
978         int ret;
979
980         if (!log_root_tree)
981                 return 0;
982
983         while (1) {
984                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
985                                     0, &start, &end, EXTENT_DIRTY);
986                 if (ret)
987                         break;
988
989                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
990                                    start, end, GFP_NOFS);
991         }
992         eb = fs_info->log_root_tree->node;
993
994         WARN_ON(btrfs_header_level(eb) != 0);
995         WARN_ON(btrfs_header_nritems(eb) != 0);
996
997         ret = btrfs_free_reserved_extent(fs_info->tree_root,
998                                 eb->start, eb->len);
999         BUG_ON(ret);
1000
1001         free_extent_buffer(eb);
1002         kfree(fs_info->log_root_tree);
1003         fs_info->log_root_tree = NULL;
1004         return 0;
1005 }
1006
1007 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1008                                          struct btrfs_fs_info *fs_info)
1009 {
1010         struct btrfs_root *root;
1011         struct btrfs_root *tree_root = fs_info->tree_root;
1012         struct extent_buffer *leaf;
1013
1014         root = kzalloc(sizeof(*root), GFP_NOFS);
1015         if (!root)
1016                 return ERR_PTR(-ENOMEM);
1017
1018         __setup_root(tree_root->nodesize, tree_root->leafsize,
1019                      tree_root->sectorsize, tree_root->stripesize,
1020                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1021
1022         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1023         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1024         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1025         /*
1026          * log trees do not get reference counted because they go away
1027          * before a real commit is actually done.  They do store pointers
1028          * to file data extents, and those reference counts still get
1029          * updated (along with back refs to the log tree).
1030          */
1031         root->ref_cows = 0;
1032
1033         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1034                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1035         if (IS_ERR(leaf)) {
1036                 kfree(root);
1037                 return ERR_CAST(leaf);
1038         }
1039
1040         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1041         btrfs_set_header_bytenr(leaf, leaf->start);
1042         btrfs_set_header_generation(leaf, trans->transid);
1043         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1044         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1045         root->node = leaf;
1046
1047         write_extent_buffer(root->node, root->fs_info->fsid,
1048                             (unsigned long)btrfs_header_fsid(root->node),
1049                             BTRFS_FSID_SIZE);
1050         btrfs_mark_buffer_dirty(root->node);
1051         btrfs_tree_unlock(root->node);
1052         return root;
1053 }
1054
1055 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1056                              struct btrfs_fs_info *fs_info)
1057 {
1058         struct btrfs_root *log_root;
1059
1060         log_root = alloc_log_tree(trans, fs_info);
1061         if (IS_ERR(log_root))
1062                 return PTR_ERR(log_root);
1063         WARN_ON(fs_info->log_root_tree);
1064         fs_info->log_root_tree = log_root;
1065         return 0;
1066 }
1067
1068 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1069                        struct btrfs_root *root)
1070 {
1071         struct btrfs_root *log_root;
1072         struct btrfs_inode_item *inode_item;
1073
1074         log_root = alloc_log_tree(trans, root->fs_info);
1075         if (IS_ERR(log_root))
1076                 return PTR_ERR(log_root);
1077
1078         log_root->last_trans = trans->transid;
1079         log_root->root_key.offset = root->root_key.objectid;
1080
1081         inode_item = &log_root->root_item.inode;
1082         inode_item->generation = cpu_to_le64(1);
1083         inode_item->size = cpu_to_le64(3);
1084         inode_item->nlink = cpu_to_le32(1);
1085         inode_item->nbytes = cpu_to_le64(root->leafsize);
1086         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1087
1088         btrfs_set_root_node(&log_root->root_item, log_root->node);
1089
1090         WARN_ON(root->log_root);
1091         root->log_root = log_root;
1092         root->log_transid = 0;
1093         root->last_log_commit = 0;
1094         return 0;
1095 }
1096
1097 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1098                                                struct btrfs_key *location)
1099 {
1100         struct btrfs_root *root;
1101         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1102         struct btrfs_path *path;
1103         struct extent_buffer *l;
1104         u64 generation;
1105         u32 blocksize;
1106         int ret = 0;
1107
1108         root = kzalloc(sizeof(*root), GFP_NOFS);
1109         if (!root)
1110                 return ERR_PTR(-ENOMEM);
1111         if (location->offset == (u64)-1) {
1112                 ret = find_and_setup_root(tree_root, fs_info,
1113                                           location->objectid, root);
1114                 if (ret) {
1115                         kfree(root);
1116                         return ERR_PTR(ret);
1117                 }
1118                 goto out;
1119         }
1120
1121         __setup_root(tree_root->nodesize, tree_root->leafsize,
1122                      tree_root->sectorsize, tree_root->stripesize,
1123                      root, fs_info, location->objectid);
1124
1125         path = btrfs_alloc_path();
1126         BUG_ON(!path);
1127         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1128         if (ret == 0) {
1129                 l = path->nodes[0];
1130                 read_extent_buffer(l, &root->root_item,
1131                                 btrfs_item_ptr_offset(l, path->slots[0]),
1132                                 sizeof(root->root_item));
1133                 memcpy(&root->root_key, location, sizeof(*location));
1134         }
1135         btrfs_free_path(path);
1136         if (ret) {
1137                 if (ret > 0)
1138                         ret = -ENOENT;
1139                 return ERR_PTR(ret);
1140         }
1141
1142         generation = btrfs_root_generation(&root->root_item);
1143         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1144         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1145                                      blocksize, generation);
1146         root->commit_root = btrfs_root_node(root);
1147         BUG_ON(!root->node);
1148 out:
1149         if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1150                 root->ref_cows = 1;
1151
1152         return root;
1153 }
1154
1155 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1156                                         u64 root_objectid)
1157 {
1158         struct btrfs_root *root;
1159
1160         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1161                 return fs_info->tree_root;
1162         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1163                 return fs_info->extent_root;
