ocfs2: set gap to seperate entry and value when xattr in bucket
[safe/jmp/linux-2.6] / fs / btrfs / async-thread.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kthread.h>
20 #include <linux/list.h>
21 #include <linux/spinlock.h>
22 #include <linux/freezer.h>
23 #include <linux/ftrace.h>
24 #include "async-thread.h"
25
26 #define WORK_QUEUED_BIT 0
27 #define WORK_DONE_BIT 1
28 #define WORK_ORDER_DONE_BIT 2
29
30 /*
31  * container for the kthread task pointer and the list of pending work
32  * One of these is allocated per thread.
33  */
34 struct btrfs_worker_thread {
35         /* pool we belong to */
36         struct btrfs_workers *workers;
37
38         /* list of struct btrfs_work that are waiting for service */
39         struct list_head pending;
40
41         /* list of worker threads from struct btrfs_workers */
42         struct list_head worker_list;
43
44         /* kthread */
45         struct task_struct *task;
46
47         /* number of things on the pending list */
48         atomic_t num_pending;
49
50         unsigned long sequence;
51
52         /* protects the pending list. */
53         spinlock_t lock;
54
55         /* set to non-zero when this thread is already awake and kicking */
56         int working;
57
58         /* are we currently idle */
59         int idle;
60 };
61
62 /*
63  * helper function to move a thread onto the idle list after it
64  * has finished some requests.
65  */
66 static void check_idle_worker(struct btrfs_worker_thread *worker)
67 {
68         if (!worker->idle && atomic_read(&worker->num_pending) <
69             worker->workers->idle_thresh / 2) {
70                 unsigned long flags;
71                 spin_lock_irqsave(&worker->workers->lock, flags);
72                 worker->idle = 1;
73                 list_move(&worker->worker_list, &worker->workers->idle_list);
74                 spin_unlock_irqrestore(&worker->workers->lock, flags);
75         }
76 }
77
78 /*
79  * helper function to move a thread off the idle list after new
80  * pending work is added.
81  */
82 static void check_busy_worker(struct btrfs_worker_thread *worker)
83 {
84         if (worker->idle && atomic_read(&worker->num_pending) >=
85             worker->workers->idle_thresh) {
86                 unsigned long flags;
87                 spin_lock_irqsave(&worker->workers->lock, flags);
88                 worker->idle = 0;
89                 list_move_tail(&worker->worker_list,
90                                &worker->workers->worker_list);
91                 spin_unlock_irqrestore(&worker->workers->lock, flags);
92         }
93 }
94
95 static noinline int run_ordered_completions(struct btrfs_workers *workers,
96                                             struct btrfs_work *work)
97 {
98         unsigned long flags;
99
100         if (!workers->ordered)
101                 return 0;
102
103         set_bit(WORK_DONE_BIT, &work->flags);
104
105         spin_lock_irqsave(&workers->lock, flags);
106
107         while (!list_empty(&workers->order_list)) {
108                 work = list_entry(workers->order_list.next,
109                                   struct btrfs_work, order_list);
110
111                 if (!test_bit(WORK_DONE_BIT, &work->flags))
112                         break;
113
114                 /* we are going to call the ordered done function, but
115                  * we leave the work item on the list as a barrier so
116                  * that later work items that are done don't have their
117                  * functions called before this one returns
118                  */
119                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
120                         break;
121
122                 spin_unlock_irqrestore(&workers->lock, flags);
123
124                 work->ordered_func(work);
125
126                 /* now take the lock again and call the freeing code */
127                 spin_lock_irqsave(&workers->lock, flags);
128                 list_del(&work->order_list);
129                 work->ordered_free(work);
130         }
131
132         spin_unlock_irqrestore(&workers->lock, flags);
133         return 0;
134 }
135
136 /*
137  * main loop for servicing work items
138  */
139 static int worker_loop(void *arg)
140 {
141         struct btrfs_worker_thread *worker = arg;
142         struct list_head *cur;
143         struct btrfs_work *work;
144         do {
145                 spin_lock_irq(&worker->lock);
146 again_locked:
147                 while (!list_empty(&worker->pending)) {
148                         cur = worker->pending.next;
149                         work = list_entry(cur, struct btrfs_work, list);
150                         list_del(&work->list);
151                         clear_bit(WORK_QUEUED_BIT, &work->flags);
152
153                         work->worker = worker;
154                         spin_unlock_irq(&worker->lock);
155
156                         work->func(work);
157
158                         atomic_dec(&worker->num_pending);
159                         /*
160                          * unless this is an ordered work queue,
161                          * 'work' was probably freed by func above.