1164
1165         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1166                                  (unsigned long)root_objectid);
1167         return root;
1168 }
1169
1170 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1171                                               struct btrfs_key *location)
1172 {
1173         struct btrfs_root *root;
1174         int ret;
1175
1176         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1177                 return fs_info->tree_root;
1178         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1179                 return fs_info->extent_root;
1180         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1181                 return fs_info->chunk_root;
1182         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1183                 return fs_info->dev_root;
1184         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1185                 return fs_info->csum_root;
1186 again:
1187         spin_lock(&fs_info->fs_roots_radix_lock);
1188         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1189                                  (unsigned long)location->objectid);
1190         spin_unlock(&fs_info->fs_roots_radix_lock);
1191         if (root)
1192                 return root;
1193
1194         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1195         if (ret == 0)
1196                 ret = -ENOENT;
1197         if (ret < 0)
1198                 return ERR_PTR(ret);
1199
1200         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1201         if (IS_ERR(root))
1202                 return root;
1203
1204         WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1205         set_anon_super(&root->anon_super, NULL);
1206
1207         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1208         if (ret)
1209                 goto fail;
1210
1211         spin_lock(&fs_info->fs_roots_radix_lock);
1212         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1213                                 (unsigned long)root->root_key.objectid,
1214                                 root);
1215         if (ret == 0)
1216                 root->in_radix = 1;
1217         spin_unlock(&fs_info->fs_roots_radix_lock);
1218         radix_tree_preload_end();
1219         if (ret) {
1220                 if (ret == -EEXIST) {
1221                         free_fs_root(root);
1222                         goto again;
1223                 }
1224                 goto fail;
1225         }
1226
1227         ret = btrfs_find_dead_roots(fs_info->tree_root,
1228                                     root->root_key.objectid);
1229         WARN_ON(ret);
1230
1231         if (!(fs_info->sb->s_flags & MS_RDONLY))
1232                 btrfs_orphan_cleanup(root);
1233
1234         return root;
1235 fail:
1236         free_fs_root(root);
1237         return ERR_PTR(ret);
1238 }
1239
1240 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1241                                       struct btrfs_key *location,
1242                                       const char *name, int namelen)
1243 {
1244         return btrfs_read_fs_root_no_name(fs_info, location);
1245 #if 0
1246         struct btrfs_root *root;
1247         int ret;
1248
1249         root = btrfs_read_fs_root_no_name(fs_info, location);
1250         if (!root)
1251                 return NULL;
1252
1253         if (root->in_sysfs)
1254                 return root;
1255
1256         ret = btrfs_set_root_name(root, name, namelen);
1257         if (ret) {
1258                 free_extent_buffer(root->node);
1259                 kfree(root);
1260                 return ERR_PTR(ret);
1261         }
1262
1263         ret = btrfs_sysfs_add_root(root);
1264         if (ret) {
1265                 free_extent_buffer(root->node);
1266                 kfree(root->name);
1267                 kfree(root);
1268                 return ERR_PTR(ret);
1269         }
1270         root->in_sysfs = 1;
1271         return root;
1272 #endif
1273 }
1274
1275 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1276 {
1277         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1278         int ret = 0;
1279         struct btrfs_device *device;
1280         struct backing_dev_info *bdi;
1281
1282         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1283                 if (!device->bdev)
1284                         continue;
1285                 bdi = blk_get_backing_dev_info(device->bdev);
1286                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1287                         ret = 1;
1288                         break;
1289                 }
1290         }
1291         return ret;
1292 }
1293
1294 /*
1295  * this unplugs every device on the box, and it is only used when page
1296  * is null
1297  */
1298 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1299 {
1300         struct btrfs_device *device;
1301         struct btrfs_fs_info *info;
1302
1303         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1304         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1305                 if (!device->bdev)
1306                         continue;
1307
1308                 bdi = blk_get_backing_dev_info(device->bdev);
1309                 if (bdi->unplug_io_fn)
1310                         bdi->unplug_io_fn(bdi, page);
1311         }
1312 }
1313
1314 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1315 {
1316         struct inode *inode;
1317         struct extent_map_tree *em_tree;
1318         struct extent_map *em;
1319         struct address_space *mapping;
1320         u64 offset;
1321
1322         /* the generic O_DIRECT read code does this */
1323         if (1 || !page) {
1324                 __unplug_io_fn(bdi, page);
1325                 return;
1326         }
1327
1328         /*
1329          * page->mapping may change at any time.  Get a consistent copy
1330          * and use that for everything below
1331          */
1332         smp_mb();
1333         mapping = page->mapping;
1334         if (!mapping)
1335                 return;
1336
1337         inode = mapping->host;
1338
1339         /*
1340          * don't do the expensive searching for a small number of
1341          * devices
1342          */
1343         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1344                 __unplug_io_fn(bdi, page);
1345                 return;
1346         }
1347
1348         offset = page_offset(page);
1349
1350         em_tree = &BTRFS_I(inode)->extent_tree;
1351         read_lock(&em_tree->lock);
1352         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1353         read_unlock(&em_tree->lock);
1354         if (!em) {
1355                 __unplug_io_fn(bdi, page);
1356                 return;
1357         }
1358
1359         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1360                 free_extent_map(em);
1361                 __unplug_io_fn(bdi, page);
1362                 return;
1363         }
1364         offset = offset - em->start;
1365         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1366                           em->block_start + offset, page);
1367         free_extent_map(em);
1368 }
1369
1370 /*
1371  * If this fails, caller must call bdi_destroy() to get rid of the
1372  * bdi again.