162                          */
163                         run_ordered_completions(worker->workers, work);
164
165                         spin_lock_irq(&worker->lock);
166                         check_idle_worker(worker);
167
168                 }
169                 if (freezing(current)) {
170                         worker->working = 0;
171                         spin_unlock_irq(&worker->lock);
172                         refrigerator();
173                 } else {
174                         spin_unlock_irq(&worker->lock);
175                         if (!kthread_should_stop()) {
176                                 cpu_relax();
177                                 /*
178                                  * we've dropped the lock, did someone else
179                                  * jump_in?
180                                  */
181                                 smp_mb();
182                                 if (!list_empty(&worker->pending))
183                                         continue;
184
185                                 /*
186                                  * this short schedule allows more work to
187                                  * come in without the queue functions
188                                  * needing to go through wake_up_process()
189                                  *
190                                  * worker->working is still 1, so nobody
191                                  * is going to try and wake us up
192                                  */
193                                 schedule_timeout(1);
194                                 smp_mb();
195                                 if (!list_empty(&worker->pending))
196                                         continue;
197
198                                 /* still no more work?, sleep for real */
199                                 spin_lock_irq(&worker->lock);
200                                 set_current_state(TASK_INTERRUPTIBLE);
201                                 if (!list_empty(&worker->pending))
202                                         goto again_locked;
203
204                                 /*
205                                  * this makes sure we get a wakeup when someone
206                                  * adds something new to the queue
207                                  */
208                                 worker->working = 0;
209                                 spin_unlock_irq(&worker->lock);
210
211                                 schedule();
212                         }
213                         __set_current_state(TASK_RUNNING);
214                 }
215         } while (!kthread_should_stop());
216         return 0;
217 }
218
219 /*
220  * this will wait for all the worker threads to shutdown
221  */
222 int btrfs_stop_workers(struct btrfs_workers *workers)
223 {
224         struct list_head *cur;
225         struct btrfs_worker_thread *worker;
226
227         list_splice_init(&workers->idle_list, &workers->worker_list);
228         while (!list_empty(&workers->worker_list)) {
229                 cur = workers->worker_list.next;
230                 worker = list_entry(cur, struct btrfs_worker_thread,
231                                     worker_list);
232                 kthread_stop(worker->task);
233                 list_del(&worker->worker_list);
234                 kfree(worker);
235         }
236         return 0;
237 }
238
239 /*
240  * simple init on struct btrfs_workers
241  */
242 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max)
243 {
244         workers->num_workers = 0;
245         INIT_LIST_HEAD(&workers->worker_list);
246         INIT_LIST_HEAD(&workers->idle_list);
247         INIT_LIST_HEAD(&workers->order_list);
248         spin_lock_init(&workers->lock);
249         workers->max_workers = max;
250         workers->idle_thresh = 32;
251         workers->name = name;
252         workers->ordered = 0;
253 }
254
255 /*
256  * starts new worker threads.  This does not enforce the max worker
257  * count in case you need to temporarily go past it.
258  */
259 int btrfs_start_workers(struct btrfs_workers *workers, int num_workers)
260 {
261         struct btrfs_worker_thread *worker;
262         int ret = 0;
263         int i;
264
265         for (i = 0; i < num_workers; i++) {
266                 worker = kzalloc(sizeof(*worker), GFP_NOFS);
267                 if (!worker) {
268                         ret = -ENOMEM;
269                         goto fail;
270                 }
271
272                 INIT_LIST_HEAD(&worker->pending);
273                 INIT_LIST_HEAD(&worker->worker_list);
274                 spin_lock_init(&worker->lock);
275                 atomic_set(&worker->num_pending, 0);
276                 worker->task = kthread_run(worker_loop, worker,
277                                            "btrfs-%s-%d", workers->name,
278                                            workers->num_workers + i);
279                 worker->workers = workers;
280                 if (IS_ERR(worker->task)) {
281                         kfree(worker);
282                         ret = PTR_ERR(worker->task);
283                         goto fail;
284                 }
285
286                 spin_lock_irq(&workers->lock);
287                 list_add_tail(&worker->worker_list, &workers->idle_list);
288                 worker->idle = 1;
289                 workers->num_workers++;
290                 spin_unlock_irq(&workers->lock);
291         }
292         return 0;
293 fail:
294         btrfs_stop_workers(workers);
295         return ret;
296 }
297
298 /*
299  * run through the list and find a worker thread that doesn't have a lot
300  * to do right now.  This can return null if we aren't yet at the thread
301  * count limit and all of the threads are busy.
302  */
303 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
304 {
305         struct btrfs_worker_thread *worker;
306         struct list_head *next;
307         int enforce_min = workers->num_workers < workers->max_workers;
308
309         /*
310          * if we find an idle thread, don't move it to the end of the
311          * idle list.  This improves the chance that the next submission
312          * will reuse the same thread, and maybe catch it while it is still
313          * working
314          */
315         if (!list_empty(&workers->idle_list)) {
316                 next = workers->idle_list.next;
317                 worker = list_entry(next, struct btrfs_worker_thread,
318                                     worker_list);
319                 return worker;
320         }
321         if (enforce_min || list_empty(&workers->worker_list))
322                 return NULL;
323
324         /*
325          * if we pick a busy task, move the task to the end of the list.