1373  */
1374 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1375 {
1376         int err;
1377
1378         bdi->capabilities = BDI_CAP_MAP_COPY;
1379         err = bdi_init(bdi);
1380         if (err)
1381                 return err;
1382
1383         err = bdi_register(bdi, NULL, "btrfs-%d",
1384                                 atomic_inc_return(&btrfs_bdi_num));
1385         if (err) {
1386                 bdi_destroy(bdi);
1387                 return err;
1388         }
1389
1390         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1391         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1392         bdi->unplug_io_data     = info;
1393         bdi->congested_fn       = btrfs_congested_fn;
1394         bdi->congested_data     = info;
1395         return 0;
1396 }
1397
1398 static int bio_ready_for_csum(struct bio *bio)
1399 {
1400         u64 length = 0;
1401         u64 buf_len = 0;
1402         u64 start = 0;
1403         struct page *page;
1404         struct extent_io_tree *io_tree = NULL;
1405         struct btrfs_fs_info *info = NULL;
1406         struct bio_vec *bvec;
1407         int i;
1408         int ret;
1409
1410         bio_for_each_segment(bvec, bio, i) {
1411                 page = bvec->bv_page;
1412                 if (page->private == EXTENT_PAGE_PRIVATE) {
1413                         length += bvec->bv_len;
1414                         continue;
1415                 }
1416                 if (!page->private) {
1417                         length += bvec->bv_len;
1418                         continue;
1419                 }
1420                 length = bvec->bv_len;
1421                 buf_len = page->private >> 2;
1422                 start = page_offset(page) + bvec->bv_offset;
1423                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1424                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1425         }
1426         /* are we fully contained in this bio? */
1427         if (buf_len <= length)
1428                 return 1;
1429
1430         ret = extent_range_uptodate(io_tree, start + length,
1431                                     start + buf_len - 1);
1432         return ret;
1433 }
1434
1435 /*
1436  * called by the kthread helper functions to finally call the bio end_io
1437  * functions.  This is where read checksum verification actually happens
1438  */
1439 static void end_workqueue_fn(struct btrfs_work *work)
1440 {
1441         struct bio *bio;
1442         struct end_io_wq *end_io_wq;
1443         struct btrfs_fs_info *fs_info;
1444         int error;
1445
1446         end_io_wq = container_of(work, struct end_io_wq, work);
1447         bio = end_io_wq->bio;
1448         fs_info = end_io_wq->info;
1449
1450         /* metadata bio reads are special because the whole tree block must
1451          * be checksummed at once.  This makes sure the entire block is in
1452          * ram and up to date before trying to verify things.  For
1453          * blocksize <= pagesize, it is basically a noop
1454          */
1455         if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1456             !bio_ready_for_csum(bio)) {
1457                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1458                                    &end_io_wq->work);
1459                 return;
1460         }
1461         error = end_io_wq->error;
1462         bio->bi_private = end_io_wq->private;
1463         bio->bi_end_io = end_io_wq->end_io;
1464         kfree(end_io_wq);
1465         bio_endio(bio, error);
1466 }
1467
1468 static int cleaner_kthread(void *arg)
1469 {
1470         struct btrfs_root *root = arg;
1471
1472         do {
1473                 smp_mb();
1474                 if (root->fs_info->closing)
1475                         break;
1476
1477                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1478
1479                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1480                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1481                         btrfs_clean_old_snapshots(root);
1482                         mutex_unlock(&root->fs_info->cleaner_mutex);
1483                 }
1484
1485                 if (freezing(current)) {
1486                         refrigerator();
1487                 } else {
1488                         smp_mb();
1489                         if (root->fs_info->closing)
1490                                 break;
1491                         set_current_state(TASK_INTERRUPTIBLE);
1492                         schedule();
1493                         __set_current_state(TASK_RUNNING);
1494                 }
1495         } while (!kthread_should_stop());
1496         return 0;
1497 }
1498
1499 static int transaction_kthread(void *arg)
1500 {
1501         struct btrfs_root *root = arg;
1502         struct btrfs_trans_handle *trans;
1503         struct btrfs_transaction *cur;
1504         unsigned long now;
1505         unsigned long delay;
1506         int ret;
1507
1508         do {
1509                 smp_mb();
1510                 if (root->fs_info->closing)
1511                         break;
1512
1513                 delay = HZ * 30;
1514                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1515                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1516
1517                 mutex_lock(&root->fs_info->trans_mutex);
1518                 cur = root->fs_info->running_transaction;
1519                 if (!cur) {
1520                         mutex_unlock(&root->fs_info->trans_mutex);
1521                         goto sleep;
1522                 }
1523
1524                 now = get_seconds();
1525                 if (now < cur->start_time || now - cur->start_time < 30) {
1526                         mutex_unlock(&root->fs_info->trans_mutex);
1527                         delay = HZ * 5;
1528                         goto sleep;
1529                 }
1530                 mutex_unlock(&root->fs_info->trans_mutex);
1531                 trans = btrfs_start_transaction(root, 1);
1532                 ret = btrfs_commit_transaction(trans, root);
1533
1534 sleep:
1535                 wake_up_process(root->fs_info->cleaner_kthread);
1536                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1537
1538                 if (freezing(current)) {
1539                         refrigerator();
1540                 } else {
1541                         if (root->fs_info->closing)
1542                                 break;
1543                         set_current_state(TASK_INTERRUPTIBLE);
1544                         schedule_timeout(delay);
1545                         __set_current_state(TASK_RUNNING);
1546                 }
1547         } while (!kthread_should_stop());
1548         return 0;
1549 }
1550
1551 struct btrfs_root *open_ctree(struct super_block *sb,
1552                               struct btrfs_fs_devices *fs_devices,
1553                               char *options)
1554 {
1555         u32 sectorsize;
1556         u32 nodesize;
1557         u32 leafsize;
1558         u32 blocksize;
1559         u32 stripesize;
1560         u64 generation;
1561         u64 features;
1562         struct btrfs_key location;
1563         struct buffer_head *bh;
1564         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1565                                                  GFP_NOFS);
1566         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1567                                                  GFP_NOFS);
1568         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1569                                                GFP_NOFS);
1570         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1571                                                 GFP_NOFS);
1572         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1573                                                 GFP_NOFS);
1574         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1575                                               GFP_NOFS);
1576         struct btrfs_root *log_tree_root;
1577
1578         int ret;
1579         int err = -EINVAL;
1580
1581         struct btrfs_super_block *disk_super;
1582
1583         if (!extent_root || !tree_root || !fs_info ||
1584             !chunk_root || !dev_root || !csum_root) {
1585                 err = -ENOMEM;
1586                 goto fail;
1587         }
1588
1589         ret = init_srcu_struct(&fs_info->subvol_srcu);
1590         if (ret) {
1591                 err = ret;
1592                 goto fail;
1593         }
1594
1595         ret = setup_bdi(fs_info, &fs_info->bdi);
1596         if (ret) {
1597                 err = ret;
1598                 goto fail_srcu;
1599         }
1600
1601         fs_info->btree_inode = new_inode(sb);
1602         if (!fs_info->btree_inode) {
1603                 err = -ENOMEM;
1604                 goto fail_bdi;
1605         }
1606
1607         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1608         INIT_LIST_HEAD(&fs_info->trans_list);
1609         INIT_LIST_HEAD(&fs_info->dead_roots);
1610         INIT_LIST_HEAD(&fs_info->hashers);
1611         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1612         INIT_LIST_HEAD(&fs_info->ordered_operations);
1613         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1614         spin_lock_init(&fs_info->delalloc_lock);
1615         spin_lock_init(&fs_info->new_trans_lock);
1616         spin_lock_init(&fs_info->ref_cache_lock);
1617         spin_lock_init(&fs_info->fs_roots_radix_lock);
1618
1619         init_completion(&fs_info->kobj_unregister);
1620         fs_info->tree_root = tree_root;
1621         fs_info->extent_root = extent_root;
1622         fs_info->csum_root = csum_root;
1623         fs_info->chunk_root = chunk_root;
1624         fs_info->dev_root = dev_root;
1625         fs_info->fs_devices = fs_devices;
1626         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1627         INIT_LIST_HEAD(&fs_info->space_info);
1628         btrfs_mapping_init(&fs_info->mapping_tree);
1629         atomic_set(&fs_info->nr_async_submits, 0);
1630         atomic_set(&fs_info->async_delalloc_pages, 0);
1631         atomic_set(&fs_info->async_submit_draining, 0);
1632         atomic_set(&fs_info->nr_async_bios, 0);
1633         fs_info->sb = sb;
1634         fs_info->max_extent = (u64)-1;
1635         fs_info->max_inline = 8192 * 1024;
1636         fs_info->metadata_ratio = 0;
1637
1638         fs_info->thread_pool_size = min_t(unsigned long,
1639                                           num_online_cpus() + 2, 8);
1640
1641         INIT_LIST_HEAD(&fs_info->ordered_extents);
1642         spin_lock_init(&fs_info->ordered_extent_lock);
1643
1644         sb->s_blocksize = 4096;
1645         sb->s_blocksize_bits = blksize_bits(4096);
1646
1647         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1648         fs_info->btree_inode->i_nlink = 1;
1649         /*
1650          * we set the i_size on the btree inode to the max possible int.
1651          * the real end of the address space is determined by all of
1652          * the devices in the system
1653          */
1654         fs_info->btree_inode->i_size = OFFSET_MAX;
1655         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1656         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1657
1658         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1659         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1660                              fs_info->btree_inode->i_mapping,
1661                              GFP_NOFS);
1662         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1663                              GFP_NOFS);
1664
1665         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1666
1667         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1668         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1669                sizeof(struct btrfs_key));
1670         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1671         insert_inode_hash(fs_info->btree_inode);
1672
1673         spin_lock_init(&fs_info->block_group_cache_lock);
1674         fs_info->block_group_cache_tree.rb_node = NULL;
1675
1676         extent_io_tree_init(&fs_info->freed_extents[0],
1677                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1678         extent_io_tree_init(&fs_info->freed_extents[1],
1679                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1680         fs_info->pinned_extents = &fs_info->freed_extents[0];
1681         fs_info->do_barriers = 1;
1682
1683
1684         mutex_init(&fs_info->trans_mutex);
1685         mutex_init(&fs_info->ordered_operations_mutex);
1686         mutex_init(&fs_info->tree_log_mutex);
1687         mutex_init(&fs_info->chunk_mutex);
1688         mutex_init(&fs_info->transaction_kthread_mutex);
1689         mutex_init(&fs_info->cleaner_mutex);
1690         mutex_init(&fs_info->volume_mutex);
1691         init_rwsem(&fs_info->extent_commit_sem);
1692         init_rwsem(&fs_info->subvol_sem);
1693
1694         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1695         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1696
1697         init_waitqueue_head(&fs_info->transaction_throttle);
1698         init_waitqueue_head(&fs_info->transaction_wait);
1699         init_waitqueue_head(&fs_info->async_submit_wait);
1700
1701         __setup_root(4096, 4096, 4096, 4096, tree_root,
1702                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1703
1704
1705         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1706         if (!bh)
1707                 goto fail_iput;
1708
1709         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1710         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1711                sizeof(fs_info->super_for_commit));
1712         brelse(bh);
1713
1714         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1715
1716         disk_super = &fs_info->super_copy;
1717         if (!btrfs_super_root(disk_super))
1718                 goto fail_iput;
1719
1720         ret = btrfs_parse_options(tree_root, options);
1721         if (ret) {
1722                 err = ret;
1723                 goto fail_iput;
1724         }
1725
1726         features = btrfs_super_incompat_flags(disk_super) &
1727                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1728         if (features) {
1729                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1730                        "unsupported optional features (%Lx).\n",
1731                        (unsigned long long)features);
1732                 err = -EINVAL;
1733                 goto fail_iput;
1734         }
1735
1736         features = btrfs_super_incompat_flags(disk_super);
1737         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1738                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1739                 btrfs_set_super_incompat_flags(disk_super, features);
1740         }
1741
1742         features = btrfs_super_compat_ro_flags(disk_super) &
1743                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1744         if (!(sb->s_flags & MS_RDONLY) && features) {
1745                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1746                        "unsupported option features (%Lx).\n",
1747                        (unsigned long long)features);
1748                 err = -EINVAL;
1749                 goto fail_iput;
1750         }
1751
1752         btrfs_init_workers(&fs_info->generic_worker,
1753                            "genwork", 1, NULL);
1754
1755         btrfs_init_workers(&fs_info->workers, "worker",
1756                            fs_info->thread_pool_size,
1757                            &fs_info->generic_worker);
1758
1759         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1760                            fs_info->thread_pool_size,
1761                            &fs_info->generic_worker);
1762
1763         btrfs_init_workers(&fs_info->submit_workers, "submit",
1764                            min_t(u64, fs_devices->num_devices,
1765                            fs_info->thread_pool_size),
1766                            &fs_info->generic_worker);
1767         btrfs_init_workers(&fs_info->enospc_workers, "enospc",
1768                            fs_info->thread_pool_size,
1769                            &fs_info->generic_worker);
1770
1771         /* a higher idle thresh on the submit workers makes it much more
1772          * likely that bios will be send down in a sane order to the
1773          * devices
1774          */
1775         fs_info->submit_workers.idle_thresh = 64;
1776
1777         fs_info->workers.idle_thresh = 16;
1778         fs_info->workers.ordered = 1;
1779
1780         fs_info->delalloc_workers.idle_thresh = 2;
1781         fs_info->delalloc_workers.ordered = 1;
1782
1783         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1784                            &fs_info->generic_worker);
1785         btrfs_init_workers(&fs_info->endio_workers, "endio",
1786                            fs_info->thread_pool_size,
1787                            &fs_info->generic_worker);
1788         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1789                            fs_info->thread_pool_size,
1790                            &fs_info->generic_worker);
1791         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1792                            "endio-meta-write", fs_info->thread_pool_size,
1793                            &fs_info->generic_worker);
1794         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1795                            fs_info->thread_pool_size,
1796                            &fs_info->generic_worker);
1797
1798         /*
1799          * endios are largely parallel and should have a very
1800          * low idle thresh
1801          */
1802         fs_info->endio_workers.idle_thresh = 4;
1803         fs_info->endio_meta_workers.idle_thresh = 4;
1804
1805         fs_info->endio_write_workers.idle_thresh = 2;
1806         fs_info->endio_meta_write_workers.idle_thresh = 2;
1807
1808         btrfs_start_workers(&fs_info->workers, 1);
1809         btrfs_start_workers(&fs_info->generic_worker, 1);
1810         btrfs_start_workers(&fs_info->submit_workers, 1);
1811         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1812         btrfs_start_workers(&fs_info->fixup_workers, 1);
1813         btrfs_start_workers(&fs_info->endio_workers, 1);
1814         btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1815         btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1816         btrfs_start_workers(&fs_info->endio_write_workers, 1);
1817         btrfs_start_workers(&fs_info->enospc_workers, 1);
1818
1819         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1820         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1821                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1822