326          * hopefully this will keep things somewhat evenly balanced.
327          * Do the move in batches based on the sequence number.  This groups
328          * requests submitted at roughly the same time onto the same worker.
329          */
330         next = workers->worker_list.next;
331         worker = list_entry(next, struct btrfs_worker_thread, worker_list);
332         atomic_inc(&worker->num_pending);
333         worker->sequence++;
334
335         if (worker->sequence % workers->idle_thresh == 0)
336                 list_move_tail(next, &workers->worker_list);
337         return worker;
338 }
339
340 /*
341  * selects a worker thread to take the next job.  This will either find
342  * an idle worker, start a new worker up to the max count, or just return
343  * one of the existing busy workers.
344  */
345 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
346 {
347         struct btrfs_worker_thread *worker;
348         unsigned long flags;
349
350 again:
351         spin_lock_irqsave(&workers->lock, flags);
352         worker = next_worker(workers);
353         spin_unlock_irqrestore(&workers->lock, flags);
354
355         if (!worker) {
356                 spin_lock_irqsave(&workers->lock, flags);
357                 if (workers->num_workers >= workers->max_workers) {
358                         struct list_head *fallback = NULL;
359                         /*
360                          * we have failed to find any workers, just
361                          * return the force one
362                          */
363                         if (!list_empty(&workers->worker_list))
364                                 fallback = workers->worker_list.next;
365                         if (!list_empty(&workers->idle_list))
366                                 fallback = workers->idle_list.next;
367                         BUG_ON(!fallback);
368                         worker = list_entry(fallback,
369                                   struct btrfs_worker_thread, worker_list);
370                         spin_unlock_irqrestore(&workers->lock, flags);
371                 } else {
372                         spin_unlock_irqrestore(&workers->lock, flags);
373                         /* we're below the limit, start another worker */
374                         btrfs_start_workers(workers, 1);
375                         goto again;
376                 }
377         }
378         return worker;
379 }
380
381 /*
382  * btrfs_requeue_work just puts the work item back on the tail of the list
383  * it was taken from.  It is intended for use with long running work functions
384  * that make some progress and want to give the cpu up for others.
385  */
386 int btrfs_requeue_work(struct btrfs_work *work)
387 {
388         struct btrfs_worker_thread *worker = work->worker;
389         unsigned long flags;
390         int wake = 0;
391
392         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
393                 goto out;
394
395         spin_lock_irqsave(&worker->lock, flags);
396         list_add_tail(&work->list, &worker->pending);
397         atomic_inc(&worker->num_pending);
398
399         /* by definition we're busy, take ourselves off the idle
400          * list
401          */
402         if (worker->idle) {
403                 spin_lock_irqsave(&worker->workers->lock, flags);
404                 worker->idle = 0;
405                 list_move_tail(&worker->worker_list,
406                                &worker->workers->worker_list);
407                 spin_unlock_irqrestore(&worker->workers->lock, flags);
408         }
409         if (!worker->working) {
410                 wake = 1;
411                 worker->working = 1;
412         }
413
414         spin_unlock_irqrestore(&worker->lock, flags);
415         if (wake)
416                 wake_up_process(worker->task);
417 out:
418
419         return 0;
420 }
421
422 /*
423  * places a struct btrfs_work into the pending queue of one of the kthreads
424  */
425 int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
426 {
427         struct btrfs_worker_thread *worker;
428         unsigned long flags;
429         int wake = 0;
430
431         /* don't requeue something already on a list */
432         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
433                 goto out;
434
435         worker = find_worker(workers);
436         if (workers->ordered) {
437                 spin_lock_irqsave(&workers->lock, flags);
438                 list_add_tail(&work->order_list, &workers->order_list);
439                 spin_unlock_irqrestore(&workers->lock, flags);
440         } else {
441                 INIT_LIST_HEAD(&work->order_list);
442         }
443
444         spin_lock_irqsave(&worker->lock, flags);
445
446         list_add_tail(&work->list, &worker->pending);
447         atomic_inc(&worker->num_pending);
448         check_busy_worker(worker);
449
450         /*
451          * avoid calling into wake_up_process if this thread has already
452          * been kicked
453          */
454         if (!worker->working)
455                 wake = 1;
456         worker->working = 1;
457
458         spin_unlock_irqrestore(&worker->lock, flags);
459
460         if (wake)
461                 wake_up_process(worker->task);
462 out:
463         return 0;
464 }