1823         nodesize = btrfs_super_nodesize(disk_super);
1824         leafsize = btrfs_super_leafsize(disk_super);
1825         sectorsize = btrfs_super_sectorsize(disk_super);
1826         stripesize = btrfs_super_stripesize(disk_super);
1827         tree_root->nodesize = nodesize;
1828         tree_root->leafsize = leafsize;
1829         tree_root->sectorsize = sectorsize;
1830         tree_root->stripesize = stripesize;
1831
1832         sb->s_blocksize = sectorsize;
1833         sb->s_blocksize_bits = blksize_bits(sectorsize);
1834
1835         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1836                     sizeof(disk_super->magic))) {
1837                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1838                 goto fail_sb_buffer;
1839         }
1840
1841         mutex_lock(&fs_info->chunk_mutex);
1842         ret = btrfs_read_sys_array(tree_root);
1843         mutex_unlock(&fs_info->chunk_mutex);
1844         if (ret) {
1845                 printk(KERN_WARNING "btrfs: failed to read the system "
1846                        "array on %s\n", sb->s_id);
1847                 goto fail_sb_buffer;
1848         }
1849
1850         blocksize = btrfs_level_size(tree_root,
1851                                      btrfs_super_chunk_root_level(disk_super));
1852         generation = btrfs_super_chunk_root_generation(disk_super);
1853
1854         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1855                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1856
1857         chunk_root->node = read_tree_block(chunk_root,
1858                                            btrfs_super_chunk_root(disk_super),
1859                                            blocksize, generation);
1860         BUG_ON(!chunk_root->node);
1861         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1862                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1863                        sb->s_id);
1864                 goto fail_chunk_root;
1865         }
1866         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1867         chunk_root->commit_root = btrfs_root_node(chunk_root);
1868
1869         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1870            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1871            BTRFS_UUID_SIZE);
1872
1873         mutex_lock(&fs_info->chunk_mutex);
1874         ret = btrfs_read_chunk_tree(chunk_root);
1875         mutex_unlock(&fs_info->chunk_mutex);
1876         if (ret) {
1877                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1878                        sb->s_id);
1879                 goto fail_chunk_root;
1880         }
1881
1882         btrfs_close_extra_devices(fs_devices);
1883
1884         blocksize = btrfs_level_size(tree_root,
1885                                      btrfs_super_root_level(disk_super));
1886         generation = btrfs_super_generation(disk_super);
1887
1888         tree_root->node = read_tree_block(tree_root,
1889                                           btrfs_super_root(disk_super),
1890                                           blocksize, generation);
1891         if (!tree_root->node)
1892                 goto fail_chunk_root;
1893         if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1894                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1895                        sb->s_id);
1896                 goto fail_tree_root;
1897         }
1898         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1899         tree_root->commit_root = btrfs_root_node(tree_root);
1900
1901         ret = find_and_setup_root(tree_root, fs_info,
1902                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1903         if (ret)
1904                 goto fail_tree_root;
1905         extent_root->track_dirty = 1;
1906
1907         ret = find_and_setup_root(tree_root, fs_info,
1908                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1909         if (ret)
1910                 goto fail_extent_root;
1911         dev_root->track_dirty = 1;
1912
1913         ret = find_and_setup_root(tree_root, fs_info,
1914                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1915         if (ret)
1916                 goto fail_dev_root;
1917
1918         csum_root->track_dirty = 1;
1919
1920         btrfs_read_block_groups(extent_root);
1921
1922         fs_info->generation = generation;
1923         fs_info->last_trans_committed = generation;
1924         fs_info->data_alloc_profile = (u64)-1;
1925         fs_info->metadata_alloc_profile = (u64)-1;
1926         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1927         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1928                                                "btrfs-cleaner");
1929         if (IS_ERR(fs_info->cleaner_kthread))
1930                 goto fail_csum_root;
1931
1932         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1933                                                    tree_root,
1934                                                    "btrfs-transaction");
1935         if (IS_ERR(fs_info->transaction_kthread))
1936                 goto fail_cleaner;
1937
1938         if (!btrfs_test_opt(tree_root, SSD) &&
1939             !btrfs_test_opt(tree_root, NOSSD) &&
1940             !fs_info->fs_devices->rotating) {
1941                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1942                        "mode\n");
1943                 btrfs_set_opt(fs_info->mount_opt, SSD);
1944         }
1945
1946         if (btrfs_super_log_root(disk_super) != 0) {
1947                 u64 bytenr = btrfs_super_log_root(disk_super);
1948
1949                 if (fs_devices->rw_devices == 0) {
1950                         printk(KERN_WARNING "Btrfs log replay required "
1951                                "on RO media\n");
1952                         err = -EIO;
1953                         goto fail_trans_kthread;
1954                 }
1955                 blocksize =
1956                      btrfs_level_size(tree_root,
1957                                       btrfs_super_log_root_level(disk_super));
1958
1959                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1960                                                       GFP_NOFS);
1961
1962                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1963                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1964
1965                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1966                                                       blocksize,
1967                                                       generation + 1);
1968                 ret = btrfs_recover_log_trees(log_tree_root);
1969                 BUG_ON(ret);
1970
1971                 if (sb->s_flags & MS_RDONLY) {
1972                         ret =  btrfs_commit_super(tree_root);
1973                         BUG_ON(ret);
1974                 }
1975         }
1976
1977         ret = btrfs_find_orphan_roots(tree_root);
1978         BUG_ON(ret);
1979
1980         if (!(sb->s_flags & MS_RDONLY)) {
1981                 ret = btrfs_recover_relocation(tree_root);
1982                 BUG_ON(ret);
1983         }
1984
1985         location.objectid = BTRFS_FS_TREE_OBJECTID;
1986         location.type = BTRFS_ROOT_ITEM_KEY;
1987         location.offset = (u64)-1;
1988
1989         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1990         if (!fs_info->fs_root)
1991                 goto fail_trans_kthread;
1992
1993         return tree_root;
1994
1995 fail_trans_kthread:
1996         kthread_stop(fs_info->transaction_kthread);
1997 fail_cleaner:
1998         kthread_stop(fs_info->cleaner_kthread);
1999
2000         /*
2001          * make sure we're done with the btree inode before we stop our
2002          * kthreads
2003          */
2004         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2005         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2006
2007 fail_csum_root:
2008         free_extent_buffer(csum_root->node);
2009         free_extent_buffer(csum_root->commit_root);
2010 fail_dev_root:
2011         free_extent_buffer(dev_root->node);
2012         free_extent_buffer(dev_root->commit_root);
2013 fail_extent_root:
2014         free_extent_buffer(extent_root->node);
2015         free_extent_buffer(extent_root->commit_root);
2016 fail_tree_root:
2017         free_extent_buffer(tree_root->node);
2018         free_extent_buffer(tree_root->commit_root);
2019 fail_chunk_root:
2020         free_extent_buffer(chunk_root->node);
2021         free_extent_buffer(chunk_root->commit_root);
2022 fail_sb_buffer:
2023         btrfs_stop_workers(&fs_info->generic_worker);
2024         btrfs_stop_workers(&fs_info->fixup_workers);
2025         btrfs_stop_workers(&fs_info->delalloc_workers);
2026         btrfs_stop_workers(&fs_info->workers);
2027         btrfs_stop_workers(&fs_info->endio_workers);
2028         btrfs_stop_workers(&fs_info->endio_meta_workers);
2029         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2030         btrfs_stop_workers(&fs_info->endio_write_workers);
2031         btrfs_stop_workers(&fs_info->submit_workers);
2032         btrfs_stop_workers(&fs_info->enospc_workers);
2033 fail_iput:
2034         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2035         iput(fs_info->btree_inode);
2036
2037         btrfs_close_devices(fs_info->fs_devices);
2038         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2039 fail_bdi:
2040         bdi_destroy(&fs_info->bdi);
2041 fail_srcu:
2042         cleanup_srcu_struct(&fs_info->subvol_srcu);
2043 fail:
2044         kfree(extent_root);
2045         kfree(tree_root);
2046         kfree(fs_info);
2047         kfree(chunk_root);
2048         kfree(dev_root);
2049         kfree(csum_root);
2050         return ERR_PTR(err);
2051 }
2052
2053 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2054 {
2055         char b[BDEVNAME_SIZE];
2056
2057         if (uptodate) {
2058                 set_buffer_uptodate(bh);
2059         } else {
2060                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2061                         printk(KERN_WARNING "lost page write due to "
2062                                         "I/O error on %s\n",
2063                                        bdevname(bh->b_bdev, b));
2064                 }
2065                 /* note, we dont' set_buffer_write_io_error because we have
2066                  * our own ways of dealing with the IO errors
2067                  */
2068                 clear_buffer_uptodate(bh);
2069         }
2070         unlock_buffer(bh);
2071         put_bh(bh);
2072 }
2073
2074 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2075 {
2076         struct buffer_head *bh;
2077         struct buffer_head *latest = NULL;
2078         struct btrfs_super_block *super;
2079         int i;
2080         u64 transid = 0;
2081         u64 bytenr;
2082
2083         /* we would like to check all the supers, but that would make
2084          * a btrfs mount succeed after a mkfs from a different FS.
2085          * So, we need to add a special mount option to scan for
2086          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2087          */
2088         for (i = 0; i < 1; i++) {
2089                 bytenr = btrfs_sb_offset(i);
2090                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2091                         break;
2092                 bh = __bread(bdev, bytenr / 4096, 4096);
2093                 if (!bh)
2094                         continue;
2095
2096                 super = (struct btrfs_super_block *)bh->b_data;
2097                 if (btrfs_super_bytenr(super) != bytenr ||
2098                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2099                             sizeof(super->magic))) {
2100                         brelse(bh);
2101                         continue;
2102                 }
2103
2104                 if (!latest || btrfs_super_generation(super) > transid) {
2105                         brelse(latest);
2106                         latest = bh;
2107                         transid = btrfs_super_generation(super);
2108                 } else {
2109                         brelse(bh);
2110                 }
2111         }
2112         return latest;
2113 }
2114
2115 /*
2116  * this should be called twice, once with wait == 0 and
2117  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2118  * we write are pinned.
2119  *
2120  * They are released when wait == 1 is done.
2121  * max_mirrors must be the same for both runs, and it indicates how
2122  * many supers on this one device should be written.
2123  *
2124  * max_mirrors == 0 means to write them all.
2125  */
2126 static int write_dev_supers(struct btrfs_device *device,
2127                             struct btrfs_super_block *sb,
2128                             int do_barriers, int wait, int max_mirrors)
2129 {
2130         struct buffer_head *bh;
2131         int i;
2132         int ret;
2133         int errors = 0;
2134         u32 crc;
2135         u64 bytenr;
2136         int last_barrier = 0;
2137
2138         if (max_mirrors == 0)
2139                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2140
2141         /* make sure only the last submit_bh does a barrier */
2142         if (do_barriers) {
2143                 for (i = 0; i < max_mirrors; i++) {
2144                         bytenr = btrfs_sb_offset(i);
2145                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2146                             device->total_bytes)
2147                                 break;
2148                         last_barrier = i;
2149                 }
2150         }
2151
2152         for (i = 0; i < max_mirrors; i++) {
2153                 bytenr = btrfs_sb_offset(i);
2154                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2155                         break;
2156
2157                 if (wait) {
2158                         bh = __find_get_block(device->bdev, bytenr / 4096,
2159                                               BTRFS_SUPER_INFO_SIZE);
2160                         BUG_ON(!bh);
2161                         wait_on_buffer(bh);
2162                         if (!buffer_uptodate(bh))
2163                                 errors++;
2164
2165                         /* drop our reference */
2166                         brelse(bh);
2167
2168                         /* drop the reference from the wait == 0 run */
2169                         brelse(bh);
2170                         continue;
2171                 } else {
2172                         btrfs_set_super_bytenr(sb, bytenr);
2173
2174                         crc = ~(u32)0;
2175                         crc = btrfs_csum_data(NULL, (char *)sb +
2176                                               BTRFS_CSUM_SIZE, crc,
2177                                               BTRFS_SUPER_INFO_SIZE -
2178                                               BTRFS_CSUM_SIZE);
2179                         btrfs_csum_final(crc, sb->csum);
2180
2181                         /*
2182                          * one reference for us, and we leave it for the
2183                          * caller
2184                          */
2185                         bh = __getblk(device->bdev, bytenr / 4096,
2186                                       BTRFS_SUPER_INFO_SIZE);
2187                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2188
2189                         /* one reference for submit_bh */
2190                         get_bh(bh);
2191
2192                         set_buffer_uptodate(bh);
2193                         lock_buffer(bh);
2194                         bh->b_end_io = btrfs_end_buffer_write_sync;
2195                 }
2196
2197                 if (i == last_barrier && do_barriers && device->barriers) {
2198                         ret = submit_bh(WRITE_BARRIER, bh);
2199                         if (ret == -EOPNOTSUPP) {
2200                                 printk("btrfs: disabling barriers on dev %s\n",
2201                                        device->name);
2202                                 set_buffer_uptodate(bh);
2203                                 device->barriers = 0;
2204                                 /* one reference for submit_bh */
2205                                 get_bh(bh);
2206                                 lock_buffer(bh);
2207                                 ret = submit_bh(WRITE_SYNC, bh);
2208                         }
2209                 } else {
2210                         ret = submit_bh(WRITE_SYNC, bh);
2211                 }
2212
2213                 if (ret)
2214                         errors++;
2215         }
2216         return errors < i ? 0 : -1;
2217 }
2218
2219 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2220 {
2221         struct list_head *head;
2222         struct btrfs_device *dev;
2223         struct btrfs_super_block *sb;
2224         struct btrfs_dev_item *dev_item;
2225         int ret;
2226         int do_barriers;
2227         int max_errors;
2228         int total_errors = 0;
2229         u64 flags;
2230
2231         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2232         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2233
2234         sb = &root->fs_info->super_for_commit;
2235         dev_item = &sb->dev_item;
2236
2237         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2238         head = &root->fs_info->fs_devices->devices;
2239         list_for_each_entry(dev, head, dev_list) {
2240                 if (!dev->bdev) {
2241                         total_errors++;
2242                         continue;
2243                 }
2244                 if (!dev->in_fs_metadata || !dev->writeable)
2245                         continue;
2246
2247                 btrfs_set_stack_device_generation(dev_item, 0);
2248                 btrfs_set_stack_device_type(dev_item, dev->type);
2249                 btrfs_set_stack_device_id(dev_item, dev->devid);
2250                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2251                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2252                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2253                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2254                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2255                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2256                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2257
2258                 flags = btrfs_super_flags(sb);
2259                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2260
2261                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2262                 if (ret)
2263                         total_errors++;
2264         }
2265         if (total_errors > max_errors) {
2266                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2267                        total_errors);
2268                 BUG();
2269         }
2270
2271         total_errors = 0;
2272         list_for_each_entry(dev, head, dev_list) {
2273                 if (!dev->bdev)
2274                         continue;
2275                 if (!dev->in_fs_metadata || !dev->writeable)
2276                         continue;
2277
2278                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2279                 if (ret)
2280                         total_errors++;
2281         }
2282         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283         if (total_errors > max_errors) {
2284                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2285                        total_errors);
2286                 BUG();
2287         }
2288         return 0;
2289 }
2290
2291 int write_ctree_super(struct btrfs_trans_handle *trans,
2292                       struct btrfs_root *root, int max_mirrors)
2293 {
2294         int ret;
2295
2296         ret = write_all_supers(root, max_mirrors);
2297         return ret;
2298 }
2299
2300 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2301 {
2302         spin_lock(&fs_info->fs_roots_radix_lock);
2303         radix_tree_delete(&fs_info->fs_roots_radix,
2304                           (unsigned long)root->root_key.objectid);
2305         spin_unlock(&fs_info->fs_roots_radix_lock);
2306
2307         if (btrfs_root_refs(&root->root_item) == 0)
2308                 synchronize_srcu(&fs_info->subvol_srcu);
2309
2310         free_fs_root(root);
2311         return 0;
2312 }
2313
2314 static void free_fs_root(struct btrfs_root *root)
2315 {
2316         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2317         if (root->anon_super.s_dev) {
2318                 down_write(&root->anon_super.s_umount);
2319                 kill_anon_super(&root->anon_super);
2320         }
2321         free_extent_buffer(root->node);
2322         free_extent_buffer(root->commit_root);
2323         kfree(root->name);
2324         kfree(root);
2325 }
2326
2327 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2328 {
2329         int ret;
2330         struct btrfs_root *gang[8];
2331         int i;
2332
2333         while (!list_empty(&fs_info->dead_roots)) {
2334                 gang[0] = list_entry(fs_info->dead_roots.next,
2335                                      struct btrfs_root, root_list);
2336                 list_del(&gang[0]->root_list);
2337
2338                 if (gang[0]->in_radix) {
2339                         btrfs_free_fs_root(fs_info, gang[0]);
2340                 } else {
2341                         free_extent_buffer(gang[0]->node);
2342                         free_extent_buffer(gang[0]->commit_root);
2343                         kfree(gang[0]);
2344                 }
2345         }
2346
2347         while (1) {
2348                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2349                                              (void **)gang, 0,
2350                                              ARRAY_SIZE(gang));
2351                 if (!ret)
2352                         break;
2353                 for (i = 0; i < ret; i++)
2354                         btrfs_free_fs_root(fs_info, gang[i]);
2355         }
2356         return 0;
2357 }
2358
2359 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2360 {
2361         u64 root_objectid = 0;
2362         struct btrfs_root *gang[8];
2363         int i;
2364         int ret;
2365
2366         while (1) {
2367                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2368                                              (void **)gang, root_objectid,
2369                                              ARRAY_SIZE(gang));
2370                 if (!ret)
2371                         break;
2372
2373                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2374                 for (i = 0; i < ret; i++) {
2375                         root_objectid = gang[i]->root_key.objectid;
2376                         btrfs_orphan_cleanup(gang[i]);
2377                 }
2378                 root_objectid++;
2379         }
2380         return 0;
2381 }
2382
2383 int btrfs_commit_super(struct btrfs_root *root)
2384 {
2385         struct btrfs_trans_handle *trans;
2386         int ret;
2387
2388         mutex_lock(&root->fs_info->cleaner_mutex);
2389         btrfs_clean_old_snapshots(root);
2390         mutex_unlock(&root->fs_info->cleaner_mutex);
2391         trans = btrfs_start_transaction(root, 1);
2392         ret = btrfs_commit_transaction(trans, root);
2393         BUG_ON(ret);
2394         /* run commit again to drop the original snapshot */
2395         trans = btrfs_start_transaction(root, 1);
2396         btrfs_commit_transaction(trans, root);
2397         ret = btrfs_write_and_wait_transaction(NULL, root);
2398         BUG_ON(ret);
2399
2400         ret = write_ctree_super(NULL, root, 0);
2401         return ret;
2402 }
2403
2404 int close_ctree(struct btrfs_root *root)
2405 {
2406         struct btrfs_fs_info *fs_info = root->fs_info;
2407         int ret;
2408
2409         fs_info->closing = 1;
2410         smp_mb();
2411
2412         kthread_stop(root->fs_info->transaction_kthread);
2413         kthread_stop(root->fs_info->cleaner_kthread);
2414
2415         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2416                 ret =  btrfs_commit_super(root);
2417                 if (ret)
2418                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2419         }
2420
2421         fs_info->closing = 2;
2422         smp_mb();
2423
2424         if (fs_info->delalloc_bytes) {
2425                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2426                        (unsigned long long)fs_info->delalloc_bytes);
2427         }
2428         if (fs_info->total_ref_cache_size) {
2429                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2430                        (unsigned long long)fs_info->total_ref_cache_size);
2431         }
2432
2433         free_extent_buffer(fs_info->extent_root->node);
2434         free_extent_buffer(fs_info->extent_root->commit_root);
2435         free_extent_buffer(fs_info->tree_root->node);
2436         free_extent_buffer(fs_info->tree_root->commit_root);
2437         free_extent_buffer(root->fs_info->chunk_root->node);
2438         free_extent_buffer(root->fs_info->chunk_root->commit_root);
2439         free_extent_buffer(root->fs_info->dev_root->node);
2440         free_extent_buffer(root->fs_info->dev_root->commit_root);
2441         free_extent_buffer(root->fs_info->csum_root->node);
2442         free_extent_buffer(root->fs_info->csum_root->commit_root);
2443
2444         btrfs_free_block_groups(root->fs_info);
2445
2446         del_fs_roots(fs_info);
2447
2448         iput(fs_info->btree_inode);
2449
2450         btrfs_stop_workers(&fs_info->generic_worker);
2451         btrfs_stop_workers(&fs_info->fixup_workers);
2452         btrfs_stop_workers(&fs_info->delalloc_workers);
2453         btrfs_stop_workers(&fs_info->workers);
2454         btrfs_stop_workers(&fs_info->endio_workers);
2455         btrfs_stop_workers(&fs_info->endio_meta_workers);
2456         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2457         btrfs_stop_workers(&fs_info->endio_write_workers);
2458         btrfs_stop_workers(&fs_info->submit_workers);
2459         btrfs_stop_workers(&fs_info->enospc_workers);
2460
2461         btrfs_close_devices(fs_info->fs_devices);
2462         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2463
2464         bdi_destroy(&fs_info->bdi);
2465         cleanup_srcu_struct(&fs_info->subvol_srcu);
2466
2467         kfree(fs_info->extent_root);
2468         kfree(fs_info->tree_root);
2469         kfree(fs_info->chunk_root);
2470         kfree(fs_info->dev_root);
2471         kfree(fs_info->csum_root);
2472         return 0;
2473 }
2474
2475 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2476 {
2477         int ret;
2478         struct inode *btree_inode = buf->first_page->mapping->host;
2479
2480         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2481         if (!ret)
2482                 return ret;
2483
2484         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2485                                     parent_transid);
2486         return !ret;
2487 }
2488
2489 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2490 {
2491         struct inode *btree_inode = buf->first_page->mapping->host;
2492         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2493                                           buf);
2494 }
2495
2496 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2497 {
2498         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2499         u64 transid = btrfs_header_generation(buf);
2500         struct inode *btree_inode = root->fs_info->btree_inode;
2501         int was_dirty;
2502
2503         btrfs_assert_tree_locked(buf);
2504         if (transid != root->fs_info->generation) {
2505                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2506                        "found %llu running %llu\n",
2507                         (unsigned long long)buf->start,
2508                         (unsigned long long)transid,
2509                         (unsigned long long)root->fs_info->generation);
2510                 WARN_ON(1);
2511         }
2512         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2513                                             buf);
2514         if (!was_dirty) {
2515                 spin_lock(&root->fs_info->delalloc_lock);
2516                 root->fs_info->dirty_metadata_bytes += buf->len;
2517                 spin_unlock(&root->fs_info->delalloc_lock);
2518         }
2519 }
2520
2521 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2522 {
2523         /*
2524          * looks as though older kernels can get into trouble with
2525          * this code, they end up stuck in balance_dirty_pages forever
2526          */
2527         u64 num_dirty;
2528         unsigned long thresh = 32 * 1024 * 1024;
2529
2530         if (current->flags & PF_MEMALLOC)
2531                 return;
2532
2533         num_dirty = root->fs_info->dirty_metadata_bytes;
2534
2535         if (num_dirty > thresh) {
2536                 balance_dirty_pages_ratelimited_nr(
2537                                    root->fs_info->btree_inode->i_mapping, 1);
2538         }
2539         return;
2540 }
2541
2542 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2543 {
2544         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2545         int ret;
2546         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2547         if (ret == 0)
2548                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2549         return ret;
2550 }
2551
2552 int btree_lock_page_hook(struct page *page)
2553 {
2554         struct inode *inode = page->mapping->host;
2555         struct btrfs_root *root = BTRFS_I(inode)->root;
2556         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2557         struct extent_buffer *eb;
2558         unsigned long len;
2559         u64 bytenr = page_offset(page);
2560
2561         if (page->private == EXTENT_PAGE_PRIVATE)
2562                 goto out;
2563
2564         len = page->private >> 2;
2565         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2566         if (!eb)
2567                 goto out;
2568
2569         btrfs_tree_lock(eb);
2570         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2571
2572         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2573                 spin_lock(&root->fs_info->delalloc_lock);
2574                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2575                         root->fs_info->dirty_metadata_bytes -= eb->len;
2576                 else
2577                         WARN_ON(1);
2578                 spin_unlock(&root->fs_info->delalloc_lock);
2579         }
2580
2581         btrfs_tree_unlock(eb);
2582         free_extent_buffer(eb);
2583 out:
2584         lock_page(page);
2585         return 0;
2586 }
2587
2588 static struct extent_io_ops btree_extent_io_ops = {
2589         .write_cache_pages_lock_hook = btree_lock_page_hook,
2590         .readpage_end_io_hook = btree_readpage_end_io_hook,
2591         .submit_bio_hook = btree_submit_bio_hook,
2592         /* note we're sharing with inode.c for the merge bio hook */
2593         .merge_bio_hook = btrfs_merge_bio_hook,
2594 };